A selection that reports on protein-protein interactions within a thermophilic bacterium.
Nguyen, Peter Q; Silberg, Jonathan J
2010-07-01
Many proteins can be split into fragments that exhibit enhanced function upon fusion to interacting proteins. While this strategy has been widely used to create protein-fragment complementation assays (PCAs) for discovering protein-protein interactions within mesophilic organisms, similar assays have not yet been developed for studying natural and engineered protein complexes at the temperatures where thermophilic microbes grow. We describe the development of a selection for protein-protein interactions within Thermus thermophilus that is based upon growth complementation by fragments of Thermotoga neapolitana adenylate kinase (AK(Tn)). Complementation studies with an engineered thermophile (PQN1) that is not viable above 75 degrees C because its adk gene has been replaced by a Geobacillus stearothermophilus ortholog revealed that growth could be restored at 78 degrees C by a vector that coexpresses polypeptides corresponding to residues 1-79 and 80-220 of AK(Tn). In contrast, PQN1 growth was not complemented by AK(Tn) fragments harboring a C156A mutation within the zinc-binding tetracysteine motif unless these fragments were fused to Thermotoga maritima chemotaxis proteins that heterodimerize (CheA and CheY) or homodimerize (CheX). This enhanced complementation is interpreted as arising from chemotaxis protein-protein interactions, since AK(Tn)-C156A fragments having only one polypeptide fused to a chemotaxis protein did not complement PQN1 to the same extent. This selection increases the maximum temperature where a PCA can be used to engineer thermostable protein complexes and to map protein-protein interactions.
A selection that reports on protein–protein interactions within a thermophilic bacterium
Nguyen, Peter Q.; Silberg, Jonathan J.
2010-01-01
Many proteins can be split into fragments that exhibit enhanced function upon fusion to interacting proteins. While this strategy has been widely used to create protein-fragment complementation assays (PCAs) for discovering protein–protein interactions within mesophilic organisms, similar assays have not yet been developed for studying natural and engineered protein complexes at the temperatures where thermophilic microbes grow. We describe the development of a selection for protein–protein interactions within Thermus thermophilus that is based upon growth complementation by fragments of Thermotoga neapolitana adenylate kinase (AKTn). Complementation studies with an engineered thermophile (PQN1) that is not viable above 75°C because its adk gene has been replaced by a Geobacillus stearothermophilus ortholog revealed that growth could be restored at 78°C by a vector that coexpresses polypeptides corresponding to residues 1–79 and 80–220 of AKTn. In contrast, PQN1 growth was not complemented by AKTn fragments harboring a C156A mutation within the zinc-binding tetracysteine motif unless these fragments were fused to Thermotoga maritima chemotaxis proteins that heterodimerize (CheA and CheY) or homodimerize (CheX). This enhanced complementation is interpreted as arising from chemotaxis protein–protein interactions, since AKTn-C156A fragments having only one polypeptide fused to a chemotaxis protein did not complement PQN1 to the same extent. This selection increases the maximum temperature where a PCA can be used to engineer thermostable protein complexes and to map protein–protein interactions. PMID:20418388
Dual-Color Click Beetle Luciferase Heteroprotein Fragment Complementation Assays
Villalobos, Victor; Naik, Snehal; Bruinsma, Monique; Dothager, Robin S.; Pan, Mei-Hsiu; Samrakandi, Mustapha; Moss, Britney; Elhammali, Adnan; Piwnica-Worms, David
2010-01-01
Summary Understanding the functional complexity of protein interactions requires mapping biomolecular complexes within the cellular environment over biologically-relevant time scales. Herein we describe a novel set of reversible, multicolored heteroprotein complementation fragments based on various firefly and click beetle luciferases that utilize the same substrate, D-luciferin. Luciferase heteroprotein fragment complementation systems enabled dual-color quantification of two discreet pairs of interacting proteins simultaneously or two distinct proteins interacting with a third shared protein in live cells. Using real-time analysis of click beetle green and click beetle red luciferase heteroprotein fragment complementation applied to β-TrCP, an E3-ligase common to the regulation of both β-catenin and IκBα, GSK3β was identified as a novel candidate kinase regulating IκBα processing. These dual-color protein interaction switches may enable directed dynamic analysis of a variety of protein interactions in living cells. PMID:20851351
Paulmurugan, R; Gambhir, S S
2003-04-01
In this study we developed an inducible synthetic renilla luciferase protein-fragment-assisted complementation-based bioluminescence assay to quantitatively measure real time protein-protein interactions in mammalian cells. We identified suitable sites to generate fragments of N and C portions of the protein that yield significant recovered activity through complementation. We validate complementation-based activation of split synthetic renilla luciferase protein driven by the interaction of two strongly interacting proteins, MyoD and Id, in five different cell lines utilizing transient transfection studies. The expression level of the system was also modulated by tumor necrosis factor alpha through NFkappaB-promoter/enhancer elements used to drive expression of the N portion of synthetic renilla luciferase reporter gene. This new system should help in studying protein-protein interactions and when used with other split reporters (e.g., split firefly luciferase) should help to monitor different components of an intracellular network.
Paulmurugan, R.; Gambhir, S. S.
2014-01-01
In this study we developed an inducible synthetic renilla luciferase protein-fragment-assisted complementation-based bioluminescence assay to quantitatively measure real time protein–protein interactions in mammalian cells. We identified suitable sites to generate fragments of N and C portions of the protein that yield significant recovered activity through complementation. We validate complementation-based activation of split synthetic renilla luciferase protein driven by the interaction of two strongly interacting proteins, MyoD and Id, in five different cell lines utilizing transient transfection studies. The expression level of the system was also modulated by tumor necrosis factor α through NFκB-promoter/enhancer elements used to drive expression of the N portion of synthetic renilla luciferase reporter gene. This new system should help in studying protein–protein interactions and when used with other split reporters (e.g., split firefly luciferase) should help to monitor different components of an intracellular network. PMID:12705589
Nucleic acid encoding a self-assembling split-fluorescent protein system
Waldo, Geoffrey S.; Cabantous, Stephanie
2014-04-01
The invention provides a protein labeling and detection system based on self-complementing fragments of fluorescent and chromophoric proteins. The system of the invention is exemplified with various combinations of self-complementing fragments derived from Aequorea victoria Green Fluorescent Protein (GFP), which are used to detect and quantify protein solubility in multiple assay formats, both in vitro and in vivo.
Nucleic acid encoding a self-assembling split-fluorescent protein system
Waldo, Geoffrey S [Santa Fe, NM; Cabantous, Stephanie [Los Alamos, NM
2011-06-07
The invention provides a protein labeling and detection system based on self-complementing fragments of fluorescent and chromophoric proteins. The system of the invention is exemplified with various combinations of self-complementing fragments derived from Aequorea victoria Green Fluorescent Protein (GFP), which are used to detect and quantify protein solubility in multiple assay formats, both in vitro and in vivo.
Nucleic acid encoding a self-assembling split-fluorescent protein system
Waldo, Geoffrey S.; Cabantous, Stephanie
2015-07-14
The invention provides a protein labeling and detection system based on self-complementing fragments of fluorescent and chromophoric proteins. The system of the invention is exemplified with various combinations of self-complementing fragments derived from Aequorea victoria Green Fluorescent Protein (GFP), which are used to detect and quantify protein solubility in multiple assay formats, both in vitro and in vivo.
The CTD2 Center at Emory has developed a new NanoLuc®-based protein-fragment complementation assay (NanoPCA) which allows the detection of novel protein-protein interactions (PPI). NanoPCA allows the study of PPI dynamics with reversible interactions. Read the abstract. Experimental Approaches Read the detailed Experimetnal Approaches.
The CTD2 Center at Emory has developed a new NanoLuc®-based protein-fragment complementation assay (NanoPCA) which allows the detection of novel protein-protein interactions (PPI). NanoPCA allows the study of PPI dynamics with reversible interactions. Read the abstract. Experimental Approaches Read the detailed Experimetnal Approaches.
Moussaud, Simon; Malany, Siobhan; Mehta, Alka; Vasile, Stefan; Smith, Layton H; McLean, Pamela J
2015-05-01
Reducing the burden of α-synuclein oligomeric species represents a promising approach for disease-modifying therapies against synucleinopathies such as Parkinson's disease and dementia with Lewy bodies. However, the lack of efficient drug discovery strategies that specifically target α-synuclein oligomers has been a limitation to drug discovery programs. Here we describe an innovative strategy that harnesses the power of bimolecular protein-fragment complementation to monitor synuclein-synuclein interactions. We have developed two robust models to monitor α-synuclein oligomerization by generating novel stable cell lines expressing α-synuclein fusion proteins for either fluorescent or bioluminescent protein-fragment complementation under the tetracycline-controlled transcriptional activation system. A pilot screen was performed resulting in the identification of two potential hits, a p38 MAPK inhibitor and a casein kinase 2 inhibitor, thereby demonstrating the suitability of our protein-fragment complementation assay for the measurement of α-synuclein oligomerization in living cells at high throughput. The application of the strategy described herein to monitor α-synuclein oligomer formation in living cells with high throughput will facilitate drug discovery efforts for disease-modifying therapies against synucleinopathies and other proteinopathies.
Thermostability promotes the cooperative function of split adenylate kinases.
Nguyen, Peter Q; Liu, Shirley; Thompson, Jeremy C; Silberg, Jonathan J
2008-05-01
Proteins can often be cleaved to create inactive polypeptides that associate into functional complexes through non-covalent interactions, but little is known about what influences the cooperative function of the ensuing protein fragments. Here, we examine whether protein thermostability affects protein fragment complementation by characterizing the function of split adenylate kinases from the mesophile Bacillus subtilis (AKBs) and the hyperthermophile Thermotoga neapolitana (AKTn). Complementation studies revealed that the split AKTn supported the growth of Escherichia coli with a temperature-sensitive AK, but not the fragmented AKBs. However, weak complementation occurred when the AKBs fragments were fused to polypeptides that strongly associate, and this was enhanced by a Q16L mutation that thermostabilizes the full-length protein. To examine how the split AK homologs differ in structure and function, their catalytic activity, zinc content, and circular dichroism spectra were characterized. The reconstituted AKTn had higher levels of zinc, greater secondary structure, and >10(3)-fold more activity than the AKBs pair, albeit 17-fold less active than full-length AKTn. These findings provide evidence that the design of protein fragments that cooperatively function can be improved by choosing proteins with the greatest thermostability for bisection, and they suggest that this arises because hyperthermophilic protein fragments exhibit greater residual structure compared to their mesophilic counterparts.
Hatzios, Stavroula K.; Ringgaard, Simon; Davis, Brigid M.; Waldor, Matthew K.
2012-01-01
The luciferase protein fragment complementation assay is a powerful tool for studying protein-protein interactions. Two inactive fragments of luciferase are genetically fused to interacting proteins, and when these two proteins interact, the luciferase fragments can reversibly associate and reconstitute enzyme activity. Though this technology has been used extensively in live eukaryotic cells, split luciferase complementation has not yet been applied to studies of dynamic protein-protein interactions in live bacteria. As proof of concept and to develop a new tool for studies of bacterial chemotaxis, fragments of Renilla luciferase (Rluc) were fused to the chemotaxis-associated response regulator CheY3 and its phosphatase CheZ in the enteric pathogen Vibrio cholerae. Luciferase activity was dependent on the presence of both CheY3 and CheZ fusion proteins, demonstrating the specificity of the assay. Furthermore, enzyme activity was markedly reduced in V. cholerae chemotaxis mutants, suggesting that this approach can measure defects in chemotactic signaling. However, attempts to measure changes in dynamic CheY3-CheZ interactions in response to various chemoeffectors were undermined by nonspecific inhibition of the full-length luciferase. These observations reveal an unexpected limitation of split Rluc complementation that may have implications for existing data and highlight the need for great caution when evaluating small molecule effects on dynamic protein-protein interactions using the split luciferase technology. PMID:22905225
Hatzios, Stavroula K; Ringgaard, Simon; Davis, Brigid M; Waldor, Matthew K
2012-01-01
The luciferase protein fragment complementation assay is a powerful tool for studying protein-protein interactions. Two inactive fragments of luciferase are genetically fused to interacting proteins, and when these two proteins interact, the luciferase fragments can reversibly associate and reconstitute enzyme activity. Though this technology has been used extensively in live eukaryotic cells, split luciferase complementation has not yet been applied to studies of dynamic protein-protein interactions in live bacteria. As proof of concept and to develop a new tool for studies of bacterial chemotaxis, fragments of Renilla luciferase (Rluc) were fused to the chemotaxis-associated response regulator CheY3 and its phosphatase CheZ in the enteric pathogen Vibrio cholerae. Luciferase activity was dependent on the presence of both CheY3 and CheZ fusion proteins, demonstrating the specificity of the assay. Furthermore, enzyme activity was markedly reduced in V. cholerae chemotaxis mutants, suggesting that this approach can measure defects in chemotactic signaling. However, attempts to measure changes in dynamic CheY3-CheZ interactions in response to various chemoeffectors were undermined by nonspecific inhibition of the full-length luciferase. These observations reveal an unexpected limitation of split Rluc complementation that may have implications for existing data and highlight the need for great caution when evaluating small molecule effects on dynamic protein-protein interactions using the split luciferase technology.
Yu, Feifan; Alesand, Veronica; Nygren, Per-Åke
2018-02-27
Protein fragment complementation assays (PCA) rely on a proximity-driven reconstitution of a split reporter protein activity, typically via interaction between bait and prey units separately fused to the reporter protein halves. The PCA principle can also be formatted for use in immunossays for analyte detection, e.g., via the use of small immunoglobulin binding proteins (IgBp) as fusion partners to split-reporter protein fragments for conversion of pairs of antibodies into split-protein half-probes. However, the non-covalent binding between IgBp and antibodies is not ideal for development of robust assays. Here, the authors describe how split-enzyme reporter halves can be both site-specifically and covalently photoconjugated at antibody Fc-parts for use in homogeneous dual-antibody in vitro immunoassays based on analyte-dependent split-enzyme fragment complementation. The half-probes consist of parts of a beta-lactamase split-protein reporter fused to an immunoglobulin Fc binding domain equipped with a unique cysteine residue at which a photoactivable maleimide benzophenone group (MBP) is attached. Using such antibody conjugates the authors obtain an analyte-driven complementation of the reporter enzyme fragments monitored via conversion of a chromogenic substrate. Results from detection of human interferon-gamma and the extracellular domain of HER2 is shown. The described principles for site-specific conjugation of proteins to antibodies should be broadly applicable. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Luciferase Protein Complementation Assays for Bioluminescence Imaging of Cells and Mice
Luker, Gary D.; Luker, Kathryn E.
2015-01-01
Summary Protein fragment complementation assays (PCAs) with luciferase reporters currently are the preferred method for detecting and quantifying protein-protein interactions in living animals. At the most basic level, PCAs involve fusion of two proteins of interest to enzymatically inactive fragments of luciferase. Upon association of the proteins of interest, the luciferase fragments are capable of reconstituting enzymatic activity to generate luminescence in vivo. In addition to bi-molecular luciferase PCAs, unimolecular biosensors for hormones, kinases, and proteases also have been developed using target peptides inserted between inactive luciferase fragments. Luciferase PCAs offer unprecedented opportunities to quantify dynamics of protein-protein interactions in intact cells and living animals, but successful use of luciferase PCAs in cells and mice involves careful consideration of many technical factors. This chapter discusses the design of luciferase PCAs appropriate for animal imaging, including construction of reporters, incorporation of reporters into cells and mice, imaging techniques, and data analysis. PMID:21153371
The c-Myc (MYC) transcription factor is a major cancer driver and a well-validated therapeutic target. However, directly targeting MYC has been challenging. Thus, identifying proteins that interact with and regulate MYC may provide alternative strategies to inhibit its oncogenic activity. Here we report the development of a NanoLuc®-based protein-fragment complementation assay (NanoPCA) and mapping of the MYC protein interaction hub in live mammalian cells.
Protein- protein interaction detection system using fluorescent protein microdomains
Waldo, Geoffrey S.; Cabantous, Stephanie
2010-02-23
The invention provides a protein labeling and interaction detection system based on engineered fragments of fluorescent and chromophoric proteins that require fused interacting polypeptides to drive the association of the fragments, and further are soluble and stable, and do not change the solubility of polypeptides to which they are fused. In one embodiment, a test protein X is fused to a sixteen amino acid fragment of GFP (.beta.-strand 10, amino acids 198-214), engineered to not perturb fusion protein solubility. A second test protein Y is fused to a sixteen amino acid fragment of GFP (.beta.-strand 11, amino acids 215-230), engineered to not perturb fusion protein solubility. When X and Y interact, they bring the GFP strands into proximity, and are detected by complementation with a third GFP fragment consisting of GFP amino acids 1-198 (strands 1-9). When GFP strands 10 and 11 are held together by interaction of protein X and Y, they spontaneous association with GFP strands 1-9, resulting in structural complementation, folding, and concomitant GFP fluorescence.
Mie, Masayasu; Thuy, Ngo Phan Bich; Kobatake, Eiry
2012-03-07
A homogeneous immunoassay system was developed using fragmented Renilla luciferase (Rluc). The B domain of protein A was fused to two Rluc fragments. When complexes between an antibody and fragmented Rluc fusion proteins bind to target molecules, the Rluc fragments come into close proximity and the luminescence activity of fragmented Rluc is restored by complementation. As proof-of-principle, this fragmented Rluc system was used to detect E. coli homogeneously using an anti-E. coli antibody.
Kerppola, Tom K
2008-01-01
Protein interactions are a fundamental mechanism for the generation of biological regulatory specificity. The study of protein interactions in living cells is of particular significance because the interactions that occur in a particular cell depend on the full complement of proteins present in the cell and the external stimuli that influence the cell. Bimolecular fluorescence complementation (BiFC) analysis enables direct visualization of protein interactions in living cells. The BiFC assay is based on the association between two nonfluorescent fragments of a fluorescent protein when they are brought in proximity to each other by an interaction between proteins fused to the fragments. Numerous protein interactions have been visualized using the BiFC assay in many different cell types and organisms. The BiFC assay is technically straightforward and can be performed using standard molecular biology and cell culture reagents and a regular fluorescence microscope or flow cytometer.
Hashimoto, Junko; Watanabe, Taku; Seki, Tatsuya; Karasawa, Satoshi; Izumikawa, Miho; Seki, Tomoe; Iemura, Shun-Ichiro; Natsume, Tohru; Nomura, Nobuo; Goshima, Naoki; Miyawaki, Atsushi; Takagi, Motoki; Shin-Ya, Kazuo
2009-09-01
Protein-protein interactions (PPIs) play key roles in all cellular processes and hence are useful as potential targets for new drug development. To facilitate the screening of PPI inhibitors as anticancer drugs, the authors have developed a high-throughput screening (HTS) system using an in vitro protein fragment complementation assay (PCA) with monomeric Kusabira-Green fluorescent protein (mKG). The in vitro PCA system was established by the topological formation of a functional complex between 2 split inactive mKG fragments fused to target proteins, which fluoresces when 2 target proteins interact to allow complementation of the mKG fragments. Using this assay system, the authors screened inhibitors for TCF7/beta-catenin, PAC1/PAC2, and PAC3 homodimer PPIs from 123,599 samples in their natural product library. Compound TB1 was identified as a specific inhibitor for PPI of PAC3 homodimer. TB1 strongly inhibited the PPI of PAC3 homodimer with an IC(50) value of 0.020 microM and did not inhibit PPI between TCF7/beta-catenin and PAC1/PAC2 even at a concentration of 250 microM. The authors thus demonstrated that this in vitro PCA system applicable to HTS in a 1536-well format is capable of screening for PPI inhibitors from a huge natural product library.
Bimolecular fluorescence complementation: visualization of molecular interactions in living cells.
Kerppola, Tom K
2008-01-01
A variety of experimental methods have been developed for the analysis of protein interactions. The majority of these methods either require disruption of the cells to detect molecular interactions or rely on indirect detection of the protein interaction. The bimolecular fluorescence complementation (BiFC) assay provides a direct approach for the visualization of molecular interactions in living cells and organisms. The BiFC approach is based on the facilitated association between two fragments of a fluorescent protein when the fragments are brought together by an interaction between proteins fused to the fragments. The BiFC approach has been used for visualization of interactions among a variety of structurally diverse interaction partners in many different cell types. It enables detection of transient complexes as well as complexes formed by a subpopulation of the interaction partners. It is essential to include negative controls in each experiment in which the interface between the interaction partners has been mutated or deleted. The BiFC assay has been adapted for simultaneous visualization of multiple protein complexes in the same cell and the competition for shared interaction partners. A ubiquitin-mediated fluorescence complementation assay has also been developed for visualization of the covalent modification of proteins by ubiquitin family peptides. These fluorescence complementation assays have a great potential to illuminate a variety of biological interactions in the future.
Michnick, Stephen W; Landry, Christian R; Levy, Emmanuel D; Diss, Guillaume; Ear, Po Hien; Kowarzyk, Jacqueline; Malleshaiah, Mohan K; Messier, Vincent; Tchekanda, Emmanuelle
2016-11-01
Protein-fragment complementation assays (PCAs) comprise a family of assays that can be used to study protein-protein interactions (PPIs), conformation changes, and protein complex dimensions. We developed PCAs to provide simple and direct methods for the study of PPIs in any living cell, subcellular compartments or membranes, multicellular organisms, or in vitro. Because they are complete assays, requiring no cell-specific components other than reporter fragments, they can be applied in any context. PCAs provide a general strategy for the detection of proteins expressed at endogenous levels within appropriate subcellular compartments and with normal posttranslational modifications, in virtually any cell type or organism under any conditions. Here we introduce a number of applications of PCAs in budding yeast, Saccharomyces cerevisiae These applications represent the full range of PPI characteristics that might be studied, from simple detection on a large scale to visualization of spatiotemporal dynamics. © 2016 Cold Spring Harbor Laboratory Press.
Gan, Hui; Zhou, Yong; Sun, Ping; Zhu, Xiao-Xia; Wang, Quan-Li; Zhan, Lin-Sheng
2007-08-01
This study was purposed to verify the binding part of human complement C3 to complement receptor III (CRIII) in monocytes, the peptide rC3B, including the binding-site, was expressed, purified and identified. rC3B, the binding part of human complement C3 to CRIII, was selected by computer-aided modeling and summarizing researches published. Then, rC3B gene fragment was amplified by PCR, and cloned into prokaryotic vector pQE30a. The fusion protein rC3B was expressed in E.coli M15 and purified by Ni(2+)-chelating affinity chromatography. The activity of rC3B was identified by Western blot and adherence assay with monocytes. The results showed that rC3B fragment was obtained, and a prokaryotic expression vector pQE30-rC3B was constructed. rC3B was efficiently expressed and purified. In Western blot, the target protein showed the activity of binding with C3 antibody, while the purified protein showed the activity of adherence with monocytes. It is concluded that the recombinant C3B was obtained and identified, and this study lay the basis for the further functional analysis of C3.
Trifonova, O P; Pastushkova, L Kh; Samenkova, N F; Chernobrovkin, A L; Karuzina, I I; Lisitsa, A V; Larina, I M
2013-05-01
We identified changes in the proteome of healthy human blood plasma caused by exposure to 105-day confinement in an isolation chamber. After removal of major proteins and concentration of minor proteins, plasma fractions were analyzed by two-dimensional electrophoresis followed by identification of significantly different protein spots by mass spectrometric analysis of the peptide fragments. The levels of α- and β-chains of fibrinogen, a fragment of complement factor C4, apolipoproteins AI and E, plasminogen factor C1 complement, and immunoglobulin M changed in participants during the isolation period. These changes probably reflect the adaptive response to altered conditions of life.
Independent Structural Domains in Paramyxovirus Polymerase Protein*
Dochow, Melanie; Krumm, Stefanie A.; Crowe, James E.; Moore, Martin L.; Plemper, Richard K.
2012-01-01
All enzymatic activities required for genomic replication and transcription of nonsegmented negative strand RNA viruses (or Mononegavirales) are believed to be concentrated in the viral polymerase (L) protein. However, our insight into the organization of these different enzymatic activities into a bioactive tertiary structure remains rudimentary. Fragments of Mononegavirales polymerases analyzed to date cannot restore bioactivity through trans-complementation, unlike the related L proteins of segmented NSVs. We investigated the domain organization of phylogenetically diverse Paramyxovirus L proteins derived from measles virus (MeV), Nipah virus (NiV), and respiratory syncytial virus (RSV). Through a comprehensive in silico and experimental analysis of domain intersections, we defined MeV L position 615 as an interdomain candidate in addition to the previously reported residue 1708. Only position 1708 of MeV and the homologous positions in NiV and RSV L also tolerated the insertion of epitope tags. Splitting of MeV L at residue 1708 created fragments that were unable to physically interact and trans-complement, but strikingly, these activities were reconstituted by the addition of dimerization tags to the fragments. Equivalently split fragments of NiV, RSV, and MeV L oligomerized with comparable efficiency in all homo- and heterotypic combinations, but only the homotypic pairs were able to trans-complement. These results demonstrate that synthesis as a single polypeptide is not required for the Mononegavirales polymerases to adopt a proper tertiary conformation. Paramyxovirus polymerases are composed of at least two truly independent folding domains that lack a traditional interface but require molecular compatibility for bioactivity. The functional probing of the L domain architecture through trans-complementation is anticipated to be applicable to all Mononegavirales polymerases. PMID:22215662
Gene for ataxia-telangiectasia complementation group D (ATDC)
Murnane, John P.; Painter, Robert B.; Kapp, Leon N.; Yu, Loh-Chung
1995-03-07
Disclosed herein is a new gene, an AT gene for complementation group D, the ATDC gene and fragments thereof. Nucleic acid probes for said gene are provided as well as proteins encoded by said gene, cDNA therefrom, preferably a 3 kilobase (kb) cDNA, and recombinant nucleic acid molecules for expression of said proteins. Further disclosed are methods to detect mutations in said gene, preferably methods employing the polymerase chain reaction (PCR). Also disclosed are methods to detect AT genes from other AT complementation groups.
Regulation of Cre recombinase by ligand-induced complementation of inactive fragments.
Jullien, Nicolas; Sampieri, François; Enjalbert, Alain; Herman, Jean-Paul
2003-11-01
Cre recombinase is extensively used to engineer the genome of experimental animals. However, its usefulness is still limited by the lack of an efficient temporal control over its activity. To overcome this, we have developed DiCre, a regulatable fragment complementation system for Cre. The enzyme was split into two moieties that were fused to FKBP12 (FK506-binding protein) and FRB (binding domain of the FKBP12-rapamycin-associated protein), respectively. These can be efficiently heterodimerized by rapamycin. Several variants, based on splitting Cre at different sites and using different linker peptides, were tested in an indicator cell line. The fusion proteins, taken separately, had no recombinase activity. Stable transformants, co-expressing complementing fragments based on splitting Cre between Asn59 and Asn60, displayed low background activity affecting 0.05-0.4% of the cells. Rapamycin induced a rapid recombination, reaching 100% by 48-72 h, with an EC50 of 0.02 nM. Thus, ligand-induced dimerization can efficiently regulate Cre, and should be useful to achieve a tight temporal control of its activity, such as in the case of the creation of conditional knock-out animals.
