Science.gov

Sample records for protein folding stability

  1. Effects of confinement on protein folding and protein stability

    NASA Astrophysics Data System (ADS)

    Ping, G.; Yuan, J. M.; Vallieres, M.; Dong, H.; Sun, Z.; Wei, Y.; Li, F. Y.; Lin, S. H.

    2003-05-01

    In a cell, proteins exist in crowded environments; these environments influence their stability and dynamics. Similarly, for an enzyme molecule encapsulated in an inorganic cavity as in biosensors or biocatalysts, confinement and even surface effects play important roles in its stability and dynamics. Using a minimalist model (two-dimensional HP lattice model), we have carried out Monte Carlo simulations to study confinement effects on protein stability. We have calculated heat capacity as a function of temperature using the histogram method and results obtained show that confinement tends to stabilize the folded conformations, consistent with experimental results (some reported here) and previous theoretical analyses. Furthermore, for a protein molecule tethered to a solid surface the stabilization effect can be even greater. We have also investigated the effects of confinement on the kinetics of the refolding and unfolding processes as functions of temperature and box size. As expected, unfolding time increases as box size decreases, however, confinement affects folding times in a more complicated way. Our theoretical results agree with our experimentally observed trends that thermal stability of horseradish peroxidase and acid phosphatase, encapsulated in mesoporous silica, increases as the pore size of the silica matrix decreases.

  2. Energetics-Based Methods for Protein Folding and Stability Measurements

    NASA Astrophysics Data System (ADS)

    Geer, M. Ariel; Fitzgerald, Michael C.

    2014-06-01

    Over the past 15 years, a series of energetics-based techniques have been developed for the thermodynamic analysis of protein folding and stability. These techniques include Stability of Unpurified Proteins from Rates of amide H/D Exchange (SUPREX), pulse proteolysis, Stability of Proteins from Rates of Oxidation (SPROX), slow histidine H/D exchange, lysine amidination, and quantitative cysteine reactivity (QCR). The above techniques, which are the subject of this review, all utilize chemical or enzymatic modification reactions to probe the chemical denaturant- or temperature-induced equilibrium unfolding properties of proteins and protein-ligand complexes. They employ various mass spectrometry-, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)-, and optical spectroscopy-based readouts that are particularly advantageous for high-throughput and in some cases multiplexed analyses. This has created the opportunity to use protein folding and stability measurements in new applications such as in high-throughput screening projects to identify novel protein ligands and in mode-of-action studies to identify protein targets of a particular ligand.

  3. Start2Fold: a database of hydrogen/deuterium exchange data on protein folding and stability

    PubMed Central

    Pancsa, Rita; Varadi, Mihaly; Tompa, Peter; Vranken, Wim F.

    2016-01-01

    Proteins fulfil a wide range of tasks in cells; understanding how they fold into complex three-dimensional (3D) structures and how these structures remain stable while retaining sufficient dynamics for functionality is essential for the interpretation of overall protein behaviour. Since the 1950's, solvent exchange-based methods have been the most powerful experimental means to obtain information on the folding and stability of proteins. Considerable expertise and care were required to obtain the resulting datasets, which, despite their importance and intrinsic value, have never been collected, curated and classified. Start2Fold is an openly accessible database (http://start2fold.eu) of carefully curated hydrogen/deuterium exchange (HDX) data extracted from the literature that is open for new submissions from the community. The database entries contain (i) information on the proteins investigated and the underlying experimental procedures and (ii) the classification of the residues based on their exchange protection levels, also allowing for the instant visualization of the relevant residue groups on the 3D structures of the corresponding proteins. By providing a clear hierarchical framework for the easy sharing, comparison and (re-)interpretation of HDX data, Start2Fold intends to promote a better understanding of how the protein sequence encodes folding and structure as well as the development of new computational methods predicting protein folding and stability. PMID:26582925

  4. Thermodynamic stability and folding of proteins from hyperthermophilic organisms.

    PubMed

    Luke, Kathryn A; Higgins, Catherine L; Wittung-Stafshede, Pernilla

    2007-08-01

    Life grows almost everywhere on earth, including in extreme environments and under harsh conditions. Organisms adapted to high temperatures are called thermophiles (growth temperature 45-75 degrees C) and hyperthermophiles (growth temperature >or= 80 degrees C). Proteins from such organisms usually show extreme thermal stability, despite having folded structures very similar to their mesostable counterparts. Here, we summarize the current data on thermodynamic and kinetic folding/unfolding behaviors of proteins from hyperthermophilic microorganisms. In contrast to thermostable proteins, rather few (i.e. less than 20) hyperthermostable proteins have been thoroughly characterized in terms of their in vitro folding processes and their thermodynamic stability profiles. Examples that will be discussed include co-chaperonin proteins, iron-sulfur-cluster proteins, and DNA-binding proteins from hyperthermophilic bacteria (i.e. Aquifex and Theromotoga) and archea (e.g. Pyrococcus, Thermococcus, Methanothermus and Sulfolobus). Despite the small set of studied systems, it is clear that super-slow protein unfolding is a dominant strategy to allow these proteins to function at extreme temperatures.

  5. Protein folding, stability, and solvation structure in osmolyte solutions hydrophobicity

    NASA Astrophysics Data System (ADS)

    Montgomery Pettitt, B.

    2008-03-01

    The hydrophobic effect between solutes in aqueous solutions plays a central role in our understanding of recognition and folding of proteins and self assembly of lipids. Hydrophobicity induces nonideal solution behavior which plays a role in many aspects of biophysics. Work on the use of small biochemical compounds to crowd protein solutions indicates that a quantitative description of their non-ideal behavior is possible and straightforward. Here, we will show what the structural origin of this non-ideal solution behavior is from expression derived from a semi grand ensemble approach. We discuss the consequences of these findings regarding protein folding stability and solvation in crowded solutions through a structural analysis of the m-value or the change in free energy difference of a macromolecule in solution with respect to the concentration of a third component. This effect has recently been restudied and new mechanisms proposed for its origins in terms of transfer free energies and hydrophobicity.

  6. Protein Folding, Stability, and Solvation Structure in Osmolyte Solutions

    PubMed Central

    Rösgen, Jörg; Pettitt, B. Montgomery; Bolen, David Wayne

    2005-01-01

    An understanding of the impact of the crowded conditions in the cytoplasm on its biomolecules is of clear importance to biochemical, medical, and pharmaceutical science. Our previous work on the use of small biochemical compounds to crowd protein solutions indicates that a quantitative description of their nonideal behavior is possible and straightforward. Here, we show the structural origin of the nonideal solution behavior. We discuss the consequences of these findings regarding protein folding stability and solvation in crowded solutions through a structural analysis of the m-value or the change in free-energy difference of a macromolecule in solution with respect to the concentration of a third component. PMID:16113118

  7. Folding and Stabilization of Native-Sequence-Reversed Proteins

    PubMed Central

    Zhang, Yuanzhao; Weber, Jeffrey K; Zhou, Ruhong

    2016-01-01

    Though the problem of sequence-reversed protein folding is largely unexplored, one might speculate that reversed native protein sequences should be significantly more foldable than purely random heteropolymer sequences. In this article, we investigate how the reverse-sequences of native proteins might fold by examining a series of small proteins of increasing structural complexity (α-helix, β-hairpin, α-helix bundle, and α/β-protein). Employing a tandem protein structure prediction algorithmic and molecular dynamics simulation approach, we find that the ability of reverse sequences to adopt native-like folds is strongly influenced by protein size and the flexibility of the native hydrophobic core. For β-hairpins with reverse-sequences that fail to fold, we employ a simple mutational strategy for guiding stable hairpin formation that involves the insertion of amino acids into the β-turn region. This systematic look at reverse sequence duality sheds new light on the problem of protein sequence-structure mapping and may serve to inspire new protein design and protein structure prediction protocols. PMID:27113844

  8. Folding and Stabilization of Native-Sequence-Reversed Proteins

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanzhao; Weber, Jeffrey K.; Zhou, Ruhong

    2016-04-01

    Though the problem of sequence-reversed protein folding is largely unexplored, one might speculate that reversed native protein sequences should be significantly more foldable than purely random heteropolymer sequences. In this article, we investigate how the reverse-sequences of native proteins might fold by examining a series of small proteins of increasing structural complexity (α-helix, β-hairpin, α-helix bundle, and α/β-protein). Employing a tandem protein structure prediction algorithmic and molecular dynamics simulation approach, we find that the ability of reverse sequences to adopt native-like folds is strongly influenced by protein size and the flexibility of the native hydrophobic core. For β-hairpins with reverse-sequences that fail to fold, we employ a simple mutational strategy for guiding stable hairpin formation that involves the insertion of amino acids into the β-turn region. This systematic look at reverse sequence duality sheds new light on the problem of protein sequence-structure mapping and may serve to inspire new protein design and protein structure prediction protocols.

  9. Mathematics, Thermodynamics, and Modeling to Address Ten Common Misconceptions about Protein Structure, Folding, and Stability

    ERIC Educational Resources Information Center

    Robic, Srebrenka

    2010-01-01

    To fully understand the roles proteins play in cellular processes, students need to grasp complex ideas about protein structure, folding, and stability. Our current understanding of these topics is based on mathematical models and experimental data. However, protein structure, folding, and stability are often introduced as descriptive, qualitative…

  10. Mathematics, Thermodynamics, and Modeling to Address Ten Common Misconceptions about Protein Structure, Folding, and Stability

    ERIC Educational Resources Information Center

    Robic, Srebrenka

    2010-01-01

    To fully understand the roles proteins play in cellular processes, students need to grasp complex ideas about protein structure, folding, and stability. Our current understanding of these topics is based on mathematical models and experimental data. However, protein structure, folding, and stability are often introduced as descriptive, qualitative…

  11. Protein knotting through concatenation significantly reduces folding stability

    PubMed Central

    Hsu, Shang-Te Danny

    2016-01-01

    Concatenation by covalent linkage of two protomers of an intertwined all-helical HP0242 homodimer from Helicobacter pylori results in the first example of an engineered knotted protein. While concatenation does not affect the native structure according to X-ray crystallography, the folding kinetics is substantially slower compared to the parent homodimer. Using NMR hydrogen-deuterium exchange analysis, we showed here that concatenation destabilises significantly the knotted structure in solution, with some regions close to the covalent linkage being destabilised by as much as 5 kcal mol−1. Structural mapping of chemical shift perturbations induced by concatenation revealed a pattern that is similar to the effect induced by concentrated chaotrophic agent. Our results suggested that the design strategy of protein knotting by concatenation may be thermodynamically unfavourable due to covalent constrains imposed on the flexible fraying ends of the template structure, leading to rugged free energy landscape with increased propensity to form off-pathway folding intermediates. PMID:27982106

  12. A protein family under 'stress' - serpin stability, folding and misfolding.

    PubMed

    Devlin, Glyn L; Bottomley, Stephen P

    2005-01-01

    The native fold of inhibitory serpins (serpin proteinase inhibitors) is metastable and therefore does not represent the most stable conformation that the primary sequence encodes for. The most stable form is adopted when the reactive centre loop (RCL) inserts, as the fourth strand, into the A b -sheet. Currently a serpin can adopt at least four more stable conformations, termed the cleaved, delta, latent and polymeric states. The accessibility of these alternative low energy folds renders the serpin molecule susceptible to mutations that can result in dysfunction and pathology. Here, we discuss the means by which the serpin can attain and preserve this metastable conformation. We also consider the triggers for misfolding to these more stable states and the mechanisms by which it occurs.

  13. Identification of rare slipknots in proteins and their implications for stability and folding.

    PubMed

    King, Neil P; Yeates, Eric O; Yeates, Todd O

    2007-10-12

    Among the thousands of known three-dimensional protein folds, only a few have been found whose backbones are in knotted configurations. The rarity of knotted proteins has important implications for how natural proteins reach their natively folded states. Proteins with such unusual features offer unique opportunities for studying the relationships between structure, folding, and stability. Here we report the identification of a unique slipknot feature in the fold of a well-known thermostable protein, alkaline phosphatase. A slipknot is created when a knot is formed by part of a protein chain, after which the backbone doubles back so that the entire structure becomes unknotted in a mathematical sense. Slipknots are therefore not detected by computational tests that look for knots in complete protein structures. A computational survey looking specifically for slipknots in the Protein Data Bank reveals a few other instances in addition to alkaline phosphatase. Unexpected similarities are noted among some of the proteins identified. In addition, two transmembrane proteins are found to contain slipknots. Finally, mutagenesis experiments on alkaline phosphatase are used to probe the contribution the slipknot feature makes to thermal stability. The trends and conserved features observed in these proteins provide new insights into mechanisms of protein folding and stability.

  14. Knotted and topologically complex proteins as models for studying folding and stability

    PubMed Central

    Yeates, Todd O.; Norcross, Todd S.; King, Neil P.

    2008-01-01

    SUMMARY Among proteins of known three dimensional structure, only a few possess complex topological features such as knotted or interlinked (catenated) protein backbones. Such unusual proteins offer potentially unique insights into folding pathways and stabilization mechanisms. They also present special challenges for both theorists and computational scientists interested in understanding and predicting protein folding behavior. Here we review complex topological features in proteins with a focus on recent progress on the identification and characterization of knotted and interlinked protein systems. Also, an approach is described for designing an expanded set of knotted proteins. PMID:17967433

  15. Alpha-haemoglobin stabilizing protein (AHSP) stabilizes apo-α-haemoglobin in a partially folded state

    PubMed Central

    Krishna Kumar, Kaavya; Dickson, Claire F.; Weiss, Mitchell J.; Mackay, Joel P.; Gell, David A.

    2015-01-01

    SYNOPSIS To produce functional haemoglobin, nascent α-globin (αo) and β-globin (βo) chains must each bind a single haem molecule (to form αh and βh) and interact together to form heterodimers. The precise sequence of binding events is unknown, and it has been suggested that additional factors might enhance the efficiency of Hb folding. The α-haemoglobin stabilizing protein (AHSP) has previously been shown to bind αh and regulate redox activity of the haem iron. Here, we use a combination of classical and dynamic light scattering and NMR spectroscopy to demonstrate that AHSP forms a heterodimeric complex with αo that inhibits αo aggregation and promotes αo folding in the absence of haem. These findings indicate that AHSP may function as an αo-specific chaperone, and suggest an important role for αo in guiding Hb assembly by stabilizing βo and inhibiting off-pathway self-association of βh. PMID:20860551

  16. Studying the role of cooperative hydration in stabilizing folded protein states.

    PubMed

    Huggins, David J

    2016-12-01

    Understanding and modelling protein folding remains a key scientific and engineering challenge. Two key questions in protein folding are (1) why many proteins adopt a folded state and (2) how these proteins transition from the random coil ensemble to a folded state. In this paper we employ molecular dynamics simulations to address the first of these questions. Computational methods are well-placed to address this issue due to their ability to analyze systems at atomic-level resolution. Traditionally, the stability of folded proteins has been ascribed to the balance of two types of intermolecular interactions: hydrogen-bonding interactions and hydrophobic contacts. In this study, we explore a third type of intermolecular interaction: cooperative hydration of protein surface residues. To achieve this, we consider multiple independent simulations of the villin headpiece domain to quantify the contributions of different interactions to the energy of the native and fully extended states. In addition, we consider whether these findings are robust with respect to the protein forcefield, the water model, and the presence of salt. In all cases, we identify many cooperatively hydrated interactions that are transient but energetically favor the native state. Whilst further work on additional protein structures, forcefields, and water models is necessary, these results suggest a role for cooperative hydration in protein folding that should be explored further. Rational design of cooperative hydration on the protein surface could be a viable strategy for increasing protein stability. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. Mathematics, thermodynamics, and modeling to address ten common misconceptions about protein structure, folding, and stability.

    PubMed

    Robic, Srebrenka

    2010-01-01

    To fully understand the roles proteins play in cellular processes, students need to grasp complex ideas about protein structure, folding, and stability. Our current understanding of these topics is based on mathematical models and experimental data. However, protein structure, folding, and stability are often introduced as descriptive, qualitative phenomena in undergraduate classes. In the process of learning about these topics, students often form incorrect ideas. For example, by learning about protein folding in the context of protein synthesis, students may come to an incorrect conclusion that once synthesized on the ribosome, a protein spends its entire cellular life time in its fully folded native confirmation. This is clearly not true; proteins are dynamic structures that undergo both local fluctuations and global unfolding events. To prevent and address such misconceptions, basic concepts of protein science can be introduced in the context of simple mathematical models and hands-on explorations of publicly available data sets. Ten common misconceptions about proteins are presented, along with suggestions for using equations, models, sequence, structure, and thermodynamic data to help students gain a deeper understanding of basic concepts relating to protein structure, folding, and stability.

  18. Mathematics, Thermodynamics, and Modeling to Address Ten Common Misconceptions about Protein Structure, Folding, and Stability

    PubMed Central

    2010-01-01

    To fully understand the roles proteins play in cellular processes, students need to grasp complex ideas about protein structure, folding, and stability. Our current understanding of these topics is based on mathematical models and experimental data. However, protein structure, folding, and stability are often introduced as descriptive, qualitative phenomena in undergraduate classes. In the process of learning about these topics, students often form incorrect ideas. For example, by learning about protein folding in the context of protein synthesis, students may come to an incorrect conclusion that once synthesized on the ribosome, a protein spends its entire cellular life time in its fully folded native confirmation. This is clearly not true; proteins are dynamic structures that undergo both local fluctuations and global unfolding events. To prevent and address such misconceptions, basic concepts of protein science can be introduced in the context of simple mathematical models and hands-on explorations of publicly available data sets. Ten common misconceptions about proteins are presented, along with suggestions for using equations, models, sequence, structure, and thermodynamic data to help students gain a deeper understanding of basic concepts relating to protein structure, folding, and stability. PMID:20810950

  19. Detecting Selection on Protein Stability through Statistical Mechanical Models of Folding and Evolution

    PubMed Central

    Bastolla, Ugo

    2014-01-01

    The properties of biomolecules depend both on physics and on the evolutionary process that formed them. These two points of view produce a powerful synergism. Physics sets the stage and the constraints that molecular evolution has to obey, and evolutionary theory helps in rationalizing the physical properties of biomolecules, including protein folding thermodynamics. To complete the parallelism, protein thermodynamics is founded on the statistical mechanics in the space of protein structures, and molecular evolution can be viewed as statistical mechanics in the space of protein sequences. In this review, we will integrate both points of view, applying them to detecting selection on the stability of the folded state of proteins. We will start discussing positive design, which strengthens the stability of the folded against the unfolded state of proteins. Positive design justifies why statistical potentials for protein folding can be obtained from the frequencies of structural motifs. Stability against unfolding is easier to achieve for longer proteins. On the contrary, negative design, which consists in destabilizing frequently formed misfolded conformations, is more difficult to achieve for longer proteins. The folding rate can be enhanced by strengthening short-range native interactions, but this requirement contrasts with negative design, and evolution has to trade-off between them. Finally, selection can accelerate functional movements by favoring low frequency normal modes of the dynamics of the native state that strongly correlate with the functional conformation change. PMID:24970217

  20. New insights into structural determinants of prion protein folding and stability.

    PubMed

    Benetti, Federico; Legname, Giuseppe

    2015-01-01

    Prions are the etiological agent of fatal neurodegenerative diseases called prion diseases or transmissible spongiform encephalopathies. These maladies can be sporadic, genetic or infectious disorders. Prions are due to post-translational modifications of the cellular prion protein leading to the formation of a β-sheet enriched conformer with altered biochemical properties. The molecular events causing prion formation in sporadic prion diseases are still elusive. Recently, we published a research elucidating the contribution of major structural determinants and environmental factors in prion protein folding and stability. Our study highlighted the crucial role of octarepeats in stabilizing prion protein; the presence of a highly enthalpically stable intermediate state in prion-susceptible species; and the role of disulfide bridge in preserving native fold thus avoiding the misfolding to a β-sheet enriched isoform. Taking advantage from these findings, in this work we present new insights into structural determinants of prion protein folding and stability.

  1. Dependence of Protein Folding Stability and Dynamics on the Density and Composition of Macromolecular Crowders

    PubMed Central

    Mittal, Jeetain; Best, Robert B.

    2010-01-01

    We investigate the effect of macromolecular crowding on protein folding, using purely repulsive crowding particles and a self-organizing polymer model of protein folding. We find that the variation in folding stability with crowder size for typical α-, β-, and α/β-proteins is well described by an adaptation of the scaled particle theory. The native state, the transition state, and the unfolded protein are treated as effective hard spheres, with the folded and transition state radii independent of the size and concentration of the crowders. Remarkably, we find that, as the effective unfolded state radius is very weakly dependent on the crowder concentration, it can also be approximated by a single size. The same model predicts the effect of crowding on the folding barrier and therefore refolding rates with no adjustable parameters. A simple extension of the scaled-particle theory model, assuming additivity, can also describe the behavior of mixtures of crowding particles. PMID:20338853

  2. The Principle of Stationary Action in Biophysics: Stability in Protein Folding

    PubMed Central

    Weiner, Joel L.

    2013-01-01

    We conceptualize protein folding as motion in a large dimensional dihedral angle space. We use Lagrangian mechanics and introduce an unspecified Lagrangian to study the motion. The fact that we have reliable folding leads us to conjecture the totality of paths forms caustics that can be recognized by the vanishing of the second variation of the action. There are two types of folding processes: stable against modest perturbations and unstable. We also conjecture that natural selection has picked out stable folds. More importantly, the presence of caustics leads naturally to the application of ideas from catastrophe theory and allows us to consider the question of stability for the folding process from that perspective. Powerful stability theorems from mathematics are then applicable to impose more order on the totality of motions. This leads to an immediate explanation for both the insensitivity of folding to solution perturbations and the fact that folding occurs using very little free energy. The theory of folding, based on the above conjectures, can also be used to explain the behavior of energy landscapes, the speed of folding similar to transition state theory, and the fact that random proteins do not fold. PMID:24454360

  3. Confinement in nanopores can destabilize α-helix folding proteins and stabilize the β structures

    NASA Astrophysics Data System (ADS)

    Javidpour, Leili; Sahimi, Muhammad

    2011-09-01

    Protein folding in confined media has attracted wide attention over the past decade due to its importance in both in vivo and in vitro applications. Currently, it is generally believed that protein stability increases by decreasing the size of the confining medium, if its interaction with the confining walls is repulsive, and that the maximum folding temperature in confinement occurs for a pore size only slightly larger than the smallest dimension of the folded state of a protein. Protein stability in pore sizes, very close to the size of the folded state, has not however received the attention that it deserves. Using detailed, 0.3-ms-long molecular dynamics simulations, we show that proteins with an α-helix native state can have an optimal folding temperature in pore sizes that do not affect the folded-state structure. In contradiction to the current theoretical explanations, we find that the maximum folding temperature occurs in larger pores for smaller α-helices. In highly confined pores the free energy surface becomes rough, and a new barrier for protein folding may appear close to the unfolded state. In addition, in small nanopores the protein states that contain the β structures are entropically stabilized, in contrast to the bulk. As a consequence, folding rates decrease notably and the free energy surface becomes rougher. The results shed light on many recent experimental observations that cannot be explained by the current theories, and demonstrate the importance of entropic effects on proteins' misfolded states in highly confined environments. They also support the concept of passive effect of chaperonin GroEL on protein folding by preventing it from aggregation in crowded environment of biological cells, and provide deeper clues to the α → β conformational transition, believed to contribute to Alzheimer's and Parkinson's diseases. The strategy of protein and enzyme stabilization in confined media may also have to be revisited in the case of tight

  4. Folding and stability of helical bundle proteins from coarse-grained models.

    PubMed

    Kapoor, Abhijeet; Travesset, Alex

    2013-07-01

    We develop a coarse-grained model where solvent is considered implicitly, electrostatics are included as short-range interactions, and side-chains are coarse-grained to a single bead. The model depends on three main parameters: hydrophobic, electrostatic, and side-chain hydrogen bond strength. The parameters are determined by considering three level of approximations and characterizing the folding for three selected proteins (training set). Nine additional proteins (containing up to 126 residues) as well as mutated versions (test set) are folded with the given parameters. In all folding simulations, the initial state is a random coil configuration. Besides the native state, some proteins fold into an additional state differing in the topology (structure of the helical bundle). We discuss the stability of the native states, and compare the dynamics of our model to all atom molecular dynamics simulations as well as some general properties on the interactions governing folding dynamics. Copyright © 2013 Wiley Periodicals, Inc.

  5. Effect of protein backbone folding on the stability of protein-ligand complexes.

    PubMed

    Estrada, Ernesto; Uriarte, Eugenio; Vilar, Santiago

    2006-01-01

    The role played by the degree of folding of protein backbones in explaining the binding energetics of protein-ligand interactions has been studied. We analyzed the protein/peptide interactions in the RNase-S system in which amino acids at two positions of the peptide S have been mutated. The global degree of folding of the protein S correlates in a significant way with the free energy and enthalpy of the protein-peptide interactions. A much better correlation is found with the local contribution to the degree of folding of one amino acid residue: Thr36. This residue is shown to have a destabilizing interaction with Lys41, which interacts directly with peptide S. Another system, consisting of the interactions of small organic molecules with HIV-1 protease was also studied. In this case, the global change in the degree of folding of the protease backbone does not explain the binding energetics of protein-ligand interactions. However, a significant correlation is observed between the free energy of binding and the contribution of two amino acid residues in the HVI-1 protease: Gly49 and Ile66. In general, it was observed that the changes in the degree of folding are not restricted to the binding site of the protein chain but are distributed along the whole protein backbone. This study provides a basis for further consideration of the degree of folding as a parameter for empirical structural parametrizations of the binding energetics of protein folding and binding.

  6. Global stability of protein folding from an empirical free energy function.

    PubMed

    Ruiz-Blanco, Yasser B; Marrero-Ponce, Yovani; Paz, Waldo; García, Yamila; Salgado, Jesús

    2013-03-21

    The principles governing protein folding stand as one of the biggest challenges of Biophysics. Modeling the global stability of proteins and predicting their tertiary structure are hard tasks, due in part to the variety and large number of forces involved and the difficulties to describe them with sufficient accuracy. We have developed a fast, physics-based empirical potential, intended to be used in global structure prediction methods. This model considers four main contributions: Two entropic factors, the hydrophobic effect and configurational entropy, and two terms resulting from a decomposition of close-packing interactions, namely the balance of the dispersive interactions of folded and unfolded states and electrostatic interactions between residues. The parameters of the model were fixed from a protein data set whose unfolding free energy has been measured at the "standard" experimental conditions proposed by Maxwell et al. (2005) and a large data set of 1151 monomeric proteins obtained from the PDB. A blind test with proteins taken from ProTherm database, at similar experimental conditions, was carried out. We found a good correlation with the test data set, proving the effectiveness of our model for predicting protein folding free energies in considered standard conditions. Such a prediction compares favorably against estimations made with FoldX's function and the force field GROMOS96. This model constitutes a valuable tool for the fast evaluation of protein structure stability in 3D structure prediction methods.

  7. Perturbations of the denatured state ensemble: modeling their effects on protein stability and folding kinetics.

    PubMed Central

    Wrabl, J. O.; Shortle, D.

    1996-01-01

    By considering the denatured state of a protein as an ensemble of conformations with varying numbers of sequence-specific interactions, the effects on stability, folding kinetics, and aggregation of perturbing these interactions can be predicted from changes in the molecular partition function. From general considerations, the following conclusions are drawn: (1) A perturbation that enhances a native interaction in denatured state conformations always increases the stability of the native state. (2) A perturbation that promotes a non-native interaction in the denatured state always decreases the stability of the native state. (3) A change in the denatured state ensemble can alter the kinetics of aggregation and folding. (4) The loss (or increase) in stability accompanying two mutations, each of which lowers (or raises) the free energy of the denatured state, will be less than the sum of the effects of the single mutations, except in cases where both mutations affect the same set of partially folded conformations. By modeling the denatured state as the ensemble of all non-native conformations of hydrophobic-polar (HP) chains configured on a square lattice, it can be shown that the stabilization obtained from enhancement of native interactions derives in large measure from the avoidance of non-native interactions in the D state. In addition, the kinetic effects of fixing single native contacts in the denatured state or imposing linear gradients in the HH contact probabilities are found, for some sequences, to significantly enhance the efficiency of folding by a simple hydrophobic zippering algorithm. Again, the dominant mechanism appears to be avoidance of non-native interactions. These results suggest stabilization of native interactions and imposition of gradients in the stability of local structure are two plausible mechanisms involving the denatured state that could play a role in the evolution of protein folding and stability. PMID:8931153

  8. Beta-Barrel Scaffold of Fluorescent Proteins: Folding, Stability and Role in Chromophore Formation

    PubMed Central

    Stepanenko, Olesya V.; Stepanenko, Olga V.; Kuznetsova, Irina M.; Verkhusha, Vladislav V.; Turoverov, Konstantin K.

    2013-01-01

    This review focuses on the current view of the interaction between the β-barrel scaffold of fluorescent proteins and their unique chromophore located in the internal helix. The chromophore originates from the polypeptide chain and its properties are influenced by the surrounding protein matrix of the β-barrel. On the other hand, it appears that a chromophore tightens the β-barrel scaffold and plays a crucial role in its stability. Furthermore, the presence of a mature chromophore causes hysteresis of protein unfolding and refolding. We survey studies measuring protein unfolding and refolding using traditional methods as well as new approaches, such as mechanical unfolding and reassembly of truncated fluorescent proteins. We also analyze models of fluorescent protein unfolding and refolding obtained through different approaches, and compare the results of protein folding in vitro to co-translational folding of a newly synthesized polypeptide chain. PMID:23351712

  9. Influence of protein fold stability on immunogenicity and its implications for vaccine design.

    PubMed

    Scheiblhofer, Sandra; Laimer, Josef; Machado, Yoan; Weiss, Richard; Thalhamer, Josef

    2017-05-01

    In modern vaccinology and immunotherapy, recombinant proteins more and more replace whole organisms to induce protective or curative immune responses. Structural stability of proteins is of crucial importance for efficient presentation of antigenic peptides on MHC, which plays a decisive role for triggering strong immune reactions. Areas covered: In this review, we discuss structural stability as a key factor for modulating the potency of recombinant vaccines and its importance for antigen proteolysis, presentation, and stimulation of B and T cells. Moreover, the impact of fold stability on downstream events determining the differentiation of T cells into effector cells is reviewed. We summarize studies investigating the impact of protein fold stability on the outcome of the immune response and provide an overview on computational methods to estimate the effects of point mutations on protein stability. Expert commentary: Based on this information, the rational design of up-to-date vaccines is discussed. A model for predicting immunogenicity of proteins based on their conformational stability at different pH values is proposed.

  10. Engineered genetic selection links in vivo protein folding and stability with asparagine-linked glycosylation.

    PubMed

    Mansell, Thomas J; Guarino, Cassandra; DeLisa, Matthew P

    2013-12-01

    Predicting the structural consequences of site-specific glycosylation remains a major challenge due in part to the lack of convenient experimental tools for rapidly determining how glycosylation influences protein folding. To address this shortcoming, we developed a genetic selection that directly links the in vivo folding of asparagine-linked (N-linked) glycoproteins with antibiotic resistance. Using this assay, we identified three known or putative glycoproteins from Campylobacter jejuni (Peb3, CjaA, and Cj0610c) whose folding was significantly affected by N-glycosylation. We also used the genetic selection to isolate a glycoengineered variant of the Escherichia coli colicin E7 immunity protein (Im7) whose intracellular folding and stability were enhanced as a result of N-glycosylation. In addition to monitoring the effect of glycan attachment on protein folding in living cells, this strategy could easily be extended for optimizing protein folding in vivo and engineering glycosylation enzymes, pathways, and hosts for optimal performance. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Osmolytes stabilize ribonuclease S by stabilizing its fragments S protein and S peptide to compact folding-competent states.

    PubMed

    Ratnaparkhi, G S; Varadarajan, R

    2001-08-03

    Osmolytes stabilize proteins to thermal and chemical denaturation. We have studied the effects of the osmolytes sarcosine, betaine, trimethylamine-N-oxide, and taurine on the structure and stability of the protein.peptide complex RNase S using x-ray crystallography and titration calorimetry, respectively. The largest degree of stabilization is achieved with 6 m sarcosine, which increases the denaturation temperatures of RNase S and S pro by 24.6 and 17.4 degrees C, respectively, at pH 5 and protects both proteins against tryptic cleavage. Four crystal structures of RNase S in the presence of different osmolytes do not offer any evidence for osmolyte binding to the folded state of the protein or any perturbation in the water structure surrounding the protein. The degree of stabilization in 6 m sarcosine increases with temperature, ranging from -0.52 kcal mol(-1) at 20 degrees C to -5.4 kcal mol(-1) at 60 degrees C. The data support the thesis that osmolytes that stabilize proteins, do so by perturbing unfolded states, which change conformation to a compact, folding competent state in the presence of osmolyte. The increased stabilization thus results from a decrease in conformational entropy of the unfolded state.

  12. Differential scanning calorimetry as a tool for protein folding and stability.

    PubMed

    Johnson, Christopher M

    2013-03-01

    Differential scanning calorimetry measures the heat capacity of states and the excess heat associated with transitions that can be induced by temperature change. The integral of the excess heat capacity is the enthalpy for this process. Despite this potentially intimidating sounding physical chemistry background, DSC has found almost universal application in studying biological macromolecules. In the case of proteins, DSC can be used to determine equilibrium thermodynamic stability and folding mechanism but can also be used in a more qualitative manner screening for thermal stability as an indicator for, ligand binding, pharmaceutical formulation or conditions conducive to crystal growth. DSC usually forms part of a wider biophysical characterisation of the biological system of interest and so the literature is diverse and difficult to categorise for the technique in isolation. This review therefore describes the potential uses of DSC in studying protein folding and stability, giving brief examples of applications from the recent literature. There have also been some interesting developments in the use of DSC to determine barrier heights for fast folding proteins and in studying complex protein mixtures such as human plasma that are considered in more detail.

  13. The role of high-dimensional diffusive search, stabilization, and frustration in protein folding.

    PubMed

    Rimratchada, Supreecha; McLeish, Tom C B; Radford, Sheena E; Paci, Emanuele

    2014-04-15

    Proteins are polymeric molecules with many degrees of conformational freedom whose internal energetic interactions are typically screened to small distances. Therefore, in the high-dimensional conformation space of a protein, the energy landscape is locally relatively flat, in contrast to low-dimensional representations, where, because of the induced entropic contribution to the full free energy, it appears funnel-like. Proteins explore the conformation space by searching these flat subspaces to find a narrow energetic alley that we call a hypergutter and then explore the next, lower-dimensional, subspace. Such a framework provides an effective representation of the energy landscape and folding kinetics that does justice to the essential characteristic of high-dimensionality of the search-space. It also illuminates the important role of nonnative interactions in defining folding pathways. This principle is here illustrated using a coarse-grained model of a family of three-helix bundle proteins whose conformations, once secondary structure has formed, can be defined by six rotational degrees of freedom. Two folding mechanisms are possible, one of which involves an intermediate. The stabilization of intermediate subspaces (or states in low-dimensional projection) in protein folding can either speed up or slow down the folding rate depending on the amount of native and nonnative contacts made in those subspaces. The folding rate increases due to reduced-dimension pathways arising from the mere presence of intermediate states, but decreases if the contacts in the intermediate are very stable and introduce sizeable topological or energetic frustration that needs to be overcome. Remarkably, the hypergutter framework, although depending on just a few physically meaningful parameters, can reproduce all the types of experimentally observed curvature in chevron plots for realizations of this fold.

  14. Thermal stability and folding kinetics analysis of intrinsically disordered protein, securin

    NASA Astrophysics Data System (ADS)

    Chang, Chia-Ching; Chu, Hsueh-Liang; Ho, Li-Ping

    2014-03-01

    Lacking a stable tertiary structure, intrinsically disordered proteins (IDPs) possess particular functions in cell regulation, signaling, and controlling pathways. The study of their unique structure features, thermal stabilities, and folding kinetics is intriguing. In this study, an identified IDP, securin, was used as a model protein. By using a quasi-static five-step (on-path) folding process, the function of securin was restored and analyzed by isothermal titration calorimetry. Fluorescence spectroscopy and particle size analysis indicated that securin possessed a compact hydrophobic core and particle size. The glass transition of securin was characterized using differential scanning microcalorimetry. Furthermore, the folding/unfolding rates (kobs) of securin were undetectable, implying that the folding/unfolding rate is very fast and that the conformation of securin is sensitive to solvent environment change. Therefore, securin may fold properly under specific physiological conditions. In summary, the thermal glass transition behavior and undetectable kobs of folding/unfolding reactions may be two of the indices of IDP. This study was supported in part by grants NSC 97-2112-M-009-009-YM3 and NSC 100-2112-M-009-004-MY3, Taiwan, R.O.C.

  15. Linking computation and experiments to study the role of charge–charge interactions in protein folding and stability

    NASA Astrophysics Data System (ADS)

    Makhatadze, George I.

    2017-02-01

    Over the past two decades there has been an increase in appreciation for the role of surface charge–charge interactions in protein folding and stability. The perception shifted from the belief that charge–charge interactions are not important for protein folding and stability to the near quantitative understanding of how these interactions shape the folding energy landscape. This led to the ability of computational approaches to rationally redesign surface charge–charge interactions to modulate thermodynamic properties of proteins. Here we summarize our progress in understanding the role of charge–charge interactions for protein stability using examples drawn from my own laboratory and touch upon unanswered questions.

  16. Stabilities and Dynamics of Protein Folding Nuclei by Molecular Dynamics Simulation

    NASA Astrophysics Data System (ADS)

    Song, Yong-Shun; Zhou, Xin; Zheng, Wei-Mou; Wang, Yan-Ting

    2017-07-01

    To understand how the stabilities of key nuclei fragments affect protein folding dynamics, we simulate by molecular dynamics (MD) simulation in aqueous solution four fragments cut out of a protein G, including one α-helix (seqB: KVFKQYAN), two β-turns (seqA: LNGKTLKG and seqC: YDDATKTF), and one β-strand (seqD: DGEWTYDD). The Markov State Model clustering method combined with the coarse-grained conformation letters method are employed to analyze the data sampled from 2-μs equilibrium MD simulation trajectories. We find that seqA and seqB have more stable structures than their native structures which become metastable when cut out of the protein structure. As expected, seqD alone is flexible and does not have a stable structure. Throughout our simulations, the native structure of seqC is stable but cannot be reached if starting from a structure other than the native one, implying a funnel-shape free energy landscape of seqC in aqueous solution. All the above results suggest that different nuclei have different formation dynamics during protein folding, which may have a major contribution to the hierarchy of protein folding dynamics. Supported by the National Basic Research Program of China under Grant No. 2013CB932804, the National Natural Science Foundation of China under Grant No. 11421063, and the CAS Biophysics Interdisciplinary Innovation Team Project

  17. Familial Alzheimer's disease mutations alter the stability of the amyloid β-protein monomer folding nucleus

    PubMed Central

    Grant, Marianne A.; Lazo, Noel D.; Lomakin, Aleksey; Condron, Margaret M.; Arai, Hiromi; Yamin, Ghiam; Rigby, Alan C.; Teplow, David B.

    2007-01-01

    Amyloid β-protein (Aβ) oligomers may be the proximate neurotoxins in Alzheimer's disease (AD). Recently, to elucidate the oligomerization pathway, we studied Aβ monomer folding and identified a decapeptide segment of Aβ, 21Ala–22Glu–23Asp–24Val–25Gly–26Ser–27Asn–28Lys–29Gly–30Ala, within which turn formation appears to nucleate monomer folding. The turn is stabilized by hydrophobic interactions between Val-24 and Lys-28 and by long-range electrostatic interactions between Lys-28 and either Glu-22 or Asp-23. We hypothesized that turn destabilization might explain the effects of amino acid substitutions at Glu-22 and Asp-23 that cause familial forms of AD and cerebral amyloid angiopathy. To test this hypothesis, limited proteolysis, mass spectrometry, and solution-state NMR spectroscopy were used here to determine and compare the structure and stability of the Aβ(21–30) turn within wild-type Aβ and seven clinically relevant homologues. In addition, we determined the relative differences in folding free energies (ΔΔGf) among the mutant peptides. We observed that all of the disease-associated amino acid substitutions at Glu-22 or Asp-23 destabilized the turn and that the magnitude of the destabilization correlated with oligomerization propensity. The Ala21Gly (Flemish) substitution, outside the turn proper (Glu-22–Lys-28), displayed a stability similar to that of the wild-type peptide. The implications of these findings for understanding Aβ monomer folding and disease causation are discussed. PMID:17940047

  18. Discovery of Manassantin A Protein Targets Using Large-Scale Protein Folding and Stability Measurements.

    PubMed

    Geer Wallace, M Ariel; Kwon, Do-Yeon; Weitzel, Douglas H; Lee, Chen-Ting; Stephenson, Tesia N; Chi, Jen-Tsan; Mook, Robert A; Dewhirst, Mark W; Hong, Jiyong; Fitzgerald, Michael C

    2016-08-05

    Manassantin A is a natural product that has been shown to have anticancer activity in cell-based assays, but has a largely unknown mode-of-action. Described here is the use of two different energetics-based approaches to identify protein targets of manassantin A. Using the stability of proteins from rates of oxidation technique with an isobaric mass tagging strategy (iTRAQ-SPROX) and the pulse proteolysis technique with a stable isotope labeling with amino acids in cell culture strategy (SILAC-PP), over 1000 proteins in a MDA-MB-231 cell lysate grown under hypoxic conditions were assayed for manassantin A interactions (both direct and indirect). A total of 28 protein hits were identified with manassantin A-induced thermodynamic stability changes. Two of the protein hits (filamin A and elongation factor 1α) were identified using both experimental approaches. The remaining 26 hit proteins were only assayed in either the iTRAQ-SPROX or the SILAC-PP experiment. The 28 potential protein targets of manassantin A identified here provide new experimental avenues along which to explore the molecular basis of manassantin A's mode of action. The current work also represents the first application iTRAQ-SPROX and SILAC-PP to the large-scale analysis of protein-ligand binding interactions involving a potential anticancer drug with an unknown mode-of-action.

  19. Mutation Bias Favors Protein Folding Stability in the Evolution of Small Populations

    PubMed Central

    Porto, Markus; Bastolla, Ugo

    2010-01-01

    Mutation bias in prokaryotes varies from extreme adenine and thymine (AT) in obligatory endosymbiotic or parasitic bacteria to extreme guanine and cytosine (GC), for instance in actinobacteria. GC mutation bias deeply influences the folding stability of proteins, making proteins on the average less hydrophobic and therefore less stable with respect to unfolding but also less susceptible to misfolding and aggregation. We study a model where proteins evolve subject to selection for folding stability under given mutation bias, population size, and neutrality. We find a non-neutral regime where, for any given population size, there is an optimal mutation bias that maximizes fitness. Interestingly, this optimal GC usage is small for small populations, large for intermediate populations and around 50% for large populations. This result is robust with respect to the definition of the fitness function and to the protein structures studied. Our model suggests that small populations evolving with small GC usage eventually accumulate a significant selective advantage over populations evolving without this bias. This provides a possible explanation to the observation that most species adopting obligatory intracellular lifestyles with a consequent reduction of effective population size shifted their mutation spectrum towards AT. The model also predicts that large GC usage is optimal for intermediate population size. To test these predictions we estimated the effective population sizes of bacterial species using the optimal codon usage coefficients computed by dos Reis et al. and the synonymous to non-synonymous substitution ratio computed by Daubin and Moran. We found that the population sizes estimated in these ways are significantly smaller for species with small and large GC usage compared to species with no bias, which supports our prediction. PMID:20463869

  20. Equilibrium folding and stability of myotrophin: a model ankyrin repeat protein.

    PubMed

    Mosavi, Leila K; Williams, Suzanna; Peng Zy, Zheng-yu

    2002-07-05

    Proteins containing stretches of repeating amino acid sequences are prevalent throughout nature, yet little is known about the general folding and assembly mechanisms of these systems. Here we propose myotrophin as a model system to study the folding of ankyrin repeat proteins. Myotrophin is folded over a large pH range and is soluble at high concentrations. Thermal and urea denaturation studies show that the protein displays cooperative two-state folding properties despite its modular nature. Taken together with previous studies on other ankyrin repeat proteins, our data suggest that the two-state folding pathway may be characteristic of ankyrin repeat proteins and other integrated alpha-helical repeat proteins in general.

  1. PFD: a database for the investigation of protein folding kinetics and stability.

    PubMed

    Fulton, Kate F; Devlin, Glyn L; Jodun, Rachel A; Silvestri, Linda; Bottomley, Stephen P; Fersht, Alan R; Buckle, Ashley M

    2005-01-01

    We have developed a new database that collects all protein folding data into a single, easily accessible public resource. The Protein Folding Database (PFD) contains annotated structural, methodological, kinetic and thermodynamic data for more than 50 proteins, from 39 families. A user-friendly web interface has been developed that allows powerful searching, browsing and information retrieval, whilst providing links to other protein databases. The database structure allows visualization of folding data in a useful and novel way, with a long-term aim of facilitating data mining and bioinformatics approaches. PFD can be accessed freely at http://pfd.med.monash.edu.au.

  2. Protein folding rates and thermodynamic stability are key determinants for interaction with the Hsp70 chaperone system

    PubMed Central

    Sekhar, Ashok; Lam, Hon Nam; Cavagnero, Silvia

    2012-01-01

    The Hsp70 family of molecular chaperones participates in vital cellular processes including the heat shock response and protein homeostasis. E. coli's Hsp70, known as DnaK, works in concert with the DnaJ and GrpE co-chaperones (K/J/E chaperone system), and mediates cotranslational and post-translational protein folding in the cytoplasm. While the role of the K/J/E chaperones is well understood in the presence of large substrates unable to fold independently, it is not known if and how K/J/E modulates the folding of smaller proteins able to fold even in the absence of chaperones. Here, we combine experiments and computation to evaluate the significance of kinetic partitioning as a model to describe the interplay between protein folding and binding to the K/J/E chaperone system. First, we target three nonobligatory substrates, that is, proteins that do not require chaperones to fold. The experimentally observed chaperone association of these client proteins during folding is entirely consistent with predictions from kinetic partitioning. Next, we develop and validate a computational model (CHAMP70) that assumes kinetic partitioning of substrates between folding and interaction with K/J/E. CHAMP70 quantitatively predicts the experimentally measured interaction of RNase HD as it refolds in the presence of various chaperones. CHAMP70 shows that substrates are posed to interact with K/J/E only if they are slow-folding proteins with a folding rate constant kf <50 s−1, and/or thermodynamically unstable proteins with a folding free energy ΔG0UN ≥−2 kcal mol−1. Hence, the K/J/E system is tuned to use specific protein folding rates and thermodynamic stabilities as substrate selection criteria. PMID:22886941

  3. Folding 19 proteins to their native state and stability of large proteins from a coarse-grained model.

    PubMed

    Kapoor, Abhijeet; Travesset, Alex

    2014-03-01

    We develop an intermediate resolution model, where the backbone is modeled with atomic resolution but the side chain with a single bead, by extending our previous model (Proteins (2013) DOI: 10.1002/prot.24269) to properly include proline, preproline residues and backbone rigidity. Starting from random configurations, the model properly folds 19 proteins (including a mutant 2A3D sequence) into native states containing β sheet, α helix, and mixed α/β. As a further test, the stability of H-RAS (a 169 residue protein, critical in many signaling pathways) is investigated: The protein is stable, with excellent agreement with experimental B-factors. Despite that proteins containing only α helices fold to their native state at lower backbone rigidity, and other limitations, which we discuss thoroughly, the model provides a reliable description of the dynamics as compared with all atom simulations, but does not constrain secondary structures as it is typically the case in more coarse-grained models. Further implications are described. Copyright © 2013 Wiley Periodicals, Inc.

  4. Protein structure, stability and folding in the cell -- in silico biophysical approaches

    NASA Astrophysics Data System (ADS)

    Cheung, Margaret

    2010-03-01

    How the crowded environment inside a cell affects the structural conformation of a protein with aspherical shape is a vital question because the geometry of proteins and protein-protein complexes are far from globules in vivo. Here we address this question by combining computational and experimental studies of a spherical protein (i.e. apoflavodoxin), a football-shaped protein (i.e., Borrelia burgdorferi VlsE) and a dumbbell-shaped protein (i.e. calmodulin) under crowded, cell-like conditions. The results show that macromolecular crowding affects protein folding dynamics as well as an overall protein shape associated with changes in secondary structures. Our work demonstrates the malleability of ``native'' proteins and implies that crowding-induced shape changes may be important for protein function and malfunction in vivo.

  5. Beyond Anchoring: the Expanding Role of the Hendra Virus Fusion Protein Transmembrane Domain in Protein Folding, Stability, and Function

    PubMed Central

    Smith, Everett Clinton; Culler, Megan R.; Hellman, Lance M.; Fried, Michael G.; Creamer, Trevor P.

    2012-01-01

    While work with viral fusion proteins has demonstrated that the transmembrane domain (TMD) can affect protein folding, stability, and membrane fusion promotion, the mechanism(s) remains poorly understood. TMDs could play a role in fusion promotion through direct TMD-TMD interactions, and we have recently shown that isolated TMDs from three paramyxovirus fusion (F) proteins interact as trimers using sedimentation equilibrium (SE) analysis (E. C. Smith, et al., submitted for publication). Immediately N-terminal to the TMD is heptad repeat B (HRB), which plays critical roles in fusion. Interestingly, addition of HRB decreased the stability of the trimeric TMD-TMD interactions. This result, combined with previous findings that HRB forms a trimeric coiled coil in the prefusion form of the whole protein though HRB peptides fail to stably associate in isolation, suggests that the trimeric TMD-TMD interactions work in concert with elements in the F ectodomain head to stabilize a weak HRB interaction. Thus, changes in TMD-TMD interactions could be important in regulating F triggering and refolding. Alanine insertions between the TMD and HRB demonstrated that spacing between these two regions is important for protein stability while not affecting TMD-TMD interactions. Additional mutagenesis of the C-terminal end of the TMD suggests that β-branched residues within the TMD play a role in membrane fusion, potentially through modulation of TMD-TMD interactions. Our results support a model whereby the C-terminal end of the Hendra virus F TMD is an important regulator of TMD-TMD interactions and show that these interactions help hold HRB in place prior to the triggering of membrane fusion. PMID:22238302

  6. The Protein Folding Problem

    PubMed Central

    Dill, Ken A.; Ozkan, S. Banu; Shell, M. Scott; Weikl, Thomas R.

    2008-01-01

    The “protein folding problem” consists of three closely related puzzles: (a) What is the folding code? (b) What is the folding mechanism? (c) Can we predict the native structure of a protein from its amino acid sequence? Once regarded as a grand challenge, protein folding has seen great progress in recent years. Now, foldable proteins and nonbiological polymers are being designed routinely and moving toward successful applications. The structures of small proteins are now often well predicted by computer methods. And, there is now a testable explanation for how a protein can fold so quickly: A protein solves its large global optimization problem as a series of smaller local optimization problems, growing and assembling the native structure from peptide fragments, local structures first. PMID:18573083

  7. Perplexing cooperative folding and stability of a low-sequence complexity, polyproline 2 protein lacking a hydrophobic core.

    PubMed

    Gates, Zachary P; Baxa, Michael C; Yu, Wookyung; Riback, Joshua A; Li, Hui; Roux, Benoît; Kent, Stephen B H; Sosnick, Tobin R

    2017-02-28

    The burial of hydrophobic side chains in a protein core generally is thought to be the major ingredient for stable, cooperative folding. Here, we show that, for the snow flea antifreeze protein (sfAFP), stability and cooperativity can occur without a hydrophobic core, and without α-helices or β-sheets. sfAFP has low sequence complexity with 46% glycine and an interior filled only with backbone H-bonds between six polyproline 2 (PP2) helices. However, the protein folds in a kinetically two-state manner and is moderately stable at room temperature. We believe that a major part of the stability arises from the unusual match between residue-level PP2 dihedral angle bias in the unfolded state and PP2 helical structure in the native state. Additional stabilizing factors that compensate for the dearth of hydrophobic burial include shorter and stronger H-bonds, and increased entropy in the folded state. These results extend our understanding of the origins of cooperativity and stability in protein folding, including the balance between solvent and polypeptide chain entropies.

  8. Fast protein folding kinetics.

    PubMed

    Gelman, Hannah; Gruebele, Martin

    2014-05-01

    Fast-folding proteins have been a major focus of computational and experimental study because they are accessible to both techniques: they are small and fast enough to be reasonably simulated with current computational power, but have dynamics slow enough to be observed with specially developed experimental techniques. This coupled study of fast-folding proteins has provided insight into the mechanisms, which allow some proteins to find their native conformation well <1 ms and has uncovered examples of theoretically predicted phenomena such as downhill folding. The study of fast folders also informs our understanding of even 'slow' folding processes: fast folders are small; relatively simple protein domains and the principles that govern their folding also govern the folding of more complex systems. This review summarizes the major theoretical and experimental techniques used to study fast-folding proteins and provides an overview of the major findings of fast-folding research. Finally, we examine the themes that have emerged from studying fast folders and briefly summarize their application to protein folding in general, as well as some work that is left to do.

  9. Fast protein folding kinetics

    PubMed Central

    Gelman, Hannah; Gruebele, Martin

    2014-01-01

    Fast folding proteins have been a major focus of computational and experimental study because they are accessible to both techniques: they are small and fast enough to be reasonably simulated with current computational power, but have dynamics slow enough to be observed with specially developed experimental techniques. This coupled study of fast folding proteins has provided insight into the mechanisms which allow some proteins to find their native conformation well less than 1 ms and has uncovered examples of theoretically predicted phenomena such as downhill folding. The study of fast folders also informs our understanding of even “slow” folding processes: fast folders are small, relatively simple protein domains and the principles that govern their folding also govern the folding of more complex systems. This review summarizes the major theoretical and experimental techniques used to study fast folding proteins and provides an overview of the major findings of fast folding research. Finally, we examine the themes that have emerged from studying fast folders and briefly summarize their application to protein folding in general as well as some work that is left to do. PMID:24641816

  10. Protein Folding: Detailed Models

    NASA Astrophysics Data System (ADS)

    Pande, Vijay

    Proteins play a fundamental role in biology. With their ability to perform numerous biological roles, including acting as catalysts, antibodies, and molecular signals, proteins today realize many of the goals that modern nanotechnology aspires to. However, before proteins can carry out these remarkable molecular functions, they must perform another amazing feat — they must assemble themselves. This process of protein self-assembly into a particular shape, or "fold" is called protein folding. Due to the importance of the folded state in the biological activity of proteins, recent interest from misfolding related diseases [1], as well as a fascination of just how this process occurs [2-4], there has been much work performed in order to unravel the mechanism of protein folding [5].

  11. Molecular determinant of the effects of hydrostatic pressure on protein folding stability

    PubMed Central

    Chen, Calvin R.; Makhatadze, George I.

    2017-01-01

    Hydrostatic pressure is an important environmental variable that plays an essential role in biological adaptation for many extremophilic organisms (for example, piezophiles). Increase in hydrostatic pressure, much like increase in temperature, perturbs the thermodynamic equilibrium between native and unfolded states of proteins. Experimentally, it has been observed that increase in hydrostatic pressure can both increase and decrease protein stability. These observations suggest that volume changes upon protein unfolding can be both positive and negative. The molecular details of this difference in sign of volume changes have been puzzling the field for the past 50 years. Here we present a comprehensive thermodynamic model that provides in-depth analysis of the contribution of various molecular determinants to the volume changes upon protein unfolding. Comparison with experimental data shows that the model allows quantitative predictions of volume changes upon protein unfolding, thus paving the way to proteome-wide computational comparison of proteins from different extremophilic organisms. PMID:28169271

  12. Protein folding and misfolding

    NASA Astrophysics Data System (ADS)

    Dobson, Christopher M.

    2003-12-01

    The manner in which a newly synthesized chain of amino acids transforms itself into a perfectly folded protein depends both on the intrinsic properties of the amino-acid sequence and on multiple contributing influences from the crowded cellular milieu. Folding and unfolding are crucial ways of regulating biological activity and targeting proteins to different cellular locations. Aggregation of misfolded proteins that escape the cellular quality-control mechanisms is a common feature of a wide range of highly debilitating and increasingly prevalent diseases.

  13. Protein folding, misfolding and aggregation: The importance of two-electron stabilizing interactions

    PubMed Central

    2017-01-01

    Proteins associated with neurodegenerative diseases are highly pleiomorphic and may adopt an all-α-helical fold in one environment, assemble into all-β-sheet or collapse into a coil in another, and rapidly polymerize in yet another one via divergent aggregation pathways that yield broad diversity of aggregates’ morphology. A thorough understanding of this behaviour may be necessary to develop a treatment for Alzheimer’s and related disorders. Unfortunately, our present comprehension of folding and misfolding is limited for want of a physicochemical theory of protein secondary and tertiary structure. Here we demonstrate that electronic configuration and hyperconjugation of the peptide amide bonds ought to be taken into account to advance such a theory. To capture the effect of polarization of peptide linkages on conformational and H-bonding propensity of the polypeptide backbone, we introduce a function of shielding tensors of the Cα atoms. Carrying no information about side chain-side chain interactions, this function nonetheless identifies basic features of the secondary and tertiary structure, establishes sequence correlates of the metamorphic and pH-driven equilibria, relates binding affinities and folding rate constants to secondary structure preferences, and manifests common patterns of backbone density distribution in amyloidogenic regions of Alzheimer’s amyloid β and tau, Parkinson’s α-synuclein and prions. Based on those findings, a split-intein like mechanism of molecular recognition is proposed to underlie dimerization of Aβ, tau, αS and PrPC, and divergent pathways for subsequent association of dimers are outlined; a related mechanism is proposed to underlie formation of PrPSc fibrils. The model does account for: (i) structural features of paranuclei, off-pathway oligomers, non-fibrillar aggregates and fibrils; (ii) effects of incubation conditions, point mutations, isoform lengths, small-molecule assembly modulators and chirality of solid

  14. Probing Protein Folding Kinetics with High-resolution, Stabilized Optical Tweezers

    NASA Astrophysics Data System (ADS)

    Wong, Wesley; Halvorsen, Ken

    2009-03-01

    Single-molecule techniques provide a powerful means of exploring molecular transitions such as the unfolding and refolding of a protein. However, the quantification of bi-directional transitions and near-equilibrium phenomena poses unique challenges, and is often limited by the detection resolution and long-term stability of the instrument. We have developed unique optical tweezers methods that address these problems, including an interference-based method for high-resolution 3D bead tracking (˜1 nm laterally, ˜0.3 nm vertically, at > 100 Hz), and a continuous autofocus system that stabilizes the trap height to within 1-2 nm longterm [1,2]. We have used our instruments to quantify the force-dependent unfolding and refolding kinetics of single protein domains (e.g. spectrin in collaboration with E. Evans). These single-molecule studies are presented, together with the accompanying probabilistic analysis that we have developed. References: 1. W.P. Wong, V. Heinrich, E. Evans, Mat. Res. Soc. Symp. Proc., 790, P5.1-P5.10 (2004). 2. V. Heinrich, W.P. Wong, K. Halvorsen, E. Evans, Langmuir, 24, 1194-1203 (2008).

  15. Homogeneous human complex-type oligosaccharides in correctly folded intact glycoproteins: evaluation of oligosaccharide influence on protein folding, stability, and conformational properties.

    PubMed

    Kajihara, Yasuhiro; Tanabe, Yasutaka; Sasaoka, Shun; Okamoto, Ryo

    2012-05-07

    The N-glycosylation of proteins is generated at the consensus sequence NXS/T (where X is any amino acid except proline) by the biosynthetic process, and occurs in the endoplasmic reticulum and Golgi apparatus. In order to investigate the influence of human complex-type oligosaccharides on counterpart protein conformation, crambin and ovomucoide, which consist of 46 and 56 amino acid residues, respectively, were selected for synthesis of model glycoproteins. These small glycoproteins were intentionally designed to be glycosylated at the α-helix (crambin: 8 position), β-sheet (crambin: 2 position) and loop position between the antiparallel β-sheets (ovomucoide: 28 position), and were synthesized by using a peptide-segment coupling strategy. After preparation of these glycosylated polypeptide chains, protein folding experiments were performed under redox conditions by using cysteine-cystine. Although the small glycoproteins bearing intentional glycosylation at the α-helix and β-sheet exhibited a suitable folding process, glycosylation at the loop position between the antiparallel β-strands caused multiple products. The conformational differences in the isolated homogeneous glycoproteins compared with non-glycosylated counterparts were evaluated by circular dichroism (CD) and NMR spectroscopy. These analyses suggested that this intentional N-glycosylation did not result in large conformational changes in the purified protein structures, including the case of glycosylation at the loop position between the antiparallel β-strands. In addition to these experiments, the conformational properties of three glycoproteins were evaluated by CD spectroscopy under different temperatures. The oligosaccharides on the protein surface fluctuated considerably; this was dependent on the increase in the solution temperature and was thought to disrupt the protein tertiary structure. Based on the measurement of the CD spectra, however, the glycoproteins bearing three disulfide

  16. MitoNEET Is a Uniquely Folded 2Fe-2S Outer Mitochondrial Membrane Protein Stabilized By Pioglitazone

    SciTech Connect

    Paddock, M.L.; Wiley, S.E.; Axelrod, H.L.; Cohen, A.E.; Roy, M.; Abresch, E.C.; Capraro, D.; Murphy, A.N.; Nechushtai, R.; Dixon, J.E.; Jennings, P.A.; /UC, San Diego /SLAC, SSRL /Hebrew U.

    2007-10-19

    Iron-sulfur (Fe-S) proteins are key players in vital processes involving energy homeostasis and metabolism from the simplest to most complex organisms. We report a 1.5 Angstrom x-ray crystal structure of the first identified outer mitochondrial membrane Fe-S protein, mitoNEET. Two protomers intertwine to form a unique dimeric structure that constitutes a new fold to not only the {approx}650 reported Fe-S protein structures but also to all known proteins. We name this motif the NEET fold. The protomers form a two-domain structure: a {beta}-cap domain and a cluster-binding domain that coordinates two acid-labile 2Fe-2S clusters. Binding of pioglitazone, an insulin-sensitizing thiazolidinedione used in the treatment of type 2 diabetes, stabilizes the protein against 2Fe-2S cluster release. The biophysical properties of mitoNEET suggest that it may participate in a redox-sensitive signaling and/or in Fe-S cluster transfer.

  17. Selection originating from protein stability/foldability: Relationships between protein folding free energy, sequence ensemble, and fitness.

    PubMed

    Miyazawa, Sanzo

    2017-11-21

    Assuming that mutation and fixation processes are reversible Markov processes, we prove that the equilibrium ensemble of sequences obeys a Boltzmann distribution with exp(4Nem(1-1/(2N))), where m is Malthusian fitness and Ne and N are effective and actual population sizes. On the other hand, the probability distribution of sequences with maximum entropy that satisfies a given amino acid composition at each site and a given pairwise amino acid frequency at each site pair is a Boltzmann distribution with exp(-ψN), where the evolutionary statistical energy ψN is represented as the sum of one body (h) (compositional) and pairwise (J) (covariational) interactions over all sites and site pairs. A protein folding theory based on the random energy model (REM) indicates that the equilibrium ensemble of natural protein sequences is well represented by a canonical ensemble characterized by exp(-ΔGND/kBTs) or by exp(-GN/kBTs) if an amino acid composition is kept constant, where ΔGND≡GN-GD,GN and GD are the native and denatured free energies, and Ts is the effective temperature representing the strength of selection pressure. Thus, 4Nem(1-1/(2N)),-ΔψND(≡-ψN+ψD), and -ΔGND/kBTs must be equivalent to each other. With h and J estimated by the DCA program, the changes (ΔψN) of ψN due to single nucleotide nonsynonymous substitutions are analyzed. The results indicate that the standard deviation of ΔGN(=kBTsΔψN) is approximately constant irrespective of protein families, and therefore can be used to estimate the relative value of Ts. Glass transition temperature Tg and ΔGND are estimated from estimated Ts and experimental melting temperature (Tm) for 14 protein domains. The estimates of ΔGND agree with their experimental values for 5 proteins, and those of Ts and Tg are all within a reasonable range. In addition, approximating the probability density function (PDF) of ΔψN by a log-normal distribution, PDFs of ΔψN and Ka/Ks, which is the ratio of nonsynonymous

  18. Redesigning the type II' β-turn in green fluorescent protein to type I': implications for folding kinetics and stability.

    PubMed

    Madan, Bharat; Sokalingam, Sriram; Raghunathan, Govindan; Lee, Sun-Gu

    2014-10-01

    Both Type I' and Type II' β-turns have the same sense of the β-turn twist that is compatible with the β-sheet twist. They occur predominantly in two residue β-hairpins, but the occurrence of Type I' β-turns is two times higher than Type II' β-turns. This suggests that Type I' β-turns may be more stable than Type II' β-turns, and Type I' β-turn sequence and structure can be more favorable for protein folding than Type II' β-turns. Here, we redesigned the native Type II' β-turn in GFP to Type I' β-turn, and investigated its effect on protein folding and stability. The Type I' β-turns were designed based on the statistical analysis of residues in natural Type I' β-turns. The substitution of the native "GD" sequence of i+1 and i+2 residues with Type I' preferred "(N/D)G" sequence motif increased the folding rate by 50% and slightly improved the thermodynamic stability. Despite the enhancement of in vitro refolding kinetics and stability of the redesigned mutants, they showed poor soluble expression level compared to wild type. To overcome this problem, i and i + 3 residues of the designed Type I' β-turn were further engineered. The mutation of Thr to Lys at i + 3 could restore the in vivo soluble expression of the Type I' mutant. This study indicates that Type II' β-turns in natural β-hairpins can be further optimized by converting the sequence to Type I'.

  19. Protein Flexibilty and Folding

    NASA Astrophysics Data System (ADS)

    Thorpe, Michael

    2003-10-01

    In this talk we apply a novel approach to the exploration of energy landscapes of macromolecules and proteins that uses constraint theory. Constraints fix the bond lengths and bond angles and allow the use of theorems from graph theory to perform a rigid region decomposition of the network of atoms, which identifies the rigid regions, the flexible joints between them and also the stressed regions. We will show movies of the diffusive motion of various proteins. The protein unfolding transition is an example of a rigid to floppy transition and is shown to be more first order than second order because of the self-organized nature of the cross-linked polypeptide chain in the native protein. This approach emphasizes the universality in protein unfolding and allows the folding core and the transition state to be identified. Useful reference are: M.F. Thorpe, Ming Lei, A.J. Rader, Donald J. Jacobs and Leslie A. Kuhn Protein Flexibility Predictions using Graph Theory, Proteins 44, 150 - 165, (2001). A. J. Rader, Brandon M. Hespenheide, Leslie A. Kuhn and M. F. Thorpe Protein Unfolding: Rigidity Lost Proceedings of the National Academy of Sciences 99, 3540-3545 (2002). More details of this work can be found via http://physics.asu.edu/mfthorpe

  20. Protein Folding: Then and Now

    PubMed Central

    Chen, Yiwen; Ding, Feng; Nie, Huifen; Serohijos, Adrian W.; Sharma, Shantanu; Wilcox, Kyle C.; Yin, Shuangye; Dokholyan, Nikolay V.

    2007-01-01

    Over the past three decades the protein folding field has undergone monumental changes. Originally a purely academic question, how a protein folds has now become vital in understanding diseases and our abilities to rationally manipulate cellular life by engineering protein folding pathways. We review and contrast past and recent developments in the protein folding field. Specifically, we discuss the progress in our understanding of protein folding thermodynamics and kinetics, the properties of evasive intermediates, and unfolded states. We also discuss how some abnormalities in protein folding lead to protein aggregation and human diseases. PMID:17585870

  1. Changing Folding and Binding Stability in a Viral Coat Protein: A Comparison between Substitutions Accessible through Mutation and Those Fixed by Natural Selection

    PubMed Central

    Wichman, Holly A.; Ytreberg, F. Marty

    2014-01-01

    Previous studies have shown that most random amino acid substitutions destabilize protein folding (i.e. increase the folding free energy). No analogous studies have been carried out for protein-protein binding. Here we use a structure-based model of the major coat protein in a simple virus, bacteriophage φX174, to estimate the free energy of folding of a single coat protein and binding of five coat proteins within a pentameric unit. We confirm and extend previous work in finding that most accessible substitutions destabilize both protein folding and protein-protein binding. We compare the pool of accessible substitutions with those observed among the φX174-like wild phage and in experimental evolution with φX174. We find that observed substitutions have smaller effects on stability than expected by chance. An analysis of adaptations at high temperatures suggests that selection favors either substitutions with no effect on stability or those that simultaneously stabilize protein folding and slightly destabilize protein binding. We speculate that these mutations might involve adjusting the rate of capsid assembly. At normal laboratory temperature there is little evidence of directional selection. Finally, we show that cumulative changes in stability are highly variable; sometimes they are well beyond the bounds of single substitution changes and sometimes they are not. The variation leads us to conclude that phenotype selection acts on more than just stability. Instances of larger cumulative stability change (never via a single substitution despite their availability) lead us to conclude that selection views stability at a local, not a global, level. PMID:25405628

  2. Macromolecule-Assisted de novo Protein Folding

    PubMed Central

    Choi, Seong Il; Son, Ahyun; Lim, Keo-Heun; Jeong, Hotcherl; Seong, Baik L.

    2012-01-01

    In the processes of protein synthesis and folding, newly synthesized polypeptides are tightly connected to the macromolecules, such as ribosomes, lipid bilayers, or cotranslationally folded domains in multidomain proteins, representing a hallmark of de novo protein folding environments in vivo. Such linkage effects on the aggregation of endogenous polypeptides have been largely neglected, although all these macromolecules have been known to effectively and robustly solubilize their linked heterologous proteins in fusion or display technology. Thus, their roles in the aggregation of linked endogenous polypeptides need to be elucidated and incorporated into the mechanisms of de novo protein folding in vivo. In the classic hydrophobic interaction-based stabilizing mechanism underlying the molecular chaperone-assisted protein folding, it has been assumed that the macromolecules connected through a simple linkage without hydrophobic interactions and conformational changes would make no effect on the aggregation of their linked polypeptide chains. However, an increasing line of evidence indicates that the intrinsic properties of soluble macromolecules, especially their surface charges and excluded volume, could be important and universal factors for stabilizing their linked polypeptides against aggregation. Taken together, these macromolecules could act as folding helpers by keeping their linked nascent chains in a folding-competent state. The folding assistance provided by these macromolecules in the linkage context would give new insights into de novo protein folding inside the cell. PMID:22949867

  3. How do chaperonins fold protein?

    PubMed Central

    Motojima, Fumihiro

    2015-01-01

    Protein folding is a biological process that is essential for the proper functioning of proteins in all living organisms. In cells, many proteins require the assistance of molecular chaperones for their folding. Chaperonins belong to a class of molecular chaperones that have been extensively studied. However, the mechanism by which a chaperonin mediates the folding of proteins is still controversial. Denatured proteins are folded in the closed chaperonin cage, leading to the assumption that denatured proteins are completely encapsulated inside the chaperonin cage. In contrast to the assumption, we recently found that denatured protein interacts with hydrophobic residues at the subunit interfaces of the chaperonin, and partially protrude out of the cage. In this review, we will explain our recent results and introduce our model for the mechanism by which chaperonins accelerate protein folding, in view of recent findings. PMID:27493521

  4. Evolutionary Optimization of Protein Folding

    PubMed Central

    Debès, Cédric; Wang, Minglei; Caetano-Anollés, Gustavo; Gräter, Frauke

    2013-01-01

    Nature has shaped the make up of proteins since their appearance, 3.8 billion years ago. However, the fundamental drivers of structural change responsible for the extraordinary diversity of proteins have yet to be elucidated. Here we explore if protein evolution affects folding speed. We estimated folding times for the present-day catalog of protein domains directly from their size-modified contact order. These values were mapped onto an evolutionary timeline of domain appearance derived from a phylogenomic analysis of protein domains in 989 fully-sequenced genomes. Our results show a clear overall increase of folding speed during evolution, with known ultra-fast downhill folders appearing rather late in the timeline. Remarkably, folding optimization depends on secondary structure. While alpha-folds showed a tendency to fold faster throughout evolution, beta-folds exhibited a trend of folding time increase during the last 1.5 billion years that began during the “big bang” of domain combinations. As a consequence, these domain structures are on average slow folders today. Our results suggest that fast and efficient folding of domains shaped the universe of protein structure. This finding supports the hypothesis that optimization of the kinetic and thermodynamic accessibility of the native fold reduces protein aggregation propensities that hamper cellular functions. PMID:23341762

  5. A Hamiltonian Replica Exchange Molecular Dynamics (MD) Method for the Study of Folding, Based on the Analysis of the Stabilization Determinants of Proteins

    PubMed Central

    Meli, Massimiliano; Colombo, Giorgio

    2013-01-01

    Herein, we present a novel Hamiltonian replica exchange protocol for classical molecular dynamics simulations of protein folding/unfolding. The scheme starts from the analysis of the energy-networks responsible for the stabilization of the folded conformation, by means of the energy-decomposition approach. In this framework, the compact energetic map of the native state is generated by a preliminary short molecular dynamics (MD) simulation of the protein in explicit solvent. This map is simplified by means of an eigenvalue decomposition. The highest components of the eigenvector associated with the lowest eigenvalue indicate which sites, named “hot spots”, are likely to be responsible for the stability and correct folding of the protein. In the Hamiltonian replica exchange protocol, we use modified force-field parameters to treat the interparticle non-bonded potentials of the hot spots within the protein and between protein and solvent atoms, leaving unperturbed those relative to all other residues, as well as solvent-solvent interactions. We show that it is possible to reversibly simulate the folding/unfolding behavior of two test proteins, namely Villin HeadPiece HP35 (35 residues) and Protein A (62 residues), using a limited number of replicas. We next discuss possible implications for the study of folding mechanisms via all atom simulations. PMID:23743827

  6. Changes of protein stiffness during folding detect protein folding intermediates.

    PubMed

    Małek, Katarzyna E; Szoszkiewicz, Robert

    2014-01-01

    Single-molecule force-quench atomic force microscopy (FQ-AFM) is used to detect folding intermediates of a simple protein by detecting changes of molecular stiffness of the protein during its folding process. Those stiffness changes are obtained from shape and peaks of an autocorrelation of fluctuations in end-to-end length of the folding molecule. The results are supported by predictions of the equipartition theorem and agree with existing Langevin dynamics simulations of a simplified model of a protein folding. In the light of the Langevin simulations the experimental data probe an ensemble of random-coiled collapsed states of the protein, which are present both in the force-quench and thermal-quench folding pathways.

  7. The protein folding network

    NASA Astrophysics Data System (ADS)

    Rao, Francesco; Caflisch, Amedeo

    2004-03-01

    Networks are everywhere. The conformation space of a 20-residue antiparallel beta-sheet peptide [1], sampled by molecular dynamics simulations, is mapped to a network. Conformations are nodes of the network, and the transitions between them are links. As previously found for the World-Wide Web as well as for social and biological networks , the conformation space contains highly connected hubs like the native state which is the most populated free energy basin. Furthermore, the network shows a hierarchical modularity [2] which is consistent with the funnel mechanism of folding [3] and is not observed for a random heteropolymer lacking a native state. Here we show that the conformation space network describes the free energy landscape without requiring projections into arbitrarily chosen reaction coordinates. The network analysis provides a basis for understanding the heterogeneity of the folding transition state and the existence of multiple pathways. [1] P. Ferrara and A. Caflisch, Folding simulations of a three-stranded antiparallel beta-sheet peptide, PNAS 97, 10780-10785 (2000). [2] Ravasz, E. and Barabási, A. L. Hierarchical organization in complex networks. Phys. Rev. E 67, 026112 (2003). [3] Dill, K. and Chan, H From Levinthal to pathways to funnels. Nature Struct. Biol. 4, 10-19 (1997)

  8. Communication: Folding of glycosylated proteins under confinement

    NASA Astrophysics Data System (ADS)

    Shental-Bechor, Dalit; Levy, Yaakov

    2011-10-01

    Conjugating flexible polymers (such as oligosaccharides) to proteins or confining a protein in a restricted volume often increases protein thermal stability. In this communication, we investigate the interplay between conjugation and confinement which is not trivial as the magnitude and the mechanism of stabilization are different in each instance. Using coarse-grained computational approach the folding biophysics is studied when the protein is placed in a sphere of variable radius and is conjugated to 0-6 mono- or penta-saccharides. We observe a synergistic effect on thermal stability when short oligosaccharides are attached and the modified protein is confined in a small cage. However, when large oligosaccharides are added, a conflict between confinement and glycosylation arises as the stabilizing effect of the cage is dramatically reduced and it is almost impossible to further stabilize the protein beyond the mild stabilization induced by the sugars.

  9. Leucine 245 is a critical residue for folding and function of the manganese stabilizing protein of photosystem II.

    PubMed

    Lydakis-Simantiris, N; Betts, S D; Yocum, C F

    1999-11-23

    In solution, Manganese Stabilizing Protein, the polypeptide which is responsible for the structural and functional integrity of the manganese cluster in photosystem II, is a natively unfolded protein with a prolate ellipsoid shape [Lydakis-Simantiris et al. (1999) Biochemistry 38, 404-414; Zubrzycki et al. (1998) Biochemistry 37, 13553-13558]. The C-terminal tripeptide of Manganese Stabilizing Protein was shown to be critical for binding to photosystem II and restoration of O(2) evolution activity [Betts et al. (1998) Biochemistry 37, 14230-14236]. Here, we report new biochemical, hydrodynamic, and spectroscopic data on mutants E246K, E246STOP, L245E, L245STOP, and Q244STOP. Truncation of the final dipeptide (E246STOP) or substitution of Glu246 with Lys resulted in no significant changes in secondary and tertiary structures of Manganese Stabilizing Protein as monitored by CD spectroscopy. The apparent molecular mass of the protein remained unchanged, both mutants were able to rebind to photosystem II, and both proteins reactivate O(2) evolution. Manganese Stabilizing Protein lacking the final tripeptide (L245STOP), or substitution of Glu for Leu245 dramatically modified the protein's solution structure. The apparent molecular masses of these mutants increased significantly, which might indicate unfolding of the protein in solution. This was verified by CD spectroscopy. Both mutant proteins rebound to photosystem II with lower affinities, and activation of O(2) evolution was decreased dramatically. Enhancement of these defects was observed upon removal of the final tetrapeptide (Q244STOP). These results indicate that Leu245 is essential to maintaining Manganese Stabilizing Protein's solution structure in a conformation that promotes efficient binding to photosystem II and/or for the subsequent steps that lead to enzyme activation. Based on an analysis of the properties of C-terminal mutations, a hypothesis for structural requirements for functional binding of

  10. Loss of dispersion energy changes the stability and folding/unfolding equilibrium of the Trp-cage protein.

    PubMed

    Cerný, Jirí; Vondrásek, Jirí; Hobza, Pavel

    2009-04-23

    The structure of proteins as well as their folding/unfolding equilibrium are commonly attributed to H-bonding and hydrophobic interactions. We have used the molecular dynamic simulations in an explicit water environment based on the standard empirical potential as well as more accurately (and thus also more reliably) on the QM/MM potential. The simulations where the dispersion term was suppressed have led to a substantial change of the tryptophan-cage protein structure (unfolded structure). This structure cannot fold without the dispersion energy term, whereas, if it is covered fully, the system finds its native structure relatively quickly. This implies that after such physical factors as temperature and pH, the dispersion energy is an important factor in protein structure determination as well as in the protein folding/unfolding equilibrium. The loss of dispersion also affected the R-helical structure. On the other hand, weakening the electrostatic interactions (and thus H-bonding) affected the R-helical structure only to a minor extent.

  11. The robustness and innovability of protein folds.

    PubMed

    Tóth-Petróczy, Agnes; Tawfik, Dan S

    2014-06-01

    Assignment of protein folds to functions indicates that >60% of folds carry out one or two enzymatic functions, while few folds, for example, the TIM-barrel and Rossmann folds, exhibit hundreds. Are there structural features that make a fold amenable to functional innovation (innovability)? Do these features relate to robustness--the ability to readily accumulate sequence changes? We discuss several hypotheses regarding the relationship between the architecture of a protein and its evolutionary potential. We describe how, in a seemingly paradoxical manner, opposite properties, such as high stability and rigidity versus conformational plasticity and structural order versus disorder, promote robustness and/or innovability. We hypothesize that polarity--differentiation and low connectivity between a protein's scaffold and its active-site--is a key prerequisite for innovability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Protein folding in the cell

    NASA Astrophysics Data System (ADS)

    Gething, Mary-Jane; Sambrook, Joseph

    1992-01-01

    In the cell, as in vitro, the final conformation of a protein is determined by its amino-acid sequence. But whereas some isolated proteins can be denatured and refolded in vitro in the absence of other macromolecular cellular components, folding and assembly of polypeptides in vivo involves other proteins, many of which belong to families that have been highly conserved during evolution.

  13. GeoFold: Topology-based protein unfolding pathways capture the effects of engineered disulfides on kinetic stability

    PubMed Central

    Ramakrishnan, Vibin; Srinivasan, Sai Praveen; Salem, Saeed M; Matthews, Suzanne J; Colón, Wilfredo; Zaki, Mohammed; Bystroff, Christopher

    2011-01-01

    Protein unfolding is modeled as an ensemble of pathways, where each step in each pathway is the addition of one topologically possible conformational degree of freedom. Starting with a known protein structure, GeoFold hierarchically partitions (cuts) the native structure into substructures using revolute joints and translations. The energy of each cut and its activation barrier are calculated using buried solvent accessible surface area, side chain entropy, hydrogen bonding, buried cavities, and backbone degrees of freedom. A directed acyclic graph is constructed from the cuts, representing a network of simultaneous equilibria. Finite difference simulations on this graph simulate native unfolding pathways. Experimentally observed changes in the unfolding rates for disulfide mutants of barnase, T4 lysozyme, dihydrofolate reductase, and factor for inversion stimulation were qualitatively reproduced in these simulations. Detailed unfolding pathways for each case explain the effects of changes in the chain topology on the folding energy landscape. GeoFold is a useful tool for the inference of the effects of disulfide engineering on the energy landscape of protein unfolding. PMID:22189917

  14. Disordered cold regulated15 proteins protect chloroplast membranes during freezing through binding and folding, but do not stabilize chloroplast enzymes in vivo.

    PubMed

    Thalhammer, Anja; Bryant, Gary; Sulpice, Ronan; Hincha, Dirk K

    2014-09-01

    Freezing can severely damage plants, limiting geographical distribution of natural populations and leading to major agronomical losses. Plants native to cold climates acquire increased freezing tolerance during exposure to low nonfreezing temperatures in a process termed cold acclimation. This involves many adaptative responses, including global changes in metabolite content and gene expression, and the accumulation of cold-regulated (COR) proteins, whose functions are largely unknown. Here we report that the chloroplast proteins COR15A and COR15B are necessary for full cold acclimation in Arabidopsis (Arabidopsis thaliana). They protect cell membranes, as indicated by electrolyte leakage and chlorophyll fluorescence measurements. Recombinant COR15 proteins stabilize lactate dehydrogenase during freezing in vitro. However, a transgenic approach shows that they have no influence on the stability of selected plastidic enzymes in vivo, although cold acclimation results in increased enzyme stability. This indicates that enzymes are stabilized by other mechanisms. Recombinant COR15 proteins are disordered in water, but fold into amphipathic α-helices at high osmolyte concentrations in the presence of membranes, a condition mimicking molecular crowding induced by dehydration during freezing. X-ray scattering experiments indicate protein-membrane interactions specifically under such crowding conditions. The COR15-membrane interactions lead to liposome stabilization during freezing. Collectively, our data demonstrate the requirement for COR15 accumulation for full cold acclimation of Arabidopsis. The function of these intrinsically disordered proteins is the stabilization of chloroplast membranes during freezing through a folding and binding mechanism, but not the stabilization of chloroplastic enzymes. This indicates a high functional specificity of these disordered plant proteins. © 2014 American Society of Plant Biologists. All Rights Reserved.

  15. Disordered Cold Regulated15 Proteins Protect Chloroplast Membranes during Freezing through Binding and Folding, But Do Not Stabilize Chloroplast Enzymes in Vivo1[W][OPEN

    PubMed Central

    Thalhammer, Anja; Bryant, Gary; Sulpice, Ronan; Hincha, Dirk K.

    2014-01-01

    Freezing can severely damage plants, limiting geographical distribution of natural populations and leading to major agronomical losses. Plants native to cold climates acquire increased freezing tolerance during exposure to low nonfreezing temperatures in a process termed cold acclimation. This involves many adaptative responses, including global changes in metabolite content and gene expression, and the accumulation of cold-regulated (COR) proteins, whose functions are largely unknown. Here we report that the chloroplast proteins COR15A and COR15B are necessary for full cold acclimation in Arabidopsis (Arabidopsis thaliana). They protect cell membranes, as indicated by electrolyte leakage and chlorophyll fluorescence measurements. Recombinant COR15 proteins stabilize lactate dehydrogenase during freezing in vitro. However, a transgenic approach shows that they have no influence on the stability of selected plastidic enzymes in vivo, although cold acclimation results in increased enzyme stability. This indicates that enzymes are stabilized by other mechanisms. Recombinant COR15 proteins are disordered in water, but fold into amphipathic α-helices at high osmolyte concentrations in the presence of membranes, a condition mimicking molecular crowding induced by dehydration during freezing. X-ray scattering experiments indicate protein-membrane interactions specifically under such crowding conditions. The COR15-membrane interactions lead to liposome stabilization during freezing. Collectively, our data demonstrate the requirement for COR15 accumulation for full cold acclimation of Arabidopsis. The function of these intrinsically disordered proteins is the stabilization of chloroplast membranes during freezing through a folding and binding mechanism, but not the stabilization of chloroplastic enzymes. This indicates a high functional specificity of these disordered plant proteins. PMID:25096979

  16. Protein folding and misfolding: mechanism and principles.

    PubMed

    Englander, S Walter; Mayne, Leland; Krishna, Mallela M G

    2007-11-01

    Two fundamentally different views of how proteins fold are now being debated. Do proteins fold through multiple unpredictable routes directed only by the energetically downhill nature of the folding landscape or do they fold through specific intermediates in a defined pathway that systematically puts predetermined pieces of the target native protein into place? It has now become possible to determine the structure of protein folding intermediates, evaluate their equilibrium and kinetic parameters, and establish their pathway relationships. Results obtained for many proteins have serendipitously revealed a new dimension of protein structure. Cooperative structural units of the native protein, called foldons, unfold and refold repeatedly even under native conditions. Much evidence obtained by hydrogen exchange and other methods now indicates that cooperative foldon units and not individual amino acids account for the unit steps in protein folding pathways. The formation of foldons and their ordered pathway assembly systematically puts native-like foldon building blocks into place, guided by a sequential stabilization mechanism in which prior native-like structure templates the formation of incoming foldons with complementary structure. Thus the same propensities and interactions that specify the final native state, encoded in the amino-acid sequence of every protein, determine the pathway for getting there. Experimental observations that have been interpreted differently, in terms of multiple independent pathways, appear to be due to chance misfolding errors that cause different population fractions to block at different pathway points, populate different pathway intermediates, and fold at different rates. This paper summarizes the experimental basis for these three determining principles and their consequences. Cooperative native-like foldon units and the sequential stabilization process together generate predetermined stepwise pathways. Optional misfolding errors

  17. Protein folding by motion planning

    NASA Astrophysics Data System (ADS)

    Thomas, Shawna; Song, Guang; Amato, Nancy M.

    2005-12-01

    We investigate a novel approach for studying protein folding that has evolved from robotics motion planning techniques called probabilistic roadmap methods (PRMs). Our focus is to study issues related to the folding process, such as the formation of secondary and tertiary structures, assuming we know the native fold. A feature of our PRM-based framework is that the large sets of folding pathways in the roadmaps it produces, in just a few hours on a desktop PC, provide global information about the protein's energy landscape. This is an advantage over other simulation methods such as molecular dynamics or Monte Carlo methods which require more computation and produce only a single trajectory in each run. In our initial studies, we obtained encouraging results for several small proteins. In this paper, we investigate more sophisticated techniques for analyzing the folding pathways in our roadmaps. In addition to more formally revalidating our previous results, we present a case study showing that our technique captures known folding differences between the structurally similar proteins G and L. This research was supported in part by NSF CAREER Award CCR-9624315, NSF Grants ACI-9872126, EIA-9975018, EIA-0103742, EIA-9805823, ACR-0113971, CCR-0113974, EIA-9810937, EIA-0079874 and the Texas Higher Education Coordinating Board grant ATP-000512-0261-2001. ST was supported in part by an NSF Graduate Research Fellowship. GS was supported in part by an IBM PhD Fellowship.

  18. Protein folding by motion planning.

    PubMed

    Thomas, Shawna; Song, Guang; Amato, Nancy M

    2005-11-09

    We investigate a novel approach for studying protein folding that has evolved from robotics motion planning techniques called probabilistic roadmap methods (PRMs). Our focus is to study issues related to the folding process, such as the formation of secondary and tertiary structures, assuming we know the native fold. A feature of our PRM-based framework is that the large sets of folding pathways in the roadmaps it produces, in just a few hours on a desktop PC, provide global information about the protein's energy landscape. This is an advantage over other simulation methods such as molecular dynamics or Monte Carlo methods which require more computation and produce only a single trajectory in each run. In our initial studies, we obtained encouraging results for several small proteins. In this paper, we investigate more sophisticated techniques for analyzing the folding pathways in our roadmaps. In addition to more formally revalidating our previous results, we present a case study showing that our technique captures known folding differences between the structurally similar proteins G and L.

  19. Use of Protein Folding Reagents.

    PubMed

    2016-04-01

    The reagents and methods for purification and use of the most commonly used denaturants, guanidine hydrochloride (guanidine-HCl) and urea, are described. Other protein denaturants and reagents used to fold proteins are briefly mentioned. Sulfhydryl reagents (reducing agents) and "oxido-shuffling" (or oxidative regeneration) systems are also described.

  20. Protein roles in group I intron RNA folding: The tyrosyl-tRNA synthetase CYT-18 stabilizes the native state relative to a long-lived misfolded structure without compromising folding kinetics

    PubMed Central

    Chadee, Amanda B.; Bhaskaran, Hari; Russell, Rick

    2009-01-01

    The Neurospora crassa CYT-18 protein is a mitochondrial tyrosyl-tRNA synthetase that also promotes self-splicing of group I intron RNAs by stabilizing functional structure in the conserved core. CYT-18 binds the core along the same surface as a common peripheral element, P5abc, suggesting that CYT-18 can replace P5abc functionally. In addition to stabilizing structure generally, P5abc stabilizes the native conformation of the Tetrahymena group I intron relative to a globally-similar misfolded conformation, which has only local differences within the core and is populated significantly at equilibrium by a ribozyme variant lacking P5abc (EΔP5abc). Here we show that CYT-18 specifically promotes formation of the native group I intron core from this misfolded conformation. Catalytic activity assays demonstrate that CYT-18 shifts the equilibrium of EΔP5abc toward the native state by at least 35-fold, and binding assays suggest an even larger effect. Thus, like P5abc, CYT-18 preferentially recognizes the native core, despite the global similarity of the misfolded core and despite forming crudely similar complexes, as revealed by DMS footprinting. Interestingly, the effects of CYT-18 and P5abc on folding kinetics differ. Whereas P5abc inhibits refolding of the misfolded conformation by forming peripheral contacts that must break during refolding, CYT-18 does not display analogous inhibition, most likely because it relies to a greater extent on direct interactions with the core. Although CYT-18 does not encounter this RNA in vivo, our results suggest that it stabilizes its cognate group I introns relative to analogous misfolded intermediates. By specifically recognizing native structure, CYT-18 may also interact with earlier folding intermediates to avoid RNA misfolding or to trap native structure as it forms. More generally, our results highlight the ability of a protein cofactor to stabilize a functional RNA structure specifically without incurring associated costs in

  1. Turbulent phenomena in protein folding.

    PubMed

    Kalgin, Igor V; Chekmarev, Sergei F

    2011-01-01

    Protein folding and hydrodynamic turbulence are two long-standing challenges, in molecular biophysics and fluid dynamics, respectively. The theories of these phenomena have been developed independently and used different formalisms. Here we show that the protein folding flows can be surprisingly similar to turbulent fluid flows. Studying a benchmark model protein (an SH3 domain), we have found that the flows for the slow folding trajectories of the protein, in which a partly formed N- and C-terminal β sheet hinders the RT loop from attaching to the protein core, have many properties of turbulent flows of a fluid. The flows are analyzed in a three-dimensional (3D) space of collective variables, which are the numbers of native contacts between the terminal β strands, between the RT loop and the protein core, and the rest of the native contacts. We have found that the flows have fractal nature and are filled with 3D eddies; the latter contain strange attractors, at which the tracer flow paths behave as saddle trajectories. Two regions of the space increment have been observed, in which the flux variations are self-similar with the scaling exponent h=1/3, in surprising agreement with the Kolmogorov inertial range theory of turbulence. In one region, the cascade of protein rearrangements is directed from larger to smaller scales (net folding), and in the other, it is oppositely directed (net unfolding). Folding flows for the fast trajectories are essentially "laminar" and do not have the property of self-similarity. Based on the results of our study, we infer, and support this inference by simulations, that the origin of the similarity between the protein folding and turbulent motion of a fluid is in a cascade mechanism of structural transformations in the systems that underlies these phenomena.

  2. The folding state of the lumenal loop determines the thermal stability of light-harvesting chlorophyll a/b protein.

    PubMed

    Mick, Vera; Geister, Sonja; Paulsen, Harald

    2004-11-23

    The major light-harvesting protein of photosystem II (LHCIIb) is the most abundant chlorophyll-binding protein in the thylakoid membrane. It contains three membrane-spanning alpha helices; the first and third one closely interact with each other to form a super helix, and all three helices bind most of the pigment cofactors. The protein loop domains connecting the alpha helices also play an important role in stabilizing the LHCIIb structure. Single amino acid exchanges in either loop were found to be sufficient to significantly destabilize the complex assembled in vitro [Heinemann, B., and Paulsen, H. (1999) Biochemistry 38, 14088-14093. Mick, V., Eggert, K., Heinemann, B., Geister, S., and Paulsen, H (2004) Biochemistry 43, 5467-5473]. This work presents an analysis of such point mutations in the lumenal loop with regard to the extent and nature of their effect on LHCIIb stability to obtain detailed information on the contribution of this loop to stabilizing the complex. Most of the mutant proteins yielded pigment-protein complexes if their reconstitution and/or isolation was performed under mild conditions; however, the yields were significantly different. Several mutations in the vicinity of W97 in the N-proximal section of the loop gave low reconstitution yields even under very mild conditions. This confirms our earlier notion that W97 may be of particular relevance in stabilizing LHCIIb. The same amino acid exchanges accelerated thermal complex dissociation in the absence of lithium dodecyl sulfate (LDS) and raised the accessibility of the lumenal loop to protease; both effects were well correlated with the reduction in reconstitution yields. We conclude that a detachment of the lumenal loop is a possible first step in the dissociation of LHCIIb. Dramatically reduced complex yields in the presence but not in the absence of LDS were observed for some but not all mutants, particularly those near the C-proximal end of the loop. We conclude that complex

  3. Protein photo-folding and quantum folding theory.

    PubMed

    Luo, Liaofu

    2012-06-01

    The rates of protein folding with photon absorption or emission and the cross section of photon -protein inelastic scattering are calculated from quantum folding theory by use of a field-theoretical method. All protein photo-folding processes are compared with common protein folding without the interaction of photons (non-radiative folding). It is demonstrated that there exists a common factor (thermo-averaged overlap integral of the vibration wave function, TAOI) for protein folding and protein photo-folding. Based on this finding it is predicted that (i) the stimulated photo-folding rates and the photon-protein resonance Raman scattering sections show the same temperature dependence as protein folding; (ii) the spectral line of the electronic transition is broadened to a band that includes an abundant vibration spectrum without and with conformational transitions, and the width of each vibration spectral line is largely reduced. The particular form of the folding rate-temperature relation and the abundant spectral structure imply the existence of quantum tunneling between protein conformations in folding and photo-folding that demonstrates the quantum nature of the motion of the conformational-electronic system.

  4. Fast-Folding Proteins under Stress

    PubMed Central

    Dave, Kapil; Gruebele, Martin

    2015-01-01

    Proteins are subject to a variety of stresses in biological organisms, including pressure and temperature, which are the easiest stresses to simulate by molecular dynamics. We discuss the effect of pressure and thermal stress on very fast folding model proteins, whose in vitro folding can be fully simulated on computers and compared with experiments. We then discuss experiments that can be used to subject proteins to low and high temperature unfolding, as well as low and high pressure unfolding. Pressure and temperature are prototypical perturbations that illustrate how close many proteins are to instability, a property that cells can exploit to control protein function. We conclude by reviewing some recent in-cell experiments, and progress being made in simulating and measuring protein stability and function inside live cells. PMID:26231095

  5. Folding superfunnel to describe cooperative folding of interacting proteins.

    PubMed

    Smeller, László

    2016-07-01

    This paper proposes a generalization of the well-known folding funnel concept of proteins. In the funnel model the polypeptide chain is treated as an individual object not interacting with other proteins. Since biological systems are considerably crowded, protein-protein interaction is a fundamental feature during the life cycle of proteins. The folding superfunnel proposed here describes the folding process of interacting proteins in various situations. The first example discussed is the folding of the freshly synthesized protein with the aid of chaperones. Another important aspect of protein-protein interactions is the folding of the recently characterized intrinsically disordered proteins, where binding to target proteins plays a crucial role in the completion of the folding process. The third scenario where the folding superfunnel is used is the formation of aggregates from destabilized proteins, which is an important factor in case of several conformational diseases. The folding superfunnel constructed here with the minimal assumption about the interaction potential explains all three cases mentioned above. Proteins 2016; 84:1009-1016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Understanding Protein Non-Folding

    PubMed Central

    Uversky, Vladimir N.; Dunker, A. Keith

    2010-01-01

    This review describes the family of intrinsically disordered proteins, members of which fail to form rigid 3-D structures under physiological conditions, either along their entire lengths or only in localized regions. Instead, these intriguing proteins/regions exist as dynamic ensembles within which atom positions and backbone Ramachandran angles exhibit extreme temporal fluctuations without specific equilibrium values. Many of these intrinsically disordered proteins are known to carry out important biological functions which, in fact, depend on the absence of specific 3-D structure. The existence of such proteins does not fit the prevailing structure-function paradigm, which states that unique 3-D structure is a prerequisite to function. Thus, the protein structure-function paradigm has to be expanded to include intrinsically disordered proteins and alternative relationships among protein sequence, structure, and function. This shift in the paradigm represents a major breakthrough for biochemistry, biophysics and molecular biology, as it opens new levels of understanding with regard to the complex life of proteins. This review will try to answer the following questions: How were intrinsically disordered proteins discovered? Why don't these proteins fold? What is so special about intrinsic disorder? What are the functional advantages of disordered proteins/regions? What is the functional repertoire of these proteins? What are the relationships between intrinsically disordered proteins and human diseases? PMID:20117254

  7. Using the folding landscapes of proteins to understand protein function.

    PubMed

    Giri Rao, V V Hemanth; Gosavi, Shachi

    2016-02-01

    Proteins fold on a biologically-relevant timescale because of a funnel-shaped energy landscape. This landscape is sculpted through evolution by selecting amino-acid sequences that stabilize native interactions while suppressing stable non-native interactions that occur during folding. However, there is strong evolutionary selection for functional residues and these cannot be chosen to optimize folding. Their presence impacts the folding energy landscape in a variety of ways. Here, we survey the effects of functional residues on folding by providing several examples. We then review how such effects can be detected computationally and be used as assays for protein function. Overall, an understanding of how functional residues modulate folding should provide insights into the design of natural proteins and their homeostasis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Protein Folding:. Physics on Products of Evolution

    NASA Astrophysics Data System (ADS)

    Go, Nobuhiro

    2001-09-01

    Proteins are self-assembling molecular systems. A polypeptide chain of a protein molecule folds into a globular three-dimensional structure, which is specific to the amino acid sequence of the chain. A protein molecule is in the "native state" when folded into its specific three-dimensional structure. Only in the native state, a protein molecule carries out its biological function. This extraordinary self-assembly ability of proteins can be explained based on the three generally accepted empirical observations in proteins: (1) Two-state character; Folding and unfolding transitions in small globular proteins are generally of the two-state character. (2) Consistency principle; Various components of intra-molecular interactions responsible for stabilizing the native state of globular proteins are consistent to each other in their native state. (3) Principle of marginal stability; The native folded states of globular proteins are generally only marginally stable against their unfolded states. Deduction of the self-assembly ability from the three observations is a problem of physical nature. Very sophisticated theories have been developed recently as to this point. I shall give a very simple and intuitive discussion on this point. Asking why protein molecules show the three observations is another problem. Observation (1) can be derived from the globularity of native states. Observations (2) and (3) can be understood only by considering the evolutionary history of protein molecules, i.e., only polypeptide chains with very specific amino acid sequences selected during the history of evolution show properties of observations (2) and (3). Here we see a case where the mechanism of an extraordinary ability of biopolymers is elucidated in terms of physics, and physics expects that only a very small fraction of amino acid sequences have such an ability. Nature has left the job of finding able sequences to the history of evolution.

  9. Optimum folding pathways for growing protein chains.

    PubMed

    Senturk, Serife; Baday, Sefer; Arkun, Yaman; Erman, Burak

    2007-11-26

    The folding of a protein is studied as it grows residue by residue from the N-terminus and enters an environment that stabilizes the folded state. This mode of folding of a growing chain is different from refolding where the full chain folds from a disordered initial configuration to the native state. We propose a sequential dynamic optimization method that computes the evolution of optimum folding pathways as amino acid residues are added to the peptide chain one by one. The dynamic optimization formulation is deterministic and uses Newton's equations of motion and a Go-type potential that establishes the native contacts and excluded volume effects. The method predicts the optimal energy-minimizing path among all the alternative feasible pathways. As two examples, the folding of the chicken villin headpiece, a 36-residue protein, and chymotrypsin inhibitor 2 (CI2), a 64-residue protein, are studied. Results on the villin headpiece show significant differences from the refolding of the same chain studied previously. Results on CI2 mostly agree with the results of refolding experiments and computational work.

  10. Hydrodynamic interactions in protein folding

    NASA Astrophysics Data System (ADS)

    Cieplak, Marek; Niewieczerzał, Szymon

    2009-03-01

    We incorporate hydrodynamic interactions (HIs) in a coarse-grained and structure-based model of proteins by employing the Rotne-Prager hydrodynamic tensor. We study several small proteins and demonstrate that HIs facilitate folding. We also study HIV-1 protease and show that HIs make the flap closing dynamics faster. The HIs are found to affect time correlation functions in the vicinity of the native state even though they have no impact on same time characteristics of the structure fluctuations around the native state.

  11. Proteins with Highly Similar Native Folds Can Show Vastly Dissimilar Folding Behavior When Desolvated**

    PubMed Central

    Schennach, Moritz; Breuker, Kathrin

    2014-01-01

    Proteins can be exposed to vastly different environments such as the cytosol or membranes, but the delicate balance between external factors and intrinsic determinants of protein structure, stability, and folding is only poorly understood. Here we used electron capture dissociation to study horse and tuna heart Cytochromes c in the complete absence of solvent. The significantly different stability of their highly similar native folds after transfer into the gas phase, and their strikingly different folding behavior in the gas phase, can be rationalized on the basis of electrostatic interactions such as salt bridges. In the absence of hydrophobic bonding, protein folding is far slower and more complex than in solution. PMID:24259450

  12. Folding of the Tau Protein on Microtubules.

    PubMed

    Kadavath, Harindranath; Jaremko, Mariusz; Jaremko, Łukasz; Biernat, Jacek; Mandelkow, Eckhard; Zweckstetter, Markus

    2015-08-24

    Microtubules are regulated by microtubule-associated proteins. However, little is known about the structure of microtubule-associated proteins in complex with microtubules. Herein we show that the microtubule-associated protein Tau, which is intrinsically disordered in solution, locally folds into a stable structure upon binding to microtubules. While Tau is highly flexible in solution and adopts a β-sheet structure in amyloid fibrils, in complex with microtubules the conserved hexapeptides at the beginning of the Tau repeats two and three convert into a hairpin conformation. Thus, binding to microtubules stabilizes a unique conformation in Tau. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Energy landscape in protein folding and unfolding

    PubMed Central

    Mallamace, Francesco; Corsaro, Carmelo; Mallamace, Domenico; Vasi, Sebastiano; Vasi, Cirino; Baglioni, Piero; Buldyrev, Sergey V.; Chen, Sow-Hsin; Stanley, H. Eugene

    2016-01-01

    We use 1H NMR to probe the energy landscape in the protein folding and unfolding process. Using the scheme ⇄ reversible unfolded (intermediate) → irreversible unfolded (denatured) state, we study the thermal denaturation of hydrated lysozyme that occurs when the temperature is increased. Using thermal cycles in the range 295protein energy surface, we observe that the hydrophilic (the amide NH) and hydrophobic (methyl CH3 and methine CH) peptide groups evolve and exhibit different behaviors. We also discuss the role of water and hydrogen bonding in the protein configurational stability. PMID:26957601

  14. Energy landscape in protein folding and unfolding.

    PubMed

    Mallamace, Francesco; Corsaro, Carmelo; Mallamace, Domenico; Vasi, Sebastiano; Vasi, Cirino; Baglioni, Piero; Buldyrev, Sergey V; Chen, Sow-Hsin; Stanley, H Eugene

    2016-03-22

    We use (1)H NMR to probe the energy landscape in the protein folding and unfolding process. Using the scheme ⇄ reversible unfolded (intermediate) → irreversible unfolded (denatured) state, we study the thermal denaturation of hydrated lysozyme that occurs when the temperature is increased. Using thermal cycles in the range 295 < T < 365 K and following different trajectories along the protein energy surface, we observe that the hydrophilic (the amide NH) and hydrophobic (methyl CH3 and methine CH) peptide groups evolve and exhibit different behaviors. We also discuss the role of water and hydrogen bonding in the protein configurational stability.

  15. Forces Stabilizing Proteins

    PubMed Central

    Pace, C. Nick; Scholtz, J. Martin; Grimsley, Gerald R.

    2014-01-01

    The goal of this article is to summarize what has been learned about the major forces stabilizing proteins since the late 1980s when site-directed mutagenesis became possible. The following conclusions are derived from experimental studies of hydrophobic and hydrogen bonding variants. 1. Based on studies of 138 hydrophobic interaction variants in 11 proteins, burying a –CH2– group on folding contributes 1.1 ± 0.5 kcal/mol to protein stability. 2. The burial of nonpolar side chains contributes to protein stability in two ways: first, a term that depends on the removal of the side chains from water and, more importantly, the enhanced London dispersion forces that result from the tight packing in the protein interior. 3. Based on studies of 151 hydrogen bonding variants in 15 proteins, forming a hydrogen bond on folding contributes 1.1 ± 0.8 kcal/mol to protein stability. 4. The contribution of hydrogen bonds to protein stability is strongly context dependent. 5. Hydrogen bonds by side chains and peptide groups make similar contributions to protein stability. 6. Polar group burial can make a favorable contribution to protein stability even if the polar group is not hydrogen bonded. 7. Hydrophobic interactions and hydrogen bonds both make large contributions to protein stability. PMID:24846139

  16. Discovery of Tamoxifen and N-Desmethyl Tamoxifen Protein Targets in MCF-7 Cells Using Large-Scale Protein Folding and Stability Measurements.

    PubMed

    Ogburn, Ryenne N; Jin, Lorrain; Meng, He; Fitzgerald, Michael C

    2017-09-19

    The proteins in an MCF-7 cell line were probed for tamoxifen (TAM) and n-desmethyl tamoxifen (NDT) induced stability changes using the Stability of Proteins from Rates of Oxidation (SPROX) technique in combination with two different quantitative proteomics strategies, including one based on SILAC and one based on isobaric mass tags. Over 1000 proteins were assayed for TAM- and NDT- induced protein stability changes, and a total of 163 and 200 protein hits were identified in the TAM and NDT studies, respectively. A subset of 27 high confidence protein hits were reproducibly identified with both proteomics strategies and/or with multiple peptide probes. One-third of the high confidence hits have previously established experimental links to the estrogen receptor, and nearly all of the high confidence hits have established links to breast cancer. One high confidence protein hit that has known estrogen receptor binding properties, Y-box binding protein 1 (YBX1), was further validated as a direct binding target of TAM using both the SPROX and pulse proteolysis techniques. Proteins with TAM- and/or NDT-induced expression level changes were also identified in the SILAC-SPROX experiments. These proteins with expression level changes included only a small fraction of those with TAM- and/or NDT-induced stability changes.

  17. Predicting protein folds with fold-specific PSSM libraries.

    PubMed

    Hong, Yoojin; Chintapalli, Sree Vamsee; Ko, Kyung Dae; Bhardwaj, Gaurav; Zhang, Zhenhai; van Rossum, Damian; Patterson, Randen L

    2011-01-01

    Accurately assigning folds for divergent protein sequences is a major obstacle to structural studies. Herein, we outline an effective method for fold recognition using sets of PSSMs, each of which is constructed for different protein folds. Our analyses demonstrate that FSL (Fold-specific Position Specific Scoring Matrix Libraries) can predict/relate structures given only their amino acid sequences of highly divergent proteins. This ability to detect distant relationships is dependent on low-identity sequence alignments obtained from FSL. Results from our experiments demonstrate that FSL perform well in recognizing folds from the "twilight-zone" SABmark dataset. Further, this method is capable of accurate fold prediction in newly determined structures. We suggest that by building complete PSSM libraries for all unique folds within the Protein Database (PDB), FSL can be used to rapidly and reliably annotate a large subset of protein folds at proteomic level. The related programs and fold-specific PSSMs for our FSL are publicly available at: http://ccp.psu.edu/download/FSLv1.0/.

  18. Exploring the Levinthal limit in protein folding.

    PubMed

    Cruzeiro, Leonor; Degrève, Léo

    2017-03-01

    According to the thermodynamic hypothesis, the native state of proteins is uniquely defined by their amino acid sequence. On the other hand, according to Levinthal, the native state is just a local minimum of the free energy and a given amino acid sequence, in the same thermodynamic conditions, can assume many, very different structures that are as thermodynamically stable as the native state. This is the Levinthal limit explored in this work. Using computer simulations, we compare the interactions that stabilize the native state of four different proteins with those that stabilize three non-native states of each protein and find that the nature of the interactions is very similar for all such 16 conformers. Furthermore, an enhancement of the degree of fluctuation of the non-native conformers can be explained by an insufficient relaxation to their local free energy minimum. These results favor Levinthal's hypothesis that protein folding is a kinetic non-equilibrium process.

  19. Chaperonin-mediated Protein Folding

    PubMed Central

    Horwich, Arthur L.

    2013-01-01

    We have been studying chaperonins these past twenty years through an initial discovery of an action in protein folding, analysis of structure, and elucidation of mechanism. Some of the highlights of these studies were presented recently upon sharing the honor of the 2013 Herbert Tabor Award with my early collaborator, Ulrich Hartl, at the annual meeting of the American Society for Biochemistry and Molecular Biology in Boston. Here, some of the major findings are recounted, particularly recognizing my collaborators, describing how I met them and how our great times together propelled our thinking and experiments. PMID:23803606

  20. Deletional Protein Engineering Based on Stable Fold

    PubMed Central

    Sokalingam, Sriram; Yun, Hyungdon; Lee, Sun-Gu

    2012-01-01

    Diversification of protein sequence-structure space is a major concern in protein engineering. Deletion mutagenesis can generate a protein sequence-structure space different from substitution mutagenesis mediated space, but it has not been widely used in protein engineering compared to substitution mutagenesis, because it causes a relatively huge range of structural perturbations of target proteins which often inactivates the proteins. In this study, we demonstrate that, using green fluorescent protein (GFP) as a model system, the drawback of the deletional protein engineering can be overcome by employing the protein structure with high stability. The systematic dissection of N-terminal, C-terminal and internal sequences of GFPs with two different stabilities showed that GFP with high stability (s-GFP), was more tolerant to the elimination of amino acids compared to a GFP with normal stability (n-GFP). The deletion studies of s-GFP enabled us to achieve three interesting variants viz. s-DL4, s-N14, and s-C225, which could not been obtained from n-GFP. The deletion of 191–196 loop sequences led to the variant s-DL4 that was expressed predominantly as insoluble form but mostly active. The s-N14 and s-C225 are the variants without the amino acid residues involving secondary structures around N- and C-terminals of GFP fold respectively, exhibiting comparable biophysical properties of the n-GFP. Structural analysis of the variants through computational modeling study gave a few structural insights that can explain the spectral properties of the variants. Our study suggests that the protein sequence-structure space of deletion mutants can be more efficiently explored by employing the protein structure with higher stability. PMID:23240034

  1. Thermal stability of idealized folded carbyne loops

    PubMed Central

    2013-01-01

    Self-unfolding items provide a practical convenience, wherein ring-like frames are contorted into a state of equilibrium and subsequently  pop up’ or deploy when perturbed from a folded structure. Can the same process be exploited at the molecular scale? At the limiting scale is a closed chain of single atoms, used here to investigate the limits of stability of such folded ring structures via full atomistic molecular dynamics. Carbyne is a one-dimensional carbon allotrope composed of sp-hybridized carbon atoms. Here, we explore the stability of idealized carbyne loops as a function of chain length, curvature, and temperature, and delineate an effective phase diagram between folded and unfolded states. We find that while overall curvature is reduced, in addition to torsional and self-adhesive energy barriers, a local increase in curvature results in the largest impedance to unfolding. PMID:24252156

  2. PREFACE Protein folding: lessons learned and new frontiers Protein folding: lessons learned and new frontiers

    NASA Astrophysics Data System (ADS)

    Pappu, Rohit V.; Nussinov, Ruth

    2009-03-01

    In appropriate physiological milieux proteins spontaneously fold into their functional three-dimensional structures. The amino acid sequences of functional proteins contain all the information necessary to specify the folds. This remarkable observation has spawned research aimed at answering two major questions. (1) Of all the conceivable structures that a protein can adopt, why is the ensemble of native-like structures the most favorable? (2) What are the paths by which proteins manage to robustly and reproducibly fold into their native structures? Anfinsen's thermodynamic hypothesis has guided the pursuit of answers to the first question whereas Levinthal's paradox has influenced the development of models for protein folding dynamics. Decades of work have led to significant advances in the folding problem. Mean-field models have been developed to capture our current, coarse grain understanding of the driving forces for protein folding. These models are being used to predict three-dimensional protein structures from sequence and stability profiles as a function of thermodynamic and chemical perturbations. Impressive strides have also been made in the field of protein design, also known as the inverse folding problem, thereby testing our understanding of the determinants of the fold specificities of different sequences. Early work on protein folding pathways focused on the specific sequence of events that could lead to a simplification of the search process. However, unifying principles proved to be elusive. Proteins that show reversible two-state folding-unfolding transitions turned out to be a gift of natural selection. Focusing on these simple systems helped researchers to uncover general principles regarding the origins of cooperativity in protein folding thermodynamics and kinetics. On the theoretical front, concepts borrowed from polymer physics and the physics of spin glasses led to the development of a framework based on energy landscape theories. These

  3. Folding mechanism of a multiple independently-folding domain protein: double B domain of protein A.

    PubMed

    Arora, Pooja; Hammes, Gordon G; Oas, Terrence G

    2006-10-10

    The antibody binding properties of staphylococcal protein A (SpA) can be attributed to the presence of five highly homologous domains (E, D, A, B, and C). Although the folding of the B domain of protein A (BdpA) is well-characterized, the folding behavior of this domain in the context of full-length SpA in the cell remains unexplored. The sequence of the B domain is 89 and 91% identical to those of domains A and C, respectively. We have fused B domain sequences (BBdpA) as a close approximation of the A-B or B-C portion of SpA. Circular dichroism and fluorescence-detected denaturation curves of BBdpA are experimentally indistinguishable from those of BdpA. The rate constants for folding and unfolding from NMR line shape analysis for the single- and double-domain proteins are the same within experimental uncertainties (+/-20%). These results support the designation of SpA as a multiple independently-folding domain (MIFD) protein. We develop a mathematical model that describes the folding thermodynamics and kinetics of MIFD proteins. The model depicts MIFD protein folding and unfolding as a parallel network and explicitly calculates the flux through all parallel pathways. These fluxes are combined to give a complete description of the global thermodynamics and kinetics of the folding and unfolding of MIFD proteins. The global rates for complete folding and unfolding of a MIFD protein and those of the individual domains depend on the stability of the protein. We show that the global unfolding rate of a MIFD protein may be many orders of magnitude slower than that of the constituent domains.

  4. Osmolyte-induced folding of an intrinsically disordered protein: folding mechanism in the absence of ligand.

    PubMed

    Chang, Yu-Chu; Oas, Terrence G

    2010-06-29

    Understanding the interconversion between thermodynamically distinguishable states present in a protein folding pathway provides not only the kinetics and energetics of protein folding but also insights into the functional roles of these states in biological systems. The protein component of the bacterial RNase P holoenzyme from Bacillus subtilis (P protein) was previously shown to be unfolded in the absence of its cognate RNA or other anionic ligands. P protein was used in this study as a model system to explore general features of intrinsically disordered protein (IDP) folding mechanisms. The use of trimethylamine N-oxide (TMAO), an osmolyte that stabilizes the unliganded folded form of the protein, enabled us to study the folding process of P protein in the absence of ligand. Transient stopped-flow kinetic traces at various final TMAO concentrations exhibited multiphasic kinetics. Equilibrium "cotitration" experiments were performed using both TMAO and urea during the titration to produce a urea-TMAO titration surface of P protein. Both kinetic and equilibrium studies show evidence of a previously undetected intermediate state in the P protein folding process. The intermediate state is significantly populated, and the folding rate constants are relatively slow compared to those of intrinsically folded proteins similar in size and topology. The experiments and analysis described serve as a useful example for mechanistic folding studies of other IDPs.

  5. How Does Your Protein Fold? Elucidating the Apomyoglobin Folding Pathway.

    PubMed

    Dyson, H Jane; Wright, Peter E

    2017-01-17

    Although each type of protein fold and in some cases individual proteins within a fold classification can have very different mechanisms of folding, the underlying biophysical and biochemical principles that operate to cause a linear polypeptide chain to fold into a globular structure must be the same. In an aqueous solution, the protein takes up the thermodynamically most stable structure, but the pathway along which the polypeptide proceeds in order to reach that structure is a function of the amino acid sequence, which must be the final determining factor, not only in shaping the final folded structure, but in dictating the folding pathway. A number of groups have focused on a single protein or group of proteins, to determine in detail the factors that influence the rate and mechanism of folding in a defined system, with the hope that hypothesis-driven experiments can elucidate the underlying principles governing the folding process. Our research group has focused on the folding of the globin family of proteins, and in particular on the monomeric protein apomyoglobin. Apomyoglobin (apoMb) folds relatively slowly (∼2 s) via an ensemble of obligatory intermediates that form rapidly after the initiation of folding. The folding pathway can be dissected using rapid-mixing techniques, which can probe processes in the millisecond time range. Stopped-flow measurements detected by circular dichroism (CD) or fluorescence spectroscopy give information on the rates of folding events. Quench-flow experiments utilize the differential rates of hydrogen-deuterium exchange of amide protons protected in parts of the structure that are folded early; protection of amides can be detected by mass spectrometry or proton nuclear magnetic resonance spectroscopy (NMR). In addition, apoMb forms an intermediate at equilibrium at pH ∼ 4, which is sufficiently stable for it to be structurally characterized by solution methods such as CD, fluorescence and NMR spectroscopies, and the

  6. Improving protein fold recognition by random forest

    PubMed Central

    2014-01-01

    Background Recognizing the correct structural fold among known template protein structures for a target protein (i.e. fold recognition) is essential for template-based protein structure modeling. Since the fold recognition problem can be defined as a binary classification problem of predicting whether or not the unknown fold of a target protein is similar to an already known template protein structure in a library, machine learning methods have been effectively applied to tackle this problem. In our work, we developed RF-Fold that uses random forest - one of the most powerful and scalable machine learning classification methods - to recognize protein folds. Results RF-Fold consists of hundreds of decision trees that can be trained efficiently on very large datasets to make accurate predictions on a highly imbalanced dataset. We evaluated RF-Fold on the standard Lindahl's benchmark dataset comprised of 976 × 975 target-template protein pairs through cross-validation. Compared with 17 different fold recognition methods, the performance of RF-Fold is generally comparable to the best performance in fold recognition of different difficulty ranging from the easiest family level, the medium-hard superfamily level, and to the hardest fold level. Based on the top-one template protein ranked by RF-Fold, the correct recognition rate is 84.5%, 63.4%, and 40.8% at family, superfamily, and fold levels, respectively. Based on the top-five template protein folds ranked by RF-Fold, the correct recognition rate increases to 91.5%, 79.3% and 58.3% at family, superfamily, and fold levels. Conclusions The good performance achieved by the RF-Fold demonstrates the random forest's effectiveness for protein fold recognition. PMID:25350499

  7. A Simple Model for Protein Folding

    NASA Astrophysics Data System (ADS)

    Henry, Eric R.; Eaton, William A.

    We describe a simple Ising-like statistical mechanical model for folding proteins based on the α-carbon contact map of the native structure. In this model residues can adopt two microscopic states corresponding to the native and non-native conformations. In order to exactly enumerate the large number of possible configurations, structure is considered to grow as continuous sequences of native residues, with no more than two sequences in each molecule. Inter-residue contacts can only form within each sequence and between residues of the two native sequences. As structure grows there is a tradeoff between the stabilizing effect of inter-residue contacts and the entropy losses from ordering residues in their native conformation and from forming a disordered loop to connect two continuous sequences. Folding kinetics are calculated from the dynamics on the free energy profile, as in Kramers' reaction rate theory. Although non-native interactions responsible for roughness in the energy landscape are not explicitly considered in the model, they are implicitly included by determining the absolute rates for motion on the free energy profile. With the exception of α-helical proteins, the kinetic progress curves exhibit single exponential time courses, consistent with two state behavior, as observed experimentally. The calculated folding rates are in remarkably good agreement with the measured values for the 25 two-state proteins investigated, with a correlation coefficient of 0.8. With its coarse-grained description of both the energy and entropy, and only three independently adjustable parameters, the model may be regarded as the simplest possible analytical model of protein folding capable of predicting experimental properties of specific proteins.

  8. Simple Model of Protein Folding Kinetics

    NASA Astrophysics Data System (ADS)

    Zwanzig, Robert

    1995-10-01

    A simple model of the kinetics of protein folding is presented. The reaction coordinate is the "correctness" of a configuration compared with the native state. The model has a gap in the energy spectrum, a large configurational entropy, a free energy barrier between folded and partially folded states, and a good thermodynamic folding transition. Folding kinetics is described by a master equation. The folding time is estimated by means of a local thermodynamic equilibrium assumption and then is calculated both numerically and analytically by solving the master equation. The folding time has a maximum near the folding transition temperature and can have a minimum at a lower temperature.

  9. The "Transport Specificity Ratio": a structure-function tool to search the protein fold for loci that control transition state stability in membrane transport catalysis

    PubMed Central

    King, Steven C

    2004-01-01

    structure-function tool that enables parsimonious scanning for positions in the protein fold that couple to the transition state, creating stability and thereby serving as functional determinants of catalytic power (efficiency, or specificity). PMID:15548327

  10. Neutralization of acidic residues in helix II stabilizes the folded conformation of acyl carrier protein and variably alters its function with different enzymes.

    PubMed

    Gong, Huansheng; Murphy, Anne; McMaster, Christopher R; Byers, David M

    2007-02-16

    Acyl carrier protein (ACP), a small protein essential for bacterial growth and pathogenesis, interacts with diverse enzymes during the biosynthesis of fatty acids, phospholipids, and other specialized products such as lipid A. NMR and hydrodynamic studies have previously shown that divalent cations stabilize native helical ACP conformation by binding to conserved acidic residues at two sites (A and B) at either end of the "recognition" helix II. To examine the roles of these amino acids in ACP structure and function, site-directed mutagenesis was used to replace individual site A (Asp-30, Asp-35, Asp-38) and site B (Glu-47, Glu-53, Asp-56) residues in recombinant Vibrio harveyi ACP with the corresponding amides, along with combined mutations at each site (SA, SB) or both sites (SA/SB). Like native V. harveyi ACP, all individual mutants were unfolded at neutral pH but adopted a helical conformation in the presence of millimolar Mg(2+) or upon fatty acylation. Mg(2+) binding to sites A or B independently stabilized native ACP conformation, whereas mutant SA/SB was folded in the absence of Mg(2+), suggesting that charge neutralization is largely responsible for ACP stabilization by divalent cations. Asp-35 in site A was critical for holo-ACP synthase activity, while acyl-ACP synthetase and UDP-N-acetylglucosamine acyltransferase (LpxA) activities were more affected by mutations in site B. Both sites were required for fatty acid synthase activity. Overall, our results indicate that divalent cation binding site mutations have predicted effects on ACP conformation but unpredicted and variable consequences on ACP function with different enzymes.

  11. Thermodynamics and kinetics of protein folding: an evolutionary perspective.

    PubMed

    Demetrius, Lloyd

    2002-08-07

    This article appeals to an evolutionary model which postulates that primordial proteins were described by small polypeptide chains which (i) lack disulfide bridges, and (ii) display slow folding rates with multi-state kinetics, to determine relations between structural properties of proteins and their folding kinetics. We parameterize the energy landscape of proteins in terms of thermodynamic activation variables. The model studies evolutionary changes in these thermodynamic parameters, and we invoke relations between these activation variables and structural properties of the protein to predict the following correspondence between protein structure and folding kinetics. 1. Proteins with inter- and intra-chain disulfide bridges: large variability in both folding rates and stability of intermediates, multi-state kinetics. 2. Proteins which lack inter and intra-chain disulfide bridges. 2.1 Single-domain chains: fast folding rates; unstable intermediates; two-state kinetics. 2.2 Multi-domain monomers: intermediate rates; metastable intermediates; multi-state kinetics. 2.3 Multi-domain oligomers: slow rates; metastable intermediates; multi-state kinetics. The evolutionary model thus provides a kinetic characterization of one important subfamily of proteins which we describe by the following properties: Folding dynamics of single-domain proteins which lack disulfide bridges are described by two-state kinetics. Folding rate of this class of proteins is positively correlated with the thermodynamic stability of the folded state.

  12. Atom-by-atom analysis of global downhill protein folding

    NASA Astrophysics Data System (ADS)

    Sadqi, Mourad; Fushman, David; Muñoz, Victor

    2006-07-01

    Protein folding is an inherently complex process involving coordination of the intricate networks of weak interactions that stabilize native three-dimensional structures. In the conventional paradigm, simple protein structures are assumed to fold in an all-or-none process that is inaccessible to experiment. Existing experimental methods therefore probe folding mechanisms indirectly. A widely used approach interprets changes in protein stability and/or folding kinetics, induced by engineered mutations, in terms of the structure of the native protein. In addition to limitations in connecting energetics with structure, mutational methods have significant experimental uncertainties and are unable to map complex networks of interactions. In contrast, analytical theory predicts small barriers to folding and the possibility of downhill folding. These theoretical predictions have been confirmed experimentally in recent years, including the observation of global downhill folding. However, a key remaining question is whether downhill folding can indeed lead to the high-resolution analysis of protein folding processes. Here we show, with the use of nuclear magnetic resonance (NMR), that the downhill protein BBL from Escherichia coli unfolds atom by atom starting from a defined three-dimensional structure. Thermal unfolding data on 158 backbone and side-chain protons out of a total of 204 provide a detailed view of the structural events during folding. This view confirms the statistical nature of folding, and exposes the interplay between hydrogen bonding, hydrophobic forces, backbone conformation and side-chain entropy. From the data we also obtain a map of the interaction network in this protein, which reveals the source of folding cooperativity. Our approach can be extended to other proteins with marginal barriers (less than 3RT), providing a new tool for the study of protein folding.

  13. Folding of multidomain proteins: biophysical consequences of tethering even in apparently independent folding.

    PubMed

    Arviv, Oshrit; Levy, Yaakov

    2012-12-01

    Most eukaryotic and a substantial fraction of prokaryotic proteins are composed of more than one domain. The tethering of these evolutionary, structural, and functional units raises, among others, questions regarding the folding process of conjugated domains. Studying the folding of multidomain proteins in silico enables one to identify and isolate the tethering-induced biophysical determinants that govern crosstalks generated between neighboring domains. For this purpose, we carried out coarse-grained and atomistic molecular dynamics simulations of two two-domain constructs from the immunoglobulin-like β-sandwich fold. Each of these was experimentally shown to behave as the "sum of its parts," that is, the thermodynamic and kinetic folding behavior of the constituent domains of these constructs seems to occur independently, with the folding of each domain uncoupled from the folding of its partner in the two-domain construct. We show that the properties of the individual domains can be significantly affected by conjugation to another domain. The tethering may be accompanied by stabilizing as well as destabilizing factors whose magnitude depends on the size of the interface, the length, and the flexibility of the linker, and the relative stability of the domains. Accordingly, the folding of a multidomain protein should not be viewed as the sum of the folding patterns of each of its parts, but rather, it involves abrogating several effects that lead to this outcome. An imbalance between these effects may result in either stabilization or destabilization owing to the tethering. Copyright © 2012 Wiley Periodicals, Inc.