Protein subcellular localization assays using split fluorescent proteins
Waldo, Geoffrey S [Santa Fe, NM; Cabantous, Stephanie [Los Alamos, NM
2009-09-08
The invention provides protein subcellular localization assays using split fluorescent protein systems. The assays are conducted in living cells, do not require fixation and washing steps inherent in existing immunostaining and related techniques, and permit rapid, non-invasive, direct visualization of protein localization in living cells. The split fluorescent protein systems used in the practice of the invention generally comprise two or more self-complementing fragments of a fluorescent protein, such as GFP, wherein one or more of the fragments correspond to one or more beta-strand microdomains and are used to "tag" proteins of interest, and a complementary "assay" fragment of the fluorescent protein. Either or both of the fragments may be functionalized with a subcellular targeting sequence enabling it to be expressed in or directed to a particular subcellular compartment (i.e., the nucleus).
Kerppola, Tom K
2006-01-01
Bimolecular fluorescence complementation (BiFC) analysis enables direct visualization of protein interactions in living cells. The BiFC assay is based on the discoveries that two non-fluorescent fragments of a fluorescent protein can form a fluorescent complex and that the association of the fragments can be facilitated when they are fused to two proteins that interact with each other. BiFC must be confirmed by parallel analysis of proteins in which the interaction interface has been mutated. It is not necessary for the interaction partners to juxtapose the fragments within a specific distance of each other because they can associate when they are tethered to a complex with flexible linkers. It is also not necessary for the interaction partners to form a complex with a long half-life or a high occupancy since the fragments can associate in a transient complex and un-associated fusion proteins do not interfere with detection of the complex. Many interactions can be visualized when the fusion proteins are expressed at levels comparable to their endogenous counterparts. The BiFC assay has been used for the visualization of interactions between many types of proteins in different subcellular locations and in different cell types and organisms. It is technically straightforward and can be performed using a regular fluorescence microscope and standard molecular biology and cell culture reagents.
Pandey, Naresh; Nobles, Christopher L; Zechiedrich, Lynn; Maresso, Anthony W; Silberg, Jonathan J
2015-05-15
Gene fission can convert monomeric proteins into two-piece catalysts, reporters, and transcription factors for systems and synthetic biology. However, some proteins can be challenging to fragment without disrupting function, such as near-infrared fluorescent protein (IFP). We describe a directed evolution strategy that can overcome this challenge by randomly fragmenting proteins and concomitantly fusing the protein fragments to pairs of proteins or peptides that associate. We used this method to create libraries that express fragmented IFP as fusions to a pair of associating peptides (IAAL-E3 and IAAL-K3) and proteins (CheA and CheY) and screened for fragmented IFP with detectable near-infrared fluorescence. Thirteen novel fragmented IFPs were identified, all of which arose from backbone fission proximal to the interdomain linker. Either the IAAL-E3 and IAAL-K3 peptides or CheA and CheY proteins could assist with IFP fragment complementation, although the IAAL-E3 and IAAL-K3 peptides consistently yielded higher fluorescence. These results demonstrate how random gene fission can be coupled to rational gene fusion to create libraries enriched in fragmented proteins with AND gate logic that is dependent upon a protein-protein interaction, and they suggest that these near-infrared fluorescent protein fragments will be suitable as reporters for pairs of promoters and protein-protein interactions within whole animals.
In vivo protein stabilization based on fragment complementation and a split GFP system.
Lindman, Stina; Hernandez-Garcia, Armando; Szczepankiewicz, Olga; Frohm, Birgitta; Linse, Sara
2010-11-16
Protein stabilization was achieved through in vivo screening based on the thermodynamic linkage between protein folding and fragment complementation. The split GFP system was found suitable to derive protein variants with enhanced stability due to the correlation between effects of mutations on the stability of the intact chain and the effects of the same mutations on the affinity between fragments of the chain. PGB1 mutants with higher affinity between fragments 1 to 40 and 41 to 56 were obtained by in vivo screening of a library of the 1 to 40 fragments against wild-type 41 to 56 fragments. Colonies were ranked based on the intensity of green fluorescence emerging from assembly and folding of the fused GFP fragments. The DNA from the brightest fluorescent colonies was sequenced, and intact mutant PGB1s corresponding to the top three sequences were expressed, purified, and analyzed for stability toward thermal denaturation. The protein sequence derived from the top fluorescent colony was found to yield a 12 °C increase in the thermal denaturation midpoint and a free energy of stabilization of -8.7 kJ/mol at 25 °C. The stability rank order of the three mutant proteins follows the fluorescence rank order in the split GFP system. The variants are stabilized through increased hydrophobic effect, which raises the free energy of the unfolded more than the folded state; as well as substitutions, which lower the free energy of the folded more than the unfolded state; optimized van der Waals interactions; helix stabilization; improved hydrogen bonding network; and reduced electrostatic repulsion in the folded state.
2015-01-01
Gene fission can convert monomeric proteins into two-piece catalysts, reporters, and transcription factors for systems and synthetic biology. However, some proteins can be challenging to fragment without disrupting function, such as near-infrared fluorescent protein (IFP). We describe a directed evolution strategy that can overcome this challenge by randomly fragmenting proteins and concomitantly fusing the protein fragments to pairs of proteins or peptides that associate. We used this method to create libraries that express fragmented IFP as fusions to a pair of associating peptides (IAAL-E3 and IAAL-K3) and proteins (CheA and CheY) and screened for fragmented IFP with detectable near-infrared fluorescence. Thirteen novel fragmented IFPs were identified, all of which arose from backbone fission proximal to the interdomain linker. Either the IAAL-E3 and IAAL-K3 peptides or CheA and CheY proteins could assist with IFP fragment complementation, although the IAAL-E3 and IAAL-K3 peptides consistently yielded higher fluorescence. These results demonstrate how random gene fission can be coupled to rational gene fusion to create libraries enriched in fragmented proteins with AND gate logic that is dependent upon a protein–protein interaction, and they suggest that these near-infrared fluorescent protein fragments will be suitable as reporters for pairs of promoters and protein–protein interactions within whole animals. PMID:25265085
Gene for ataxia-telangiectasia complementation group D (ATDC)
Murnane, J.P.; Painter, R.B.; Kapp, L.N.; Yu, L.C.
1995-03-07
Disclosed herein is a new gene, an AT gene for complementation group D, the ATDC gene and fragments thereof. Nucleic acid probes for the gene are provided as well as proteins encoded by the gene, cDNA therefrom, preferably a 3 kilobase (kb) cDNA, and recombinant nucleic acid molecules for expression of the proteins. Further disclosed are methods to detect mutations in the gene, preferably methods employing the polymerase chain reaction (PCR). Also disclosed are methods to detect AT genes from other AT complementation groups. 30 figs.
Granja, Luiz Fernando Zmetek; Pinto, Lysianne; Almeida, Cátia Amancio; Alviano, Daniela Sales; Da Silva, Maria Helena; Ejzemberg, Regina; Alviano, Celuta Sales
2010-03-01
Complement activation by spores of Mucor ramosissimus, Mucor plumbeus and Mucor circinelloides was studied using absorbed human serum in the presence or absence of chelators (EGTA or EDTA). We found that the spore caused full complement activation when incubated with EGTA-Mg2+ or without chelators, indicating that the alternative pathway is mainly responsible for this response. In order to compare activation profiles from each species, ELISAs for C3 and C4 fragments, mannan binding lectin (MBL), C-reactive protein (CRP) and IgG studies were carried out. All proteins were present on the species tested. Immunofluorescence tests demonstrated the presence of C3 fragments on the surface of all samples, which were confluent throughout fungal surfaces. The same profile of C3, C4, MBL, CRP and IgG deposition, observed in all species, suggests a similar activation behavior for these species.
Varicella-zoster virus complements herpes simplex virus type 1 temperature-sensitive mutants.
Felser, J M; Straus, S E; Ostrove, J M
1987-01-01
Varicella-zoster virus (VZV) can complement temperature-sensitive mutants of herpes simplex virus. Of seven mutants tested, two, carrying mutations in the immediate-early ICP4 and ICP27 proteins, were complemented. This complementation was not seen in coinfections with adenovirus type 5 or cytomegalovirus. Following transfection into CV-1 cells, a DNA fragment containing the VZV short repeat sequence complemented the ICP4 mutant. These data demonstrate a functional relationship between VZV and herpes simplex virus and have allowed localization of a putative VZV immediate-early gene. PMID:3023701
Novel approach using DNA-RNA hybrids in RNA nanotechnology | Center for Cancer Research
Developing simple approaches to detect interactions, modifications, and cellular locations of macromolecules is essential for understanding biochemical processes. The use of protein fragment complementation assays, also called split-protein systems, is a highly sensitive approach for studying protein interactions in biological systems. In this approach, functional proteins are
Novel approach using DNA-RNA hybrids in RNA nanotechnology | Center for Cancer Research
Developing simple approaches to detect interactions, modifications, and cellular locations of macromolecules is essential for understanding biochemical processes. The use of protein fragment complementation assays, also called split-protein systems, is a highly sensitive approach for studying protein interactions in biological systems. In this approach, functional proteins are split into non-functional fragments, and when attached to possible interacting partners, can reassemble and become functional again. Use of split-protein assays can establish differences between a healthy and a diseased state in the cell as well as determine the outcome of a therapeutic intervention.
Musi, Valeria; Spolaore, Barbara; Picotti, Paola; Zambonin, Marcello; De Filippis, Vincenzo; Fontana, Angelo
2004-05-25
Limited proteolysis of the 153-residue chain of horse apomyoglobin (apoMb) by thermolysin results in the selective cleavage of the peptide bond Pro88-Leu89. The N-terminal (residues 1-88) and C-terminal (residues 89-153) fragments of apoMb were isolated to homogeneity and their conformational and association properties investigated in detail. Far-UV circular dichroism (CD) measurements revealed that both fragments in isolation acquire a high content of helical secondary structure, while near-UV CD indicated the absence of tertiary structure. A 1:1 mixture of the fragments leads to a tight noncovalent protein complex (1-88/89-153, nicked apoMb), characterized by secondary and tertiary structures similar to those of intact apoMb. The apoMb complex binds heme in a nativelike manner, as given by CD measurements in the Soret region. Second-derivative absorption spectra in the 250-300 nm region provided evidence that the degree of exposure of Tyr residues in the nicked species is similar to that of the intact protein at neutral pH. Also, the microenvironment of Trp residues, located in positions 7 and 14 of the 153-residue chain of the protein, is similar in both protein species, as given by fluorescence emission data. Moreover, in analogy to intact apoMb, the nicked protein binds the hydrophobic dye 1-anilinonaphthalene-8-sulfonate (ANS). Taken together, our results indicate that the two proteolytic fragments 1-88 and 89-153 of apoMb adopt partly folded states characterized by sufficiently nativelike conformational features that promote their specific association and mutual stabilization into a nicked protein species much resembling in its structural features intact apoMb. It is suggested that the formation of a noncovalent complex upon fragment complementation can mimic the protein folding process of the entire protein chain, with the difference that the folding of the complementary fragments is an intermolecular process. In particular, this study emphasizes the importance of interactions between marginally stable elements of secondary structure in promoting the tertiary contacts of a native protein. Considering that apoMb has been extensively used as a paradigm in protein folding studies for the past few decades, the novel fragment complementing system of apoMb here described appears to be very useful for investigating the initial as well as late events in protein folding.
Woods, D E; Edge, M D; Colten, H R
1984-01-01
Complementary DNA (cDNA) clones corresponding to the major histocompatibility (MHC) class III antigen, complement protein C2, have been isolated from human liver cDNA libraries with the use of a complex mixture of synthetic oligonucleotides (17 mer) that contains 576 different oligonucleotide sequences. The C2 cDNA were used to identify a DNA restriction enzyme fragment length polymorphism that provides a genetic marker within the MHC that was not detectable at the protein level. An extensive search for genomic polymorphisms using a cDNA clone for another MHC class III gene, factor B, failed to reveal any DNA variants. The genomic variants detected with the C2 cDNA probe provide an additional genetic marker for analysis of MHC-linked diseases. Images PMID:6086718
Lessons from hot spot analysis for fragment-based drug discovery
Hall, David R.; Vajda, Sandor
2015-01-01
Analysis of binding energy hot spots at protein surfaces can provide crucial insights into the prospects for successful application of fragment-based drug discovery (FBDD), and whether a fragment hit can be advanced into a high affinity, druglike ligand. The key factor is the strength of the top ranking hot spot, and how well a given fragment complements it. We show that published data are sufficient to provide a sophisticated and quantitative understanding of how hot spots derive from protein three-dimensional structure, and how their strength, number and spatial arrangement govern the potential for a surface site to bind to fragment-sized and larger ligands. This improved understanding provides important guidance for the effective application of FBDD in drug discovery. PMID:26538314
Wang, Li; Carnegie, Graeme K.
2013-01-01
Among methods to study protein-protein interaction inside cells, Bimolecular Fluorescence Complementation (BiFC) is relatively simple and sensitive. BiFC is based on the production of fluorescence using two non-fluorescent fragments of a fluorescent protein (Venus, a Yellow Fluorescent Protein variant, is used here). Non-fluorescent Venus fragments (VN and VC) are fused to two interacting proteins (in this case, AKAP-Lbc and PDE4D3), yielding fluorescence due to VN-AKAP-Lbc-VC-PDE4D3 interaction and the formation of a functional fluorescent protein inside cells. BiFC provides information on the subcellular localization of protein complexes and the strength of protein interactions based on fluorescence intensity. However, BiFC analysis using microscopy to quantify the strength of protein-protein interaction is time-consuming and somewhat subjective due to heterogeneity in protein expression and interaction. By coupling flow cytometric analysis with BiFC methodology, the fluorescent BiFC protein-protein interaction signal can be accurately measured for a large quantity of cells in a short time. Here, we demonstrate an application of this methodology to map regions in PDE4D3 that are required for the interaction with AKAP-Lbc. This high throughput methodology can be applied to screening factors that regulate protein-protein interaction. PMID:23979513
Wang, Li; Carnegie, Graeme K
2013-08-15
Among methods to study protein-protein interaction inside cells, Bimolecular Fluorescence Complementation (BiFC) is relatively simple and sensitive. BiFC is based on the production of fluorescence using two non-fluorescent fragments of a fluorescent protein (Venus, a Yellow Fluorescent Protein variant, is used here). Non-fluorescent Venus fragments (VN and VC) are fused to two interacting proteins (in this case, AKAP-Lbc and PDE4D3), yielding fluorescence due to VN-AKAP-Lbc-VC-PDE4D3 interaction and the formation of a functional fluorescent protein inside cells. BiFC provides information on the subcellular localization of protein complexes and the strength of protein interactions based on fluorescence intensity. However, BiFC analysis using microscopy to quantify the strength of protein-protein interaction is time-consuming and somewhat subjective due to heterogeneity in protein expression and interaction. By coupling flow cytometric analysis with BiFC methodology, the fluorescent BiFC protein-protein interaction signal can be accurately measured for a large quantity of cells in a short time. Here, we demonstrate an application of this methodology to map regions in PDE4D3 that are required for the interaction with AKAP-Lbc. This high throughput methodology can be applied to screening factors that regulate protein-protein interaction.
Paulmurugan, Ramasamy; Gambhir, Sanjiv S.
2014-01-01
Networks of protein interactions execute many different intracellular pathways. Small molecules either synthesized within the cell or obtained from the external environment mediate many of these protein-protein interactions. The study of these small molecule–mediated protein-protein interactions is important in understanding abnormal signal transduction pathways in a variety of disorders, as well as in optimizing the process of drug development and validation. In this study, we evaluated the rapamycin-mediated interaction of the human proteins FK506-binding protein (FKBP12) rapamycin-binding domain (FRB) and FKBP12 by constructing a fusion of these proteins with a split-Renilla luciferase or a split enhanced green fluorescent protein (split-EGFP) such that complementation of the reporter fragments occurs in the presence of rapamycin. Different linker peptides in the fusion protein were evaluated for the efficient maintenance of complemented reporter activity. This system was studied in both cell culture and xenografts in living animals. We found that peptide linkers with two or four EAAAR repeat showed higher protein-protein interaction–mediated signal with lower background signal compared with having no linker or linkers with amino acid sequences GGGGSGGGGS, ACGSLSCGSF, and ACGSLSCGS-FACGSLSCGSF. A 9 ± 2-fold increase in signal intensity both in cell culture and in living mice was seen compared with a system that expresses both reporter fragments and the interacting proteins separately. In this fusion system, rapamycin induced heterodimerization of the FRB and FKBP12 moieties occurred rapidly even at very lower concentrations (0.00001 nmol/L) of rapamycin. For a similar fusion system employing split-EGFP, flow cytometry analysis showed significant level of rapamycin-induced complementation. PMID:16103094
Paulmurugan, Ramasamy; Gambhir, Sanjiv S
2005-08-15
Networks of protein interactions execute many different intracellular pathways. Small molecules either synthesized within the cell or obtained from the external environment mediate many of these protein-protein interactions. The study of these small molecule-mediated protein-protein interactions is important in understanding abnormal signal transduction pathways in a variety of disorders, as well as in optimizing the process of drug development and validation. In this study, we evaluated the rapamycin-mediated interaction of the human proteins FK506-binding protein (FKBP12) rapamycin-binding domain (FRB) and FKBP12 by constructing a fusion of these proteins with a split-Renilla luciferase or a split enhanced green fluorescent protein (split-EGFP) such that complementation of the reporter fragments occurs in the presence of rapamycin. Different linker peptides in the fusion protein were evaluated for the efficient maintenance of complemented reporter activity. This system was studied in both cell culture and xenografts in living animals. We found that peptide linkers with two or four EAAAR repeat showed higher protein-protein interaction-mediated signal with lower background signal compared with having no linker or linkers with amino acid sequences GGGGSGGGGS, ACGSLSCGSF, and ACGSLSCGSFACGSLSCGSF. A 9 +/- 2-fold increase in signal intensity both in cell culture and in living mice was seen compared with a system that expresses both reporter fragments and the interacting proteins separately. In this fusion system, rapamycin induced heterodimerization of the FRB and FKBP12 moieties occurred rapidly even at very lower concentrations (0.00001 nmol/L) of rapamycin. For a similar fusion system employing split-EGFP, flow cytometry analysis showed significant level of rapamycin-induced complementation.
Segall-Shapiro, Thomas H; Nguyen, Peter Q; Dos Santos, Edgardo D; Subedi, Saurav; Judd, Justin; Suh, Junghae; Silberg, Jonathan J
2011-02-11
The extent to which thermostability influences the location of protein fragmentation sites that allow retention of function is not known. To evaluate this, we used a novel transposase-based approach to create libraries of vectors that express structurally-related fragments of Bacillus subtilis adenylate kinase (BsAK) and Thermotoga neapolitana adenylate kinase (TnAK) with identical modifications at their termini, and we selected for variants in each library that complement the growth of Escherichia coli with a temperature-sensitive adenylate kinase (AK). Mutants created using the hyperthermophilic TnAK were found to support growth with a higher frequency (44%) than those generated from the mesophilic BsAK (6%), and selected TnAK mutants complemented E. coli growth more strongly than homologous BsAK variants. Sequencing of functional clones from each library also identified a greater dispersion of fragmentation sites within TnAK. Nondisruptive fission sites were observed within the AMP binding and core domains of both AK homologs. However, only TnAK contained sites within the lid domain, which undergoes dynamic fluctuations that are critical for catalysis. These findings implicate the flexible lid domain as having an increased sensitivity to fission events at physiological temperatures. In addition, they provide evidence that comparisons of nondisruptive fission sites in homologous proteins could be useful for finding dynamic regions whose conformational fluctuations are important for function, and they show that the discovery of protein fragments that cooperatively function in mesophiles can be aided by the use of thermophilic enzymes as starting points for protein design. Copyright © 2010 Elsevier Ltd. All rights reserved.
Ahern, Chris A; Vallejo, Paola; Mortenson, Lindsay; Coronado, Roberto
2001-01-01
Background The L-type Ca2+ channel formed by the dihydropyridine receptor (DHPR) of skeletal muscle senses the membrane voltage and opens the ryanodine receptor (RyR1). This channel-to-channel coupling is essential for Ca2+ signaling but poorly understood. We characterized a single-base frame-shift mutant of α1S, the pore subunit of the DHPR, that has the unusual ability to function voltage sensor for excitation-contraction (EC) coupling by virtue of expressing two complementary hemi-Ca2+ channel fragments. Results Functional analysis of cDNA transfected dysgenic myotubes lacking α1S were carried out using voltage-clamp, confocal Ca2+ indicator fluoresence, epitope immunofluorescence and immunoblots of expressed proteins. The frame-shift mutant (fs-α1S) expressed the N-terminal half of α1S (M1 to L670) and the C-terminal half starting at M701 separately. The C-terminal fragment was generated by an unexpected restart of translation of the fs-α1S message at M701 and was eliminated by a M701I mutation. Protein-protein complementation between the two fragments produced recovery of skeletal-type EC coupling but not L-type Ca2+ current. Discussion A premature stop codon in the II-III loop may not necessarily cause a loss of DHPR function due to a restart of translation within the II-III loop, presumably by a mechanism involving leaky ribosomal scanning. In these cases, function is recovered by expression of complementary protein fragments from the same cDNA. DHPR-RyR1 interactions can be achieved via protein-protein complementation between hemi-Ca2+ channel proteins, hence an intact II-III loop is not essential for coupling the DHPR voltage sensor to the opening of RyR1 channel. PMID:11806762
Lessons from Hot Spot Analysis for Fragment-Based Drug Discovery.
Hall, David R; Kozakov, Dima; Whitty, Adrian; Vajda, Sandor
2015-11-01
Analysis of binding energy hot spots at protein surfaces can provide crucial insights into the prospects for successful application of fragment-based drug discovery (FBDD), and whether a fragment hit can be advanced into a high-affinity, drug-like ligand. The key factor is the strength of the top ranking hot spot, and how well a given fragment complements it. We show that published data are sufficient to provide a sophisticated and quantitative understanding of how hot spots derive from a protein 3D structure, and how their strength, number, and spatial arrangement govern the potential for a surface site to bind to fragment-sized and larger ligands. This improved understanding provides important guidance for the effective application of FBDD in drug discovery. Copyright © 2015 Elsevier Ltd. All rights reserved.
Stynen, Bram; Tournu, Hélène; Tavernier, Jan
2012-01-01
Summary: The yeast two-hybrid system pioneered the field of in vivo protein-protein interaction methods and undisputedly gave rise to a palette of ingenious techniques that are constantly pushing further the limits of the original method. Sensitivity and selectivity have improved because of various technical tricks and experimental designs. Here we present an exhaustive overview of the genetic approaches available to study in vivo binary protein interactions, based on two-hybrid and protein fragment complementation assays. These methods have been engineered and employed successfully in microorganisms such as Saccharomyces cerevisiae and Escherichia coli, but also in higher eukaryotes. From single binary pairwise interactions to whole-genome interactome mapping, the self-reassembly concept has been employed widely. Innovative studies report the use of proteins such as ubiquitin, dihydrofolate reductase, and adenylate cyclase as reconstituted reporters. Protein fragment complementation assays have extended the possibilities in protein-protein interaction studies, with technologies that enable spatial and temporal analyses of protein complexes. In addition, one-hybrid and three-hybrid systems have broadened the types of interactions that can be studied and the findings that can be obtained. Applications of these technologies are discussed, together with the advantages and limitations of the available assays. PMID:22688816
Noda, Natsumi; Awais, Raheela; Sutton, Robert; Awais, Muhammad; Ozawa, Takeaki
2017-12-01
Intracellular protein translocation plays a pivotal role in regulating complex biological processes, including cell death. The tumor suppressor p53 is a transcription factor activated by DNA damage and oxidative stress that also translocates from the cytosol into the mitochondrial matrix to facilitate necrotic cell death. However, specific inhibitors of p53 mitochondrial translocation are largely unknown. To explore the inhibitors of p53, we developed a bioluminescent probe to monitor p53 translocation from cytosol to mitochondria using luciferase fragment complementation assays. The probe is composed of a novel pair of luciferase fragments, the N-terminus of green click beetle luciferase CBG68 (CBGN) and multiple-complement luciferase fragment (McLuc1). The combination of luciferase fragments showed significant luminescence intensity and high signal-to-background ratio. When the p53 connected with McLuc1 translocates from cytosol into mitochondrial matrix, CBGN in mitochondrial matrix enables to complement with McLuc1, resulting in the restoration of the luminescence. The luminescence intensity was significantly increased under hydrogen peroxide-induced oxidative stress following the complementation of CBGN and McLuc1. Pifithrin-μ, a selective inhibitor of p53 mitochondrial translocation, prevented the mitochondrial translocation of the p53 probe in a concentration-dependent manner. Furthermore, the high luminescence intensity made it easier to visualize the p53 translocation at a single cell level under a bioluminescence microscope. This p53 mitochondrial translocation assay is a new tool for high-throughput screening to identify novel p53 inhibitors, which could be developed as drugs to treat diseases in which necrotic cell death is a major contributor. © 2017 Wiley Periodicals, Inc.
Split-luciferase complementary assay: applications, recent developments, and future perspectives.
Azad, Taha; Tashakor, Amin; Hosseinkhani, Saman
2014-09-01
Bioluminescent systems are considered as potent reporter systems for bioanalysis since they have specific characteristics, such as relatively high quantum yields and photon emission over a wide range of colors from green to red. Biochemical events are mostly accomplished through large protein machines. These molecular complexes are built from a few to many proteins organized through their interactions. These protein-protein interactions are vital to facilitate the biological activity of cells. The split-luciferase complementation assay makes the study of two or more interacting proteins possible. In this technique, each of the two domains of luciferase is attached to each partner of two interacting proteins. On interaction of those proteins, luciferase fragments are placed close to each other and form a complemented luciferase, which produces a luminescent signal. Split luciferase is an effective tool for assaying biochemical metabolites, where a domain or an intact protein is inserted into an internally fragmented luciferase, resulting in ligand binding, which causes a change in the emitted signals. We review the various applications of this novel luminescent biosensor in studying protein-protein interactions and assaying metabolites involved in analytical biochemistry, cell communication and cell signaling, molecular biology, and the fate of the whole cell, and show that luciferase-based biosensors are powerful tools that can be applied for diagnostic and therapeutic purposes.