  14. Designing pH induced fold switch in proteins

    NASA Astrophysics Data System (ADS)

    Baruah, Anupaul; Biswas, Parbati

    2015-05-01

    This work investigates the computational design of a pH induced protein fold switch based on a self-consistent mean-field approach by identifying the ensemble averaged characteristics of sequences that encode a fold switch. The primary challenge to balance the alternative sets of interactions present in both target structures is overcome by simultaneously optimizing two foldability criteria corresponding to two target structures. The change in pH is modeled by altering the residual charge on the amino acids. The energy landscape of the fold switch protein is found to be double funneled. The fold switch sequences stabilize the interactions of the sites with similar relative surface accessibility in both target structures. Fold switch sequences have low sequence complexity and hence lower sequence entropy. The pH induced fold switch is mediated by attractive electrostatic interactions rather than hydrophobic-hydrophobic contacts. This study may provide valuable insights to the design of fold switch proteins.

  15. Designing pH induced fold switch in proteins.

    PubMed

    Baruah, Anupaul; Biswas, Parbati

    2015-05-14

    This work investigates the computational design of a pH induced protein fold switch based on a self-consistent mean-field approach by identifying the ensemble averaged characteristics of sequences that encode a fold switch. The primary challenge to balance the alternative sets of interactions present in both target structures is overcome by simultaneously optimizing two foldability criteria corresponding to two target structures. The change in pH is modeled by altering the residual charge on the amino acids. The energy landscape of the fold switch protein is found to be double funneled. The fold switch sequences stabilize the interactions of the sites with similar relative surface accessibility in both target structures. Fold switch sequences have low sequence complexity and hence lower sequence entropy. The pH induced fold switch is mediated by attractive electrostatic interactions rather than hydrophobic-hydrophobic contacts. This study may provide valuable insights to the design of fold switch proteins.

  16. Proteins with highly similar native folds can show vastly dissimilar folding behavior when desolvated.

    PubMed

    Schennach, Moritz; Breuker, Kathrin

    2014-01-03

    Proteins can be exposed to vastly different environments such as the cytosol or membranes, but the delicate balance between external factors and intrinsic determinants of protein structure, stability, and folding is only poorly understood. Here we used electron capture dissociation to study horse and tuna heart Cytochromes c in the complete absence of solvent. The significantly different stability of their highly similar native folds after transfer into the gas phase, and their strikingly different folding behavior in the gas phase, can be rationalized on the basis of electrostatic interactions such as salt bridges. In the absence of hydrophobic bonding, protein folding is far slower and more complex than in solution. © 2013 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  17. Protein folding at single-molecule resolution

    PubMed Central

    Ferreon, Allan Chris M.; Deniz, Ashok A.

    2011-01-01

    The protein folding reaction carries great significance for cellular function and hence continues to be the research focus of a large interdisciplinary protein science community. Single-molecule methods are providing new and powerful tools for dissecting the mechanisms of this complex process by virtue of their ability to provide views of protein structure and dynamics without associated ensemble averaging. This review briefly introduces common FRET and force methods, and then explores several areas of protein folding where single-molecule experiments have yielded insights. These include exciting new information about folding landscapes, dynamics, intermediates, unfolded ensembles, intrinsically disordered proteins, assisted folding and biomechanical unfolding. Emerging and future work is expected to include advances in single-molecule techniques aimed at such investigations, and increasing work on more complex systems from both the physics and biology standpoints, including folding and dynamics of systems of interacting proteins and of proteins in cells and organisms. PMID:21303706

  18. Toward understanding driving forces in membrane protein folding.

    PubMed

    Hong, Heedeok

    2014-12-15

    α-Helical membrane proteins are largely composed of nonpolar residues that are embedded in the lipid bilayer. An enigma in the folding of membrane proteins is how a polypeptide chain can be condensed into the compact folded state in the environment where the hydrophobic effect cannot strongly drive molecular interactions. Probably other forces such as van der Waals packing, hydrogen bonding, and weakly polar interactions, which are regarded less important in the folding of water-soluble proteins, should emerge. However, it is not clearly understood how those individual forces operate and how they are balanced for stabilizing membrane proteins. Studying this problem is not a trivial task mainly because of the methodological challenges in controlling the reversible folding of membrane proteins in the lipid bilayer. Overcoming the hurdles, meaningful progress has been made in the field in the last few decades. This review will focus on recent studies tackling the problem of driving forces in membrane protein folding.

  19. Structural features of protein folding nuclei.

    PubMed

    Garbuzynskiy, S O; Kondratova, M S

    2008-03-05

    A crucial event of protein folding is the formation of a folding nucleus. We demonstrate the presence of a considerable coincidence between the location of folding nuclei and the location of so-called "root structural motifs", which have unique overall folds and handedness. In the case of proteins with a single root structural motif, the involvement in the formation of a folding nucleus is in average significantly higher for amino acids residues that are in root structural motifs, compared to residues in other parts of the protein. The tests carried out revealed that the observed difference is statistically reliable. Thus, a structural feature that corresponds to the protein folding nucleus is now found.

  20. Protein Folding and Self-Organized Criticality

    NASA Astrophysics Data System (ADS)

    Bajracharya, Arun; Murray, Joelle

    Proteins are known to fold into tertiary structures that determine their functionality in living organisms. However, the complex dynamics of protein folding and the way they consistently fold into the same structures is not fully understood. Self-organized criticality (SOC) has provided a framework for understanding complex systems in various systems (earthquakes, forest fires, financial markets, and epidemics) through scale invariance and the associated power law behavior. In this research, we use a simple hydrophobic-polar lattice-bound computational model to investigate self-organized criticality as a possible mechanism for generating complexity in protein folding.

  1. Accelerated molecular dynamics simulations of protein folding.

    PubMed

    Miao, Yinglong; Feixas, Ferran; Eun, Changsun; McCammon, J Andrew

    2015-07-30

    Folding of four fast-folding proteins, including chignolin, Trp-cage, villin headpiece and WW domain, was simulated via accelerated molecular dynamics (aMD). In comparison with hundred-of-microsecond timescale conventional molecular dynamics (cMD) simulations performed on the Anton supercomputer, aMD captured complete folding of the four proteins in significantly shorter simulation time. The folded protein conformations were found within 0.2-2.1 Å of the native NMR or X-ray crystal structures. Free energy profiles calculated through improved reweighting of the aMD simulations using cumulant expansion to the second-order are in good agreement with those obtained from cMD simulations. This allows us to identify distinct conformational states (e.g., unfolded and intermediate) other than the native structure and the protein folding energy barriers. Detailed analysis of protein secondary structures and local key residue interactions provided important insights into the protein folding pathways. Furthermore, the selections of force fields and aMD simulation parameters are discussed in detail. Our work shows usefulness and accuracy of aMD in studying protein folding, providing basic references in using aMD in future protein-folding studies. © 2015 Wiley Periodicals, Inc.

  2. Under-folded proteins: Conformational ensembles and their roles in protein folding, function, and pathogenesis.

    PubMed

    Uversky, Vladimir N

    2013-11-01

    For decades, protein function was intimately linked to the presence of a unique, aperiodic crystal-like structure in a functional protein. The two only places for conformational ensembles of under-folded (or partially folded) protein forms in this picture were either the end points of the protein denaturation processes or transiently populated folding intermediates. Recent years witnessed dramatic change in this perception and conformational ensembles, which the under-folded proteins are, have moved from the shadow. Accumulated to date data suggest that a protein can exist in at least three global forms-functional and folded, functional and intrinsically disordered (nonfolded), and nonfunctional and misfolded/aggregated. Under-folded protein states are crucial for each of these forms, serving as important folding intermediates of ordered proteins, or as functional states of intrinsically disordered proteins (IDPs) and IDP regions (IDPRs), or as pathology triggers of misfolded proteins. Based on these observations, conformational ensembles of under-folded proteins can be classified as transient (folding and misfolding intermediates) and permanent (IDPs and stable misfolded proteins). Permanently under-folded proteins can further be split into intentionally designed (IDPs and IDPRs) and unintentionally designed (misfolded proteins). Although intrinsic flexibility, dynamics, and pliability are crucial for all under-folded proteins, the different categories of under-foldedness are differently encoded in protein amino acid sequences. Copyright © 2013 Wiley Periodicals, Inc.

  3. Frustration in Condensed Matter and Protein Folding

    NASA Astrophysics Data System (ADS)

    Li, Z.; Tanner, S.; Conroy, B.; Owens, F.; Tran, M. M.; Boekema, C.

    2014-03-01

    By means of computer modeling, we are studying frustration in condensed matter and protein folding, including the influence of temperature and Thomson-figure formation. Frustration is due to competing interactions in a disordered state. The key issue is how the particles interact to reach the lowest frustration. The relaxation for frustration is mostly a power function (randomly assigned pattern) or an exponential function (regular patterns like Thomson figures). For the atomic Thomson model, frustration is predicted to decrease with the formation of Thomson figures at zero kelvin. We attempt to apply our frustration modeling to protein folding and dynamics. We investigate the homogeneous protein frustration that would cause the speed of the protein folding to increase. Increase of protein frustration (where frustration and hydrophobicity interplay with protein folding) may lead to a protein mutation. Research is supported by WiSE@SJSU and AFC San Jose.

  4. Protein Folding and Mechanisms of Proteostasis

    PubMed Central

    Díaz-Villanueva, José Fernando; Díaz-Molina, Raúl; García-González, Victor

    2015-01-01

    Highly sophisticated mechanisms that modulate protein structure and function, which involve synthesis and degradation, have evolved to maintain cellular homeostasis. Perturbations in these mechanisms can lead to protein dysfunction as well as deleterious cell processes. Therefore in recent years the etiology of a great number of diseases has been attributed to failures in mechanisms that modulate protein structure. Interconnections among metabolic and cell signaling pathways are critical for homeostasis to converge on mechanisms associated with protein folding as well as for the preservation of the native structure of proteins. For instance, imbalances in secretory protein synthesis pathways lead to a condition known as endoplasmic reticulum (ER) stress which elicits the adaptive unfolded protein response (UPR). Therefore, taking this into consideration, a key part of this paper is developed around the protein folding phenomenon, and cellular mechanisms which support this pivotal condition. We provide an overview of chaperone protein function, UPR via, spatial compartmentalization of protein folding, proteasome role, autophagy, as well as the intertwining between these processes. Several diseases are known to have a molecular etiology in the malfunction of mechanisms responsible for protein folding and in the shielding of native structure, phenomena which ultimately lead to misfolded protein accumulation. This review centers on our current knowledge about pathways that modulate protein folding, and cell responses involved in protein homeostasis. PMID:26225966

  5. Ultrafast protein folding in cages and zippers

    NASA Astrophysics Data System (ADS)

    Qiu, Linlin; Hagen, Stephen J.

    2003-03-01

    The smallest, fastest-folding proteins fold on the ˜μ s time scale, where state-of-the-art molecular dynamics (MD) simulation can finally overlap with the fastest experimental probes such as laser temperature-jump spectroscopy. For such proteins, one can now ask whether molecular dynamics correctly predicts the native structure and/or the folding speed. We will present experimental measurements of folding speed in two small proteins that acquire a stable tertiary fold rapidly enough to have been simulated in MD: (a) The 20-residue tryptophan (Trp) cage, which constitutes both the smallest truly protein-like molecule and also the fastest-folding [Neidigh et al., Nat. Struct. Biol. 9 425 (2002); Qiu et al., JACS 124 12952 (2002)], and (b) the 12-residue Trp zippers (e.g. TrpZip1), monomeric β-hairpins engineered by Cochran et al. [PNAS 98 5578 (2001)]. Both proteins fold in a cooperative, two-state transition at rates exceeding 10^5 s-1 (τ < 10 μs). We will compare the folding kinetics of these proteins with the predictions of MD simulations.

  6. Simultaneous Alignment and Folding of Protein Sequences

    PubMed Central

    Waldispühl, Jérôme; O'Donnell, Charles W.; Will, Sebastian; Devadas, Srinivas; Backofen, Rolf

    2014-01-01

    Abstract Accurate comparative analysis tools for low-homology proteins remains a difficult challenge in computational biology, especially sequence alignment and consensus folding problems. We present partiFold-Align, the first algorithm for simultaneous alignment and consensus folding of unaligned protein sequences; the algorithm's complexity is polynomial in time and space. Algorithmically, partiFold-Align exploits sparsity in the set of super-secondary structure pairings and alignment candidates to achieve an effectively cubic running time for simultaneous pairwise alignment and folding. We demonstrate the efficacy of these techniques on transmembrane β-barrel proteins, an important yet difficult class of proteins with few known three-dimensional structures. Testing against structurally derived sequence alignments, partiFold-Align significantly outperforms state-of-the-art pairwise and multiple sequence alignment tools in the most difficult low-sequence homology case. It also improves secondary structure prediction where current approaches fail. Importantly, partiFold-Align requires no prior training. These general techniques are widely applicable to many more protein families (partiFold-Align is available at http://partifold.csail.mit.edu/). PMID:24766258

  7. Protein vivisection reveals elusive intermediates in folding

    PubMed Central

    Zheng, Zhongzhou; Sosnick, Tobin R.

    2010-01-01

    Although most folding intermediates escape detection, their characterization is crucial to the elucidation of folding mechanisms. Here we outline a powerful strategy to populate partially unfolded intermediates: A buried aliphatic residue is substituted with a charged residue (e.g., Leu→Glu−) to destabilize and unfold a specific region of the protein. We apply this strategy to Ubiquitin, reversibly trapping a folding intermediate in which the β5 strand is unfolded. The intermediate refolds to a native-like structure upon charge neutralization under mildly acidic conditions. Characterization of the trapped intermediate using NMR and hydrogen exchange methods identifies a second folding intermediate and reveals the order and free energies of the two major folding events on the native side of the rate-limiting step. This general strategy may be combined with other methods and have broad applications in the study of protein folding and other reactions that require trapping of high energy states. PMID:20144618

  8. Hydrophobic folding units at protein-protein interfaces: implications to protein folding and to protein-protein association.

    PubMed Central

    Tsai, C. J.; Nussinov, R.

    1997-01-01

    A hydrophobic folding unit cutting algorithm, originally developed for dissecting single-chain proteins, has been applied to a dataset of dissimilar two-chain protein-protein interfaces. Rather than consider each individual chain separately, the two-chain complex has been treated as a single chain. The two-chain parsing results presented in this work show hydrophobicity to be a critical attribute of two-state versus three-state protein-protein complexes. The hydrophobic folding units at the interfaces of two-state complexes suggest that the cooperative nature of the two-chain protein folding is the outcome of the hydrophobic effect, similar to its being the driving force in a single-chain folding. In analogy to the protein-folding process, the two-chain, two-state model complex may correspond to the formation of compact, hydrophobic nuclei. On the other hand, the three-state model complex involves binding of already folded monomers, similar to the association of the hydrophobic folding units within a single chain. The similarity between folding entities in protein cores and in two-state protein-protein interfaces, despite the absence of some chain connectivities in the latter, indicates that chain linkage does not necessarily affect the native conformation. This further substantiates the notion that tertiary, non-local interactions play a critical role in protein folding. These compact, hydrophobic, two-chain folding units, derived from structurally dissimilar protein-protein interfaces, provide a rich set of data useful in investigations of the role played by chain connectivity and by tertiary interactions in studies of binding and of folding. Since they are composed of non-contiguous pieces of protein backbones, they may also aid in defining folding nuclei. PMID:9232644

  9. Network measures for protein folding state discrimination

    PubMed Central

    Menichetti, Giulia; Fariselli, Piero; Remondini, Daniel

    2016-01-01

    Proteins fold using a two-state or multi-state kinetic mechanisms, but up to now there is not a first-principle model to explain this different behavior. We exploit the network properties of protein structures by introducing novel observables to address the problem of classifying the different types of folding kinetics. These observables display a plain physical meaning, in terms of vibrational modes, possible configurations compatible with the native protein structure, and folding cooperativity. The relevance of these observables is supported by a classification performance up to 90%, even with simple classifiers such as discriminant analysis. PMID:27464796

  10. Modern Analysis of Protein Folding by Differential Scanning Calorimetry.

    PubMed

    Ibarra-Molero, Beatriz; Naganathan, Athi N; Sanchez-Ruiz, Jose M; Muñoz, Victor

    2016-01-01

    Differential scanning calorimetry (DSC) is a very powerful tool for investigating protein folding and stability because its experimental output reflects the energetics of all conformations that become minimally populated during thermal unfolding. Accordingly, analysis of DSC experiments with simple thermodynamic models has been key for developing our understanding of protein stability during the past five decades. The discovery of ultrafast folding proteins, which have naturally broad conformational ensembles and minimally cooperative unfolding, opens the possibility of probing the complete folding free energy landscape, including those conformations at the top of the barrier to folding, via DSC. Exploiting this opportunity requires high-quality experiments and the implementation of novel analytical methods based on statistical mechanics. Here, we cover the recent exciting developments in this front, describing the new analytical procedures in detail as well as providing experimental guidelines for performing such analysis. © 2016 Elsevier Inc. All rights reserved.

  11. Stochastic Resonance in Protein Folding Dynamics.

    PubMed

    Davtyan, Aram; Platkov, Max; Gruebele, Martin; Papoian, Garegin A

    2016-05-04

    Although protein folding reactions are usually studied under static external conditions, it is likely that proteins fold in a locally fluctuating cellular environment in vivo. To mimic such behavior in in vitro experiments, the local temperature of the solvent can be modulated either harmonically or using correlated noise. In this study, coarse-grained molecular simulations are used to investigate these possibilities, and it is found that both periodic and correlated random fluctuations of the environment can indeed accelerate folding kinetics if the characteristic frequencies of the applied fluctuations are commensurate with the internal timescale of the folding reaction; this is consistent with the phenomenon of stochastic resonance observed in many other condensed-matter processes. To test this theoretical prediction, the folding dynamics of phosphoglycerate kinase under harmonic temperature fluctuations are experimentally probed using Förster resonance energy transfer fluorescence measurements. To analyze these experiments, a combination of theoretical approaches is developed, including stochastic simulations of folding kinetics and an analytical mean-field kinetic theory. The experimental observations are consistent with the theoretical predictions of stochastic resonance in phosphoglycerate kinase folding. When combined with an alternative experiment on the protein VlsE using a power spectrum analysis, elaborated in Dave et al., ChemPhysChem 2016, 10.1002/cphc.201501041, the overall data overwhelmingly point to the experimental confirmation of stochastic resonance in protein folding dynamics.

  12. Protein folding: When ribosomes pick the structure

    NASA Astrophysics Data System (ADS)

    Sivertsson, Elin M.; Itzhaki, Laura S.

    2014-05-01

    Anfinsen's principle tells us that the folded structure of a protein is determined solely by its sequence. Now, it has been shown that the rate at which a polypeptide chain is synthesized in the cell can affect which of two alternative folded structures it adopts.

  13. Local vs global motions in protein folding

    PubMed Central

    Maisuradze, Gia G.; Liwo, Adam; Senet, Patrick; Scheraga, Harold A.

    2013-01-01

    It is of interest to know whether local fluctuations in a polypeptide chain play any role in the mechanism by which the chain folds to the native structure of a protein. This question is addressed by analyzing folding and non-folding trajectories of a protein; as an example, the analysis is applied to the 37-residue triple β-strand WW domain from the Formin binding protein 28 (FBP28) (PDB ID: 1E0L). Molecular dynamics (MD) trajectories were generated with the coarse-grained united-residue force field, and one- and two-dimensional free-energy landscapes (FELs) along the backbone virtual-bond angle θ and backbone virtual-bond-dihedral angle γ of each residue, and principal components, respectively, were analyzed. The key residues involved in the folding of the FBP28 WW domain are elucidated by this analysis. The correlations between local and global motions are found. It is shown that most of the residues in the folding trajectories of the system studied here move in a concerted fashion, following the dynamics of the whole system. This demonstrates how the choice of a pathway has to involve concerted movements in order for this protein to fold. This finding also sheds light on the effectiveness of principal component analysis (PCA) for the description of the folding dynamics of the system studied. It is demonstrated that the FEL along the PCs, computed by considering only several critically-placed residues, can correctly describe the folding dynamics. PMID:23914144

  14. Cooperativity and modularity in protein folding

    PubMed Central

    Sasai, Masaki; Chikenji, George; Terada, Tomoki P.

    2016-01-01

    A simple statistical mechanical model proposed by Wako and Saitô has explained the aspects of protein folding surprisingly well. This model was systematically applied to multiple proteins by Muñoz and Eaton and has since been referred to as the Wako-Saitô-Muñoz-Eaton (WSME) model. The success of the WSME model in explaining the folding of many proteins has verified the hypothesis that the folding is dominated by native interactions, which makes the energy landscape globally biased toward native conformation. Using the WSME and other related models, Saitô emphasized the importance of the hierarchical pathway in protein folding; folding starts with the creation of contiguous segments having a native-like configuration and proceeds as growth and coalescence of these segments. The Φ-values calculated for barnase with the WSME model suggested that segments contributing to the folding nucleus are similar to the structural modules defined by the pattern of native atomic contacts. The WSME model was extended to explain folding of multi-domain proteins having a complex topology, which opened the way to comprehensively understanding the folding process of multi-domain proteins. The WSME model was also extended to describe allosteric transitions, indicating that the allosteric structural movement does not occur as a deterministic sequential change between two conformations but as a stochastic diffusive motion over the dynamically changing energy landscape. Statistical mechanical viewpoint on folding, as highlighted by the WSME model, has been renovated in the context of modern methods and ideas, and will continue to provide insights on equilibrium and dynamical features of proteins. PMID:28409080

  15. Basic units of protein structure, folding, and function.

    PubMed

    Berezovsky, Igor N; Guarnera, Enrico; Zheng, Zejun

    2017-09-01

    Study of the hierarchy of domain structure with alternative sets of domains and analysis of discontinuous domains, consisting of remote segments of the polypeptide chain, raised a question about the minimal structural unit of the protein domain. The hypothesis on the decisive role of the polypeptide backbone in determining the elementary units of globular proteins have led to the discovery of closed loops. It is reviewed here how closed loops form the loop-n-lock structure of proteins, providing the foundation for stability and designability of protein folds/domain and underlying their co-translational folding. Simplified protein sequences are considered here with the aim to explore the basic principles that presumably dominated the folding and stability of proteins in the early stages of structural evolution. Elementary functional loops (EFLs), closed loops with one or few catalytic residues, are, in turn, units of the protein function. They are apparent descendants of the prebiotic ring-like peptides, which gave rise to the first functional folds/domains being fused in the beginning of the evolution of protein structure. It is also shown how evolutionary relations between protein functional superfamilies and folds delineated with the help of EFLs can contribute to establishing the rules for design of desired enzymatic functions. Generalized descriptors of the elementary functions are proposed to be used as basic units in the future computational design. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. How the hydrophobic factor drives protein folding

    PubMed Central

    Baldwin, Robert L.; Rose, George D.

    2016-01-01

    How hydrophobicity (HY) drives protein folding is studied. The 1971 Nozaki–Tanford method of measuring HY is modified to use gases as solutes, not crystals, and this makes the method easy to use. Alkanes are found to be much more hydrophobic than rare gases, and the two different kinds of HY are termed intrinsic (rare gases) and extrinsic (alkanes). The HY values of rare gases are proportional to solvent-accessible surface area (ASA), whereas the HY values of alkanes depend on special hydration shells. Earlier work showed that hydration shells produce the hydration energetics of alkanes. Evidence is given here that the transfer energetics of alkanes to cyclohexane [Wolfenden R, Lewis CA, Jr, Yuan Y, Carter CW, Jr (2015) Proc Natl Acad Sci USA 112(24):7484–7488] measure the release of these shells. Alkane shells are stabilized importantly by van der Waals interactions between alkane carbon and water oxygen atoms. Thus, rare gases cannot form this type of shell. The very short (approximately picoseconds) lifetime of the van der Waals interaction probably explains why NMR efforts to detect alkane hydration shells have failed. The close similarity between the sizes of the opposing energetics for forming or releasing alkane shells confirms the presence of these shells on alkanes and supports Kauzmann's 1959 mechanism of protein folding. A space-filling model is given for the hydration shells on linear alkanes. The model reproduces the n values of Jorgensen et al. [Jorgensen WL, Gao J, Ravimohan C (1985) J Phys Chem 89:3470–3473] for the number of waters in alkane hydration shells. PMID:27791131

  17. How the hydrophobic factor drives protein folding.

    PubMed

    Baldwin, Robert L; Rose, George D

    2016-11-01

    How hydrophobicity (HY) drives protein folding is studied. The 1971 Nozaki-Tanford method of measuring HY is modified to use gases as solutes, not crystals, and this makes the method easy to use. Alkanes are found to be much more hydrophobic than rare gases, and the two different kinds of HY are termed intrinsic (rare gases) and extrinsic (alkanes). The HY values of rare gases are proportional to solvent-accessible surface area (ASA), whereas the HY values of alkanes depend on special hydration shells. Earlier work showed that hydration shells produce the hydration energetics of alkanes. Evidence is given here that the transfer energetics of alkanes to cyclohexane [Wolfenden R, Lewis CA, Jr, Yuan Y, Carter CW, Jr (2015) Proc Natl Acad Sci USA 112(24):7484-7488] measure the release of these shells. Alkane shells are stabilized importantly by van der Waals interactions between alkane carbon and water oxygen atoms. Thus, rare gases cannot form this type of shell. The very short (approximately picoseconds) lifetime of the van der Waals interaction probably explains why NMR efforts to detect alkane hydration shells have failed. The close similarity between the sizes of the opposing energetics for forming or releasing alkane shells confirms the presence of these shells on alkanes and supports Kauzmann's 1959 mechanism of protein folding. A space-filling model is given for the hydration shells on linear alkanes. The model reproduces the n values of Jorgensen et al. [Jorgensen WL, Gao J, Ravimohan C (1985) J Phys Chem 89:3470-3473] for the number of waters in alkane hydration shells.

  18. Getting Folded: Chaperone proteins in muscle development, maintenance and disease

    PubMed Central

    Smith, Daniel A.; Carland, Carmen R.; Guo, Yiming; Bernstein, Sanford I.

    2014-01-01

    Chaperone proteins are critical for protein folding and stability, and hence are necessary for normal cellular organization and function. Recent studies have begun to interrogate the role of this specialized class of proteins in muscle biology. During development, chaperone-mediated folding of client proteins enables their integration into nascent sarcomeres. In addition to assisting with muscle differentiation, chaperones play a key role in maintenance of muscle tissues. Further, disruption of the chaperone network can result in neuromuscular disease. In this review, we discuss how chaperones are involved in myofibrillogenesis, sarcomere maintenance and muscle disorders. We also consider the possibilities of therapeutically targeting chaperones to treat muscle disease. PMID:25125177

  19. Effects of tethering a multistate folding protein to a surface

    NASA Astrophysics Data System (ADS)

    Wei, Shuai; Knotts, Thomas A.

    2011-05-01

    Protein/surface interactions are important in a variety of fields and devices, yet fundamental understanding of the relevant phenomena remains fragmented due to resolution limitations of experimental techniques. Molecular simulation has provided useful answers, but such studies have focused on proteins that fold through a two-state process. This study uses simulation to show how surfaces can affect proteins which fold through a multistate process by investigating the folding mechanism of lysozyme (PDB ID: 7LZM). The results demonstrate that in the bulk 7LZM folds through a process with four stable states: the folded state, the unfolded state, and two stable intermediates. The folding mechanism remains the same when the protein is tethered to a surface at most residues; however, in one case the folding mechanism changes in such a way as to eliminate one of the intermediates. An analysis of the molecular configurations shows that tethering at this site is advantageous for protein arrays because the active site is both presented to the bulk phase and stabilized. Taken as a whole, the results offer hope that rational design of protein arrays is possible once the behavior of the protein on the surface is ascertained.

  20. Effects of tethering a multistate folding protein to a surface.

    PubMed

    Wei, Shuai; Knotts, Thomas A

    2011-05-14

    Protein/surface interactions are important in a variety of fields and devices, yet fundamental understanding of the relevant phenomena remains fragmented due to resolution limitations of experimental techniques. Molecular simulation has provided useful answers, but such studies have focused on proteins that fold through a two-state process. This study uses simulation to show how surfaces can affect proteins which fold through a multistate process by investigating the folding mechanism of lysozyme (PDB ID: 7LZM). The results demonstrate that in the bulk 7LZM folds through a process with four stable states: the folded state, the unfolded state, and two stable intermediates. The folding mechanism remains the same when the protein is tethered to a surface at most residues; however, in one case the folding mechanism changes in such a way as to eliminate one of the intermediates. An analysis of the molecular configurations shows that tethering at this site is advantageous for protein arrays because the active site is both presented to the bulk phase and stabilized. Taken as a whole, the results offer hope that rational design of protein arrays is possible once the behavior of the protein on the surface is ascertained.

  1. Mutation of a conserved cysteine in the X-linked cone opsins causes color vision deficiencies by disrupting protein folding and stability.

    PubMed

    Kazmi, M A; Sakmar, T P; Ostrer, H

    1997-05-01

    To test the effects of disruption of a conserved cysteine in the green cone opsin molecule on light-activated isomerization, transducin activation, folding, transport, and protein half-life. Stable cell lines were established by transfecting 293-EBNA cells with a plasmid containing wild-type or mutant (C203R, C203S, C126S, C126S/C203S) green opsin cDNA molecules. The proteins were induced by culturing the cells in the presence of cadmium chloride and analyzed by spectra, transducin activation, Western blotting, pulse-labeling with immunoprecipitation, and immunocytochemistry. The C203R mutation disrupts the folding and half-life of the green opsin molecule and its abilities to absorb light at the appropriate wavelength and to activate transducin. Similar disruption of folding, half-life, and light activation occurs when Cys203 or its presumed partner for formation of a disulfide bond (Cys126) is replaced by serine residues. Like rhodopsin, the folding of the cone opsins appears to be dependent on the formation of a disulfide bond between the third transmembrane helix and the second extracellular loop. Disruption of this disulfide bond represents a cause of color vision deficiencies that is unrelated to spectral shifts of the photopigment.

  2. Folding funnels, binding funnels, and protein function.

    PubMed Central

    Tsai, C. J.; Kumar, S.; Ma, B.; Nussinov, R.

    1999-01-01

    Folding funnels have been the focus of considerable attention during the last few years. These have mostly been discussed in the general context of the theory of protein folding. Here we extend the utility of the concept of folding funnels, relating them to biological mechanisms and function. In particular, here we describe the shape of the funnels in light of protein synthesis and folding; flexibility, conformational diversity, and binding mechanisms; and the associated binding funnels, illustrating the multiple routes and the range of complexed conformers. Specifically, the walls of the folding funnels, their crevices, and bumps are related to the complexity of protein folding, and hence to sequential vs. nonsequential folding. Whereas the former is more frequently observed in eukaryotic proteins, where the rate of protein synthesis is slower, the latter is more frequent in prokaryotes, with faster translation rates. The bottoms of the funnels reflect the extent of the flexibility of the proteins. Rugged floors imply a range of conformational isomers, which may be close on the energy landscape. Rather than undergoing an induced fit binding mechanism, the conformational ensembles around the rugged bottoms argue that the conformers, which are most complementary to the ligand, will bind to it with the equilibrium shifting in their favor. Furthermore, depending on the extent of the ruggedness, or of the smoothness with only a few minima, we may infer nonspecific, broad range vs. specific binding. In particular, folding and binding are similar processes, with similar underlying principles. Hence, the shape of the folding funnel of the monomer enables making reasonable guesses regarding the shape of the corresponding binding funnel. Proteins having a broad range of binding, such as proteolytic enzymes or relatively nonspecific endonucleases, may be expected to have not only rugged floors in their folding funnels, but their binding funnels will also behave similarly

  3. Cotranslational folding of deeply knotted proteins

    NASA Astrophysics Data System (ADS)

    Chwastyk, Mateusz; Cieplak, Marek

    2015-09-01

    Proper folding of deeply knotted proteins has a very low success rate even in structure-based models which favor formation of the native contacts but have no topological bias. By employing a structure-based model, we demonstrate that cotranslational folding on a model ribosome may enhance the odds to form trefoil knots for protein YibK without any need to introduce any non-native contacts. The ribosome is represented by a repulsive wall that keeps elongating the protein. On-ribosome folding proceeds through a a slipknot conformation. We elucidate the mechanics and energetics of its formation. We show that the knotting probability in on-ribosome folding is a function of temperature and that there is an optimal temperature for the process. Our model often leads to the establishment of the native contacts without formation of the knot.

  4. Cotranslational folding of deeply knotted proteins.

    PubMed

    Chwastyk, Mateusz; Cieplak, Marek

    2015-09-09

    Proper folding of deeply knotted proteins has a very low success rate even in structure-based models which favor formation of the native contacts but have no topological bias. By employing a structure-based model, we demonstrate that cotranslational folding on a model ribosome may enhance the odds to form trefoil knots for protein YibK without any need to introduce any non-native contacts. The ribosome is represented by a repulsive wall that keeps elongating the protein. On-ribosome folding proceeds through a a slipknot conformation. We elucidate the mechanics and energetics of its formation. We show that the knotting probability in on-ribosome folding is a function of temperature and that there is an optimal temperature for the process. Our model often leads to the establishment of the native contacts without formation of the knot.

  5. The nature of protein folding pathways

    PubMed Central

    Englander, S. Walter; Mayne, Leland

    2014-01-01

    How do proteins fold, and why do they fold in that way? This Perspective integrates earlier and more recent advances over the 50-y history of the protein folding problem, emphasizing unambiguously clear structural information. Experimental results show that, contrary to prior belief, proteins are multistate rather than two-state objects. They are composed of separately cooperative foldon building blocks that can be seen to repeatedly unfold and refold as units even under native conditions. Similarly, foldons are lost as units when proteins are destabilized to produce partially unfolded equilibrium molten globules. In kinetic folding, the inherently cooperative nature of foldons predisposes the thermally driven amino acid-level search to form an initial foldon and subsequent foldons in later assisted searches. The small size of foldon units, ∼20 residues, resolves the Levinthal time-scale search problem. These microscopic-level search processes can be identified with the disordered multitrack search envisioned in the “new view” model for protein folding. Emergent macroscopic foldon–foldon interactions then collectively provide the structural guidance and free energy bias for the ordered addition of foldons in a stepwise pathway that sequentially builds the native protein. These conclusions reconcile the seemingly opposed new view and defined pathway models; the two models account for different stages of the protein folding process. Additionally, these observations answer the “how” and the “why” questions. The protein folding pathway depends on the same foldon units and foldon–foldon interactions that construct the native structure. PMID:25326421

  6. Decoding the folding of Burkholderia glumae lipase: folding intermediates en route to kinetic stability.

    PubMed

    Pauwels, Kris; Sanchez del Pino, Manuel M; Feller, Georges; Van Gelder, Patrick

    2012-01-01

    The lipase produced by Burkholderia glumae folds spontaneously into an inactive near-native state and requires a periplasmic chaperone to reach its final active and secretion-competent fold. The B. glumae lipase-specific foldase (Lif) is classified as a member of the steric-chaperone family of which the propeptides of α-lytic protease and subtilisin are the best known representatives. Steric chaperones play a key role in conferring kinetic stability to proteins. However, until present there was no solid experimental evidence that Lif-dependent lipases are kinetically trapped enzymes. By combining thermal denaturation studies with proteolytic resistance experiments and the description of distinct folding intermediates, we demonstrate that the native lipase has a kinetically stable conformation. We show that a newly discovered molten globule-like conformation has distinct properties that clearly differ from those of the near-native intermediate state. The folding fingerprint of Lif-dependent lipases is put in the context of the protease-prodomain system and the comparison reveals clear differences that render the lipase-Lif systems unique. Limited proteolysis unveils structural differences between the near-native intermediate and the native conformation and sets the stage to shed light onto the nature of the kinetic barrier.

  7. Decoding the Folding of Burkholderia glumae Lipase: Folding Intermediates En Route to Kinetic Stability

    PubMed Central

    Pauwels, Kris; Sanchez del Pino, Manuel M.; Feller, Georges; Van Gelder, Patrick

    2012-01-01

    The lipase produced by Burkholderia glumae folds spontaneously into an inactive near-native state and requires a periplasmic chaperone to reach its final active and secretion-competent fold. The B. glumae lipase-specific foldase (Lif) is classified as a member of the steric-chaperone family of which the propeptides of α-lytic protease and subtilisin are the best known representatives. Steric chaperones play a key role in conferring kinetic stability to proteins. However, until present there was no solid experimental evidence that Lif-dependent lipases are kinetically trapped enzymes. By combining thermal denaturation studies with proteolytic resistance experiments and the description of distinct folding intermediates, we demonstrate that the native lipase has a kinetically stable conformation. We show that a newly discovered molten globule-like conformation has distinct properties that clearly differ from those of the near-native intermediate state. The folding fingerprint of Lif-dependent lipases is put in the context of the protease-prodomain system and the comparison reveals clear differences that render the lipase-Lif systems unique. Limited proteolysis unveils structural differences between the near-native intermediate and the native conformation and sets the stage to shed light onto the nature of the kinetic barrier. PMID:22615867

  8. The hydrogen exchange core and protein folding.

    PubMed Central

    Li, R.; Woodward, C.

    1999-01-01

    A database of hydrogen-deuterium exchange results has been compiled for proteins for which there are published rates of out-exchange in the native state, protection against exchange during folding, and out-exchange in partially folded forms. The question of whether the slow exchange core is the folding core (Woodward C, 1993, Trends Biochem Sci 18:359-360) is reexamined in a detailed comparison of the specific amide protons (NHs) and the elements of secondary structure on which they are located. For each pulsed exchange or competition experiment, probe NHs are shown explicitly; the large number and broad distribution of probe NHs support the validity of comparing out-exchange with pulsed-exchange/competition experiments. There is a strong tendency for the same elements of secondary structure to carry NHs most protected in the native state, NHs first protected during folding, and NHs most protected in partially folded species. There is not a one-to-one correspondence of individual NHs. Proteins for which there are published data for native state out-exchange and theta values are also reviewed. The elements of secondary structure containing the slowest exchanging NHs in native proteins tend to contain side chains with high theta values or be connected to a turn/loop with high theta values. A definition for a protein core is proposed, and the implications for protein folding are discussed. Apparently, during folding and in the native state, nonlocal interactions between core sequences are favored more than other possible nonlocal interactions. Other studies of partially folded bovine pancreatic trypsin inhibitor (Barbar E, Barany G, Woodward C, 1995, Biochemistry 34:11423-11434; Barber E, Hare M, Daragan V, Barany G, Woodward C, 1998, Biochemistry 37:7822-7833), suggest that developing cores have site-specific energy barriers between microstates, one disordered, and the other(s) more ordered. PMID:10452602

  9. Protein folding and de novo protein design for biotechnological applications

    PubMed Central

    Khoury, George A.; Smadbeck, James; Kieslich, Chris A.; Floudas, Christodoulos A.

    2014-01-01

    In the post-genomic era, the medical/biological fields are advancing faster than ever. However, before the power of full-genome sequencing can be fully realized, the connection between amino acid sequence and protein structure, known as the protein folding problem, needs to be elucidated. The protein folding problem remains elusive, with significant difficulties still arising when modeling amino acid sequences lacking an identifiable template. Understanding protein folding will allow for unforeseen advances in protein design, often referred as the inverse protein folding problem. Despite challenges in protein folding, de novo protein design has recently demonstrated significant success via computational techniques. We review advances and challenges in protein structure prediction and de novo protein design, and highlight their interplay in successful biotechnological applications. PMID:24268901

  10. The Ribosome Modulates Nascent Protein Folding

    PubMed Central

    Kaiser, Christian M.; Goldman, Daniel H.; Chodera, John D.; Tinoco, Ignacio; Bustamante, Carlos

    2014-01-01

    Proteins are synthesized by the ribosome and generally must fold to become functionally active. Although it is commonly assumed that the ribosome affects the folding process, this idea has been extremely difficult to demonstrate. We have developed an experimental system to investigate the folding of single ribosome-bound stalled nascent polypeptides with optical tweezers. In T4 lysozyme, synthesized in a reconstituted in vitro translation system, the ribosome slows the formation of stable tertiary interactions and the attainment of the native state relative to the free protein. Incomplete T4 lysozyme polypeptides misfold and aggregate when free in solution, but they remain folding-competent near the ribosomal surface. Altogether, our results suggest that the ribosome not only decodes the genetic information and synthesizes polypeptides, but also promotes efficient de novo attainment of the native state. PMID:22194581

  11. Visualizing chaperone-assisted protein folding

    PubMed Central

    Horowitz, Scott; Salmon, Loïc; Koldewey, Philipp; Ahlstrom, Logan S.; Martin, Raoul; Quan, Shu; Afonine, Pavel V.; van den Bedem, Henry; Wang, Lili; Xu, Qingping; Trievel, Raymond C.; Brooks, Charles L.; Bardwell, James CA

    2016-01-01

    Challenges in determining the structures of heterogeneous and dynamic protein complexes have greatly hampered past efforts to obtain a mechanistic understanding of many important biological processes. One such process is chaperone-assisted protein folding, where obtaining structural ensembles of chaperone:substrate complexes would ultimately reveal how chaperones help proteins fold into their native state. To address this problem, we devised a novel structural biology approach based on X-ray crystallography, termed Residual Electron and Anomalous Density (READ). READ enabled us to visualize even sparsely populated conformations of the substrate protein immunity protein 7 (Im7) in complex with the E. coli chaperone Spy. This study resulted in a series of snapshots depicting the various folding states of Im7 while bound to Spy. The ensemble shows that Spy-associated Im7 samples conformations ranging from unfolded to partially folded and native-like states, and reveals how a substrate can explore its folding landscape while bound to a chaperone. PMID:27239796

  12. Visualizing chaperone-assisted protein folding

    SciTech Connect

    Horowitz, Scott; Salmon, Loïc; Koldewey, Philipp; Ahlstrom, Logan S.; Martin, Raoul; Quan, Shu; Afonine, Pavel V.; van den Bedem, Henry; Wang, Lili; Xu, Qingping; Trievel, Raymond C.; Brooks, Charles L.; Bardwell, James C. A.

    2016-05-30

    We present that challenges in determining the structures of heterogeneous and dynamic protein complexes have greatly hampered past efforts to obtain a mechanistic understanding of many important biological processes. One such process is chaperone-assisted protein folding. Obtaining structural ensembles of chaperone–substrate complexes would ultimately reveal how chaperones help proteins fold into their native state. To address this problem, we devised a new structural biology approach based on X-ray crystallography, termed residual electron and anomalous density (READ). READ enabled us to visualize even sparsely populated conformations of the substrate protein immunity protein 7 (Im7) in complex with the Escherichia coli chaperone Spy, and to capture a series of snapshots depicting the various folding states of Im7 bound to Spy. The ensemble shows that Spy-associated Im7 samples conformations ranging from unfolded to partially folded to native-like states and reveals how a substrate can explore its folding landscape while being bound to a chaperone.

  13. Visualizing chaperone-assisted protein folding

    DOE PAGES

    Horowitz, Scott; Salmon, Loïc; Koldewey, Philipp; ...

    2016-05-30

    We present that challenges in determining the structures of heterogeneous and dynamic protein complexes have greatly hampered past efforts to obtain a mechanistic understanding of many important biological processes. One such process is chaperone-assisted protein folding. Obtaining structural ensembles of chaperone–substrate complexes would ultimately reveal how chaperones help proteins fold into their native state. To address this problem, we devised a new structural biology approach based on X-ray crystallography, termed residual electron and anomalous density (READ). READ enabled us to visualize even sparsely populated conformations of the substrate protein immunity protein 7 (Im7) in complex with the Escherichia coli chaperonemore » Spy, and to capture a series of snapshots depicting the various folding states of Im7 bound to Spy. The ensemble shows that Spy-associated Im7 samples conformations ranging from unfolded to partially folded to native-like states and reveals how a substrate can explore its folding landscape while being bound to a chaperone.« less

  14. Folding motifs induced and stabilized by distinct cystine frameworks.

    PubMed

    Tamaoki, H; Miura, R; Kusunoki, M; Kyogoku, Y; Kobayashi, Y; Moroder, L

    1998-08-01

    Bioactive peptides of different sources and biological functionalities, like endothelins, sarafotoxins, bee and scorpion venom toxins, contain a consensus cystine framework, Cys-(X)1-Cys/Cys-(X)3-Cys, which has been found to induce and stabilize a homologous folding motif named the cystine-stabilized alpha-helix (CSH). This is composed of an alpha-helical segment spanning the Cys-(X)3-Cys sequence portion that is crosslinked by two disulfide bridges to the sequence portion Cys-(X)1-Cys, itself folded in an extended beta-strand type structure. Search for sequence homologies of peptides and proteins in the SWISS-PROT and PDB data banks provided additional multiple examples of this type of cystine framework in serine proteinase inhibitors, in insect and plant defense proteins, as well as in members of the growth factor family with the cystine-knot. A comparative analysis of the known 3D-structures of these peptides and proteins confirmed that the presence of this peculiar cystine framework leads in all cases to a high degree of local structural homology that consists of the CSH motif, except for the cystine-knot, of the superfamily of the growth factors. In this case the cyclic structure formed by the parallel cysteine connectivities of Cys-(X)1-Cys/Cys-(X)3-Cys framework is penetrated by a third disulfide bond with formation of a concatenated knot, and the two disulfide-bridged peptide chains Cys-(X)1-Cys and Cys-(X)3-Cys are located in beta-strands. Conversely, peptides and proteins containing Cys-(X)m-Cys/Cys-(X)n-Cys cystine frameworks that differ from m/n = 1/3 were found to fold only sporadically into local alpha-helical structures.

  15. How cooperative are protein folding and unfolding transitions?

    PubMed

    Malhotra, Pooja; Udgaonkar, Jayant B

    2016-11-01

    A thermodynamically and kinetically simple picture of protein folding envisages only two states, native (N) and unfolded (U), separated by a single activation free energy barrier, and interconverting by cooperative two-state transitions. The folding/unfolding transitions of many proteins occur, however, in multiple discrete steps associated with the formation of intermediates, which is indicative of reduced cooperativity. Furthermore, much advancement in experimental and computational approaches has demonstrated entirely non-cooperative (gradual) transitions via a continuum of states and a multitude of small energetic barriers between the N and U states of some proteins. These findings have been instrumental towards providing a structural rationale for cooperative versus noncooperative transitions, based on the coupling between interaction networks in proteins. The cooperativity inherent in a folding/unfolding reaction appears to be context dependent, and can be tuned via experimental conditions which change the stabilities of N and U. The evolution of cooperativity in protein folding transitions is linked closely to the evolution of function as well as the aggregation propensity of the protein. A large activation energy barrier in a fully cooperative transition can provide the kinetic control required to prevent the accumulation of partially unfolded forms, which may promote aggregation. Nevertheless, increasing evidence for barrier-less "downhill" folding, as well as for continuous "uphill" unfolding transitions, indicate that gradual non-cooperative processes may be ubiquitous features on the free energy landscape of protein folding.

  16. GroEL-mediated protein folding.

    PubMed Central

    Fenton, W. A.; Horwich, A. L.

    1997-01-01

    I. Architecture of GroEL and GroES and the reaction pathway A. Architecture of the chaperonins B. Reaction pathway of GroEL-GroES-mediated folding II. Polypeptide binding A. A parallel network of chaperones binding polypeptides in vivo B. Polypeptide binding in vitro 1. Role of hydrophobicity in recognition 2. Homologous proteins with differing recognition-differences in primary structure versus effects on folding pathway 3. Conformations recognized by GroEL a. Refolding studies b. Binding of metastable intermediates c. Conformations while stably bound at GroEL 4. Binding constants and rates of association 5. Conformational changes in the substrate protein associated with binding by GroEL a. Observations b. Kinetic versus thermodynamic action of GroEL in mediating unfolding c. Crossing the energy landscape in the presence of GroEL III. ATP binding and hydrolysis-driving the reaction cycle IV. GroEL-GroES-polypeptide ternary complexes-the folding-active cis complex A. Cis and trans ternary complexes B. Symmetric complexes C. The folding-active intermediate of a chaperonin reaction-cis ternary complex D. The role of the cis space in the folding reaction E. Folding governed by a "timer" mechanism F. Release of nonnative polypeptides during the GroEL-GroES reaction G. Release of both native and nonnative forms under physiologic conditions H. A role for ATP binding, as well as hydrolysis, in the folding cycle V. Concluding remarks. PMID:9098884

  17. Engineering the protein folding landscape in gram-negative bacteria.

    PubMed

    Mansell, Thomas J; Fisher, Adam C; DeLisa, Matthew P

    2008-04-01

    Gram-negative bacteria, especially Escherichia coli, are often the preferred hosts for recombinant protein production because of their fast doubling times, ability to grow to high cell density, propensity for high recombinant protein titers and straightforward protein purification techniques. The utility of simple bacteria in such studies continues to improve as a result of an ever-increasing body of knowledge regarding their native protein biogenesis machinery. From translation on the ribosome to interaction with cytosolic accessory factors to transport across the inner membrane into the periplasmic space, cellular proteins interact with many different types of cellular machinery and each interaction can have a profound effect on the protein folding process. This review addresses key aspects of cellular protein folding, solubility and expression in E. coli with particular focus on the elegant biological machinery that orchestrates the transition from nascent polypeptide to folded, functional protein. Specifically highlighted are a variety of different techniques to intentionally alter the folding environment of the cell as a means to understand and engineer intracellular protein folding and stability.

  18. Protein Stability in Ice

    PubMed Central

    Strambini, Giovanni B.; Gonnelli, Margherita

    2007-01-01

    This study presents an experimental approach, based on the change of Trp fluorescence between native and denatured states of proteins, which permits to monitor unfolding equilibria and the thermodynamic stability (ΔG°) of these macromolecules in frozen aqueous solutions. The results obtained by guanidinium chloride denaturation of the azurin mutant C112S from Pseudomonas aeruginosa, in the temperature range from −8 to −16°C, demonstrate that the stability of the native fold may be significantly perturbed in ice depending mainly on the size of the liquid water pool (VL) in equilibrium with the solid phase. The data establish a threshold, around VL = 1.5%, below which in ice ΔG° decreases progressively relative to liquid state, up to 3 kcal/mole for VL = 0.285%. The sharp dependence of ΔG° on VL is consistent with a mechanism based on adsorption of the protein to the ice surface. The reduction in ΔG° is accompanied by a corresponding decrease in m-value indicating that protein-ice interactions increase the solvent accessible surface area of the native fold or reduce that of the denatured state, or both. The method opens the possibility for examining in a more quantitative fashion the influence of various experimental conditions on the ice perturbation and in particular to test the effectiveness of numerous additives used in formulations to preserve labile pharmaco proteins. PMID:17189314

  19. A simple quantitative model of macromolecular crowding effects on protein folding: Application to the murine prion protein(121-231)

    NASA Astrophysics Data System (ADS)

    Bergasa-Caceres, Fernando; Rabitz, Herschel A.

    2013-06-01

    A model of protein folding kinetics is applied to study the effects of macromolecular crowding on protein folding rate and stability. Macromolecular crowding is found to promote a decrease of the entropic cost of folding of proteins that produces an increase of both the stability and the folding rate. The acceleration of the folding rate due to macromolecular crowding is shown to be a topology-dependent effect. The model is applied to the folding dynamics of the murine prion protein (121-231). The differential effect of macromolecular crowding as a function of protein topology suffices to make non-native configurations relatively more accessible.

  20. Folding mechanism of proteins and protein-like polymers

    NASA Astrophysics Data System (ADS)

    Pande, Vijay

    2000-03-01

    Proteins are amazing biomaterials: they both perform biological activity as well as assemble themselves. In order to understand how proteins fold and to design synthetic polymers with protein-like properties, we need to understand how these molecules assemble themselves. I will discuss results from recent simulations of proteins and protein-like polymers in order to examine which is common and potentially ``universal'' about the folding (self-assembly) mechanism. These results may shed light on protein and protein-like polymer design, experiments on folding, as well as areas in which misfolding may be important such as many neurodegenerative diseases.

  1. Microfluidic Mixers for Studying Protein Folding

    PubMed Central

    Waldauer, Steven A.; Wu, Ling; Yao, Shuhuai; Bakajin, Olgica; Lapidus, Lisa J.

    2012-01-01

    The process by which a protein folds into its native conformation is highly relevant to biology and human health yet still poorly understood. One reason for this is that folding takes place over a wide range of timescales, from nanoseconds to seconds or longer, depending on the protein1. Conventional stopped-flow mixers have allowed measurement of folding kinetics starting at about 1 ms. We have recently developed a microfluidic mixer that dilutes denaturant ~100-fold in ~8 μs2. Unlike a stopped-flow mixer, this mixer operates in the laminar flow regime in which turbulence does not occur. The absence of turbulence allows precise numeric simulation of all flows within the mixer with excellent agreement to experiment3-4. Laminar flow is achieved for Reynolds numbers Re ≤100. For aqueous solutions, this requires micron scale geometries. We use a hard substrate, such as silicon or fused silica, to make channels 5-10 μm wide and 10 μm deep (See Figure 1). The smallest dimensions, at the entrance to the mixing region, are on the order of 1 μm in size. The chip is sealed with a thin glass or fused silica coverslip for optical access. Typical total linear flow rates are ~1 m/s, yielding Re~10, but the protein consumption is only ~0.5 nL/s or 1.8 μL/hr. Protein concentration depends on the detection method: For tryptophan fluorescence the typical concentration is 100 μM (for 1 Trp/protein) and for FRET the typical concentration is ~100 nM. The folding process is initiated by rapid dilution of denaturant from 6 M to 0.06 M guanidine hydrochloride. The protein in high denaturant flows down a central channel and is met on either side at the mixing region by buffer without denaturant moving ~100 times faster (see Figure 2). This geometry causes rapid constriction of the protein flow into a narrow jet ~100 nm wide. Diffusion of the light denaturant molecules is very rapid, while diffusion of the heavy protein molecules is much slower, diffusing less than 1 μm in 1 ms

  2. Ubiquitylation Directly Induces Fold Destabilization of Proteins

    PubMed Central

    Morimoto, Daichi; Walinda, Erik; Fukada, Harumi; Sugase, Kenji; Shirakawa, Masahiro

    2016-01-01

    Ubiquitin is a common post-translational modifier and its conjugation is a key signal for proteolysis by the proteasome. Because the molecular mass of ubiquitin is larger than that of other modifiers such as phosphate, acetyl, or methyl groups, ubiquitylation not only influences biochemical signaling, but also may exert physical effects on its substrate proteins by increasing molecular volume and altering shape anisotropy. Here we show that ubiquitylation destabilizes the fold of two proteins, FKBP12 and FABP4, and that elongation of the conjugated ubiquitin chains further enhances this destabilization effect. Moreover, NMR relaxation analysis shows that ubiquitylation induces characteristic structural fluctuations in the backbone of both proteins. These results suggest that the ubiquitylation-driven structural fluctuations lead to fold destabilization of its substrate proteins. Thus, physical destabilization by ubiquitylation may facilitate protein degradation by the proteasome. PMID:27991582

  3. Effects of osmolytes on protein folding and aggregation in cells.

    PubMed

    Ignatova, Zoya; Gierasch, Lila M

    2007-01-01

    Nature has developed many strategies to ensure that the complex and challenging protein folding reaction occurs in vivo with adequate efficiency and fidelity for the success of the organism. Among the strategies widely employed in a huge range of species and cell types is the elaboration of small organic molecules called osmolytes that offset the potentially damaging effects of osmotic stress. While considerable knowledge has been gained in vitro regarding the influence of osmolytes on protein structure and folding, it is of great interest to probe the effects of osmolytes in cells. We have developed an in-cell fluorescent-labeling method that enables the study of protein stability and also protein aggregation in vivo. We utilize a genetically encoded tag called a tetra-Cys motif that binds specifically to a bis-arsenical fluorescein-based dye "FlAsH"; we inserted the tetra-Cys motif into a protein of interest in such a way that the FlAsH signal reported on the state of folding or aggregation of the protein. Then, we designed protocols to assess how various osmolytes influence the stability and propensity to aggregate of our protein of interest. These are described here. Not only are there potential biotechnological applications of osmolytes in the quest to produce greater quantities of well-folded proteins, but also osmolytes may serve as tools and points of departure for therapeutic intervention in protein folding and aggregation diseases. Having in vivo methods to analyze how osmolytes affect folding and aggregation enhances our ability to further these goals greatly.

  4. Computational and theoretical methods for protein folding.

    PubMed

    Compiani, Mario; Capriotti, Emidio

    2013-12-03

    A computational approach is essential whenever the complexity of the process under study is such that direct theoretical or experimental approaches are not viable. This is the case for protein folding, for which a significant amount of data are being collected. This paper reports on the essential role of in silico methods and the unprecedented interplay of computational and theoretical approaches, which is a defining point of the interdisciplinary investigations of the protein folding process. Besides giving an overview of the available computational methods and tools, we argue that computation plays not merely an ancillary role but has a more constructive function in that computational work may precede theory and experiments. More precisely, computation can provide the primary conceptual clues to inspire subsequent theoretical and experimental work even in a case where no preexisting evidence or theoretical frameworks are available. This is cogently manifested in the application of machine learning methods to come to grips with the folding dynamics. These close relationships suggested complementing the review of computational methods within the appropriate theoretical context to provide a self-contained outlook of the basic concepts that have converged into a unified description of folding and have grown in a synergic relationship with their computational counterpart. Finally, the advantages and limitations of current computational methodologies are discussed to show how the smart analysis of large amounts of data and the development of more effective algorithms can improve our understanding of protein folding.

  5. Opsin stability and folding: modulation by phospholipid bicelles.

    PubMed

    McKibbin, Craig; Farmer, Nicola A; Jeans, Chris; Reeves, Philip J; Khorana, H Gobind; Wallace, B A; Edwards, Patricia C; Villa, Claudio; Booth, Paula J

    2007-12-14

    Integral membrane proteins do not fare well when extracted from biological membranes and are unstable or lose activity in detergents commonly used for structure and function investigations. We show that phospholipid bicelles provide a valuable means of preserving alpha-helical membrane proteins in vitro by supplying a soluble lipid bilayer fragment. Both 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/3-[(cholamidopropyl)dimethyl-ammonio]-1-propane sulfonate (Chaps) and DMPC/l-alpha-1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) bicelles dramatically increase the stability of the mammalian vision receptor rhodopsin as well as its apoprotein, opsin. Opsin is particularly unstable in detergent solution but can be directly purified into DMPC/Chaps. We show that opsin can also be directly purified in DMPC/DHPC bicelles to give correctly folded functional opsin, as shown by the ability to regenerate rhodopsin to approximately 70% yield. These well-characterised DMPC/DHPC bicelles enable us to probe the influence of bicelle properties on opsin stability. These bicelles are thought to provide DMPC bilayer fragments with most DHPC capping the bilayer edge, giving a soluble bilayer disc. Opsin stability is shown to be modulated by the q value, the ratio of DMPC to DHPC, which reflects changes in the bicelle size and, thus, proportion of DMPC bilayer present. The observed changes in stability also correlate with loss of opsin secondary structure as determined by synchrotron far-UV circular dichroism spectroscopy; the most stable bicelle results in the least helix loss. The inclusion of Chaps rather than DHPC in the DMPC/Chaps bicelles, however, imparts the greatest stability. This suggests that it is not just the DMPC bilayer fragment in the bicelles that stabilises the protein, but that Chaps provides additional stability either through direct interaction with the protein or by altering the DMPC/Chaps bilayer properties within the bicelle. The significant stability

  6. Intermediates and the folding of proteins L and G

    SciTech Connect

    Brown, Scott; Head-Gordon, Teresa

    2003-07-01

    We use a minimalist protein model, in combination with a sequence design strategy, to determine differences in primary structure for proteins L and G that are responsible for the two proteins folding through distinctly different folding mechanisms. We find that the folding of proteins L and G are consistent with a nucleation-condensation mechanism, each of which is described as helix-assisted {beta}-1 and {beta}-2 hairpin formation, respectively. We determine that the model for protein G exhibits an early intermediate that precedes the rate-limiting barrier of folding and which draws together misaligned secondary structure elements that are stabilized by hydrophobic core contacts involving the third {beta}-strand, and presages the later transition state in which the correct strand alignment of these same secondary structure elements is restored. Finally the validity of the targeted intermediate ensemble for protein G was analyzed by fitting the kinetic data to a two-step first order reversible reaction, proving that protein G folding involves an on-pathway early intermediate, and should be populated and therefore observable by experiment.

  7. Flexibility damps macromolecular crowding effects on protein folding dynamics: Application to the murine prion protein (121-231)

    NASA Astrophysics Data System (ADS)

    Bergasa-Caceres, Fernando; Rabitz, Herschel A.

    2014-01-01

    A model of protein folding kinetics is applied to study the combined effects of protein flexibility and macromolecular crowding on protein folding rate and stability. It is found that the increase in stability and folding rate promoted by macromolecular crowding is damped for proteins with highly flexible native structures. The model is applied to the folding dynamics of the murine prion protein (121-231). It is found that the high flexibility of the native isoform of the murine prion protein (121-231) reduces the effects of macromolecular crowding on its folding dynamics. The relevance of these findings for the pathogenic mechanism are discussed.

  8. Is Protein Folding Sub-Diffusive?

    PubMed Central

    Krivov, Sergei V.

    2010-01-01

    Protein folding dynamics is often described as diffusion on a free energy surface considered as a function of one or few reaction coordinates. However, a growing number of experiments and models show that, when projected onto a reaction coordinate, protein dynamics is sub-diffusive. This raises the question as to whether the conventionally used diffusive description of the dynamics is adequate. Here, we numerically construct the optimum reaction coordinate for a long equilibrium folding trajectory of a Go model of a -repressor protein. The trajectory projected onto this coordinate exhibits diffusive dynamics, while the dynamics of the same trajectory projected onto a sub-optimal reaction coordinate is sub-diffusive. We show that the higher the (cut-based) free energy profile for the putative reaction coordinate, the more diffusive the dynamics become when projected on this coordinate. The results suggest that whether the projected dynamics is diffusive or sub-diffusive depends on the chosen reaction coordinate. Protein folding can be described as diffusion on the free energy surface as function of the optimum reaction coordinate. And conversely, the conventional reaction coordinates, even though they might be based on physical intuition, are often sub-optimal and, hence, show sub-diffusive dynamics. PMID:20862361

  9. Monitoring protein stability in vivo.

    PubMed

    Ignatova, Zoya

    2005-08-24

    Reduced protein stability in vivo is a prerequisite to aggregation. While this is merely a nuisance factor in recombinant protein production, it holds a serious impact for man. This review focuses on specific approaches to selectively determine the solubility and/or stability of a target protein within the complex cellular environment using different detection techniques. Noninvasive techniques mapping folding/misfolding events on a fast time scale can be used to unravel the complexity and dynamics of the protein aggregation process and factors altering protein solubility in vivo. The development of approaches to screen for folding and solubility in vivo should facilitate the identification of potential components that improve protein solubility and/or modulate misfolding and aggregation and may provide a therapeutic benefit.

  10. The role of ascorbate in protein folding.

    PubMed

    Szarka, András; Lőrincz, Tamás

    2014-05-01

    Ascorbate was linked to protein folding a long time ago. At the first level of this connection, it had been shown that ascorbate functions as an essential cofactor in the hydroxylation enzymes involved in collagen synthesis. Although the hydroxylation reactions catalyzed by the members of the prolyl 4-hydroxylase family are considered to be ascorbate dependent, the hydroxylation of proline alone does not need ascorbate. Prolyl 4-hydroxylases participate in two catalytic reactions: one in which proline residues are hydroxylated, while 2-oxoglutarate is decarboxylated and molecular oxygen is consumed. This reaction is ascorbate independent. However, in another reaction, prolyl 4-hydroxylases catalyze the decarboxylation of 2-oxoglutarate uncoupled from proline hydroxylation but still needing molecular oxygen. At this time, ferrous iron is oxidized and the protein is rendered catalytically inactive until reduced by ascorbate. At the second level of the connection, the oxidation and the oxidized form of ascorbate, dehydroascorbate, is involved in the formation of disulfide bonds of secretory proteins. The significance of the dehydroascorbate reductase activity of protein disulfide isomerase was debated because protein disulfide isomerase as a dehydroascorbate reductase was found to be too slow to be the major route for the reduction of dehydroascorbate (and formation of disulfides) in the endoplasmic reticulum lumen. However, very recently, low tissue ascorbate levels and a noncanonical scurvy were observed in endoplasmic reticulum thiol oxidase- and peroxiredoxin 4-compromised mice. This novel observation implies that ascorbate may be involved in oxidative protein folding and creates a link between the disulfide bond formation (oxidative protein folding) and hydroxylation.

  11. The N-terminal domain of the enzyme I is a monomeric well-folded protein with a low conformational stability and residual structure in the unfolded state.