2014-01-01
Background The rice interactome, in which a network of protein-protein interactions has been elucidated in rice, is a useful resource to identify functional modules of rice signal transduction pathways. Protein-protein interactions occur in cells in two ways, constitutive and regulative. While a yeast-based high-throughput method has been widely used to identify the constitutive interactions, a method to detect the regulated interactions is rarely developed for a large-scale analysis. Results A split luciferase complementation assay was applied to detect the regulated interactions in rice. A transformation method of rice protoplasts in a 96-well plate was first established for a large-scale analysis. In addition, an antibody that specifically recognizes a carboxyl-terminal fragment of Renilla luciferase was newly developed. A pair of antibodies that recognize amino- and carboxyl- terminal fragments of Renilla luciferase, respectively, was then used to monitor quality and quantity of interacting recombinant-proteins accumulated in the cells. For a proof-of-concept, the method was applied to detect the gibberellin-dependent interaction between GIBBERELLIN INSENSITIVE DWARF1 and SLENDER RICE 1. Conclusions A method to detect regulated protein-protein interactions was developed towards establishment of the rice interactome. PMID:24987490
Song, Ya-Nan; Zhang, Gui-Biao; Hu, Xue-Qing; Lu, Yi-Yu; Zhao, Yu; Yang, Yang; Yang, Yi-Fu; Zhang, Yong-Yu; Hu, Yi-Yang; Su, Shi-Bing
2015-12-01
Chronic hepatitis B (CHB) is a kind of chronic liver disease caused by persistent hepatitis B virus (HBV) infection. The study aims to seek the factors of host resistance to HBV and investigate their roles. Protein profiles of 58 healthy controls and 121 CHB patients were obtained by SELDI-TOF/MS. Predicted protein was validated by ELISA. Protein expression was evaluated by Western blot in the persistently HBV expressing cell line HepG2.2.15 and non-HBV expressing cell line HepG2. The level of HBV DNA was subsequently detected by quantitative real-time PCR in HepG2.2.15 cells with complement C4a treatment. Significantly altered protein peaks were found through statistical analysis, and m/z 4300 was predicted by databases and successfully matched with the fragment of complement C4a. According to ELISA, serum complement C4a was found to be significantly lower in CHB patients compared with healthy controls (p < 0.001) and the area under receiver operating characteristics curve is 0.78. Furthermore, complement C4a showed lower expression in HepG2.2.5 cells and the secretion of HBV DNA was inhibited by complement C4a. The present study implied the important role of complement C4a in inhibiting the HBV DNA secretion in CHB. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Role of Complement in Red Cell Dysfunction in Trauma
2013-12-01
fragmentation 2. Erythrocyte membrane has there major components: 1) membrane proteins, that are either transmembrane or attached to the plasma membrane...through GPI- or lipid-anchors (glycophorins, CD47, CR1, band 3, CD55, CD59, flotillin, stomatin etc.) 2) skeletal proteins, located below the plasma ...glycophorin C with spectrin skeleton 3. More recently, adducin and dematin have also been implicated in linking plasma membrane protein Glut-1
Demonstration of protein-fragment complementation assay using purified firefly luciferase fragments
2013-01-01
Background Human interactome is predicted to contain 150,000 to 300,000 protein-protein interactions, (PPIs). Protein-fragment complementation assay (PCA) is one of the most widely used methods to detect PPI, as well as Förster resonance energy transfer (FRET). To date, successful applications of firefly luciferase (Fluc)-based PCA have been reported in vivo, in cultured cells and in cell-free lysate, owing to its high sensitivity, high signal-to-background (S/B) ratio, and reversible response. Here we show the assay also works with purified proteins with unexpectedly rapid kinetics. Results Split Fluc fragments both fused with a rapamycin-dependently interacting protein pair were made and expressed in E. coli system, and purified to homogeneity. When the proteins were used for PCA to detect rapamycin-dependent PPI, they enabled a rapid detection (~1 s) of PPI with high S/B ratio. When Fn7-8 domains (7 nm in length) that was shown to abrogate GFP mutant-based FRET was inserted between split Fluc and FKBP12 as a rigid linker, it still showed some response, suggesting less limitation in interacting partner’s size. Finally, the stability of the probe was investigated. Preincubation of the probes at 37 degreeC up to 1 h showed marked decrease of the luminescent signal to 1.5%, showing the limited stability of this system. Conclusion Fluc PCA using purified components will enable a rapid and handy detection of PPIs with high S/B ratio, avoiding the effects of concomitant components. Although the system might not be suitable for large-scale screening due to its limited stability, it can detect an interaction over larger distance than by FRET. This would be the first demonstration of Fluc PCA in vitro, which has a distinct advantage over other PPI assays. Our system enables detection of direct PPIs without risk of perturbation by PPI mediators in the complex cellular milieu. PMID:23536995
Clay, Corey D.; Soni, Shilpa; Gunn, John S.; Schlesinger, Larry S.
2009-01-01
The bacterium Francisella tularensis (Ft) is a potential weapon of bioterrorism when aerosolized. Macrophage infection is necessary for disease progression and efficient phagocytosis by human macrophages requires serum opsonization by complement. Microbial complement activation leads to surface deposition of a highly regulated protein complex resulting in opsonization or membrane lysis. The nature of complement component C3 deposition, i.e., C3b (opsonization and lysis) or C3bi (opsonization only) fragment deposition, is central to the outcome of activation. In this study, we examine the mechanisms of Ft resistance to complement-mediated lysis, C3 component deposition on the Ft surface, and complement activation. Upon incubation in fresh nonimmune human serum, Schu S4 (Ft subsp. tularensis), Fn (Ft subsp. novicida), and LVS (Ft subsp. holarctica live vaccine strain) were resistant to complement-mediated lysis, but LVSG and LVSR (LVS strains altered in surface carbohydrate structures) were susceptible. C3 deposition, however, occurred on all strains. Complement-susceptible strains had markedly increased C3 fragment deposition, including the persistent presence of C3b compared with C3bi, which indicates that C3b inactivation results in survival of complement-resistant strains. C1q, an essential component of the classical activation pathway, was necessary for lysis of complement-susceptible strains and optimal C3 deposition on all strains. Finally, use of Francisella LPS mutants confirmed O Ag as a major regulator of complement resistance. These data provide evidence that pathogenic Francisella activate complement, but are resistant to complement-mediated lysis in part due to limited C3 deposition, rapid conversion of surface-bound C3b to C3bi, and the presence of LPS O Ag. PMID:18832715
An enzyme-mediated protein-fragment complementation assay for substrate screening of sortase A.
Li, Ning; Yu, Zheng; Ji, Qun; Sun, Jingying; Liu, Xiao; Du, Mingjuan; Zhang, Wei
2017-04-29
Enzyme-mediated protein conjugation has gained great attention recently due to the remarkable site-selectivity and mild reaction condition affected by the nature of enzyme. Among all sorts of enzymes reported, sortase A from Staphylococcus aureus (SaSrtA) is the most popular enzyme due to its selectivity and well-demonstrated applications. Position scanning has been widely applied to understand enzyme substrate specificity, but the low throughput of chemical synthesis of peptide substrates and analytical methods (HPLC, LC-ESI-MS) have been the major hurdle to fully decode enzyme substrate profile. We have developed a simple high-throughput substrate profiling method to reveal novel substrates of SaSrtA 7M, a widely used hyperactive peptide ligase, by modified protein-fragment complementation assay (PCA). A small library targeting the LPATG motif recognized by SaSrtA 7M was generated and screened against proteins carrying N-terminal glycine. Using this method, we have confirmed all currently known substrates of the enzyme, and moreover identified some previously unknown substrates with varying activities. The method provides an easy, fast and highly-sensitive way to determine substrate profile of a peptide ligase in a high-throughput manner. Copyright © 2017 Elsevier Inc. All rights reserved.
van Vuuren, B Jansen; Bergseth, G; Mollnes, T E; Shaw, A M
2014-01-15
Electroluminescent assays for epitopes on the complement components C3dg, terminal complement complex (TCC) and factor B/Bb (fB/Bb) have been developed with capture and detection antibodies to produce detection limits C3dg=91±9ng/mL, TCC=3±0.1ng/mL and fB=55.7±0.1ng/mL. The assay performance was assessed against a series of zymosan and heat aggregated IgG (HAIgG) in vitro activations of complement using a calibrated activated complement serum (ACS) as calibration standard. The ACS standard was stable within 20% accuracy over a 6-month period with freeze-thaw cycles as required. Differential activation of the complement cascade was observed for TCC showing a pseudo-first order formation half-life of 3.5h after activation with zymosan. The C3dg activation fragment indicates a 10% total activation for both activation agents. The kinetic-epitope analysis for fB indicates that the capture epitope is on the fB/Bb protein fragment which can then become covered by the formation of C3bBb or C3bBbP complexes during the time course of the cascade. Copyright © 2013 Elsevier B.V. All rights reserved.
Aparicio, Frederic; Sánchez-Navarro, Jesús A; Pallás, Vicente
2006-06-01
Interactions between viral proteins are critical for virus viability. Bimolecular fluorescent complementation (BiFC) technique determines protein interactions in real-time under almost normal physiological conditions. The coat protein (CP) of Prunus necrotic ringspot virus is required for multiple functions in its replication cycle. In this study, the region involved in CP dimerization has been mapped by BiFC in both bacteria and plant tissue. Full-length and C-terminal deleted forms of the CP gene were fused in-frame to the N- and C-terminal fragments of the yellow fluorescent protein. The BiFC analysis showed that a domain located between residues 9 and 27 from the C-end plays a critical role in dimerization. The importance of this C-terminal region in dimer formation and the applicability of the BiFC technique to analyse viral protein interactions are discussed.
Targeting the Human Complement Membrane Attack Complex to Selectively Kill Prostate Cancer Cells
2013-10-01
prostate cancer cells in vitro . Evaluate CD59 expression in human prostate cancer microarrays. Aim 4: Evaluate toxicity and efficacy of the lead PAC5...fragment in vitro . Since PSA is the major chymotrypsin-like serine protease in the seminal plasma and prostatic fluid, we hypothesized that PSA was...that the evolution -related complement protein C5, but not C4, is a substrate of PSA as well. *Department of Pharmacology and Molecular Sciences, The
Influence of Temperature on the Dynamic Structures of Psychrophilic Small Heat Shock Proteins
2010-02-27
Fibrils Controls Their Smallest Possible Fragment Size Journal of Molecular Biology 376 (4) 1155-1167. Robb, FT and P. Laksanalamai. 2008. Thermophilic ...Protein-Folding Systems pp 55-71 in Thermophiles : Biology and Technology at High Temperatures eds: Frank Robb, Garabed Antranikian, Dennis Grogan...functions by complementation and mutational analysis. 1. Enzyme salvage and refolding experiments. We used bovine glutamate dehydrogenase (a labile
Bairl, A; Müller, P
1998-11-01
The TnphoA-induced Bradyrhizobium japonicum mutant 184 shows slow growth and aberrant colonization of soybean nodules. Using a DNA fragment adjacent to the transposon insertion site as a probe, a 3.4-kb BglII fragment of B. japonicum 110spc4 DNA was identified and cloned. Sequence analysis indicated that two truncated ORFs and three complete ORFs were encoded on this fragment. A database search revealed homologies to several other prokaryotic proteins: PdxJ (an enzyme involved in vitamin B6 biosynthesis), AcpS (acyl carrier protein synthase), Lep or Sip (prokaryotic type I signal peptidase), RNase III (an endoribonuclease which processes double-stranded rRNA precursors and mRNA) and Era (a GTP-binding protein required for cell division). The mutation in strain 184 was found to lie within the signal peptidase gene, which was designated sipF. Therefore, sipF is located in a region that encodes gene products involved in posttranscriptional and posttranslational processing processes. By complementation of the lep(ts) E. coli mutant strain IT41 it was demonstrated that sipF indeed encodes a functional signal peptidase, and genetic complementation of B. japonicum mutant 184 by a 2.8-kb SalI fragment indicated that sipF is expressed from a promoter located directly upstream of sipF. Using a non-polar kanamycin resistance cassette, a specific sipF mutant was constructed which exhibited defects in symbiosis similar to those of the original mutant 184.
In vivo fluorescent detection of Fe-S clusters coordinated by human GRX2.
Hoff, Kevin G; Culler, Stephanie J; Nguyen, Peter Q; McGuire, Ryan M; Silberg, Jonathan J; Smolke, Christina D
2009-12-24
A major challenge to studying Fe-S cluster biosynthesis in higher eukaryotes is the lack of simple tools for imaging metallocluster binding to proteins. We describe the first fluorescent approach for in vivo detection of 2Fe2S clusters that is based upon the complementation of Venus fluorescent protein fragments via human glutaredoxin 2 (GRX2) coordination of a 2Fe2S cluster. We show that Escherichia coli and mammalian cells expressing Venus fragments fused to GRX2 exhibit greater fluorescence than cells expressing fragments fused to a C37A mutant that cannot coordinate a metallocluster. In addition, we find that maximal fluorescence in the cytosol of mammalian cells requires the iron-sulfur cluster assembly proteins ISCU and NFS1. These findings provide evidence that glutaredoxins can dimerize within mammalian cells through coordination of a 2Fe2S cluster as observed with purified recombinant proteins. Copyright 2009 Elsevier Ltd. All rights reserved.
Reassembly of a bioluminescent protein Renilla luciferase directed through DNA hybridization.
Cissell, Kyle A; Rahimi, Yasmeen; Shrestha, Suresh; Deo, Sapna K
2009-01-01
Reassembly of split reporter proteins, also referred to as protein complementation, is utilized in the detection of protein-protein or protein-nucleic acid interactions. In this strategy, a reporter protein is fragmented into two inactive polypeptides to which interacting/binding partners are fused. The interaction between fused partners leads to the formation of a reassembled, active reporter. In this Communication, we have presented a proof-of-concept for the detection of a target nucleic acid sequence based on the reassembly of the bioluminescent reporter Renilla luciferase (Rluc), which is driven by DNA hybridization. Although, reassembly of Rluc though protein interactions has been demonstrated by others, the Rluc reassembly through DNA hybridization has not been shown yet, which is the novelty of this work. It is well established that bioluminescence detection offers significant advantages due to the absence of any background signal. In our study, two rationally designed fragments of Rluc were conjugated to complementary oligonucleotide probes. Hybridization of the two probes with fused Rluc fragments resulted in the reassembly of the fragments, generating active Rluc, measurable by the intensity of light given off upon addition of coelenterazine. Our study also shows that the reassembly of Rluc can be inhibited by an oligonucleotide probe that competes to bind to the hybridized probe-Rluc fragment complex, indicating a potential strategy for the quantitative detection of target nucleic acid. We were able to achieve the reassembly of Rluc fused to oligonucleotide probes using femtomole amounts of the probe-fragment protein conjugate. This concentration is approximately 4 orders of magnitude less than that reported using green fluorescent protein (GFP) as the reporter. A DNA-driven Rluc reassembly study performed in a cellular matrix did not show any interference from the matrix.
Complement is activated in progressive multiple sclerosis cortical grey matter lesions.
Watkins, Lewis M; Neal, James W; Loveless, Sam; Michailidou, Iliana; Ramaglia, Valeria; Rees, Mark I; Reynolds, Richard; Robertson, Neil P; Morgan, B Paul; Howell, Owain W
2016-06-22
The symptoms of multiple sclerosis (MS) are caused by damage to myelin and nerve cells in the brain and spinal cord. Inflammation is tightly linked with neurodegeneration, and it is the accumulation of neurodegeneration that underlies increasing neurological disability in progressive MS. Determining pathological mechanisms at play in MS grey matter is therefore a key to our understanding of disease progression. We analysed complement expression and activation by immunocytochemistry and in situ hybridisation in frozen or formalin-fixed paraffin-embedded post-mortem tissue blocks from 22 progressive MS cases and made comparisons to inflammatory central nervous system disease and non-neurological disease controls. Expression of the transcript for C1qA was noted in neurons and the activation fragment and opsonin C3b-labelled neurons and glia in the MS cortical and deep grey matter. The density of immunostained cells positive for the classical complement pathway protein C1q and the alternative complement pathway activation fragment Bb was significantly increased in cortical grey matter lesions in comparison to control grey matter. The number of cells immunostained for the membrane attack complex was elevated in cortical lesions, indicating complement activation to completion. The numbers of classical (C1-inhibitor) and alternative (factor H) pathway regulator-positive cells were unchanged between MS and controls, whilst complement anaphylatoxin receptor-bearing microglia in the MS cortex were found closely apposed to cortical neurons. Complement immunopositive neurons displayed an altered nuclear morphology, indicative of cell stress/damage, supporting our finding of significant neurodegeneration in cortical grey matter lesions. Complement is activated in the MS cortical grey matter lesions in areas of elevated numbers of complement receptor-positive microglia and suggests that complement over-activation may contribute to the worsening pathology that underlies the irreversible progression of MS.
Ikeda, Yuichi; Kumagai, Hidetoshi; Okazaki, Hiroaki; Fujishiro, Mitsuhiro; Motozawa, Yoshihiro; Nomura, Seitaro; Takeda, Norifumi; Toko, Haruhiro; Takimoto, Eiki; Akazawa, Hiroshi; Morita, Hiroyuki; Suzuki, Jun-ichi; Yamazaki, Tsutomu; Komuro, Issei; Yanagisawa, Masashi
2015-01-01
Identification of cognate ligands for G protein-coupled receptors (GPCRs) provides a starting point for understanding novel regulatory mechanisms. Although GPCR ligands have typically been evaluated through the activation of heterotrimeric G proteins, recent studies have shown that GPCRs signal not only through G proteins but also through β-arrestins. As such, monitoring β-arrestin signaling instead of G protein signaling will increase the likelihood of identifying currently unknown ligands, including β-arrestin-biased agonists. Here, we developed a cell-based assay for monitoring ligand-dependent GPCR-β-arrestin interaction via β-lactamase enzyme fragment complementation. Inter alia, β-lactamase is a superior reporter enzyme because of its cell-permeable fluorescent substrate. This substrate makes the assay non-destructive and compatible with fluorescence-activated cell sorting (FACS). In a reporter cell, complementary fragments of β-lactamase (α and ω) were fused to β-arrestin 2 and GPCR, respectively. Ligand stimulation initiated the interaction of these chimeric proteins (β-arrestin-α and GPCR-ω), and this inducible interaction was measured through reconstituted β-lactamase activity. Utilizing this system, we screened various mammalian tissue extracts for agonistic activities on human bombesin receptor subtype 3 (hBRS3). We purified peptide E as a low-affinity ligand for hBRS3, which was also found to be an agonist for the other two mammalian bombesin receptors such as gastrin-releasing peptide receptor (GRPR) and neuromedin B receptor (NMBR). Successful purification of peptide E has validated the robustness of this assay. We conclude that our newly developed system will facilitate the discovery of GPCR ligands.
Anticomplementary activity of horse IgG and F(ab')2 antivenoms.
Squaiella-Baptistão, Carla Cristina; Marcelino, José Roberto; Ribeiro da Cunha, Luiz Eduardo; Gutiérrez, José María; Tambourgi, Denise V
2014-03-01
Envenomation by poisonous animals is a neglected condition according to the World Health Organization (WHO). Antivenoms are included in the WHO Essential Medicines List. It has been assumed that immunoglobulin G (IgG) antivenoms could activate the complement system through Fc and induce early adverse reactions (EARs). However, data in the literature indicate that F(ab')2 fragments can also activate the complement system. Herein, we show that several batches of IgG and F(ab')2 antivenoms from the Butantan, Vital Brazil, and Clodomiro Picado Institutes activated the complement classical pathway and induced the production of C3a; however, only those antivenoms from Clodomiro Picado generated C5a. Different protein profiles (IgG heavy chain, protein contaminants, and aggregates) were observed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot analyses. Our results show that various antivenoms from different producers are able to activate the classical pathway of the complement system and generate anaphylatoxins, and these findings suggest that factors, such as composition, contaminant proteins, and aggregates, may influence the anticomplementary activity of antivenoms in vitro. Therefore, there is a need to further improve antivenom production methods to reduce their anticomplementary activity and potential to cause EARs.
Xie, Wensheng; Pao, Christina; Graham, Taylor; Dul, Ed; Lu, Quinn; Sweitzer, Thomas D; Ames, Robert S; Li, Hu
2012-12-01
Nuclear-factor-E2-related transcription factor 2 (Nrf2) regulates a large panel of Phase II genes and plays an important role in cell survival. Nrf2 activation has been shown as preventing cigarette smoke-induced alveolar enlargement in mice. Therefore, activation of the Nrf2 protein by small-molecule activators represents an attractive therapeutic strategy that is used for chronic obstructive pulmonary disease. In this article, we describe a cell-based luciferase enzyme fragment complementation assay that identifies Nrf2 activators. This assay is based on the interaction of Nrf2 with its nuclear partner MafK or runt-related transcription factor 2 (RunX2) and is dependent on the reconstitution of a "split" luciferase. Firefly luciferase is split into two fragments, which are genetically fused to Nrf2 and MafK or RunX2, respectively. BacMam technology was used to deliver the fusion constructs into cells for expression of the tagged proteins. When the BacMam-transduced cells were treated with Nrf2 activators, the Nrf2 protein was stabilized and translocated into the nucleus where it interacted with MafK or RunX2. The interaction of Nrf2 and MafK or RunX2 brought together the two luciferase fragments that form an active luciferase. The assay was developed in a 384-well format and was optimized by titrating the BacMam concentration, transduction time, cell density, and fetal bovine serum concentration. It was further validated with known Nrf2 activators. Our data show that this assay is robust, sensitive, and amenable to high throughput screening of a large compound collection for the identification of novel Nrf2 activators.
Anti-complement activities of human breast-milk.
Ogundele, M O
1999-08-01
It has long been observed that the human milk possesses significant anti-inflammatory properties, while simultaneously protecting the infant against many intestinal and respiratory pathogens. There is, however, a paucity of information on the degree and extent of this anti-inflammatory activity. In the present study, the inhibitory effects of different fractions of human milk on serum complement activity were analysed. Colostrum and milk samples from healthy voluntary lactating donors at different postpartum ages were obtained and pooled normal human serum was used as source of complement in a modified CH50 assay. Inherent complement activity in human milk was also investigated by measuring the deposition of an activated C3 fragment on a serum-sensitive bacteria, and by haemolytic assays. Most whole- and defatted-milk samples consistently showed a dose-dependent inhibition of the serum complement activity. This inhibition was greater in mature milk compared to transitional milk samples. It was enhanced by inactivation of milk complement, and diminished by centrifugation of milk samples, which partly removed fat and larger protein components including casein micelles. Inherent complement activity in human milk was also demonstrated by haemolysis of sensitised sheep erythrocytes and deposition of C3 fragments on solid-phase bacteria. These activities were highest in the colostrum and gradually decreased as lactation proceeded. Several natural components abundant in the fluid phase of the human breast-milk have been shown to be inhibitors of complement activation in vitro. Their physiological significance probably reside in their ability to prevent inflammatory-induced tissue damage of the delicate immature gastrointestinal tract of the new-born as well as the mammary gland itself, which may arise from ongoing complement activation.
LucY: A Versatile New Fluorescent Reporter Protein
Auldridge, Michele E.; Franz, Laura P.; Bingman, Craig A.; Yennamalli, Ragothaman M.; Phillips, George N.; Mead, David; Steinmetz, Eric J.
2015-01-01
We report on the discovery, isolation, and use of a novel yellow fluorescent protein. Lucigen Yellow (LucY) binds one FAD molecule within its core, thus shielding it from water and maintaining its structure so that fluorescence is 10-fold higher than freely soluble FAD. LucY displays excitation and emission spectra characteristic of FAD, with 3 excitation peaks at 276nm, 377nm, and 460nm and a single emission peak at 530nm. These excitation and emission maxima provide the large Stokes shift beneficial to fluorescence experimentation. LucY belongs to the MurB family of UDP-N-acetylenolpyruvylglucosamine reductases. The high resolution crystal structure shows that in contrast to other structurally resolved MurB enzymes, LucY does not contain a potentially quenching aromatic residue near the FAD isoalloxazine ring, which may explain its increased fluorescence over related proteins. Using E. coli as a system in which to develop LucY as a reporter, we show that it is amenable to circular permutation and use as a reporter of protein-protein interaction. Fragmentation between its distinct domains renders LucY non-fluorescent, but fluorescence can be partially restored by fusion of the fragments to interacting protein domains. Thus, LucY may find application in Protein-fragment Complementation Assays for evaluating protein-protein interactions. PMID:25906065
LucY: A Versatile New Fluorescent Reporter Protein.
Auldridge, Michele E; Cao, Hongnan; Sen, Saurabh; Franz, Laura P; Bingman, Craig A; Yennamalli, Ragothaman M; Phillips, George N; Mead, David; Steinmetz, Eric J
2015-01-01
We report on the discovery, isolation, and use of a novel yellow fluorescent protein. Lucigen Yellow (LucY) binds one FAD molecule within its core, thus shielding it from water and maintaining its structure so that fluorescence is 10-fold higher than freely soluble FAD. LucY displays excitation and emission spectra characteristic of FAD, with 3 excitation peaks at 276 nm, 377 nm, and 460 nm and a single emission peak at 530 nm. These excitation and emission maxima provide the large Stokes shift beneficial to fluorescence experimentation. LucY belongs to the MurB family of UDP-N-acetylenolpyruvylglucosamine reductases. The high resolution crystal structure shows that in contrast to other structurally resolved MurB enzymes, LucY does not contain a potentially quenching aromatic residue near the FAD isoalloxazine ring, which may explain its increased fluorescence over related proteins. Using E. coli as a system in which to develop LucY as a reporter, we show that it is amenable to circular permutation and use as a reporter of protein-protein interaction. Fragmentation between its distinct domains renders LucY non-fluorescent, but fluorescence can be partially restored by fusion of the fragments to interacting protein domains. Thus, LucY may find application in Protein-fragment Complementation Assays for evaluating protein-protein interactions.
LucY: A versatile new fluorescent reporter protein
Auldridge, Michele E.; Cao, Hongnan; Sen, Saurabh; ...
2015-04-23
We report on the discovery, isolation, and use of a novel yellow fluorescent protein. Lucigen Yellow (LucY) binds one FAD molecule within its core, thus shielding it from water and maintaining its structure so that fluorescence is 10-fold higher than freely soluble FAD. LucY displays excitation and emission spectra characteristic of FAD, with 3 excitation peaks at 276nm, 377nm, and 460nm and a single emission peak at 530nm. These excitation and emission maxima provide the large Stokes shift beneficial to fluorescence experimentation. LucY belongs to the MurB family of UDP-N-acetylenolpyruvylglucosamine reductases. The high resolution crystal structure shows that in contrastmore » to other structurally resolved MurB enzymes, LucY does not contain a potentially quenching aromatic residue near the FAD isoalloxazine ring, which may explain its increased fluorescence over related proteins. Using E. coli as a system in which to develop LucY as a reporter, we show that it is amenable to circular permutation and use as a reporter of protein-protein interaction. Fragmentation between its distinct domains renders LucY non-fluorescent, but fluorescence can be partially restored by fusion of the fragments to interacting protein domains. Thus, LucY may find application in Protein-fragment Complementation Assays for evaluating protein-protein interactions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Ji-sun; Choi, Dong-Ki; Park, Seong-wook
Considering the number of cytosolic proteins associated with many diseases, development of cytosol-penetrating molecules from outside of living cells is highly in demand. To gain access to the cytosol after cellular uptake, cell-penetrating molecules should be released from intermediate endosomes prior to the lysosomal degradation. However, it is very challenging to distinguish the pool of cytosolic-released molecules from those trapped in the endocytic vesicles. Here we describe a method to directly demonstrate the cytosolic localization and quantification of cytosolic amount of a cytosol-penetrating IgG antibody, TMab4, based on enhanced split GFP complementation system. We generated TMab4 genetically fused with onemore » GFP fragment and separately established HeLa cells expressing the other GFP fragment in the cytosol such that the complemented GFP fluorescence is observed only when extracellular-treated TMab4 reaches the cytosol after cellular internalization. The high affinity interactions between streptavidin-binding peptide 2 and streptavidin was employed as respective fusion partners of GFP fragments to enhance the sensitivity of GFP complementation. With this method, cytosolic concentration of TMab4 was estimated to be about 170 nM after extracellular treatment of HeLa cells with 1 μM TMab4 for 6 h. We also found that after cellular internalization into living cells, nearly 1.3–4.3% of the internalized TMab4 molecules escaped into the cytosol from the endocytic vesicles. Our enhanced split GFP complementation assay provides a useful tool to directly quantify cytosolic amount of cytosol-penetrating agents and allows cell-based high-throughput screening for cytosol-penetrating agents with increased endosomal-escaping activity.« less
Kim, Ji-sun; Choi, Dong-Ki; Park, Seong-wook; Shin, Seung-Min; Bae, Jeomil; Kim, Dong-Myung; Yoo, Tae Hyeon; Kim, Yong-Sung
2015-11-27
Considering the number of cytosolic proteins associated with many diseases, development of cytosol-penetrating molecules from outside of living cells is highly in demand. To gain access to the cytosol after cellular uptake, cell-penetrating molecules should be released from intermediate endosomes prior to the lysosomal degradation. However, it is very challenging to distinguish the pool of cytosolic-released molecules from those trapped in the endocytic vesicles. Here we describe a method to directly demonstrate the cytosolic localization and quantification of cytosolic amount of a cytosol-penetrating IgG antibody, TMab4, based on enhanced split GFP complementation system. We generated TMab4 genetically fused with one GFP fragment and separately established HeLa cells expressing the other GFP fragment in the cytosol such that the complemented GFP fluorescence is observed only when extracellular-treated TMab4 reaches the cytosol after cellular internalization. The high affinity interactions between streptavidin-binding peptide 2 and streptavidin was employed as respective fusion partners of GFP fragments to enhance the sensitivity of GFP complementation. With this method, cytosolic concentration of TMab4 was estimated to be about 170 nM after extracellular treatment of HeLa cells with 1 μM TMab4 for 6 h. We also found that after cellular internalization into living cells, nearly 1.3-4.3% of the internalized TMab4 molecules escaped into the cytosol from the endocytic vesicles. Our enhanced split GFP complementation assay provides a useful tool to directly quantify cytosolic amount of cytosol-penetrating agents and allows cell-based high-throughput screening for cytosol-penetrating agents with increased endosomal-escaping activity. Copyright © 2015 Elsevier Inc. All rights reserved.