    PubMed

    Romero-Beviar, Manuel; Martínez-Rodríguez, Sergio; Prieto, Jesús; Goormaghtigh, Erik; Ariz, Usue; Martínez-Chantar, María de la Luz; Gómez, Javier; Neira, José L

    2010-09-01

    The bacterial phosphoenolpyruvate-dependent sugar phosphotransferase system is a multiprotein complex that phosphorylates and, concomitantly, transports carbohydrates across the membrane into the cell. The first protein of the cascade is a multidomain protein so-called enzyme I (EI). The N-terminal domain of EI from Streptomyces coelicolor, EIN(sc), responsible for the binding to the second protein in the cascade (the histidine phosphocarrier, HPr), was cloned and successfully expressed and purified. We have previously shown that EI(sc) binds to HPr(sc) with smaller affinity than other members of the EI and HPr families [Hurtado-Gómez et al. (2008) Biophys. J., 95, 1336-1348]. We think that the study of the isolated binding HPr(sc) domain, that is EIN(sc), could shed light on the small affinity value measured. Therefore, in this work we present a detailed description of the structural features of the EIN domain, as a first step towards a complete characterization of the molecular recognition process between the two proteins. We show that EIN(sc) is a folded protein, with alpha-helix and beta-sheet structures and also random-coil conformations, as shown by circular dichroism (CD), FTIR and NMR spectroscopies. The acquisition of secondary and tertiary structures, and the burial of hydrophobic regions, occurred concomitantly at acidic pHs, but at very low pH, the domain acquired a molten-globule conformation. The EIN(sc) protein was not very stable, with an apparent conformational free energy change upon unfolding, DeltaG, of 4.1 +/- 0.4 kcal mol(-1), which was pH independent in the range explored (from pH 6.0 to 8.5). The thermal denaturation midpoint, which was also pH invariant, was similar to that measured in the isolated intact EI(sc). Although EIN(sc) shows thermal- and chemical denaturations that seems to follow a two-state mechanism, there is evidence of residual structure in the chemical and thermally unfolded states, as indicated by differential scanning

  12. Genomic determinants of protein folding thermodynamics in prokaryotic organisms.

    PubMed

    Bastolla, Ugo; Moya, Andrés; Viguera, Enrique; van Ham, Roeland C H J

    2004-11-05

    Here we investigate how thermodynamic properties of orthologous proteins are influenced by the genomic environment in which they evolve. We performed a comparative computational study of 21 protein families in 73 prokaryotic species and obtained the following main results. (i) Protein stability with respect to the unfolded state and with respect to misfolding are anticorrelated. There appears to be a trade-off between these two properties, which cannot be optimized simultaneously. (ii) Folding thermodynamic parameters are strongly correlated with two genomic features, genome size and G+C composition. In particular, the normalized energy gap, an indicator of folding efficiency in statistical mechanical models of protein folding, is smaller in proteins of organisms with a small genome size and a compositional bias towards A+T. Such genomic features are characteristic for bacteria with an intracellular lifestyle. We interpret these correlations in light of mutation pressure and natural selection. A mutational bias toward A+T at the DNA level translates into a mutational bias toward more hydrophobic (and in general more interactive) proteins, a consequence of the structure of the genetic code. Increased hydrophobicity renders proteins more stable against unfolding but less stable against misfolding. Proteins with high hydrophobicity and low stability against misfolding occur in organisms with reduced genomes, like obligate intracellular bacteria. We argue that they are fixed because these organisms experience weaker purifying selection due to their small effective population sizes. This interpretation is supported by the observation of a high expression level of chaperones in these bacteria. Our results indicate that the mutational spectrum of a genome and the strength of selection significantly influence protein folding thermodynamics.

  13. Effect of surfaces in modulating protein folding mechanisms

    NASA Astrophysics Data System (ADS)

    Shea, Joan

    2014-03-01

    Protein-surface interactions are ubiquitous in the crowded cytosol, where proteins encounter a variety of surfaces, ranging from membranes surfaces, to the surfaces presented by chaperone molecules. Protein-surface interactions are also at the heart of a number of emerging technologies, including protein micro-arrays, biosensors and biomaterials. The effect of surfaces on protein structure and stability can vary substantially depending on the chemical composition of the surface. In this talk, I will present detailed atomistic simulations of the folding of a small beta-sheet protein in the presence of graphite and titanium oxide surfaces. The role of water-mediated and direct protein-surface interactions in governing protein conformations will be discussed.

  14. Protein GB1 Folding and Assembly from Structural Elements

    PubMed Central

    Bauer, Mikael C.; Xue, Wei-Feng; Linse, Sara

    2009-01-01

    Folding of the Protein G B1 domain (PGB1) shifts with increasing salt concentration from a cooperative assembly of inherently unstructured subdomains to an assembly of partly pre-folded structures. The salt-dependence of pre-folding contributes to the stability minimum observed at physiological salt conditions. Our conclusions are based on a study in which the reconstitution of PGB1 from two fragments was studied as a function of salt concentrations and temperature using circular dichroism spectroscopy. Salt was found to induce an increase in β-hairpin structure for the C-terminal fragment (residues 41 – 56), whereas no major salt effect on structure was observed for the isolated N-terminal fragment (residues 1 – 41). In line with the increasing evidence on the interrelation between fragment complementation and stability of the corresponding intact protein, we also find that salt effects on reconstitution can be predicted from salt dependence of the stability of the intact protein. Our data show that our variant (which has the mutations T2Q, N8D, N37D and reconstitutes in a manner similar to the wild type) displays the lowest equilibrium association constant around physiological salt concentration, with higher affinity observed both at lower and higher salt concentration. This corroborates the salt effects on the stability towards denaturation of the intact protein, for which the stability at physiological salt is lower compared to both lower and higher salt concentrations. Hence we conclude that reconstitution reports on molecular factors that govern the native states of proteins. PMID:19468325

  15. Microcanonical versus Canonical Analysis of Protein Folding

    NASA Astrophysics Data System (ADS)

    Hernández-Rojas, J.; Gomez Llorente, J. M.

    2008-06-01

    The microcanonical analysis is shown to be a powerful tool to characterize the protein folding transition and to neatly distinguish between good and bad folders. An off-lattice model with parameter chosen to represent polymers of these two types is used to illustrate this approach. Both canonical and microcanonical ensembles are employed. The required calculations were performed using parallel tempering Monte Carlo simulations. The most revealing features of the folding transition are related to its first-order-like character, namely, the S-bend pattern in the caloric curve, which gives rise to negative microcanonical specific heats, and the bimodality of the energy distribution function at the transition temperatures. Models for a good folder are shown to be quite robust against perturbations in the interaction potential parameters.

  16. Persistent homology analysis of protein structure, flexibility and folding

    PubMed Central

    Xia, Kelin; Wei, Guo-Wei

    2014-01-01

    Proteins are the most important biomolecules for living organisms. The understanding of protein structure, function, dynamics and transport is one of most challenging tasks in biological science. In the present work, persistent homology is, for the first time, introduced for extracting molecular topological fingerprints (MTFs) based on the persistence of molecular topological invariants. MTFs are utilized for protein characterization, identification and classification. The method of slicing is proposed to track the geometric origin of protein topological invariants. Both all-atom and coarse-grained representations of MTFs are constructed. A new cutoff-like filtration is proposed to shed light on the optimal cutoff distance in elastic network models. Based on the correlation between protein compactness, rigidity and connectivity, we propose an accumulated bar length generated from persistent topological invariants for the quantitative modeling of protein flexibility. To this end, a correlation matrix based filtration is developed. This approach gives rise to an accurate prediction of the optimal characteristic distance used in protein B-factor analysis. Finally, MTFs are employed to characterize protein topological evolution during protein folding and quantitatively predict the protein folding stability. An excellent consistence between our persistent homology prediction and molecular dynamics simulation is found. This work reveals the topology-function relationship of proteins. PMID:24902720

  17. Prediction of the protein folding core: application to the immunoglobulin fold.

    PubMed

    Prudhomme, Nicolas; Chomilier, Jacques

    2009-01-01

    We propose an algorithm that allows predicting residues important for the formation of the structure of globular proteins. It relies on a simulation that detects the amino acids presenting a maximum number of neighbours during the early steps of the folding process. They have been called MIR (Most Interacting Residues). Independently, description of the protein structures in fragments with closed ends shows the correlation between these extremities and the core of the globules. These fragments are of rather constant length, typically between 20 and 25 amino acids, and we have previously shown that their extremities are preferentially occupied by MIR. Introduction of rules derived from this fragment analysis of tertiary structures allows to smooth the distribution of MIR, for a better match between TEF ends and MIR. In order to assess this prediction of the folding core, a large family of structures has been used, with sequences as different as possible. A dataset of 56 immunoglobulin structures of various functions but common fold has been used in this study. This fold was chosen because it is one of the most populated with a large amount of data available on its nucleus. In the immunoglobulin domain, "functional and structural load is clearly separated: loops are responsible for binding and recognition while interactions between several residues of the buried core provide stability and fast folding"[1]. We then determined the positions susceptible of high importance for the folding process to occur and compared them to published data, either to High Throw Out Order (HTOO), Conservatism of Conservatism (CoC) or Phi value experiments. It results a reasonable agreement between the positions that we predict and experimental data. Besides, our prediction goes beyond the simple use of a null solvent accessibility of amino acids as a criterion to predict the core. We find the same quality of our prediction on the flavodoxin like superfamily.

  18. Inversion of the Side-Chain Stereochemistry of Indvidual Thr or Ile Residues in a Protein Molecule: Impact on the Folding, Stability, and Structure of the ShK Toxin.

    PubMed

    Dang, Bobo; Shen, Rong; Kubota, Tomoya; Mandal, Kalyaneswar; Bezanilla, Francisco; Roux, Benoit; Kent, Stephen B H

    2017-03-13

    ShK toxin is a cysteine-rich 35-residue protein ion-channel ligand isolated from the sea anemone Stichodactyla helianthus. In this work, we studied the effect of inverting the side chain stereochemistry of individual Thr or Ile residues on the properties of the ShK protein. Molecular dynamics simulations were used to calculate the free energy cost of inverting the side-chain stereochemistry of individual Thr or Ile residues. Guided by the computational results, we used chemical protein synthesis to prepare three ShK polypeptide chain analogues, each containing either an allo-Thr or an allo-Ile residue. The three allo-Thr or allo-Ile-containing ShK polypeptides were able to fold into defined protein products, but with different folding propensities. Their relative thermal stabilities were measured and were consistent with the MD simulation data. Structures of the three ShK analogue proteins were determined by quasi-racemic X-ray crystallography and were similar to wild-type ShK. All three ShK analogues retained ion-channel blocking activity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Computational Solutions to the Protein Folding Problem,

    DTIC Science & Technology

    1994-05-19

    A TRIDENT SCHOLAR oN PROJECT REPORT 0 NO. 223 "Computational Solutions to the Protein Folding Problem" L T -’ ’r i SEP 2 7 1994 ýV UNITED STATES...potential energy function (Chapter II), 25 1 2 2 U = X• k( l 1 -lo) 2+ X.ko (8,-8o) 2+X.-[1l + cos (Pip + )] Equation 4.1 xei (C ¶±~12.4 a where ri, is...iterative process, a set of k >_ 2"t+ l distinct local minima are computed. This can be done with rela- tive ease by using an efficient unconstrained

  20. Distinguishing between sequential and nonsequentially folded proteins: implications for folding and misfolding.

    PubMed Central

    Tsai, C. J.; Maizel, J. V.; Nussinov, R.

    1999-01-01

    We describe here an algorithm for distinguishing sequential from nonsequentially folding proteins. Several experiments have recently suggested that most of the proteins that are synthesized in the eukaryotic cell may fold sequentially. This proposed folding mechanism in vivo is particularly advantageous to the organism. In the absence of chaperones, the probability that a sequentially folding protein will misfold is reduced significantly. The problem we address here is devising a procedure that would differentiate between the two types of folding patterns. Footprints of sequential folding may be found in structures where consecutive fragments of the chain interact with each other. In such cases, the folding complexity may be viewed as being lower. On the other hand, higher folding complexity suggests that at least a portion of the polypeptide backbone folds back upon itself to form three-dimensional (3D) interactions with noncontiguous portion(s) of the chain. Hence, we look at the mechanism of folding of the molecule via analysis of its complexity, that is, through the 3D interactions formed by contiguous segments on the polypeptide chain. To computationally splice the structure into consecutively interacting fragments, we either cut it into compact hydrophobic folding units or into a set of hypothetical, transient, highly populated, contiguous fragments ("building blocks" of the structure). In sequential folding, successive building blocks interact with each other from the amino to the carboxy terminus of the polypeptide chain. Consequently, the results of the parsing differentiate between sequentially vs. nonsequentially folded chains. The automated assessment of the folding complexity provides insight into both the likelihood of misfolding and the kinetic folding rate of the given protein. In terms of the funnel free energy landscape theory, a protein that truly follows the mechanism of sequential folding, in principle, encounters smoother free energy barriers

  1. Size and sequence and the volume change of protein folding.

    PubMed

    Rouget, Jean-Baptiste; Aksel, Tural; Roche, Julien; Saldana, Jean-Louis; Garcia, Angel E; Barrick, Doug; Royer, Catherine A

    2011-04-20

    The application of hydrostatic pressure generally leads to protein unfolding, implying, in accordance with Le Chatelier's principle, that the unfolded state has a smaller molar volume than the folded state. However, the origin of the volume change upon unfolding, ΔV(u), has yet to be determined. We have examined systematically the effects of protein size and sequence on the value of ΔV(u) using as a model system a series of deletion variants of the ankyrin repeat domain of the Notch receptor. The results provide strong evidence in support of the notion that the major contributing factor to pressure effects on proteins is their imperfect internal packing in the folded state. These packing defects appear to be specifically localized in the 3D structure, in contrast to the uniformly distributed effects of temperature and denaturants that depend upon hydration of exposed surface area upon unfolding. Given its local nature, the extent to which pressure globally affects protein structure can inform on the degree of cooperativity and long-range coupling intrinsic to the folded state. We also show that the energetics of the protein's conformations can significantly modulate their volumetric properties, providing further insight into protein stability.

  2. Hydrophobic-hydrophilic forces in protein folding.

    PubMed

    Durell, Stewart R; Ben-Naim, Arieh

    2017-08-01

    The process of protein folding is obviously driven by forces exerted on the atoms of the amino-acid chain. These forces arise from interactions with other parts of the protein itself (direct forces), as well as from interactions with the solvent (solvent-induced forces). We present a statistical-mechanical formalism that describes both these direct and indirect, solvent-induced thermodynamic forces on groups of the protein. We focus on 2 kinds of protein groups, commonly referred to as hydrophobic and hydrophilic. Analysis of this result leads to the conclusion that the forces on hydrophilic groups are in general stronger than on hydrophobic groups. This is then tested and verified by a series of molecular dynamics simulations, examining both hydrophobic alkanes of different sizes and hydrophilic moieties represented by polar-neutral hydroxyl groups. The magnitude of the force on assemblies of hydrophilic groups is dependent on their relative orientation: with 2 to 4 times larger forces on groups that are able to form one or more direct hydrogen bonds. © 2017 Wiley Periodicals, Inc.

  3. Important amino acid residues involved in folding and binding of protein-protein complexes.

    PubMed

    Kulandaisamy, A; Lathi, V; ViswaPoorani, K; Yugandhar, K; Gromiha, M Michael

    2017-01-01

    Protein-protein interactions perform diverse functions in living organism. The integrative analysis of binding and stabilizing residues will provide insights on the functions of protein-protein complexes. In this work, we constructed a non-redundant dataset of 261 protein-protein complexes and identified binding site residues, stabilizing residues and common to both binding and stabilizing, termed as "key residues". We found that 6.1% of residues are involved in binding and 6.8% of residues are important for folding and stability. Among them, only 2% are involved in both folding and binding, which shows the importance and specific roles played by these residues. The key residues have been analyzed based on protein function, binding affinity, rigid and flexible complexes, amino acid preference and structure based parameters. We found that high affinity complexes have more key residues than low affinity complexes. In addition, key residues are enriched with the combination of specific hydrophobic and charged/polar residues. Atomic contacts between interacting proteins have distinct preferences of polar-polar, nonpolar-nonpolar and polar-nonpolar contacts in different functional classes of protein-protein complexes. Further, the influence of sequence and structural parameters such as surrounding hydrophobicity, solvent accessibility, secondary structure, long-range order and conservation score has been discussed. The analysis can be used to comprehend the interplay between stability and binding in protein-protein complexes. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. The oxidative protein folding machinery in plant cells.

    PubMed

    Aller, Isabel; Meyer, Andreas J

    2013-08-01

    Formation of intra-molecular disulfides and concomitant oxidative protein folding is essential for stability and catalytic function of many soluble and membrane-bound proteins in the endomembrane system, the mitochondrial inter-membrane space and the thylakoid lumen. Disulfide generation from free cysteines in nascent polypeptide chains is generally a catalysed process for which distinct pathways exist in all compartments. A high degree of similarities between highly diverse eukaryotic and bacterial systems for generation of protein disulfides indicates functional conservation of key processes throughout evolution. However, while many aspects about molecular function of enzymatic systems promoting disulfide formation have been demonstrated for bacterial and non-plant eukaryotic organisms, it is now clear that the plant machinery for oxidative protein folding displays distinct details, suggesting that the different pathways have been adapted to plant-specific requirements in terms of compartmentation, molecular function and regulation. Here, we aim to evaluate biological diversity by comparing the plant systems for oxidative protein folding to the respective systems from non-plant eukaryotes.

  5. The effect of surface tethering on the folding of the src-SH3 protein domain

    NASA Astrophysics Data System (ADS)

    Zhuang, Zhuoyun; Jewett, Andrew I.; Soto, Patricia; Shea, Joan-Emma

    2009-03-01

    The effect of surface tethering on the folding mechanism of the src-SH3 protein domain was investigated using a coarse-grained Gō-type protein model. The protein was tethered at various locations along the protein chain and the thermodynamics and kinetics of folding were studied using replica exchange and constant temperature Langevin dynamics. Our simulations reveal that tethering in a structured part of the transition state can dramatically alter the folding mechanism, while tethering in an unstructured part leaves the folding mechanism unaltered as compared to bulk folding. Interestingly, there is only modest correlation between the tethering effect on the folding mechanism and its effect on thermodynamic stability and folding rates. We suggest locations on the protein at which tethering could be performed in single-molecule experiments so as to leave the folding mechanism unaltered from the bulk.

  6. Some physical approaches to protein folding

    NASA Astrophysics Data System (ADS)

    Bascle, J.; Garel, T.; Orland, H.

    1993-02-01

    To understand how a protein folds is a problem which has important biological implications. In this article, we would like to present a physics-oriented point of view, which is twofold. First of all, we introduce simple statistical mechanics models which display, in the thermodynamic limit, folding and related transitions. These models can be divided into (i) crude spin glass-like models (with their Mattis analogs), where one may look for possible correlations between the chain self-interactions and the folded structure, (ii) glass-like models, where one emphasizes the geometrical competition between one- or two-dimensional local order (mimicking α helix or β sheet structures), and the requirement of global compactness. Both models are too simple to predict the spatial organization of a realistic protein, but are useful for the physicist and should have some feedback in other glassy systems (glasses, collapsed polymers .... ). These remarks lead us to the second physical approach, namely a new Monte-Carlo method, where one grows the protein atom-by-atom (or residue-by-residue), using a standard form (CHARMM .... ) for the total energy. A detailed comparison with other Monte-Carlo schemes, or Molecular Dynamics calculations, is then possible; we will sketch such a comparison for poly-alanines. Our twofold approach illustrates some of the difficulties one encounters in the protein folding problem, in particular those associated with the existence of a large number of metastable states. Le repliement des protéines est un problème qui a de nombreuses implications biologiques. Dans cet article, nous présentons, de deux façons différentes, un point de vue de physicien. Nous introduisons tout d'abord des modèles simples de mécanique statistique qui exhibent, à la limite thermodynamique, des transitions de repliement. Ces modèles peuvent être divisés en (i) verres de spin (éventuellement à la Mattis), où l'on peut chercher des corrélations entre les

  7. Progress towards mapping the universe of protein folds

    PubMed Central

    Grant, Alastair; Lee, David; Orengo, Christine

    2004-01-01

    Although the precise aims differ between the various international structural genomics initiatives currently aiming to illuminate the universe of protein folds, many selectively target protein families for which the fold is unknown. How well can the current set of known protein families and folds be used to estimate the total number of folds in nature, and will structural genomics initiatives yield representatives for all the major protein families within a reasonable time scale? PMID:15128436

  8. Crystal structure of a defective folding protein

    PubMed Central

    Saul, Frederick A.; Mourez, Michaël; Vulliez-le Normand, Brigitte; Sassoon, Nathalie; Bentley, Graham A.; Betton, Jean-Michel

    2003-01-01

    Maltose-binding protein (MBP or MalE) of Escherichia coli is the periplasmic receptor of the maltose transport system. MalE31, a defective folding mutant of MalE carrying sequence changes Gly 32→Asp and Ile 33→Pro, is either degraded or forms inclusion bodies following its export to the periplasmic compartment. We have shown previously that overexpression of FkpA, a heat-shock periplasmic peptidyl-prolyl isomerase with chaperone activity, suppresses MalE31 misfolding. Here, we have exploited this property to characterize the maltose transport activity of MalE31 in whole cells. MalE31 displays defective transport behavior, even though it retains maltose-binding activity comparable with that of the wild-type protein. Because the mutated residues are in a region on the surface of MalE not identified previously as important for maltose transport, we have solved the crystal structure of MalE31 in the maltose-bound state in order to characterize the effects of these changes. The structure was determined by molecular replacement methods and refined to 1.85 Å resolution. The conformation of MalE31 closely resembles that of wild-type MalE, with very small displacements of the mutated residues located in the loop connecting the first α-helix to the first β-strand. The structural and functional characterization provides experimental evidence that MalE31 can attain a wild-type folded conformation, and suggest that the mutated sites are probably involved in the interactions with the membrane components of the maltose transport system. PMID:12592028

  9. Crystal structure of a defective folding protein.

    PubMed

    Saul, Frederick A; Mourez, Michaël; Vulliez-Le Normand, Brigitte; Sassoon, Nathalie; Bentley, Graham A; Betton, Jean-Michel

    2003-03-01

    Maltose-binding protein (MBP or MalE) of Escherichia coli is the periplasmic receptor of the maltose transport system. MalE31, a defective folding mutant of MalE carrying sequence changes Gly 32-->Asp and Ile 33-->Pro, is either degraded or forms inclusion bodies following its export to the periplasmic compartment. We have shown previously that overexpression of FkpA, a heat-shock periplasmic peptidyl-prolyl isomerase with chaperone activity, suppresses MalE31 misfolding. Here, we have exploited this property to characterize the maltose transport activity of MalE31 in whole cells. MalE31 displays defective transport behavior, even though it retains maltose-binding activity comparable with that of the wild-type protein. Because the mutated residues are in a region on the surface of MalE not identified previously as important for maltose transport, we have solved the crystal structure of MalE31 in the maltose-bound state in order to characterize the effects of these changes. The structure was determined by molecular replacement methods and refined to 1.85 A resolution. The conformation of MalE31 closely resembles that of wild-type MalE, with very small displacements of the mutated residues located in the loop connecting the first alpha-helix to the first beta-strand. The structural and functional characterization provides experimental evidence that MalE31 can attain a wild-type folded conformation, and suggest that the mutated sites are probably involved in the interactions with the membrane components of the maltose transport system.

  10. Understanding the folding-function tradeoff in proteins.

    PubMed

    Gosavi, Shachi

    2013-01-01

    When an amino-acid sequence cannot be optimized for both folding and function, folding can get compromised in favor of function. To understand this tradeoff better, we devise a novel method for extracting the "function-less" folding-motif of a protein fold from a set of structurally similar but functionally diverse proteins. We then obtain the β-trefoil folding-motif, and study its folding using structure-based models and molecular dynamics simulations. CompariA protein sequence serves two purpson with the folding of wild-type β-trefoil proteins shows that function affects folding in two ways: In the slower folding interleukin-1β, binding sites make the fold more complex, increase contact order and slow folding. In the faster folding hisactophilin, residues which could have been part of the folding-motif are used for function. This reduces the density of native contacts in functional regions and increases folding rate. The folding-motif helps identify subtle structural deviations which perturb folding. These may then be used for functional annotation. Further, the folding-motif could potentially be used as a first step in the sequence design of function-less scaffold proteins. Desired function can then be engineered into these scaffolds.

  11. Salt Contribution to RNA Tertiary Structure Folding Stability

    PubMed Central

    Tan, Zhi-Jie; Chen, Shi-Jie

    2011-01-01

    Accurate quantification of the ionic contribution to RNA folding stability could greatly enhance our ability to understand and predict RNA functions. Recently, motivated by the potential importance of ion correlation and fluctuation in RNA folding, we developed the tightly bound ion (TBI) model. Extensive experimental tests showed that the TBI model can lead to better treatment of multivalent ions than the Poisson-Boltzmann equation. In this study, we use the model to quantify the contribution of salt (Na+ and Mg2+) to the RNA tertiary structure folding free energy. Folding of the RNA tertiary structure often involves intermediates. We focus on the folding transition from an intermediate state to the native state, and compute the electrostatic folding free energy of the RNA. Based on systematic calculations for a variety of RNA molecules, we derive a set of formulas for the electrostatic free energy for tertiary structural folding as a function of the sequence length and compactness of the RNA and the Na+ and Mg2+ concentrations. Extensive comparisons with experimental data suggest that our model and the extracted empirical formulas are quite reliable. PMID:21723828

  12. Water mediation in protein folding and molecular recognition.

    PubMed

    Levy, Yaakov; Onuchic, José N

    2006-01-01

    Water is essential for life in many ways, and without it biomolecules might no longer truly be biomolecules. In particular, water is important to the structure, stability, dynamics, and function of biological macromolecules. In protein folding, water mediates the collapse of the chain and the search for the native topology through a funneled energy landscape. Water actively participates in molecular recognition by mediating the interactions between binding partners and contributes to either enthalpic or entropic stabilization. Accordingly, water must be included in recognition and structure prediction codes to capture specificity. Thus water should not be treated as an inert environment, but rather as an integral and active component of biomolecular systems, where it has both dynamic and structural roles. Focusing on water sheds light on the physics and function of biological machinery and self-assembly and may advance our understanding of the natural design of proteins and nucleic acids.

  13. On the Role of Entropy in the Protein Folding Process

    NASA Astrophysics Data System (ADS)

    Hoppe, Travis

    2011-12-01

    A protein's ultimate function and activity is determined by the unique three-dimensional structure taken by the folding process. Protein malfunction due to misfolding is the culprit of many clinical disorders, such as abnormal protein aggregations. This leads to neurodegenerative disorders like Huntington's and Alzheimer's disease. We focus on a subset of the folding problem, exploring the role and effects of entropy on the process of protein folding. Four major concepts and models are developed and each pertains to a specific aspect of the folding process: entropic forces, conformational states under crowding, aggregation, and macrostate kinetics from microstate trajectories. The exclusive focus on entropy is well-suited for crowding studies, as many interactions are nonspecific. We show how a stabilizing entropic force can arise purely from the motion of crowders in solution. In addition we are able to make a a quantitative prediction of the crowding effect with an implicit crowding approximation using an aspherical scaled-particle theory. In order to investigate the effects of aggregation, we derive a new operator expansion method to solve the Ising/Potts model with external fields over an arbitrary graph. Here the external fields are representative of the entropic forces. We show that this method reduces the problem of calculating the partition function to the solution of recursion relations. Many of the methods employed are coarse-grained approximations. As such, it is useful to have a viable method for extracting macrostate information from time series data. We develop a method to cluster the microstates into physically meaningful macrostates by grouping similar relaxation times from a transition matrix. Overall, the studied topics allow us to understand deeper the complicated process involving proteins.

  14. Fold assessment for comparative protein structure modeling.

    PubMed

    Melo, Francisco; Sali, Andrej

    2007-11-01

    Accurate and automated assessment of both geometrical errors and incompleteness of comparative protein structure models is necessary for an adequate use of the models. Here, we describe a composite score for discriminating between models with the correct and incorrect fold. To find an accurate composite score, we designed and applied a genetic algorithm method that searched for a most informative subset of 21 input model features as well as their optimized nonlinear transformation into the composite score. The 21 input features included various statistical potential scores, stereochemistry quality descriptors, sequence alignment scores, geometrical descriptors, and measures of protein packing. The optimized composite score was found to depend on (1) a statistical potential z-score for residue accessibilities and distances, (2) model compactness, and (3) percentage sequence identity of the alignment used to build the model. The accuracy of the composite score was compared with the accuracy of assessment by single and combined features as well as by other commonly used assessment methods. The testing set was representative of models produced by automated comparative modeling on a genomic scale. The composite score performed better than any other tested score in terms of the maximum correct classification rate (i.e., 3.3% false positives and 2.5% false negatives) as well as the sensitivity and specificity across the whole range of thresholds. The composite score was implemented in our program MODELLER-8 and was used to assess models in the MODBASE database that contains comparative models for domains in approximately 1.3 million protein sequences.

  15. Fold assessment for comparative protein structure modeling

    PubMed Central

    Melo, Francisco; Sali, Andrej

    2007-01-01

    Accurate and automated assessment of both geometrical errors and incompleteness of comparative protein structure models is necessary for an adequate use of the models. Here, we describe a composite score for discriminating between models with the correct and incorrect fold. To find an accurate composite score, we designed and applied a genetic algorithm method that searched for a most informative subset of 21 input model features as well as their optimized nonlinear transformation into the composite score. The 21 input features included various statistical potential scores, stereochemistry quality descriptors, sequence alignment scores, geometrical descriptors, and measures of protein packing. The optimized composite score was found to depend on (1) a statistical potential z-score for residue accessibilities and distances, (2) model compactness, and (3) percentage sequence identity of the alignment used to build the model. The accuracy of the composite score was compared with the accuracy of assessment by single and combined features as well as by other commonly used assessment methods. The testing set was representative of models produced by automated comparative modeling on a genomic scale. The composite score performed better than any other tested score in terms of the maximum correct classification rate (i.e., 3.3% false positives and 2.5% false negatives) as well as the sensitivity and specificity across the whole range of thresholds. The composite score was implemented in our program MODELLER-8 and was used to assess models in the MODBASE database that contains comparative models for domains in approximately 1.3 million protein sequences. PMID:17905832

  16. The folding of an ``average'' beta trefoil protein.

    NASA Astrophysics Data System (ADS)

    Gosavi, Shachi; Jennings, Pat; Onuchic, Jose

    2007-03-01

    The beta-trefoil fold is characterized by twelve beta strands folded into three similar beta-beta-beta-loop-beta (trefoil) units. The overall fold has pseudo-threefold symmetry and consists of a six stranded-barrel, capped by a triangular hairpin triplet. The loops connecting the beta-strands vary in length and structure. It is these loops that give the fold its varied binding capability and the binding sites lie in different parts of the fold. The beta-trefoil proteins have little sequence similarity (sometimes less than 17%) and bind a range of molecules, including other proteins, DNA, membranes and carbohydrates. Protein folding experiments have been performed on four of the beta trefoils, namely, interleukin-1 (IL1B), acidic and basic fibroblast growth factors (FGF-1 and FGF-2) and hisactophilin (HIS). These experiments indicate that the proteins fold by different routes. Folding simulations of the proteins identify the possible folding routes and also show that the shapes of the barriers are different for the different proteins. In this work, we design a model protein which contains only the core fold elements of the beta-trefoil fold. We compare the folding of this ``average'' protein to the folding of His, FGF and IL1B and make some connections with function.

  17. Spin glasses and the statistical mechanics of protein folding.

    PubMed Central

    Bryngelson, J D; Wolynes, P G

    1987-01-01

    The theory of spin glasses was used to study a simple model of protein folding. The phase diagram of the model was calculated, and the results of dynamics calculations are briefly reported. The relation of these results to folding experiments, the relation of these hypotheses to previous protein folding theories, and the implication of these hypotheses for protein folding prediction schemes are discussed. PMID:3478708

  18. Highly Diverse Protein Library Based on the Ubiquitous (β/α)8 Enzyme Fold Yields Well-Structured Proteins Through In Vitro Folding Selection

    PubMed Central

    Golynskiy, Misha V.; Haugner, John C.

    2013-01-01

    Proper protein folding is a prerequisite for protein stability and enzymatic activity. While directed evolution can be a powerful tool to investigate enzymatic function and to isolate novel activities, well-designed libraries of folded proteins are essential. In vitro selection methods are particularly capable of searching for enzymatic activities in libraries of trillions of protein variants, yet high-quality libraries of well-folded enzymes with such high diversity are lacking. We describe the construction and detailed characterization of a folding-enriched protein library based on the ubiquitous (β/α)8 barrel fold found in five of the six enzyme classes. We introduced seven randomized loops on the catalytic face of the monomeric, thermostable (β/α)8 barrel of glycerophosphodiester phosphodiesterase (GDPD) from Thermotoga maritima. We employed an in vitro folding selection based on protease digestion to enrich intermediate libraries containing three to four randomized loops for folded variants and then combined them to assemble the final library (1014 DNA sequences). The resulting library was analyzed using the in vitro protease assay and an in vivo GFP-folding assay and contains ~1012 soluble monomeric protein variants. We isolated six library members and demonstrated that these proteins are soluble, monomeric and show (β/α)8 barrel fold-like secondary and tertiary structure. The quality of the folding-enriched library improved up to 50-fold compared to a control library that was assembled without the folding selection. To the best of our knowledge, this work is the first example of combining the ultra-high throughput method mRNA display with a selection for folding. The resulting (β/α)8 barrel libraries provide a valuable starting point to study the unique catalytic capabilities of the (β/α)8 fold, and to isolate novel enzymes. PMID:23956201

  19. Protein folding on the ribosome studied using NMR spectroscopy

    PubMed Central

    Waudby, Christopher A.; Launay, Hélène; Cabrita, Lisa D.; Christodoulou, John

    2013-01-01

    NMR spectroscopy is a powerful tool for the investigation of protein folding and misfolding, providing a characterization of molecular structure, dynamics and exchange processes, across a very wide range of timescales and with near atomic resolution. In recent years NMR methods have also been developed to study protein folding as it might occur within the cell, in a de novo manner, by observing the folding of nascent polypeptides in the process of emerging from the ribosome during synthesis. Despite the 2.3 MDa molecular weight of the bacterial 70S ribosome, many nascent polypeptides, and some ribosomal proteins, have sufficient local flexibility that sharp resonances may be observed in solution-state NMR spectra. In providing information on dynamic regions of the structure, NMR spectroscopy is therefore highly complementary to alternative methods such as X-ray crystallography and cryo-electron microscopy, which have successfully characterized the rigid core of the ribosome particle. However, the low working concentrations and limited sample stability associated with ribosome–nascent chain complexes means that such studies still present significant technical challenges to the NMR spectroscopist. This review will discuss the progress that has been made in this area, surveying all NMR studies that have been published to date, and with a particular focus on strategies for improving experimental sensitivity. PMID:24083462

  20. Improving Protein Fold Recognition by Deep Learning Networks

    NASA Astrophysics Data System (ADS)

    Jo, Taeho; Hou, Jie; Eickholt, Jesse; Cheng, Jianlin

    2015-12-01

    For accurate recognition of protein folds, a deep learning network method (DN-Fold) was developed to predict if a given query-template protein pair belongs to the same structural fold. The input used stemmed from the protein sequence and structural features extracted from the protein pair. We evaluated the performance of DN-Fold along with 18 different methods on Lindahl’s benchmark dataset and on a large benchmark set extracted from SCOP 1.75 consisting of about one million protein pairs, at three different levels of fold recognition (i.e., protein family, superfamily, and fold) depending on the evolutionary distance between protein sequences. The correct recognition rate of ensembled DN-Fold for Top 1 predictions is 84.5%, 61.5%, and 33.6% and for Top 5 is 91.2%, 76.5%, and 60.7% at family, superfamily, and fold levels, respectively. We also evaluated the performance of single DN-Fold (DN-FoldS), which showed the comparable results at the level of family and superfamily, compared to ensemble DN-Fold. Finally, we extended the binary classification problem of fold recognition to real-value regression task, which also show a promising performance. DN-Fold is freely available through a web server at http://iris.rnet.missouri.edu/dnfold.

  1. Dual folding pathways of an α /β protein from all-atom ab initio folding simulations

    NASA Astrophysics Data System (ADS)

    Lei, Hongxing; Wang, Zhi-Xiang; Wu, Chun; Duan, Yong

    2009-10-01

    Successful ab initio folding of proteins with both α-helix and β-sheet requires a delicate balance among a variety of forces in the simulation model, which may explain that the successful folding of any α /β proteins to within experimental error has yet to be reported. Here we demonstrate that it is an achievable goal to fold α /β proteins with a force field emphasizing the balance between the two major secondary structures. Using our newly developed force field, we conducted extensive ab initio folding simulations on an α /β protein full sequence design (FSD) employing both conventional molecular dynamics and replica exchange molecular dynamics in combination with a generalized-Born solvation model. In these simulations, the folding of FSD to the native state with high population (>64.2%) and high fidelity (Cα-Root Mean Square Deviation of 1.29 Å for the most sampled conformation when compared to the experimental structure) was achieved. The folding of FSD was found to follow two pathways. In the major pathway, the folding started from the formation of the helix. In the minor pathway, however, folding of the β-hairpin started first. Further examination revealed that the helix initiated from the C-terminus and propagated toward the N-terminus. The formation of the hydrophobic contacts coincided with the global folding. Therefore the hydrophobic force does not appear to be the driving force of the folding of this protein.

  2. Congenital hypothyroidism mutations affect common folding and trafficking in the α/β-hydrolase fold proteins.

    PubMed

    De Jaco, Antonella; Dubi, Noga; Camp, Shelley; Taylor, Palmer

    2012-12-01

    The α/β-hydrolase fold superfamily of proteins is composed of structurally related members that, despite great diversity in their catalytic, recognition, adhesion and chaperone functions, share a common fold governed by homologous residues and conserved disulfide bridges. Non-synonymous single nucleotide polymorphisms within the α/β-hydrolase fold domain in various family members have been found for congenital endocrine, metabolic and nervous system disorders. By examining the amino acid sequence from the various proteins, mutations were found to be prevalent in conserved residues within the α/β-hydrolase fold of the homologous proteins. This is the case for the thyroglobulin mutations linked to congenital hypothyroidism. To address whether correct folding of the common domain is required for protein export, we inserted the thyroglobulin mutations at homologous positions in two correlated but simpler α/β-hydrolase fold proteins known to be exported to the cell surface: neuroligin3 and acetylcholinesterase. Here we show that these mutations in the cholinesterase homologous region alter the folding properties of the α/β-hydrolase fold domain, which are reflected in defects in protein trafficking, folding and function, and ultimately result in retention of the partially processed proteins in the endoplasmic reticulum. Accordingly, mutations at conserved residues may be transferred amongst homologous proteins to produce common processing defects despite disparate functions, protein complexity and tissue-specific expression of the homologous proteins. More importantly, a similar assembly of the α/β-hydrolase fold domain tertiary structure among homologous members of the superfamily is required for correct trafficking of the proteins to their final destination.

  3. Multi-stability in folded shells: non-Euclidean origami

    NASA Astrophysics Data System (ADS)

    Evans, Arthur

    2015-03-01

    Both natural and man-made structures benefit from having multiple mechanically stable states, from the quick snapping motion of hummingbird beaks to micro-textured surfaces with tunable roughness. Rather than discuss special fabrication techniques for creating bi-stability through material anisotropy, in this talk I will present several examples of how folding a structure can modify the energy landscape and thus lead to multiple stable states. Using ideas from origami and differential geometry, I will discuss how deforming a non-Euclidean surface can be done either continuously or discontinuously, and explore the effects that global constraints have on the ultimate stability of the surface.

  4. N-linked glycosylation at Asn152 on CD147 affects protein folding and stability: promoting tumour metastasis in hepatocellular carcinoma

    PubMed Central

    Li, Jiang-Hua; Huang, Wan; Lin, Peng; Wu, Bo; Fu, Zhi-Guang; Shen, Hao-Miao; Jing, Lin; Liu, Zhen-Yu; Zhou, Yang; Meng, Yao; Xu, Bao-Qing; Chen, Zhi-Nan; Jiang, Jian-Li

    2016-01-01

    Cluster of differentiation 147 (CD147), also known as extracellular matrix metalloproteinase inducer, is a transmembrane glycoprotein that mediates oncogenic processes partly through N-glycosylation modifications. N-glycosylation has been demonstrated to be instrumental for the regulation of CD147 function during malignant transformation. However, the role that site-specific glycosylation of CD147 plays in its defective function in hepatocellular carcinomacells needs to be determined. Here, we demonstrate that the modification of N-glycosylation at Asn152 on CD147 strongly promotes hepatocellular carcinoma (HCC) invasion and migration. After the removal of N-glycans at Asn152, CD147 was more susceptible to degradation by ER-localized ubiquitin ligase-mediated endoplasmic reticulum-associated degradation (ERAD). Furthermore, N-linked glycans at Asn152 were required for CD147 to acquire and maintain proper folding in the ER. Moreover, N-linked glycans at Asn152 functioned as a recognition motif that was directly mediated by the CNX quality control system. Two phases in the retention-based ER chaperones system drove ER-localized CD147 trafficking to degradation. Deletion of N-linked glycosylation at Asn152 on CD147 significantly suppressed in situ tumour metastasis. These data could potentially shed light on the molecular regulation of CD147 through glycosylation and provide a valuable means of developing drugs that target N-glycans at Asn152 on CD147. PMID:27869218

  5. Understanding the role of the topology in protein folding by computational inverse folding experiments.

    PubMed

    Mucherino, Antonio; Costantini, Susan; di Serafino, Daniela; D'Apuzzo, Marco; Facchiano, Angelo; Colonna, Giovanni

    2008-08-01

    Recent studies suggest that protein folding should be revisited as the emergent property of a complex system and that the nature allows only a very limited number of folds that seem to be strongly influenced by geometrical properties. In this work we explore the principles underlying this new view and show how helical protein conformations can be obtained starting from simple geometric considerations. We generated a large data set of C-alpha traces made of 65 points, by computationally solving a backbone model that takes into account only topological features of the all-alpha proteins; then, we built corresponding tertiary structures, by using the sequences associated to the crystallographic structures of four small globular all-alpha proteins from PDB, and analysed them in terms of structural and energetic properties. In this way we obtained four poorly populated sets of structures that are reasonably similar to the conformational states typical of the experimental PDB structures. These results show that our computational approach can capture the native topology of all-alpha proteins; furthermore, it generates backbone folds without the influence of the side chains and uses the protein sequence to select a specific fold among the generated folds. This agrees with the recent view that the backbone plays an important role in the protein folding process and that the amino acid sequence chooses its own fold within a limited total number of folds.

  6. Cosolvent Effects on Protein Stability

    NASA Astrophysics Data System (ADS)

    Canchi, Deepak R.; García, Angel E.

    2013-04-01

    Proteins are marginally stable, and the folding/unfolding equilibrium of proteins in aqueous solution can easily be altered by the addition of small organic molecules known as cosolvents. Cosolvents that shift the equilibrium toward the unfolded ensemble are termed denaturants, whereas those that favor the folded ensemble are known as protecting osmolytes. Urea is a widely used denaturant in protein folding studies, and the molecular mechanism of its action has been vigorously debated in the literature. Here we review recent experimental as well as computational studies that show an emerging consensus in this problem. Urea has been shown to denature proteins through a direct mechanism, by interacting favorably with the peptide backbone as well as the amino acid side chains. In contrast, the molecular mechanism by which the naturally occurring protecting osmolyte trimethylamine N-oxide (TMAO) stabilizes proteins is not clear. Recent studies have established the strong interaction of TMAO with water. Detailed molecular simulations, when used with force fields that incorporate these interactions, can provide insight into this problem. We present the development of a model for TMAO that is consistent with experimental observations and that provides physical insight into the role of cosolvent-cosolvent interaction in determining its preferential interaction with proteins.

  7. Multiple folding pathways of proteins with shallow knots and co-translational folding

    NASA Astrophysics Data System (ADS)

    Chwastyk, Mateusz; Cieplak, Marek

    2015-07-01

    We study the folding process in the shallowly knotted protein MJ0366 within two variants of a structure-based model. We observe that the resulting topological pathways are much richer than identified in previous studies. In addition to the single knot-loop events, we find novel, and dominant, two-loop mechanisms. We demonstrate that folding takes place in a range of temperatures and the conditions of most successful folding are at temperatures which are higher than those required for the fastest folding. We also demonstrate that nascent conditions are more favorable to knotting than off-ribosome folding.

  8. Protein-Folding Landscapes in Multi-Chain Systems

    SciTech Connect

    Cellmer, Troy; Bratko, Dusan; Prausnitz, John M.; Blanch, Harvey

    2005-06-20

    Computational studies of proteins have significantly improved our understanding of protein folding. These studies are normally carried out using chains in isolation. However, in many systems of practical interest, proteins fold in the presence of other molecules. To obtain insight into folding in such situations, we compare the thermodynamics of folding for a Miyazawa-Jernigan model 64-mer in isolation to results obtained in the presence of additional chains. The melting temperature falls as the chain concentration increases. In multi-chain systems, free-energy landscapes for folding show an increased preference for misfolded states. Misfolding is accompanied by an increase in inter-protein interactions; however, near the folding temperature, the transition from folded chains to misfolded and associated chains isentropically driven. A majority of the most probable inter-protein contacts are also native contacts, suggesting that native topology plays a role in early stages of aggregation.

  9. Protein fold classification with genetic algorithms and feature selection.

    PubMed

    Chen, Peng; Liu, Chunmei; Burge, Legand; Mahmood, Mohammad; Southerland, William; Gloster, Clay

    2009-10-01

    Protein fold classification is a key step to predicting protein tertiary structures. This paper proposes a novel approach based on genetic algorithms and feature selection to classifying protein folds. Our dataset is divided into a training dataset and a test dataset. Each individual for the genetic algorithms represents a selection function of the feature vectors of the training dataset. A support vector machine is applied to each individual to evaluate the fitness value (fold classification rate) of each individual. The aim of the genetic algorithms is to search for the best individual that produces the highest fold classification rate. The best individual is then applied to the feature vectors of the test dataset and a support vector machine is built to classify protein folds based on selected features. Our experimental results on Ding and Dubchak's benchmark dataset of 27-class folds show that our approach achieves an accuracy of 71.28%, which outperforms current state-of-the-art protein fold predictors.

  10. Transition paths, diffusive processes, and preequilibria of protein folding.

    PubMed

    Zhang, Zhuqing; Chan, Hue Sun

    2012-12-18

    Fundamental relationships between the thermodynamics and kinetics of protein folding were investigated using chain models of natural proteins with diverse folding rates by extensive comparisons between the distribution of conformations in thermodynamic equilibrium and the distribution of conformations sampled along folding trajectories. Consistent with theory and single-molecule experiment, duration of the folding transition paths exhibits only a weak correlation with overall folding time. Conformational distributions of folding trajectories near the overall thermodynamic folding/unfolding barrier show significant deviations from preequilibrium. These deviations, the distribution of transition path times, and the variation of mean transition path time for different proteins can all be rationalized by a diffusive process that we modeled using simple Monte Carlo algorithms with an effective coordinate-independent diffusion coefficient. Conformations in the initial stages of transition paths tend to form more nonlocal contacts than typical conformations with the same number of native contacts. This statistical bias, which is indicative of preferred folding pathways, should be amenable to future single-molecule measurements. We found that the preexponential factor defined in the transition state theory of folding varies from protein to protein and that this variation can be rationalized by our Monte Carlo diffusion model. Thus, protein folding physics is different in certain fundamental respects from the physics envisioned by a simple transition-state picture. Nonetheless, transition state theory can be a useful approximate predictor of cooperative folding speed, because the height of the overall folding barrier is apparently a proxy for related rate-determining physical properties.

  11. CoinFold: a web server for protein contact prediction and contact-assisted protein folding.

    PubMed

    Wang, Sheng; Li, Wei; Zhang, Renyu; Liu, Shiwang; Xu, Jinbo

    2016-07-08

    CoinFold (http://raptorx2.uchicago.edu/ContactMap/) is a web server for protein contact prediction and contact-assisted de novo structure prediction. CoinFold predicts contacts by integrating joint multi-family evolutionary coupling (EC) analysis and supervised machine learning. This joint EC analysis is unique in that it not only uses residue coevolution information in the target protein family, but also that in the related families which may have divergent sequences but similar folds. The supervised learning further improves contact prediction accuracy by making use of sequence profile, contact (distance) potential and other information. Finally, this server predicts tertiary structure of a sequence by feeding its predicted contacts and secondary structure to the CNS suite. Tested on the CASP and CAMEO targets, this server shows significant advantages over existing ones of similar category in both contact and tertiary structure prediction. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Novel Protein Folding Pathways for Protein Salvage and Recycling

    DTIC Science & Technology

    2013-08-26

    Life. The Archaea have many molecular properties that are found universally in modern lineages of both Bacteria and Archaea, and many species are...eukarya or bacteria . In hyperthermophiles, the chaperonin (Cpn60) is the only ATP dependent protein folding complex. It is a 1 mDa molecular machine... fermentation physiology for formate and carbon monoxide. In Fig. 3 below, actual gene replacement and knockouts of the chaperonin HSP60 loci in

  13. Mutagenic dissection of the sequence determinants of protein folding, recognition, and machine function.

    PubMed

    Sauer, Robert T

    2013-11-01

    Understanding the relationship between the amino-acid sequence of a protein and its ability to fold and to function is one of the major challenges of protein science. Here, cases are reviewed in which mutagenesis, biochemistry, structure determination, protein engineering, and single-molecule biophysics have illuminated the sequence determinants of folding, binding specificity, and biological function for DNA-binding proteins and ATP-fueled machines that forcibly unfold native proteins as a prelude to degradation. In addition to structure-function relationships, these studies provide information about folding intermediates, mutations that accelerate folding, slow unfolding, and stabilize proteins against denaturation, show how new binding specificities and folds can evolve, and reveal strategies that proteolytic machines use to recognize, unfold, and degrade thousands of distinct substrates. © 2013 The Protein Society.

  14. Modeling Protein Folding and Applying It to a Relevant Activity

    ERIC Educational Resources Information Center

    Nelson, Allan; Goetze, Jim

    2004-01-01

    The different levels of protein structure that can be easily understood by creating a model that simulates protein folding, which can then be evaluated by applying it to a relevant activity, is presented. The materials required and the procedure for constructing a protein folding model are mentioned.

  15. Folding a protein by discretizing its backbone torsional dynamics

    NASA Astrophysics Data System (ADS)

    Fernández, Ariel

    1999-05-01

    The aim of this work is to provide a coarse codification of local conformational constraints associated with each folding motif of a peptide chain in order to obtain a rough solution to the protein folding problem. This is accomplished by implementing a discretized version of the soft-mode dynamics on a personal computer (PC). Our algorithm mimics a parallel process as it evaluates concurrent folding possibilities by pattern recognition. It may be implemented in a PC as a sequence of perturbation-translation-renormalization (p-t-r) cycles performed on a matrix of local topological constraints (LTM). This requires suitable representational tools and a periodic quenching of the dynamics required for renormalization. We introduce a description of the peptide chain based on a local discrete variable the values of which label the basins of attraction of the Ramachandran map for each residue. Thus, the local variable indicates the basin in which the torsional coordinates of each residue lie at a given time. In addition, a coding of local topological constraints associated with each secondary and tertiary structural motif is introduced. Our treatment enables us to adopt a computation time step of 81 ps, a value far larger than hydrodynamic drag time scales. Folding pathways are resolved as transitions between patterns of locally encoded structural signals that change within the 10 μs-100 ms time scale range. These coarse folding pathways are generated by the periodic search for structural patterns in the time-evolving LTM. Each pattern is recorded as a contact matrix, an operation subject to a renormalization feedback loop. The validity of our approach is tested vis-a-vis experimentally-probed folding pathways eventually generating tertiary interactions in proteins which recover their active structure under in vitro renaturation conditions. As an illustration, we focus on determining significant folding intermediates and late kinetic bottlenecks that occur within the

  16. Ligand-Promoted Protein Folding by Biased Kinetic Partitioning

    PubMed Central

    Hingorani, Karan S.; Metcalf, Matthew C.; Deming, Derrick T.; Garman, Scott C.; Powers, Evan T.; Gierasch, Lila M.

    2017-01-01

    Protein folding in cells occurs in the presence of high concentrations of endogenous binding partners, and exogenous binding partners have been exploited as pharmacological chaperones. A combined mathematical modeling and experimental approach shows that a ligand improves the folding of a destabilized protein by biasing the kinetic partitioning between folding and alternative fates (aggregation or degradation). Computationally predicted inhibition of test protein aggregation and degradation as a function of ligand concentration are validated by experiments in two disparate cellular systems. PMID:28218913

  17. Computational simulations of protein folding to engineer amino acid sequences to encourage desired supersecondary structure formation.

    PubMed

    Gerstman, Bernard S; Chapagain, Prem P

    2013-01-01

    The dynamics of protein folding are complicated because of the various types of amino acid interactions that create secondary, supersecondary, and tertiary interactions. Computational modeling can be used to simulate the biophysical and biochemical interactions that determine protein folding. Effective folding to a desired protein configuration requires a compromise between speed, stability, and specificity. If the primary sequence of amino acids emphasizes one of these characteristics, the others might suffer and the folding process may not be optimized. We provide an example of a model peptide whose primary sequence produces a highly stable supersecondary two-helix bundle structure, but at the expense of lower speed and specificity of the folding process. We show how computational simulations can be used to discover the configuration of the kinetic trap that causes the degradation in the speed and specificity of folding. We also show how amino acid sequences can be engineered by specific substitutions to optimize the folding to the desired supersecondary structure.

  18. Smoothing a rugged protein folding landscape by sequence-based redesign

    NASA Astrophysics Data System (ADS)

    Porebski, Benjamin T.; Keleher, Shani; Hollins, Jeffrey J.; Nickson, Adrian A.; Marijanovic, Emilia M.; Borg, Natalie A.; Costa, Mauricio G. S.; Pearce, Mary A.; Dai, Weiwen; Zhu, Liguang; Irving, James A.; Hoke, David E.; Kass, Itamar; Whisstock, James C.; Bottomley, Stephen P.; Webb, Geoffrey I.; McGowan, Sheena; Buckle, Ashley M.

    2016-09-01

    The rugged folding landscapes of functional proteins puts them at risk of misfolding and aggregation. Serine protease inhibitors, or serpins, are paradigms for this delicate balance between function and misfolding. Serpins exist in a metastable state that undergoes a major conformational change in order to inhibit proteases. However, conformational labiality of the native serpin fold renders them susceptible to misfolding, which underlies misfolding diseases such as α1-antitrypsin deficiency. To investigate how serpins balance function and folding, we used consensus design to create conserpin, a synthetic serpin that folds reversibly, is functional, thermostable, and polymerization resistant. Characterization of its structure, folding and dynamics suggest that consensus design has remodeled the folding landscape to reconcile competing requirements for stability and function. This approach may offer general benefits for engineering functional proteins that have risky folding landscapes, including the removal of aggregation-prone intermediates, and modifying scaffolds for use as protein therapeutics.

  19. Smoothing a rugged protein folding landscape by sequence-based redesign

    PubMed Central

    Porebski, Benjamin T.; Keleher, Shani; Hollins, Jeffrey J.; Nickson, Adrian A.; Marijanovic, Emilia M.; Borg, Natalie A.; Costa, Mauricio G. S.; Pearce, Mary A.; Dai, Weiwen; Zhu, Liguang; Irving, James A.; Hoke, David E.; Kass, Itamar; Whisstock, James C.; Bottomley, Stephen P.; Webb, Geoffrey I.; McGowan, Sheena; Buckle, Ashley M.

    2016-01-01

    The rugged folding landscapes of functional proteins puts them at risk of misfolding and aggregation. Serine protease inhibitors, or serpins, are paradigms for this delicate balance between function and misfolding. Serpins exist in a metastable state that undergoes a major conformational change in order to inhibit proteases. However, conformational labiality of the native serpin fold renders them susceptible to misfolding, which underlies misfolding diseases such as α1-antitrypsin deficiency. To investigate how serpins balance function and folding, we used consensus design to create conserpin, a synthetic serpin that folds reversibly, is functional, thermostable, and polymerization resistant. Characterization of its structure, folding and dynamics suggest that consensus design has remodeled the folding landscape to reconcile competing requirements for stability and function. This approach may offer general benefits for engineering functional proteins that have risky folding landscapes, including the removal of aggregation-prone intermediates, and modifying scaffolds for use as protein therapeutics. PMID:27667094

  20. Cotranslational Protein Folding inside the Ribosome Exit Tunnel.

    PubMed

    Nilsson, Ola B; Hedman, Rickard; Marino, Jacopo; Wickles, Stephan; Bischoff, Lukas; Johansson, Magnus; Müller-Lucks, Annika; Trovato, Fabio; Puglisi, Joseph D; O'Brien, Edward P; Beckmann, Roland; von Heijne, Gunnar

    2015-09-08

    At what point during translation do proteins fold? It is well established that proteins can fold cotranslationally outside the ribosome exit tunnel, whereas studies of folding inside the exit tunnel have so far detected only the formation of helical secondary structure and collapsed or partially structured folding intermediates. Here, using a combination of cotranslational nascent chain force measurements, inter-subunit fluorescence resonance energy transfer studies on single translating ribosomes, molecular dynamics simulations, and cryoelectron microscopy, we show that a small zinc-finger domain protein can fold deep inside the vestibule of the ribosome exit tunnel. Thus, for small protein domains, the ribosome itself can provide the kind of sheltered folding environment that chaperones provide for larger proteins. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Cotranslational Protein Folding inside the Ribosome Exit Tunnel

    PubMed Central

    Nilsson, Ola B.; Hedman, Rickard; Marino, Jacopo; Wickles, Stephan; Bischoff, Lukas; Johansson, Magnus; Müller-Lucks, Annika; Trovato, Fabio; Puglisi, Joseph D.; O’Brien, Edward P.; Beckmann, Roland; von Heijne, Gunnar

    2015-01-01

    Summary At what point during translation do proteins fold? It is well established that proteins can fold cotranslationally outside the ribosome exit tunnel, whereas studies of folding inside the exit tunnel have so far detected only the formation of helical secondary structure and collapsed or partially structured folding intermediates. Here, using a combination of cotranslational nascent chain force measurements, inter-subunit fluorescence resonance energy transfer studies on single translating ribosomes, molecular dynamics simulations, and cryoelectron microscopy, we show that a small zinc-finger domain protein can fold deep inside the vestibule of the ribosome exit tunnel. Thus, for small protein domains, the ribosome itself can provide the kind of sheltered folding environment that chaperones provide for larger proteins. PMID:26321634

  2. A Particle Swarm Optimization-Based Approach with Local Search for Predicting Protein Folding.

    PubMed

    Yang, Cheng-Hong; Lin, Yu-Shiun; Chuang, Li-Yeh; Chang, Hsueh-Wei

    2017-10-01

    The hydrophobic-polar (HP) model is commonly used for predicting protein folding structures and hydrophobic interactions. This study developed a particle swarm optimization (PSO)-based algorithm combined with local search algorithms; specifically, the high exploration PSO (HEPSO) algorithm (which can execute global search processes) was combined with three local search algorithms (hill-climbing algorithm, greedy algorithm, and Tabu table), yielding the proposed HE-L-PSO algorithm. By using 20 known protein structures, we evaluated the performance of the HE-L-PSO algorithm in predicting protein folding in the HP model. The proposed HE-L-PSO algorithm exhibited favorable performance in predicting both short and long amino acid sequences with high reproducibility and stability, compared with seven reported algorithms. The HE-L-PSO algorithm yielded optimal solutions for all predicted protein folding structures. All HE-L-PSO-predicted protein folding structures possessed a hydrophobic core that is similar to normal protein folding.

  3. Effect of interactions with the chaperonin cavity on protein folding and misfolding.

    PubMed

    Sirur, Anshul; Knott, Michael; Best, Robert B

    2014-04-14

    Recent experimental and computational results have suggested that attractive interactions between a chaperonin and an enclosed substrate can have an important effect on the protein folding rate: it appears that folding may even be slower inside the cavity than under unconfined conditions, in contrast to what we would expect from excluded volume effects on the unfolded state. Here we examine systematically the dependence of the protein stability and folding rate on the strength of such attractive interactions between the chaperonin and substrate, by using molecular simulations of model protein systems in an idealised attractive cavity. Interestingly, we find a maximum in stability, and a rate which indeed slows down at high attraction strengths. We have developed a simple phenomenological model which can explain the variations in folding rate and stability due to differing effects on the free energies of the unfolded state, folded state, and transition state; changes in the diffusion coefficient along the folding coordinate are relatively small, at least for our simplified model. In order to investigate a possible role for these attractive interactions in folding, we have studied a recently developed model for misfolding in multidomain proteins. We find that, while encapsulation in repulsive cavities greatly increases the fraction of misfolded protein, sufficiently strong attractive protein-cavity interactions can strongly reduce the fraction of proteins reaching misfolded traps.

  4. Molecular Recognition by Templated Folding of an Intrinsically Disordered Protein

    NASA Astrophysics Data System (ADS)

    Toto, Angelo; Camilloni, Carlo; Giri, Rajanish; Brunori, Maurizio; Vendruscolo, Michele; Gianni, Stefano

    2016-02-01

    Intrinsically disordered proteins often become structured upon interacting with their partners. The mechanism of this ‘folding upon binding’ process, however, has not been fully characterised yet. Here we present a study of the folding of the intrinsically disordered transactivation domain of c-Myb (c-Myb) upon binding its partner KIX. By determining the structure of the folding transition state for the binding of wild-type and three mutational variants of KIX, we found a remarkable plasticity of the folding pathway of c-Myb. To explain this phenomenon, we show that the folding of c-Myb is templated by the structure of KIX. This adaptive folding behaviour, which occurs by heterogeneous nucleation, differs from the robust homogeneous nucleation typically observed for globular proteins. We suggest that this templated folding mechanism may enable intrinsically disordered proteins to achieve specific and reliable binding with multiple partners while avoiding aberrant interactions.

  5. Molecular Recognition by Templated Folding of an Intrinsically Disordered Protein

    PubMed Central

    Toto, Angelo; Camilloni, Carlo; Giri, Rajanish; Brunori, Maurizio; Vendruscolo, Michele; Gianni, Stefano

    2016-01-01

    Intrinsically disordered proteins often become structured upon interacting with their partners. The mechanism of this ‘folding upon binding’ process, however, has not been fully characterised yet. Here we present a study of the folding of the intrinsically disordered transactivation domain of c-Myb (c-Myb) upon binding its partner KIX. By determining the structure of the folding transition state for the binding of wild-type and three mutational variants of KIX, we found a remarkable plasticity of the folding pathway of c-Myb. To explain this phenomenon, we show that the folding of c-Myb is templated by the structure of KIX. This adaptive folding behaviour, which occurs by heterogeneous nucleation, differs from the robust homogeneous nucleation typically observed for globular proteins. We suggest that this templated folding mechanism may enable intrinsically disordered proteins to achieve specific and reliable binding with multiple partners while avoiding aberrant interactions. PMID:26912067

  6. Sampling Kinetic Protein Folding Pathways using All-Atom Models

    NASA Astrophysics Data System (ADS)

    Bolhuis, P. G.

    This chapter summarizes several computational strategies to study the kinetics of two-state protein folding using all atom models. After explaining the background of two state folding using energy landscapes I introduce common protein models and computational tools to study folding thermodynamics and kinetics. Free energy landscapes are able to capture the thermodynamics of two-state protein folding, and several methods for efficient sampling of these landscapes are presented. An accurate estimate of folding kinetics, the main topic of this chapter, is more difficult to achieve. I argue that path sampling methods are well suited to overcome the problems connected to the sampling of folding kinetics. Some of the major issues are illustrated in the case study on the folding of the GB1 hairpin.

  7. Evolution, Energy Landscapes and the Paradoxes of Protein Folding

    PubMed Central

    Wolynes, Peter G.