Neisseria Heparin Binding Antigen is targeted by the human alternative pathway C3-convertase
Di Fede, Martina; Biagini, Massimiliano; Cartocci, Elena; Parillo, Carlo; Greco, Alessandra; Martinelli, Manuele; Marchi, Sara; Pezzicoli, Alfredo; Delany, Isabel
2018-01-01
Neisserial Heparin Binding Antigen (NHBA) is a surface-exposed lipoprotein specific for Neisseria and constitutes one of the three main protein antigens of the Bexsero vaccine. Meningococcal and human proteases, cleave NHBA protein upstream or downstream of a conserved Arg-rich region, respectively. The cleavage results in the release of the C-terminal portion of the protein. The C-terminal fragment originating from the processing of meningococcal proteases, referred to as C2 fragment, exerts a toxic effect on endothelial cells altering the endothelial permeability. In this work, we reported that recombinant C2 fragment has no influence on the integrity of human airway epithelial cell monolayers, consistent with previous findings showing that Neisseria meningitidis traverses the epithelial barrier without disrupting the junctional structures. We showed that epithelial cells constantly secrete proteases responsible for a rapid processing of C2 fragment, generating a new fragment that does not contain the Arg-rich region, a putative docking domain reported to be essential for C2-mediated toxic effect. Moreover, we found that the C3-convertase of the alternative complement pathway is one of the proteases responsible for this processing. Overall, our data provide new insights on the cleavage of NHBA protein during meningococcal infection. NHBA cleavage may occur at different stages of the infection, and it likely has a different role depending on the environment the bacterium is interacting with. PMID:29579105
Hua, Ying; Sun, Qi; Wang, Xiangyu; DU, Yanli; Shao, Na; Zhang, Qiwei; Zhao, Wei; Wan, Chengsong
2015-11-01
To construct enterohemorrhagic Escherichia coli (EHEC) O157:H7 strains with delection espF gene and its nucleotide fragment and with espF gene complementation. A pair of homologous arm primers was designed to amplify the gene fragment of kanamycin resistance, which was transformed into EHEC O157:H7 EDL933w strain via the PKD46 plasmid by electroporation. The replacement of the espF gene by kanamycin resistance gene through the PKD46-mediated red recombination system was confirmed by PCR and sequencing. The entire coding region of espF along with its nucleotide fragment was amplified by PCR and cloned into pBAD33 plasmid, which was transformed into a mutant strain to construct the strain with espF complementation. RT-PCR was used to verify the transcription of espF and its nucleotide fragment in the complemented mutant strain. We established EHEC O157:H7 EDL933w strains with espF gene deletion and with espF gene complementation. Both espF and its nucleotide fragment were transcribed in the complemented mutant strain. The two strains provide a basis for further study of the regulatory mechanism of espF.
The Murine Factor H-Related Protein FHR-B Promotes Complement Activation.
Cserhalmi, Marcell; Csincsi, Ádám I; Mezei, Zoltán; Kopp, Anne; Hebecker, Mario; Uzonyi, Barbara; Józsi, Mihály
2017-01-01
Factor H-related (FHR) proteins consist of varying number of complement control protein domains that display various degrees of sequence identity to respective domains of the alternative pathway complement inhibitor factor H (FH). While such FHR proteins are described in several species, only human FHRs were functionally investigated. Their biological role is still poorly understood and in part controversial. Recent studies on some of the human FHRs strongly suggest a role for FHRs in enhancing complement activation via competing with FH for binding to certain ligands and surfaces. The aim of the current study was the functional characterization of a murine FHR, FHR-B. To this end, FHR-B was expressed in recombinant form. Recombinant FHR-B bound to human C3b and was able to compete with human FH for C3b binding. FHR-B supported the assembly of functionally active C3bBb alternative pathway C3 convertase via its interaction with C3b. This activity was confirmed by demonstrating C3 activation in murine serum. In addition, FHR-B bound to murine pentraxin 3 (PTX3), and this interaction resulted in murine C3 fragment deposition due to enhanced complement activation in mouse serum. FHR-B also induced C3 deposition on C-reactive protein, the extracellular matrix (ECM) extract Matrigel, and endothelial cell-derived ECM when exposed to mouse serum. Moreover, mouse C3 deposition was strongly enhanced on necrotic Jurkat T cells and the mouse B cell line A20 by FHR-B. FHR-B also induced lysis of sheep erythrocytes when incubated in mouse serum with FHR-B added in excess. Altogether, these data demonstrate that, similar to human FHR-1 and FHR-5, mouse FHR-B modulates complement activity by promoting complement activation via interaction with C3b and via competition with murine FH.
Stefan, E; Aquin, S; Berger, N; Landry, C R; Nyfeler, B; Bouvier, M; Michnick, S W
2007-10-23
The G protein-coupled receptor (GPCR) superfamily represents the most important class of pharmaceutical targets. Therefore, the characterization of receptor cascades and their ligands is a prerequisite to discovering novel drugs. Quantification of agonist-induced second messengers and downstream-coupled kinase activities is central to characterization of GPCRs or other pathways that converge on GPCR-mediated signaling. Furthermore, there is a need for simple, cell-based assays that would report on direct or indirect actions on GPCR-mediated effectors of signaling. More generally, there is a demand for sensitive assays to quantify alterations of protein complexes in vivo. We describe the development of a Renilla luciferase (Rluc)-based protein fragment complementation assay (PCA) that was designed specifically to investigate dynamic protein complexes. We demonstrate these features for GPCR-induced disassembly of protein kinase A (PKA) regulatory and catalytic subunits, a key effector of GPCR signaling. Taken together, our observations show that the PCA allows for direct and accurate measurements of live changes of absolute values of protein complex assembly and disassembly as well as cellular imaging and dynamic localization of protein complexes. Moreover, the Rluc-PCA has a sufficiently high signal-to-background ratio to identify endogenously expressed Galpha(s) protein-coupled receptors. We provide pharmacological evidence that the phosphodiesterase-4 family selectively down-regulates constitutive beta-2 adrenergic- but not vasopressin-2 receptor-mediated PKA activities. Our results show that the sensitivity of the Rluc-PCA simplifies the recording of pharmacological profiles of GPCR-based candidate drugs and could be extended to high-throughput screens to identify novel direct modulators of PKA or upstream components of GPCR signaling cascades.
Vega-Palas, M A; Madueño, F; Herrero, A; Flores, E
1990-01-01
Twenty-seven mutants that were unable to assimilate nitrate were isolated from Synechococcus sp. strain PCC 7942. In addition to mutants that lacked nitrate reductase or nitrite reductase, seven pleiotropic mutants impaired in both reductases, glutamine synthetase, and methylammonium transport were also isolated. One of the pleiotropic mutants was complemented by transformation with a cosmid gene bank from wild-type strain PCC 7942. Three complementing cosmids were isolated, and a 3.1-kilobase-pair DNA fragment that was still able to complement the mutant was identified. The regulatory gene that was cloned (ntcA) appeared to be required for full expression of proteins subject to ammonium repression in Synechococcus sp. PMID:1967601
Categorizing Biases in High-Confidence High-Throughput Protein-Protein Interaction Data Sets*
Yu, Xueping; Ivanic, Joseph; Memišević, Vesna; Wallqvist, Anders; Reifman, Jaques
2011-01-01
We characterized and evaluated the functional attributes of three yeast high-confidence protein-protein interaction data sets derived from affinity purification/mass spectrometry, protein-fragment complementation assay, and yeast two-hybrid experiments. The interacting proteins retrieved from these data sets formed distinct, partially overlapping sets with different protein-protein interaction characteristics. These differences were primarily a function of the deployed experimental technologies used to recover these interactions. This affected the total coverage of interactions and was especially evident in the recovery of interactions among different functional classes of proteins. We found that the interaction data obtained by the yeast two-hybrid method was the least biased toward any particular functional characterization. In contrast, interacting proteins in the affinity purification/mass spectrometry and protein-fragment complementation assay data sets were over- and under-represented among distinct and different functional categories. We delineated how these differences affected protein complex organization in the network of interactions, in particular for strongly interacting complexes (e.g. RNA and protein synthesis) versus weak and transient interacting complexes (e.g. protein transport). We quantified methodological differences in detecting protein interactions from larger protein complexes, in the correlation of protein abundance among interacting proteins, and in their connectivity of essential proteins. In the latter case, we showed that minimizing inherent methodology biases removed many of the ambiguous conclusions about protein essentiality and protein connectivity. We used these findings to rationalize how biological insights obtained by analyzing data sets originating from different sources sometimes do not agree or may even contradict each other. An important corollary of this work was that discrepancies in biological insights did not necessarily imply that one detection methodology was better or worse, but rather that, to a large extent, the insights reflected the methodological biases themselves. Consequently, interpreting the protein interaction data within their experimental or cellular context provided the best avenue for overcoming biases and inferring biological knowledge. PMID:21876202
Design and application of a data-independent precursor and product ion repository.
Thalassinos, Konstantinos; Vissers, Johannes P C; Tenzer, Stefan; Levin, Yishai; Thompson, J Will; Daniel, David; Mann, Darrin; DeLong, Mark R; Moseley, M Arthur; America, Antoine H; Ottens, Andrew K; Cavey, Greg S; Efstathiou, Georgios; Scrivens, James H; Langridge, James I; Geromanos, Scott J
2012-10-01
The functional design and application of a data-independent LC-MS precursor and product ion repository for protein identification, quantification, and validation is conceptually described. The ion repository was constructed from the sequence search results of a broad range of discovery experiments investigating various tissue types of two closely related mammalian species. The relative high degree of similarity in protein complement, ion detection, and peptide and protein identification allows for the analysis of normalized precursor and product ion intensity values, as well as standardized retention times, creating a multidimensional/orthogonal queryable, qualitative, and quantitative space. Peptide ion map selection for identification and quantification is primarily based on replication and limited variation. The information is stored in a relational database and is used to create peptide- and protein-specific fragment ion maps that can be queried in a targeted fashion against the raw or time aligned ion detections. These queries can be conducted either individually or as groups, where the latter affords pathway and molecular machinery analysis of the protein complement. The presented results also suggest that peptide ionization and fragmentation efficiencies are highly conserved between experiments and practically independent of the analyzed biological sample when using similar instrumentation. Moreover, the data illustrate only minor variation in ionization efficiency with amino acid sequence substitutions occurring between species. Finally, the data and the presented results illustrate how LC-MS performance metrics can be extracted and utilized to ensure optimal performance of the employed analytical workflows.
Hida, Naoki; Awais, Muhammad; Takeuchi, Masaki; Ueno, Naoto; Tashiro, Mayuri; Takagi, Chiyo; Singh, Tanuja; Hayashi, Makoto; Ohmiya, Yoshihiro; Ozawa, Takeaki
2009-01-01
Networks of protein-protein interactions play key roles in numerous important biological processes in living subjects. An effective methodology to assess protein-protein interactions in living cells of interest is protein-fragment complement assay (PCA). Particularly the assays using fluorescent proteins are powerful techniques, but they do not directly track interactions because of its irreversibility or the time for chromophore formation. By contrast, PCAs using bioluminescent proteins can overcome these drawbacks. We herein describe an imaging method for real-time analysis of protein-protein interactions using multicolor luciferases with different spectral characteristics. The sensitivity and signal-to-background ratio were improved considerably by developing a carboxy-terminal fragment engineered from a click beetle luciferase. We demonstrate its utility in spatiotemporal characterization of Smad1–Smad4 and Smad2–Smad4 interactions in early developing stages of a single living Xenopus laevis embryo. We also describe the value of this method by application of specific protein-protein interactions in cell cultures and living mice. This technique supports quantitative analyses and imaging of versatile protein-protein interactions with a selective luminescence wavelength in opaque or strongly auto-fluorescent living subjects. PMID:19536355
Kolkhof, Petra; Werthebach, Michael; van de Venn, Anna; Poschmann, Gereon; Chen, Lili; Welte, Michael; Stühler, Kai; Beller, Mathias
2017-01-01
A critical challenge for all organisms is to carefully control the amount of lipids they store. An important node for this regulation is the protein coat present at the surface of lipid droplets (LDs), the intracellular organelles dedicated to lipid storage. Only limited aspects of this regulation are understood so far. For the probably best characterized case, the regulation of lipolysis in mammals, some of the major protein players have been identified, and it has been established that this process crucially depends on an orchestrated set of protein-protein interactions. Proteomic analysis has revealed that LDs are associated with dozens, if not hundreds, of different proteins, most of them poorly characterized, with even fewer data regarding which of them might physically interact. To comprehensively understand the mechanism of lipid storage regulation, it will likely be essential to define the interactome of LD-associated proteins. Previous studies of such interactions were hampered by technical limitations. Therefore, we have developed a split-luciferase based protein-protein interaction assay and test for interactions among 47 proteins from Drosophila and from mouse. We confirmed previously described interactions and identified many new ones. In 1561 complementation tests, we assayed for interactions among 487 protein pairs of which 92 (19%) resulted in a successful luciferase complementation. These results suggest that a prominent fraction of the LD-associated proteome participates in protein-protein interactions. In targeted experiments, we analyzed the two proteins Jabba and CG9186 in greater detail. Jabba mediates the sequestration of histones to LDs. We successfully applied our split luciferase complementation assay to learn more about this function as we were e.g. able to map the interaction between Jabba and histones. For CG9186, expression levels affect the positioning of LDs. Here, we reveal the ubiquitination of CG9186, and link this posttranslational modification to LD cluster induction. PMID:27956707
Morell, Montse; Espargaro, Alba; Aviles, Francesc Xavier; Ventura, Salvador
2008-01-01
We present a high-throughput approach to study weak protein-protein interactions by coupling bimolecular fluorescent complementation (BiFC) to flow cytometry (FC). In BiFC, the interaction partners (bait and prey) are fused to two rationally designed fragments of a fluorescent protein, which recovers its function upon the binding of the interacting proteins. For weak protein-protein interactions, the detected fluorescence is proportional to the interaction strength, thereby allowing in vivo discrimination between closely related binders with different affinity for the bait protein. FC provides a method for high-speed multiparametric data acquisition and analysis; the assay is simple, thousands of cells can be analyzed in seconds and, if required, selected using fluorescence-activated cell sorting (FACS). The combination of both methods (BiFC-FC) provides a technically straightforward, fast and highly sensitive method to validate weak protein interactions and to screen and identify optimal ligands in biologically synthesized libraries. Once plasmids encoding the protein fusions have been obtained, the evaluation of a specific interaction, the generation of a library and selection of active partners using BiFC-FC can be accomplished in 5 weeks.
Graham, Matthew; Shin, Dong-Ho; Smith, Sylvia L
2009-07-01
We present the complete cDNA sequence of shark (Ginglymostoma cirratum) pro-C5 and its molecular characterization with a descriptive analysis of the structural elements necessary for its potential functional role as a potent mediator of inflammation (fragment C5a) and initiator molecule (fragment C5b) for the assembly of the membrane attack complex (MAC) upon activation by C5 convertase. In mammals the three complement activation cascades, the classical, alternative and lectin pathways, converge at the activation of C3, a pivotal complement protein. It is, however, the subsequent activation of the next complement component, C5, which is the focal point at which the initiation of the terminal lytic pathway takes place and involves the stepwise assembly of the MAC. The effector cytolytic function of complement occurs with the insertion of MAC into target membranes causing dough-nut like holes and cell leakage. The lytic activity of shark complement results in structurally similar holes in target membranes suggesting the assembly of a shark MAC that likely involves a functional analogue of C5. The composition of shark MAC remains unresolved and to date conclusive evidence has been lacking for shark C5. The gene has not been cloned nor has the serum protein been characterized for any elasmobranch species. This report is the first to confirm the presence of C5 homologue in the shark. GcC5 is remarkably similar to human C5 in overall structure and domain arrangement. The GcC5 cDNA measured 5160-bp with 5' and 3' UTRs of 35 bp and 79 bp, respectively. Structural analysis of the derived protein sequence predicts a molecule that is a two-chain structure which lacks a thiolester bond and contains a C5 convertase cleavage site indicating that activation will generate two peptides, akin to C5b and C5a. The putative GcC5 molecule also contains the C-terminal C345C/Netrin module that characterizes C3, C4 and C5. Multiple alignment of deduced amino acid sequences shows that GcC5 shares more amino acid identities/similarities with mammals than that with bony fish. We conclude that at the time of emergence of sharks the elaborate mosaic structure of C5 had already evolved.
Graham, Matthew; Shin, Dong-Ho; Smith, Sylvia L.
2009-01-01
We present the complete cDNA sequence of shark (Ginglymostoma cirratum) pro-C5 and its molecular characterization with a descriptive analysis of the structural elements necessary for its potential functional role as a potent mediator of inflammation (fragment C5a) and initiator molecule (fragment C5b) for the assembly of the membrane attack complex (MAC) upon activation by C5 convertase. In mammals the three complement activation cascades, the classical, alternative and lectin pathways, converge at the activation of C3, a pivotal complement protein. It is, however, the subsequent activation of the next complement component, C5, which is the focal point at which the initiation of the terminal lytic pathway takes place and involves the stepwise assembly of the MAC. The effector cytolytic function of complement occurs with the insertion of MAC into target membranes causing dough-nut like holes and cell leakage. The lytic activity of shark complement results in structurally similar holes in target membranes suggesting the assembly of a shark MAC that likely involves a functional analogue of C5. The composition of shark MAC remains unresolved and to date conclusive evidence has been lacking for shark C5. The gene has not been cloned nor has the serum protein been characterized for any elasmobranch species. This report is the first to confirm the presence of C5 homologue in the shark. GcC5 is remarkably similar to human C5 in overall structure and domain arrangement. The GcC5 cDNA measured 5160-bp with 5′ and 3′ UTRs of 35bp and 79bp, respectively. Structural analysis of the derived protein sequence predicts a molecule that is a two-chain structure which lacks a thiolester bond and contains a C5 convertase cleavage site indicating that activation will generate two peptides, akin to C5b and C5a. The putative GcC5 molecule also contains the C-terminal C345C/Netrin module that characterizes C3, C4 and C5. Multiple alignment of deduced amino acid sequences show that GcC5 shares more amino acid identities/similarities with mammals than that with bony fish. We conclude that at the time of emergence of sharks the elaborate mosaic structure of C5 had already evolved. PMID:19410004
Garcia, Brandon L.; Ramyar, Kasra X.; Keightley, Andrew; Ruyken, Maartje; Syriga, Maria; Sfyroera, Georgia; Weber, Alexander B.; Zolkiewski, Michal; Ricklin, Daniel; Lambris, John D.; Rooijakkers, Suzan H.M.; Geisbrecht, Brian V.
2014-01-01
The pathogenic bacterium Staphylococcus aureus actively evades many aspects of human innate immunity by expressing a series of small inhibitory proteins. A number of these proteins inhibit the complement system, which labels bacteria for phagocytosis and generates inflammatory chemoattractants. While the majority of staphylococcal complement inhibitors act on the alternative pathway (AP) to block the amplification loop, only a few proteins act on the initial recognition cascades that constitute the classical (CP) and lectin (LP) pathways. We screened a collection of recombinant, secreted staphylococcal proteins to determine if S. aureus produces other molecules that inhibit either the CP and/or LP. Using this approach, we identified the extracellular adherence protein (Eap) as a potent, specific inhibitor of both the CP and LP. We found that Eap blocked CP/LP-dependent activation of C3, but not C4, and that Eap likewise inhibited deposition of C3b on the surface of S. aureus cells. In turn, this significantly diminished the extent of S. aureus opsonophagocytosis and killing by neutrophils. This combination of functional properties suggested that Eap acts specifically at the level of the CP/LP C3 convertase (C4b2a). Indeed, we demonstrated a direct, nanomolar-affinity interaction of Eap with C4b. Eap binding to C4b inhibited binding of both full-length C2 and its C2b fragment, which indicated that Eap disrupts formation of the CP/LP C3 pro-convertase (C4b2). As a whole, our results demonstrate that S. aureus inhibits the two initiation routes of complement by expression of the Eap protein, and thereby define a novel mechanism of immune evasion. PMID:25381436
Bacterial genes involved in incorporation of nickel into a hydrogenase enzyme.
Fu, C; Javedan, S; Moshiri, F; Maier, R J
1994-01-01
Nickel is an essential component of all H2-uptake hydrogenases. A fragment of DNA that complements a H2-uptake-deficient but nickel-cured mutant strain (JHK7) of Bradyrhizobium japonicum was isolated and sequenced. This 4.5-kb DNA fragment contains four open reading frames designated as ORF1, hupN, hupO, and hupP, which encode polypeptides with predicted masses of 17, 40, 19, and 63.5 kDa, respectively. The last three open reading frames (hupNOP) are most likely organized as an operon with a putative sigma 54-type promoter. Based on its hydropathy profile, HupN is predicted to be a transmembrane protein. It has 56% identity to the previously described HoxN (high-affinity nickel transport protein) of Alcaligenes eutrophus. A subclone (pJF23) containing the hupNOP genes excluding ORF1 completely complemented (in trans) strain JHK7 for hydrogenase activity in low nickel conditions. pJF26 containing only a functional hupN complemented the hydrogenase activity of mutant strain JHK7 to 30-55% of the wild-type level. Mutant strain JHK70, with a chromosomal deletion in hupP but with an intact hupNO, showed greater activities than pJF26-complemented JHK7 but still had lower activities than the wild type at all nickel levels tested. pJF25, containing the entire hupO and hupP, but without hupN (a portion of hupN was deleted), did not complement hydrogenase activity of mutant strain JHK7. The results suggest that the products of the hupNOP operon are all involved in nickel incorporation/metabolism into the hydrogenase apoprotein. Based on (previous) nickel transport studies of strain JHK7, the hupNOP genes appear not to be involved in nickel transport by whole cells. The deleterious effects on hydrogenase expression are most pronounced by lack of the HupN product. PMID:8197192
Barel, M; Fiandino, A; Lyamani, F; Frade, R
1989-01-01
Epstein-Barr virus and the C3d fragment of the third component of complement are specific extracellular ligands for complement receptor type 2 (CR2). However, intracellular proteins that react specifically with CR2 and are involved in post-membrane signals remain unknown. We recently prepared polyclonal anti-idiotypic anti-CR2 antibodies (Ab2) by using the highly purified CR2 molecule as original immunogen. We showed that Ab2 contained anti-idiotypic specificities that mimicked extracellular domains of CR2 and detected two distinct binding sites on CR2 for its specific extracellular ligands, Epstein-Barr virus and C3d. We postulated that Ab2 might also contain specificities that could mimic intracellular domains of CR2. Here we report that Ab2, which did not react with Raji B-lymphoma cell surface components, detected specifically, among all components solubilized from Raji cell membranes, a single intracellular membrane protein of apparent molecular mass of 53 kDa. This protein was identified as the p53 cellular antioncogene-encoded membrane phosphoprotein by analyzing its antigenic properties with Pab1801, a monoclonal anti-p53 antibody, and by comparing its biochemical properties with those of p53. Additionally, solubilized and purified CR2 bound to solubilized p53 immobilized on Pab1801-Sepharose. p53, like CR2, was localized only in purified plasma membranes and nuclei of Raji cells. These data suggest strongly that p53, a cellular antioncogene-encoded phosphoprotein, reacted specifically with CR2 in Raji membranes. This interaction may represent one of the important steps through which CR2 could be involved in human B-lymphocyte proliferation and transformation. Images PMID:2557614
Scabies Mite Peritrophins Are Potential Targets of Human Host Innate Immunity
Holt, Deborah C.; Kemp, Dave J.; Fischer, Katja
2011-01-01
Background Pruritic scabies lesions caused by Sarcoptes scabiei burrowing in the stratum corneum of human skin facilitate opportunistic bacterial infections. Emerging resistance to current therapeutics emphasizes the need to identify novel targets for protective intervention. We have characterized several protein families located in the mite gut as crucial factors for host-parasite interactions. Among these multiple proteins inhibit human complement, presumably to avoid complement-mediated damage of gut epithelial cells. Peritrophins are major components of the peritrophic matrix often found in the gut of arthropods. We hypothesized that a peritrophin, if abundant in the scabies mite gut, could be an activator of complement. Methodology/Principal Findings A novel full length scabies mite peritrophin (SsPTP1) was identified in a cDNA library from scabies mites. The amino acid sequence revealed four putative chitin binding domains (CBD). Recombinant expression of one CBD of the highly repetitive SsPTP1 sequence as TSP-hexaHis-fusion protein resulted in soluble protein, which demonstrated chitin binding activity in affinity chromatography assays. Antibodies against a recombinant SsPTP1 fragment were used to immunohistochemically localize native SsPTP1 in the mite gut and in fecal pellets within the upper epidermis, co-localizing with serum components such as host IgG and complement. Enzymatic deglycosylation confirmed strong N- and O-glycosylation of the native peritrophin. Serum incubation followed by immunoblotting with a monoclonal antibody against mannan binding lectin (MBL), the recognition molecule of the lectin pathway of human complement activation, indicated that MBL may specifically bind to glycosylated SsPTP1. Conclusions/Significance This study adds a new aspect to the accumulating evidence that complement plays a major role in scabies mite biology. It identifies a novel peritrophin localized in the mite gut as a potential target of the lectin pathway of the complement cascade. These initial findings indicate a novel role of scabies mite peritrophins in triggering a host innate immune response within the mite gut. PMID:21980545
Biochemical and genetic analyses of acetoin catabolism in Alcaligenes eutrophus.