    2014-01-01

    Protein folding has been viewed as a difficult problem of molecular self-organization. The search problem involved in folding however has been simplified through the evolution of folding energy landscapes that are funneled. The funnel hypothesis can be quantified using energy landscape theory based on the minimal frustration principle. Strong quantitative predictions that follow from energy landscape theory have been widely confirmed both through laboratory folding experiments and from detailed simulations. Energy landscape ideas also have allowed successful protein structure prediction algorithms to be developed. The selection constraint of having funneled folding landscapes has left its imprint on the sequences of existing protein structural families. Quantitative analysis of co-evolution patterns allows us to infer the statistical characteristics of the folding landscape. These turn out to be consistent with what has been obtained from laboratory physicochemical folding experiments signalling a beautiful confluence of genomics and chemical physics. PMID:25530262

  8. Spectroscopic studies of protein folding: Linear and nonlinear methods

    PubMed Central

    Serrano, Arnaldo L; Waegele, Matthias M; Gai, Feng

    2012-01-01

    Although protein folding is a simple outcome of the underlying thermodynamics, arriving at a quantitative and predictive understanding of how proteins fold nevertheless poses huge challenges. Therefore, both advanced experimental and computational methods are continuously being developed and refined to probe and reveal the atomistic details of protein folding dynamics and mechanisms. Herein, we provide a concise review of recent developments in spectroscopic studies of protein folding, with a focus on new triggering and probing methods. In particular, we describe several laser-based techniques for triggering protein folding/unfolding on the picosecond and/or nanosecond timescales and various linear and nonlinear spectroscopic techniques for interrogating protein conformations, conformational transitions, and dynamics. PMID:22109973

  9. Untangling the Influence of a Protein Knot on Folding.

    PubMed

    Capraro, Dominique T; Jennings, Patricia A

    2016-03-08

    Entanglement and knots occur across all aspects of the physical world. Despite the common belief that knots are too complicated for incorporation into proteins, knots have been identified in the native fold of a growing number of proteins. The discovery of proteins with this unique backbone characteristic has challenged the preconceptions about the complexity of biological structures, as well as current folding theories. Given the intricacies of the knotted geometry, the interplay between a protein's fold, structure, and function is of particular interest. Interestingly, for most of these proteins, the knotted region appears critical both in folding and function, although full understanding of these contributions is still incomplete. Here, we experimentally reveal the impact of the knot on the landscape, the origin of the bistable nature of the knotted protein, and broaden the view of knot formation as uniquely decoupled from folding.

  10. Lattice model for rapidly folding protein-like heteropolymers.

    PubMed Central

    Shrivastava, I; Vishveshwara, S; Cieplak, M; Maritan, A; Banavar, J R

    1995-01-01

    Protein folding is a relatively fast process considering the astronomical number of conformations in which a protein could find itself. Within the framework of a lattice model, we show that one can design rapidly folding sequences by assigning the strongest attractive couplings to the contacts present in a target native state. Our protein design can be extended to situations with both attractive and repulsive contacts. Frustration is minimized by ensuring that all the native contacts are again strongly attractive. Strikingly, this ensures the inevitability of folding and accelerates the folding process by an order of magnitude. The evolutionary implications of our findings are discussed. PMID:7568102

  11. ProFold: Protein Fold Classification with Additional Structural Features and a Novel Ensemble Classifier

    PubMed Central

    2016-01-01

    Protein fold classification plays an important role in both protein functional analysis and drug design. The number of proteins in PDB is very large, but only a very small part is categorized and stored in the SCOPe database. Therefore, it is necessary to develop an efficient method for protein fold classification. In recent years, a variety of classification methods have been used in many protein fold classification studies. In this study, we propose a novel classification method called proFold. We import protein tertiary structure in the period of feature extraction and employ a novel ensemble strategy in the period of classifier training. Compared with existing similar ensemble classifiers using the same widely used dataset (DD-dataset), proFold achieves 76.2% overall accuracy. Another two commonly used datasets, EDD-dataset and TG-dataset, are also tested, of which the accuracies are 93.2% and 94.3%, higher than the existing methods. ProFold is available to the public as a web-server. PMID:27660761

  12. Thermodynamics of folding and association of lattice-model proteins

    NASA Astrophysics Data System (ADS)

    Cellmer, Troy; Bratko, Dusan; Prausnitz, John M.; Blanch, Harvey

    2005-05-01

    Closely related to the "protein folding problem" is the issue of protein misfolding and aggregation. Protein aggregation has been associated with the pathologies of nearly 20 human diseases and presents serious difficulties during the manufacture of pharmaceutical proteins. Computational studies of multiprotein systems have recently emerged as a powerful complement to experimental efforts aimed at understanding the mechanisms of protein aggregation. We describe the thermodynamics of systems containing two lattice-model 64-mers. A parallel tempering algorithm abates problems associated with glassy systems and the weighted histogram analysis method improves statistical quality. The presence of a second chain has a substantial effect on single-chain conformational preferences. The melting temperature is substantially reduced, and the increase in the population of unfolded states is correlated with an increase in interactions between chains. The transition from two native chains to a non-native aggregate is entropically favorable. Non-native aggregates receive ˜25% of their stabilizing energy from intraprotein contacts not found in the lowest-energy structure. Contact maps show that for non-native dimers, nearly 50% of the most probable interprotein contacts involve pairs of residues that form native contacts, suggesting that a domain-swapping mechanism is involved in self-association.

  13. Methyl Transfer by Substrate Signaling from a Knotted Protein Fold

    PubMed Central

    Christian, Thomas; Sakaguchi, Reiko; Perlinska, Agata P.; Lahoud, Georges; Ito, Takuhiro; Taylor, Erika A.; Yokoyama, Shigeyuki; Sulkowska, Joanna I.; Hou, Ya-Ming

    2017-01-01

    Proteins with knotted configurations are restricted in conformational space relative to unknotted proteins. Little is known if knotted proteins have sufficient dynamics to communicate between spatially separated substrate-binding sites. In bacteria, TrmD is a methyl transferase that uses a knotted protein fold to catalyze methyl transfer from S-adenosyl methionine (AdoMet) to G37-tRNA. The product m1G37-tRNA is essential for life as a determinant to maintain protein synthesis reading-frame. Using an integrated approach of structure, kinetic, and computational analysis, we show here that the structurally constrained TrmD knot is required for its catalytic activity. Unexpectedly, the TrmD knot has complex internal movements that respond to AdoMet binding and signaling. Most of the signaling propagates the free energy of AdoMet binding to stabilize tRNA binding and to assemble the active site. This work demonstrates new principles of knots as an organized structure that captures the free energies of substrate binding to facilitate catalysis. PMID:27571175

  14. A prevalent intraresidue hydrogen bond stabilizes proteins

    PubMed Central

    Newberry, Robert W.; Raines, Ronald T.

    2016-01-01

    Current limitations in de novo protein structure prediction and design suggest an incomplete understanding of the interactions that govern protein folding. Here we demonstrate that previously unappreciated hydrogen bonds occur within proteins between the amide proton and carbonyl oxygen of the same residue. Quantum calculations, infrared spectroscopy, and nuclear magnetic resonance spectroscopy show that these interactions share hallmark features of canonical hydrogen bonds. Biophysical analyses demonstrate that selective attenuation or enhancement of these C5 hydrogen bonds affects the stability of synthetic β-sheets. These interactions are common, affecting approximately 5% of all residues and 94% of proteins, and their cumulative impact provides several kcal/mol of conformational stability to a typical protein. C5 hydrogen bonds stabilize, especially, the flat β-sheets of the amyloid state, which is linked with Alzheimer’s disease and other neurodegenerative disorders. Inclusion of these interactions in computational force fields would improve models of protein folding, function, and dysfunction. PMID:27748749

  15. Effects of confinement and crowding on folding of model proteins.

    PubMed

    Wojciechowski, M; Cieplak, Marek

    2008-12-01

    We perform molecular dynamics simulations for a simple coarse-grained model of crambin placed inside of a softly repulsive sphere of radius R. The confinement makes folding at the optimal temperature slower and affects the folding scenarios, but both effects are not dramatic. The influence of crowding on folding are studied by placing several identical proteins within the sphere, denaturing them, and then by monitoring refolding. If the interactions between the proteins are dominated by the excluded volume effects, the net folding times are essentially like for a single protein. An introduction of inter-proteinic attractive contacts hinders folding when the strength of the attraction exceeds about a half of the value of the strength of the single protein contacts. The bigger the strength of the attraction, the more likely is the occurrence of aggregation and misfolding.

  16. Local versus global fold switching in protein evolution: insight from a three-letter continuous model

    NASA Astrophysics Data System (ADS)

    Holzgräfe, Christian; Wallin, Stefan

    2015-04-01

    Recent design experiments have demonstrated that some proteins can switch their folds in response to a small number of point mutations either directly, in a single mutational step, or via intermediate bistable sequences, which populate two different folds simultaneously. Here we explore the hypothesis that bistable intermediates are more common in switches between structurally similar folds while direct switches are more common between dissimilar folds. To this end, we use a reduced model with seven atoms per amino acid and three amino acid types as a biophysical basis for protein folding and stability. We compare a set of mutational pathways, selected for optimal stability properties, that lead to switches between β-hairpin and α-helix folds with 16 amino acids and between α +2β and 2α folds with 35 amino acids, respectively. Fold switching in each case is sharp, taking only a few mutations to be completed. While the sharpness of mutationally driven protein fold switching can be traced to a shift in the energy balance of the two native states, conformational entropy contributes to determining the point at which fold switching occurs along a pathway.

  17. Dodging the crisis of folding proteins with knots.

    PubMed

    Sułkowska, Joanna I; Sułkowski, Piotr; Onuchic, José

    2009-03-03

    Proteins with nontrivial topology, containing knots and slipknots, have the ability to fold to their native states without any additional external forces invoked. A mechanism is suggested for folding of these proteins, such as YibK and YbeA, that involves an intermediate configuration with a slipknot. It elucidates the role of topological barriers and backtracking during the folding event. It also illustrates that native contacts are sufficient to guarantee folding in approximately 1-2% of the simulations, and how slipknot intermediates are needed to reduce the topological bottlenecks. As expected, simulations of proteins with similar structure but with knot removed fold much more efficiently, clearly demonstrating the origin of these topological barriers. Although these studies are based on a simple coarse-grained model, they are already able to extract some of the underlying principles governing folding in such complex topologies.

  18. Dodging the crisis of folding proteins with knots

    NASA Astrophysics Data System (ADS)

    Sulkowska, Joanna

    2009-03-01

    Proteins with nontrivial topology, containing knots and slipknots, have the ability to fold to their native states without any additional external forces invoked. A mechanism is suggested for folding of these proteins, such as YibK and YbeA, which involves an intermediate configuration with a slipknot. It elucidates the role of topological barriers and backtracking during the folding event. It also illustrates that native contacts are sufficient to guarantee folding in around 1-2% of the simulations, and how slipknot intermediates are needed to reduce the topological bottlenecks. As expected, simulations of proteins with similar structure but with knot removed fold much more efficiently, clearly demonstrating the origin of these topological barriers. Although these studies are based on a simple coarse-grained model, they are already able to extract some of the underlying principles governing folding in such complex topologies.

  19. Dodging the crisis of folding proteins with knots

    PubMed Central

    Sułkowska, Joanna I.; Sułkowski, Piotr; Onuchic, José

    2009-01-01

    Proteins with nontrivial topology, containing knots and slipknots, have the ability to fold to their native states without any additional external forces invoked. A mechanism is suggested for folding of these proteins, such as YibK and YbeA, that involves an intermediate configuration with a slipknot. It elucidates the role of topological barriers and backtracking during the folding event. It also illustrates that native contacts are sufficient to guarantee folding in ≈1–2% of the simulations, and how slipknot intermediates are needed to reduce the topological bottlenecks. As expected, simulations of proteins with similar structure but with knot removed fold much more efficiently, clearly demonstrating the origin of these topological barriers. Although these studies are based on a simple coarse-grained model, they are already able to extract some of the underlying principles governing folding in such complex topologies. PMID:19211785

  20. Folding pathways of proteins with increasing degree of sequence identities but different structure and function.

    PubMed

    Giri, Rajanish; Morrone, Angela; Travaglini-Allocatelli, Carlo; Jemth, Per; Brunori, Maurizio; Gianni, Stefano

    2012-10-30

    Much experimental work has been devoted in comparing the folding behavior of proteins sharing the same fold but different sequence. The recent design of proteins displaying very high sequence identities but different 3D structure allows the unique opportunity to address the protein-folding problem from a complementary perspective. Here we explored by Φ-value analysis the pathways of folding of three different heteromorphic pairs, displaying increasingly high-sequence identity (namely, 30%, 77%, and 88%), but different structures called G(A) (a 3-α helix fold) and G(B) (an α/β fold). The analysis, based on 132 site-directed mutants, is fully consistent with the idea that protein topology is committed very early along the pathway of folding. Furthermore, data reveals that when folding approaches a perfect two-state scenario, as in the case of the G(A) domains, the structural features of the transition state appear very robust to changes in sequence composition. On the other hand, when folding is more complex and multistate, as for the G(B)s, there are alternative nuclei or accessible pathways that can be alternatively stabilized by altering the primary structure. The implications of our results in the light of previous work on the folding of different members belonging to the same protein family are discussed.

  1. Self-organized critical model for protein folding

    NASA Astrophysics Data System (ADS)

    Moret, M. A.

    2011-09-01

    The major factor that drives a protein toward collapse and folding is the hydrophobic effect. At the folding process a hydrophobic core is shielded by the solvent-accessible surface area of the protein. We study the fractal behavior of 5526 protein structures present in the Brookhaven Protein Data Bank. Power laws of protein mass, volume and solvent-accessible surface area are measured independently. The present findings indicate that self-organized criticality is an alternative explanation for the protein folding. Also we note that the protein packing is an independent and constant value because the self-similar behavior of the volumes and protein masses have the same fractal dimension. This power law guarantees that a protein is a complex system. From the analyzed data, q-Gaussian distributions seem to fit well this class of systems.

  2. Translation and folding of single proteins in real time.

    PubMed

    Wruck, Florian; Katranidis, Alexandros; Nierhaus, Knud H; Büldt, Georg; Hegner, Martin

    2017-05-30

    Protein biosynthesis is inherently coupled to cotranslational protein folding. Folding of the nascent chain already occurs during synthesis and is mediated by spatial constraints imposed by the ribosomal exit tunnel as well as self-interactions. The polypeptide's vectorial emergence from the ribosomal tunnel establishes the possible folding pathways leading to its native tertiary structure. How cotranslational protein folding and the rate of synthesis are linked to a protein's amino acid sequence is still not well defined. Here, we follow synthesis by individual ribosomes using dual-trap optical tweezers and observe simultaneous folding of the nascent polypeptide chain in real time. We show that observed stalling during translation correlates with slowed peptide bond formation at successive proline sequence positions and electrostatic interactions between positively charged amino acids and the ribosomal tunnel. We also determine possible cotranslational folding sites initiated by hydrophobic collapse for an unstructured and two globular proteins while directly measuring initial cotranslational folding forces. Our study elucidates the intricate relationship among a protein's amino acid sequence, its cotranslational nascent-chain elongation rate, and folding.

  3. Inferring the rate-length law of protein folding.

    PubMed

    Lane, Thomas J; Pande, Vijay S

    2013-01-01

    We investigate the rate-length scaling law of protein folding, a key undetermined scaling law in the analytical theory of protein folding. Available data yield statistically significant evidence for the existence of a rate-length law capable of predicting folding times to within about two orders of magnitude (over 9 decades of variation). Unambiguous determination of the functional form of such a law could provide key mechanistic insight into folding. Four proposed laws from literature (power law, exponential, and two stretched exponentials) are tested against one another, and it is found that the power law best explains the data by a modest margin. We conclude that more data is necessary to unequivocally infer the rate-length law. Such data could be obtained through a small number of protein folding experiments on large protein domains.

  4. High-resolution protein folding with a transferable potential.

    PubMed

    Hubner, Isaac A; Deeds, Eric J; Shakhnovich, Eugene I

    2005-12-27

    A generalized computational method for folding proteins with a fully transferable potential and geometrically realistic all-atom model is presented and tested on seven helix bundle proteins. The protocol, which includes graph-theoretical analysis of the ensemble of resulting folded conformations, was systematically applied and consistently produced structure predictions of approximately 3 A without any knowledge of the native state. To measure and understand the significance of the results, extensive control simulations were conducted. Graph theoretic analysis provides a means for systematically identifying the native fold and provides physical insight, conceptually linking the results to modern theoretical views of protein folding. In addition to presenting a method for prediction of structure and folding mechanism, our model suggests that an accurate all-atom amino acid representation coupled with a physically reasonable atomic interaction potential and hydrogen bonding are essential features for a realistic protein model.

  5. An Antifreeze Protein Folds with an Interior Network of More Than 400 Semi-Clathrate Waters

    SciTech Connect

    Sun, T.; Lin, F. -H.; Campbell, R. L.; Allingham, J. S.; Davies, P. L.

    2014-02-13

    When polypeptide chains fold into a protein, hydrophobic groups are compacted in the center with exclusion of water. We report the crystal structure of an alanine-rich antifreeze protein that retains ~400 waters in its core. The putative ice-binding residues of this dimeric, four-helix bundle protein point inwards and coordinate the interior waters into two intersecting polypentagonal networks. The bundle makes minimal protein contacts between helices, but is stabilized by anchoring to the semi-clathrate water monolayers through backbone carbonyl groups in the protein interior. The ordered waters extend outwards to the protein surface and likely are involved in ice binding. This protein fold supports both the anchored-clathrate water mechanism of antifreeze protein adsorption to ice and the water-expulsion mechanism of protein folding.

  6. Stability and folding of amphibian ribonuclease A superfamily members in comparison with mammalian homologues.

    PubMed

    Arnold, Ulrich

    2014-08-01

    Comparative studies on homologous proteins can provide knowledge on how limited changes in the primary structure find their expression in large effects on catalytic activity, stability or the folding behavior. For more than half a century, members of the ribonuclease A superfamily have been the subject of a myriad of studies on protein folding and stability. Both the unfolding and refolding kinetics as well as the structure of several folding intermediates of ribonuclease A have been characterized in detail. Moreover, the RNA-degrading activity of these enzymes provides a basis for their cytotoxicity, which renders them potential tumor therapeutics. Because amphibian ribonuclease A homologues evade the human ribonuclease inhibitor, they emerged as particularly promising candidates. Interestingly, the amphibian ribonuclease A homologues investigated to date are more stable than the mammalian homologues. Nevertheless, despite the generation of numerous genetically engineered variants, knowledge of the folding of amphibian ribonuclease A homologues remains rather limited. An exception is onconase, a ribonuclease A homologue from Rana pipiens, which has been characterized in detail. This review summarizes the data on the unfolding and refolding kinetics and pathways, as well on the stability of amphibian ribonuclease A homologues compared with those of ribonuclease A, the best known member of this superfamily. © 2014 FEBS.

  7. Fluorescence of Alexa Fluor Dye Tracks Protein Folding

    PubMed Central

    Lindhoud, Simon; Westphal, Adrie H.; Visser, Antonie J. W. G.; Borst, Jan Willem; van Mierlo, Carlo P. M.

    2012-01-01

    Fluorescence spectroscopy is an important tool for the characterization of protein folding. Often, a protein is labeled with appropriate fluorescent donor and acceptor probes and folding-induced changes in Förster Resonance Energy Transfer (FRET) are monitored. However, conformational changes of the protein potentially affect fluorescence properties of both probes, thereby profoundly complicating interpretation of FRET data. In this study, we assess the effects protein folding has on fluorescence properties of Alexa Fluor 488 (A488), which is commonly used as FRET donor. Here, A488 is covalently attached to Cys69 of apoflavodoxin from Azotobacter vinelandii. Although coupling of A488 slightly destabilizes apoflavodoxin, the three-state folding of this protein, which involves a molten globule intermediate, is unaffected. Upon folding of apoflavodoxin, fluorescence emission intensity of A488 changes significantly. To illuminate the molecular sources of this alteration, we applied steady state and time-resolved fluorescence techniques. The results obtained show that tryptophans cause folding-induced changes in quenching of Alexa dye. Compared to unfolded protein, static quenching of A488 is increased in the molten globule. Upon populating the native state both static and dynamic quenching of A488 decrease considerably. We show that fluorescence quenching of Alexa Fluor dyes is a sensitive reporter of conformational changes during protein folding. PMID:23056480

  8. Fluorescence of Alexa fluor dye tracks protein folding.

    PubMed

    Lindhoud, Simon; Westphal, Adrie H; Visser, Antonie J W G; Borst, Jan Willem; van Mierlo, Carlo P M

    2012-01-01

    Fluorescence spectroscopy is an important tool for the characterization of protein folding. Often, a protein is labeled with appropriate fluorescent donor and acceptor probes and folding-induced changes in Förster Resonance Energy Transfer (FRET) are monitored. However, conformational changes of the protein potentially affect fluorescence properties of both probes, thereby profoundly complicating interpretation of FRET data. In this study, we assess the effects protein folding has on fluorescence properties of Alexa Fluor 488 (A488), which is commonly used as FRET donor. Here, A488 is covalently attached to Cys69 of apoflavodoxin from Azotobacter vinelandii. Although coupling of A488 slightly destabilizes apoflavodoxin, the three-state folding of this protein, which involves a molten globule intermediate, is unaffected. Upon folding of apoflavodoxin, fluorescence emission intensity of A488 changes significantly. To illuminate the molecular sources of this alteration, we applied steady state and time-resolved fluorescence techniques. The results obtained show that tryptophans cause folding-induced changes in quenching of Alexa dye. Compared to unfolded protein, static quenching of A488 is increased in the molten globule. Upon populating the native state both static and dynamic quenching of A488 decrease considerably. We show that fluorescence quenching of Alexa Fluor dyes is a sensitive reporter of conformational changes during protein folding.

  9. Protein Solubility and Folding Enhancement by Interaction with RNA

    PubMed Central

    Choi, Seong Il; Han, Kyoung Sim; Kim, Chul Woo; Ryu, Ki-Sun; Kim, Byung Hee; Kim, Kyun-Hwan; Kim, Seo-Il; Kang, Tae Hyun; Shin, Hang-Cheol; Lim, Keo-Heun; Kim, Hyo Kyung; Hyun, Jeong-Min; Seong, Baik L.

    2008-01-01

    While basic mechanisms of several major molecular chaperones are well understood, this machinery has been known to be involved in folding of only limited number of proteins inside the cells. Here, we report a chaperone type of protein folding facilitated by interaction with RNA. When an RNA-binding module is placed at the N-terminus of aggregation-prone target proteins, this module, upon binding with RNA, further promotes the solubility of passenger proteins, potentially leading to enhancement of proper protein folding. Studies on in vitro refolding in the presence of RNA, coexpression of RNA molecules in vivo and the mutants with impaired RNA binding ability suggests that RNA can exert chaperoning effect on their bound proteins. The results suggest that RNA binding could affect the overall kinetic network of protein folding pathway in favor of productive folding over off-pathway aggregation. In addition, the RNA binding-mediated solubility enhancement is extremely robust for increasing soluble yield of passenger proteins and could be usefully implemented for high-throughput protein expression for functional and structural genomic research initiatives. The RNA-mediated chaperone type presented here would give new insights into de novo folding in vivo. PMID:18628952

  10. Protein folding, protein structure and the origin of life: Theoretical methods and solutions of dynamical problems

    NASA Technical Reports Server (NTRS)

    Weaver, D. L.

    1982-01-01

    Theoretical methods and solutions of the dynamics of protein folding, protein aggregation, protein structure, and the origin of life are discussed. The elements of a dynamic model representing the initial stages of protein folding are presented. The calculation and experimental determination of the model parameters are discussed. The use of computer simulation for modeling protein folding is considered.

  11. Unfolded protein ensembles, folding trajectories, and refolding rate prediction

    NASA Astrophysics Data System (ADS)

    Das, A.; Sin, B. K.; Mohazab, A. R.; Plotkin, S. S.

    2013-09-01

    Computer simulations can provide critical information on the unfolded ensemble of proteins under physiological conditions, by explicitly characterizing the geometrical properties of the diverse conformations that are sampled in the unfolded state. A general computational analysis across many proteins has not been implemented however. Here, we develop a method for generating a diverse conformational ensemble, to characterize properties of the unfolded states of intrinsically disordered or intrinsically folded proteins. The method allows unfolded proteins to retain disulfide bonds. We examined physical properties of the unfolded ensembles of several proteins, including chemical shifts, clustering properties, and scaling exponents for the radius of gyration with polymer length. A problem relating simulated and experimental residual dipolar couplings is discussed. We apply our generated ensembles to the problem of folding kinetics, by examining whether the ensembles of some proteins are closer geometrically to their folded structures than others. We find that for a randomly selected dataset of 15 non-homologous 2- and 3-state proteins, quantities such as the average root mean squared deviation between the folded structure and unfolded ensemble correlate with folding rates as strongly as absolute contact order. We introduce a new order parameter that measures the distance travelled per residue, which naturally partitions into a smooth "laminar" and subsequent "turbulent" part of the trajectory. This latter conceptually simple measure with no fitting parameters predicts folding rates in 0 M denaturant with remarkable accuracy (r = -0.95, p = 1 × 10-7). The high correlation between folding times and sterically modulated, reconfigurational motion supports the rapid collapse of proteins prior to the transition state as a generic feature in the folding of both two-state and multi-state proteins. This method for generating unfolded ensembles provides a powerful approach to

  12. Protein folding pathology in domestic animals*

    PubMed Central

    Gruys, Erik

    2004-01-01

    Fibrillar proteins form structural elements of cells and the extracellular matrix. Pathological lesions of fibrillar microanatomical structures, or secondary fibrillar changes in globular proteins are well known. A special group concerns histologically amorphous deposits, amyloid. The major characteristics of amyloid are: apple green birefringence after Congo red staining of histological sections, and non-branching 7–10 nm thick fibrils on electron microscopy revealing a high content of cross beta pleated sheets. About 25 different types of amyloid have been characterised. In animals, AA-amyloid is the most frequent type. Other types of amyloid in animals represent: AIAPP (in cats), AApoAI, AApoAII, localised AL-amyloid, amyloid in odontogenic or mammary tumors and amyloid in the brain. In old dogs Aβ and in sheep APrPsc-amyloid can be encountered. AA-amyloidosis is a systemic disorder with a precursor in blood, acute phase serum amyloid A (SAA). In chronic inflammatory processes AA-amyloid can be deposited. A rapid crystallization of SAA to amyloid fibrils on small beta-sheeted fragments, the ‘amyloid enhancing factor’ (AEF), is known and the AEF has been shown to penetrate the enteric barrier. Amyloid fibrils can aggregate from various precursor proteins in vitro in particular at acidic pH and when proteolytic fragments are formed. Molecular chaperones influence this process. Tissue data point to amyloid fibrillogenesis in lysosomes and near cell surfaces. A comparison can be made of the fibrillogenesis in prion diseases and in enhanced AA-amyloidosis. In the reactive form, acute phase SAA is the supply of the precursor protein, whereas in the prion diseases, cell membrane proteins form a structural source. Aβ-amyloid in brain tissue of aged dogs showing signs of dementia forms a canine counterpart of senile dementia of the Alzheimer type (ccSDAT) in man. Misfolded proteins remain potential food hazards. Developments concerning prevention of

  13. Polymer Uncrossing and Knotting in Protein Folding, and Their Role in Minimal Folding Pathways

    PubMed Central

    Mohazab, Ali R.; Plotkin, Steven S.

    2013-01-01

    We introduce a method for calculating the extent to which chain non-crossing is important in the most efficient, optimal trajectories or pathways for a protein to fold. This involves recording all unphysical crossing events of a ghost chain, and calculating the minimal uncrossing cost that would have been required to avoid such events. A depth-first tree search algorithm is applied to find minimal transformations to fold , , , and knotted proteins. In all cases, the extra uncrossing/non-crossing distance is a small fraction of the total distance travelled by a ghost chain. Different structural classes may be distinguished by the amount of extra uncrossing distance, and the effectiveness of such discrimination is compared with other order parameters. It was seen that non-crossing distance over chain length provided the best discrimination between structural and kinetic classes. The scaling of non-crossing distance with chain length implies an inevitable crossover to entanglement-dominated folding mechanisms for sufficiently long chains. We further quantify the minimal folding pathways by collecting the sequence of uncrossing moves, which generally involve leg, loop, and elbow-like uncrossing moves, and rendering the collection of these moves over the unfolded ensemble as a multiple-transformation “alignment”. The consensus minimal pathway is constructed and shown schematically for representative cases of an , , and knotted protein. An overlap parameter is defined between pathways; we find that proteins have minimal overlap indicating diverse folding pathways, knotted proteins are highly constrained to follow a dominant pathway, and proteins are somewhere in between. Thus we have shown how topological chain constraints can induce dominant pathway mechanisms in protein folding. PMID:23365638

  14. In situ protein folding and activation in bacterial inclusion bodies.

    PubMed

    Gonzalez-Montalban, Nuria; Natalello, Antonino; García-Fruitós, Elena; Villaverde, Antonio; Doglia, Silvia Maria

    2008-07-01

    Recent observations indicate that bacterial inclusion bodies formed in absence of the main chaperone DnaK result largely enriched in functional, properly folded recombinant proteins. Unfortunately, the molecular basis of this intriguing fact, with obvious biotechnological interest, remains unsolved. We have explored here two non-excluding physiological mechanisms that could account for this observation, namely selective removal of inactive polypeptides from inclusion bodies or in situ functional activation of the embedded proteins. By combining structural and functional analysis, we have not observed any preferential selection of inactive and misfolded protein species by the dissagregating machinery during inclusion body disintegration. Instead, our data strongly support that folding intermediates aggregated as inclusion bodies could complete their natural folding process once deposited in protein clusters, which conduces to significant functional activation. In addition, in situ folding and protein activation in inclusion bodies is negatively regulated by the chaperone DnaK.

  15. THEORY OF PROTEIN FOLDING: The Energy Landscape Perspective

    NASA Astrophysics Data System (ADS)

    Onuchic, Jose Nelson; Luthey-Schulten, Zaida; Wolynes, Peter G.

    1997-10-01

    The energy landscape theory of protein folding is a statistical description of a protein's potential surface. It assumes that folding occurs through organizing an ensemble of structures rather than through only a few uniquely defined structural intermediates. It suggests that the most realistic model of a protein is a minimally frustrated heteropolymer with a rugged funnel-like landscape biased toward the native structure. This statistical description has been developed using tools from the statistical mechanics of disordered systems, polymers, and phase transitions of finite systems. We review here its analytical background and contrast the phenomena in homopolymers, random heteropolymers, and protein-like heteropolymers that are kinetically and thermodynamically capable of folding. The connection between these statistical concepts and the results of minimalist models used in computer simulations is discussed. The review concludes with a brief discussion of how the theory helps in the interpretation of results from fast folding experiments and in the practical task of protein structure prediction.

  16. Protein folding by distributed computing and the denatured state ensemble.

    PubMed

    Marianayagam, Neelan J; Fawzi, Nicolas L; Head-Gordon, Teresa

    2005-11-15

    The distributed computing (DC) paradigm in conjunction with the folding@home (FH) client server has been used to study the folding kinetics of small peptides and proteins, giving excellent agreement with experimentally measured folding rates, although pathways sampled in these simulations are not always consistent with the folding mechanism. In this study, we use a coarse-grain model of protein L, whose two-state kinetics have been characterized in detail by using long-time equilibrium simulations, to rigorously test a FH protocol using approximately 10,000 short-time, uncoupled folding simulations starting from an extended state of the protein. We show that the FH results give non-Poisson distributions and early folding events that are unphysical, whereas longer folding events experience a correct barrier to folding but are not representative of the equilibrium folding ensemble. Using short-time, uncoupled folding simulations started from an equilibrated denatured state ensemble (DSE), we also do not get agreement with the equilibrium two-state kinetics because of overrepresented folding events arising from higher energy subpopulations in the DSE. The DC approach using uncoupled short trajectories can make contact with traditionally measured experimental rates and folding mechanism when starting from an equilibrated DSE, when the simulation time is long enough to sample the lowest energy states of the unfolded basin and the simulated free-energy surface is correct. However, the DC paradigm, together with faster time-resolved and single-molecule experiments, can also reveal the breakdown in the two-state approximation due to observation of folding events from higher energy subpopulations in the DSE.

  17. Understanding protein domain-swapping using structure-based models of protein folding.

    PubMed

    Mascarenhas, Nahren Manuel; Gosavi, Shachi

    2017-09-01

    In domain-swapping, two or more identical protein monomers exchange structural elements and fold into dimers or multimers whose units are structurally similar to the original monomer. Domain-swapping is of biotechnological interest because inhibiting domain-swapping can reduce disease-causing fibrillar protein aggregation. To achieve such inhibition, it is important to understand both the energetics that stabilize the domain-swapped structure and the protein dynamics that enable the swapping. Structure-based models (SBMs) encode the folded structure of the protein in their potential energy functions. SBMs have been successfully used to understand diverse aspects of monomer folding. Symmetrized SBMs model interactions between two identical protein chains using only intra-monomer interactions. Molecular dynamics simulations of such symmetrized SBMs have been used to correctly predict the domain-swapped structure and to understand the mechanism of domain-swapping. Here, we review such models and illustrate that monomer topology determines key aspects of domain-swapping. However, in some proteins, specifics of local energetic interactions modulate domain-swapping and these need to be added to the symmetrized SBMs. We then summarize some general principles of the mechanism of domain-swapping that emerge from the symmetrized SBM simulations. Finally, using our own results, we explore how symmetrized SBMs could be used to design domain-swapping in proteins. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Role of structural determinants in folding of the sandwich-like protein Pseudomonas aeruginosa azurin

    PubMed Central

    Wilson, Corey J.; Wittung-Stafshede, Pernilla

    2005-01-01

    An invariant substructure that forms two interlocked pairs of neighboring β-strands occurs in essentially all known sandwich-like proteins. Eight conserved positions in these strands were recently shown to act as structural determinants. To test whether the residues at these invariant positions are conserved for mechanistic (i.e., part of folding nucleus) or energetic (i.e., governing native-state stability) reasons, we characterized the folding behavior of eight point-mutated variants of the sandwich-like protein Pseudomonas aeruginosa apo-azurin. We find a simple relationship among the conserved positions: half of the residues form native-like interactions in the folding transition state, whereas the others do not participate in the folding nucleus but govern high native-state stability. Thus, evolutionary preservation of these specific positions gives both mechanistic and energetic advantages to members of the sandwich-like protein family. PMID:15753320

  19. Simulating protein folding and aggregation on the 10 second timescale

    NASA Astrophysics Data System (ADS)

    Pande, Vijay

    2007-03-01

    Understanding how proteins self-assemble or ``fold'' is a fundamental problem in biophysics. Moreover, the ability to understand and quantitatively predict folding kinetics would have many implications, especially in the area of diseases related to protein misfolding, such as Alzheimer's Disease. However, there are many challenges to simulating folding, most notably the great computational challenges of simulating protein folding with models with sufficient accuracy to make quantitative predictions of experiments. In my talk, I will discuss our recent work to combine distributed computing with a new theoretical technique (Markov State Models) in order to simulate folding on long timescales as well as the direct and quantitative experimental tests of these methods. I will conclude with the application of these methods to the study of the Abeta peptide, whose aggregation has been directly implicated as the toxic element in Alzheimer's Disease.

  20. Viral capsid proteins are segregated in structural fold space.

    PubMed

    Cheng, Shanshan; Brooks, Charles L

    2013-01-01

    Viral capsid proteins assemble into large, symmetrical architectures that are not found in complexes formed by their cellular counterparts. Given the prevalence of the signature jelly-roll topology in viral capsid proteins, we are interested in whether these functionally unique capsid proteins are also structurally unique in terms of folds. To explore this question, we applied a structure-alignment based clustering of all protein chains in VIPERdb filtered at 40% sequence identity to identify distinct capsid folds, and compared the cluster medoids with a non-redundant subset of protein domains in the SCOP database, not including the viral capsid entries. This comparison, using Template Modeling (TM)-score, identified 2078 structural "relatives" of capsid proteins from the non-capsid set, covering altogether 210 folds following the definition in SCOP. The statistical significance of the 210 folds shared by two sets of the same sizes, estimated from 10,000 permutation tests, is less than 0.0001, which is an upper bound on the p-value. We thus conclude that viral capsid proteins are segregated in structural fold space. Our result provides novel insight on how structural folds of capsid proteins, as opposed to their surface chemistry, might be constrained during evolution by requirement of the assembled cage-like architecture. Also importantly, our work highlights a guiding principle for virus-based nanoplatform design in a wide range of biomedical applications and materials science.

  1. Viral Capsid Proteins Are Segregated in Structural Fold Space

    PubMed Central

    Cheng, Shanshan; Brooks, Charles L.

    2013-01-01

    Viral capsid proteins assemble into large, symmetrical architectures that are not found in complexes formed by their cellular counterparts. Given the prevalence of the signature jelly-roll topology in viral capsid proteins, we are interested in whether these functionally unique capsid proteins are also structurally unique in terms of folds. To explore this question, we applied a structure-alignment based clustering of all protein chains in VIPERdb filtered at 40% sequence identity to identify distinct capsid folds, and compared the cluster medoids with a non-redundant subset of protein domains in the SCOP database, not including the viral capsid entries. This comparison, using Template Modeling (TM)-score, identified 2078 structural “relatives” of capsid proteins from the non-capsid set, covering altogether 210 folds following the definition in SCOP. The statistical significance of the 210 folds shared by two sets of the same sizes, estimated from 10,000 permutation tests, is less than 0.0001, which is an upper bound on the p-value. We thus conclude that viral capsid proteins are segregated in structural fold space. Our result provides novel insight on how structural folds of capsid proteins, as opposed to their surface chemistry, might be constrained during evolution by requirement of the assembled cage-like architecture. Also importantly, our work highlights a guiding principle for virus-based nanoplatform design in a wide range of biomedical applications and materials science. PMID:23408879

  2. Characterization of the denatured structure of pyrrolidone carboxyl peptidase from a hyperthermophile under nondenaturing conditions: role of the C-terminal alpha-helix of the protein in folding and stability.

    PubMed

    Iimura, Satoshi; Umezaki, Taro; Takeuchi, Makoto; Mizuguchi, Mineyuki; Yagi, Hiromasa; Ogasahara, Kyoko; Akutsu, Hideo; Noda, Yasuo; Segawa, Shin-ichi; Yutani, Katsuhide

    2007-03-27

    The cysteine-free pyrrolidone carboxyl peptidase (PCP-0SH) from a hyperthermophile, Pyrococcus furiosus, can be trapped in the denatured state under nondenaturing conditions, corresponding to the denatured structure that exists in equilibrium with the native state under physiological conditions. The denatured state is the initial state (D1 state) in the refolding process but differs from the completely denatured state (D2 state) in the concentrated denaturant. Also, it has been found that the D1 state corresponds to the heat-denatured state. To elucidate the structural basis of the D1 state, H/D exchange experiments with PCP-0SH were performed at pD 3.4 and 4 degrees C. The results indicated that amide protons in the C-terminal alpha6-helix region hardly exchanged in the D1 state with deuterium even after 7 days, suggesting that the alpha6-helix (from Ser188 to Glu205) of PCP-0SH was stably formed in the D1 state. In order to examine the role of the alpha6-helix in folding and stability, H/D exchange experiments with a mutant, A199P, at position 199 in the alpha6-helix region were performed. The alpha6-helix region of A199P in the D1 state was partially unprotected, while some hydrophobic residues were protected against the H/D exchange, although these hydrophobic residues were unprotected in the wild-type protein. These results suggest that the structure of A199P in the D1 state formed a temporary stable denatured structure with a non-native hydrophobic cluster and the unstructured alpha6-helix. Both the stability and the refolding rate decreased by the substitution of Pro for Ala199. We can conclude that the native-like helix (alpha6-helix) of PCP-0SH is already constructed in the D1 state and is necessary for efficient refolding into the native structure and stabilization of PCP-0SH.

  3. Transient misfolding dominates multidomain protein folding

    PubMed Central

    Borgia, Alessandro; Kemplen, Katherine R.; Borgia, Madeleine B.; Soranno, Andrea; Shammas, Sarah; Wunderlich, Bengt; Nettels, Daniel; Best, Robert B.; Clarke, Jane; Schuler, Benjamin

    2015-01-01

    Neighbouring domains of multidomain proteins with homologous tandem repeats have divergent sequences, probably as a result of evolutionary pressure to avoid misfolding and aggregation, particularly at the high cellular protein concentrations. Here we combine microfluidic-mixing single-molecule kinetics, ensemble experiments and molecular simulations to investigate how misfolding between the immunoglobulin-like domains of titin is prevented. Surprisingly, we find that during refolding of tandem repeats, independent of sequence identity, more than half of all molecules transiently form a wide range of misfolded conformations. Simulations suggest that a large fraction of these misfolds resemble an intramolecular amyloid-like state reported in computational studies. However, for naturally occurring neighbours with low sequence identity, these transient misfolds disappear much more rapidly than for identical neighbours. We thus propose that evolutionary sequence divergence between domains is required to suppress the population of long-lived, potentially harmful misfolded states, whereas large populations of transient misfolded states appear to be tolerated. PMID:26572969

  4. Transient misfolding dominates multidomain protein folding

    NASA Astrophysics Data System (ADS)

    Borgia, Alessandro; Kemplen, Katherine R.; Borgia, Madeleine B.; Soranno, Andrea; Shammas, Sarah; Wunderlich, Bengt; Nettels, Daniel; Best, Robert B.; Clarke, Jane; Schuler, Benjamin

    2015-11-01

    Neighbouring domains of multidomain proteins with homologous tandem repeats have divergent sequences, probably as a result of evolutionary pressure to avoid misfolding and aggregation, particularly at the high cellular protein concentrations. Here we combine microfluidic-mixing single-molecule kinetics, ensemble experiments and molecular simulations to investigate how misfolding between the immunoglobulin-like domains of titin is prevented. Surprisingly, we find that during refolding of tandem repeats, independent of sequence identity, more than half of all molecules transiently form a wide range of misfolded conformations. Simulations suggest that a large fraction of these misfolds resemble an intramolecular amyloid-like state reported in computational studies. However, for naturally occurring neighbours with low sequence identity, these transient misfolds disappear much more rapidly than for identical neighbours. We thus propose that evolutionary sequence divergence between domains is required to suppress the population of long-lived, potentially harmful misfolded states, whereas large populations of transient misfolded states appear to be tolerated.

  5. Learning generative models for protein fold families.

    PubMed

    Balakrishnan, Sivaraman; Kamisetty, Hetunandan; Carbonell, Jaime G; Lee, Su-In; Langmead, Christopher James

    2011-04-01

    We introduce a new approach to learning statistical models from multiple sequence alignments (MSA) of proteins. Our method, called GREMLIN (Generative REgularized ModeLs of proteINs), learns an undirected probabilistic graphical model of the amino acid composition within the MSA. The resulting model encodes both the position-specific conservation statistics and the correlated mutation statistics between sequential and long-range pairs of residues. Existing techniques for learning graphical models from MSA either make strong, and often inappropriate assumptions about the conditional independencies within the MSA (e.g., Hidden Markov Models), or else use suboptimal algorithms to learn the parameters of the model. In contrast, GREMLIN makes no a priori assumptions about the conditional independencies within the MSA. We formulate and solve a convex optimization problem, thus guaranteeing that we find a globally optimal model at convergence. The resulting model is also generative, allowing for the design of new protein sequences that have the same statistical properties as those in the MSA. We perform a detailed analysis of covariation statistics on the extensively studied WW and PDZ domains and show that our method out-performs an existing algorithm for learning undirected probabilistic graphical models from MSA. We then apply our approach to 71 additional families from the PFAM database and demonstrate that the resulting models significantly out-perform Hidden Markov Models in terms of predictive accuracy.

  6. Residual ordered structure in denatured proteins and the problem of protein folding.

    PubMed

    Basharov, Mahmud A

    2012-02-01

    Structural characteristics of numerous globular proteins in the denatured state have been reviewed using literature data. Recent more precise experiments show that in contrast to the conventional standpoint, proteins under strongly denaturing conditions do not unfold completely and adopt a random coil state, but contain significant residual ordered structure. These results cast doubt on the basis of the conventional approach representing the process of protein folding as a spontaneous transition of a polypeptide chain from the random coil state to the unique globular structure. The denaturation of proteins is explained in terms of the physical properties of proteins such as stability, conformational change, elasticity, irreversible denaturation, etc. The spontaneous renaturation of some denatured proteins most probably is merely the manifestation of the physical properties (e.g., the elasticity) of the proteins per se, caused by the residual structure present in the denatured state. The pieces of the ordered structure might be the centers of the initiation of renaturation, where the restoration of the initial native conformation of denatured proteins begins. Studies on the denaturation of proteins hardly clarify how the proteins fold into the native conformation during the successive residue-by-residue elongation of the polypeptide chain on the ribosome.

  7. Design and structure of an equilibrium protein folding intermediate: a hint into dynamical regions of proteins.

    PubMed

    Ayuso-Tejedor, Sara; Angarica, Vladimir Espinosa; Bueno, Marta; Campos, Luis A; Abián, Olga; Bernadó, Pau; Sancho, Javier; Jiménez, M Angeles

    2010-07-23

    Partly unfolded protein conformations close to the native state may play important roles in protein function and in protein misfolding. Structural analyses of such conformations which are essential for their fully physicochemical understanding are complicated by their characteristic low populations at equilibrium. We stabilize here with a single mutation the equilibrium intermediate of apoflavodoxin thermal unfolding and determine its solution structure by NMR. It consists of a large native region identical with that observed in the X-ray structure of the wild-type protein plus an unfolded region. Small-angle X-ray scattering analysis indicates that the calculated ensemble of structures is consistent with the actual degree of expansion of the intermediate. The unfolded region encompasses discontinuous sequence segments that cluster in the 3D structure of the native protein forming the FMN cofactor binding loops and the binding site of a variety of partner proteins. Analysis of the apoflavodoxin inner interfaces reveals that those becoming destabilized in the intermediate are more polar than other inner interfaces of the protein. Natively folded proteins contain hydrophobic cores formed by the packing of hydrophobic surfaces, while natively unfolded proteins are rich in polar residues. The structure of the apoflavodoxin thermal intermediate suggests that the regions of natively folded proteins that are easily responsive to thermal activation may contain cores of intermediate hydrophobicity.

  8. Evolutionary conservation and variation of protein folding pathways. Two protease inhibitor homologues from black mamba venom.

    PubMed

    Hollecker, M; Creighton, T E

    1983-08-05

    The pathways of unfolding and refolding of three homologous proteins are shown to be closely related. This implies that folding pathways, as well as the final folded conformation, have been largely conserved during the presumed evolutionary divergence of these proteins from a common ancestor. The pathways of the homologous proteins I and K from black mamba venom were determined here, using the disulphide interaction between their six cysteine residues to trap and identify the intermediate states, and are compared with those determined previously in the same way for the homologous bovine pancreatic trypsin inhibitor. The major one- and two-disulphide intermediates are the same with all three proteins; their kinetic roles are similar, although there are differences in the rates at which they are interconverted and in the minor intermediates that accumulate. As a consequence, different pathways may predominate with another homologous protein, even though the various most favourable pathways are the same. The energetics of the folding transitions and the stabilities of the folded states differ substantially for the three proteins. The differences in stabilities of the fully folded states are primarily reflected kinetically in the rate-determining rearrangements of the native-like conformation; the rates and equilibria of the other steps are not affected markedly. With the less stable proteins, the direct folding pathway of sequential formation of the three correct disulphide bonds becomes significant and is the most facile when considered on a solely intramolecular basis.

  9. SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition

    PubMed Central

    Melvin, Iain; Ie, Eugene; Kuang, Rui; Weston, Jason; Stafford, William Noble; Leslie, Christina

    2007-01-01

    Background Predicting a protein's structural class from its amino acid sequence is a fundamental problem in computational biology. Much recent work has focused on developing new representations for protein sequences, called string kernels, for use with support vector machine (SVM) classifiers. However, while some of these approaches exhibit state-of-the-art performance at the binary protein classification problem, i.e. discriminating between a particular protein class and all other classes, few of these studies have addressed the real problem of multi-class superfamily or fold recognition. Moreover, there are only limited software tools and systems for SVM-based protein classification available to the bioinformatics community. Results We present a new multi-class SVM-based protein fold and superfamily recognition system and web server called SVM-Fold, which can be found at . Our system uses an efficient implementation of a state-of-the-art string kernel for sequence profiles, called the profile kernel, where the underlying feature representation is a histogram of inexact matching k-mer frequencies. We also employ a novel machine learning approach to solve the difficult multi-class problem of classifying a sequence of amino acids into one of many known protein structural classes. Binary one-vs-the-rest SVM classifiers that are trained to recognize individual structural classes yield prediction scores that are not comparable, so that standard "one-vs-all" classification fails to perform well. Moreover, SVMs for classes at different levels of the protein structural hierarchy may make useful predictions, but one-vs-all does not try to combine these multiple predictions. To deal with these problems, our method learns relative weights between one-vs-the-rest classifiers and encodes information about the protein structural hierarchy for multi-class prediction. In large-scale benchmark results based on the SCOP database, our code weighting approach significantly improves

  10. Identifying folding nucleus based on residue contact networks of proteins.

    PubMed

    Li, Jie; Wang, Jun; Wang, Wei

    2008-06-01

    In the native structure of a protein, all the residues are tightly parked together in a specific order following its folding and every residue contacts with some spatially neighbor residues. A residue contact network can be constructed by defining the residues as nodes and the native contacts as edges. During the folding of small single-domain proteins, there is a set of contacts (or bonds), defined as the folding nucleus (FN), which is formed around the transition state, i.e., a rate-limiting barrier located at about the middle between the unfolded states and the native state on the free energy landscape. Such a FN plays an essential role in the folding dynamics and the residues, which form the related contacts called as folding nucleus residues (FNRs). In this work, the FNRs in proteins are identified by using quantities which characterize the topology of residue contact networks of proteins. By comparing the specificities of residues with the network quantities K(R), L(R), and D(R), up to 90% FNRs of six typical proteins found experimentally are identified. It is found that the FNRs behave the full-closeness centrals rather than degree or closeness centers in the residue contact network, implying that they are important to the folding cooperativity of proteins. Our study shows that the FNRs can be identified solely from the native structures of proteins based on the analysis of residue contact network without any knowledge of the transition state ensemble. (c) 2008 Wiley-Liss, Inc.

  11. Solitons and protein folding: An In Silico experiment

    NASA Astrophysics Data System (ADS)

    Ilieva, N.; Dai, J.; Sieradzan, A.; Niemi, A.

    2015-10-01

    Protein folding [1] is the process of formation of a functional 3D structure from a random coil — the shape in which amino-acid chains leave the ribosome. Anfinsen's dogma states that the native 3D shape of a protein is completely determined by protein's amino acid sequence. Despite the progress in understanding the process rate and the success in folding prediction for some small proteins, with presently available physics-based methods it is not yet possible to reliably deduce the shape of a biologically active protein from its amino acid sequence. The protein-folding problem endures as one of the most important unresolved problems in science; it addresses the origin of life itself. Furthermore, a wrong fold is a common cause for a protein to lose its function or even endanger the living organism. Soliton solutions of a generalized discrete non-linear Schrödinger equation (GDNLSE) obtained from the energy function in terms of bond and torsion angles κ and τ provide a constructive theoretical framework for describing protein folds and folding patterns [2]. Here we study the dynamics of this process by means of molecular-dynamics simulations. The soliton manifestation is the pattern helix-loop-helix in the secondary structure of the protein, which explains the importance of understanding loop formation in helical proteins. We performed in silico experiments for unfolding one subunit of the core structure of gp41 from the HIV envelope glycoprotein (PDB ID: 1AIK [3]) by molecular-dynamics simulations with the MD package GROMACS. We analyzed 80 ns trajectories, obtained with one united-atom and two different all-atom force fields, to justify the side-chain orientation quantification scheme adopted in the studies and to eliminate force-field based artifacts. Our results are compatible with the soliton model of protein folding and provide first insight into soliton-formation dynamics.

  12. Hierarchical classification of protein folds using a novel ensemble classifier.

    PubMed

    Lin, Chen; Zou, Ying; Qin, Ji; Liu, Xiangrong; Jiang, Yi; Ke, Caihuan; Zou, Quan

    2013-01-01

    The analysis of biological information from protein sequences is important for the study of cellular functions and interactions, and protein fold recognition plays a key role in the prediction of protein structures. Unfortunately, the prediction of protein fold patterns is challenging due to the existence of compound protein structures. Here, we processed the latest release of the Structural Classification of Proteins (SCOP, version 1.75) database and exploited novel techniques to impressively increase the accuracy of protein fold classification. The techniques proposed in this paper include ensemble classifying and a hierarchical framework, in the first layer of which similar or redundant sequences were deleted in two manners; a set of base classifiers, fused by various selection strategies, divides the input into seven classes; in the second layer of which, an analogous ensemble method is adopted to predict all protein folds. To our knowledge, it is the first time all protein folds can be intelligently detected hierarchically. Compared with prior studies, our experimental results demonstrated the efficiency and effectiveness of our proposed method, which achieved a success rate of 74.21%, which is much higher than results obtained with previous methods (ranging from 45.6% to 70.5%). When applied to the second layer of classification, the prediction accuracy was in the range between 23.13% and 46.05%. This value, which may not be remarkably high, is scientifically admirable and encouraging as compared to the relatively low counts of proteins from most fold recognition programs. The web server Hierarchical Protein Fold Prediction (HPFP) is available at http://datamining.xmu.edu.cn/software/hpfp.

  13. Hierarchical Classification of Protein Folds Using a Novel Ensemble Classifier

    PubMed Central

    Qin, Ji; Liu, Xiangrong; Jiang, Yi; Ke, Caihuan; Zou, Quan

    2013-01-01

    The analysis of biological information from protein sequences is important for the study of cellular functions and interactions, and protein fold recognition plays a key role in the prediction of protein structures. Unfortunately, the prediction of protein fold patterns is challenging due to the existence of compound protein structures. Here, we processed the latest release of the Structural Classification of Proteins (SCOP, version 1.75) database and exploited novel techniques to impressively increase the accuracy of protein fold classification. The techniques proposed in this paper include ensemble classifying and a hierarchical framework, in the first layer of which similar or redundant sequences were deleted in two manners; a set of base classifiers, fused by various selection strategies, divides the input into seven classes; in the second layer of which, an analogous ensemble method is adopted to predict all protein folds. To our knowledge, it is the first time all protein folds can be intelligently detected hierarchically. Compared with prior studies, our experimental results demonstrated the efficiency and effectiveness of our proposed method, which achieved a success rate of 74.21%, which is much higher than results obtained with previous methods (ranging from 45.6% to 70.5%). When applied to the second layer of classification, the prediction accuracy was in the range between 23.13% and 46.05%. This value, which may not be remarkably high, is scientifically admirable and encouraging as compared to the relatively low counts of proteins from most fold recognition programs. The web server Hierarchical Protein Fold Prediction (HPFP) is available at http://datamining.xmu.edu.cn/software/hpfp. PMID:23437146

  14. Protein folding simulations and structure predictions

    NASA Astrophysics Data System (ADS)

    Okamoto, Yuko

    2001-12-01

    In complex systems such as spin glasses and proteins, conventional simulations in the canonical ensemble will get trapped in states of energy local minima. We employ the simulated annealing method and generalized-ensemble algorithms in order to overcome this multiple-minima problem. Besides simulated annealing, three well-known generalized-ensemble algorithms, namely, multicanonical algorithm, simulated tempering, and replica-exchange method, are described. We then present three new generalized-ensemble algorithms based on the combinations of the three methods.

  15. Desolvation effects and topology-dependent protein folding

    NASA Astrophysics Data System (ADS)

    Ferguson, Allison; Liu, Zhirong; Chan, Hue Sun

    2007-03-01

    As a protein folds, water molecules must be excluded from the hydrophobic core, and thus desolvation barriers between the protein's constituents must be crossed in order to reach the final folded state. Previous research on continuum Go-like protein models has demonstrated that pairwise-additive desolvation potentials lead to more thermodynamically and kinetically cooperative folding/unfolding transitions (Z. Liu and H. S. Chan, Phys. Biol. 2, S75-S85, 2005). The present work focuses on the role of this elementary desolvation potential in improving predictions of the well-known topology-folding rate relationship (K. W. Plaxco et al, J. Mol. Biol. 277, 985-994, 1998) of small single-domain proteins. Recent computational studies without desolvation barriers have shown (S. Wallin and H. S. Chan, J. Phys.: Condens. Matt. 18, S307-S328, 2006) that the observed correlation between topological parameters and folding rates is because these parameters may be proxies for rate-determining properties of the transition state, such as the activation free energy δG^ and activation conformational entropy δS^. Including the desolvation barrier in the model results in stronger correlations between measures of topology and simulated folding rates / transition state properties, reinforcing the theory that even simple representations of the desolvation effect are important for understanding crucial features of protein folding.

  16. Molecular Origins of Internal Friction Effects on Protein Folding Rates

    PubMed Central

    Sirur, Anshul

    2014-01-01

    Recent experiments on protein folding dynamics have revealed strong evidence for internal friction effects. That is, observed relaxation times are not simply proportional to the solvent viscosity as might be expected if the solvent were the only source of friction. However, a molecular interpretation of this remarkable phenomenon is currently lacking. Here, we use all-atom simulations of peptide and protein folding in explicit solvent, to probe the origin of the unusual viscosity dependence. We find that an important contribution to this effect, explaining the viscosity dependence of helix formation and the folding of a helix-containing protein, is the insensitivity of torsion angle isomerization to solvent friction. The influence of this landscape roughness can, in turn, be quantitatively explained by a rate theory including memory friction. This insensitivity of local barrier crossing to solvent friction is expected to contribute to the viscosity dependence of folding rates in larger proteins. PMID:24986114

  17. Folding and self-assembly of a small protein complex

    PubMed Central

    Sieradzan, Adam K.; Liwo, Adam; Hansmann, Ulrich H.E.

    2012-01-01

    The synthetic homotetrameric ββα (BBAT1) protein possesses a stable quaternary structure with a ββα fold. Because of its small size (a total of 84 residues), the homotetramer is an excellent model system with which to study the self-assembly and protein-protein interactions. We find from replica exchange molecular dynamics simulations with the coarse-grain UNRES force field that the folding and association pathway consists of three well-separated steps, where that association to a tetramer precedes and facilitates folding of the four chains. At room temperature the tetramer exists in an ensemble of diverse structures. The crystal structure becomes energetically favored only when the molecule is put in a dense and crystal-like environment. The observed picture of folding promoted by association may mirror the mechanism according to which intrinsically unfolded proteins assume their functional structure. PMID:24039552

  18. Nonsymmetric Two-Body Score Function for Protein Fold Recognition:

    NASA Astrophysics Data System (ADS)

    Heo, Muyoung; Cheon, Mookyung; Chang, Iksoo

    The usual two-body score (energy) function to recognize native folds of proteins is Miyazawa-Jernigan (MJ) pairwise-contact function. The pairwise-contact parameters between two amino acids in MJ function are symmetric in a sense that a directional order of amino acids sequence along the backbone of a protein is ignored in constructing score parameters. Here we report that we succeeded in constructing a nonsymmetric two-body score function, capturing a directional order of amino acids sequence, by a perceptron learning and a protein threading. We considered pairs of two adjacent amino acids that are separated by two consecutive peptide bonds with the backbone directionality from the N-terminus to the C-terminus of a protein. We also considered the local environmental character, such as the secondary structures and the hydrophobicity (solvation), of amino acids in protein structures. The score is a corresponding propensity for a directional alignment of these two adjacent amino acids with their local environments. The resulting score function simultaneously recognized native folds of 1006 proteins covering all representative proteins with a homology less than 30% among them. The quality of this score function was validated by a threading test of new distinct 382 proteins with a homology less than 90% among them, and it entailed a high success ratio for recognizing native folds of 364 (95.3%) proteins. It showed a good feasibility of designing protein score functions for protein fold recognition by a perceptron learning and a protein threading.

  19. Mechanical Modeling and Computer Simulation of Protein Folding

    ERIC Educational Resources Information Center

    Prigozhin, Maxim B.; Scott, Gregory E.; Denos, Sharlene

    2014-01-01

    In this activity, science education and modern technology are bridged to teach students at the high school and undergraduate levels about protein folding and to strengthen their model building skills. Students are guided from a textbook picture of a protein as a rigid crystal structure to a more realistic view: proteins are highly dynamic…

  20. Mechanical Modeling and Computer Simulation of Protein Folding

    ERIC Educational Resources Information Center

    Prigozhin, Maxim B.; Scott, Gregory E.; Denos, Sharlene

    2014-01-01

    In this activity, science education and modern technology are bridged to teach students at the high school and undergraduate levels about protein folding and to strengthen their model building skills. Students are guided from a textbook picture of a protein as a rigid crystal structure to a more realistic view: proteins are highly dynamic…

  1. Assembling a Correctly Folded and Functional Heptahelical Membrane Protein by Protein Trans-splicing*

    PubMed Central

    Mehler, Michaela; Eckert, Carl Elias; Busche, Alena; Kulhei, Jennifer; Michaelis, Jonas; Becker-Baldus, Johanna; Wachtveitl, Josef; Dötsch, Volker; Glaubitz, Clemens

    2015-01-01

    Protein trans-splicing using split inteins is well established as a useful tool for protein engineering. Here we show, for the first time, that this method can be applied to a membrane protein under native conditions. We provide compelling evidence that the heptahelical proteorhodopsin can be assembled from two separate fragments consisting of helical bundles A and B and C, D, E, F, and G via a splicing site located in the BC loop. The procedure presented here is on the basis of dual expression and ligation in vivo. Global fold, stability, and photodynamics were analyzed in detergent by CD, stationary, as well as time-resolved optical spectroscopy. The fold within lipid bilayers has been probed by high field and dynamic nuclear polarization-enhanced solid-state NMR utilizing a 13C-labeled retinal cofactor and extensively 13C-15N-labeled protein. Our data show unambiguously that the ligation product is identical to its non-ligated counterpart. Furthermore, our data highlight the effects of BC loop modifications onto the photocycle kinetics of proteorhodopsin. Our data demonstrate that a correctly folded and functionally intact protein can be produced in this artificial way. Our findings are of high relevance for a general understanding of the assembly of membrane proteins for elucidating intramolecular interactions, and they offer the possibility of developing novel labeling schemes for spectroscopic applications. PMID:26405032

  2. Thermodynamics of protein folding: a random matrix formulation.

    PubMed

    Shukla, Pragya

    2010-10-20

    The process of protein folding from an unfolded state to a biologically active, folded conformation is governed by many parameters, e.g. the sequence of amino acids, intermolecular interactions, the solvent, temperature and chaperon molecules. Our study, based on random matrix modeling of the interactions, shows, however, that the evolution of the statistical measures, e.g. Gibbs free energy, heat capacity, and entropy, is single parametric. The information can explain the selection of specific folding pathways from an infinite number of possible ways as well as other folding characteristics observed in computer simulation studies.

  3. Misplaced helix slows down ultrafast pressure-jump protein folding

    PubMed Central

    Prigozhin, Maxim B.; Liu, Yanxin; Wirth, Anna Jean; Kapoor, Shobhna; Winter, Roland; Schulten, Klaus; Gruebele, Martin

    2013-01-01

    Using a newly developed microsecond pressure-jump apparatus, we monitor the refolding kinetics of the helix-stabilized five-helix bundle protein λ*YA, the Y22W/Q33Y/G46,48A mutant of λ-repressor fragment 6–85, from 3 μs to 5 ms after a 1,200-bar P-drop. In addition to a microsecond phase, we observe a slower 1.4-ms phase during refolding to the native state. Unlike temperature denaturation, pressure denaturation produces a highly reversible helix-coil-rich state. This difference highlights the importance of the denatured initial condition in folding experiments and leads us to assign a compact nonnative helical trap as the reason for slower P-jump–induced refolding. To complement the experiments, we performed over 50 μs of all-atom molecular dynamics P-drop refolding simulations with four different force fields. Two of the force fields yield compact nonnative states with misplaced α-helix content within a few microseconds of the P-drop. Our overall conclusion from experiment and simulation is that the pressure-denatured state of λ*YA contains mainly residual helix and little β-sheet; following a fast P-drop, at least some λ*YA forms misplaced helical structure within microseconds. We hypothesize that nonnative helix at helix-turn interfaces traps the protein in compact nonnative conformations. These traps delay the folding of at least some of the population for 1.4 ms en route to the native state. Based on molecular dynamics, we predict specific mutations at the helix-turn interfaces that should speed up refolding from the pressure-denatured state, if this hypothesis is correct. PMID:23620522

  4. Solitons and protein folding: An In Silico experiment

    SciTech Connect

    Ilieva, N.; Dai, J.; Sieradzan, A.; Niemi, A.

    2015-10-28

    Protein folding [1] is the process of formation of a functional 3D structure from a random coil — the shape in which amino-acid chains leave the ribosome. Anfinsen’s dogma states that the native 3D shape of a protein is completely determined by protein’s amino acid sequence. Despite the progress in understanding the process rate and the success in folding prediction for some small proteins, with presently available physics-based methods it is not yet possible to reliably deduce the shape of a biologically active protein from its amino acid sequence. The protein-folding problem endures as one of the most important unresolved problems in science; it addresses the origin of life itself. Furthermore, a wrong fold is a common cause for a protein to lose its function or even endanger the living organism. Soliton solutions of a generalized discrete non-linear Schrödinger equation (GDNLSE) obtained from the energy function in terms of bond and torsion angles κ and τ provide a constructive theoretical framework for describing protein folds and folding patterns [2]. Here we study the dynamics of this process by means of molecular-dynamics simulations. The soliton manifestation is the pattern helix–loop–helix in the secondary structure of the protein, which explains the importance of understanding loop formation in helical proteins. We performed in silico experiments for unfolding one subunit of the core structure of gp41 from the HIV envelope glycoprotein (PDB ID: 1AIK [3]) by molecular-dynamics simulations with the MD package GROMACS. We analyzed 80 ns trajectories, obtained with one united-atom and two different all-atom force fields, to justify the side-chain orientation quantification scheme adopted in the studies and to eliminate force-field based artifacts. Our results are compatible with the soliton model of protein folding and provide first insight into soliton-formation dynamics.

  5. Origination of the Protein Fold Repertoire from Oily Pluripotent Peptides

    PubMed Central

    Mannige, Ranjan V.

    2014-01-01

    While the repertoire of protein folds that exists today underlies most of life’s capabilities, our mechanistic picture of protein fold origination is incomplete. This paper discusses a hypothetical mechanism for the emergence of the protein fold repertoire from highly dynamic and collapsed peptides, exemplified by peptides with high oil content or hydrophobicity. These peptides are called pluripotent to emphasize their capacity to evolve into numerous folds transiently available to them. As evidence, the paper will discuss previous simulation work on the superior fold evolvability of oily peptides, trace (“fossil”) evidence within proteomes seen today, and a general relationship between protein dynamism and evolvability. Aside from implications on the origination of protein folds, the hypothesis implies that the vanishing utility of a random peptide in protein origination may be relatively exaggerated, as some random peptides with a certain composition (e.g., oily) may fare better than others. In later sections, the hypothesis is discussed in the context of existing discussions regarding the spontaneous origination of biomolecules. PMID:28250375

  6. Folding propensity of intrinsically disordered proteins by osmotic stress

    SciTech Connect

    Mansouri, Amanda L.; Grese, Laura N.; Rowe, Erica L.; Pino, James C.; Chennubhotla, S. Chakra; Ramanathan, Arvind; O'Neill, Hugh Michael; Berthelier, Valerie; Stanley, Christopher B.

    2016-10-11

    Proteins imparted with intrinsic disorder conduct a range of essential cellular functions. To better understand the folding and hydration properties of intrinsically disordered proteins (IDPs), we used osmotic stress to induce conformational changes in nuclear co-activator binding domain (NCBD) and activator for thyroid hormone and retinoid receptor (ACTR). Osmotic stress was applied by the addition of small and polymeric osmolytes, where we discovered that water contributions to NCBD folding always exceeded those for ACTR. Both NCBD and ACTR were found to gain a-helical structure with increasing osmotic stress, consistent with their folding upon NCBD/ACTR complex formation. Using small-angle neutron scattering (SANS), we further characterized NCBD structural changes with the osmolyte ethylene glycol. Here a large reduction in overall size initially occurred before substantial secondary structural change. In conclusion, by focusing on folding propensity, and linked hydration changes, we uncover new insights that may be important for how IDP folding contributes to binding.

  7. Enhanced protein folding by removal of kinetic traps

    NASA Astrophysics Data System (ADS)

    Liu, Yanxin; Chapagain, Prem; Parra, Jose; Gerstman, Bernard

    2007-03-01

    The presence of non-native kinetic traps along the free energy landscape of a protein may significantly lengthen the overall folding time so that the folding process becomes unreliable. We used a computational 3-D lattice model to investigate the free energy landscape of a model alpha helical hairpin peptide. We used two slightly different sequences and show that strategic substitutions of only a few amino acid residues greatly enhance the folding process. These strategic substitutions prevent the formation of long-lived misfolded configurations which not only lengthen the folding time but also may cause unwanted aggregation. Detailed kinetic and thermodynamic analysis was carried out for the folding of these two sequences and the results are consistent with the experimental and molecular dynamics simulations of small helical bundle proteins.

  8. Simulation studies of protein folding/unfolding equilibrium under polar and nonpolar confinement.

    PubMed

    Tian, Jianhui; Garcia, Angel E

    2011-09-28

    We study the equilibrium folding/unfolding thermodynamics of a small globular miniprotein, the Trp cage, that is confined to the interior of a 2 nm radius fullerene ball. The interactions of the fullerene surface are changed from nonpolar to polar to mimic the interior of the GroEL/ES chaperonin that assists proteins to fold in vivo. We find that nonpolar confinement stabilizes the folded state of the protein due to the effects of volume reduction that destabilize the unfolded state and also due to interactions with the fullerene surface. For the Trp cage, polar confinement has a net destabilizing effect that results from the stabilizing confinement and the competitive exclusion effect that keeps the protein away from the surface hydration shell and stronger interactions between charged side chains in the protein and the polar surface that compete against the formation of an ion pair that stabilizes the protein folded state. We show that confinement effects due to volume reduction can be overcome by sequence-specific interactions of the protein side chains with the encapsulating surface. This study shows that there is a complex balance among many competing effects that determine the mechanism of GroEL chaperonin in enhancing the folding rate of polypeptide inside its cavity.

  9. Predicting folding-unfolding transitions in proteins without a priori knowledge of the folded state

    NASA Astrophysics Data System (ADS)

    Okan, Osman; Turgut, Deniz; Garcia, Angel; Ozisik, Rahmi

    2013-03-01

    The common computational method of studying folding transitions in proteins is to compare simulated conformations against the folded structure, but this method obviously requires the folded structure to be known beforehand. In the current study, we show that the use of bond orientational order parameter (BOOP) Ql [Steinhardt PJ, Nelson DR, Ronchetti M, Phys. Rev. B 1983, 28, 784] is a viable alternative to the commonly adopted root mean squared distance (RMSD) measure in probing conformational transitions. Replica exchange molecular dynamics simulations of the trp-cage protein (with 20 residues) in TIP-3P water were used to compare BOOP against RMSD. The results indicate that the correspondence between BOOP and RMSD time series become stronger with increasing l. We finally show that robust linear models that incorporate different Ql can be parameterized from a given replica run and can be used to study other replica trajectories. This work is partially supported by NSF DUE-1003574.

  10. Orchestration of secretory protein folding by ER chaperones

    PubMed Central

    Gidalevitz, Tali; Stevens, Fred; Argon, Yair

    2013-01-01

    The endoplasmic reticulum is a major compartment of protein biogenesis in the cell, dedicated to production of secretory, membrane and organelle proteins. The secretome has distinct structural and post-translational characteristics, since folding in the ER occurs in an environment that is distinct in terms of its ionic composition, dynamics and requirements for quality contol. The folding machinery in the ER therefore includes chaperones and folding enzymes that introduce, monitor and react to disulfide bonds, glycans, and fluctuations of luminal calcium. We describe the major chaperone networks in the lumen and discuss how they have distinct modes of operation that enable cells to accomplish highly efficient production of the secretome. PMID:23507200

  11. Thermally triggered self-assembly of folded proteins into vesicles.

    PubMed

    Park, Won Min; Champion, Julie A

    2014-12-31

    We report thermally triggered self-assembly of folded proteins into vesicles that incorporates globular proteins as building blocks. Leucine zipper coiled coils were combined with either globular proteins or elastin-like polypeptides as recombinant fusion proteins, which form "rod-coil" and "globule-rod-coil" protein complex amphiphiles. In aqueous solution, they self-assembled into hollow vesicles via temperature-responsive inverse phase transition. The characteristic of the protein vesicle membranes enables preferential encapsulation of simultaneously formed protein coacervate. Furthermore, the type of encapsulated cargo extends to small molecules and nanoparticles. Our approach offers a versatile strategy to create protein vesicles as vehicles with biological functionality.

  12. A comprehensive database of verified experimental data on protein folding kinetics

    PubMed Central

    Wagaman, Amy S; Coburn, Aaron; Brand-Thomas, Itai; Dash, Barnali; Jaswal, Sheila S

    2014-01-01

    Insights into protein folding rely increasingly on the synergy between experimental and theoretical approaches. Developing successful computational models requires access to experimental data of sufficient quantity and high quality. We compiled folding rate constants for what initially appeared to be 184 proteins from 15 published collections/web databases. To generate the highest confidence in the dataset, we verified the reported lnkf value and exact experimental construct and conditions from the original experimental report(s). The resulting comprehensive database of 126 verified entries, ACPro, will serve as a freely accessible resource (https://www.ats. amherst.edu/protein/) for the protein folding community to enable confident testing of predictive models. In addition, we provide a streamlined submission form for researchers to add new folding kinetics results, requiring specification of all the relevant experimental information according to the standards proposed in 2005 by the protein folding consortium organized by Plaxco. As the number and diversity of proteins whose folding kinetics are studied expands, our curated database will enable efficient and confident incorporation of new experimental results into a standardized collection. This database will support a more robust symbiosis between experiment and theory, leading ultimately to more rapid and accurate insights into protein folding, stability, and dynamics. PMID:25229122

  13. Stability and solubility of proteins from extremophiles.

    PubMed

    Greaves, Richard B; Warwicker, Jim

    2009-03-13

    Charges are important for hyperthermophile protein structure and function. However, the number of charges and their predicted contributions to folded state stability are not correlated, implying that more charge does not imply greater stability. The charge properties that distinguish hyperthermophile proteins also differentiate psychrophile proteins from mesophile proteins, but in the opposite direction and to a smaller extent. We conclude that charge number relates to solubility, whereas protein stability is determined by charge location. Most other structural properties are poorly separated over the ambient temperature range, apart from the burial of certain amino acids. Of particular interest are large non-polar sidechains that tend to increased exposure in proteins evolved to function at higher temperatures. Looking at tryptophan in more detail, this increase is often located close to the termini of secondary structure elements, and is discussed in terms of a novel potential role in protein thermostabilisation.

  14. Fundamental processes of protein folding: measuring the energetic balance between helix formation and hydrophobic interactions.

    PubMed

    Xian, Wujing; Connolly, Peter J; Oslin, Marcela; Hausrath, Andrew C; Osterhout, John J

    2006-09-01

    Theories of protein folding often consider contributions from three fundamental elements: loops, hydrophobic interactions, and secondary structures. The pathway of protein folding, the rate of folding, and the final folded structure should be predictable if the energetic contributions to folding of these fundamental factors were properly understood. alphatalpha is a helix-turn-helix peptide that was developed by de novo design to provide a model system for the study of these important elements of protein folding. Hydrogen exchange experiments were performed on selectively 15N-labeled alphatalpha and used to calculate the stability of hydrogen bonds within the peptide. The resulting pattern of hydrogen bond stability was analyzed using a version of Lifson-Roig model that was extended to include a statistical parameter for tertiary interactions. This parameter, x, represents the additional statistical weight conferred upon a helical state by a tertiary contact. The hydrogen exchange data is most closely fit by the XHC model with an x parameter of 9.25. Thus the statistical weight of a hydrophobic tertiary contact is approximately 5.8x the statistical weight for helix formation by alanine. The value for the x parameter derived from this study should provide a basis for the understanding of the relationship between hydrophobic cluster formation and secondary structure formation during the early stages of protein folding.

  15. Calcium-induced Folding and Stabilization of the Pseudomonas aeruginosa Alkaline Protease*

    PubMed Central

    Zhang, Liang; Conway, James F.; Thibodeau, Patrick H.

    2012-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that contributes to the mortality of immunocompromised individuals and patients with cystic fibrosis. Pseudomonas infection presents clinical challenges due to its ability to form biofilms and modulate host-pathogen interactions through the secretion of virulence factors. The calcium-regulated alkaline protease (AP), a member of the repeats in toxin (RTX) family of proteins, is implicated in multiple modes of infection. A series of full-length and truncation mutants were purified for structural and functional studies to evaluate the role of Ca2+ in AP folding and activation. We find that Ca2+ binding induces RTX folding, which serves to chaperone the folding of the protease domain. Subsequent association of the RTX domain with an N-terminal α-helix stabilizes AP. These results provide a basis for the Ca2+-mediated regulation of AP and suggest mechanisms by which Ca2+ regulates the RTX family of virulence factors. PMID:22170064

  16. Self-consistent calculation of protein folding pathways

    NASA Astrophysics Data System (ADS)

    Orioli, S.; a Beccara, S.; Faccioli, P.

    2017-08-01

    We introduce an iterative algorithm to efficiently simulate protein folding and other conformational transitions, using state-of-the-art all-atom force fields. Starting from the Langevin equation, we obtain a self-consistent stochastic equation of motion, which directly yields the reaction pathways. From the solution of this set of equations we derive a stochastic estimate of the reaction coordinate. We validate this approach against the results of plain MD simulations of the folding of a small protein, which were performed on the Anton supercomputer. In order to explore the computational efficiency of this algorithm, we apply it to generate a folding pathway of a protein that consists of 130 amino acids and has a folding rate of the order of s-1.

  17. The Energy Computation Paradox and ab initio Protein Folding

    PubMed Central

    Faver, John C.; Benson, Mark L.; He, Xiao; Roberts, Benjamin P.; Wang, Bing; Marshall, Michael S.; Sherrill, C. David; Merz, Kenneth M.

    2011-01-01

    The routine prediction of three-dimensional protein structure from sequence remains a challenge in computational biochemistry. It has been intuited that calculated energies from physics-based scoring functions are able to distinguish native from nonnative folds based on previous performance with small proteins and that conformational sampling is the fundamental bottleneck to successful folding. We demonstrate that as protein size increases, errors in the computed energies become a significant problem. We show, by using error probability density functions, that physics-based scores contain significant systematic and random errors relative to accurate reference energies. These errors propagate throughout an entire protein and distort its energy landscape to such an extent that modern scoring functions should have little chance of success in finding the free energy minima of large proteins. Nonetheless, by understanding errors in physics-based score functions, they can be reduced in a post-hoc manner, improving accuracy in energy computation and fold discrimination. PMID:21541343

  18. Protein folding in HP model on hexagonal lattices with diagonals

    PubMed Central

    2014-01-01

    Three dimensional structure prediction of a protein from its amino acid sequence, known as protein folding, is one of the most studied computational problem in bioinformatics and computational biology. Since, this is a hard problem, a number of simplified models have been proposed in literature to capture the essential properties of this problem. In this paper we introduce the hexagonal lattices with diagonals to handle the protein folding problem considering the well researched HP model. We give two approximation algorithms for protein folding on this lattice. Our first algorithm is a 53-approximation algorithm, which is based on the strategy of partitioning the entire protein sequence into two pieces. Our next algorithm is also based on partitioning approaches and improves upon the first algorithm. PMID:24564789

  19. Topology and structural self-organization in folded proteins

    NASA Astrophysics Data System (ADS)

    Lundgren, M.; Krokhotin, Andrey; Niemi, Antti J.

    2013-10-01

    Topological methods are indispensable in theoretical studies of particle physics, condensed matter physics, and gravity. These powerful techniques have also been applied to biological physics. For example, knowledge of DNA topology is pivotal to the understanding as to how living cells function. Here, the biophysical repertoire of topological methods is extended, with the aim to understand and characterize the global structure of a folded protein. For this, the elementary concept of winding number of a vector field on a plane is utilized to introduce a topological quantity called the folding index of a crystallographic protein. It is observed that in the case of high resolution protein crystals, the folding index, when evaluated over the entire length of the crystallized protein backbone, has a very clear and strong propensity towards integer values. The observation proposes that the way how a protein folds into its biologically active conformation is a structural self-organization process with a topological facet that relates to the concept of solitons. It is proposed that the folding index has a potential to become a useful tool for the global, topological characterization of the folding pathways.

  20. Strategies to stabilize compact folding and minimize aggregation of antibody-based fragments

    PubMed Central

    Schrum, Adam G.

    2015-01-01

    Monoclonal antibodies (mAbs) have proven to be useful for development of new therapeutic drugs and diagnostic techniques. To overcome the difficulties posed by their complex structure and folding, reduce undesired immunogenicity, and improve pharmacokinetic properties, a plethora of different Ab fragments have been developed. These include recombinant Fab and Fv segments that can display improved properties over those of the original mAbs upon which they are based. Antibody (Ab) fragments such as Fabs, scFvs, diabodies, and nanobodies, all contain the variable Ig domains responsible for binding to specific antigenic epitopes, allowing for specific targeting of pathological cells and/or molecules. These fragments can be easier to produce, purify and refold than a full Ab, and due to their smaller size they can be well absorbed and distributed into target tissues. However, the physicochemical and structural properties of the immunoglobulin (Ig) domain, upon which the folding and conformation of all these Ab fragments is based, can limit the stability of Ab-based drugs. The Ig domain is fairly sensitive to unfolding and aggregation when produced out of the structural context of an intact Ab molecule. When unfolded, Ab fragments may lose their specificity as well as establish non-native interactions leading to protein aggregation. Aggregated antibody fragments display altered pharmacokinetic and immunogenic properties that can augment their toxicity. Therefore, much effort has been placed in understanding the factors impacting the stability of Ig folding at two different levels: 1) intrinsically, by studying the effects of the amino acid sequence on Ig folding; 2) extrinsically, by determining the environmental conditions that may influence the stability of Ig folding. In this review we will describe the structure of the Ig domain, and the factors that impact its stability, to set the context for the different approaches currently used to achieve stable recombinant Ig

  1. From Helix–Coil Transitions to Protein Folding

    PubMed Central

    Scheraga, Harold A.

    2009-01-01

    An evolution of procedures to simulate protein structure and folding pathways is described. From an initial focus on the helix–coil transition and on hydrogen-bonding and hydrophobic interactions, our original attempts to determine protein structure and folding pathways were based on an experimental approach. Experiments on the oxidative folding of reduced bovine pancreatic ribonuclease A (RNase A) led to a mechanism by which the molecule folded to the native structure by a minimum of four different pathways. The experiments with RNase A were followed by development of a molecular mechanics approach, first, making use of global optimization procedures and then with molecular dynamics (MD), evolving from an all-atom to a united-residue model. This hierarchical MD approach facilitated probing of the folding trajectory to longer time scales than with all-atom MD, and hence led to the determination of complete folding trajectories, thus far for a protein containing as many as 75 amino acid residues. With increasing refinement of the computational procedures, the computed results are coming closer to experimental observations, providing an understanding as to how physics directs the folding process. PMID:18008324

  2. GroEL stimulates protein folding through forced unfolding

    PubMed Central

    Lin, Zong; Madan, Damian; Rye, Hays S

    2013-01-01

    Many proteins cannot fold without the assistance of chaperonin machines like GroEL and GroES. The nature of this assistance, however, remains poorly understood. Here we demonstrate that unfolding of a substrate protein by GroEL enhances protein folding. We first show that capture of a protein on the open ring of a GroEL–ADP–GroES complex, GroEL’s physiological acceptor state for non-native proteins in vivo, leaves the substrate protein in an unexpectedly compact state. Subsequent binding of ATP to the same GroEL ring causes rapid, forced unfolding of the substrate protein. Notably, the fraction of the substrate protein that commits to the native state following GroES binding and protein release into the GroEL–GroES cavity is proportional to the extent of substrate-protein unfolding. Forced protein unfolding is thus a central component of the multilayered stimulatory mechanism used by GroEL to drive protein folding. PMID:18311152

  3. Protein folding and aggregation: two sides of the same coin in the condensation of proteins revealed by pressure studies.

    PubMed

    Silva, Jerson L; Cordeiro, Yraima; Foguel, Debora

    2006-03-01

    Hydrostatic pressure can be considered as "thermodynamic tweezers" to approach the protein folding problem and to study the cases when folding goes wrong leading to the protein folding disorders. The main outcome of the use of high pressure in this field is the stabilization of folding intermediates such as partially folded conformations, thus allowing us to characterize their structural properties. Because partially folded intermediates are usually at the intersection between productive and off-pathway folding, they may give rise to misfolded proteins, aggregates and amyloids that are involved in many neurodegenerative diseases, such as transmissible spongiform encephalopathies, Alzheimer's disease, Parkinson's disease and Huntington's disease. Of particular interest is the use of hydrostatic pressure to unveil the structural transitions in prion conversion and to populate possible intermediates in the folding/unfolding pathway of the prion protein. The main hypothesis for prion diseases proposes that the cellular protein (PrP(C)) can be altered into a misfolded, beta-sheet-rich isoform, the PrP(Sc) (from scrapie). It has been demonstrated that hydrostatic pressure affects the balance between the different prion species. The last findings on the application of high pressure on amyloidogenic proteins will be discussed here as regards to their energetic and volumetric properties. The use of high pressure promises to contribute to the identification of the underlying mechanisms of these neurodegenerative diseases and to develop new therapeutic approaches.

  4. Protein folding by a quasi-static-like process: A first-order state transition

    NASA Astrophysics Data System (ADS)

    Chang, Chia-Ching; Su, Ya-Chi; Cheng, Ming-Sung; Kan, Lou-Sing

    2002-08-01

    In this paper we report that quasi-static-like processes, in which stable intermediates were introduced carefully and deliberately, may be used to reversibly unfold and refold purified native porcine growth hormone. Through circular dichroism (CD) and dynamic light scattering (DLS), we were able to study the secondary structure conformational changes, tertiary structure thermal stabilities, and the particle size distributions of both the intermediates and the final folded product. The CD data showed that the secondary structure was restored in the initial folding stage, whereas the tertiary structure within the protein was restored one step before the last folding stage, as elucidated by thermal stability experiments. DLS analysis suggested that the average hydrodynamic radii of the folding intermediates shrunk to nativelike size immediately after the first folding stage. Our data suggested that the denaturant-containing protein folding reaction is a first-order-like state transition process. This quasi-static-like process may be useful in the prevention of aggregate formation in protein purification and thus can be used in protein engineering to improve the overall yield from harvesting proteins.

  5. Folding of Small Proteins Using Constrained Molecular Dynamics

    PubMed Central

    Balaraman, Gouthaman S.; Park, In-Hee; Jain, Abhinandan; Vaidehi, Nagarajan

    2011-01-01

    The focus of this paper is to examine whether conformational search using constrained molecular dynamics (MD) method is more enhanced and enriched towards “native-like” structures compared to all-atom MD for the protein folding as a model problem. Constrained MD methods provide an alternate MD tool for protein structure prediction and structure refinement. It is computationally expensive to perform all-atom simulations of protein folding because the processes occur on a timescale of microseconds. Compared to the all-atom MD simulation, constrained MD methods have the advantage that stable dynamics can be achieved for larger time steps and the number of degrees of freedom is an order of magnitude smaller, leading to a decrease in computational cost. We have developed a generalized constrained MD method that allows the user to “freeze and thaw” torsional degrees of freedom as fit for the problem studied. We have used this method to perform all-torsion constrained MD in implicit solvent coupled with the replica exchange method to study folding of small proteins with various secondary structural motifs such as, α-helix (polyalanine, WALP16), β-turn (1E0Q), and a mixed motif protein (Trp-cage). We demonstrate that constrained MD replica exchange method exhibits a wider conformational search than all-atom MD with increased enrichment of near native structures. “Hierarchical” constrained MD simulations, where the partially formed helical regions in the initial stretch of the all-torsion folding simulation trajectory of Trp-cage were frozen, showed a better sampling of near native structures than all-torsion constrained MD simulations. This is in agreement with the zipping-and-assembly folding model put forth by Dill and coworkers for folding proteins. The use of hierarchical “freeze and thaw” clustering schemes in constrained MD simulation can be used to sample conformations that contribute significantly to folding of proteins. PMID:21591767

  6. Folding coupled with assembly in split green fluorescent proteins studied by structure-based molecular simulations.

    PubMed

    Ito, Mashiho; Ozawa, Takeaki; Takada, Shoji

    2013-10-24

    Split green fluorescent protein (GFP) is a powerful tool for imaging of protein-protein interactions in living cells, but molecular mechanisms of the folding and the assembly of split GFPs are poorly understood. Here, using a simple Go model that is based on the energy landscape theory, we performed comprehensive folding simulations of six split GFPs with different split points. Of the six, the fluorescence recovery was reported in four but not in the other two. In the simulations, we found that when the complete folding and assembly were observed, the N-terminal fragment always folded earlier than the C-terminal fragment. The in silico folding rates of the split GFPs were larger for the four split GFPs that the fluorescence recovery was reported in literature. The stability of standalone N-terminal fragments were well-correlated with the folding rates of split GFPs. These suggest that the efficient folding and assembly of split GFPs are realized when the N-terminal fragment folds spontaneously with the central α-helix as a nucleation core and that the C-terminal fragment folding is coupled to the assembly to the preformed N-terminal fragment.

  7. De Novo Evolutionary Emergence of a Symmetrical Protein Is Shaped by Folding Constraints

    PubMed Central

    Smock, Robert G.; Yadid, Itamar; Dym, Orly; Clarke, Jane; Tawfik, Dan S.

    2016-01-01

    Summary Molecular evolution has focused on the divergence of molecular functions, yet we know little about how structurally distinct protein folds emerge de novo. We characterized the evolutionary trajectories and selection forces underlying emergence of β-propeller proteins, a globular and symmetric fold group with diverse functions. The identification of short propeller-like motifs (<50 amino acids) in natural genomes indicated that they expanded via tandem duplications to form extant propellers. We phylogenetically reconstructed 47-residue ancestral motifs that form five-bladed lectin propellers via oligomeric assembly. We demonstrate a functional trajectory of tandem duplications of these motifs leading to monomeric lectins. Foldability, i.e., higher efficiency of folding, was the main parameter leading to improved functionality along the entire evolutionary trajectory. However, folding constraints changed along the trajectory: initially, conflicts between monomer folding and oligomer assembly dominated, whereas subsequently, upon tandem duplication, tradeoffs between monomer stability and foldability took precedence. PMID:26806127

  8. Learning To Fold Proteins Using Energy Landscape Theory

    PubMed Central

    Schafer, N.P.; Kim, B.L.; Zheng, W.; Wolynes, P.G.

    2014-01-01

    This review is a tutorial for scientists interested in the problem of protein structure prediction, particularly those interested in using coarse-grained molecular dynamics models that are optimized using lessons learned from the energy landscape theory of protein folding. We also present a review of the results of the AMH/AMC/AMW/AWSEM family of coarse-grained molecular dynamics protein folding models to illustrate the points covered in the first part of the article. Accurate coarse-grained structure prediction models can be used to investigate a wide range of conceptual and mechanistic issues outside of protein structure prediction; specifically, the paper concludes by reviewing how AWSEM has in recent years been able to elucidate questions related to the unusual kinetic behavior of artificially designed proteins, multidomain protein misfolding, and the initial stages of protein aggregation. PMID:25308991

  9. Chaperone networks: Tipping the balance in protein folding diseases

    PubMed Central

    Voisine, Cindy; Pedersen, Jesper Søndergaard; Morimoto, Richard I.

    2012-01-01

    Adult-onset neurodegeneration and other protein conformational diseases are associated with the appearance, persistence, and accumulation of misfolded and aggregation prone proteins. To protect the proteome from long-term damage, the cell expresses a highly integrated protein homeostasis (proteostasis) machinery to ensure that proteins are properly expressed, folded, and cleared, and to recognize damaged proteins. Molecular chaperones have a central role in proteostasis as they have been shown to be essential to prevent the accumulation of alternate folded proteotoxic states as occurs in protein conformation diseases exemplified by neurodegeneration. Studies using invertebrate models expressing proteins associated with Huntington's disease, Alzheimer's disease, ALS, and Parkinson's disease have provided insights into the genetic networks and stress signaling pathways that regulate the proteostasis machinery to prevent cellular dysfunction, tissue pathology, and organismal failure. These events appear to be further amplified by aging and provide evidence that age-related failures in proteostasis may be a common element in many diseases. PMID:20472062

  10. Protein folding: Vexing debates on a fundamental problem.

    PubMed

    Gianni, Stefano; Jemth, Per

    2016-05-01

    The folding of proteins has been at the heart of protein chemistry and biophysics ever since the pioneering experiments by the labs of Fred Richards and Christian Anfinsen. But, despite nearly 60 years of intense research, there are unresolved issues and a lively debate regarding some aspects of this fundamental problem. In this review we give a personal account on some key topics in the field: (i) the nature of the denatured state of a protein, (ii) nucleation sites in the folding reaction, and (iii) the time it takes for individual molecules to traverse the transition state.

  11. Engineering chimaeric proteins from fold fragments: 'hopeful monsters' in protein design.

    PubMed

    Höcker, Birte

    2013-10-01

    Modern highly complex proteins evolved from much simpler and less specialized subunits. The same concept can be applied in protein engineering to construct new well-folded proteins. Hybrid proteins or chimaeras can be built from contemporary protein fragments through illegitimate recombination. Even parts from different globular folds can be fitted together using rational design methodologies. Furthermore, intrinsic functional properties encoded in the fold fragments allow rapid adaptation of the new proteins and thus provide interesting starting scaffolds for further redesign.

  12. Probing possible downhill folding: native contact topology likely places a significant constraint on the folding cooperativity of proteins with approximately 40 residues.

    PubMed

    Badasyan, Artem; Liu, Zhirong; Chan, Hue Sun

    2008-12-12

    Experiments point to appreciable variations in folding cooperativity among natural proteins with approximately 40 residues, indicating that the behaviors of these proteins are valuable for delineating the contributing factors to cooperative folding. To explore the role of native topology in a protein's propensity to fold cooperatively and how native topology might constrain the degree of cooperativity achievable by a given set of physical interactions, we compared folding/unfolding kinetics simulated using three classes of native-centric C(alpha) chain models with different interaction schemes. The approach was applied to two homologous 45-residue fragments from the peripheral subunit-binding domain family and a 39-residue fragment of the N-terminal domain of ribosomal protein L9. Free-energy profiles as functions of native contact number were computed to assess the heights of thermodynamic barriers to folding. In addition, chevron plots of folding/unfolding rates were constructed as functions of native stability to facilitate comparison with available experimental data. Although common Gō-like models with pairwise Lennard-Jones-type interactions generally fold less cooperatively than real proteins, the rank ordering of cooperativity predicted by these models is consistent with experiment for the proteins investigated, showing increasing folding cooperativity with increasing nonlocality of a protein's native contacts. Models that account for water-expulsion (desolvation) barriers and models with many-body (nonadditive) interactions generally entail higher degrees of folding cooperativity indicated by more linear model chevron plots, but the rank ordering of cooperativity remains unchanged. A robust, experimentally valid rank ordering of model folding cooperativity independent of the multiple native-centric interaction schemes tested here argues that native topology places significant constraints on how cooperatively a protein can fold.

  13. Accurate prediction of cellular co-translational folding indicates proteins can switch from post- to co-translational folding

    NASA Astrophysics Data System (ADS)

    Nissley, Daniel A.; Sharma, Ajeet K.; Ahmed, Nabeel; Friedrich, Ulrike A.; Kramer, Günter; Bukau, Bernd; O'Brien, Edward P.

    2016-02-01

    The rates at which domains fold and codons are translated are important factors in determining whether a nascent protein will co-translationally fold and function or misfold and malfunction. Here we develop a chemical kinetic model that calculates a protein domain's co-translational folding curve during synthesis using only the domain's bulk folding and unfolding rates and codon translation rates. We show that this model accurately predicts the course of co-translational folding measured in vivo for four different protein molecules. We then make predictions for a number of different proteins in yeast and find that synonymous codon substitutions, which change translation-elongation rates, can switch some protein domains from folding post-translationally to folding co-translationally--a result consistent with previous experimental studies. Our approach explains essential features of co-translational folding curves and predicts how varying the translation rate at different codon positions along a transcript's coding sequence affects this self-assembly process.

  14. A role for indels in the evolution of Cro protein folds.

    PubMed

    Stewart, Katie L; Nelson, Michael R; Eaton, Karen V; Anderson, William J; Cordes, Matthew H J

    2013-11-01

    Insertions and deletions in protein sequences, or indels, can disrupt structure and may result in changes in protein folds during evolution or in association with alternative splicing. Pfl 6 and Xfaso 1 are two proteins in the Cro family that share a common ancestor but have different folds. Sequence alignments of the two proteins show two gaps, one at the N terminus, where the sequence of Xfaso 1 is two residues shorter, and one near the center of the sequence, where the sequence of Pfl 6 is five residues shorter. To test the potential importance of indels in Cro protein evolution, we generated hybrid variants of Pfl 6 and Xfaso 1 with indels in one or both regions, chosen according to several plausible sequence alignments. All but one deletion variant completely unfolded both proteins, showing that a longer N-terminal sequence was critical for Pfl 6 folding and a longer central region sequence was critical for Xfaso 1 folding. By contrast, Xfaso 1 tolerated a longer N-terminal sequence with little destabilization, and Pfl 6 tolerated central region insertions, albeit with substantial effects on thermal stability and some perturbation of the surrounding structure. None of the mutations appeared to convert one stable fold into the other. On the basis of this two-protein comparison, short insertion and deletion mutations probably played a role in evolutionary fold change in the Cro family, but were also not the only factors. Copyright © 2013 Wiley Periodicals, Inc.

  15. On the polymer physics origins of protein folding thermodynamics.

    PubMed

    Taylor, Mark P; Paul, Wolfgang; Binder, Kurt

    2016-11-07

    A remarkable feature of the spontaneous folding of many small proteins is the striking similarity in the thermodynamics of the folding process. This process is characterized by simple two-state thermodynamics with large and compensating changes in entropy and enthalpy and a funnel-like free energy landscape with a free-energy barrier that varies linearly with temperature. One might attribute the commonality of this two-state folding behavior to features particular to these proteins (e.g., chain length, hydrophobic/hydrophilic balance, attributes of the native state) or one might suspect that this similarity in behavior has a more general polymer-physics origin. Here we show that this behavior is also typical for flexible homopolymer chains with sufficiently short range interactions. Two-state behavior arises from the presence of a low entropy ground (folded) state separated from a set of high entropy disordered (unfolded) states by a free energy barrier. This homopolymer model exhibits a funneled free energy landscape that reveals a complex underlying dynamics involving competition between folding and non-folding pathways. Despite the presence of multiple pathways, this simple physics model gives the robust result of two-state thermodynamics for both the cases of folding from a basin of expanded coil states and from a basin of compact globule states.

  16. On the polymer physics origins of protein folding thermodynamics

    NASA Astrophysics Data System (ADS)

    Taylor, Mark P.; Paul, Wolfgang; Binder, Kurt

    2016-11-01

    A remarkable feature of the spontaneous folding of many small proteins is the striking similarity in the thermodynamics of the folding process. This process is characterized by simple two-state thermodynamics with large and compensating changes in entropy and enthalpy and a funnel-like free energy landscape with a free-energy barrier that varies linearly with temperature. One might attribute the commonality of this two-state folding behavior to features particular to these proteins (e.g., chain length, hydrophobic/hydrophilic balance, attributes of the native state) or one might suspect that this similarity in behavior has a more general polymer-physics origin. Here we show that this behavior is also typical for flexible homopolymer chains with sufficiently short range interactions. Two-state behavior arises from the presence of a low entropy ground (folded) state separated from a set of high entropy disordered (unfolded) states by a free energy barrier. This homopolymer model exhibits a funneled free energy landscape that reveals a complex underlying dynamics involving competition between folding and non-folding pathways. Despite the presence of multiple pathways, this simple physics model gives the robust result of two-state thermodynamics for both the cases of folding from a basin of expanded coil states and from a basin of compact globule states.

  17. Toward a quantitative description of microscopic pathway heterogeneity in protein folding.

    PubMed

    Gopi, Soundhararajan; Singh, Animesh; Suresh, Swaathiratna; Paul, Suvadip; Ranu, Sayan; Naganathan, Athi N

    2017-08-09

    How many structurally different microscopic routes are accessible to a protein molecule while folding? This has been a challenging question to address experimentally as single-molecule studies are constrained by the limited number of observed folding events while ensemble measurements, by definition, report only an average and not the distribution of the quantity under study. Atomistic simulations, on the other hand, are restricted by sampling and the inability to reproduce thermodynamic observables directly. We overcome these bottlenecks in the current work and provide a quantitative description of folding pathway heterogeneity by developing a comprehensive, scalable and yet experimentally consistent approach combining concepts from statistical mechanics, physical kinetics and graph theory. We quantify the folding pathway heterogeneity of five single-domain proteins under two thermodynamic conditions from an analysis of 100 000 folding events generated from a statistical mechanical model incorporating the detailed energetics from more than a million conformational states. The resulting microstate energetics predicts the results of protein engineering experiments, the thermodynamic stabilities of secondary-structure segments from NMR studies, and the end-to-end distance estimates from single-molecule force spectroscopy measurements. We find that a minimum of ∼3-200 microscopic routes, with a diverse ensemble of transition-path structures, are required to account for the total folding flux across the five proteins and the thermodynamic conditions. The partitioning of flux amongst the numerous pathways is shown to be subtly dependent on the experimental conditions that modulate protein stability, topological complexity and the structural resolution at which the folding events are observed. Our predictive methodology thus reveals the presence of rich ensembles of folding mechanisms that are generally invisible in experiments, reconciles the contradictory

  18. Role of local and nonlocal interactions in folding and misfolding of globular proteins

    NASA Astrophysics Data System (ADS)

    Kumar, Adesh; Baruah, Anupaul; Biswas, Parbati

    2017-02-01

    A Monte Carlo simulation based sequence design method is proposed to study the role of the local and the nonlocal interactions with varying secondary structure content in protein folding, misfolding and unfolding. A statistical potential is developed from the compilation of a data set of proteins, which accounts for the respective contribution of local and the nonlocal interactions. Sequences are designed through a combination of positive and negative design by a Monte Carlo simulation in the sequence space. The weights of the local and the nonlocal interactions are tuned appropriately to study the role of the local and the nonlocal interactions in the folding, unfolding and misfolding of the designed sequences. Results suggest that the nonlocal interactions are the primary determinant of protein folding while the local interactions may be required but not always necessary. The nonlocal interactions mainly guide the polypeptide chain to form compact structures but do not differentiate between the native-like conformations, while the local interactions stabilize the target conformation against the native-like competing conformations. The study concludes that the local interactions govern the fold-misfold transition, while the nonlocal interactions regulate the fold-unfold transition of proteins. However, for proteins with predominantly β-sheet content, the nonlocal interactions control both fold-misfold and fold-unfold transitions.

  19. Intermediates in the folding equilibrium of repeat proteins from the TPR family.

    PubMed

    González-Charro, Vicente; Rey, Antonio

    2014-09-01

    In recent decades, advances in computational methods and experimental biophysical techniques have improved our understanding of protein folding. Although some of these advances have been remarkable, the structural variability of globular proteins usually encountered makes it difficult to extract general features of their folding processes. To overcome this difficulty, experimental and computational studies of the folding of repeat (or modular) proteins are of interest. Because their native structures can be described as linear arrays of the same, repeated, supersecondary structure unit, it is possible to seek a possibly independent behavior of the different modules without taking into account the intrinsic stability associated with different secondary structure motifs. In this work we have used a Monte Carlo-based simulation to study the folding equilibrium of four repeat proteins belonging to the tetratricopeptide repeat family. Our studies provide new insights into their energy profiles, enabling investigation about the existence of intermediate states and their relative stabilities. We have also performed structural analyses to describe the structure of these intermediates, going through the vast number of conformations obtained from the simulations. In this way, we have tried to identify the regions of each protein in which the modular structure yields a different behavior and, more specifically, regions of the proteins that can stay folded when the rest of the chain has been thermally denatured.

  20. Stable folding core in the folding transition state of an alpha-helical integral membrane protein.

    PubMed

    Curnow, Paul; Di Bartolo, Natalie D; Moreton, Kathleen M; Ajoje, Oluseye O; Saggese, Nicholas P; Booth, Paula J

    2011-08-23

    Defining the structural features of a transition state is important in understanding a folding reaction. Here, we use Φ-value and double mutant analyses to probe the folding transition state of the membrane protein bacteriorhodopsin. We focus on the final C-terminal helix, helix G, of this seven transmembrane helical protein. Φ-values could be derived for 12 amino acid residues in helix G, most of which have low or intermediate values, suggesting that native structure is disrupted at these amino acid positions in the transition state. Notably, a cluster of residues between E204 and M209 all have Φ-values close to zero. Disruption of helix G is further confirmed by a low Φ-value of 0.2 between residues T170 on helix F and S226 on helix G, suggesting the absence of a native hydrogen bond between helices F and G. Φ-values for paired mutations involved in four interhelical hydrogen bonds revealed that all but one of these bonds is absent in the transition state. The unstructured helix G contrasts with Φ-values along helix B that are generally high, implying native structure in helix B in the transition state. Thus helix B seems to constitute part of a stable folding nucleus while the consolidation of helix G is a relatively late folding event. Polarization of secondary structure correlates with sequence position, with a structured helix B near the N terminus contrasting with an unstructured C-terminal helix G.

  1. Topography of funneled landscapes determines the thermodynamics and kinetics of protein folding

    PubMed Central

    Wang, Jin; Oliveira, Ronaldo J.; Chu, Xiakun; Whitford, Paul C.; Chahine, Jorge; Han, Wei; Wang, Erkang; Onuchic, José N.; Leite, Vitor B.P.

    2012-01-01

    The energy landscape approach has played a fundamental role in advancing our understanding of protein folding. Here, we quantify protein folding energy landscapes by exploring the underlying density of states. We identify three quantities essential for characterizing landscape topography: the stabilizing energy gap between the native and nonnative ensembles δE, the energetic roughness ΔE, and the scale of landscape measured by the entropy S. We show that the dimensionless ratio between the gap, roughness, and entropy of the system accurately predicts the thermodynamics, as well as the kinetics of folding. Large Λ implies that the energy gap (or landscape slope towards the native state) is dominant, leading to more funneled landscapes. We investigate the role of topological and energetic roughness for proteins of different sizes and for proteins of the same size, but with different structural topologies. The landscape topography ratio Λ is shown to be monotonically correlated with the thermodynamic stability against trapping, as characterized by the ratio of folding temperature versus trapping temperature. Furthermore, Λ also monotonically correlates with the folding kinetic rates. These results provide the quantitative bridge between the landscape topography and experimental folding measurements. PMID:23019359

  2. Probing the physical determinants of thermal expansion of folded proteins.

    PubMed

    Dellarole, Mariano; Kobayashi, Kei; Rouget, Jean-Baptiste; Caro, José Alfredo; Roche, Julien; Islam, Mohammad M; Garcia-Moreno E, Bertrand; Kuroda, Yutaka; Royer, Catherine A

    2013-10-24

    The magnitude and sign of the volume change upon protein unfolding are strongly dependent on temperature. This temperature dependence reflects differences in the thermal expansivity of the folded and unfolded states. The factors that determine protein molar expansivities and the large differences in thermal expansivity for proteins of similar molar volume are not well understood. Model compound studies have suggested that a major contribution is made by differences in the molar volume of water molecules as they transfer from the protein surface to the bulk upon heating. The expansion of internal solvent-excluded voids upon heating is another possible contributing factor. Here, the contribution from hydration density to the molar thermal expansivity of a protein was examined by comparing bovine pancreatic trypsin inhibitor and variants with alanine substitutions at or near the protein-water interface. Variants of two of these proteins with an additional mutation that unfolded them under native conditions were also examined. A modest decrease in thermal expansivity was observed in both the folded and unfolded states for the alanine variants compared with the parent protein, revealing that large changes can be made to the external polarity of a protein without causing large ensuing changes in thermal expansivity. This modest effect is not surprising, given the small molar volume of the alanine residue. Contributions of the expansion of the internal void volume were probed by measuring the thermal expansion for cavity-containing variants of a highly stable form of staphylococcal nuclease. Significantly larger (2-3-fold) molar expansivities were found for these cavity-containing proteins relative to the reference protein. Taken together, these results suggest that a key determinant of the thermal expansivities of folded proteins lies in the expansion of internal solvent-excluded voids.

  3. A deterministic algorithm for constrained enumeration of transmembrane protein folds.

    SciTech Connect

    Brown, William Michael; Young, Malin M.; Sale, Kenneth L.; Faulon, Jean-Loup Michel; Schoeniger, Joseph S.

    2004-07-01

    A deterministic algorithm for enumeration of transmembrane protein folds is presented. Using a set of sparse pairwise atomic distance constraints (such as those obtained from chemical cross-linking, FRET, or dipolar EPR experiments), the algorithm performs an exhaustive search of secondary structure element packing conformations distributed throughout the entire conformational space. The end result is a set of distinct protein conformations, which can be scored and refined as part of a process designed for computational elucidation of transmembrane protein structures.

  4. Autonomously Folding Protein Fragments Reveal Differences in the Energy Landscapes of Homologous RNases H

    PubMed Central

    Rosen, Laura E.; Marqusee, Susan

    2015-01-01

    An important approach to understanding how a protein sequence encodes its energy landscape is to compare proteins with different sequences that fold to the same general native structure. In this work, we compare E. coli and T. thermophilus homologs of the protein RNase H. Using protein fragments, we create equilibrium mimics of two different potential partially-folded intermediates (Icore and Icore+1) hypothesized to be present on the energy landscapes of these two proteins. We observe that both T. thermophilus RNase H (ttRNH) fragments are folded and have distinct stabilities, indicating that both regions are capable of autonomous folding and that both intermediates are present as local minima on the ttRNH energy landscape. In contrast, the two E. coli RNase H (ecRNH) fragments have very similar stabilities, suggesting that the presence of additional residues in the Icore+1 fragment does not affect the folding or structure as compared to Icore. NMR experiments provide additional evidence that only the Icore intermediate is populated by ecRNH. This is one of the biggest differences that has been observed between the energy landscapes of these two proteins. Additionally, we used a FRET experiment in the background of full-length ttRNH to specifically monitor the formation of the Icore+1 intermediate. We determine that the ttRNH Icore+1 intermediate is likely the intermediate populated prior to the rate-limiting barrier to global folding, in contrast to E. coli RNase H for which Icore is the folding intermediate. This result provides new insight into the nature of the rate-limiting barrier for the folding of RNase H. PMID:25803034

  5. Role of the Cys 2-Cys 10 disulfide bond for the structure, stability, and folding kinetics of ribonuclease T1.

    PubMed Central

    Mayr, L. M.; Willbold, D.; Landt, O.; Schmid, F. X.

    1994-01-01

    The Cys 2-Cys 10 disulfide bond in ribonuclease T1 was broken by substituting Cys 2 and Cys 10 by Ser and Asn, respectively, as present in ribonuclease F1. This C2S/C10N variant resembles the wild-type protein in structure and in catalytic activity. Minor structural changes were observed by 2-dimensional NMR in the local environment of the substituted amino acids only. The thermodynamic stability of ribonuclease T1 is strongly reduced by breaking the Cys 2-Cys 10 bond, and the free energy of denaturation is decreased by about 10 kJ/mol. The folding mechanism is not affected, and the trans to cis isomerizations of Pro 39 and Pro 55 are still the rate-limiting steps of the folding process. The differences in the time courses of unfolding and refolding are correlated with the decrease in stability: the folding kinetics of the wild-type protein and the C2S/C10N variant become indistinguishable when they are compared under conditions of identical stability. Apparently, the Cys 2-Cys 10 disulfide bond is important for the stability but not for the folding mechanism of ribonuclease T1. The breaking of this bond has the same effect on stability and folding kinetics as adding 1 M guanidinium chloride to the wild-type protein. PMID:8003959

  6. Large-scale modulation of thermodynamic protein folding barriers linked to electrostatics

    PubMed Central

    Halskau, Øyvind; Perez-Jimenez, Raul; Ibarra-Molero, Beatriz; Underhaug, Jarl; Muñoz, Victor; Martinez, Aurora; Sanchez-Ruiz, Jose M.

    2008-01-01

    Protein folding barriers, which range from zero to the tens of RT that result in classical two-state kinetics, are primarily determined by protein size and structural topology [Plaxco KW, Simons KT, Baker D (1998) J Mol Biol 277:985–994]. Here, we investigate the thermodynamic folding barriers of two relatively large proteins of the same size and topology: bovine α-lactalbumin (BLA) and hen-egg-white lysozyme (HEWL). From the analysis of differential scanning calorimetry experiments with the variable-barrier model [Muñoz V, Sanchez-Ruiz JM (2004) Proc Natl Acad Sci USA 101:17646–17651] we obtain a high barrier for HEWL and a marginal folding barrier for BLA. These results demonstrate a remarkable tuning range of at least 30 kJ/mol (i.e., five to six orders of magnitude in population) within a unique protein scaffold. Experimental and theoretical analyses on these proteins indicate that the surprisingly small thermodynamic folding barrier of BLA arises from the stabilization of partially unfolded conformations by electrostatic interactions. Interestingly, there is clear reciprocity between the barrier height and the biological function of the two proteins, suggesting that the marginal barrier of BLA is a product of natural selection. Electrostatic surface interactions thus emerge as a mechanism for the modulation of folding barriers in response to special functional requirements within a given structural fold. PMID:18550823

  7. Macromolecular Crowding Modulates Folding Mechanism of α/β Protein Apoflavodoxin

    PubMed Central

    Homouz, Dirar; Stagg, Loren; Wittung-Stafshede, Pernilla; Cheung, Margaret S.

    2009-01-01

    Abstract Protein dynamics in cells may be different from those in dilute solutions in vitro, because the environment in cells is highly concentrated with other macromolecules. This volume exclusion because of macromolecular crowding is predicted to affect both equilibrium and kinetic processes involving protein conformational changes. To quantify macromolecular crowding effects on protein folding mechanisms, we investigated the folding energy landscape of an α/β protein, apoflavodoxin, in the presence of inert macromolecular crowding agents, using in silico and in vitro approaches. By means of coarse-grained molecular simulations and topology-based potential interactions, we probed the effects of increased volume fractions of crowding agents (ϕc) as well as of crowding agent geometry (sphere or spherocylinder) at high ϕc. Parallel kinetic folding experiments with purified Desulfovibro desulfuricans apoflavodoxin in vitro were performed in the presence of Ficoll (sphere) and Dextran (spherocylinder) synthetic crowding agents. In conclusion, we identified the in silico crowding conditions that best enhance protein stability, and discovered that upon manipulation of the crowding conditions, folding routes experiencing topological frustrations can be either enhanced or relieved. Our test-tube experiments confirmed that apoflavodoxin's time-resolved folding path is modulated by crowding agent geometry. Macromolecular crowding effects may be a tool for the manipulation of protein-folding and function in living cells. PMID:19167312

  8. Probing the Folding-Unfolding Transition of a Thermophilic Protein, MTH1880

    PubMed Central

    Jung, Youngjin; Han, Jeongmin; Yun, Ji-Hye; Chang, Iksoo; Lee, Weontae

    2016-01-01

    The folding mechanism of typical proteins has been studied widely, while our understanding of the origin of the high stability of thermophilic proteins is still elusive. Of particular interest is how an atypical thermophilic protein with a novel fold maintains its structure and stability under extreme conditions. Folding-unfolding transitions of MTH1880, a thermophilic protein from Methanobacterium thermoautotrophicum, induced by heat, urea, and GdnHCl, were investigated using spectroscopic techniques including circular dichorism, fluorescence, NMR combined with molecular dynamics (MD) simulations. Our results suggest that MTH1880 undergoes a two-state N to D transition and it is extremely stable against temperature and denaturants. The reversibility of refolding was confirmed by spectroscopic methods and size exclusion chromatography. We found that the hyper-stability of the thermophilic MTH1880 protein originates from an extensive network of both electrostatic and hydrophobic interactions coordinated by the central β-sheet. Spectroscopic measurements, in combination with computational simulations, have helped to clarify the thermodynamic and structural basis for hyper-stability of the novel thermophilic protein MTH1880. PMID:26766214

  9. Contribution of Hydrophobic Interactions to Protein Stability

    PubMed Central

    Pace, C. Nick; Fu, Hailong; Fryar, Katrina Lee; Landua, John; Trevino, Saul R.; Shirley, Bret A.; Hendricks, Marsha McNutt; Iimura, Satoshi; Gajiwala, Ketan; Scholtz, J. Martin; Grimsley, Gerald R.

    2011-01-01

    Our goal was to gain a better understanding of the contribution of hydrophobic interactions to protein stability. We measured the change in conformational stability, Δ(ΔG), for hydrophobic mutants of four proteins: villin head piece subdomain (VHP) with 36 residues, a surface protein from Borrelia burgdorferi (VlsE) with 341 residues, and two proteins previously studied in our laboratory, ribonucleases Sa and T1. We compare our results with previous studies and reach the following conclusions. 1. Hydrophobic interactions contribute less to the stability of a small protein, VHP (0.6 ± 0.3 kcal/mole per –CH2– group), than to the stability of a large protein, VlsE (1.6 ± 0.3 kcal/mol per –CH2– group). 2. Hydrophobic interactions make the major contribution to the stability of VHP (40 kcal/mol) and the major contributors are (in kcal/mol): Phe 18 (3.9), Met 13 (3.1), Phe 7 (2.9), Phe 11 (2.7), and Leu 21 (2.7). 3. Based on Δ(ΔG) values for 148 hydrophobic mutants in 13 proteins, burying a –CH2– group on folding contributes, on average, 1.1 ± 0.5 kcal/mol to protein stability. 4. The experimental Δ(ΔG) values for aliphatic side chains (Ala, Val, Ile, and Leu) are in good agreement with their ΔGtr values from water to cyclohexane. 5. For 22 proteins with 36 to 534 residues, hydrophobic interactions contribute 60 ± 4% and hydrogen bonds 40 ± 4% to protein stability. 6. Conformational entropy contributes about 2.4 kcal/mol per residue to protein instability. The globular conformation of proteins is stabilized predominately by hydrophobic interactions. PMID:21377472

  10. Contribution of hydrophobic interactions to protein stability.

    PubMed

    Pace, C Nick; Fu, Hailong; Fryar, Katrina Lee; Landua, John; Trevino, Saul R; Shirley, Bret A; Hendricks, Marsha McNutt; Iimura, Satoshi; Gajiwala, Ketan; Scholtz, J Martin; Grimsley, Gerald R

    2011-05-06

    Our goal was to gain a better understanding of the contribution of hydrophobic interactions to protein stability. We measured the change in conformational stability, Δ(ΔG), for hydrophobic mutants of four proteins: villin headpiece subdomain (VHP) with 36 residues, a surface protein from Borrelia burgdorferi (VlsE) with 341 residues, and two proteins previously studied in our laboratory, ribonucleases Sa and T1. We compared our results with those of previous studies and reached the following conclusions: (1) Hydrophobic interactions contribute less to the stability of a small protein, VHP (0.6±0.3 kcal/mol per -CH(2)- group), than to the stability of a large protein, VlsE (1.6±0.3 kcal/mol per -CH(2)- group). (2) Hydrophobic interactions make the major contribution to the stability of VHP (40 kcal/mol) and the major contributors are (in kilocalories per mole) Phe18 (3.9), Met13 (3.1), Phe7 (2.9), Phe11 (2.7), and Leu21 (2.7). (3) Based on the Δ(ΔG) values for 148 hydrophobic mutants in 13 proteins, burying a -CH(2)- group on folding contributes, on average, 1.1±0.5 kcal/mol to protein stability. (4) The experimental Δ(ΔG) values for aliphatic side chains (Ala, Val, Ile, and Leu) are in good agreement with their ΔG(tr) values from water to cyclohexane. (5) For 22 proteins with 36 to 534 residues, hydrophobic interactions contribute 60±4% and hydrogen bonds contribute 40±4% to protein stability. (6) Conformational entropy contributes about 2.4 kcal/mol per residue to protein instability. The globular conformation of proteins is stabilized predominantly by hydrophobic interactions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. The Role of Electrostatic Interactions in Folding of β-Proteins

    PubMed Central

    Davis, Caitlin M.; Dyer, R. Brian

    2016-01-01

    Atomic-level molecular dynamic simulations are capable of fully folding structurally diverse proteins; however, they are limited in their ability to accurately represent electrostatic interactions. Here we have experimentally tested the role of charged residues on stability and folding kinetics of one of the most widely simulated β-proteins, the WW domain. The folding of wild type Pin1 WW domain, which has two positively charged residues in the first turn, was compared to the fast folding mutant FiP35 Pin1, which introduces a negative charge into the first turn. A combination of FTIR spectroscopy and laser-induced temperature-jump coupled with infrared spectroscopy was used to probe changes in the amide I region. The relaxation dynamics of the peptide backbone, β-sheets and β-turns, and negatively charged aspartic acid side chain of FiP35 were measured independently by probing the corresponding bands assigned in the amide I region. Folding is initiated in the turns and the β-sheets form last. While the global folding mechanism is in good agreement with simulation predictions, we observe changes in the protonation state of aspartic acid during folding that have not been captured by simulation methods. The protonation state of aspartic acid is coupled to protein folding; the apparent pKa of aspartic acid in the folded protein is 6.4. The dynamics of the aspartic acid follow the dynamics of the intermediate phase, supporting assignment of this phase to formation of the first hairpin. These results demonstrate the importance of electrostatic interactions in turn stability and formation of extended β-sheet structures. PMID:26750867

  12. Improved method for predicting protein fold patterns with ensemble classifiers.

    PubMed

    Chen, W; Liu, X; Huang, Y; Jiang, Y; Zou, Q; Lin, C

    2012-01-27

    Protein folding is recognized as a critical problem in the field of biophysics in the 21st century. Predicting protein-folding patterns is challenging due to the complex structure of proteins. In an attempt to solve this problem, we employed ensemble classifiers to improve prediction accuracy. In our experiments, 188-dimensional features were extracted based on the composition and physical-chemical property of proteins and 20-dimensional features were selected using a coupled position-specific scoring matrix. Compared with traditional prediction methods, these methods were superior in terms of prediction accuracy. The 188-dimensional feature-based method achieved 71.2% accuracy in five cross-validations. The accuracy rose to 77% when we used a 20-dimensional feature vector. These methods were used on recent data, with 54.2% accuracy. Source codes and dataset, together with web server and software tools for prediction, are available at: http://datamining.xmu.edu.cn/main/~cwc/ProteinPredict.html.

  13. An Introduction to Research in Protein Folding for Undergraduates

    NASA Astrophysics Data System (ADS)

    Jones, Colleen M.

    1997-11-01

    The objective of this article is to introduce students to current research activity on protein folding via experimentation and a literature survey. Major effort in the field of biophysical chemistry today is focused on elucidating those factors controlling the transformation of a protein from a nascent polypeptide chain to a unique, functionally active three-dimensional structure. The possible involvement of misfolded or aggregated proteins in diseases such as Altzheimer's, cystic fibrosis, and cataracts as well as various neurodegenerative diseases has increased the incentive to solve the "protein folding problem". In this experiment the guanidine-hydrochloride induced protein unfolding of horse heart metmyoglobin is monitored spectrophotometrically via the protein fluorescence emission. The data are analyzed using a simple thermodynamic model which assumes a two-state system and fitted using nonlinear curve fitting. Background information on protein structure, protein fluorescence, simple models for folding, and the use of chaotropic agents is also presented. The experiment is suitable for students in advanced undergraduate chemistry courses such as physical or biophysical chemistry.

  14. Determination of the folding of proteins as a function of denaturants, osmolytes or ligands using circular dichroism

    PubMed Central

    Greenfield, Norma J.

    2009-01-01

    Circular dichroism (CD) is an excellent tool for examining the interactions and stability of proteins. This protocol covers methods to obtain and analyze circular dichroism spectra to measure changes in the folding of proteins as a function of denaturants, osmolytes or ligands. Applications include determination of the free energy of folding of a protein, the effects of mutations on protein stability and the estimation of binding constants for the interactions of proteins with other proteins, DNA or ligands, such as substrates or inhibitors. The experiments take 2-5 h. PMID:17406529

  15. Electrostatically Accelerated Coupled Binding and Folding of Intrinsically Disordered Proteins

    PubMed Central

    Ganguly, Debabani; Otieno, Steve; Waddell, Brett; Iconaru, Luigi; Kriwacki, Richard W.; Chen, Jianhan

    2012-01-01

    Intrinsically disordered proteins (IDPs) are now recognized to be prevalent in biology, and many potential functional benefits have been discussed. However, the frequent requirement of peptide folding in specific interactions of IDPs could impose a kinetic bottleneck, which could be overcome only by efficient folding upon encounter. Intriguingly, existing kinetic data suggest that specific binding of IDPs is generally no slower than that of globular proteins. Here, we exploited the cell cycle regulator p27Kip1 (p27) as a model system to understand how IDPs might achieve efficient folding upon encounter for facile recognition. Combining experiments and coarse-grained modeling, we demonstrate that long-range electrostatic interactions between enriched charges on p27 and near its binding site on cyclin A not only enhance the encounter rate (i.e., electrostatic steering), but also promote folding-competent topologies in the encounter complexes, allowing rapid subsequent formation of short-range native interactions en route to the specific complex. In contrast, nonspecific hydrophobic interactions, while hardly affecting the encounter rate, can significantly reduce the efficiency of folding upon encounter and lead to slower binding kinetics. Further analysis of charge distributions in a set of known IDP complexes reveals that, although IDP binding sites tend to be more hydrophobic compared to the rest of the target surface, their vicinities are frequently enriched with charges to complement those on IDPs. This observation suggests that electrostatically accelerated encounter and induced folding might represent a prevalent mechanism for promoting facile IDP recognition. PMID:22721951

  16. Integrated prediction of protein folding and unfolding rates from only size and structural class.

    PubMed

    De Sancho, David; Muñoz, Victor

    2011-10-14

    Protein stability, folding and unfolding rates are all determined by the multidimensional folding free energy surface, which in turn is dictated by factors such as size, structure, and amino-acid sequence. Work over the last 15 years has highlighted the role of size and 3D structure in determining folding rates, resulting in many procedures for their prediction. In contrast, unfolding rates are thought to depend on sequence specifics and be much more difficult to predict. Here we introduce a minimalist physics-based model that computes one-dimensional folding free energy surfaces using the number of aminoacids (N) and the structural class (α-helical, all-β, or α-β) as only protein-specific input. In this model N sets the overall cost in conformational entropy and the net stabilization energy, whereas the structural class defines the partitioning of the stabilization energy between local and non-local interactions. To test its predictive power, we calibrated the model empirically and implemented it into an algorithm for the PREdiction of Folding and Unfolding Rates (PREFUR). We found that PREFUR predicts the absolute folding and unfolding rates of an experimental database of 52 proteins with accuracies of ±0.7 and ±1.4 orders of magnitude, respectively (relative to experimental spans of 6 and 8 orders of magnitude). Such prediction uncertainty for proteins vastly varying in size and structure is only two-fold larger than the differences in folding (±0.34) and unfolding rates (±0.7) caused by single-point mutations. Moreover, PREFUR predicts protein stability with an accuracy of ±6.3 kJ mol(-1), relative to the 5 kJ mol(-1) average perturbation induced by single-point mutations. The remarkable performance of our simplistic model demonstrates that size and structural class are the major determinants of the folding landscapes of natural proteins, whereas sequence variability only provides the final 10-20% tuning. PREFUR is thus a powerful bioinformatic tool

  17. Periodic and stochastic thermal modulation of protein folding kinetics

    SciTech Connect

    Platkov, Max; Gruebele, Martin

    2014-07-21

    Chemical reactions are usually observed either by relaxation of a bulk sample after applying a sudden external perturbation, or by intrinsic fluctuations of a few molecules. Here we show that the two ideas can be combined to measure protein folding kinetics, either by periodic thermal modulation, or by creating artificial thermal noise that greatly exceeds natural thermal fluctuations. We study the folding reaction of the enzyme phosphoglycerate kinase driven by periodic temperature waveforms. As the temperature waveform unfolds and refolds the protein, its fluorescence color changes due to FRET (Förster resonant Energy Transfer) of two donor/acceptor fluorophores labeling the protein. We adapt a simple model of periodically driven kinetics that nicely fits the data at all temperatures and driving frequencies: The phase shifts of the periodic donor and acceptor fluorescence signals as a function of driving frequency reveal reaction rates. We also drive the reaction with stochastic temperature waveforms that produce thermal fluctuations much greater than natural fluctuations in the bulk. Such artificial thermal noise allows the recovery of weak underlying signals due to protein folding kinetics. This opens up the possibility for future detection of a stochastic resonance for protein folding subject to noise with controllable amplitude.

  18. Periodic and stochastic thermal modulation of protein folding kinetics.

    PubMed

    Platkov, Max; Gruebele, Martin

    2014-07-21

    Chemical reactions are usually observed either by relaxation of a bulk sample after applying a sudden external perturbation, or by intrinsic fluctuations of a few molecules. Here we show that the two ideas can be combined to measure protein folding kinetics, either by periodic thermal modulation, or by creating artificial thermal noise that greatly exceeds natural thermal fluctuations. We study the folding reaction of the enzyme phosphoglycerate kinase driven by periodic temperature waveforms. As the temperature waveform unfolds and refolds the protein, its fluorescence color changes due to FRET (Förster resonant Energy Transfer) of two donor/acceptor fluorophores labeling the protein. We adapt a simple model of periodically driven kinetics that nicely fits the data at all temperatures and driving frequencies: The phase shifts of the periodic donor and acceptor fluorescence signals as a function of driving frequency reveal reaction rates. We also drive the reaction with stochastic temperature waveforms that produce thermal fluctuations much greater than natural fluctuations in the bulk. Such artificial thermal noise allows the recovery of weak underlying signals due to protein folding kinetics. This opens up the possibility for future detection of a stochastic resonance for protein folding subject to noise with controllable amplitude.