Fründ, C; Priefert, H; Steinbüchel, A; Schlegel, H G
1989-01-01
In genetic studies on the catabolism of acetoin in Alcaligenes eutrophus, we used Tn5::mob-induced mutants which were impaired in the utilization of acetoin as the sole carbon source for growth. The transposon-harboring EcoRI restriction fragments from 17 acetoin-negative and slow-growing mutants (class 2a) and from six pleiotropic mutants of A. eutorphus, which were acetoin-negative and did not grow chemolithoautotrophically (class 2b), were cloned from pHC79 gene banks. The insertions of Tn5 were mapped on four different chromosomal EcoRI restriction fragments (A, C, D, and E) in class 2a mutants. The native DNA fragments were cloned from a lambda L47 or from a cosmid gene bank. Evidence is provided that fragments A (21 kilobase pairs [kb]) and C (7.7 kb) are closely linked in the genome; the insertions of Tn5 covered a region of approximately 5 kb. Physiological experiments revealed that this region encodes for acetoin:dichlorophenol-indophenol oxidoreductase, a fast-migrating protein, and probably for one additional protein that is as yet unknown. In mutants which were not completely impaired in growth on acetoin but which grew much slower and after a prolonged lag phase, fragments D (7.2 kb) and E (8.1 kb) were inactivated by insertion of Tn5::mob. No structural gene could be assigned to the D or E fragments. In class 2b mutants, insertions of Tn5 were mapped on fragment B (11.3 kb). This fragment complemented pleiotropic hno mutants in trans; these mutants were impaired in the formation of a rpoN-like protein. The expression of the gene cluster on fragments A and C seemed to be rpoN dependent. PMID:2556366
Poe, Jerrod A; Vollmer, Laura; Vogt, Andreas; Smithgall, Thomas E
2014-04-01
Nef is a human immunodeficiency virus 1 (HIV-1) accessory factor essential for viral pathogenesis and AIDS progression. Many Nef functions require dimerization, and small molecules that block Nef dimerization may represent antiretroviral drug leads. Here we describe a cell-based assay for Nef dimerization inhibitors based on bimolecular fluorescence complementation (BiFC). Nef was fused to nonfluorescent, complementary fragments of yellow fluorescent protein (YFP) and coexpressed in the same cell population. Dimerization of Nef resulted in juxtaposition of the YFP fragments and reconstitution of the fluorophore. For automation, the Nef-YFP fusion proteins plus a monomeric red fluorescent protein (mRFP) reporter were expressed from a single vector, separated by picornavirus "2A" linker peptides to permit equivalent translation of all three proteins. Validation studies revealed a critical role for gating on the mRFP-positive subpopulation of transfected cells, as well as use of the mRFP signal to normalize the Nef-BiFC signal. Nef-BiFC/mRFP ratios resulting from cells expressing wild-type versus dimerization-defective Nef were very clearly separated, with Z factors consistently in the 0.6 to 0.7 range. A fully automated pilot screen of the National Cancer Institute Diversity Set III identified several hit compounds that reproducibly blocked Nef dimerization in the low micromolar range. This BiFC-based assay has the potential to identify cell-active small molecules that directly interfere with Nef dimerization and function.
Abdelbaset-Ismail, A; Borkowska-Rzeszotek, S; Kubis, E; Bujko, K; Brzeźniakiewicz-Janus, K; Bolkun, L; Kloczko, J; Moniuszko, M; Basak, G W; Wiktor-Jedrzejczak, W; Ratajczak, M Z
2017-01-01
As a crucial arm of innate immunity, the complement cascade (ComC) is involved both in mobilization of normal hematopoietic stem/progenitor cells (HSPCs) from bone marrow (BM) into peripheral blood and in their homing to BM. Despite the fact that ComC cleavage fragments alone do not chemoattract normal HSPCs, we found that leukemia cell lines as well as clonogenic blasts from chronic myeloid leukemia and acute myeloid leukemia patients respond robustly to C3 and C5 cleavage fragments by chemotaxis and increased adhesion. This finding was supported by the detection of C3a and C5a receptors in cells from human malignant hematopoietic cell lines and patient blasts at the mRNA (reverse transcriptase-polymerase chain reaction) and protein level (fluorescence-activated cell sorting), and by the demonstration that these receptors respond to stimulation by C3a and C5a by phosphorylation of p42/44 and p38 mitogen-activated protein kinases (MAPK), and protein kinase B (PKB/AKT). We also found that inducible heme oxygenase 1 (HO-1) is a negative regulator of ComC-mediated trafficking of leukemic cells, and that stimulation of leukemic cells by C3 or C5 cleavage fragments activates p38 MAPK, which downregulates HO-1 expression, rendering cells more mobile. We conclude that activation of the ComC in leukemia/lymphoma patients (for example, as a result of accompanying infections) enhances the motility of malignant cells and contributes to their spread in a p38 MAPK–HO-1-dependent manner. Therefore, inhibition of p38 MAPK or upregulation of HO-1 by small-molecule modulators would have a beneficial effect on ameliorating cell migration-mediated expansion of leukemia/lymphoma cells when the ComC becomes activated. PMID:27451975
Abdelbaset-Ismail, A; Borkowska-Rzeszotek, S; Kubis, E; Bujko, K; Brzeźniakiewicz-Janus, K; Bolkun, L; Kloczko, J; Moniuszko, M; Basak, G W; Wiktor-Jedrzejczak, W; Ratajczak, M Z
2017-02-01
As a crucial arm of innate immunity, the complement cascade (ComC) is involved both in mobilization of normal hematopoietic stem/progenitor cells (HSPCs) from bone marrow (BM) into peripheral blood and in their homing to BM. Despite the fact that ComC cleavage fragments alone do not chemoattract normal HSPCs, we found that leukemia cell lines as well as clonogenic blasts from chronic myeloid leukemia and acute myeloid leukemia patients respond robustly to C3 and C5 cleavage fragments by chemotaxis and increased adhesion. This finding was supported by the detection of C3a and C5a receptors in cells from human malignant hematopoietic cell lines and patient blasts at the mRNA (reverse transcriptase-polymerase chain reaction) and protein level (fluorescence-activated cell sorting), and by the demonstration that these receptors respond to stimulation by C3a and C5a by phosphorylation of p42/44 and p38 mitogen-activated protein kinases (MAPK), and protein kinase B (PKB/AKT). We also found that inducible heme oxygenase 1 (HO-1) is a negative regulator of ComC-mediated trafficking of leukemic cells, and that stimulation of leukemic cells by C3 or C5 cleavage fragments activates p38 MAPK, which downregulates HO-1 expression, rendering cells more mobile. We conclude that activation of the ComC in leukemia/lymphoma patients (for example, as a result of accompanying infections) enhances the motility of malignant cells and contributes to their spread in a p38 MAPK-HO-1-dependent manner. Therefore, inhibition of p38 MAPK or upregulation of HO-1 by small-molecule modulators would have a beneficial effect on ameliorating cell migration-mediated expansion of leukemia/lymphoma cells when the ComC becomes activated.
In silico fragment-based drug design.
Konteatis, Zenon D
2010-11-01
In silico fragment-based drug design (FBDD) is a relatively new approach inspired by the success of the biophysical fragment-based drug discovery field. Here, we review the progress made by this approach in the last decade and showcase how it complements and expands the capabilities of biophysical FBDD and structure-based drug design to generate diverse, efficient drug candidates. Advancements in several areas of research that have enabled the development of in silico FBDD and some applications in drug discovery projects are reviewed. The reader is introduced to various computational methods that are used for in silico FBDD, the fragment library composition for this technique, special applications used to identify binding sites on the surface of proteins and how to assess the druggability of these sites. In addition, the reader will gain insight into the proper application of this approach from examples of successful programs. In silico FBDD captures a much larger chemical space than high-throughput screening and biophysical FBDD increasing the probability of developing more diverse, patentable and efficient molecules that can become oral drugs. The application of in silico FBDD holds great promise for historically challenging targets such as protein-protein interactions. Future advances in force fields, scoring functions and automated methods for determining synthetic accessibility will all aid in delivering more successes with in silico FBDD.
Jiang, Yiqun; Bernard, Denzil; Yu, Yanke; Xie, Yehua; Zhang, Tao; Li, Yanyan; Burnett, Joseph P.; Fu, Xueqi; Wang, Shaomeng; Sun, Duxin
2010-01-01
Hsp90 requires cochaperone Cdc37 to load its clients to the Hsp90 superchaperone complex. The purpose of this study was to utilize split Renilla luciferase protein fragment-assisted complementation (SRL-PFAC) bioluminescence to study the full-length human Hsp90-Cdc37 complex and to identity critical residues and their contributions for Hsp90/Cdc37 interaction in living cells. SRL-PFAC showed that full-length human Hsp90/Cdc37 interaction restored dramatically high luciferase activity through Hsp90-Cdc37-assisted complementation of the N and C termini of luciferase (compared with the set of controls). Immunoprecipitation confirmed that the expressed fusion proteins (NRL-Hsp90 and Cdc37-CRL) preserved their ability to interact with each other and also with native Hsp90 or Cdc37. Molecular dynamic simulation revealed several critical residues in the two interaction patches (hydrophobic and polar) at the interface of Hsp90/Cdc37. Mutagenesis confirmed the critical residues for Hsp90-Cdc37 complex formation. SRL-PFAC bioluminescence evaluated the contributions of these critical residues in Hsp90/Cdc37 interaction. The results showed that mutations in Hsp90 (Q133A, F134A, and A121N) and mutations in Cdc37 (M164A, R167A, L205A, and Q208A) reduced the Hsp90/Cdc37 interaction by 70–95% as measured by the resorted luciferase activity through Hsp90-Cdc37-assisted complementation. In comparison, mutations in Hsp90 (E47A and S113A) and a mutation in Cdc37 (A204E) decreased the Hsp90/Cdc37 interaction by 50%. In contrast, mutations of Hsp90 (R46A, S50A, C481A, and C598A) and mutations in Cdc37 (C54S, C57S, and C64S) did not change Hsp90/Cdc37 interactions. The data suggest that single amino acid mutation in the interface of Hsp90/Cdc37 is sufficient to disrupt its interaction, although Hsp90/Cdc37 interactions are through large regions of hydrophobic and polar interactions. These findings provides a rationale to develop inhibitors for disruption of the Hsp90/Cdc37 interaction. PMID:20413594
Jiang, Yiqun; Bernard, Denzil; Yu, Yanke; Xie, Yehua; Zhang, Tao; Li, Yanyan; Burnett, Joseph P; Fu, Xueqi; Wang, Shaomeng; Sun, Duxin
2010-07-02
Hsp90 requires cochaperone Cdc37 to load its clients to the Hsp90 superchaperone complex. The purpose of this study was to utilize split Renilla luciferase protein fragment-assisted complementation (SRL-PFAC) bioluminescence to study the full-length human Hsp90-Cdc37 complex and to identity critical residues and their contributions for Hsp90/Cdc37 interaction in living cells. SRL-PFAC showed that full-length human Hsp90/Cdc37 interaction restored dramatically high luciferase activity through Hsp90-Cdc37-assisted complementation of the N and C termini of luciferase (compared with the set of controls). Immunoprecipitation confirmed that the expressed fusion proteins (NRL-Hsp90 and Cdc37-CRL) preserved their ability to interact with each other and also with native Hsp90 or Cdc37. Molecular dynamic simulation revealed several critical residues in the two interaction patches (hydrophobic and polar) at the interface of Hsp90/Cdc37. Mutagenesis confirmed the critical residues for Hsp90-Cdc37 complex formation. SRL-PFAC bioluminescence evaluated the contributions of these critical residues in Hsp90/Cdc37 interaction. The results showed that mutations in Hsp90 (Q133A, F134A, and A121N) and mutations in Cdc37 (M164A, R167A, L205A, and Q208A) reduced the Hsp90/Cdc37 interaction by 70-95% as measured by the resorted luciferase activity through Hsp90-Cdc37-assisted complementation. In comparison, mutations in Hsp90 (E47A and S113A) and a mutation in Cdc37 (A204E) decreased the Hsp90/Cdc37 interaction by 50%. In contrast, mutations of Hsp90 (R46A, S50A, C481A, and C598A) and mutations in Cdc37 (C54S, C57S, and C64S) did not change Hsp90/Cdc37 interactions. The data suggest that single amino acid mutation in the interface of Hsp90/Cdc37 is sufficient to disrupt its interaction, although Hsp90/Cdc37 interactions are through large regions of hydrophobic and polar interactions. These findings provides a rationale to develop inhibitors for disruption of the Hsp90/Cdc37 interaction.
Zhang, Yingjie; Wu, Minhao; Hang, Tianrong; Wang, Chengliang; Yang, Ye; Pan, Weimin; Zang, Jianye
2017-01-01
Complement factor H (CFH) is a soluble complement regulatory protein essential for the down-regulation of the alternative pathway on interaction with specific markers on the host cell surface. It recognizes the complement component 3b (C3b) and 3d (C3d) fragments in addition to self cell markers (i.e. glycosaminoglycans, sialic acid) to distinguish host cells that deserve protection from pathogens that should be eliminated. The Staphylococcus aureus surface protein serine–aspartate repeat protein E (SdrE) was previously reported to bind human CFH as an immune-evasion tactic. However, the molecular mechanism underlying SdrE–CFH-mediated immune evasion remains unknown. In the present study, we identified a novel region at CFH's C-terminus (CFH1206–1226), which binds SdrE N2 and N3 domains (SdrEN2N3) with high affinity, and determined the crystal structures of apo-SdrEN2N3 and the SdrEN2N3–CFH1206–1226 complex. Comparison of the structure of the CFH–SdrE complex with other CFH structures reveals that CFH's C-terminal tail flips from the main body to insert into the ligand-binding groove of SdrE. In addition, SdrEN2N3 adopts a ‘close’ state in the absence of CFH, which undergoes a large conformational change on CFH binding, suggesting a novel ‘close, dock, lock and latch' (CDLL) mechanism for SdrE to recognize its ligand. Our findings imply that SdrE functions as a ‘clamp' to capture CFH's C-terminal tail via a unique CDLL mechanism and sequesters CFH on the surface of S. aureus for complement evasion. PMID:28258151
Zhang, Yingjie; Wu, Minhao; Hang, Tianrong; Wang, Chengliang; Yang, Ye; Pan, Weimin; Zang, Jianye; Zhang, Min; Zhang, Xuan
2017-05-04
Complement factor H (CFH) is a soluble complement regulatory protein essential for the down-regulation of the alternative pathway on interaction with specific markers on the host cell surface. It recognizes the complement component 3b (C3b) and 3d (C3d) fragments in addition to self cell markers (i.e. glycosaminoglycans, sialic acid) to distinguish host cells that deserve protection from pathogens that should be eliminated. The Staphylococcus aureus surface protein serine-aspartate repeat protein E (SdrE) was previously reported to bind human CFH as an immune-evasion tactic. However, the molecular mechanism underlying SdrE-CFH-mediated immune evasion remains unknown. In the present study, we identified a novel region at CFH's C-terminus (CFH 1206-1226 ), which binds SdrE N2 and N3 domains (SdrE N2N3 ) with high affinity, and determined the crystal structures of apo-SdrE N2N3 and the SdrE N2N3 -CFH 1206-1226 complex. Comparison of the structure of the CFH-SdrE complex with other CFH structures reveals that CFH's C-terminal tail flips from the main body to insert into the ligand-binding groove of SdrE. In addition, SdrE N2N3 adopts a 'close' state in the absence of CFH, which undergoes a large conformational change on CFH binding, suggesting a novel 'close, dock, lock and latch' (CDLL) mechanism for SdrE to recognize its ligand. Our findings imply that SdrE functions as a 'clamp' to capture CFH's C-terminal tail via a unique CDLL mechanism and sequesters CFH on the surface of S. aureus for complement evasion. © 2017 The Author(s).
Weiss, J; Elsbach, P; Shu, C; Castillo, J; Grinna, L; Horwitz, A; Theofan, G
1992-01-01
The bactericidal/permeability-increasing protein (BPI) of neutrophils and BPI fragments neutralize the effects of isolated Gram-negative bacterial lipopolysaccharides both in vitro and in vivo. Since endotoxin most commonly enters the host as constituents of invading Gram-negative bacteria, we raised the question: Can BPI and its bioactive fragments also protect against whole bacteria? To determine whether the bactericidal and endotoxin-neutralizing activities of BPI/fragments are expressed when Gram-negative bacteria are introduced to the complex environment of whole blood we examined the effects of added BPI and proteolytically prepared and recombinant NH2-terminal fragments on: (a) the fate of serum-resistant encapsulated Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa that survive the antibacterial actions of whole blood and (b) the ability of these bacteria to trigger cytokine release. Added BPI in nanomolar concentrations killed each of three encapsulated strains of E. coli and in closely parallel fashion inhibited tumor necrosis factor (TNF) release. Holo-BPI and its NH2-terminal fragment were equipotent toward a rough LPS chemotype K1-encapsulated strain, but the fragment was substantially more potent than holo-BPI toward two encapsulated smooth LPS chemotype strains. TNF release induced by K. pneumoniae and P. aeruginosa was also inhibited by both holo-BPI and fragment but, at the protein concentrations tested, P. aeruginosa was killed only by the fragment and K. pneumoniae was not killed by either protein. The bactericidal action of BPI/fragment toward E. coli is inhibited by C7-depleted serum, but accelerated by normal serum, indicating that BPI, acting in synergy with late complement components, enhances extracellular killing of serum-resistant bacteria. Thus, BPI and an even more potent NH2-terminal fragment may protect against Gram-negative bacteria in the host by blocking bacterial proliferation as well as endotoxin-mediated effects, not only as components of the intracellular antibacterial arsenal of the neutrophil, but also as potentially therapeutic extracellular agents. PMID:1522221
Weiss, J; Elsbach, P; Shu, C; Castillo, J; Grinna, L; Horwitz, A; Theofan, G
1992-09-01
The bactericidal/permeability-increasing protein (BPI) of neutrophils and BPI fragments neutralize the effects of isolated Gram-negative bacterial lipopolysaccharides both in vitro and in vivo. Since endotoxin most commonly enters the host as constituents of invading Gram-negative bacteria, we raised the question: Can BPI and its bioactive fragments also protect against whole bacteria? To determine whether the bactericidal and endotoxin-neutralizing activities of BPI/fragments are expressed when Gram-negative bacteria are introduced to the complex environment of whole blood we examined the effects of added BPI and proteolytically prepared and recombinant NH2-terminal fragments on: (a) the fate of serum-resistant encapsulated Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa that survive the antibacterial actions of whole blood and (b) the ability of these bacteria to trigger cytokine release. Added BPI in nanomolar concentrations killed each of three encapsulated strains of E. coli and in closely parallel fashion inhibited tumor necrosis factor (TNF) release. Holo-BPI and its NH2-terminal fragment were equipotent toward a rough LPS chemotype K1-encapsulated strain, but the fragment was substantially more potent than holo-BPI toward two encapsulated smooth LPS chemotype strains. TNF release induced by K. pneumoniae and P. aeruginosa was also inhibited by both holo-BPI and fragment but, at the protein concentrations tested, P. aeruginosa was killed only by the fragment and K. pneumoniae was not killed by either protein. The bactericidal action of BPI/fragment toward E. coli is inhibited by C7-depleted serum, but accelerated by normal serum, indicating that BPI, acting in synergy with late complement components, enhances extracellular killing of serum-resistant bacteria. Thus, BPI and an even more potent NH2-terminal fragment may protect against Gram-negative bacteria in the host by blocking bacterial proliferation as well as endotoxin-mediated effects, not only as components of the intracellular antibacterial arsenal of the neutrophil, but also as potentially therapeutic extracellular agents.
Identification of Multiple Druggable Secondary Sites by Fragment Screening against DC-SIGN.
Aretz, Jonas; Baukmann, Hannes; Shanina, Elena; Hanske, Jonas; Wawrzinek, Robert; Zapol'skii, Viktor A; Seeberger, Peter H; Kaufmann, Dieter E; Rademacher, Christoph
2017-06-12
DC-SIGN is a cell-surface receptor for several pathogenic threats, such as HIV, Ebola virus, or Mycobacterium tuberculosis. Multiple attempts to develop inhibitors of the underlying carbohydrate-protein interactions have been undertaken in the past fifteen years. Still, drug-like DC-SIGN ligands are sparse, which is most likely due to its hydrophilic, solvent-exposed carbohydrate-binding site. Herein, we report on a parallel fragment screening against DC-SIGN applying SPR and a reporter displacement assay, which complements previous screenings using 19 F NMR spectroscopy and chemical fragment microarrays. Hit validation by SPR and 1 H- 15 N HSQC NMR spectroscopy revealed that although no fragment bound in the primary carbohydrate site, five secondary sites are available to harbor drug-like molecules. Building on key interactions of the reported fragment hits, these pockets will be targeted in future approaches to accelerate the development of DC-SIGN inhibitors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hot spot analysis for driving the development of hits into leads in fragment based drug discovery
Hall, David R.; Ngan, Chi Ho; Zerbe, Brandon S.; Kozakov, Dima; Vajda, Sandor
2011-01-01
Fragment based drug design (FBDD) starts with finding fragment-sized compounds that are highly ligand efficient and can serve as a core moiety for developing high affinity leads. Although the core-bound structure of a protein facilitates the construction of leads, effective design is far from straightforward. We show that protein mapping, a computational method developed to find binding hot spots and implemented as the FTMap server, provides information that complements the fragment screening results and can drive the evolution of core fragments into larger leads with a minimal loss or, in some cases, even a gain in ligand efficiency. The method places small molecular probes, the size of organic solvents, on a dense grid around the protein, and identifies the hot spots as consensus clusters formed by clusters of several probes. The hot spots are ranked based on the number of probe clusters, which predicts the binding propensity of the subsites and hence their importance for drug design. Accordingly, with a single exception the main hot spot identified by FTMap binds the core compound found by fragment screening. The most useful information is provided by the neighboring secondary hot spots, indicating the regions where the core can be extended to increase its affinity. To quantify this information, we calculate the density of probes from mapping, which describes the binding propensity at each point, and show that the change in the correlation between a ligand position and the probe density upon extending or repositioning the core moiety predicts the expected change in ligand efficiency. PMID:22145575
Maneu, V; Roig, P; Gozalbo, D
2000-11-01
We have demonstrated that the expression of Candida albicans genes involved in translation and protein folding (EFB1 and SSB1) complements the phenotype of Saccharomyces cerevisiae mutants. The elongation factor 1beta (EF-1beta) is essential for growth and efb1 S. cerevisiae null mutant cells are not viable; however, viable haploid cells, carrying the disrupted chromosomal allele of the S. cerevisiae EFB1 gene and pEFB1, were isolated upon sporulation of a diploid strain which was heterozygous at the EFB1 locus and transformed with pEFB1 (a pEMBLYe23 derivative plasmid containing an 8-kb DNA fragment from the C. albicans genome which contains the EFB1 gene). This indicates that the C. albicans EFB1 gene encodes a functional EF-1beta. Expression of the SSB1 gene from C. albicans, which codes for a member of the 70-kDa heat shock protein family, in S. cerevisiae ssb1 ssb2 double mutant complements the mutant phenotype (poor growth particularly at low temperature, and sensitivity to certain protein synthesis inhibitors, such as paromomycin). This complementation indicates that C. albicans Ssbl may function as a molecular chaperone on the translating ribosomes, as described in S. cerevisiae. Northern blot analysis showed that SSB mRNA levels increased after mild cold shift (28 degrees C to 23 degrees C) and rapidly decreased after mild heat shift (from 28 degrees C to 37 degrees C, and particularly to 42 degrees C), indicating that SSB1 expression is regulated by temperature. Therefore, Ssb1 may be considered as a molecular chaperone whose pattern of expression is similar to that found in ribosomal proteins, according to its common role in translation.
A high-throughput immobilized bead screen for stable proteins and multi-protein complexes
Lockard, Meghan A.; Listwan, Pawel; Pedelacq, Jean-Denis; Cabantous, Stéphanie; Nguyen, Hau B.; Terwilliger, Thomas C.; Waldo, Geoffrey S.
2011-01-01
We describe an in vitro colony screen to identify Escherichia coli expressing soluble proteins and stable, assembled multiprotein complexes. Proteins with an N-terminal 6His tag and C-terminal green fluorescent protein (GFP) S11 tag are fluorescently labeled in cells by complementation with a coexpressed GFP 1–10 fragment. After partial colony lysis, the fluorescent soluble proteins or complexes diffuse through a supporting filtration membrane and are captured on Talon® resin metal affinity beads immobilized in agarose. Images of the fluorescent colonies convey total expression and the level of fluorescence bound to the beads indicates how much protein is soluble. Both pieces of information can be used together when selecting clones. After the assay, colonies can be picked and propagated, eliminating the need to make replica plates. We used the method to screen a DNA fragment library of the human protein p85 and preferentially obtained clones expressing the full-length ‘breakpoint cluster region-homology' and NSH2 domains. The assay also distinguished clones expressing stable multi-protein complexes from those that are unstable due to missing subunits. Clones expressing stable, intact heterotrimeric E.coli YheNML complexes were readily identified in libraries dominated by complexes of YheML missing the N subunit. PMID:21642284
Making connections for life: an in vivo map of the yeast interactome.
Kast, Juergen
2008-10-01
Proteins are the true workhorses of any cell. To carry out specific tasks, they frequently bind other molecules in their surroundings. Due to their structural complexity and flexibility, the most diverse array of interactions is seen with other proteins. The different geometries and affinities available for such interactions typically bestow specific functions on proteins. Having available a map of protein-protein interactions is therefore of enormous importance for any researcher interested in gaining insight into biological systems at the level of cells and organisms. In a recent report, a novel approach has been employed that relies on the spontaneous folding of complementary enzyme fragments fused to two different proteins to test whether these interact in their actual cellular context [Tarassov et al., Science 320, 1465-1470 (2008)]. Genome-wide application of this protein-fragment complementation assay has resulted in the first map of the in vivo interactome of Saccharomyces cerevisiae. The current data show striking similarities but also significant differences to those obtained using other large-scale approaches for the same task. This warrants a general discussion of the current state of affairs of protein-protein interaction studies and foreseeable future trends, highlighting their significance for a variety of applications and their potential to revolutionize our understanding of the architecture and dynamics of biological systems.
Downie, Kelsey; Adetola, Gbolagade; Carstens, Eric B
2013-11-01
Autographa californica nucleopolyhedrovirus late expression factor 3 (LEF-3) is required for late viral gene expression probably through its numerous functions related to DNA replication, including nuclear localization of the virus helicase P143 and binding to ssDNA. LEF-3 appears to interact with itself as a homo-oligomer, although the details of this oligomeric structure are not yet known. To examine LEF-3-LEF-3 interactions, a bimolecular fluorescent protein complementation assay was used. Pairs of recombinant plasmids expressing full-length LEF-3 fused to one of two complementary fragments (V1 or V2) of a variant of yellow fluorescent protein named 'Venus' were constructed. Plasmids expressing fusions with complementary fragments of Venus were co-transfected into Sf21 cells and analysed by fluorescence microscopy. Co-transfected plasmids expressing full-length V1-LEF-3 and V2-LEF-3 showed positive fluorescence, confirming the formation of homo-oligomers. A series of truncated V1/V2-LEF-3 fusions was constructed and used to investigate interactions with one another as well as with full-length LEF-3.
A Recessive Pollination Control System for Wheat Based on Intein-Mediated Protein Splicing.
Gils, Mario
2017-01-01
A transgene-expression system for wheat that relies on the complementation of inactive precursor protein fragments through a split-intein system is described. The N- and C-terminal fragments of a barnase gene from Bacillus amyloliquifaciens were fused to intein sequences from Synechocystis sp. and transformed into wheat plants. Upon translation, both barnase fragments are assembled by an autocatalytic intein-mediated trans-splicing reaction, thus forming a cytotoxic enzyme. This chapter focuses on the use of introns and flexible polypeptide linkers to foster the expression of a split-barnase expression system in plants. The methods and protocols that were employed with the objective to test the effects of such genetic elements on transgene expression and to find the optimal design of expression vectors for use in wheat are provided. Split-inteins can be used to form an agriculturally important trait (male sterility) in wheat plants. The use of this principle for the production of hybrid wheat seed is described. The suggested toolbox will hopefully be a valuable contribution to future optimization strategies in this commercially important crop.
Polyanion-Induced Self Association of Complement Factor H1
Pangburn, Michael K.; Rawal, Nenoo; Cortes, Claudio; Alam, M. Nurul; Ferreira, Viviana P.; Atkinson, Mark A. L.