  19. Dali/FSSP classification of three-dimensional protein folds.

    PubMed

    Holm, L; Sander, C

    1997-01-01

    The FSSP database presents a continuously updated structural classification of three-dimensional protein folds. It is derived using an automatic structure comparison program (Dali) for the all-against-all comparison of over 6000 three-dimensional coordinate sets in the Protein Data Bank (PDB). Sequence-related protein families are covered by a representative set of 813 protein chains. Hierachical clustering based on structural similarities yields a fold tree that defines 253 fold classes. For each representative protein chain, there is a database entry containing structure-structure alignments with its structural neighbours in the PDB. The database is accessible online through World Wide Web browsers and by anonymous ftp (file transfer protocol). The overview of fold space and the individual data sets provide a rich source of information for the study of both divergent and convergent aspects of molecular evolution, and define useful test sets and a standard of truth for assessing the correctness of sequence-sequence or sequence-structure alignments.

  20. YidC assists the stepwise and stochastic folding of membrane proteins

    PubMed Central

    Serdiuk, Tetiana; Balasubramaniam, Dhandayuthapani; Sugihara, Junichi; Mari, Stefania A.; Kaback, H. Ronald; Müller, Daniel J.

    2016-01-01

    How chaperones, insertases and translocases facilitate insertion and folding of complex cytoplasmic proteins into cellular membranes is not fully understood. Here, we utilize single-molecule force spectroscopy to observe YidC, a transmembrane chaperone/insertase, sculpting the folding trajectory of the polytopic α-helical membrane protein lactose permease (LacY). In the absence of YidC, unfolded LacY inserts individual structural segments into the membrane; however, misfolding dominates the process so that folding cannot be completed. YidC prevents LacY from misfolding by stabilizing the unfolded state from which LacY inserts structural segments stepwise into the membrane until folding is completed. During stepwise insertion, YidC and membrane together stabilize the transient folds. Remarkably, the order of insertion of structural segments is stochastic, thereby indicating that LacY can fold along variable pathways towards the native structure. Since YidC is essential in membrane protein biogenesis and LacY a paradigm for the major facilitator superfamily, our observations have general relevance. PMID:27595331

  1. Absence of kinetic thermal stabilization in a hyperthermophile rubredoxin indicated by 40 microsecond folding in the presence of irreversible denaturation.

    PubMed

    LeMaster, David M; Tang, Jianzhong; Hernández, Griselda

    2004-10-01

    The striking kinetic stability of many proteins derived from hyperthermophilic organisms has led to the proposal that such stability may result from a heightened activation barrier for unfolding independent of a corresponding increase in the thermodynamic stability. This in turn implies a corresponding retardation of the folding reaction. A commonly cited model for kinetic thermal stabilization is the rubredoxin from Pyrococcus furiosus (Pf), which exhibits an irreversible denaturation lifetime at 100 degrees C of nearly a week. Utilizing protein resonances shifted well outside of the random coil chemical shift envelope, nuclear magnetic resonance (NMR) chemical exchange measurements on Pf rubredoxin as well as on the mesophile Clostridium pasteurianum (Cp) rubredoxin demonstrate reversible thermal transition temperatures of 144 degrees C (137 degrees C for the N-terminal modified A2K variant) and 104 degrees C, respectively, with similar (un)folding rates of approximately 25,000 s(-1), only modestly slower than the diffusion controlled rate. The absence of a substantial activation barrier to rubredoxin folding as well as the similar folding kinetics of the mesophile protein indicate that kinetic stabilization has not been utilized by the hyperthermophile rubredoxin in achieving its extreme thermal stability. The two-state folding kinetics observed for Pf rubredoxin contradict a previous assertion of multiphasic folding based on hydrogen exchange data extrapolated to an estimated midpoint of transition temperature (T(m)) of nearly 200 degrees C. This discrepancy is resolved by the observation that the base-catalyzed hydrogen exchange of the model dipeptide (N-acetyl-L-cysteine-N-methylamide)4-Cd2+ is 23-fold slower than that of the free cysteine model dipeptide used to normalize the Pf rubredoxin hydrogen exchange data.

  2. Dynamics of protein folding: probing the kinetic network of folding-unfolding transitions with experiment and theory.

    PubMed

    Buchner, Ginka S; Murphy, Ronan D; Buchete, Nicolae-Viorel; Kubelka, Jan

    2011-08-01

    The problem of spontaneous folding of amino acid chains into highly organized, biologically functional three-dimensional protein structures continues to challenge the modern science. Understanding how proteins fold requires characterization of the underlying energy landscapes as well as the dynamics of the polypeptide chains in all stages of the folding process. In recent years, important advances toward these goals have been achieved owing to the rapidly growing interdisciplinary interest and significant progress in both experimental techniques and theoretical methods. Improvements in the experimental time resolution led to determination of the timescales of the important elementary events in folding, such as formation of secondary structure and tertiary contacts. Sensitive single molecule methods made possible probing the distributions of the unfolded and folded states and following the folding reaction of individual protein molecules. Discovery of proteins that fold in microseconds opened the possibility of atomic-level theoretical simulations of folding and their direct comparisons with experimental data, as well as of direct experimental observation of the barrier-less folding transition. The ultra-fast folding also brought new questions, concerning the intrinsic limits of the folding rates and experimental signatures of barrier-less "downhill" folding. These problems will require novel approaches for even more detailed experimental investigations of the folding dynamics as well as for the analysis of the folding kinetic data. For theoretical simulations of folding, a main challenge is how to extract the relevant information from overwhelmingly detailed atomistic trajectories. New theoretical methods have been devised to allow a systematic approach towards a quantitative analysis of the kinetic network of folding-unfolding transitions between various configuration states of a protein, revealing the transition states and the associated folding pathways at

  3. The contribution of entropy, enthalpy, and hydrophobic desolvation to cooperativity in repeat-protein folding

    PubMed Central

    Aksel, Tural; Majumdar, Ananya; Barrick, Doug

    2011-01-01

    Summary Cooperativity is a defining feature of protein folding, but its thermodynamic and structural origins are not completely understood. By constructing consensus ankyrin repeat protein arrays that have nearly identical sequences, we quantify cooperativity by resolving stability into intrinsic and interfacial components. Heteronuclear NMR and CD spectroscopy show that these constructs adopt ankyrin repeat structures. Applying a one-dimensional Ising model to a series of constructs chosen to maximize information content in unfolding transitions, we quantify stabilities of the terminal capping repeats, and resolve the effects of denaturant into intrinsic and interfacial components. Reversible thermal denaturation resolves interfacial and intrinsic free energies into enthalpic, entropic, and heat capacity terms. Intrinsic folding is entropically disfavored, whereas interfacial interaction is entropically favored and attends a decrease in heat capacity. These results suggest that helix formation and backbone ordering occurs upon intrinsic folding, whereas hydrophobic desolvation occurs upon interfacial interaction, contributing to cooperativity. PMID:21397186

  4. Arsenic(III) species inhibit oxidative protein folding in vitro.

    PubMed

    Ramadan, Danny; Rancy, Pumtiwitt C; Nagarkar, Radhika P; Schneider, Joel P; Thorpe, Colin

    2009-01-20

    The success of arsenic trioxide in the treatment of acute promyelocytic leukemia has renewed interest in the cellular targets of As(III) species. The effects of arsenicals are usually attributed to their ability to bind vicinal thiols or thiol selenols in prefolded proteins thereby compromising cellular function. The present studies suggest an additional, more pleiotropic, contribution to the biological effects of arsenicals. As(III) species, by avid coordination to the cysteine residues of unfolded reduced proteins, can compromise protein folding pathways. Three representative As(III) compounds (arsenite, monomethylarsenous acid (MMA), and an aryl arsenical (PSAO)) have been tested with three reduced secreted proteins (lysozyme, ribonuclease A, and riboflavin binding protein (RfBP)). Using absorbance, fluorescence, and pre-steady-state methods, we show that arsenicals bind tightly to low micromolar concentrations of these unfolded proteins with stoichiometries of 1 As(III) per 2 thiols for MMA and PSAO and 1 As(III) for every 3 thiols with arsenite. Arsenicals, at 10 microM, strongly disrupt the oxidative folding of RfBP even in the presence of 5 mM reduced glutathione, a competing ligand for As(III) species. MMA catalyzes the formation of amyloid-like monodisperse fibrils using reduced RNase. These in vitro data show that As(III) species can slow, or even derail, protein folding pathways. In vivo, the propensity of As(III) species to bind to unfolded cysteine-containing proteins may contribute to oxidative and protein folding stresses that are prominent features of the cellular response to arsenic exposure.

  5. Confinement Effects on the Thermodynamics of Protein Folding: Monte Carlo Simulations

    PubMed Central

    Rathore, Nitin; Knotts, Thomas A.; de Pablo, Juan J.

    2006-01-01

    The effects of chaperonin-like cage-induced confinement on protein stability have been studied for molecules of varying sizes and topologies. Minimalist models based on Gō-like interactions are employed for the proteins, and density-of-states-based Monte Carlo simulations are performed to accurately characterize the thermodynamic transitions. This method permits efficient sampling of conformational space and yields precise estimates of free energy and entropic changes associated with protein folding. We find that confinement-driven stabilization is not only dependent on protein size and cage radius, but also on the specific topology. The choice of the confining potential is also shown to have an effect on the observed stabilization and the scaling behavior of the stabilization with respect to the cage size. PMID:16361344

  6. Confinement effects on the thermodynamics of protein folding: Monte Carlo simulations.

    PubMed

    Rathore, Nitin; Knotts, Thomas A; de Pablo, Juan J

    2006-03-01

    The effects of chaperonin-like cage-induced confinement on protein stability have been studied for molecules of varying sizes and topologies. Minimalist models based on Gō-like interactions are employed for the proteins, and density-of-states-based Monte Carlo simulations are performed to accurately characterize the thermodynamic transitions. This method permits efficient sampling of conformational space and yields precise estimates of free energy and entropic changes associated with protein folding. We find that confinement-driven stabilization is not only dependent on protein size and cage radius, but also on the specific topology. The choice of the confining potential is also shown to have an effect on the observed stabilization and the scaling behavior of the stabilization with respect to the cage size.

  7. Collective aspects of protein folding illustrated by a toy model

    SciTech Connect

    Stillinger, F.H.; Head-Gordon, T.

    1995-09-01

    A simple toy model for polypeptides serves as a testbed to illuminate some nonlocal, or collective, aspects of protein folding phenomena. The model is two dimensional and has only two amino acids, but involves a continuous range of backbone bend angles. Global potential energy minima and their folding structures have been determined for leading members of two special and contrasting polypeptide sequences, center doped and Fibonacci, named descriptively for their primary structures. The results display the presence of spontaneous symmetry breaking, elastic strain, and substantial conformational variation for specific embedded amino acid strings. We conclude that collective variables generated by the primary amino acid structure may be required for fully effective protein folding predictors, including those based on neural networks.

  8. Conformational dynamics of a protein in the folded and the unfolded state

    NASA Astrophysics Data System (ADS)

    Fitter, Jörg

    2003-08-01

    In a quasielastic neutron scattering experiment, the picosecond dynamics of α-amylase was investigated for the folded and the unfolded state of the protein. In order to ensure a reasonable interpretation of the internal protein dynamics, the protein was measured in D 2O-buffer solution. The much higher structural flexibility of the pH induced unfolded state as compared to the native folded state was quantified using a simple analytical model, describing a local diffusion inside a sphere. In terms of this model the conformational volume, which is explored mainly by confined protein side-chain movements, is parameterized by the radius of a sphere (folded state, r=1.2 Å; unfolded state, 1.8 Å). Differences in conformational dynamics between the folded and the unfolded state of a protein are of fundamental interest in the field of protein science, because they are assumed to play an important role for the thermodynamics of folding/unfolding transition and for protein stability.

  9. Protein folding and misfolding in the neurodegenerative disorders: a review.

    PubMed

    Bolshette, N B; Thakur, K K; Bidkar, A P; Trandafir, C; Kumar, P; Gogoi, R

    2014-03-01

    Protein misfolding is an intrinsic aspect of normal folding within the complex cellular environment. Its effects are minimized in living system by the action of a range of protective mechanisms including molecular chaperones and quality control systems. According to the current growing research, protein misfolding is a recognized key feature of most neurodegenerative diseases. Extensive biochemical, neuropathological, and genetic evidence suggest that the cerebral accumulation of amyloid fibrils is the central event in the pathogenesis of neurodegenerative disorders. In the first part of this review we have discussed the general course of action of folding and misfolding of the proteins. Later part of this review gives an outline regarding the role of protein misfolding in the molecular and cellular mechanisms in the pathogenesis of Alzheimer's and Parkinson along with their treatment possibilities. Finally, we have mentioned about the recent findings in neurodegenerative diseases. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  10. Single-domain protein folding: a multi-faceted problem

    NASA Astrophysics Data System (ADS)

    Junier, Ivan; Ritort, Felix

    2006-08-01

    We review theoretical approaches, experiments and numerical simulations that have been recently proposed to investigate the folding problem in single-domain proteins. From a theoretical point of view, we emphasize the energy landscape approach. As far as experiments are concerned, we focus on the recent development of single-molecule techniques. In particular, we compare the results obtained with two main techniques: single protein force measurements with optical tweezers and single-molecule fluorescence in studies on the same protein (RNase H). This allows us to point out some controversial issues such as the nature of the denatured and intermediate states and possible folding pathways. After reviewing the various numerical simulation techniques, we show that on-lattice protein-like models can help to understand many controversial issues.

  11. Biomimetic Transmembrane Channels with High Stability and Transporting Efficiency from Helically Folded Macromolecules.

    PubMed

    Lang, Chao; Li, Wenfang; Dong, Zeyuan; Zhang, Xin; Yang, Feihu; Yang, Bing; Deng, Xiaoli; Zhang, Chenyang; Xu, Jiayun; Liu, Junqiu

    2016-08-08

    Membrane channels span the cellular lipid bilayers to transport ions and molecules into cells with sophisticated properties including high efficiency and selectivity. It is of particular biological importance in developing biomimetic transmembrane channels with unique functions by means of chemically synthetic strategies. An artificial unimolecular transmembrane channel using pore-containing helical macromolecules is reported. The self-folding, shape-persistent, pore-containing helical macromolecules are able to span the lipid bilayer, and thus result in extraordinary channel stability and high transporting efficiency for protons and cations. The lifetime of this artificial unimolecular channel in the lipid bilayer membrane is impressively long, rivaling those of natural protein channels. Natural channel mimics designed by helically folded polymeric scaffolds will display robust and versatile transport-related properties at single-molecule level. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Folding of Aggregated Proteins to Functionally Active Form

    DTIC Science & Technology

    2006-06-01

    detergent [31]. The detergent is then removed by washes with cyclodextrin . Because the pro- cedure can be carried out on gravity-flow columns, it can be...capitalizes on the ability of chemicals such as cyclodextrin to prevent the aggregation of renatured protein when denaturants and/or detergents are removed... cyclodextrin . The cyclodextrin is then removed by another solvent exchange and the properly folded protein released from the column. In a variation of this

  13. Cleavage Mapping the Topology of Protein Folding Intermediates

    DTIC Science & Technology

    2007-11-02

    investigate the changes that occur in two of these mutants. V66L has a greatly lowered m value while that of A90S is substantially increased (5...stability of the folded state of nuclease. The cleavage technique will be used to investigate the changes that occur in two of these mutants. V66L...Connecticut, 06520 3Instituto de Qufmica y Fisicoquimica Biolögicas, Facultad de Farmacia y Bioqufmica (UBA-CONICET), Buenos Aires, Argentina 4

  14. Prediction of the optimal set of contacts to fold the smallest knotted protein

    NASA Astrophysics Data System (ADS)

    Dabrowski-Tumanski, P.; Jarmolinska, A. I.; Sulkowska, J. I.

    2015-09-01

    Knotted protein chains represent a new motif in protein folds. They have been linked to various diseases, and recent extensive analysis of the Protein Data Bank shows that they constitute 1.5% of all deposited protein structures. Despite thorough theoretical and experimental investigations, the role of knots in proteins still remains elusive. Nonetheless, it is believed that knots play an important role in mechanical and thermal stability of proteins. Here, we perform a comprehensive analysis of native, shadow-specific and non-native interactions which describe free energy landscape of the smallest knotted protein (PDB id 2efv). We show that the addition of shadow-specific contacts in the loop region greatly enhances folding kinetics, while the addition of shadow-specific contacts along the C-terminal region (H3 or H4) results in a new folding route with slower kinetics. By means of direct coupling analysis (DCA) we predict non-native contacts which also can accelerate kinetics. Next, we show that the length of the C-terminal knot tail is responsible for the shape of the free energy barrier, while the influence of the elongation of the N-terminus is not significant. Finally, we develop a concept of a minimal contact map sufficient for 2efv protein to fold and analyze properties of this protein using this map.

  15. Prediction of the optimal set of contacts to fold the smallest knotted protein.

    PubMed

    Dabrowski-Tumanski, P; Jarmolinska, A I; Sulkowska, J I

    2015-09-09

    Knotted protein chains represent a new motif in protein folds. They have been linked to various diseases, and recent extensive analysis of the Protein Data Bank shows that they constitute 1.5% of all deposited protein structures. Despite thorough theoretical and experimental investigations, the role of knots in proteins still remains elusive. Nonetheless, it is believed that knots play an important role in mechanical and thermal stability of proteins. Here, we perform a comprehensive analysis of native, shadow-specific and non-native interactions which describe free energy landscape of the smallest knotted protein (PDB id 2efv). We show that the addition of shadow-specific contacts in the loop region greatly enhances folding kinetics, while the addition of shadow-specific contacts along the C-terminal region (H3 or H4) results in a new folding route with slower kinetics. By means of direct coupling analysis (DCA) we predict non-native contacts which also can accelerate kinetics. Next, we show that the length of the C-terminal knot tail is responsible for the shape of the free energy barrier, while the influence of the elongation of the N-terminus is not significant. Finally, we develop a concept of a minimal contact map sufficient for 2efv protein to fold and analyze properties of this protein using this map.

  16. Folding propensity of intrinsically disordered proteins by osmotic stress

    DOE PAGES

    Mansouri, Amanda L.; Grese, Laura N.; Rowe, Erica L.; ...

    2016-10-11

    Proteins imparted with intrinsic disorder conduct a range of essential cellular functions. To better understand the folding and hydration properties of intrinsically disordered proteins (IDPs), we used osmotic stress to induce conformational changes in nuclear co-activator binding domain (NCBD) and activator for thyroid hormone and retinoid receptor (ACTR). Osmotic stress was applied by the addition of small and polymeric osmolytes, where we discovered that water contributions to NCBD folding always exceeded those for ACTR. Both NCBD and ACTR were found to gain a-helical structure with increasing osmotic stress, consistent with their folding upon NCBD/ACTR complex formation. Using small-angle neutron scatteringmore » (SANS), we further characterized NCBD structural changes with the osmolyte ethylene glycol. Here a large reduction in overall size initially occurred before substantial secondary structural change. In conclusion, by focusing on folding propensity, and linked hydration changes, we uncover new insights that may be important for how IDP folding contributes to binding.« less

  17. Folding propensity of intrinsically disordered proteins by osmotic stress†

    PubMed Central

    Mansouri, Amanda L.; Grese, Laura N.; Rowe, Erica L.; Pino, James C.; Chennubhotla, S. Chakra; Ramanathan, Arvind; O’Neill, Hugh M.; Berthelier, Valerie

    2017-01-01

    Proteins imparted with intrinsic disorder conduct a range of essential cellular functions. To better understand the folding and hydration properties of intrinsically disordered proteins (IDPs), we used osmotic stress to induce conformational changes in nuclear co-activator binding domain (NCBD) and activator for thyroid hormone and retinoid receptor (ACTR) separate from their mutual binding. Osmotic stress was applied by the addition of small and polymeric osmolytes, where we discovered that water contributions to NCBD folding always exceeded those for ACTR. Both NCBD and ACTR were found to gain α-helical structure with increasing osmotic stress, consistent with their folding upon NCBD/ACTR complex formation. Using small-angle neutron scattering (SANS), we further characterized NCBD structural changes with the osmolyte ethylene glycol. Here a large reduction in overall size initially occurred before substantial secondary structural change. By focusing on folding propensity, and linked hydration changes, we uncover new insights that may be important for how IDP folding contributes to binding. PMID:27752679

  18. Visualization of Protein Folding Funnels in Lattice Models

    PubMed Central

    Oliveira, Antonio B.; Fatore, Francisco M.; Paulovich, Fernando V.; Oliveira, Osvaldo N.; Leite, Vitor B. P.

    2014-01-01

    Protein folding occurs in a very high dimensional phase space with an exponentially large number of states, and according to the energy landscape theory it exhibits a topology resembling a funnel. In this statistical approach, the folding mechanism is unveiled by describing the local minima in an effective one-dimensional representation. Other approaches based on potential energy landscapes address the hierarchical structure of local energy minima through disconnectivity graphs. In this paper, we introduce a metric to describe the distance between any two conformations, which also allows us to go beyond the one-dimensional representation and visualize the folding funnel in 2D and 3D. In this way it is possible to assess the folding process in detail, e.g., by identifying the connectivity between conformations and establishing the paths to reach the native state, in addition to regions where trapping may occur. Unlike the disconnectivity maps method, which is based on the kinetic connections between states, our methodology is based on structural similarities inferred from the new metric. The method was developed in a 27-mer protein lattice model, folded into a 3×3×3 cube. Five sequences were studied and distinct funnels were generated in an analysis restricted to conformations from the transition-state to the native configuration. Consistent with the expected results from the energy landscape theory, folding routes can be visualized to probe different regions of the phase space, as well as determine the difficulty in folding of the distinct sequences. Changes in the landscape due to mutations were visualized, with the comparison between wild and mutated local minima in a single map, which serves to identify different trapping regions. The extension of this approach to more realistic models and its use in combination with other approaches are discussed. PMID:25010343

  19. Combining Optimal Control Theory and Molecular Dynamics for Protein Folding

    PubMed Central

    Arkun, Yaman; Gur, Mert

    2012-01-01

    A new method to develop low-energy folding routes for proteins is presented. The novel aspect of the proposed approach is the synergistic use of optimal control theory with Molecular Dynamics (MD). In the first step of the method, optimal control theory is employed to compute the force field and the optimal folding trajectory for the atoms of a Coarse-Grained (CG) protein model. The solution of this CG optimization provides an harmonic approximation of the true potential energy surface around the native state. In the next step CG optimization guides the MD simulation by specifying the optimal target positions for the atoms. In turn, MD simulation provides an all-atom conformation whose positions match closely the reference target positions determined by CG optimization. This is accomplished by Targeted Molecular Dynamics (TMD) which uses a bias potential or harmonic restraint in addition to the usual MD potential. Folding is a dynamical process and as such residues make different contacts during the course of folding. Therefore CG optimization has to be reinitialized and repeated over time to accomodate these important changes. At each sampled folding time, the active contacts among the residues are recalculated based on the all-atom conformation obtained from MD. Using the new set of contacts, the CG potential is updated and the CG optimal trajectory for the atoms is recomputed. This is followed by MD. Implementation of this repetitive CG optimization - MD simulation cycle generates the folding trajectory. Simulations on a model protein Villin demonstrate the utility of the method. Since the method is founded on the general tools of optimal control theory and MD without any restrictions, it is widely applicable to other systems. It can be easily implemented with available MD software packages. PMID:22238629

  20. Combining optimal control theory and molecular dynamics for protein folding.

    PubMed

    Arkun, Yaman; Gur, Mert

    2012-01-01

    A new method to develop low-energy folding routes for proteins is presented. The novel aspect of the proposed approach is the synergistic use of optimal control theory with Molecular Dynamics (MD). In the first step of the method, optimal control theory is employed to compute the force field and the optimal folding trajectory for the Cα atoms of a Coarse-Grained (CG) protein model. The solution of this CG optimization provides an harmonic approximation of the true potential energy surface around the native state. In the next step CG optimization guides the MD simulation by specifying the optimal target positions for the Cα atoms. In turn, MD simulation provides an all-atom conformation whose Cα positions match closely the reference target positions determined by CG optimization. This is accomplished by Targeted Molecular Dynamics (TMD) which uses a bias potential or harmonic restraint in addition to the usual MD potential. Folding is a dynamical process and as such residues make different contacts during the course of folding. Therefore CG optimization has to be reinitialized and repeated over time to accomodate these important changes. At each sampled folding time, the active contacts among the residues are recalculated based on the all-atom conformation obtained from MD. Using the new set of contacts, the CG potential is updated and the CG optimal trajectory for the Cα atoms is recomputed. This is followed by MD. Implementation of this repetitive CG optimization-MD simulation cycle generates the folding trajectory. Simulations on a model protein Villin demonstrate the utility of the method. Since the method is founded on the general tools of optimal control theory and MD without any restrictions, it is widely applicable to other systems. It can be easily implemented with available MD software packages.

  1. High-pressure NMR techniques for the study of protein dynamics, folding and aggregation

    NASA Astrophysics Data System (ADS)

    Nguyen, Luan M.; Roche, Julien

    2017-04-01

    High-pressure is a well-known perturbation method used to destabilize globular proteins and dissociate protein complexes or aggregates. The heterogeneity of the response to pressure offers a unique opportunity to dissect the thermodynamic contributions to protein stability. In addition, pressure perturbation is generally reversible, which is essential for a proper thermodynamic characterization of a protein equilibrium. When combined with NMR spectroscopy, hydrostatic pressure offers the possibility of monitoring at an atomic resolution the structural transitions occurring upon unfolding and determining the kinetic properties of the process. The recent development of commercially available high-pressure sample cells greatly increased the potential applications for high-pressure NMR experiments that can now be routinely performed. This review summarizes the recent applications and future directions of high-pressure NMR techniques for the characterization of protein conformational fluctuations, protein folding and the stability of protein complexes and aggregates.

  2. Folding and stability of the ligand-binding domain of the glucocorticoid receptor

    PubMed Central

    McLaughlin, Stephen H.; Jackson, Sophie E.

    2002-01-01

    A complex pathway involving many molecular chaperones has been proposed for the folding, assembly, and maintenance of a high-affinity ligand-binding form of steroid receptors in vivo, including the glucocorticoid receptor. To better understand this intricate folding and assembly process, we studied the folding of the ligand-binding domain of the glucocorticoid receptor in vitro. We found that this domain can be refolded into a compact, highly structured state in vitro in the absence of chaperones. However, the presence of zwitterionic detergent is required to maintain the domain in a soluble form. In this state, the protein is dimeric and has considerable helical structure as shown by far-UV circular dichroism. Further investigation of the properties of this in vitro refolded state show that it is stable and resistant to denaturation by heat or low concentrations of chemical denaturants. A detailed analysis of the unfolding equilibria using three different structural probes demonstrated that this state unfolds via a highly populated dimeric intermediate state. Together, these data clearly show that the ligand-binding domain of the glucocorticoid receptor does not require chaperones for folding per se. However, this in vitro refolded state binds the ligand dexamethasone only weakly (Kd = 45 μM) compared to the in vivo assembled receptor (Kd = 3.4 nM). We suggest that the role of Hsp90 and associated chaperones is to bind to, and stabilize, a specific conformational state of the receptor which binds ligand with high affinity. PMID:12142447

  3. Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli.

    PubMed

    Kerner, Michael J; Naylor, Dean J; Ishihama, Yasushi; Maier, Tobias; Chang, Hung-Chun; Stines, Anna P; Georgopoulos, Costa; Frishman, Dmitrij; Hayer-Hartl, Manajit; Mann, Matthias; Hartl, F Ulrich

    2005-07-29

    The E. coli chaperonin GroEL and its cofactor GroES promote protein folding by sequestering nonnative polypeptides in a cage-like structure. Here we define the contribution of this system to protein folding across the entire E. coli proteome. Approximately 250 different proteins interact with GroEL, but most of these can utilize either GroEL or the upstream chaperones trigger factor (TF) and DnaK for folding. Obligate GroEL-dependence is limited to only approximately 85 substrates, including 13 essential proteins, and occupying more than 75% of GroEL capacity. These proteins appear to populate kinetically trapped intermediates during folding; they are stabilized by TF/DnaK against aggregation but reach native state only upon transfer to GroEL/GroES. Interestingly, substantially enriched among the GroEL substrates are proteins with (betaalpha)8 TIM-barrel domains. We suggest that the chaperonin system may have facilitated the evolution of this fold into a versatile platform for the implementation of numerous enzymatic functions.

  4. Helical junctions as determinants for RNA folding: origin of tertiary structure stability of the hairpin ribozyme.

    PubMed

    Klostermeier, D; Millar, D P

    2000-10-24

    Helical junctions are ubiquitous structural elements that govern the folding and tertiary structure of RNAs. The tobacco ringspot virus hairpin ribozyme consists of two helix-loop-helix elements that lie on adjacent arms of a four-way junction. In the active form of the hairpin ribozyme, the loops are in proximity. The nature of the helical junction determines the stability of the hairpin ribozyme tertiary structure [Walter, N. G., Burke, J. M., and Millar, D. P. (1999) Nat. Struct. Biol. 6, 544-549] and thus its catalytic activity. We used two-, three-, and four-way junction hairpin ribozymes as model systems to investigate the thermodynamic basis for the different tertiary structure stabilities. The equilibrium between docked and extended conformers was analyzed as a function of temperature using time-resolved fluorescence resonance energy transfer (trFRET). As the secondary and tertiary structure transitions overlap, information from UV melting curves and trFRET had to be combined to gain insight into the thermodynamics of both structural transitions. It turned out that the higher tertiary structure stability observed in the context of a four-way junction is the result of a lower entropic cost for the docking process. In the two- and three-way junction ribozymes, a high entropic cost counteracts the favorable enthalpic term, rendering the docked conformer only marginally stable. Thus, two- and three-way junction tertiary structures are more sensitive toward regulation by ligands, whereas four-way junctions provide a stable scaffold. Altogether, RNA folding and stability appear to be governed by principles similar to those for the folding of proteins.

  5. The topomer-sampling model of protein folding

    PubMed Central

    Debe, Derek A.; Carlson, Matt J.; Goddard, William A.

    1999-01-01

    Clearly, a protein cannot sample all of its conformations (e.g., ≈3100 ≈ 1048 for a 100 residue protein) on an in vivo folding timescale (<1 s). To investigate how the conformational dynamics of a protein can accommodate subsecond folding time scales, we introduce the concept of the native topomer, which is the set of all structures similar to the native structure (obtainable from the native structure through local backbone coordinate transformations that do not disrupt the covalent bonding of the peptide backbone). We have developed a computational procedure for estimating the number of distinct topomers required to span all conformations (compact and semicompact) for a polypeptide of a given length. For 100 residues, we find ≈3 × 107 distinct topomers. Based on the distance calculated between different topomers, we estimate that a 100-residue polypeptide diffusively samples one topomer every ≈3 ns. Hence, a 100-residue protein can find its native topomer by random sampling in just ≈100 ms. These results suggest that subsecond folding of modest-sized, single-domain proteins can be accomplished by a two-stage process of (i) topomer diffusion: random, diffusive sampling of the 3 × 107 distinct topomers to find the native topomer (≈0.1 s), followed by (ii) intratopomer ordering: nonrandom, local conformational rearrangements within the native topomer to settle into the precise native state. PMID:10077555

  6. WeFold: A Coopetition for Protein Structure Prediction

    PubMed Central

    Khoury, George A.; Liwo, Adam; Khatib, Firas; Zhou, Hongyi; Chopra, Gaurav; Bacardit, Jaume; Bortot, Leandro O.; Faccioli, Rodrigo A.; Deng, Xin; He, Yi; Krupa, Pawel; Li, Jilong; Mozolewska, Magdalena A.; Sieradzan, Adam K.; Smadbeck, James; Wirecki, Tomasz; Cooper, Seth; Flatten, Jeff; Xu, Kefan; Baker, David; Cheng, Jianlin; Delbem, Alexandre C. B.; Floudas, Christodoulos A.; Keasar, Chen; Levitt, Michael; Popović, Zoran; Scheraga, Harold A.; Skolnick, Jeffrey; Crivelli, Silvia N.; Players, Foldit

    2014-01-01

    The protein structure prediction problem continues to elude scientists. Despite the introduction of many methods, only modest gains were made over the last decade for certain classes of prediction targets. To address this challenge, a social-media based worldwide collaborative effort, named WeFold, was undertaken by thirteen labs. During the collaboration, the labs were simultaneously competing with each other. Here, we present the first attempt at “coopetition” in scientific research applied to the protein structure prediction and refinement problems. The coopetition was possible by allowing the participating labs to contribute different components of their protein structure prediction pipelines and create new hybrid pipelines that they tested during CASP10. This manuscript describes both successes and areas needing improvement as identified throughout the first WeFold experiment and discusses the efforts that are underway to advance this initiative. A footprint of all contributions and structures are publicly accessible at http://www.wefold.org. PMID:24677212

  7. WeFold: a coopetition for protein structure prediction.

    PubMed

    Khoury, George A; Liwo, Adam; Khatib, Firas; Zhou, Hongyi; Chopra, Gaurav; Bacardit, Jaume; Bortot, Leandro O; Faccioli, Rodrigo A; Deng, Xin; He, Yi; Krupa, Pawel; Li, Jilong; Mozolewska, Magdalena A; Sieradzan, Adam K; Smadbeck, James; Wirecki, Tomasz; Cooper, Seth; Flatten, Jeff; Xu, Kefan; Baker, David; Cheng, Jianlin; Delbem, Alexandre C B; Floudas, Christodoulos A; Keasar, Chen; Levitt, Michael; Popović, Zoran; Scheraga, Harold A; Skolnick, Jeffrey; Crivelli, Silvia N

    2014-09-01

    The protein structure prediction problem continues to elude scientists. Despite the introduction of many methods, only modest gains were made over the last decade for certain classes of prediction targets. To address this challenge, a social-media based worldwide collaborative effort, named WeFold, was undertaken by 13 labs. During the collaboration, the laboratories were simultaneously competing with each other. Here, we present the first attempt at "coopetition" in scientific research applied to the protein structure prediction and refinement problems. The coopetition was possible by allowing the participating labs to contribute different components of their protein structure prediction pipelines and create new hybrid pipelines that they tested during CASP10. This manuscript describes both successes and areas needing improvement as identified throughout the first WeFold experiment and discusses the efforts that are underway to advance this initiative. A footprint of all contributions and structures are publicly accessible at http://www.wefold.org. © 2014 Wiley Periodicals, Inc.

  8. Invariant patterns in crystal lattices: Implications for protein folding algorithms

    SciTech Connect

    HART,WILLIAM E.; ISTRAIL,SORIN

    2000-06-01

    Crystal lattices are infinite periodic graphs that occur naturally in a variety of geometries and which are of fundamental importance in polymer science. Discrete models of protein folding use crystal lattices to define the space of protein conformations. Because various crystal lattices provide discretizations of the same physical phenomenon, it is reasonable to expect that there will exist invariants across lattices related to fundamental properties of the protein folding process. This paper considers whether performance-guaranteed approximability is such an invariant for HP lattice models. The authors define a master approximation algorithm that has provable performance guarantees provided that a specific sublattice exists within a given lattice. They describe a broad class of crystal lattices that are approximable, which further suggests that approximability is a general property of HP lattice models.

  9. Fold Recognition Using Sequence Fingerprints of Protein Local Substructures

    SciTech Connect

    Kryshtafovych, A A; Hvidsten, T; Komorowski, J; Fidelis, K

    2003-06-04

    A protein local substructure (descriptor) is a set of several short non-overlapping fragments of the polypeptide chain. Each descriptor describes local environment of a particular residue and includes only those segments that are located in the proximity of this residue. Similar descriptors from the representative set of proteins were analyzed to reveal links between the substructures and sequences of their segments. Using detected sequence-based fingerprints specific geometrical conformations are assigned to new sequences. The ability of the approach to recognize correct SCOP folds was tested on 273 sequences from the 49 most popular folds. Good predictions were obtained in 85% of cases. No performance drop was observed with decreasing sequence similarity between target sequences and sequences from the training set of proteins.

  10. Femtomole Mixer for Microsecond Kinetic Studies of Protein Folding

    PubMed Central

    Hertzog, David E.; Michalet, Xavier; Jäger, Marcus; Kong, Xiangxu; Santiago, Juan G.; Weiss, Shimon; Bakajin, Olgica

    2005-01-01

    We have developed a microfluidic mixer for studying protein folding and other reactions with a mixing time of 8 μs and sample consumption of femtomoles. This device enables us to access conformational changes under conditions far from equilibrium and at previously inaccessible time scales. In this paper, we discuss the design and optimization of the mixer using modeling of convective diffusion phenomena and a characterization of the mixer performance using microparticle image velocimetry, dye quenching, and Förster resonance energy-transfer (FRET) measurements of single-stranded DNA. We also demonstrate the feasibility of measuring fast protein folding kinetics using FRET with acyl-CoA binding protein. PMID:15595857

  11. Folding by Numbers: Primary Sequence Statistics and Their Use in Studying Protein Folding

    PubMed Central

    Wathen, Brent; Jia, Zongchao

    2009-01-01

    The exponential growth over the past several decades in the quantity of both primary sequence data available and the number of protein structures determined has provided a wealth of information describing the relationship between protein primary sequence and tertiary structure. This growing repository of data has served as a prime source for statistical analysis, where underlying relationships between patterns of amino acids and protein structure can be uncovered. Here, we survey the main statistical approaches that have been used for identifying patterns within protein sequences, and discuss sequence pattern research as it relates to both secondary and tertiary protein structure. Limitations to statistical analyses are discussed, and a context for their role within the field of protein folding is given. We conclude by describing a novel statistical study of residue patterning in β-strands, which finds that hydrophobic (i,i+2) pairing in β-strands occurs more often than expected at locations near strand termini. Interpretations involving β-sheet nucleation and growth are discussed. PMID:19468326

  12. Symmetric structures in the universe of protein folds.

    PubMed

    Guerler, Aysam; Wang, Connie; Knapp, Ernst-Walter

    2009-09-01

    Insights in structural biology can be gained by analyzing protein architectures and characterizing their structural similarities. Current computational approaches enable a comparison of a variety of structural and physicochemical properties in protein space. Here we describe the automated detection of rotational symmetries within a representative set of nearly 10,000 nonhomologous protein structures. To find structural symmetries in proteins initially, equivalent pairs of secondary structure elements (SSE), i.e., alpha-helices and beta-strands, are assigned. Thereby, we also allow SSE pairs to be assigned in reverse sequential order. The results highlight that the generation of symmetric, i.e., repetitive, protein structures is one of nature's major strategies to explore the universe of possible protein folds. This way structurally separated 'islands' of protein folds with a significant amount of symmetry were identified. The complete results of the present study are available at http://agknapp.chemie.fu-berlin.de/gplus, where symmetry analysis of new protein structures can also be performed.

  13. Marginally hydrophobic transmembrane α-helices shaping membrane protein folding.

    PubMed

    De Marothy, Minttu T; Elofsson, Arne

    2015-07-01

    Cells have developed an incredible machinery to facilitate the insertion of membrane proteins into the membrane. While we have a fairly good understanding of the mechanism and determinants of membrane integration, more data is needed to understand the insertion of membrane proteins with more complex insertion and folding pathways. This review will focus on marginally hydrophobic transmembrane helices and their influence on membrane protein folding. These weakly hydrophobic transmembrane segments are by themselves not recognized by the translocon and therefore rely on local sequence context for membrane integration. How can such segments reside within the membrane? We will discuss this in the light of features found in the protein itself as well as the environment it resides in. Several characteristics in proteins have been described to influence the insertion of marginally hydrophobic helices. Additionally, the influence of biological membranes is significant. To begin with, the actual cost for having polar groups within the membrane may not be as high as expected; the presence of proteins in the membrane as well as characteristics of some amino acids may enable a transmembrane helix to harbor a charged residue. The lipid environment has also been shown to directly influence the topology as well as membrane boundaries of transmembrane helices-implying a dynamic relationship between membrane proteins and their environment. © 2015 The Protein Society.

  14. How optimization of potential functions affects protein folding.

    PubMed Central

    Hao, M H; Scheraga, H A

    1996-01-01

    The relationship between the optimization of the potential function and the foldability of theoretical protein models is studied based on investigations of a 27-mer cubic-lattice protein model and a more realistic lattice model for the protein crambin. In both the simple and the more complicated systems, optimization of the energy parameters achieves significant improvements in the statistical-mechanical characteristics of the systems and leads to foldable protein models in simulation experiments. The foldability of the protein models is characterized by their statistical-mechanical properties--e.g., by the density of states and by Monte Carlo folding simulations of the models. With optimized energy parameters, a high level of consistency exists among different interactions in the native structures of the protein models, as revealed by a correlation function between the optimized energy parameters and the native structure of the model proteins. The results of this work are relevant to the design of a general potential function for folding proteins by theoretical simulations. PMID:8643516

  15. Role of Lipids in Folding, Misfolding and Function of Integral Membrane Proteins.

    PubMed

    Hong, Heedeok

    2015-01-01

    The lipid bilayer that constitutes cell membranes imposes environmental constraints on the structure, folding and function of integral membrane proteins. The cell membrane is an enormously heterogeneous and dynamic system in its chemical composition and associated physical forces. The lipid compositions of cell membranes not only vary over the tree of life but also differ by subcellular compartments within the same organism. Even in the same subcellular compartment, the membrane composition shows strong temporal and spatial dependence on the environmental or biological cues. Hence, one may expect that the membrane protein conformations and their equilibria strongly depend on the physicochemical variables of the lipid bilayer. Contrary to this expectation, the structures of homologous membrane proteins belonging to the same family but from evolutionary distant organisms exhibit a striking similarity. Furthermore, the atomic structures of the same protein in different lipid environments are also very similar. This suggests that certain stable folds optimized for a specific function have been selected by evolution. On the other hand, there is growing evidence that, despite the overall stability of the protein folds, functions of certain membrane proteins require a particular lipid composition in the bulk bilayer or binding of specific lipid species. Here I discuss the specific and nonspecific modulation of folding, misfolding and function of membrane proteins by lipids and introduce several diseases that are caused by misfolding of membrane proteins.

  16. Stability of two-fold screw axis structures for cellulose

    USDA-ARS?s Scientific Manuscript database

    Diffraction crystallography indicates that most forms of crystalline cellulose have two-fold screw axis symmetry. Even if exact symmetry is absent, the degree of pseudo symmetry is very high. On the other hand, this symmetry leads to short contacts between H4 and H1' across the glycosidic linkage....

  17. Competition between chemical denaturation and macromolecular crowding effects on the folding dynamics of proteins

    NASA Astrophysics Data System (ADS)

    Samiotakis, Antonios; Cheung, Margaret

    2011-03-01

    It is well known that proteins fold and function in the crowded environment of the cell's interior. In the recent years it has been established that the so-called ``macromolecular crowding'' effect can enhance the folding stability of proteins by destabilizing their unfolded states. On the other hand, chemical and thermal denaturation are often used in experiments as tools to destabilize protein structures when probing a protein's folding landscape. However, little is known about the combined effects of these competing phenomena on proteins. In this work, we use coarse-grained molecular simulations to study the thermodynamic and kinetic properties of the small peptide Trp-cage, in the combined presence of macromolecular crowders and chemical denaturant. With the use of an energy function derived by all-atomistic simulations in the presence of urea, we investigate the thermodynamics and kinetics of Trp-cage's folding mechanism at several concentrations of urea. The effects of the competition between stabilization by macromolecular crowding and destabilization by chemical denaturation will also be discussed. This work was supported by the National Science Foundation, Molecular & Cellular Biosciences (MCB0919974).

  18. Stabilized polyacrylic saccharide protein conjugates

    DOEpatents

    Callstrom, Matthew R.; Bednarski, Mark D.; Gruber, Patrick R.

    1996-01-01

    This invention is directed to water soluble protein polymer conjugates which are stabile in hostile environments. The conjugate comprises a protein which is linked to an acrylic polymer at multiple points through saccharide linker groups.

  19. Modeling chain folding in protein-constrained circular DNA.

    PubMed Central

    Martino, J A; Olson, W K

    1998-01-01

    An efficient method for sampling equilibrium configurations of DNA chains binding one or more DNA-bending proteins is presented. The technique is applied to obtain the tertiary structures of minimal bending energy for a selection of dinucleosomal minichromosomes that differ in degree of protein-DNA interaction, protein spacing along the DNA chain contour, and ring size. The protein-bound portions of the DNA chains are represented by tight, left-handed supercoils of fixed geometry. The protein-free regions are modeled individually as elastic rods. For each random spatial arrangement of the two nucleosomes assumed during a stochastic search for the global minimum, the paths of the flexible connecting DNA segments are determined through a numerical solution of the equations of equilibrium for torsionally relaxed elastic rods. The minimal energy forms reveal how protein binding and spacing and plasmid size differentially affect folding and offer new insights into experimental minichromosome systems. PMID:9591675

  20. Work done by titin protein folding assists muscle contraction

    PubMed Central

    Popa, Ionel; Kosuri, Pallav; Linke, Wolfgang A.; Fernández, Julio M.

    2016-01-01

    Current theories of muscle contraction propose that the power stroke of a myosin motor is the sole source of mechanical energy driving the sliding filaments of a contracting muscle. These models exclude titin, the largest protein in the human body, which determines the passive elasticity of muscles. Here, we show that stepwise unfolding/folding of titin Ig domains occurs in the elastic I band region of intact myofibrils at physiological sarcomere lengths and forces of 6-8 pN. We use single molecule techniques to demonstrate that unfolded titin Ig domains undergo a spontaneous stepwise folding contraction at forces below 10 pN, delivering up to 105 zJ of additional contractile energy, which is larger than the mechanical energy delivered by the power stroke of a myosin motor. Thus, it appears inescapable that folding of titin Ig domains is an important, but so far unrecognized contributor to the force generated by a contracting muscle. PMID:26854230

  1. Work Done by Titin Protein Folding Assists Muscle Contraction.

    PubMed

    Rivas-Pardo, Jaime Andrés; Eckels, Edward C; Popa, Ionel; Kosuri, Pallav; Linke, Wolfgang A; Fernández, Julio M

    2016-02-16

    Current theories of muscle contraction propose that the power stroke of a myosin motor is the sole source of mechanical energy driving the sliding filaments of a contracting muscle. These models exclude titin, the largest protein in the human body, which determines the passive elasticity of muscles. Here, we show that stepwise unfolding/folding of titin immunoglobulin (Ig) domains occurs in the elastic I band region of intact myofibrils at physiological sarcomere lengths and forces of 6-8 pN. We use single-molecule techniques to demonstrate that unfolded titin Ig domains undergo a spontaneous stepwise folding contraction at forces below 10 pN, delivering up to 105 zJ of additional contractile energy, which is larger than the mechanical energy delivered by the power stroke of a myosin motor. Thus, it appears inescapable that folding of titin Ig domains is an important, but as yet unrecognized, contributor to the force generated by a contracting muscle.

  2. Marginally hydrophobic transmembrane α-helices shaping membrane protein folding

    PubMed Central

    De Marothy, Minttu T; Elofsson, Arne

    2015-01-01

    Cells have developed an incredible machinery to facilitate the insertion of membrane proteins into the membrane. While we have a fairly good understanding of the mechanism and determinants of membrane integration, more data is needed to understand the insertion of membrane proteins with more complex insertion and folding pathways. This review will focus on marginally hydrophobic transmembrane helices and their influence on membrane protein folding. These weakly hydrophobic transmembrane segments are by themselves not recognized by the translocon and therefore rely on local sequence context for membrane integration. How can such segments reside within the membrane? We will discuss this in the light of features found in the protein itself as well as the environment it resides in. Several characteristics in proteins have been described to influence the insertion of marginally hydrophobic helices. Additionally, the influence of biological membranes is significant. To begin with, the actual cost for having polar groups within the membrane may not be as high as expected; the presence of proteins in the membrane as well as characteristics of some amino acids may enable a transmembrane helix to harbor a charged residue. The lipid environment has also been shown to directly influence the topology as well as membrane boundaries of transmembrane helices—implying a dynamic relationship between membrane proteins and their environment. PMID:25970811

  3. Twin-arginine-dependent translocation of folded proteins.

    PubMed

    Fröbel, Julia; Rose, Patrick; Müller, Matthias

    2012-04-19

    Twin-arginine translocation (Tat) denotes a protein transport pathway in bacteria, archaea and plant chloroplasts, which is specific for precursor proteins harbouring a characteristic twin-arginine pair in their signal sequences. Many Tat substrates receive cofactors and fold prior to translocation. For a subset of them, proofreading chaperones coordinate maturation and membrane-targeting. Tat translocases comprise two kinds of membrane proteins, a hexahelical TatC-type protein and one or two members of the single-spanning TatA protein family, called TatA and TatB. TatC- and TatA-type proteins form homo- and hetero-oligomeric complexes. The subunits of TatABC translocases are predominantly recovered from two separate complexes, a TatBC complex that might contain some TatA, and a homomeric TatA complex. TatB and TatC coordinately recognize twin-arginine signal peptides and accommodate them in membrane-embedded binding pockets. Advanced binding of the signal sequence to the Tat translocase requires the proton-motive force (PMF) across the membranes and might involve a first recruitment of TatA. When targeted in this manner, folded twin-arginine precursors induce homo-oligomerization of TatB and TatA. Ultimately, this leads to the formation of a transmembrane protein conduit that possibly consists of a pore-like TatA structure. The translocation step again is dependent on the PMF.

  4. Twin-arginine-dependent translocation of folded proteins

    PubMed Central

    Fröbel, Julia; Rose, Patrick; Müller, Matthias

    2012-01-01

    Twin-arginine translocation (Tat) denotes a protein transport pathway in bacteria, archaea and plant chloroplasts, which is specific for precursor proteins harbouring a characteristic twin-arginine pair in their signal sequences. Many Tat substrates receive cofactors and fold prior to translocation. For a subset of them, proofreading chaperones coordinate maturation and membrane-targeting. Tat translocases comprise two kinds of membrane proteins, a hexahelical TatC-type protein and one or two members of the single-spanning TatA protein family, called TatA and TatB. TatC- and TatA-type proteins form homo- and hetero-oligomeric complexes. The subunits of TatABC translocases are predominantly recovered from two separate complexes, a TatBC complex that might contain some TatA, and a homomeric TatA complex. TatB and TatC coordinately recognize twin-arginine signal peptides and accommodate them in membrane-embedded binding pockets. Advanced binding of the signal sequence to the Tat translocase requires the proton-motive force (PMF) across the membranes and might involve a first recruitment of TatA. When targeted in this manner, folded twin-arginine precursors induce homo-oligomerization of TatB and TatA. Ultimately, this leads to the formation of a transmembrane protein conduit that possibly consists of a pore-like TatA structure. The translocation step again is dependent on the PMF. PMID:22411976

  5. The folding of spectrin domains I: wild-type domains have the same stability but very different kinetic properties.

    PubMed

    Scott, Kathryn A; Batey, Sarah; Hooton, Karen A; Clarke, Jane

    2004-11-12

    The study of proteins with the same architecture, but different sequence has proven to be a valuable tool in the protein folding field. As a prelude to studies on the folding mechanism of spectrin domains we present the kinetic characterisation of the wild-type forms of the 15th, 16th, and 17th domains of chicken brain alpha-spectrin (referred to as R15, R16 and R17, respectively). We show that the proteins all behave in a two-state manner, with different kinetic properties. The folding rate varies remarkably between different members, with a 5000-fold variation in folding rate and 3000-fold variation in unfolding rate seen for proteins differing only 1 kcal mol(-1) in stability. We show clear evidence for significant complexity in the energy landscape of R16, which shows a change in amplitude outside the stopped-flow timescale and curvature in the unfolding arm of the chevron plot. The accompanying paper describes the characterisation of the folding pathway of this domain.

  6. Protein Folding Mechanism of the Dimeric AmphiphysinII/Bin1 N-BAR Domain.

    PubMed

    Gruber, Tobias; Balbach, Jochen

    2015-01-01

    The human AmphyphisinII/Bin1 N-BAR domain belongs to the BAR domain superfamily, whose members sense and generate membrane curvatures. The N-BAR domain is a 57 kDa homodimeric protein comprising a six helix bundle. Here we report the protein folding mechanism of this protein as a representative of this protein superfamily. The concentration dependent thermodynamic stability was studied by urea equilibrium transition curves followed by fluorescence and far-UV CD spectroscopy. Kinetic unfolding and refolding experiments, including rapid double and triple mixing techniques, allowed to unravel the complex folding behavior of N-BAR. The equilibrium unfolding transition curve can be described by a two-state process, while the folding kinetics show four refolding phases, an additional burst reaction and two unfolding phases. All fast refolding phases show a rollover in the chevron plot but only one of these phases depends on the protein concentration reporting the dimerization step. Secondary structure formation occurs during the three fast refolding phases. The slowest phase can be assigned to a proline isomerization. All kinetic experiments were also followed by fluorescence anisotropy detection to verify the assignment of the dimerization step to the respective folding phase. Based on these experiments we propose for N-BAR two parallel folding pathways towards the homodimeric native state depending on the proline conformation in the unfolded state.

  7. Principles of protein folding--a perspective from simple exact models.

    PubMed Central

    Dill, K. A.; Bromberg, S.; Yue, K.; Fiebig, K. M.; Yee, D. P.; Thomas, P. D.; Chan, H. S.

    1995-01-01

    General principles of protein structure, stability, and folding kinetics have recently been explored in computer simulations of simple exact lattice models. These models represent protein chains at a rudimentary level, but they involve few parameters, approximations, or implicit biases, and they allow complete explorations of conformational and sequence spaces. Such simulations have resulted in testable predictions that are sometimes unanticipated: The folding code is mainly binary and delocalized throughout the amino acid sequence. The secondary and tertiary structures of a protein are specified mainly by the sequence of polar and nonpolar monomers. More specific interactions may refine the structure, rather than dominate the folding code. Simple exact models can account for the properties that characterize protein folding: two-state cooperativity, secondary and tertiary structures, and multistage folding kinetics--fast hydrophobic collapse followed by slower annealing. These studies suggest the possibility of creating "foldable" chain molecules other than proteins. The encoding of a unique compact chain conformation may not require amino acids; it may require only the ability to synthesize specific monomer sequences in which at least one monomer type is solvent-averse. PMID:7613459

  8. Statistical mechanics of simple models of protein folding and design.

    PubMed Central

    Pande, V S; Grosberg, A Y; Tanaka, T

    1997-01-01

    It is now believed that the primary equilibrium aspects of simple models of protein folding are understood theoretically. However, current theories often resort to rather heavy mathematics to overcome some technical difficulties inherent in the problem or start from a phenomenological model. To this end, we take a new approach in this pedagogical review of the statistical mechanics of protein folding. The benefit of our approach is a drastic mathematical simplification of the theory, without resort to any new approximations or phenomenological prescriptions. Indeed, the results we obtain agree precisely with previous calculations. Because of this simplification, we are able to present here a thorough and self contained treatment of the problem. Topics discussed include the statistical mechanics of the random energy model (REM), tests of the validity of REM as a model for heteropolymer freezing, freezing transition of random sequences, phase diagram of designed ("minimally frustrated") sequences, and the degree to which errors in the interactions employed in simulations of either folding and design can still lead to correct folding behavior. Images FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 6 PMID:9414231

  9. Assessing the effect of dynamics on the closed-loop protein-folding hypothesis

    PubMed Central

    Chintapalli, Sree V.; Illingworth, Christopher J. R.; Upton, Graham J. G.; Sacquin-Mora, Sophie; Reeves, Philip J.; Mohammedali, Hani S.; Reynolds, Christopher A.

    2014-01-01

    The closed-loop (loop-n-lock) hypothesis of protein folding suggests that loops of about 25 residues, closed through interactions between the loop ends (locks), play an important role in protein structure. Coarse-grain elastic network simulations, and examination of loop lengths in a diverse set of proteins, each supports a bias towards loops of close to 25 residues in length between residues of high stability. Previous studies have established a correlation between total contact distance (TCD), a metric of sequence distances between contacting residues (cf. contact order), and the log-folding rate of a protein. In a set of 43 proteins, we identify an improved correlation (r2 = 0.76), when the metric is restricted to residues contacting the locks, compared to the equivalent result when all residues are considered (r2 = 0.65). This provides qualified support for the hypothesis, albeit with an increased emphasis upon the importance of a much larger set of residues surrounding the locks. Evidence of a similar-sized protein core/extended nucleus (with significant overlap) was obtained from TCD calculations in which residues were successively eliminated according to their hydrophobicity and connectivity, and from molecular dynamics simulations. Our results suggest that while folding is determined by a subset of residues that can be predicted by application of the closed-loop hypothesis, the original hypothesis is too simplistic; efficient protein folding is dependent on a considerably larger subset of residues than those involved in lock formation. PMID:24258160

  10. SYNONYMOUS CODONS DIRECT CO-TRANSLATIONAL FOLDING TOWARDS DIFFERENT PROTEIN CONFORMATIONS

    PubMed Central

    Mittelstaet, Joerg; Kutz, Felicitas; Schwalbe, Harald; Rodnina, Marina V.; Komar, Anton A.

    2016-01-01

    SUMMARY In all genomes, most amino acids are encoded by more than one codon. Synonymous codons can modulate protein production and folding, but the mechanism connecting codon usage to protein homeostasis is not known. Here we show that synonymous codon variants in the gene encoding gamma-B crystallin, a mammalian eye lens protein, modulate the rates of translation and co-translational folding of protein domains monitored in real time by Förster resonance energy transfer and fluorescence intensity changes. Gamma-B crystallins produced from mRNAs with changed codon bias have the same amino acid sequence, but attain different conformations as indicated by altered in vivo stability and in vitro protease resistance. 2D NMR spectroscopic data suggest that structural differences are associated with different cysteine oxidation states of the purified proteins, providing a link between translation, folding, and the structures of isolated proteins. Thus, synonymous codons provide a secondary code for protein folding in the cell. PMID:26849192

  11. Septins: Regulators of Protein Stability

    PubMed Central

    Vagin, Olga; Beenhouwer, David O.

    2016-01-01

    Septins are small GTPases that play a role in several important cellular processes. In this review, we focus on the roles of septins in protein stabilization. Septins may regulate protein stability by: (1) interacting with proteins involved in degradation pathways, (2) regulating the interaction between transmembrane proteins and cytoskeletal proteins, (3) affecting the mobility of transmembrane proteins in lipid bilayers, and (4) modulating the interaction of proteins with their adaptor or signaling proteins. In this context, we discuss the role of septins in protecting four different proteins from degradation. First we consider botulinum neurotoxin serotype A (BoNT/A) and the contribution of septins to its extraordinarily long intracellular persistence. Next, we discuss the role of septins in stabilizing the receptor tyrosine kinases EGFR and ErbB2. Finally, we consider the contribution of septins in protecting hypoxia-inducible factor 1α (HIF-1α) from degradation. PMID:28066764

  12. Pressure induces folding intermediates that are crucial for protein-DNA recognition and virus assembly.

    PubMed

    Silva, Jerson L; Oliveira, Andréa C; Gomes, Andre M O; Lima, Luís Maurício T R; Mohana-Borges, Ronaldo; Pacheco, Ana B F; Foguel, Débora

    2002-03-25

    Protein-nucleic acid interactions are crucial for a variety of fundamental biological processes such as replication, transcription, restriction, translation and virus assembly. The molecular basis of protein-DNA and protein-RNA recognition is deeply related to the thermodynamics of the systems. We review here how protein-nucleic acid interactions can be approached in the same way as protein-protein interactions involved in protein folding and protein assembly, using hydrostatic pressure as the primary tool and employing several spectroscopic techniques, especially fluorescence, circular dichroism and high-resolution nuclear magnetic resonance. High pressure has the unique property of stabilizing partially folded states or molten-globule states of a protein. The competition between correct folding and misfolding, which in many proteins leads to formation of insoluble aggregates is an important problem in the biotechnology industry and in human diseases such as amyloidosis, Alzheimer's, prion and tumor diseases. The pressure studies reveal that a gradient of partially folded (molten globule) conformations is present between the unfolded and fully folded structure of several bacteria, plant and mammalian viruses. Using pressure, we have detected the presence of a ribonucleoprotein intermediate, where the coat protein is partially unfolded but bound to RNA. These intermediates are potential targets for antiviral compounds. Pressure studies on viruses have direct biotechnological applications. The ability of pressure to inactivate viruses has been evaluated with a view toward the applications of vaccine development and virus sterilization. Recent studies demonstrate that pressure causes virus inactivation while preserving the immunogenic properties. There is substantial evidence that a high-pressure cycle traps a virus in the 'fusion intermediate state', not infectious but highly immunogenic.

  13. Saddles of the energy landscape and folding of model proteins

    NASA Astrophysics Data System (ADS)

    Angelani, L.; Ruocco, G.

    2009-07-01

    We numerically investigate the Potential Energy Landscape of an off-lattice β-sheet model protein, looking at saddles and minima probed by the system during the folding process. G {\\bar o} - like (with native-state-dependent force field and funnel-like landscape) and non-G {\\bar o} -like models are considered. In the G {\\bar o} -like case, on varying the temperature, we observe: i) a pronounced peak at the collapse/folding temperature T θsimeTf in the energy elevation of visited saddles from underlying minima, ii) a crossover at the same point of the saddle order. Saddles-based quantities seem then to be good candidates as indicators of the funneled shape of the landscape in protein models.

  14. Nucleation-based prediction of the protein folding rate and its correlation with the folding nucleus size.

    PubMed

    Galzitskaya, Oxana V; Glyakina, Anna V

    2012-12-01

    The problem of protein self-organization is in the focus of current molecular biology studies. Although the general principles are understood, many details remain unclear. Specifically, protein folding rates are of interest because they dictate the rate of protein aggregation which underlies many human diseases. Here we offer predictions of protein folding rates and their correlation with folding nucleus sizes. We calculated free energies of the transition state and sizes of folding nuclei for 84 proteins and peptides whose other parameters were measured at the point of thermodynamic equilibrium between their unfolded and native states. We used the dynamic programming method where each residue was considered to be either as folded as in its native state or completely disordered. The calculated and measured folding rates showed a good correlation at the temperature mid-transition point (the correlation coefficient was 0.75). Also, we pioneered in demonstrating a moderate (-0.57) correlation coefficient between the calculated sizes of folding nuclei and the folding rates. Predictions made by different methods were compared. The established good correlation between the estimated free energy barrier and the experimentally found folding rate of each studied protein/peptide indicates that our model gives reliable results for the considered data set. Copyright © 2012 Wiley Periodicals, Inc.

  15. Combined approach to the inverse protein folding problem. Final report

    SciTech Connect

    Ruben A. Abagyan

    2000-06-01

    The main scientific contribution of the project ''Combined approach to the inverse protein folding problem'' submitted in 1996 and funded by the Department of Energy in 1997 is the formulation and development of the idea of the multilink recognition method for identification of functional and structural homologues of newly discovered genes. This idea became very popular after they first announced it and used it in prediction of the threading targets for the CASP2 competition (Critical Assessment of Structure Prediction).

  16. Common fold in helix-hairpin-helix proteins.

    PubMed

    Shao, X; Grishin, N V

    2000-07-15

    Helix-hairpin-helix (HhH) is a widespread motif involved in non-sequence-specific DNA binding. The majority of HhH motifs function as DNA-binding modules, however, some of them are used to mediate protein-protein interactions or have acquired enzymatic activity by incorporating catalytic residues (DNA glycosylases). From sequence and structural analysis of HhH-containing proteins we conclude that most HhH motifs are integrated as a part of a five-helical domain, termed (HhH)(2) domain here. It typically consists of two consecutive HhH motifs that are linked by a connector helix and displays pseudo-2-fold symmetry. (HhH)(2) domains show clear structural integrity and a conserved hydrophobic core composed of seven residues, one residue from each alpha-helix and each hairpin, and deserves recognition as a distinct protein fold. In addition to known HhH in the structures of RuvA, RadA, MutY and DNA-polymerases, we have detected new HhH motifs in sterile alpha motif and barrier-to-autointegration factor domains, the alpha-subunit of Escherichia coli RNA-polymerase, DNA-helicase PcrA and DNA glycosylases. Statistically significant sequence similarity of HhH motifs and pronounced structural conservation argue for homology between (HhH)(2) domains in different protein families. Our analysis helps to clarify how non-symmetric protein motifs bind to the double helix of DNA through the formation of a pseudo-2-fold symmetric (HhH)(2) functional unit.

  17. Kinetics of chain motions within a protein-folding intermediate

    PubMed Central

    Neuweiler, Hannes; Banachewicz, Wiktor; Fersht, Alan R.