2008-01-01
Factor H is the primary soluble regulator of activation of the alternative pathway of complement. It prevents activation of complement on host cells and tissues upon association with C3b and surface polyanions such as sialic acids, heparin and other glycosaminoglycans. Here we show that interaction with polyanions causes self-association forming tetramers of the 155,000 Da glycosylated protein. Monomeric human factor H is an extended flexible protein that exhibits an apparent size of 330,000 Da, relative to globular standards, during gel filtration chromatography in the absence of polyanions. In the presence of dextran sulfate (5,000 Da) or heparin an intermediate species of apparent m.w. 700,000 and a limit species of m.w. 1,400,000 were observed by gel filtration. Sedimentation equilibrium analysis by analytical ultracentrifugation indicated a monomer Mr of 163,000 in the absence of polyanions and a Mr of 607,000, corresponding to a tetramer, in the presence of less than a 2-fold molar excess of dextran sulfate. Increasing concentrations of dextran sulfate increased binding of factor H to zymosan-C3b 4.5-fold. This was accompanied by an increase in both the decay accelerating and cofactor activity of factor H on these cells. An expressed fragment encompassing the C-terminal polyanion binding site (complement control protein domains 18–20) also exhibited polyanion-induced self association, suggesting that the C-terminal ends of factor H mediate self-association. The results suggest that recognition of polyanionic markers on host cells and tissues by factor H, and the resulting regulation of complement activation, may involve formation of dimers and tetramers of factor H. PMID:19124749
Experimental Methods for Protein Interaction Identification and Characterization
NASA Astrophysics Data System (ADS)
Uetz, Peter; Titz, Björn; Cagney, Gerard
There are dozens of methods for the detection of protein-protein interactions but they fall into a few broad categories. Fragment complementation assays such as the yeast two-hybrid (Y2H) system are based on split proteins that are functionally reconstituted by fusions of interacting proteins. Biophysical methods include structure determination and mass spectrometric (MS) identification of proteins in complexes. Biochemical methods include methods such as far western blotting and peptide arrays. Only the Y2H and protein complex purification combined with MS have been used on a larger scale. Due to the lack of data it is still difficult to compare these methods with respect to their efficiency and error rates. Current data does not favor any particular method and thus multiple experimental approaches are necessary to maximally cover the interactome of any target cell or organism.
Lungu, Cristiana; Pinter, Sabine; Broche, Julian; Rathert, Philipp; Jeltsch, Albert
2017-09-21
Investigation of the fundamental role of epigenetic processes requires methods for the locus-specific detection of epigenetic modifications in living cells. Here, we address this urgent demand by developing four modular fluorescence complementation-based epigenetic biosensors for live-cell microscopy applications. These tools combine engineered DNA-binding proteins with domains recognizing defined epigenetic marks, both fused to non-fluorescent fragments of a fluorescent protein. The presence of the epigenetic mark at the target DNA sequence leads to the reconstitution of a functional fluorophore. With this approach, we could for the first time directly detect DNA methylation and histone 3 lysine 9 trimethylation at endogenous genomic sites in live cells and follow dynamic changes in these marks upon drug treatment, induction of epigenetic enzymes and during the cell cycle. We anticipate that this versatile technology will improve our understanding of how specific epigenetic signatures are set, erased and maintained during embryonic development or disease onset.Tools for imaging epigenetic modifications can shed light on the regulation of epigenetic processes. Here, the authors present a fluorescence complementation approach for detection of DNA and histone methylation at endogenous genomic sites allowing following of dynamic changes of these marks by live-cell microscopy.
Li, Caixia; Tan, Xing Fei; Lim, Teck Kwang; Lin, Qingsong; Gong, Zhiyuan
2016-04-13
Omic approaches have been increasingly used in the zebrafish model for holistic understanding of molecular events and mechanisms of tissue functions. However, plasma is rarely used for omic profiling because of the technical challenges in collecting sufficient blood. In this study, we employed two mass spectrometric (MS) approaches for a comprehensive characterization of zebrafish plasma proteome, i.e. conventional shotgun liquid chromatography-tandem mass spectrometry (LC-MS/MS) for an overview study and quantitative SWATH (Sequential Window Acquisition of all THeoretical fragment-ion spectra) for comparison between genders. 959 proteins were identified in the shotgun profiling with estimated concentrations spanning almost five orders of magnitudes. Other than the presence of a few highly abundant female egg yolk precursor proteins (vitellogenins), the proteomic profiles of male and female plasmas were very similar in both number and abundance and there were basically no other highly gender-biased proteins. The types of plasma proteins based on IPA (Ingenuity Pathway Analysis) classification and tissue sources of production were also very similar. Furthermore, the zebrafish plasma proteome shares significant similarities with human plasma proteome, in particular in top abundant proteins including apolipoproteins and complements. Thus, the current study provided a valuable dataset for future evaluation of plasma proteins in zebrafish.
Li, Caixia; Tan, Xing Fei; Lim, Teck Kwang; Lin, Qingsong; Gong, Zhiyuan
2016-01-01
Omic approaches have been increasingly used in the zebrafish model for holistic understanding of molecular events and mechanisms of tissue functions. However, plasma is rarely used for omic profiling because of the technical challenges in collecting sufficient blood. In this study, we employed two mass spectrometric (MS) approaches for a comprehensive characterization of zebrafish plasma proteome, i.e. conventional shotgun liquid chromatography-tandem mass spectrometry (LC-MS/MS) for an overview study and quantitative SWATH (Sequential Window Acquisition of all THeoretical fragment-ion spectra) for comparison between genders. 959 proteins were identified in the shotgun profiling with estimated concentrations spanning almost five orders of magnitudes. Other than the presence of a few highly abundant female egg yolk precursor proteins (vitellogenins), the proteomic profiles of male and female plasmas were very similar in both number and abundance and there were basically no other highly gender-biased proteins. The types of plasma proteins based on IPA (Ingenuity Pathway Analysis) classification and tissue sources of production were also very similar. Furthermore, the zebrafish plasma proteome shares significant similarities with human plasma proteome, in particular in top abundant proteins including apolipoproteins and complements. Thus, the current study provided a valuable dataset for future evaluation of plasma proteins in zebrafish. PMID:27071722
Making connections for life: an in vivo map of the yeast interactome
Kast, Juergen
2008-01-01
Proteins are the true workhorses of any cell. To carry out specific tasks, they frequently bind other molecules in their surroundings. Due to their structural complexity and flexibility, the most diverse array of interactions is seen with other proteins. The different geometries and affinities available for such interactions typically bestow specific functions on proteins. Having available a map of protein–protein interactions is therefore of enormous importance for any researcher interested in gaining insight into biological systems at the level of cells and organisms. In a recent report, a novel approach has been employed that relies on the spontaneous folding of complementary enzyme fragments fused to two different proteins to test whether these interact in their actual cellular context [Tarassov et al., Science 320, 1465–1470 (2008)]. Genome-wide application of this protein-fragment complementation assay has resulted in the first map of the in vivo interactome of Saccharomyces cerevisiae. The current data show striking similarities but also significant differences to those obtained using other large-scale approaches for the same task. This warrants a general discussion of the current state of affairs of protein–protein interaction studies and foreseeable future trends, highlighting their significance for a variety of applications and their potential to revolutionize our understanding of the architecture and dynamics of biological systems. PMID:19404434
Specificity of EIA immunoassay for complement factor Bb testing.
Pavlov, Igor Y; De Forest, Nikol; Delgado, Julio C
2011-01-01
During the alternative complement pathway activation, factor B is cleaved in two fragments, Ba and Bb. Concentration of those fragments is about 2 logs lower than of factor B present in the blood, which makes fragment detection challenging because of potential cross-reactivity. Lack of information on Bb assay cross-reactivity stimulated the authors to investigate this issue. We ran 109 healthy donor EDTA plasmas and 80 sera samples with both factor B immunodiffusion (The Binding Site) and Quidel Bb EIA assays. During the study it was shown that physiological concentrations of gently purified factor B demonstrated approximately 0.15% cross-reactivity in the Quidel Bb EIA assay. We also observed that Bb concentration in serum is higher than in plasma due to complement activation during clot formation which let us use sera as samples representing complement activated state. Our study demonstrated that despite the potential 0.15% cross-reactivity between endogenous factor B and cleaved Bb molecule, measuring plasma concentrations of factor Bb is adequate to evaluate the activation of the alternative complement pathway.
Manning, Michael L; Williams, Simon A; Jelinek, Christine A; Kostova, Maya B; Denmeade, Samuel R
2013-03-15
Prostate-specific Ag (PSA) is a serine protease that is expressed exclusively by normal and malignant prostate epithelial cells. The continued high-level expression of PSA by the majority of men with both high- and low-grade prostate cancer throughout the course of disease progression, even in the androgen-ablated state, suggests that PSA has a role in the pathogenesis of disease. Current experimental and clinical evidence suggests that chronic inflammation, regardless of the cause, may predispose men to prostate cancer. The responsibility of the immune system in immune surveillance and eventually tumor progression is well appreciated but not completely understood. In this study, we used a mass spectrometry-based evaluation of prostatic fluid obtained from diseased prostates after removal by radical prostatectomy to identify potential immunoregulatory proteins. This analysis revealed the presence of Igs and the complement system proteins C3, factor B, and clusterin. Verification of these findings by Western blot confirmed the high-level expression of C3 in the prostatic fluid and the presence of a previously uncharacterized C-terminal C3 cleavage product. Biochemical analysis of this C3 cleavage fragment revealed a putative PSA cleavage site after tyrosine-1348. Purified PSA was able to cleave iC3b and the related complement protein C5. These results suggest a previously uncharacterized function of PSA as an immunoregulatory protease that could help to create an environment hospitable to malignancy through proteolysis of the complement system.
Molecular imaging of drug-modulated protein-protein interactions in living subjects.
Paulmurugan, Ramasamy; Massoud, Tarik F; Huang, Jing; Gambhir, Sanjiv S
2004-03-15
Networks of protein interactions mediate cellular responses to environmental stimuli and direct the execution of many different cellular functional pathways. Small molecules synthesized within cells or recruited from the external environment mediate many protein interactions. The study of small molecule-mediated interactions of proteins is important to understand abnormal signal transduction pathways in cancer and in drug development and validation. In this study, we used split synthetic renilla luciferase (hRLUC) protein fragment-assisted complementation to evaluate heterodimerization of the human proteins FRB and FKBP12 mediated by the small molecule rapamycin. The concentration of rapamycin required for efficient dimerization and that of its competitive binder ascomycin required for dimerization inhibition were studied in cell lines. The system was dually modulated in cell culture at the transcription level, by controlling nuclear factor kappaB promoter/enhancer elements using tumor necrosis factor alpha, and at the interaction level, by controlling the concentration of the dimerizer rapamycin. The rapamycin-mediated dimerization of FRB and FKBP12 also was studied in living mice by locating, quantifying, and timing the hRLUC complementation-based bioluminescence imaging signal using a cooled charged coupled device camera. This split reporter system can be used to efficiently screen small molecule drugs that modulate protein-protein interactions and also to assess drugs in living animals. Both are essential steps in the preclinical evaluation of candidate pharmaceutical agents targeting protein-protein interactions, including signaling pathways in cancer cells.
Biomolecular characterization and protein sequences of the Campanian hadrosaur B. canadensis.
Schweitzer, Mary H; Zheng, Wenxia; Organ, Chris L; Avci, Recep; Suo, Zhiyong; Freimark, Lisa M; Lebleu, Valerie S; Duncan, Michael B; Vander Heiden, Matthew G; Neveu, John M; Lane, William S; Cottrell, John S; Horner, John R; Cantley, Lewis C; Kalluri, Raghu; Asara, John M
2009-05-01
Molecular preservation in non-avian dinosaurs is controversial. We present multiple lines of evidence that endogenous proteinaceous material is preserved in bone fragments and soft tissues from an 80-million-year-old Campanian hadrosaur, Brachylophosaurus canadensis [Museum of the Rockies (MOR) 2598]. Microstructural and immunological data are consistent with preservation of multiple bone matrix and vessel proteins, and phylogenetic analyses of Brachylophosaurus collagen sequenced by mass spectrometry robustly support the bird-dinosaur clade, consistent with an endogenous source for these collagen peptides. These data complement earlier results from Tyrannosaurus rex (MOR 1125) and confirm that molecular preservation in Cretaceous dinosaurs is not a unique event.
Overcoming codon-usage bias in heterologous protein expression in Streptococcus gordonii.
Lee, Song F; Li, Yi-Jing; Halperin, Scott A
2009-11-01
One of the limitations facing the development of Streptococcus gordonii into a successful vaccine vector is the inability of this bacterium to express high levels of heterologous proteins. In the present study, we have identified 12 codons deemed as rare codons in S. gordonii and seven other streptococcal species. tRNA genes encoding 10 of the 12 rare codons were cloned into a plasmid. The plasmid was transformed into strains of S. gordonii expressing the fusion protein SpaP/S1, the anti-complement receptor 1 (CR1) single-chain variable fragment (scFv) antibody, or the Toxoplasma gondii cyclophilin C18 protein. These three heterologous proteins contained high percentages of amino acids encoded by rare codons. The results showed that the production of SpaP/S1, anti-CR1 scFv and C18 increased by 2.7-, 120- and 10-fold, respectively, over the control strains. In contrast, the production of the streptococcal SpaP protein without the pertussis toxin S1 fragment was not affected by tRNA gene supplementation, indicating that the increased production of SpaP/S1 protein was due to the ability to overcome the limitation caused by rare codons required for the S1 fragment. The increase in anti-CR1 scFv production was also observed in Streptococcus mutans following tRNA gene supplementation. Collectively, the findings in the present study demonstrate for the first time, to the best of our knowledge, that codon-usage bias exists in Streptococcus spp. and the limitation of heterologous protein expression caused by codon-usage bias can be overcome by tRNA supplementation.
In-vivo detection of binary PKA network interactions upon activation of endogenous GPCRs
Röck, Ruth; Bachmann, Verena; Bhang, Hyo-eun C; Malleshaiah, Mohan; Raffeiner, Philipp; Mayrhofer, Johanna E; Tschaikner, Philipp M; Bister, Klaus; Aanstad, Pia; Pomper, Martin G; Michnick, Stephen W; Stefan, Eduard
2015-01-01
Membrane receptor-sensed input signals affect and modulate intracellular protein-protein interactions (PPIs). Consequent changes occur to the compositions of protein complexes, protein localization and intermolecular binding affinities. Alterations of compartmentalized PPIs emanating from certain deregulated kinases are implicated in the manifestation of diseases such as cancer. Here we describe the application of a genetically encoded Protein-fragment Complementation Assay (PCA) based on the Renilla Luciferase (Rluc) enzyme to compare binary PPIs of the spatially and temporally controlled protein kinase A (PKA) network in diverse eukaryotic model systems. The simplicity and sensitivity of this cell-based reporter allows for real-time recordings of mutually exclusive PPIs of PKA upon activation of selected endogenous G protein-coupled receptors (GPCRs) in cancer cells, xenografts of mice, budding yeast, and zebrafish embryos. This extends the application spectrum of Rluc PCA for the quantification of PPI-based receptor-effector relationships in physiological and pathological model systems. PMID:26099953
Kohl, Beate; Wagner, Carsten A; Huelseweh, Birgit; Busch, Andreas E; Werner, Andreas
1998-01-01
Renal handling of inorganic phosphate (Pi) involves a Na+-Pi cotransport system which is well conserved between vertebrates. The members of this protein family, denoted NaPi-II, share a topology with, it is thought, eight transmembrane domains. The transporter is proposed to be proteolytically cleaved within a large hydrophilic loop in vivo. The consequences of an interrupted backbone were tested by constructing cDNA clones encoding different N- (1-3 and 1-5) and C-terminal (4-8 and 6-8) complementary fragments of NaPi-II from winter flounder. When the cognate fragments were used in combination (1-3 plus 4-8; 1-5 plus 6-8) they comprised the full complement of the putative transporter domains. None of the four individual fragments or the 1-5 plus 6-8 combination when expressed in Xenopus oocytes increased Pi flux. Coexpression of fragments 1-3 plus 4-8 stimulated transport activity identical to that for expressed wild-type NaPi-II with regard to pH dependency and Km for Na+ and Pi binding; however, the maximal transport rate (vmax) was lower. Immunohistochemistry on cryosections confined the functionally active 1-3 plus 4-8 combination to the oocyte membrane. This was not the case for the 1-5 plus 6-8 combination or any of the individual fragments, all of which failed to induce fluorescence. A second immunohistochemical approach using intact oocytes allowed determination of the extracellular regions of the protein. Epitopes within the loop between transmembrane domains 3 and 4 enhanced fluorescence. Neither N- nor C-terminal tags induced fluorescence. PMID:9508800
Barban, P S; Minaeva, V M; Pantiukhina, A N; Startseva, M G
1976-06-01
A comparative study was made of the serological properties and virus-neutralizing activity of antiencephalitis gamma-globulin and Fab-fragments isolated from it by gel-filtration. Horse immunoglobulins against the autumno-summer tick-borne encephalitis virus could be disintegrated with the aid of papaine to monovalent Fab-fragments which (according to the complement fixation reaction, the test of suppression of the complement fixation, and the HAIT) retained the serological activity whose level was compared with that of the serological activity of gamma-globulin. Fab-fragments possessed a marked virus-neutralizing activity. The mean value of a logarithm of the neutralization index was 2.65 +/- 0.2 for Fab-fragments and 3.74 +/- 0.38 for gamma-globulin (P less than 0.01).
The role of the carbohydrate chains in complement (C3) fixation by solid-phase-bound human IgA.
Nikolova, E B; Tomana, M; Russell, M W
1994-01-01
In contrast to antigen-antibody complexes containing native human IgA, solid-phase-deposited IgA activates the alternative complement pathway and binds C3b. To investigate the role of carbohydrate chains in this, various human IgA preparations were treated with neuraminidase alone or together with N-glycanase or O-glycanase, or with mixed glycosidases from the oral bacterium, Streptococcus mitis. Depletion of oligosaccharides was determined by carbohydrate analysis. Removal of sialic acid and N-linked glycan chains greatly increased the C3b-fixing properties of normal serum IgA1 and IgA2. Myeloma IgA1 and IgA2 proteins and secretory IgA had higher C3b-binding activity than normal serum IgA, and this was further increased by removal of sialic acid and N-linked glycans. Fc alpha and Fc alpha-SC fragments of myeloma and secretory IgA1, respectively, but not Fab alpha fragments, obtained by cleavage with bacterial IgA1 proteases and also free secretory component, fixed C3b by the alternative pathway. Images Figure 4 PMID:7927504
Poe, Jerrod A.; Vollmer, Laura; Vogt, Andreas; Smithgall, Thomas E.
2014-01-01
Nef is an HIV-1 accessory factor essential for viral pathogenesis and AIDS progression. Many Nef functions require dimerization, and small molecules that block Nef dimerization may represent antiretroviral drug leads. Here we describe a cell-based assay for Nef dimerization inhibitors based on bimolecular fluorescence complementation (BiFC). Nef was fused to non-fluorescent, complementary fragments of YFP and co-expressed in the same cell population. Dimerization of Nef resulted in juxtaposition of the YFP fragments and reconstitution of the fluorophore. For automation, the Nef-YFP fusion proteins plus an mRFP reporter were expressed from a single vector, separated by picornavirus ‘2A’ linker peptides to permit equivalent translation of all three proteins. Validation studies revealed a critical role for gating on the mRFP-positive subpopulation of transfected cells, as well as use of the mRFP signal to normalize the Nef-BiFC signal. Nef-BiFC/mRFP ratios resulting from cells expressing wild-type vs. dimerization-defective Nef were very clearly separated, with Z-factors consistently in the 0.6–0.7 range. A fully automated pilot screen of the NIH Diversity Set III identified several hit compounds that reproducibly blocked Nef dimerization in the low micromolar range. This BiFC-based assay has the potential to identify cell-active small molecules that directly interfere with Nef dimerization and function. PMID:24282155
Schlecht, Ulrich; Liu, Zhimin; Blundell, Jamie R; St Onge, Robert P; Levy, Sasha F
2017-05-25
Several large-scale efforts have systematically catalogued protein-protein interactions (PPIs) of a cell in a single environment. However, little is known about how the protein interactome changes across environmental perturbations. Current technologies, which assay one PPI at a time, are too low throughput to make it practical to study protein interactome dynamics. Here, we develop a highly parallel protein-protein interaction sequencing (PPiSeq) platform that uses a novel double barcoding system in conjunction with the dihydrofolate reductase protein-fragment complementation assay in Saccharomyces cerevisiae. PPiSeq detects PPIs at a rate that is on par with current assays and, in contrast with current methods, quantitatively scores PPIs with enough accuracy and sensitivity to detect changes across environments. Both PPI scoring and the bulk of strain construction can be performed with cell pools, making the assay scalable and easily reproduced across environments. PPiSeq is therefore a powerful new tool for large-scale investigations of dynamic PPIs.
Identification of C3b-Binding Small-Molecule Complement Inhibitors Using Cheminformatics.
Garcia, Brandon L; Skaff, D Andrew; Chatterjee, Arindam; Hanning, Anders; Walker, John K; Wyckoff, Gerald J; Geisbrecht, Brian V
2017-05-01
The complement system is an elegantly regulated biochemical cascade formed by the collective molecular recognition properties and proteolytic activities of more than two dozen membrane-bound or serum proteins. Complement plays diverse roles in human physiology, such as acting as a sentry against invading microorganisms, priming of the adaptive immune response, and removal of immune complexes. However, dysregulation of complement can serve as a trigger for a wide range of human diseases, which include autoimmune, inflammatory, and degenerative conditions. Despite several potential advantages of modulating complement with small-molecule inhibitors, small-molecule drugs are highly underrepresented in the current complement-directed therapeutics pipeline. In this study, we have employed a cheminformatics drug discovery approach based on the extensive structural and functional knowledge available for the central proteolytic fragment of the cascade, C3b. Using parallel in silico screening methodologies, we identified 45 small molecules that putatively bind C3b near ligand-guided functional hot spots. Surface plasmon resonance experiments resulted in the validation of seven dose-dependent C3b-binding compounds. Competition-based biochemical assays demonstrated the ability of several C3b-binding compounds to interfere with binding of the original C3b ligand that guided their discovery. In vitro assays of complement function identified a single complement inhibitory compound, termed cmp-5, and mechanistic studies of the cmp-5 inhibitory mode revealed it acts at the level of C5 activation. This study has led to the identification of a promising new class of C3b-binding small-molecule complement inhibitors and, to our knowledge, provides the first demonstration of cheminformatics-based, complement-directed drug discovery. Copyright © 2017 by The American Association of Immunologists, Inc.
Identification of C3b-binding Small Molecule Complement Inhibitors Using Cheminformatics
Garcia, Brandon L.; Skaff, D. Andrew; Chatterjee, Arindam; Hanning, Anders; Walker, John K.; Wyckoff, Gerald J.; Geisbrecht, Brian V.
2017-01-01
The complement system is an elegantly regulated biochemical cascade formed by the collective molecular recognition properties and proteolytic activities of over two dozen membrane-bound or serum proteins. Complement plays diverse roles in human physiology which include acting as a sentry against invading microorganisms, priming of the adaptive immune response, and removal of immune complexes. However, dysregulation of complement can serve as a trigger for a wide range of human diseases which include autoimmune, inflammatory, and degenerative conditions. Despite several potential advantages of modulating complement with small molecule inhibitors, small molecule drugs are highly underrepresented in the current complement-directed therapeutics pipeline. In this study we have employed a cheminformatics drug discovery approach based on the extensive structural and functional knowledge available for the central proteolytic fragment of the cascade, C3b. Using parallel in silico screening methodologies we identified 45 small molecules which putatively bind C3b near ligand-guided functional hot-spots. Surface plasmon resonance experiments resulted in the validation of seven dose-dependent C3b-binding compounds. Competition-based biochemical assays demonstrated the ability of several C3b-binding compounds to interfere with binding of the original C3b ligand which guided their discovery. In vitro assays of complement function identified a single complement inhibitory compound, termed cmp-5, and mechanistic studies of the cmp-5 inhibitory mode revealed it acts at the level of C5 activation. This study has led to the identification of a promising new class of C3b-binding small molecule complement inhibitors, and to our knowledge, provides the first demonstration of cheminformatics-based complement-directed drug discovery. PMID:28298523
Scharf, Brian; Clement, Cristina C; Yodmuang, Supansa; Urbanska, Aleksandra M; Suadicani, Sylvia O; Aphkhazava, David; Thi, Mia M; Perino, Giorgio; Hardin, John A; Cobelli, Neil; Vunjak-Novakovic, Gordana; Santambrogio, Laura
2013-07-25
Aging-related oxidative stress has been linked to degenerative modifications in different organs and tissues. Using redox proteomic analysis and illustrative tandem mass spectrometry mapping, we demonstrate oxidative posttranslational modifications in structural proteins of intervertebral discs (IVDs) isolated from aging mice. Increased protein carbonylation was associated with protein fragmentation and aggregation. Complementing these findings, a significant loss of elasticity and increased stiffness was measured in fibrocartilage from aging mice. Studies using circular dichroism and intrinsic tryptophan fluorescence revealed a significant loss of secondary and tertiary structures of purified collagens following oxidation. Collagen unfolding and oxidation promoted both nonenzymatic and enzymatic degradation. Importantly, induction of oxidative modification in healthy fibrocartilage recapitulated the biochemical and biophysical modifications observed in the aging IVD. Together, these results suggest that protein carbonylation, glycation, and lipoxidation could be early events in promoting IVD degenerative changes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Prasada, Rao T; Lakshmi, Prasanth T; Parvathy, R; Murugavel, S; Karuna, Devi; Paritosh, Joshi
2017-02-01
Vitronectin (Vn), a multifunctional protein of blood and extracellular matrix, interacts with complement C9. This interaction may modulate innate immunity. Details of Vn-C9 interactions are limited. Vn-C9 interactions were assessed by employing a goat homologous system and observing Vn binding to C9 in three different assays. Using recombinant fragments, C9 binding was mapped to the N-terminus of Vn. Site directed mutagenesis was performed to alter the second arginine glycine aspartic acid (RGD) sequence (RGD-2) of Vn. Changing R to G or D to A in RGD-2 caused significant decrease in Vn binding to C9 whereas changing of R to G in the first RGD motif (RGD-1) had no effect on Vn binding to C9. These results imply that the RGD-2 of goat Vn is involved in C9 binding. In a competitive binding assay, the presence of soluble RGD peptide inhibited Vn binding to C9 whereas heparin had no effect. Vn binding to C9 was also evaluated in terms of bacterial pathogenesis. Serum dependent inhibition of Escherichia coli growth was significantly reverted when Vn or its N-fragment were included in the assay. The C-fragment, which did not support C9 binding, also partly nullified serum-dependent inhibition of bacterial growth, probably through other serum component(s). © 2017 The Societies and John Wiley & Sons Australia, Ltd.
Direct cloning of the trxB gene that encodes thioredoxin reductase.