    2010-01-01

    Small proteins can fold remarkably rapidly, even in μs. What limits their rate of folding? The Engrailed homeodomain is a particularly well-characterized example, which folds ultrafast via an intermediate, I, of solved structure. It is a puzzle that the helix2-turn-helix3 motif of the 3-helix bundle forms in approximately 2 μs, but the final docking of preformed helix1 in I requires approximately 20 μs. Simulation and structural data suggest that nonnative interactions may slow down helix docking. Here we report the direct measurement of chain motions in I by using photoinduced electron transfer fluorescence-quenching correlation spectroscopy (PET-FCS). We use a mutant that traps I at physiological ionic strength but refolds at higher ionic strength. A single Trp in helix3 quenches the fluorescence of an extrinsic label on contact with it. We placed the label along the sequence to probe segmental chain motions. At high ionic strength, we found two relaxations for all probed positions on the 2- and 20-μs time scale, corresponding to the known folding processes, and a 200-ns phase attributable to loop closure kinetics in the unfolded state. At low ionic strength, we found only the 2-μs and 200-ns phase for labels in the helix2-turn-helix3 motif of I, because the native state is not significantly populated. But for labels in helix1 we observed an additional approximately 10-μs phase showing that it was moving slowly, with a rate constant similar to that for overall folding under native conditions. Folding was rate-limited by chain motions on a rough energy surface where nonnative interactions constrain motion. PMID:21135210

  18. Stability of domain structures in multi-domain proteins

    PubMed Central

    Bhaskara, Ramachandra M.; Srinivasan, Narayanaswamy

    2011-01-01

    Multi-domain proteins have many advantages with respect to stability and folding inside cells. Here we attempt to understand the intricate relationship between the domain-domain interactions and the stability of domains in isolation. We provide quantitative treatment and proof for prevailing intuitive ideas on the strategies employed by nature to stabilize otherwise unstable domains. We find that domains incapable of independent stability are stabilized by favourable interactions with tethered domains in the multi-domain context. Stability of such folds to exist independently is optimized by evolution. Specific residue mutations in the sites equivalent to inter-domain interface enhance the overall solvation, thereby stabilizing these domain folds independently. A few naturally occurring variants at these sites alter communication between domains and affect stability leading to disease manifestation. Our analysis provides safe guidelines for mutagenesis which have attractive applications in obtaining stable fragments and domain constructs essential for structural studies by crystallography and NMR. PMID:22355559

  19. Catalysis of Protein Folding by Chaperones Accelerates Evolutionary Dynamics in Adapting Cell Populations

    PubMed Central

    Çetinbaş, Murat; Shakhnovich, Eugene I.

    2013-01-01

    Although molecular chaperones are essential components of protein homeostatic machinery, their mechanism of action and impact on adaptation and evolutionary dynamics remain controversial. Here we developed a physics-based ab initio multi-scale model of a living cell for population dynamics simulations to elucidate the effect of chaperones on adaptive evolution. The 6-loci genomes of model cells encode model proteins, whose folding and interactions in cellular milieu can be evaluated exactly from their genome sequences. A genotype-phenotype relationship that is based on a simple yet non-trivially postulated protein-protein interaction (PPI) network determines the cell division rate. Model proteins can exist in native and molten globule states and participate in functional and all possible promiscuous non-functional PPIs. We find that an active chaperone mechanism, whereby chaperones directly catalyze protein folding, has a significant impact on the cellular fitness and the rate of evolutionary dynamics, while passive chaperones, which just maintain misfolded proteins in soluble complexes have a negligible effect on the fitness. We find that by partially releasing the constraint on protein stability, active chaperones promote a deeper exploration of sequence space to strengthen functional PPIs, and diminish the non-functional PPIs. A key experimentally testable prediction emerging from our analysis is that down-regulation of chaperones that catalyze protein folding significantly slows down the adaptation dynamics. PMID:24244114

  20. Catalysis of protein folding by chaperones accelerates evolutionary dynamics in adapting cell populations.

    PubMed

    Cetinbaş, Murat; Shakhnovich, Eugene I

    2013-01-01

    Although molecular chaperones are essential components of protein homeostatic machinery, their mechanism of action and impact on adaptation and evolutionary dynamics remain controversial. Here we developed a physics-based ab initio multi-scale model of a living cell for population dynamics simulations to elucidate the effect of chaperones on adaptive evolution. The 6-loci genomes of model cells encode model proteins, whose folding and interactions in cellular milieu can be evaluated exactly from their genome sequences. A genotype-phenotype relationship that is based on a simple yet non-trivially postulated protein-protein interaction (PPI) network determines the cell division rate. Model proteins can exist in native and molten globule states and participate in functional and all possible promiscuous non-functional PPIs. We find that an active chaperone mechanism, whereby chaperones directly catalyze protein folding, has a significant impact on the cellular fitness and the rate of evolutionary dynamics, while passive chaperones, which just maintain misfolded proteins in soluble complexes have a negligible effect on the fitness. We find that by partially releasing the constraint on protein stability, active chaperones promote a deeper exploration of sequence space to strengthen functional PPIs, and diminish the non-functional PPIs. A key experimentally testable prediction emerging from our analysis is that down-regulation of chaperones that catalyze protein folding significantly slows down the adaptation dynamics.

  1. Kinetic role of helix caps in protein folding is context-dependent.

    PubMed

    Kapp, Gregory T; Richardson, Jane S; Oas, Terrence G

    2004-04-06

    Secondary structure punctuation through specific backbone and side chain interactions at the beginning and end of alpha-helices has been proposed to play a key role in hierarchical protein folding mechanisms [Baldwin, R. L., and Rose, G. D. (1999) Trends Biochem. Sci. 24, 26-33; Presta, L. G., and Rose, G. D. (1988) Science 240, 1632-1641]. We have made site-specific substitutions in the N- and C-cap motifs of the 5-helix protein monomeric lambda repressor (lambda(6-85)) and have measured the rate constants for folding and unfolding of each variant. The consequences of C-cap changes are strongly context-dependent. When the C-cap was located at the chain terminus, changes had little energetic and no kinetic effect. However, substitutions in a C-cap at the boundary between helix 4 and the subsequent interhelical loop resulted in large changes to the stability and rate constants of the variant, showing a substantial kinetic role for this interior C-cap and suggesting a general kinetic role for interior helix C-caps. Statistical preferences tabulated separately for internal and terminal C-caps also show only weak residue preferences in terminal C-caps. This kinetic distinction between interior and terminal C-caps can explain the discrepancy between the near-absence of stability and kinetic effects seen for C-caps of isolated peptides versus the very strong C-cap effects seen for proteins in statistical sequence preferences and mutational energetics. Introduction of consensus, in-register N-capping motifs resulted in increased stability, accelerated folding, and slower unfolding. The kinetic measurements indicate that some of the new native-state capping interactions remain unformed in the transition state. The accelerated folding rates could result from helix stabilization without invoking a specific role for N-caps in the folding reaction.

  2. Sphingolipid transfer proteins defined by the GLTP-fold

    PubMed Central

    Malinina, Lucy; Simanshu, Dhirendra K.; Zhai, Xiuhong; Samygina, Valeria R.; Kamlekar, RaviKanth; Kenoth, Roopa; Ochoa-Lizarralde, Borja; Malakhova, Margarita L.; Molotkovsky, Julian G.; Patel, Dinshaw J.; Brown, Rhoderick E.

    2015-01-01

    Glycolipid transfer proteins (GLTPs) originally were identified as small (~24 kDa), soluble, amphitropic proteins that specifically accelerate the intermembrane transfer of glycolipids. GLTPs and related homologs now are known to adopt a unique, helically dominated, two-layer ‘sandwich’ architecture defined as the GLTP-fold that provides the structural underpinning for the eukaryotic GLTP superfamily. Recent advances now provide exquisite insights into structural features responsible for lipid headgroup selectivity as well as the adaptability of the hydrophobic compartment for accommodating hydrocarbon chains of differing length and unsaturation. A new understanding of the structural versatility and evolutionary premium placed on the GLTP motif has emerged. Human GLTP-motifs have evolved to function not only as glucosylceramide binding/transferring domains for phosphoinositol 4-phosphate adaptor protein-2 during glycosphingolipid biosynthesis but also as selective binding/transfer proteins for ceramide-1-phosphate. The latter, known as ceramide-l-phosphate transfer protein, recently has been shown to form GLTP-fold while critically regulating Group-IV cytoplasmic phospholipase A2 activity and pro-inflammatory eicosanoid production. PMID:25797198

  3. Redox-Assisted Protein Folding Systems in Eukaryotic Parasites

    PubMed Central

    Haque, Saikh Jaharul; Majumdar, Tanmay

    2012-01-01

    Abstract Significance: The cysteine (Cys) residues of proteins play two fundamentally important roles. They serve as sites of post-translational redox modifications as well as influence the conformation of the protein through the formation of disulfide bonds. Recent Advances: Redox-related and redox-associated protein folding in protozoan parasites has been found to be a major mode of regulation, affecting myriad aspects of the parasitic life cycle, host-parasite interactions, and the disease pathology. Available genome sequences of various parasites have begun to complement the classical biochemical and enzymological studies of these processes. In this article, we summarize the reversible Cys disulfide (S-S) bond formation in various classes of strategically important parasitic proteins, and its structural consequence and functional relevance. Critical Issues: Molecular mechanisms of folding remain under-studied and often disconnected from functional relevance. Future Directions: The clinical benefit of redox research will require a comprehensive characterization of the various isoforms and paralogs of the redox enzymes and their concerted effect on the structure and function of the specific parasitic client proteins. Antioxid. Redox Signal. 17, 674–683. PMID:22122448

  4. The protein folding problem: global optimization of the force fields.

    PubMed

    Scheraga, H A; Liwo, A; Oldziej, S; Czaplewski, C; Pillardy, J; Ripoll, D R; Vila, J A; Kazmierkiewicz, R; Saunders, J A; Arnautova, Y A; Jagielska, A; Chinchio, M; Nanias, M

    2004-09-01

    The evolutionary development of a theoretical approach to the protein folding problem, in our laboratory, is traced. The theoretical foundations and the development of a suitable empirical all-atom potential energy function and a global optimization search are examined. Whereas the all-atom approach has thus far succeeded for relatively small molecules and for alpha-helical proteins containing up to 46 residues, it has been necessary to develop a hierarchical approach to treat larger proteins. In the hierarchical approach to single- and multiple-chain proteins, global optimization is carried out for a simplified united residue (UNRES) description of a polypeptide chain to locate the region in which the global minimum lies. Conversion of the UNRES structures in this region to all-atom structures is followed by a local search in this region. The performance of this approach in successive CASP blind tests for predicting protein structure by an ab initio physics-based method is described. Finally, a recent attempt to compute a folding pathway is discussed.

  5. Exploring the Energy Landscapes of Protein Folding Simulations with Bayesian Computation

    PubMed Central

    Burkoff, Nikolas S.; Várnai, Csilla; Wells, Stephen A.; Wild, David L.

    2012-01-01

    Nested sampling is a Bayesian sampling technique developed to explore probability distributions localized in an exponentially small area of the parameter space. The algorithm provides both posterior samples and an estimate of the evidence (marginal likelihood) of the model. The nested sampling algorithm also provides an efficient way to calculate free energies and the expectation value of thermodynamic observables at any temperature, through a simple post processing of the output. Previous applications of the algorithm have yielded large efficiency gains over other sampling techniques, including parallel tempering. In this article, we describe a parallel implementation of the nested sampling algorithm and its application to the problem of protein folding in a Gō-like force field of empirical potentials that were designed to stabilize secondary structure elements in room-temperature simulations. We demonstrate the method by conducting folding simulations on a number of small proteins that are commonly used for testing protein-folding procedures. A topological analysis of the posterior samples is performed to produce energy landscape charts, which give a high-level description of the potential energy surface for the protein folding simulations. These charts provide qualitative insights into both the folding process and the nature of the model and force field used. PMID:22385859

  6. Identification of cooperative folding units in a set of native proteins.

    PubMed Central

    Wallqvist, A.; Smythers, G. W.; Covell, D. G.

    1997-01-01

    Cooperative unfolding penalties are calculated by statistically evaluating an ensemble of denatured states derived from native structures. The ensemble of denatured states is determined by dividing the native protein into short contiguous segments and defining all possible combinations of native, i.e., interacting, and non-native, i.e., non-interacting, segments. We use a novel knowledge-based scoring function, derived from a set of non-homologous proteins in the Protein Data Bank, to describe the interactions among residues. This procedure is used for the structural identification of cooperative folding cores for four globular proteins: bovine pancreatic trypsin inhibitor, horse heart cytochrome c, French bean plastocyanin, and staphylococcal nuclease. The theoretical folding units are shown to correspond to regions that exhibit enhanced stability against denaturation as determined from experimental hydrogen exchange protection factors. Using a sequence similarity score for related sequences, we show that, in addition to residues necessary for enzymatic function, those amino acids comprising structurally important folding cores are also preferentially conserved during evolution. This implies that the identified folding cores may be part of an array of fundamental structural folding units. PMID:9260276

  7. Outer Membrane Protein Folding and Topology from a Computational Transfer Free Energy Scale.

    PubMed

    Lin, Meishan; Gessmann, Dennis; Naveed, Hammad; Liang, Jie

    2016-03-02

    Knowledge of the transfer free energy of amino acids from aqueous solution to a lipid bilayer is essential for understanding membrane protein folding and for predicting membrane protein structure. Here we report a computational approach that can calculate the folding free energy of the transmembrane region of outer membrane β-barrel proteins (OMPs) by combining an empirical energy function with a reduced discrete state space model. We quantitatively analyzed the transfer free energies of 20 amino acid residues at the center of the lipid bilayer of OmpLA. Our results are in excellent agreement with the experimentally derived hydrophobicity scales. We further exhaustively calculated the transfer free energies of 20 amino acids at all positions in the TM region of OmpLA. We found that the asymmetry of the Gram-negative bacterial outer membrane as well as the TM residues of an OMP determine its functional fold in vivo. Our results suggest that the folding process of an OMP is driven by the lipid-facing residues in its hydrophobic core, and its NC-IN topology is determined by the differential stabilities of OMPs in the asymmetrical outer membrane. The folding free energy is further reduced by lipid A and assisted by general depth-dependent cooperativities that exist between polar and ionizable residues. Moreover, context-dependency of transfer free energies at specific positions in OmpLA predict regions important for protein function as well as structural anomalies. Our computational approach is fast, efficient and applicable to any OMP.

  8. Metal Cations in G-Quadruplex Folding and Stability

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Debmalya; Mirihana Arachchilage, Gayan; Basu, Soumitra

    2016-09-01

    This review is focused on the structural and physico-chemical aspects of metal cation coordination to G-Quadruplexes (GQ) and their effects on GQ stability and conformation. G-Quadruplex structures are non-canonical secondary structures formed by both DNA and RNA. G-quadruplexes regulate a wide range of important biochemical processes. Besides the sequence requirements, the coordination of monovalent cations in the GQ is essential for its formation and determines the stability and polymorphism of GQ structures. The nature, location and dynamics of the cation coordination and their impact on the overall GQ stability are dependent on several factors such as the ionic radii, hydration energy and the bonding strength to the O6 of guanines. The intracellular monovalent cation concentration and the localized ion concentrations determine the formation of GQs and can potentially dictate their regulatory roles. A wide range of biochemical and biophysical studies on an array of GQ enabling sequences have generated at a minimum the knowledge base that allows us to often predict the stability of GQs in presence of the physiologically relevant metal ions, however, prediction of conformation of such GQs is still out of the realm.

  9. Metal Cations in G-Quadruplex Folding and Stability

    PubMed Central

    Bhattacharyya, Debmalya; Mirihana Arachchilage, Gayan; Basu, Soumitra

    2016-01-01

    This review is focused on the structural and physicochemical aspects of metal cation coordination to G-Quadruplexes (GQ) and their effects on GQ stability and conformation. G-quadruplex structures are non-canonical secondary structures formed by both DNA and RNA. G-quadruplexes regulate a wide range of important biochemical processes. Besides the sequence requirements, the coordination of monovalent cations in the GQ is essential for its formation and determines the stability and polymorphism of GQ structures. The nature, location, and dynamics of the cation coordination and their impact on the overall GQ stability are dependent on several factors such as the ionic radii, hydration energy, and the bonding strength to the O6 of guanines. The intracellular monovalent cation concentration and the localized ion concentrations determine the formation of GQs and can potentially dictate their regulatory roles. A wide range of biochemical and biophysical studies on an array of GQ enabling sequences have generated at a minimum the knowledge base that allows us to often predict the stability of GQs in the presence of the physiologically relevant metal ions, however, prediction of conformation of such GQs is still out of the realm. PMID:27668212

  10. Purification and characterization of oligonucleotide binding (OB)-fold protein from medicinal plant Tinospora cordifolia.

    PubMed

    Amir, Mohd; Haque, Md Anzarul; Wahiduzzaman; Dar, Mohammad Aasif; Islam, Asimul; Ahmad, Faizan; Hassan, Md Imtaiyaz

    2016-01-01

    The oligonucleotide binding fold (OB-fold) is a small structural motif present in many proteins. It is originally named for its oligonucleotide or oligosaccharide binding properties. These proteins have been identified as essential for replication, recombination and repair of DNA. We have successfully purified a protein contains OB-fold from the stem of Tinospora cordifolia, a medicinal plants of north India. Stems were crushed and centrifuged, and fraction obtained at 60% ammonium sulphate was extensively dialyzed and applied to the weak anion exchange chromatography on Hi-Trap DEAE-FF in 50mM Tris-HCl buffer at pH 8.0. Eluted fractions were concentrated and applied to gel filtration column to get pure protein. We observed a single band of 20-kDa on SDS-PAGE. Finally, the protein was identified as OB-fold by MALDI-TOF. The purified OB-fold protein was characterized for its secondary structural elements using circular dichroism (CD) in the far-UV region. Generally the OB-fold has a characteristic feature as five-stranded beta-sheet coiled to form a closed beta- barrel. To estimate its chemical stability, guanidinium chloride-induced denaturation curve was followed by observing changes in the far-UV CD as a function of the denaturant concentration. Analysis of this denaturation curve gave values of 8.90±0.25kcalmol(-1) and 3.78±0.18M for ΔGD° (Gibbs free energy change at 25°C) and Cm (midpoint of denaturation), respectively. To determine heat stability parameters of OB-fold protein, differential scanning calorimetry was performed. Calorimetric values of ΔGD°, Tm (midpoint of denaturation), ΔHm (enthalpy change at Tm), and ΔCp (constant-pressure heat capacity change) are 9.05±0.27kcalmol(-1), 85.2±0,3°C, 105±4kcalmol(-1) and 1.6±0.08kcalmol(-1)K(-1). This is the first report on the isolation, purification and characterization of OB-fold protein from a medicinal plant T. cordifolia.

  11. Hydrophobicity – Shake Flasks, Protein Folding and Drug Discovery

    PubMed Central

    Sarkar, Aurijit; Kellogg, Glen E.

    2009-01-01

    Hydrophobic interactions are some of the most important interactions in nature. They are the primary driving force in a number of phenomena. This is mostly an entropic effect and can account for a number of biophysical events such as protein-protein or protein-ligand binding that are of immense importance in drug design. The earliest studies on this phenomenon can be dated back to the end of the 19th century when Meyer and Overton independently correlated the hydrophobic nature of gases to their anesthetic potency. Since then, significant progress has been made in this realm of science. This review briefly traces the history of hydrophobicity research along with the theoretical estimation of partition coefficients. Finally, the application of hydrophobicity estimation methods in the field of drug design and protein folding is discussed. PMID:19929828

  12. Native Contact Density and Nonnative Hydrophobic Effects in the Folding of Bacterial Immunity Proteins

    PubMed Central

    Chen, Tao; Chan, Hue Sun

    2015-01-01

    The bacterial colicin-immunity proteins Im7 and Im9 fold by different mechanisms. Experimentally, at pH 7.0 and 10°C, Im7 folds in a three-state manner via an intermediate but Im9 folding is two-state-like. Accordingly, Im7 exhibits a chevron rollover, whereas the chevron arm for Im9 folding is linear. Here we address the biophysical basis of their different behaviors by using native-centric models with and without additional transferrable, sequence-dependent energies. The Im7 chevron rollover is not captured by either a pure native-centric model or a model augmented by nonnative hydrophobic interactions with a uniform strength irrespective of residue type. By contrast, a more realistic nonnative interaction scheme that accounts for the difference in hydrophobicity among residues leads simultaneously to a chevron rollover for Im7 and an essentially linear folding chevron arm for Im9. Hydrophobic residues identified by published experiments to be involved in nonnative interactions during Im7 folding are found to participate in the strongest nonnative contacts in this model. Thus our observations support the experimental perspective that the Im7 folding intermediate is largely underpinned by nonnative interactions involving large hydrophobics. Our simulation suggests further that nonnative effects in Im7 are facilitated by a lower local native contact density relative to that of Im9. In a one-dimensional diffusion picture of Im7 folding with a coordinate- and stability-dependent diffusion coefficient, a significant chevron rollover is consistent with a diffusion coefficient that depends strongly on native stability at the conformational position of the folding intermediate. PMID:26016652

  13. Native contact density and nonnative hydrophobic effects in the folding of bacterial immunity proteins.

    PubMed

    Chen, Tao; Chan, Hue Sun

    2015-05-01

    The bacterial colicin-immunity proteins Im7 and Im9 fold by different mechanisms. Experimentally, at pH 7.0 and 10°C, Im7 folds in a three-state manner via an intermediate but Im9 folding is two-state-like. Accordingly, Im7 exhibits a chevron rollover, whereas the chevron arm for Im9 folding is linear. Here we address the biophysical basis of their different behaviors by using native-centric models with and without additional transferrable, sequence-dependent energies. The Im7 chevron rollover is not captured by either a pure native-centric model or a model augmented by nonnative hydrophobic interactions with a uniform strength irrespective of residue type. By contrast, a more realistic nonnative interaction scheme that accounts for the difference in hydrophobicity among residues leads simultaneously to a chevron rollover for Im7 and an essentially linear folding chevron arm for Im9. Hydrophobic residues identified by published experiments to be involved in nonnative interactions during Im7 folding are found to participate in the strongest nonnative contacts in this model. Thus our observations support the experimental perspective that the Im7 folding intermediate is largely underpinned by nonnative interactions involving large hydrophobics. Our simulation suggests further that nonnative effects in Im7 are facilitated by a lower local native contact density relative to that of Im9. In a one-dimensional diffusion picture of Im7 folding with a coordinate- and stability-dependent diffusion coefficient, a significant chevron rollover is consistent with a diffusion coefficient that depends strongly on native stability at the conformational position of the folding intermediate.

  14. Conserved prosegment residues stabilize a late-stage folding transition state of pepsin independently of ground states.

    PubMed

    Dee, Derek R; Horimoto, Yasumi; Yada, Rickey Y

    2014-01-01

    The native folding of certain zymogen-derived enzymes is completely dependent upon a prosegment domain to stabilize the folding transition state, thereby catalyzing the folding reaction. Generally little is known about how the prosegment accomplishes this task. It was previously shown that the prosegment catalyzes a late-stage folding transition between a stable misfolded state and the native state of pepsin. In this study, the contributions of specific prosegment residues to catalyzing pepsin folding were investigated by introducing individual Ala substitutions and measuring the effects on the bimolecular folding reaction between the prosegment peptide and pepsin. The effects of mutations on the free energies of the individual misfolded and native ground states and the transition state were compared using measurements of prosegment-pepsin binding and folding kinetics. Five out of the seven prosegment residues examined yielded relatively large kinetic effects and minimal ground state perturbations upon mutation, findings which indicate that these residues form strengthened and/or non-native contacts in the transition state. These five residues are semi- to strictly conserved, while only a non-conserved residue had no kinetic effect. One conserved residue was shown to form native structure in the transition state. These results indicated that the prosegment, which is only 44 residues long, has evolved a high density of contacts that preferentially stabilize the folding transition state over the ground states. It is postulated that the prosegment forms extensive non-native contacts during the process of catalyzing correct inter- and intra-domain contacts during the final stages of folding. These results have implications for understanding the folding of multi-domain proteins and for the evolution of prosegment-catalyzed folding.

  15. Conserved Prosegment Residues Stabilize a Late-Stage Folding Transition State of Pepsin Independently of Ground States

    PubMed Central

    Dee, Derek R.; Horimoto, Yasumi; Yada, Rickey Y.

    2014-01-01

    The native folding of certain zymogen-derived enzymes is completely dependent upon a prosegment domain to stabilize the folding transition state, thereby catalyzing the folding reaction. Generally little is known about how the prosegment accomplishes this task. It was previously shown that the prosegment catalyzes a late-stage folding transition between a stable misfolded state and the native state of pepsin. In this study, the contributions of specific prosegment residues to catalyzing pepsin folding were investigated by introducing individual Ala substitutions and measuring the effects on the bimolecular folding reaction between the prosegment peptide and pepsin. The effects of mutations on the free energies of the individual misfolded and native ground states and the transition state were compared using measurements of prosegment-pepsin binding and folding kinetics. Five out of the seven prosegment residues examined yielded relatively large kinetic effects and minimal ground state perturbations upon mutation, findings which indicate that these residues form strengthened and/or non-native contacts in the transition state. These five residues are semi- to strictly conserved, while only a non-conserved residue had no kinetic effect. One conserved residue was shown to form native structure in the transition state. These results indicated that the prosegment, which is only 44 residues long, has evolved a high density of contacts that preferentially stabilize the folding transition state over the ground states. It is postulated that the prosegment forms extensive non-native contacts during the process of catalyzing correct inter- and intra-domain contacts during the final stages of folding. These results have implications for understanding the folding of multi-domain proteins and for the evolution of prosegment-catalyzed folding. PMID:24983988

  16. Common fold in helix–hairpin–helix proteins

    PubMed Central

    Shao, Xuguang; Grishin, Nick V.

    2000-01-01

    Helix–hairpin–helix (HhH) is a widespread motif involved in non-sequence-specific DNA binding. The majority of HhH motifs function as DNA-binding modules, however, some of them are used to mediate protein–protein interactions or have acquired enzymatic activity by incorporating catalytic residues (DNA glycosylases). From sequence and structural analysis of HhH-containing proteins we conclude that most HhH motifs are integrated as a part of a five-helical domain, termed (HhH)2 domain here. It typically consists of two consecutive HhH motifs that are linked by a connector helix and displays pseudo-2-fold symmetry. (HhH)2 domains show clear structural integrity and a conserved hydrophobic core composed of seven residues, one residue from each α-helix and each hairpin, and deserves recognition as a distinct protein fold. In addition to known HhH in the structures of RuvA, RadA, MutY and DNA-polymerases, we have detected new HhH motifs in sterile alpha motif and barrier-to-autointegration factor domains, the α-subunit of Escherichia coli RNA-polymerase, DNA-helicase PcrA and DNA glyco­s­y­lases. Statistically significant sequence similarity of HhH motifs and pronounced structural conservation argue for homology between (HhH)2 domains in different protein families. Our analysis helps to clarify how non-symmetric protein motifs bind to the double helix of DNA through the formation of a pseudo-2-fold symmetric (HhH)2 functional unit. PMID:10908318

  17. Solvation in protein (un)folding of melittin tetramer–monomer transition

    PubMed Central

    Othon, Christina M.; Kwon, Oh-Hoon; Lin, Milo M.; Zewail, Ahmed H.

    2009-01-01

    Protein structural integrity and flexibility are intimately tied to solvation. Here, we examine the effect that changes in bulk and local solvent properties have on protein structure and stability. We observe the change in solvation of an unfolding of the protein model, melittin, in the presence of a denaturant, trifluoroethanol. The peptide system displays a well defined transition in that the tetramer unfolds without disrupting the secondary or tertiary structure. In the absence of local structural perturbation, we are able to reveal exclusively the role of solvation dynamics in protein structure stabilization and the (un)folding pathway. A sudden retardation in solvent dynamics, which is coupled to the change in protein structure, is observed at a critical trifluoroethanol concentration. The large amplitude conformational changes are regulated by the local solvent hydrophobicity and bulk solvent viscosity. PMID:19622745

  18. Solvation in protein (un)folding of melittin tetramer-monomer transition.

    PubMed

    Othon, Christina M; Kwon, Oh-Hoon; Lin, Milo M; Zewail, Ahmed H

    2009-08-04

    Protein structural integrity and flexibility are intimately tied to solvation. Here, we examine the effect that changes in bulk and local solvent properties have on protein structure and stability. We observe the change in solvation of an unfolding of the protein model, melittin, in the presence of a denaturant, trifluoroethanol. The peptide system displays a well defined transition in that the tetramer unfolds without disrupting the secondary or tertiary structure. In the absence of local structural perturbation, we are able to reveal exclusively the role of solvation dynamics in protein structure stabilization and the (un)folding pathway. A sudden retardation in solvent dynamics, which is coupled to the change in protein structure, is observed at a critical trifluoroethanol concentration. The large amplitude conformational changes are regulated by the local solvent hydrophobicity and bulk solvent viscosity.

  19. Energetic Frustrations in Protein Folding at Residue Resolution: A Homologous Simulation Study of Im9 Proteins

    PubMed Central

    Sun, Yunxiang; Ming, Dengming

    2014-01-01

    Energetic frustration is becoming an important topic for understanding the mechanisms of protein folding, which is a long-standing big biological problem usually investigated by the free energy landscape theory. Despite the significant advances in probing the effects of folding frustrations on the overall features of protein folding pathways and folding intermediates, detailed characterizations of folding frustrations at an atomic or residue level are still lacking. In addition, how and to what extent folding frustrations interact with protein topology in determining folding mechanisms remains unclear. In this paper, we tried to understand energetic frustrations in the context of protein topology structures or native-contact networks by comparing the energetic frustrations of five homologous Im9 alpha-helix proteins that share very similar topology structures but have a single hydrophilic-to-hydrophobic mutual mutation. The folding simulations were performed using a coarse-grained Gō-like model, while non-native hydrophobic interactions were introduced as energetic frustrations using a Lennard-Jones potential function. Energetic frustrations were then examined at residue level based on φ-value analyses of the transition state ensemble structures and mapped back to native-contact networks. Our calculations show that energetic frustrations have highly heterogeneous influences on the folding of the four helices of the examined structures depending on the local environment of the frustration centers. Also, the closer the introduced frustration is to the center of the native-contact network, the larger the changes in the protein folding. Our findings add a new dimension to the understanding of protein folding the topology determination in that energetic frustrations works closely with native-contact networks to affect the protein folding. PMID:24498176

  20. Macromolecular crowding and protein stability.

    PubMed

    Wang, Yaqiang; Sarkar, Mohona; Smith, Austin E; Krois, Alexander S; Pielak, Gary J

    2012-10-10

    An understanding of cellular chemistry requires knowledge of how crowded environments affect proteins. The influence of crowding on protein stability arises from two phenomena, hard-core repulsions and soft (i.e., chemical) interactions. Most efforts to understand crowding effects on protein stability, however, focus on hard-core repulsions, which are inherently entropic and stabilizing. We assessed these phenomena by measuring the temperature dependence of NMR-detected amide proton exchange and used these data to extract the entropic and enthalpic contributions of crowding to the stability of ubiquitin. Contrary to expectations, the contribution of chemical interactions is large and in many cases dominates the contribution from hardcore repulsions. Our results show that both chemical interactions and hard-core repulsions must be considered when assessing the effects of crowding and help explain previous observations about protein stability and dynamics in cells.

  1. Comparison of the Folding Mechanism of Highly Homologous Proteins in the Lipid-binding Protein Family

    EPA Science Inventory

    The folding mechanism of two closely related proteins in the intracellular lipid binding protein family, human bile acid binding protein (hBABP) and rat bile acid binding protein (rBABP) were examined. These proteins are 77% identical (93% similar) in sequence Both of these singl...

  2. Comparison of the Folding Mechanism of Highly Homologous Proteins in the Lipid-binding Protein Family

    EPA Science Inventory

    The folding mechanism of two closely related proteins in the intracellular lipid binding protein family, human bile acid binding protein (hBABP) and rat bile acid binding protein (rBABP) were examined. These proteins are 77% identical (93% similar) in sequence Both of these singl...

  3. Phosphatidic acid plays a special role in stabilizing and folding of the tetrameric potassium channel KcsA.

    PubMed

    Raja, Mobeen; Spelbrink, Robin E J; de Kruijff, Ben; Killian, J Antoinette

    2007-12-11

    In this study, we investigated how the presence of anionic lipids influenced the stability and folding properties of the potassium channel KcsA. By using a combination of gel electrophoresis, tryptophan fluorescence and acrylamide quenching experiments, we found that the presence of the anionic lipid phosphatidylglycerol (PG) in a phosphatidylcholine (PC) bilayer slightly stabilized the tetramer and protected it from trifluoroethanol-induced dissociation. Surprisingly, the presence of phosphatidic acid (PA) had a much larger effect on the stability of KcsA and this lipid, in addition, significantly influenced the folding properties of the protein. The data indicate that PA creates some specificity over PG, and that it most likely stabilizes the tetramer via both electrostatic and hydrogen bond interactions.

  4. Coarse semiempirical solution to the protein folding problem

    NASA Astrophysics Data System (ADS)

    Fernández, Ariel; Colubri, Andrés; Appignanesi, Gustavo; Burastero, Teresita

    2001-04-01

    We introduce a semiempirical theory leading to the ab initio prediction of conducive folding pathways and coarsely resolved native backbone geometries of proteins suddenly exposed to in vitro renaturation conditions. The underlying model incorporates a discrete codification of local steric hindrances of the peptide backbone. We first determine a time-evolving finite set of local torsional constraints upon which large-scale organization is built. Thus, the torsional state of the chain is topologically represented by viewing the ( Φ, Ψ)-state of each residue modulo the basin of attraction to which it belongs in the Ramachandran plot. A grammar to combine such coarsely defined torsional states (topologies) and translate them into meaningful patterns of long-range interactions is developed. An algorithm for structure prediction is shown to emerge once this grammar is combined with prescriptions for the time evolution of topological patterns. This algorithm is rooted in the fact that local contributions to the potential energy may be subsumed into time-evolving conformational constraints coarsely defining sets of restricted backbone geometries responsible for framing the patterns of nonbonded interactions. The predictive power of the algorithm is established by obtaining stable topologies of small proteins, which prove to be compatible with their native folds, and computing ab-initio folding pathways for mammalian ubiquitin that ultimately yield a stable structural pattern reproducing its native features.

  5. Coupled Protein Diffusion and Folding in the Cell

    PubMed Central

    Guo, Minghao; Gelman, Hannah; Gruebele, Martin

    2014-01-01

    When a protein unfolds in the cell, its diffusion coefficient is affected by its increased hydrodynamic radius and by interactions of exposed hydrophobic residues with the cytoplasmic matrix, including chaperones. We characterize protein diffusion by photobleaching whole cells at a single point, and imaging the concentration change of fluorescent-labeled protein throughout the cell as a function of time. As a folded reference protein we use green fluorescent protein. The resulting region-dependent anomalous diffusion is well characterized by 2-D or 3-D diffusion equations coupled to a clustering algorithm that accounts for position-dependent diffusion. Then we study diffusion of a destabilized mutant of the enzyme phosphoglycerate kinase (PGK) and of its stable control inside the cell. Unlike the green fluorescent protein control's diffusion coefficient, PGK's diffusion coefficient is a non-monotonic function of temperature, signaling ‘sticking’ of the protein in the cytosol as it begins to unfold. The temperature-dependent increase and subsequent decrease of the PGK diffusion coefficient in the cytosol is greater than a simple size-scaling model suggests. Chaperone binding of the unfolding protein inside the cell is one plausible candidate for even slower diffusion of PGK, and we test the plausibility of this hypothesis experimentally, although we do not rule out other candidates. PMID:25436502

  6. How Similar Are Protein Folding and Protein Binding Nuclei? Examination of Vibrational Motions of Energy Hot Spots and Conserved Residues

    PubMed Central

    Haliloglu, Turkan; Keskin, Ozlem; Ma, Buyong; Nussinov, Ruth

    2005-01-01

    The underlying physico-chemical principles of the interactions between domains in protein folding are similar to those between protein molecules in binding. Here we show that conserved residues and experimental hot spots at intermolecular binding interfaces overlap residues that vibrate with high frequencies. Similarly, conserved residues and hot spots are found in protein cores and are also observed to vibrate with high frequencies. In both cases, these residues contribute significantly to the stability. Hence, these observations validate the proposition that binding and folding are similar processes. In both packing plays a critical role, rationalizing the residue conservation and the experimental alanine scanning hot spots. We further show that high-frequency vibrating residues distinguish between protein binding sites and the remainder of the protein surface. PMID:15596504

  7. Predictive energy landscapes for folding membrane protein assemblies

    NASA Astrophysics Data System (ADS)

    Truong, Ha H.; Kim, Bobby L.; Schafer, Nicholas P.; Wolynes, Peter G.

    2015-12-01

    We study the energy landscapes for membrane protein oligomerization using the Associative memory, Water mediated, Structure and Energy Model with an implicit membrane potential (AWSEM-membrane), a coarse-grained molecular dynamics model previously optimized under the assumption that the energy landscapes for folding α-helical membrane protein monomers are funneled once their native topology within the membrane is established. In this study we show that the AWSEM-membrane force field is able to sample near native binding interfaces of several oligomeric systems. By predicting candidate structures using simulated annealing, we further show that degeneracies in predicting structures of membrane protein monomers are generally resolved in the folding of the higher order assemblies as is the case in the assemblies of both nicotinic acetylcholine receptor and V-type Na+-ATPase dimers. The physics of the phenomenon resembles domain swapping, which is consistent with the landscape following the principle of minimal frustration. We revisit also the classic Khorana study of the reconstitution of bacteriorhodopsin from its fragments, which is the close analogue of the early Anfinsen experiment on globular proteins. Here, we show the retinal cofactor likely plays a major role in selecting the final functional assembly.

  8. Consistency in structural energetics of protein folding and peptide recognition.

    PubMed Central

    Zhang, C.; Cornette, J. L.; Delisi, C.

    1997-01-01

    We report a new free energy decomposition that includes structure-derived atomic contact energies for the desolvation component, and show that it applies equally well to the analysis of single-domain protein folding and to the binding of flexible peptides to proteins. Specifically, we selected the 17 single-domain proteins for which the three-dimensional structures and thermodynamic unfolding free energies are available. By calculating all terms except the backbone conformational entropy change and comparing the result to the experimentally measured free energy, we estimated that the mean entropy gain by the backbone chain upon unfolding (delta Sbb) is 5.3 cal/K per mole of residue, and that the average backbone entropy for glycine is 6.7 cal/K. Both numbers are in close agreement with recent estimates made by entirely different methods, suggesting a promising degree of consistency between data obtained from disparate sources. In addition, a quantitative analysis of the folding free energy indicates that the unfavorable backbone entropy for each of the proteins is balanced predominantly by favorable backbone interactions. Finally, because the binding of flexible peptides to receptors is physically similar to folding, the free energy function should, in principle, be equally applicable to flexible docking. By combining atomic contact energies, electrostatics, and sequence-dependent backbone entropy, we calculated a priori the free energy changes associated with the binding of four different peptides to HLA-A2, 1 MHC molecule and found agreement with experiment to within 10% without parameter adjustment. PMID:9144777

  9. Electrostatics, structure prediction, and the energy landscapes for protein folding and binding.

    PubMed

    Tsai, Min-Yeh; Zheng, Weihua; Balamurugan, D; Schafer, Nicholas P; Kim, Bobby L; Cheung, Margaret S; Wolynes, Peter G

    2016-01-01

    While being long in range and therefore weakly specific, electrostatic interactions are able to modulate the stability and folding landscapes of some proteins. The relevance of electrostatic forces for steering the docking of proteins to each other is widely acknowledged, however, the role of electrostatics in establishing specifically funneled landscapes and their relevance for protein structure prediction are still not clear. By introducing Debye-Hückel potentials that mimic long-range electrostatic forces into the Associative memory, Water mediated, Structure, and Energy Model (AWSEM), a transferable protein model capable of predicting tertiary structures, we assess the effects of electrostatics on the landscapes of thirteen monomeric proteins and four dimers. For the monomers, we find that adding electrostatic interactions does not improve structure prediction. Simulations of ribosomal protein S6 show, however, that folding stability depends monotonically on electrostatic strength. The trend in predicted melting temperatures of the S6 variants agrees with experimental observations. Electrostatic effects can play a range of roles in binding. The binding of the protein complex KIX-pKID is largely assisted by electrostatic interactions, which provide direct charge-charge stabilization of the native state and contribute to the funneling of the binding landscape. In contrast, for several other proteins, including the DNA-binding protein FIS, electrostatics causes frustration in the DNA-binding region, which favors its binding with DNA but not with its protein partner. This study highlights the importance of long-range electrostatics in functional responses to problems where proteins interact with their charged partners, such as DNA, RNA, as well as membranes. © 2015 The Protein Society.

  10. The effect of electrostatics on the marginal cooperativity of an ultrafast folding protein.

    PubMed

    Desai, Tanay M; Cerminara, Michele; Sadqi, Mourad; Muñoz, Victor

    2010-11-05

    Proteins fold up by coordinating the different segments of their polypeptide chain through a network of weak cooperative interactions. Such cooperativity results in unfolding curves that are typically sigmoidal. However, we still do not know what factors modulate folding cooperativity or the minimal amount that ensures folding into specific three-dimensional structures. Here, we address these issues on BBL, a small helical protein that folds in microseconds via a marginally cooperative downhill process (Li, P., Oliva, F. Y., Naganathan, A. N., and Muñoz, V. (2009) Proc. Natl. Acad. Sci. USA. 106, 103-108). Particularly, we explore the effects of salt-induced screening of the electrostatic interactions in BBL at neutral pH and in acid-denatured BBL. Our results show that electrostatic screening stabilizes the native state of the neutral and protonated forms, inducing complete refolding of acid-denatured BBL. Furthermore, without net electrostatic interactions, the unfolding process becomes much less cooperative, as judged by the broadness of the equilibrium unfolding curve and the relaxation rate. Our experiments show that the marginally cooperative unfolding of BBL can still be made twice as broad while the protein retains its ability to fold into the native three-dimensional structure in microseconds. This result demonstrates experimentally that efficient folding does not require cooperativity, confirming predictions from theory and computer simulations and challenging the conventional biochemical paradigm. Furthermore, we conclude that electrostatic interactions are an important factor in determining folding cooperativity. Thus, electrostatic modulation by pH-salt and/or mutagenesis of charged residues emerges as an attractive tool for tuning folding cooperativity.

  11. Accurate prediction of cellular co-translational folding indicates proteins can switch from post- to co-translational folding

    PubMed Central

    Nissley, Daniel A.; Sharma, Ajeet K.; Ahmed, Nabeel; Friedrich, Ulrike A.; Kramer, Günter; Bukau, Bernd; O'Brien, Edward P.

    2016-01-01

    The rates at which domains fold and codons are translated are important factors in determining whether a nascent protein will co-translationally fold and function or misfold and malfunction. Here we develop a chemical kinetic model that calculates a protein domain's co-translational folding curve during synthesis using only the domain's bulk folding and unfolding rates and codon translation rates. We show that this model accurately predicts the course of co-translational folding measured in vivo for four different protein molecules. We then make predictions for a number of different proteins in yeast and find that synonymous codon substitutions, which change translation-elongation rates, can switch some protein domains from folding post-translationally to folding co-translationally—a result consistent with previous experimental studies. Our approach explains essential features of co-translational folding curves and predicts how varying the translation rate at different codon positions along a transcript's coding sequence affects this self-assembly process. PMID:26887592

  12. Mapping fast protein folding with multiple-site fluorescent probes.

    PubMed

    Prigozhin, Maxim B; Chao, Shu-Han; Sukenik, Shahar; Pogorelov, Taras V; Gruebele, Martin

    2015-06-30

    Fast protein folding involves complex dynamics in many degrees of freedom, yet microsecond folding experiments provide only low-resolution structural information. We enhance the structural resolution of the five-helix bundle protein λ6-85 by engineering into it three fluorescent tryptophan-tyrosine contact probes. The probes report on distances between three different helix pairs: 1-2, 1-3, and 3-2. Temperature jump relaxation experiments on these three mutants reveal two different kinetic timescales: a slower timescale for 1-3 and a faster one for the two contacts involving helix 2. We hypothesize that these differences arise from a single folding mechanism that forms contacts on different timescales, and not from changes of mechanism due to adding the probes. To test this hypothesis, we analyzed the corresponding three distances in one published single-trajectory all-atom molecular-dynamics simulation of a similar mutant. Autocorrelation analysis of the trajectory reveals the same "slow" and "fast" distance change as does experiment, but on a faster timescale; smoothing the trajectory in time shows that this ordering is robust and persists into the microsecond folding timescale. Structural investigation of the all-atom computational data suggests that helix 2 misfolds to produce a short-lived off-pathway trap, in agreement with the experimental finding that the 1-2 and 3-2 distances involving helix 2 contacts form a kinetic grouping distinct from 1 to 3. Our work demonstrates that comparison between experiment and simulation can be extended to several order parameters, providing a stronger mechanistic test.

  13. Directed evolution methods for improving polypeptide folding and solubility and superfolder fluorescent proteins generated thereby

    DOEpatents

    Waldo, Geoffrey S.

    2007-09-18

    The current invention provides methods of improving folding of polypeptides using a poorly folding domain as a component of a fusion protein comprising the poorly folding domain and a polypeptide of interest to be improved. The invention also provides novel green fluorescent proteins (GFPs) and red fluorescent proteins that have enhanced folding properties.

  14. Exploring energy landscapes of protein folding and aggregation.

    PubMed

    Mousseau, Normand; Derreumaux, Philippe

    2008-05-01

    Human diseases, such as Alzheimer's and Creutzfeldt-Jakob's are associated with misfolding and aggregation of specific proteins into amyloid fibrils sharing a generic cross-beta structure. The self-assembly process is complex, but once a nucleus is formed, rapid fibril formation occurs. Insight into the structures of the oligomers during the lag phase, varying between hours and days, is very difficult experimentally because these species are transient, and numerically using all-atom molecular dynamics because the time scale explored is on the order of 10-100 ns. It is therefore important to develop simplified protein models and alternative methods to sample more efficiently the conformational space. In the past few years, we have developed the activation-relaxation technique (ART nouveau) coupled to the OPEP coarse-grained force field. This review reports the application of ART-OPEP on protein folding and aggregation.

  15. Dynamic Complexes in the Chaperonin-Mediated Protein Folding Cycle

    PubMed Central

    Weiss, Celeste; Jebara, Fady; Nisemblat, Shahar; Azem, Abdussalam

    2016-01-01

    The GroEL–GroES chaperonin system is probably one of the most studied chaperone systems at the level of the molecular mechanism. Since the first reports of a bacterial gene involved in phage morphogenesis in 1972, these proteins have stimulated intensive research for over 40 years. During this time, detailed structural and functional studies have yielded constantly evolving concepts of the chaperonin mechanism of action. Despite of almost three decades of research on this oligomeric protein, certain aspects of its function remain controversial. In this review, we highlight one central aspect of its function, namely, the active intermediates of its reaction cycle, and present how research to this day continues to change our understanding of chaperonin-mediated protein folding. PMID:28008398

  16. Construction of Allosteric Protein Switches by Alternate Frame Folding and Intermolecular Fragment Exchange.

    PubMed

    Ha, Jeung-Hoi; Loh, Stewart N

    2017-01-01

    Alternate frame folding (AFF) and protein/fragment exchange (FREX) are related technologies for engineering allosteric conformational changes into proteins that have no pre-existing allosteric properties. One of their chief purposes is to turn an ordinary protein into a biomolecular switch capable of transforming an input event into an optical or functional readout. Here, we present a guide for converting an arbitrary binding protein into a fluorescent biosensor with Förster resonance energy transfer output. Because the AFF and FREX mechanisms are founded on general principles of protein structure and stability rather than a property that is idiosyncratic to the target protein, the basic design steps-choice of permutation/cleavage sites, molecular biology, and construct optimization-remain the same for any target protein. We highlight effective strategies as well as common pitfalls based on our experience with multiple AFF and FREX constructs.

  17. Simplified Protein Models: Predicting Folding Pathways and Structure Using Amino Acid Sequences

    NASA Astrophysics Data System (ADS)

    Adhikari, Aashish N.; Freed, Karl F.; Sosnick, Tobin R.

    2013-07-01

    We demonstrate the ability of simultaneously determining a protein’s folding pathway and structure using a properly formulated model without prior knowledge of the native structure. Our model employs a natural coordinate system for describing proteins and a search strategy inspired by the observation that real proteins fold in a sequential fashion by incrementally stabilizing nativelike substructures or “foldons.” Comparable folding pathways and structures are obtained for the twelve proteins recently studied using atomistic molecular dynamics simulations [K. Lindorff-Larsen, S. Piana, R. O. Dror, D. E. Shaw, Science 334, 517 (2011)], with our calculations running several orders of magnitude faster. We find that nativelike propensities in the unfolded state do not necessarily determine the order of structure formation, a departure from a major conclusion of the molecular dynamics study. Instead, our results support a more expansive view wherein intrinsic local structural propensities may be enhanced or overridden in the folding process by environmental context. The success of our search strategy validates it as an expedient mechanism for folding both in silico and in vivo.

  18. Effects of interactions with the GroEL cavity on protein folding rates.

    PubMed

    Sirur, Anshul; Best, Robert B

    2013-03-05

    Encapsulation of proteins in chaperonins is an important mechanism by which the cell prevents the accumulation of misfolded species in the cytosol. However, results from theory and simulation for repulsive cavities appear to be inconsistent with recent experimental results showing, if anything, a slowdown in folding rate for encapsulated Rhodanese. We study the folding of Rhodanese in GroEL, using coarse-grained molecular simulations of the complete system including chaperonin and substrate protein. We find that, by approximating the substrate:GroEL interactions as repulsive, we obtain a strong acceleration in rate of between one and two orders of magnitude; a similar result is obtained by representing the chaperonin as a simple spherical cavity. Remarkably, however, we find that using a carefully parameterized, sequence-based potential to capture specific residue-residue interactions between Rhodanese and the GroEL cavity walls induces a very strong reduction of the folding rates. The effect of the interactions is large enough to completely offset the effects of confinement, such that folding in some cases can be even slower than that of the unconfined protein. The origin of the slowdown appears to be stabilization--relative to repulsive confinement--of the unfolded state through binding to the cavity walls, rather than a reduction of the diffusion coefficient along the folding coordinate. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Evolutionary bridges to new protein folds: design of C-terminal Cro protein chameleon sequences

    PubMed Central

    Anderson, William J.; Van Dorn, Laura O.; Ingram, Wendy M.; Cordes, Matthew H. J.

    2011-01-01

    Regions of amino-acid sequence that are compatible with multiple folds may facilitate evolutionary transitions in protein structure. In a previous study, we described a heuristically designed chameleon sequence (SASF1, structurally ambivalent sequence fragment 1) that could adopt either of two naturally occurring conformations (α-helical or β-sheet) when incorporated as part of the C-terminal dimerization subdomain of two structurally divergent transcription factors, P22 Cro and λ Cro. Here we describe longer chameleon designs (SASF2 and SASF3) that in the case of SASF3 correspond to the full C-terminal half of the ordered region of a P22 Cro/λ Cro sequence alignment (residues 34–57). P22-SASF2 and λWDD-SASF2 show moderate thermal stability in denaturation curves monitored by circular dichroism (Tm values of 46 and 55°C, respectively), while P22-SASF3 and λWDD-SASF3 have somewhat reduced stability (Tm values of 33 and 49°C, respectively). 13C and 1H NMR secondary chemical shift analysis confirms two C-terminal α-helices for P22-SASF2 (residues 36–45 and 54–57) and two C-terminal β-strands for λWDD-SASF2 (residues 40–45 and 50–52), corresponding to secondary structure locations in the two parent sequences. Backbone relaxation data show that both chameleon sequences have a relatively well-ordered structure. Comparisons of 15N-1H correlation spectra for SASF2 and SASF3-containing proteins strongly suggest that SASF3 retains the chameleonism of SASF2. Both Cro C-terminal conformations can be encoded in a single sequence, showing the plausibility of linking different Cro folds by smooth evolutionary transitions. The N-terminal subdomain, though largely conserved in structure, also exerts an important contextual influence on the structure of the C-terminal region. PMID:21676898

  20. Activity, stability and folding analysis of the chitinase from Entamoeba histolytica.

    PubMed

    Muñoz, Patricia L A; Minchaca, Alexis Z; Mares, Rosa E; Ramos, Marco A

    2016-02-01

    Human amebiasis, caused by the parasitic protozoan Entamoeba histolytica, remains as a significant public health issue in developing countries. The life cycle of the parasite compromises two main stages, trophozoite and cyst, linked by two major events: encystation and excystation. Interestingly, the cyst stage has a chitin wall that helps the parasite to withstand harsh environmental conditions. Since the amebic chitinase, EhCHT1, has been recognized as a key player in both encystation and excystation, it is plausible to consider that specific inhibition could arrest the life cycle of the parasite and, thus, stop the infection. However, to selectively target EhCHT1 it is important to recognize its unique biochemical features to have the ability to control its cellular function. Hence, to gain further insights into the structure-function relationship, we conducted an experimental approach to examine the effects of pH, temperature, and denaturant concentration on the enzymatic activity and protein stability. Additionally, dependence on in vivo oxidative folding was further studied using a bacterial model. Our results attest the potential of EhCHT1 as a target for the design and development of new or improved anti-amebic therapeutics. Likewise, the potential of the oxidoreductase EhPDI, involved in oxidative folding of amebic proteins, was also confirmed.

  1. Protein stabilization by urea and guanidine hydrochloride.

    PubMed

    Bhuyan, Abani K

    2002-11-12

    stability of ferrocytochrome c up to the limit of the subdenaturing concentrations of the additives. NaCl and Na(2)SO(4), which stabilize proteins through their salting-in effect, also decrease the rate with a corresponding increase in activation entropy of CO dissociation from CO-bound native ferrocytochrome c, lending support to the view that low concentrations of GdnHCl and urea stabilize proteins. These results have direct relevance to the understanding and interpretation of the free energy-denaturant relationship and protein folding chevrons.

  2. Protein folding in the cell envelope of Escherichia coli.

    PubMed

    De Geyter, Jozefien; Tsirigotaki, Alexandra; Orfanoudaki, Georgia; Zorzini, Valentina; Economou, Anastassios; Karamanou, Spyridoula

    2016-07-26

    While the entire proteome is synthesized on cytoplasmic ribosomes, almost half associates with, localizes in or crosses the bacterial cell envelope. In Escherichia coli a variety of mechanisms are important for taking these polypeptides into or across the plasma membrane, maintaining them in soluble form, trafficking them to their correct cell envelope locations and then folding them into the right structures. The fidelity of these processes must be maintained under various environmental conditions including during stress; if this fails, proteases are called in to degrade mislocalized or aggregated proteins. Various soluble, diffusible chaperones (acting as holdases, foldases or pilotins) and folding catalysts are also utilized to restore proteostasis. These responses can be general, dealing with multiple polypeptides, with functional overlaps and operating within redundant networks. Other chaperones are specialized factors, dealing only with a few exported proteins. Several complex machineries have evolved to deal with binding to, integration in and crossing of the outer membrane. This complex protein network is responsible for fundamental cellular processes such as cell wall biogenesis; cell division; the export, uptake and degradation of molecules; and resistance against exogenous toxic factors. The underlying processes, contributing to our fundamental understanding of proteostasis, are a treasure trove for the development of novel antibiotics, biopharmaceuticals and vaccines.

  3. Nonequilibrium single molecule protein folding in a coaxial mixer.

    PubMed

    Hamadani, Kambiz M; Weiss, Shimon

    2008-07-01

    We have developed a continuous-flow mixing device suitable for monitoring bioconformational reactions at the single-molecule level with a response time of approximately 10 ms under single-molecule flow conditions. Its coaxial geometry allows three-dimensional hydrodynamic focusing of sample fluids to diffraction-limited dimensions where diffusional mixing is rapid and efficient. The capillary-based design enables rapid in-lab construction of mixers without the need for expensive lithography-based microfabrication facilities. In-line filtering of sample fluids using granulated silica particles virtually eliminates clogging and extends the lifetime of each device to many months. In this article, to determine both the distance-to-time transfer function and the instrument response function of the device we characterize its fluid flow and mixing properties using both fluorescence cross-correlation spectroscopy velocimetry and finite element fluid dynamics simulations. We then apply the mixer to single molecule FRET protein folding studies of Chymotrypsin Inhibitor protein 2. By transiently populating the unfolded state of Chymotrypsin Inhibitor Protein 2 (CI2) under nonequilibrium in vitro refolding conditions, we spatially and temporally resolve the denaturant-dependent nonspecific collapse of the unfolded state from the barrier-limited folding transition of CI2. Our results are consistent with previous CI2 mixing results that found evidence for a heterogeneous unfolded state consisting of cis- and trans-proline conformers.

  4. The Safety Dance: Biophysics of Membrane Protein Folding and Misfolding in a Cellular Context

    PubMed Central

    Schlebach, Jonathan P.; Sanders, Charles R.

    2015-01-01

    Most biological processes require the production and degradation of proteins, a task that weighs heavily on the cell. Mutations that compromise the conformational stability of proteins place both specific and general burdens on cellular protein homeostasis (proteostasis) in ways that contribute to numerous diseases. Efforts to elucidate the chain of molecular events responsible for diseases of protein folding address one of the foremost challenges in biomedical science. However, relatively little is known about the processes by which mutations prompt the misfolding of α-helical membrane proteins, which rely on an intricate network of cellular machinery to acquire and maintain their functional structures within cellular membranes. In this review, we summarize the current understanding of the physical principles that guide membrane protein biogenesis and folding in the context of mammalian cells. Additionally, we explore how pathogenic mutations that influence biogenesis may differ from those that disrupt folding and assembly, as well as how this may relate to disease mechanisms and therapeutic intervention. These perspectives indicate an imperative for the use of information from structural, cellular, and biochemical studies of membrane proteins in the design of novel therapeutics and in personalized medicine. PMID:25420508

  5. Mapping the Geometric Evolution of Protein Folding Motor.

    PubMed

    Jerath, Gaurav; Hazam, Prakash Kishore; Shekhar, Shashi; Ramakrishnan, Vibin

    2016-01-01

    Polypeptide chain has an invariant main-chain and a variant side-chain sequence. How the side-chain sequence determines fold in terms of its chemical constitution has been scrutinized extensively and verified periodically. However, a focussed investigation on the directive effect of side-chain geometry may provide important insights supplementing existing algorithms in mapping the geometrical evolution of protein chains and its structural preferences. Geometrically, folding of protein structure may be envisaged as the evolution of its geometric variables: ϕ, and ψ dihedral angles of polypeptide main-chain directed by χ1, and χ2 of side chain. In this work, protein molecule is metaphorically modelled as a machine with 4 rotors ϕ, ψ, χ1 and χ2, with its evolution to the functional fold is directed by combinations of its rotor directions. We observe that differential rotor motions lead to different secondary structure formations and the combinatorial pattern is unique and consistent for particular secondary structure type. Further, we found that combination of rotor geometries of each amino acid is unique which partly explains how different amino acid sequence combinations have unique structural evolution and functional adaptation. Quantification of these amino acid rotor preferences, resulted in the generation of 3 substitution matrices, which later on plugged in the BLAST tool, for evaluating their efficiency in aligning sequences. We have employed BLOSUM62 and PAM30 as standard for primary evaluation. Generation of substitution matrices is a logical extension of the conceptual framework we attempted to build during the development of this work. Optimization of matrices following the conventional routines and possible application with biologically relevant data sets are beyond the scope of this manuscript, though it is a part of the larger project design.

  6. Mapping the Geometric Evolution of Protein Folding Motor

    PubMed Central

    Hazam, Prakash Kishore; Shekhar, Shashi

    2016-01-01

    Polypeptide chain has an invariant main-chain and a variant side-chain sequence. How the side-chain sequence determines fold in terms of its chemical constitution has been scrutinized extensively and verified periodically. However, a focussed investigation on the directive effect of side-chain geometry may provide important insights supplementing existing algorithms in mapping the geometrical evolution of protein chains and its structural preferences. Geometrically, folding of protein structure may be envisaged as the evolution of its geometric variables: ϕ, and ψ dihedral angles of polypeptide main-chain directed by χ1, and χ2 of side chain. In this work, protein molecule is metaphorically modelled as a machine with 4 rotors ϕ, ψ, χ1 and χ2, with its evolution to the functional fold is directed by combinations of its rotor directions. We observe that differential rotor motions lead to different secondary structure formations and the combinatorial pattern is unique and consistent for particular secondary structure type. Further, we found that combination of rotor geometries of each amino acid is unique which partly explains how different amino acid sequence combinations have unique structural evolution and functional adaptation. Quantification of these amino acid rotor preferences, resulted in the generation of 3 substitution matrices, which later on plugged in the BLAST tool, for evaluating their efficiency in aligning sequences. We have employed BLOSUM62 and PAM30 as standard for primary evaluation. Generation of substitution matrices is a logical extension of the conceptual framework we attempted to build during the development of this work. Optimization of matrices following the conventional routines and possible application with biologically relevant data sets are beyond the scope of this manuscript, though it is a part of the larger project design. PMID:27716851

  7. Microsecond Microfluidic Mixing for Investigation of Protein Folding Kinetics

    SciTech Connect

    Hertzog, D E; Santiago, J G; Bakajin, O

    2005-02-10

    We have developed and characterized a mixer to study the reaction kinetics of protein folding on a microsecond timescale. The mixer uses hydrodynamic focusing of pressure-driven flow in a microfluidic channel to reduce diffusion times as first demonstrated by Knight et al.[1]. Features of the mixer include 1 {micro}s mixing times, sample consumptions of order 1 nl/s, loading sample volumes on the order of microliters, and the ability to manufacture in fused silica for compatibility with most spectroscopic methods.

  8. Microsecond Microfluidic Mixing for Investigation of Protein Folding Kinetics

    SciTech Connect

    Hertzog, D E; Santiago, J G; Bakajin, O

    2003-06-25

    We have developed and characterized a mixer to study the reaction kinetics of protein folding on a microsecond timescale. The mixer uses hydrodynamic focusing of pressure-driven flow in a microfluidic channel to reduce diffusion times as first demonstrated by Knight et al.[1]. Features of the mixer include 1 {micro}s mixing times, sample consumptions of order 1 nl/s, loading sample volumes on the order of microliters, and the ability to manufacture in fused silica for compatibility with most spectroscopic methods.

  9. Heuristic algorithm for off-lattice protein folding problem*

    PubMed Central

    Chen, Mao; Huang, Wen-qi

    2006-01-01

    Enlightened by the law of interactions among objects in the physical world, we propose a heuristic algorithm for solving the three-dimensional (3D) off-lattice protein folding problem. Based on a physical model, the problem is converted from a nonlinear constraint-satisfied problem to an unconstrained optimization problem which can be solved by the well-known gradient method. To improve the efficiency of our algorithm, a strategy was introduced to generate initial configuration. Computational results showed that this algorithm could find states with lower energy than previously proposed ground states obtained by nPERM algorithm for all chains with length ranging from 13 to 55. PMID:16365919

  10. Subdomain interactions foster the design of two protein pairs with ∼80% sequence identity but different folds.

    PubMed

    Porter, Lauren L; He, Yanan; Chen, Yihong; Orban, John; Bryan, Philip N

    2015-01-06

    Metamorphic proteins, including proteins with high levels of sequence identity but different folds, are exceptions to the long-standing rule-of-thumb that proteins with as little as 30% sequence identity adopt the same fold. Which topologies can be bridged by these highly identical sequences remains an open question. Here we bridge two 3-α-helix bundle proteins with two radically different folds. Using a straightforward approach, we engineered the sequences of one subdomain within maltose binding protein (MBP, α/β/α-sandwich) and another within outer surface protein A (OspA, β-sheet) to have high sequence identity (80 and 77%, respectively) with engineered variants of protein G (GA, 3-α-helix bundle). Circular dichroism and nuclear magnetic resonance spectra of all engineered variants demonstrate that they maintain their native conformations despite substantial sequence modification. Furthermore, the MBP variant (80% identical to GA) remained active. Thermodynamic analysis of numerous GA and MBP variants suggests that the key to our approach involved stabilizing the modified MBP and OspA subdomains via external interactions with neighboring substructures, indicating that subdomain interactions can stabilize alternative folds over a broad range of sequence variation. These findings suggest that it is possible to bridge one fold with many other topologies, which has implications for protein folding, evolution, and misfolding diseases.

  11. Dynamic Folding Pathway Models of the Trp-Cage Protein

    PubMed Central

    Kim, Seung-Yeon

    2013-01-01

    Using action-derived molecular dynamics (ADMD), we study the dynamic folding pathway models of the Trp-cage protein by providing its sequential conformational changes from its initial disordered structure to the final native structure at atomic details. We find that the numbers of native contacts and native hydrogen bonds are highly correlated, implying that the native structure of Trp-cage