Russel, M; Model, P
1985-01-01
A strain was constructed which contains mutations in the genes encoding thioredoxin (trxA) and thioredoxin reductase (trxB) such that filamentous phage f1 cannot grow. The complementation of either mutation with its wild-type allele permits phage growth. We used this strain to select f1 phage which contain a cloned trxB gene. The location of the gene on the cloned fragment was determined, and its protein product was identified. Plasmid subclones that contain this gene overproduce thioredoxin reductase. Images PMID:2989245
Rose, Rachel H; Briddon, Stephen J; Holliday, Nicholas D
2010-01-01
There is increasing complexity in the organization of seven transmembrane domain (7TM) receptor signalling pathways, and in the ability of their ligands to modulate and direct this signalling. Underlying these events is a network of protein interactions between the 7TM receptors themselves and associated effectors, such as G proteins and β-arrestins. Bimolecular fluorescence complementation, or BiFC, is a technique capable of detecting these protein–protein events essential for 7TM receptor function. Fluorescent proteins, such as those from Aequorea victoria, are split into two non-fluorescent halves, which then tag the proteins under study. On association, these fragments refold and regenerate a mature fluorescent protein, producing a BiFC signal indicative of complex formation. Here, we review the experimental criteria for successful application of BiFC, considered in the context of 7TM receptor signalling events such as receptor dimerization, G protein and β-arrestin signalling. The advantages and limitations of BiFC imaging are compared with alternative resonance energy transfer techniques. We show that the essential simplicity of the fluorescent BiFC measurement allows high-content and advanced imaging applications, and that it can probe more complex multi-protein interactions alone or in combination with resonance energy transfer. These capabilities suggest that BiFC techniques will become ever more useful in the analysis of ligand and 7TM receptor pharmacology at the molecular level of protein–protein interactions. This article is part of a themed section on Imaging in Pharmacology. To view the editorial for this themed section visit http://dx.doi.org/10.1111/j.1476-5381.2010.00685.x PMID:20015298
Lynch, AM; Murphy, JR; Gibbs, RS; Levine, RJ; Giclas, PC; Salmon, JE; Holers, VM
2016-01-01
Objective To determine the interrelationships during early pregnancy of complement-activation fragments Bb, C3a and sC5b-9, and angiogenesis-related factors placental growth factor (PiGF), soluble fms-like tyrosine kinase-1 (sFlt-1) and soluble endoglin (sEng), and their associations with pre-eclampsia. Design Prospective cohort study. Setting Denver complement study (June 2005–June 2008). Population A total of 668 pregnant women with singleton gestations, recruited between 10 and 15 weeks of gestation. Methods Using univariable and multivariable logistic regression analysis, concentrations of complement-activation fragments and angiogenesis-related factors were compared between 10 and 15 weeks of gestation in women who subsequently did or did not develop pre-eclampsia. Interrelationships between these variables were tested using the non-parametric Spearman rank correlation coefficient. Main outcome measure Pre-eclampsia. The association of complement-activation fragments and angiogenesis-related factors with obesity was also examined. Results The mean (±SD) levels of complement Bb in early pregnancy among women who did and did not develop pre-eclampsia were 0.84 (±0.26) µg/ml and 0.69 (±0.2) µg/ml, respectively (P = 0.001). Concentrations of PiGF were significantly (P = 0.01) lower (31 ± 12 pg/ml) in early pregnancy in the pre-eclamptic group of women, as compared with the normotensive group (39 ± 32 pg/ml). The adjusted odds ratio (AOR) of Bb and PiGF were 2.1 (CI = 1.4–3.1, P < 0.0003) and 0.2 (CI = 0.07–0.7, P = 0.01), respectively. There was no significant difference in the levels of C3a, sC5b-9, sFlt-1 and sEng in early pregnancy among women who developed pre-eclampsia, compared with women who remained normotensive during pregnancy. Higher levels of Bb (P = 0.0001) and C3a (P = 0.03), and lower levels of sFlt-1 (P = 0.0002) and sEng (P = 0.0001) were found among women with obesity, compared with non-obese controls. No meaningful relationships were found between the complement-activation fragments and the angiogenesis-related factors. Conclusions In this cohort during early pregnancy, increased concentrations of complement-activation factor Bb and lower concentrations of PiGF were associated with the development of pre-eclampsia later in pregnancy. PMID:20074261
Gao, Xinxin; Yo, Peggy; Keith, Andrew; Ragan, Timothy J.; Harris, Thomas K.
2003-01-01
A novel thermodynamically-balanced inside-out (TBIO) method of primer design was developed and compared with a thermodynamically-balanced conventional (TBC) method of primer design for PCR-based gene synthesis of codon-optimized gene sequences for the human protein kinase B-2 (PKB2; 1494 bp), p70 ribosomal S6 subunit protein kinase-1 (S6K1; 1622 bp) and phosphoinositide-dependent protein kinase-1 (PDK1; 1712 bp). Each of the 60mer TBIO primers coded for identical nucleotide regions that the 60mer TBC primers covered, except that half of the TBIO primers were reverse complement sequences. In addition, the TBIO and TBC primers contained identical regions of temperature- optimized primer overlaps. The TBC method was optimized to generate sequential overlapping fragments (∼0.4–0.5 kb) for each of the gene sequences, and simultaneous and sequential combinations of overlapping fragments were tested for their ability to be assembled under an array of PCR conditions. However, no fully synthesized gene sequences could be obtained by this approach. In contrast, the TBIO method generated an initial central fragment (∼0.4–0.5 kb), which could be gel purified and used for further inside-out bidirectional elongation by additional increments of 0.4–0.5 kb. By using the newly developed TBIO method of PCR-based gene synthesis, error-free synthetic genes for the human protein kinases PKB2, S6K1 and PDK1 were obtained with little or no corrective mutagenesis. PMID:14602936
Role of molecular mimicry to HIV-1 peptides in HIV-1–related immunologic thrombocytopenia
Li, Zongdong; Nardi, Michael A.; Karpatkin, Simon
2005-01-01
Patients with early HIV-1 infection develop an autoimmune thrombocytopenia in which antibody is directed against an immunodominant epitope of the β3 (glycoprotein IIIa [GPIIIa]) integrin, GPIIIa49-66. This antibody induces thrombocytopenia by a novel complement-independent mechanism in which platelets are fragmented by antibody-induced generation of H2O2 derived from the interaction of platelet nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and 12-lipoxygenase. To examine whether sharing of epitope between host and parasite may be responsible for this immunodominant epitope, we screened for antibody-reactive peptides capable of inhibiting platelet lysis and oxidation in vitro, using a filamentous phage display 7-mer peptide library. Fourteen of these phage-peptide clones were identified. Five shared close sequence similarity with GPIIIa49-66, as expected. Ten were molecular mimics with close sequence similarity to HIV-1 proteins nef, gag, env, and pol. Seven were synthesized as 10-mers from their known HIV-1 sequence and found to inhibit anti–GPIIIa49-66–induced platelet oxidation/fragmentation in vitro. Three rabbit antibodies raised against these peptides induced platelet oxidation/fragmentation in vitro and thrombocytopenia in vivo when passively transferred into mice. One of the peptides shared a known epitope region with HIV-1 protein nef and was derived from a variant region of the protein. These data provide strong support for molecular mimicry in HIV-1-immunologic thrombocytopenia within polymorphic regions of HIV-1 proteins. A known epitope of nef is particularly incriminated. PMID:15774614
Kerekov, Nikola S; Ivanova, Iva I; Mihaylova, Nikolina M; Nikolova, Maria; Prechl, Jozsef; Tchorbanov, Andrey I
2014-10-01
Highly purified, subunit, or synthetic viral antigens are known to be weakly immunogenic and potentate only the antibody, rather than cell-mediated immune responses. An alternative approach for inducing protective immunity with small viral peptides would be the direct targeting of viral epitopes to the immunocompetent cells by DNA vaccines encoding antibody fragments specific to activating cell surface co-receptor molecules. Here, we are exploring as a new genetic vaccine, a DNA chimeric molecule encoding a T and B cell epitope-containing influenza A virus hemagglutinin peptide joined to sequences encoding a single-chain variable fragment antibody fragment specific for the costimulatory B cell complement receptors 1 and 2. This recombinant DNA molecule was inserted into eukaryotic expression vector and used as a naked DNA vaccine in WT and CR1/2 KO mice. The intramuscular administration of the DNA construct resulted in the in vivo expression of an immunogenic chimeric protein, which cross-links cell surface receptors on influenza-specific B cells. The DNA vaccination was followed by prime-boosting with the protein-engineered replica of the DNA construct, thus delivering an activation intracellular signal. Immunization with an expression vector containing the described construct and boosting with the protein chimera induced a strong anti-influenza cytotoxic response, modulation of cytokine profile, and a weak antibody response in Balb/c mice. The same immunization scheme did not result in generation of influenza-specific response in mice lacking the target receptor, underlining the molecular adjuvant effect of receptor targeting.
NASA Astrophysics Data System (ADS)
Foreman, David J.; Dziekonski, Eric T.; McLuckey, Scott A.
2018-04-01
A new approach for the identification of intact proteins has been developed that relies on the generation of relatively few abundant products from specific cleavage sites. This strategy is intended to complement standard approaches that seek to generate many fragments relatively non-selectively. Specifically, this strategy seeks to maximize selective cleavage at aspartic acid and proline residues via collisional activation of precursor ions formed via electrospray ionization (ESI) under denaturing conditions. A statistical analysis of the SWISS-PROT database was used to predict the number of arginine residues for a given intact protein mass and predict a m/z range where the protein carries a similar charge to the number of arginine residues thereby enhancing cleavage at aspartic acid residues by limiting proton mobility. Cleavage at aspartic acid residues is predicted to be most favorable in the m/z range of 1500-2500, a range higher than that normally generated by ESI at low pH. Gas-phase proton transfer ion/ion reactions are therefore used for precursor ion concentration from relatively high charge states followed by ion isolation and subsequent generation of precursor ions within the optimal m/z range via a second proton transfer reaction step. It is shown that the majority of product ion abundance is concentrated into cleavages C-terminal to aspartic acid residues and N-terminal to proline residues for ions generated by this process. Implementation of a scoring system that weights both ion fragment type and ion fragment area demonstrated identification of standard proteins, ranging in mass from 8.5 to 29.0 kDa. [Figure not available: see fulltext.
Foreman, David J; Dziekonski, Eric T; McLuckey, Scott A
2018-04-30
A new approach for the identification of intact proteins has been developed that relies on the generation of relatively few abundant products from specific cleavage sites. This strategy is intended to complement standard approaches that seek to generate many fragments relatively non-selectively. Specifically, this strategy seeks to maximize selective cleavage at aspartic acid and proline residues via collisional activation of precursor ions formed via electrospray ionization (ESI) under denaturing conditions. A statistical analysis of the SWISS-PROT database was used to predict the number of arginine residues for a given intact protein mass and predict a m/z range where the protein carries a similar charge to the number of arginine residues thereby enhancing cleavage at aspartic acid residues by limiting proton mobility. Cleavage at aspartic acid residues is predicted to be most favorable in the m/z range of 1500-2500, a range higher than that normally generated by ESI at low pH. Gas-phase proton transfer ion/ion reactions are therefore used for precursor ion concentration from relatively high charge states followed by ion isolation and subsequent generation of precursor ions within the optimal m/z range via a second proton transfer reaction step. It is shown that the majority of product ion abundance is concentrated into cleavages C-terminal to aspartic acid residues and N-terminal to proline residues for ions generated by this process. Implementation of a scoring system that weights both ion fragment type and ion fragment area demonstrated identification of standard proteins, ranging in mass from 8.5 to 29.0 kDa. Graphical Abstract ᅟ.
Tortajada, Agustín; Gutiérrez, Eduardo; Goicoechea de Jorge, Elena; Anter, Jaouad; Segarra, Alfons; Espinosa, Mario; Blasco, Miquel; Roman, Elena; Marco, Helena; Quintana, Luis F; Gutiérrez, Josué; Pinto, Sheila; Lopez-Trascasa, Margarita; Praga, Manuel; Rodriguez de Córdoba, Santiago
2017-10-01
IgA nephropathy (IgAN), a frequent cause of chronic kidney disease worldwide, is characterized by mesangial deposition of galactose-deficient IgA1-containing immune complexes. Complement involvement in IgAN pathogenesis is suggested by the glomerular deposition of complement components and the strong protection from IgAN development conferred by the deletion of the CFHR3 and CFHR1 genes (Δ CFHR3-CFHR1 ). Here we searched for correlations between clinical progression and levels of factor H (FH) and FH-related protein 1 (FHR-1) using well-characterized patient cohorts consisting of 112 patients with IgAN, 46 with non-complement-related autosomal dominant polycystic kidney disease (ADPKD), and 76 control individuals. Patients with either IgAN or ADPKD presented normal FH but abnormally elevated FHR-1 levels and FHR-1/FH ratios compared to control individuals. Highest FHR-1 levels and FHR-1/FH ratios are found in patients with IgAN with disease progression and in patients with ADPKD who have reached chronic kidney disease, suggesting that renal function impairment elevates the FHR-1/FH ratio, which may increase FHR-1/FH competition for activated C3 fragments. Interestingly, Δ CFHR3-CFHR1 homozygotes are protected from IgAN, but not from ADPKD, and we found five IgAN patients with low FH carrying CFH or CFI pathogenic variants. These data support a decreased FH activity in IgAN due to increased FHR-1/FH competition or pathogenic CFH variants. They also suggest that alternative pathway complement activation in patients with IgAN, initially triggered by galactose-deficient IgA1-containing immune complexes, may exacerbate in a vicious circle as renal function deterioration increase FHR-1 levels. Thus, a role of FHR-1 in IgAN pathogenesis is to compete with complement regulation by FH. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Bauerová-Hlinková, Vladena; Hostinová, Eva; Gašperík, Juraj; Beck, Konrad; Borko, Ľubomír; Lai, F. Anthony; Zahradníková, Alexandra; Ševčík, Jozef
2010-01-01
We report the domain analysis of the N-terminal region (residues 1–759) of the human cardiac ryanodine receptor (RyR2) that encompasses one of the discrete RyR2 mutation clusters associated with catecholaminergic polymorphic ventricular tachycardia (CPVT1) and arrhythmogenic right ventricular dysplasia (ARVD2). Our strategy utilizes a bioinformatics approach complemented by protein expression, solubility analysis and limited proteolytic digestion. Based on the bioinformatics analysis, we designed a series of specific RyR2 N-terminal fragments for cloning and overexpression in Escherichia coli. High yields of soluble proteins were achieved for fragments RyR21–606·His6, RyR2391–606·His6, RyR2409–606·His6, Trx·RyR2384–606·His6, Trx·RyR2391-606·His6 and Trx·RyR2409–606·His6. The folding of RyR21–606·His6 was analyzed by circular dichroism spectroscopy resulting in α-helix and β-sheet content of ∼23% and ∼29%, respectively, at temperatures up to 35 °C, which is in agreement with sequence based secondary structure predictions. Tryptic digestion of the largest recombinant protein, RyR21–606·His6, resulted in the appearance of two specific subfragments of ∼40 and 25 kDa. The 25 kDa fragment exhibited greater stability. Hybridization with anti-His6·Tag antibody indicated that RyR21–606·His6 is cleaved from the N-terminus and amino acid sequencing of the proteolytic fragments revealed that digestion occurred after residues 259 and 384, respectively. PMID:20045464
Yuan, Fenghua; Qian, Liangyue; Zhao, Xinliang; Liu, Jesse Y.; Song, Limin; D'Urso, Gennaro; Jain, Chaitanya; Zhang, Yanbin
2012-01-01
The Fanconi anemia complementation group A (FANCA) gene is one of 15 disease-causing genes and has been found to be mutated in ∼60% of Fanconi anemia patients. Using purified protein, we report that human FANCA has intrinsic affinity for nucleic acids. FANCA binds to both single-stranded (ssDNA) and double-stranded (dsDNA) DNAs; however, its affinity for ssDNA is significantly higher than for dsDNA in an electrophoretic mobility shift assay. FANCA also binds to RNA with an intriguingly higher affinity than its DNA counterpart. FANCA requires a certain length of nucleic acids for optimal binding. Using DNA and RNA ladders, we determined that the minimum number of nucleotides required for FANCA recognition is ∼30 for both DNA and RNA. By testing the affinity between FANCA and a variety of DNA structures, we found that a 5′-flap or 5′-tail on DNA facilitates its interaction with FANCA. A patient-derived FANCA truncation mutant (Q772X) has diminished affinity for both DNA and RNA. In contrast, the complementing C-terminal fragment of Q772X, C772–1455, retains the differentiated nucleic acid-binding activity (RNA > ssDNA > dsDNA), indicating that the nucleic acid-binding domain of FANCA is located primarily at its C terminus, where most disease-causing mutations are found. PMID:22194614
Yuan, Fenghua; Qian, Liangyue; Zhao, Xinliang; Liu, Jesse Y; Song, Limin; D'Urso, Gennaro; Jain, Chaitanya; Zhang, Yanbin
2012-02-10
The Fanconi anemia complementation group A (FANCA) gene is one of 15 disease-causing genes and has been found to be mutated in ∼60% of Fanconi anemia patients. Using purified protein, we report that human FANCA has intrinsic affinity for nucleic acids. FANCA binds to both single-stranded (ssDNA) and double-stranded (dsDNA) DNAs; however, its affinity for ssDNA is significantly higher than for dsDNA in an electrophoretic mobility shift assay. FANCA also binds to RNA with an intriguingly higher affinity than its DNA counterpart. FANCA requires a certain length of nucleic acids for optimal binding. Using DNA and RNA ladders, we determined that the minimum number of nucleotides required for FANCA recognition is ∼30 for both DNA and RNA. By testing the affinity between FANCA and a variety of DNA structures, we found that a 5'-flap or 5'-tail on DNA facilitates its interaction with FANCA. A patient-derived FANCA truncation mutant (Q772X) has diminished affinity for both DNA and RNA. In contrast, the complementing C-terminal fragment of Q772X, C772-1455, retains the differentiated nucleic acid-binding activity (RNA > ssDNA > dsDNA), indicating that the nucleic acid-binding domain of FANCA is located primarily at its C terminus, where most disease-causing mutations are found.
Pi, J; Wookey, P J; Pittard, A J
1991-01-01
The phenylalanine-specific permease gene (pheP) of Escherichia coli has been cloned and sequenced. The gene was isolated on a 6-kb Sau3AI fragment from a chromosomal library, and its presence was verified by complementation of a mutant lacking the functional phenylalanine-specific permease. Subcloning from this fragment localized the pheP gene on a 2.7-kb HindIII-HindII fragment. The nucleotide sequence of this 2.7-kb region was determined. An open reading frame was identified which extends from a putative start point of translation (GTG at position 636) to a termination signal (TAA at position 2010). The assignment of the GTG as the initiation codon was verified by site-directed mutagenesis of the initiation codon and by introducing a chain termination mutation into the pheP-lacZ fusion construct. A single initiation site of transcription 30 bp upstream of the start point of translation was identified by the primer extension analysis. The pheP structural gene consists of 1,374 nucleotides specifying a protein of 458 amino acid residues. The PheP protein is very hydrophobic (71% nonpolar residues). A topological model predicted from the sequence analysis defines 12 transmembrane segments. This protein is highly homologous with the AroP (general aromatic transport) system of E. coli (59.6% identity) and to a lesser extent with the yeast permeases CAN1 (arginine), PUT4 (proline), and HIP1 (histidine) of Saccharomyces cerevisiae. Images PMID:1711024
The natural impact of banana inflorescences (Musa acuminata) on human nutrition.
Fingolo, Catharina E; Braga, João M A; Vieira, Ana C M; Moura, Mirian R L; Kaplan, Maria Auxiliadora C
2012-12-01
Banana inflorescences are popularly known as 'navels,' and they are used in Brazil as nutritional complements. However, the nutritional value of banana inflorescences (male flowers and bracts) has never been studied. Therefore, plant material of Musa acuminata, cultivar "ouro", was collected in Rio de Janeiro state, Brazil, and then submitted to chemical procedures to determine its nutritional composition. The experiment was arranged a completely randomized design and performed in triplicate. The sample composition analysis showed percentual average value for moisture, protein, fat and ash as 8.21, 14.50, 4.04 and 14.43, respectively. The dehydrated inflorescences were found to contain a significant nutritive complement based on their high content of potassium (5008.26 mg / 100 g) and fiber 49.83% (lignin, cellulose and hemicelluloses) revealing important functional and nutritional properties. In a parallel evaluation, the anatomical study revealed key elements for the recognition of Musa acuminata when reduced to fragments.
Hayman, G T; Beck von Bodman, S; Kim, H; Jiang, P; Farrand, S K
1993-01-01
The acc region, subcloned from pTiC58 of classical nopaline and agrocinopine A and B Agrobacterium tumefaciens C58, allowed agrobacteria to grow using agrocinopine B as the sole source of carbon and energy. acc is approximately 6 kb in size. It consists of at least five genes, accA through accE, as defined by complementation analysis using subcloned fragments and transposon insertion mutations of acc carried on different plasmids within the same cell. All five regions are required for agrocin 84 sensitivity, and at least four are required for agrocinopine and agrocin 84 uptake. The complementation results are consistent with the hypothesis that each of the five regions is separately transcribed. Maxicell experiments showed that the first of these genes, accA, encodes a 60-kDa protein. Analysis of osmotic shock fractions showed this protein to be located in the periplasm. The DNA sequence of the accA region revealed an open reading frame encoding a predicted polypeptide of 59,147 Da. The amino acid sequence encoded by this open reading frame is similar to the periplasmic binding proteins OppA and DppA of Escherichia coli and Salmonella typhimurium and OppA of Bacillus subtilis. Images PMID:8366042
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephens, R.L.; Haygood, M.G.; Lidstrom, M.E.
An open-reading-frame fragment of a Methylobacterium sp. strain AM1 gene (moxF) encoding a portion of the methanol dehydrogenase structural protein has been used as a hybridization probe to detect similar sequences in a variety of methylotrophic bacteria. This hybridization was used to isolate clones containing putative moxF genes from two obligate methanotrophic bacteria, Methylococcus capsulatus Bath and Methylomonas albus BG8. The identity of these genes was confirmed in two ways. A T7 expression vector was used to produce methanol dehydrogenase protein in Escherichia coli from the cloned genes,a and in each case the protein was identified by immunoblotting with antiserummore » against the Methylomonas albus methanol dehydrogenase. In addition, a moxF mutant of Methylobacterium strain AM1 was complemented to a methanol-positive phenotype that partially restored methanol dehydrogenase activity, using broad-host-range plasmids containing the moxF genes from each methanotroph. The partial complementation of a moxF mutant in a facultative serine pathway methanol utilizer by moxF genes from type I and type X obligate methane utilizers suggests broad functional conservation of the methanol oxidation system among gram-negative methylotrophs.« less
Woehrl, Bianca; Brouwer, Matthijs C.; Murr, Carmen; Heckenberg, Sebastiaan G.B.; Baas, Frank; Pfister, Hans W.; Zwinderman, Aeilko H.; Morgan, B. Paul; Barnum, Scott R.; van der Ende, Arie; Koedel, Uwe; van de Beek, Diederik
2011-01-01
Pneumococcal meningitis is the most common and severe form of bacterial meningitis. Fatality rates are substantial, and long-term sequelae develop in about half of survivors. Disease outcome has been related to the severity of the proinflammatory response in the subarachnoid space. The complement system, which mediates key inflammatory processes, has been implicated as a modulator of pneumococcal meningitis disease severity in animal studies. Additionally, SNPs in genes encoding complement pathway proteins have been linked to susceptibility to pneumococcal infection, although no associations with disease severity or outcome have been established. Here, we have performed a robust prospective nationwide genetic association study in patients with bacterial meningitis and found that a common nonsynonymous complement component 5 (C5) SNP (rs17611) is associated with unfavorable disease outcome. C5 fragment levels in cerebrospinal fluid (CSF) of patients with bacterial meningitis correlated with several clinical indicators of poor prognosis. Consistent with these human data, C5a receptor–deficient mice with pneumococcal meningitis had lower CSF wbc counts and decreased brain damage compared with WT mice. Adjuvant treatment with C5-specific monoclonal antibodies prevented death in all mice with pneumococcal meningitis. Thus, our results suggest C5-specific monoclonal antibodies could be a promising new antiinflammatory adjuvant therapy for pneumococcal meningitis. PMID:21926466
2012-01-01
Background Proteins that are associated with hypertension may be identified by comparing the 2-dimensional gel electrophoresis (2-DE) profiles of the sera of spontaneously hypertensive rats (SHR) with those generated from normotensive Spraque-Dawley rats (SDR). Results Five proteins of high abundance were found to be significantly altered when the 2-DE serum profiles of the SHR were compared to those that were similarly generated from the SDR. Analysis by mass spectrometry and database search identified the proteins as retinol binding protein 4, complement C3, albumin (19.9 kDa fragment), alpha1 macroglobulin and alpha1 antiproteinase, which are all known to be associated with hypertension. The altered expression of the two latter proteins was found to be abrogated when similar analysis was performed on sera of the SHR that were treated with captopril. Conclusion Our data suggests that serum alpha1 macroglobulin and alpha1 antiproteinase are potentially useful complementary biomolecular indicators for monitoring of hypertension. PMID:22416803
Split-gene system for hybrid wheat seed production.
Kempe, Katja; Rubtsova, Myroslava; Gils, Mario
2014-06-24
Hybrid wheat plants are superior in yield and growth characteristics compared with their homozygous parents. The commercial production of wheat hybrids is difficult because of the inbreeding nature of wheat and the lack of a practical fertility control that enforces outcrossing. We describe a hybrid wheat system that relies on the expression of a phytotoxic barnase and provides for male sterility. The barnase coding information is divided and distributed at two loci that are located on allelic positions of the host chromosome and are therefore "linked in repulsion." Functional complementation of the loci is achieved through coexpression of the barnase fragments and intein-mediated ligation of the barnase protein fragments. This system allows for growth and maintenance of male-sterile female crossing partners, whereas the hybrids are fertile. The technology does not require fertility restorers and is based solely on the genetic modification of the female crossing partner.
Split-gene system for hybrid wheat seed production
Kempe, Katja; Rubtsova, Myroslava; Gils, Mario
2014-01-01
Hybrid wheat plants are superior in yield and growth characteristics compared with their homozygous parents. The commercial production of wheat hybrids is difficult because of the inbreeding nature of wheat and the lack of a practical fertility control that enforces outcrossing. We describe a hybrid wheat system that relies on the expression of a phytotoxic barnase and provides for male sterility. The barnase coding information is divided and distributed at two loci that are located on allelic positions of the host chromosome and are therefore “linked in repulsion.” Functional complementation of the loci is achieved through coexpression of the barnase fragments and intein-mediated ligation of the barnase protein fragments. This system allows for growth and maintenance of male-sterile female crossing partners, whereas the hybrids are fertile. The technology does not require fertility restorers and is based solely on the genetic modification of the female crossing partner. PMID:24821800
... of a certain protein. This protein is part of the complement system. The complement system is a group of proteins ... system and play a role in the development of inflammation. The complement system protects the body from infections, dead cells and ...
... of a certain protein. This protein is part of the complement system. The complement system is a group of proteins ... system and play a role in the development of inflammation. The complement system protects the body from infections, dead cells and ...
NASA Astrophysics Data System (ADS)
Weisbrod, Chad R.; Kaiser, Nathan K.; Syka, John E. P.; Early, Lee; Mullen, Christopher; Dunyach, Jean-Jacques; English, A. Michelle; Anderson, Lissa C.; Blakney, Greg T.; Shabanowitz, Jeffrey; Hendrickson, Christopher L.; Marshall, Alan G.; Hunt, Donald F.
2017-09-01
High resolution mass spectrometry is a key technology for in-depth protein characterization. High-field Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) enables high-level interrogation of intact proteins in the most detail to date. However, an appropriate complement of fragmentation technologies must be paired with FTMS to provide comprehensive sequence coverage, as well as characterization of sequence variants, and post-translational modifications. Here we describe the integration of front-end electron transfer dissociation (FETD) with a custom-built 21 tesla FT-ICR mass spectrometer, which yields unprecedented sequence coverage for proteins ranging from 2.8 to 29 kDa, without the need for extensive spectral averaging (e.g., 60% sequence coverage for apo-myoglobin with four averaged acquisitions). The system is equipped with a multipole storage device separate from the ETD reaction device, which allows accumulation of multiple ETD fragment ion fills. Consequently, an optimally large product ion population is accumulated prior to transfer to the ICR cell for mass analysis, which improves mass spectral signal-to-noise ratio, dynamic range, and scan rate. We find a linear relationship between protein molecular weight and minimum number of ETD reaction fills to achieve optimum sequence coverage, thereby enabling more efficient use of instrument data acquisition time. Finally, real-time scaling of the number of ETD reactions fills during method-based acquisition is shown, and the implications for LC-MS/MS top-down analysis are discussed. [Figure not available: see fulltext.
Marvel, Deborah J.; Kuldau, Gretchen; Hirsch, Ann; Richards, Eric; Torrey, John G.; Ausubel, Frederick M.
1985-01-01
Parasponia, a woody member of the elm family, is the only nonlegume genus whose members are known to form an effective nitrogen-fixing symbiosis with a Rhizobium species. The bacterial strain RP501 is a slow-growing strain of Rhizobium isolated from Parasponia nodules. Strain RP501 also nodulates the legumes siratro (Macroptilium atropurpureum) and cowpea (Vigna unguiculata). Using a cosmid clone bank of RP501 DNA, we isolated a 13.4-kilobase (kb) EcoRI fragment that complemented insertion and point mutations in three contiguous nodulation genes (nodABC) of Rhizobium meliloti, the endosymbiont of alfalfa (Medicago sativa). The complemented R. meliloti nod mutants induced effective nitrogen-fixing nodules on alfalfa seedlings but not on siratro, cowpeas, or Parasponia. The cloned RP501 nodulation locus hybridized to DNA fragments carrying the R. meliloti nodABC genes. A 3-kb cluster of Tn5 insertion mutations on the RP501 13.4-kb EcoRI fragment prevented complementation of R. meliloti nodABC mutations. Images PMID:16593600
Rosoff, J D; Soltow, L O; Vocelka, C R; Schmer, G; Chandler, W L; Cochran, R P; Kunzelman, K S; Spiess, B D
1998-08-01
To examine whether a second-generation perfluorocarbon (PFC) blood substitute added to the cardiopulmonary bypass (CPB) prime influences complement production. A prospective, randomized, single-blinded, ex vivo model. A university hospital, laboratory, and clinics. Ten healthy adult consented volunteer blood donors (five men, five women). Ex vivo closed-loop extracorporeal circuit including membrane oxygenator, tubing, and filter primed with crystalloid or crystalloid plus PFC was circulated for 1 hour with the addition of 500 mL of heparinized fresh human whole blood. Laboratory specimens were drawn from the circuit at 10-minute intervals for 1 hour and measured for complement (C3a, Bb fragment) concentrations, blood gases, fibrinogen concentration, platelet count, and hematocrit. In the PFC group, C3a and Bb fragments were equal to or less than those in the group that received crystalloid alone. The second-generation PFC added to the prime of a CPB circuit does not independently increase complement production.
He, S Y; Lindeberg, M; Chatterjee, A K; Collmer, A
1991-02-01
The out genes of the enterobacterial plant pathogen Erwinia chrysanthemi are responsible for the efficient extracellular secretion of multiple plant cell wall-degrading enzymes, including four isozymes of pectate lyase, exo-poly-alpha-D-galacturonosidase, pectin methylesterase, and cellulase. Out- mutants of Er. chrysanthemi are unable to export any of these proteins beyond the periplasm and are severely reduced in virulence. We have cloned out genes from Er. chrysanthemi in the stable, low-copy-number cosmid pCPP19 by complementing several transposon-induced mutations. The cloned out genes were clustered in a 12-kilobase chromosomal DNA region, complemented all existing out mutations in Er. chrysanthemi EC16, and enabled Escherichia coli strains to efficiently secrete the extracellular pectic enzymes produced from cloned Er. chrysanthemi genes, while retaining the periplasmic marker protein beta-lactamase. DNA sequencing of a 2.4-kilobase EcoRI fragment within the out cluster revealed four genes arranged colinearly and sharing substantial similarity with the Klebsiella pneumoniae genes pulH, pulI, pulJ, and pulK, which are necessary for pullulanase secretion. However, K. pneumoniae cells harboring the cloned Er. chrysanthemi pelE gene were unable to secrete the Erwinia pectate lyase. Furthermore, the Er. chrysanthemi Out system was unable to secrete an extracellular pectate lyase encoded by a gene from a closely related plant pathogen. Erwinia carotovora ssp. carotovora. The results suggest that these enterobacteria secrete polysaccharidases by a conserved mechanism whose protein-recognition capacities have diverged.
Fukuzawa, Noriho; Ishihara, Takeaki; Itchoda, Noriko; Tabayashi, Noriko; Kataoka, Chiwa; Masuta, Chikara; Matsumura, Takeshi
2011-01-01
A plant viral vector has the potential to efficiently produce recombinant proteins at a low cost in a short period. Although recombinant proteins can be also produced by transgenic plants, a plant viral vector, if available, may be more convenient when urgent scale-up in production is needed. However, it is difficult to use a viral vector in open fields because of the risk of escape to the environment. In this study, we constructed a novel viral vector system using a movement-defective Cucumber mosaic virus (CMV) vector, which is theoretically localized in the inoculated cells but infects systemically only with the aid of the transgenic helper plant that complements viral movement, diminishing the risk of viral proliferation. Interestingly, the helper plant systemically infected with the vector gave strong cross-protection against challenge inoculation with wild-type CMVs. Using CMV strains belonging to two discrete CMV groups (subgroups I and II), we also improved the system to prevent recombination between the vector and the transgene transcript in the helper plant. We here demonstrate the expression of an anti-dioxin single chain variable fragment (DxscFv) and interleukin-1 receptor antagonist (IL1-Ra) in Nicotiana benthamiana by this viral vector confinement system, which is applicable for many useful high-quality recombinant proteins. © 2010 The Authors. Plant Biotechnology Journal © 2010 Society for Experimental Biology and Blackwell Publishing Ltd.
Petty, Tom J.; Nishimura, Taisuke; Emamzadah, Soheila; Gabus, Caroline; Paszkowski, Jerzy; Halazonetis, Thanos D.; Thore, Stéphane
2010-01-01
Of the known epigenetic control regulators found in plants, the Morpheus’ molecule 1 (MOM1) protein is atypical in that the deletion of MOM1 does not affect the level of epigenetic marks controlling the transcriptional status of the genome. A short 197-amino-acid fragment of the MOM1 protein sequence can complement MOM1 deletion when coupled to a nuclear localization signal, suggesting that this region contains a functional domain that compensates for the loss of the full-length protein. Numerous constructs centred on the highly conserved MOM1 motif 2 (CMM2) present in these 197 residues have been generated and expressed in Escherichia coli. Following purification and crystallization screening, diamond-shaped single crystals were obtained that diffracted to ∼3.2 Å resolution. They belonged to the trigonal space group P3121 (or P3221), with unit-cell parameters a = 85.64, c = 292.74 Å. Structure determination is ongoing. PMID:20693667
Petty, Tom J; Nishimura, Taisuke; Emamzadah, Soheila; Gabus, Caroline; Paszkowski, Jerzy; Halazonetis, Thanos D; Thore, Stéphane
2010-08-01
Of the known epigenetic control regulators found in plants, the Morpheus' molecule 1 (MOM1) protein is atypical in that the deletion of MOM1 does not affect the level of epigenetic marks controlling the transcriptional status of the genome. A short 197-amino-acid fragment of the MOM1 protein sequence can complement MOM1 deletion when coupled to a nuclear localization signal, suggesting that this region contains a functional domain that compensates for the loss of the full-length protein. Numerous constructs centred on the highly conserved MOM1 motif 2 (CMM2) present in these 197 residues have been generated and expressed in Escherichia coli. Following purification and crystallization screening, diamond-shaped single crystals were obtained that diffracted to approximately 3.2 A resolution. They belonged to the trigonal space group P3(1)21 (or P3(2)21), with unit-cell parameters a=85.64, c=292.74 A. Structure determination is ongoing.
Coty, Jean-Baptiste; Noiray, Magali; Vauthier, Christine
2018-04-26
A Surface Plasmon Resonance chip (SPR) was developed to study the activation of complement system triggered by nanomaterials in contact with human serum, which is an important concern today to warrant safety of nanomedicines. The developed chip was tested for its specificity in complex medium and its longevity of use. It was then employed to assess the release of complement fragments upon incubation of nanoparticles in serum. A comparison was made with other current methods assessing complement activation (μC-IE, ELISA). The SPR chip was found to give a consistent response for C3a release upon activation by nanoparticles. Results were similar to those obtained by μC-IE. However, ELISA detection of iC3b fragments showed an explained high non-specific background. The impact of sample preparation preceding the analysis was assessed with the newly develop SPR method. The removal of nanoparticles before analysis showed an important modification in the obtained response, possibly leading to false negative results. The SPR chip developed in this work allows for an automated assessment of complement activation triggered by nanoparticles with possibility of multiplexed analysis. The design of the chip proved to give consistent results of complement activation by nanoparticles.
Binks, Michael; Sriprakash, K. S.
2004-01-01
An extracellular protein of Streptococcus pyogenes, streptococcal inhibitor of complement (SIC), and its variant, called DRS (distantly related to SIC), are expressed by some S. pyogenes strains. SIC from type 1 (M1) isolates of S. pyogenes interferes with complement-mediated cell lysis, reportedly via its interaction with complement proteins. In this study we demonstrate that S. pyogenes strains carrying emm12 and emm55 (the genes for the M12 and M55 proteins, respectively) express and secrete DRS. This protein, like SIC, binds to the C6 and C7 complement proteins, and competition enzyme-linked immunosorbent assay experiments demonstrate that DRS competes with SIC for C6 and C7 binding. Similarly, SIC competes with DRS for binding to the complement proteins. Despite this, the recombinant DRS preparation showed no significant effect on complement function, as determined by lysis of sensitized sheep erythrocytes. Furthermore, the presence of DRS is not inhibitory to SIC activity. PMID:15213143
Binks, Michael; Sriprakash, K S
2004-07-01
An extracellular protein of Streptococcus pyogenes, streptococcal inhibitor of complement (SIC), and its variant, called DRS (distantly related to SIC), are expressed by some S. pyogenes strains. SIC from type 1 (M1) isolates of S. pyogenes interferes with complement-mediated cell lysis, reportedly via its interaction with complement proteins. In this study we demonstrate that S. pyogenes strains carrying emm12 and emm55 (the genes for the M12 and M55 proteins, respectively) express and secrete DRS. This protein, like SIC, binds to the C6 and C7 complement proteins, and competition enzyme-linked immunosorbent assay experiments demonstrate that DRS competes with SIC for C6 and C7 binding. Similarly, SIC competes with DRS for binding to the complement proteins. Despite this, the recombinant DRS preparation showed no significant effect on complement function, as determined by lysis of sensitized sheep erythrocytes. Furthermore, the presence of DRS is not inhibitory to SIC activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sankar, P.; Lee, J.H.; Shanmugam, K.T.
1985-04-01
Escherichia coli has two unlinked genes that code for hydrogenase synthesis and activity. The DNA fragments containing the two genes (hydA and hydB) were cloned into a plasmid vector, pBR322. The plasmids containing the hyd genes (pSE-290 and pSE-111 carrying the hydA and hydB genes, respectively) were used to genetically map a total of 51 mutant strains with defects in hydrogenase activity. A total of 37 mutants carried a mutation in the hydB gene, whereas the remaining 14 hyd were hydA. This complementation analysis also established the presence of two new genes, so far unidentified, one coding for formate dehydrogenase-2more » (fdv) and another producing an electron transport protein (fhl) coupling formate dehydrogenase-2 to hydrogenase. Three of the four genes, hydB, fhl, and fdv, may constitute a single operon, and all three genes are carried by a 5.6-kilobase-pair chromosomal DNA insert in plasmid pSE-128. Plasmids carrying a part of this 5.6-kilobase-pair DNA (pSE-130) or fragments derived from this DNA in different orientations (pSE-126 and pSE-129) inhibited the production of active formate hydrogenlyase. This inhibition occurred even in a prototrophic E. coli, strain K-10, but only during an early induction period. These results, based on complementation analysis with cloned DNA fragments, show that both hydA and hydB genes are essential for the production of active hydrogenase. For the expression of active formate hydrogenlyase, two other gene products, fhl and fdv are also needed. All four genes map between 58 and 59 min in the E. coli chromosome.« less
Complement proteins bind to nanoparticle protein corona and undergo dynamic exchange in vivo
NASA Astrophysics Data System (ADS)
Chen, Fangfang; Wang, Guankui; Griffin, James I.; Brenneman, Barbara; Banda, Nirmal K.; Holers, V. Michael; Backos, Donald S.; Wu, Linping; Moghimi, Seyed Moein; Simberg, Dmitri
2017-05-01
When nanoparticles are intravenously injected into the body, complement proteins deposit on the surface of nanoparticles in a process called opsonization. These proteins prime the particle for removal by immune cells and may contribute toward infusion-related adverse effects such as allergic responses. The ways complement proteins assemble on nanoparticles have remained unclear. Here, we show that dextran-coated superparamagnetic iron oxide core-shell nanoworms incubated in human serum and plasma are rapidly opsonized with the third complement component (C3) via the alternative pathway. Serum and plasma proteins bound to the nanoworms are mostly intercalated into the nanoworm shell. We show that C3 covalently binds to these absorbed proteins rather than the dextran shell and the protein-bound C3 undergoes dynamic exchange in vitro. Surface-bound proteins accelerate the assembly of the complement components of the alternative pathway on the nanoworm surface. When nanoworms pre-coated with human plasma were injected into mice, C3 and other adsorbed proteins undergo rapid loss. Our results provide important insight into dynamics of protein adsorption and complement opsonization of nanomedicines.
Andersen, O M; Petersen, H H; Jacobsen, C; Moestrup, S K; Etzerodt, M; Andreasen, P A; Thøgersen, H C
2001-07-01
The low-density-lipoprotein-receptor (LDLR)-related protein (LRP) is composed of several classes of domains, including complement-type repeats (CR), which occur in clusters that contain binding sites for a multitude of different ligands. Each approximately 40-residue CR domain contains three conserved disulphide linkages and an octahedral Ca(2+) cage. LRP is a scavenging receptor for ligands from extracellular fluids, e.g. alpha(2)-macroglobulin (alpha(2)M)-proteinase complexes, lipoprotein-containing particles and serine proteinase-inhibitor complexes, like the complex between urokinase-type plasminogen activator (uPA) and the plasminogen activator inhibitor-1 (PAI-1). In the present study we analysed the interaction of the uPA-PAI-1 complex with an ensemble of fragments representing a complete overlapping set of two-domain fragments accounting for the ligand-binding cluster II (CR3-CR10) of LRP. By ligand blotting, solid-state competition analysis and surface-plasmon-resonance analysis, we demonstrate binding to multiple CR domains, but show a preferential interaction between the uPA-PAI-1 complex and a two-domain fragment comprising CR domains 5 and 6 of LRP. We demonstrate that surface-exposed aspartic acid and tryptophan residues at identical positions in the two homologous domains, CR5 and CR6 (Asp(958,CR5), Asp(999,CR6), Trp(953,CR5) and Trp(994,CR6)), are critical for the binding of the complex as well as for the binding of the receptor-associated protein (RAP) - the folding chaperone/escort protein required for transport of LRP to the cell surface. Accordingly, the present work provides (1) an identification of a preferred binding site within LRP CR cluster II; (2) evidence that the uPA-PAI-1 binding site involves residues from two adjacent protein domains; and (3) direct evidence identifying specific residues as important for the binding of uPA-PAI-1 as well as for the binding of RAP.
Belin, P; Quéméneur, E; Boquet, P L
1994-01-01
A one-step mutant of Escherichia coli K-12 lacking both glucose-1-phosphatase (Agp) and pH 2.5 acid phosphatase (AppA) activities in the periplasmic space was isolated. The mutation which mapped close to chlB, at 87 min on the E. coli linkage map, also caused the loss of alkaline phosphatase (PhoA) activity, even when this activity was expressed from TnphoA fusions to genes encoding periplasmic or membrane proteins. A DNA fragment that complements the mutation was cloned and shown to carry the dsbA gene, which encodes a periplasmic disulphide bond-forming factor. The mutant had an ochre triplet in dsbA, truncating the protein at amino acid 70. Introduction of TnphoA fusions into a plasmid-borne dsbA gene resulted in DsbA-PhoA hybrid proteins that were all exported to the periplasmic space in both dsbA+ and dsbA strains. They belong to three different classes, depending on the length of the DsbA fragment fused to PhoA. When PhoA was fused to an amino-terminal DsbA heptapeptide, the protein was only seen in the periplasm of a dsbA+ strain, as in the case of wild-type PhoA. Hybrid proteins missing up to 29 amino acids at the carboxy-terminus of DsbA were stable and retained both the DsbA and PhoA activities. Those with shorter DsbA fragments that still carried the -Cys-Pro-His-Cys- motif were rapidly degraded (no DsbA activity). The presence is discussed of a structural domain lying around amino acid 170 of DsbA and which is probably essential for its folding into a proteolytic-resistant and enzymatically active form.
Prescher, Horst; Koch, Guido; Schuhmann, Tim; Ertl, Peter; Bussenault, Alex; Glick, Meir; Dix, Ina; Petersen, Frank; Lizos, Dimitrios E
2017-02-01
A fragment library consisting of 3D-shaped, natural product-like fragments was assembled. Library construction was mainly performed by natural product degradation and natural product diversification reactions and was complemented by the identification of 3D-shaped, natural product like fragments available from commercial sources. In addition, during the course of these studies, novel rearrangements were discovered for Massarigenin C and Cytochalasin E. The obtained fragment library has an excellent 3D-shape and natural product likeness, covering a novel, unexplored and underrepresented chemical space in fragment based drug discovery (FBDD). Copyright © 2016 Elsevier Ltd. All rights reserved.
A murC gene in Porphyromonas gingivalis 381.
Ansai, T; Yamashita, Y; Awano, S; Shibata, Y; Wachi, M; Nagai, K; Takehara, T
1995-09-01
The gene encoding a 51 kDa polypeptide of Porphyromonas gingivalis 381 was isolated by immunoblotting using an antiserum raised against P. gingivalis alkaline phosphatase. DNA sequence analysis of a 2.5 kb DNA fragment containing a gene encoding the 51 kDa protein revealed one complete and two incomplete ORFs. Database searches using the FASTA program revealed significant homology between the P. gingivalis 51 kDa protein and the MurC protein of Escherichia coli, which functions in peptidoglycan synthesis. The cloned 51 kDa protein encoded a functional product that complemented an E. coli murC mutant. Moreover, the ORF just upstream of murC coded for a protein that was 31% homologous with the E. coli MurG protein. The ORF just downstream of murC coded for a protein that was 17% homologous with the Streptococcus pneumoniae penicillin-binding protein 2B (PBP2B), which functions in peptidoglycan synthesis and is responsible for antibiotic resistance. These results suggest that P. gingivalis contains a homologue of the E. coli peptidoglycan synthesis gene murC and indicate the possibility of a cluster of genes responsible for cell division and cell growth, as in the E. coli mra region.
Analysis of ligand-protein exchange by Clustering of Ligand Diffusion Coefficient Pairs (CoLD-CoP)
NASA Astrophysics Data System (ADS)
Snyder, David A.; Chantova, Mihaela; Chaudhry, Saadia
2015-06-01
NMR spectroscopy is a powerful tool in describing protein structures and protein activity for pharmaceutical and biochemical development. This study describes a method to determine weak binding ligands in biological systems by using hierarchic diffusion coefficient clustering of multidimensional data obtained with a 400 MHz Bruker NMR. Comparison of DOSY spectrums of ligands of the chemical library in the presence and absence of target proteins show translational diffusion rates for small molecules upon interaction with macromolecules. For weak binders such as compounds found in fragment libraries, changes in diffusion rates upon macromolecular binding are on the order of the precision of DOSY diffusion measurements, and identifying such subtle shifts in diffusion requires careful statistical analysis. The "CoLD-CoP" (Clustering of Ligand Diffusion Coefficient Pairs) method presented here uses SAHN clustering to identify protein-binders in a chemical library or even a not fully characterized metabolite mixture. We will show how DOSY NMR and the "CoLD-CoP" method complement each other in identifying the most suitable candidates for lysozyme and wheat germ acid phosphatase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cairns, S.S.
1987-01-01
In X. laevis oocytes, mitochondrial DNA accumulates to 10/sup 5/ times the somatic cell complement, and is characterized by a high frequency of a triple-stranded displacement hoop structure at the origin of replication. To map the termini of the single strands, it was necessary to correct the nucleotide sequence of the D-loop region. The revised sequence of 2458 nucleotides contains 54 discrepancies in comparison to a previously published sequence. Radiolabeling of the nascent strands of the D-loop structure either at the 5' end or at the 3' end identifies a major species with a length of 1670 nucleotides. Cleavage ofmore » the 5' labeled strands reveals two families of ends located near several matches to an element, designated CSB-1, that is conserved in this location in several vertebrate genomes. Cleavage of 3' labeled strands produced one fragment. The unique 3' end maps to about 15 nucleotides preceding the tRNA/sup Pro/ gene. A search for proteins which may bind to mtDNA in this region to regulate nucleic acid synthesis has identified three activities in lysates of X. laevis mitochondria. The DNA-binding proteins were assayed by monitoring their ability to retard the migration of labeled double- or single-stranded DNA fragments in polyacrylamide gels. The DNA binding preference was determined by competition with an excess of either ds- or ssDNA.« less
Hijacking Complement Regulatory Proteins for Bacterial Immune Evasion.
Hovingh, Elise S; van den Broek, Bryan; Jongerius, Ilse
2016-01-01
The human complement system plays an important role in the defense against invading pathogens, inflammation and homeostasis. Invading microbes, such as bacteria, directly activate the complement system resulting in the formation of chemoattractants and in effective labeling of the bacteria for phagocytosis. In addition, formation of the membrane attack complex is responsible for direct killing of Gram-negative bacteria. In turn, bacteria have evolved several ways to evade complement activation on their surface in order to be able to colonize and invade the human host. One important mechanism of bacterial escape is attraction of complement regulatory proteins to the microbial surface. These molecules are present in the human body for tight regulation of the complement system to prevent damage to host self-surfaces. Therefore, recruitment of complement regulatory proteins to the bacterial surface results in decreased complement activation on the microbial surface which favors bacterial survival. This review will discuss recent advances in understanding the binding of complement regulatory proteins to the bacterial surface at the molecular level. This includes, new insights that have become available concerning specific conserved motives on complement regulatory proteins that are favorable for microbial binding. Finally, complement evasion molecules are of high importance for vaccine development due to their dominant role in bacterial survival, high immunogenicity and homology as well as their presence on the bacterial surface. Here, the use of complement evasion molecules for vaccine development will be discussed.
Hijacking Complement Regulatory Proteins for Bacterial Immune Evasion
Hovingh, Elise S.; van den Broek, Bryan; Jongerius, Ilse
2016-01-01
The human complement system plays an important role in the defense against invading pathogens, inflammation and homeostasis. Invading microbes, such as bacteria, directly activate the complement system resulting in the formation of chemoattractants and in effective labeling of the bacteria for phagocytosis. In addition, formation of the membrane attack complex is responsible for direct killing of Gram-negative bacteria. In turn, bacteria have evolved several ways to evade complement activation on their surface in order to be able to colonize and invade the human host. One important mechanism of bacterial escape is attraction of complement regulatory proteins to the microbial surface. These molecules are present in the human body for tight regulation of the complement system to prevent damage to host self-surfaces. Therefore, recruitment of complement regulatory proteins to the bacterial surface results in decreased complement activation on the microbial surface which favors bacterial survival. This review will discuss recent advances in understanding the binding of complement regulatory proteins to the bacterial surface at the molecular level. This includes, new insights that have become available concerning specific conserved motives on complement regulatory proteins that are favorable for microbial binding. Finally, complement evasion molecules are of high importance for vaccine development due to their dominant role in bacterial survival, high immunogenicity and homology as well as their presence on the bacterial surface. Here, the use of complement evasion molecules for vaccine development will be discussed. PMID:28066340
21 CFR 866.5260 - Complement C3b inactivator immunological test system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... immunochemical techniques the complement C3b inactivator (a plasma protein) in serum. Complement is a group of serum proteins that destroy infectious agents. Measurement of complement C3b inactivator aids in the...
21 CFR 866.5260 - Complement C3b inactivator immunological test system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... immunochemical techniques the complement C3b inactivator (a plasma protein) in serum. Complement is a group of serum proteins that destroy infectious agents. Measurement of complement C3b inactivator aids in the...
21 CFR 866.5260 - Complement C3b inactivator immunological test system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... immunochemical techniques the complement C3b inactivator (a plasma protein) in serum. Complement is a group of serum proteins that destroy infectious agents. Measurement of complement C3b inactivator aids in the...
21 CFR 866.5260 - Complement C3b inactivator immunological test system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... immunochemical techniques the complement C3b inactivator (a plasma protein) in serum. Complement is a group of serum proteins that destroy infectious agents. Measurement of complement C3b inactivator aids in the...
Baldo, Guilherme; Wu, Susan; Howe, Ruth A.; Ramamoothy, Meera; Knutsen, Russell H.; Fang, Jiali; Mecham, Robert P.; Liu, Yuli; Wu, Xiaobo; Atkinson, John P.; Ponder, Katherine P.
2012-01-01
Mucopolysaccharidosis VII (MPS VII) is due to mutations within the gene encoding the lysosomal enzyme β-glucuronidase, and results in the accumulation of glycosaminoglycans. MPS VII causes aortic dilatation and elastin fragmentation, which is associated with upregulation of the elastases cathepsin S (CtsS) and matrix metalloproteinase 12 (MMP12). To test the role of these enzymes, MPS VII mice were crossed with mice deficient in CtsS or MMP12, and the effect upon aortic dilatation was determined. CtsS deficiency did not protect against aortic dilatation in MPS VII mice, but also failed to prevent an upregulation of cathepsin enzyme activity. Further analysis with substrates and inhibitors specific for particular cathepsins suggests that this enzyme activity was due to CtsB, which could contribute to elastin fragmentation. Similarly, MMP12 deficiency and deficiency of both MMP12 and CtsS could not prevent aortic dilatation in MPS VII mice. Microarray and reverse-transcriptase real-time PCR were performed to look for upregulation of other elastases. This demonstrated that mRNA for complement component D was elevated in MPS VII mice, while immunostaining demonstrated high levels of complement component C3 on surfaces within the aortic media. Finally, we demonstrate that neonatal intravenous injection of a retroviral vector encoding β-glucuronidase reduced aortic dilatation. We conclude that neither CtsS nor MMP12 are necessary for elastin fragmentation in MPS VII mouse aorta, and propose that CtsB and/or complement component D may be involved. Complement may be activated by the GAGs that accumulate, and may play a role in signal transduction pathways that upregulate elastases. PMID:21944884
Myamoto, D T; Pidde-Queiroz, G; Pedroso, A; Gonçalves-de-Andrade, R M; van den Berg, C W; Tambourgi, D V
2016-09-01
A transcriptome analysis of the venom glands of the spider Loxosceles laeta, performed by our group, in a previous study (Fernandes-Pedrosa et al., 2008), revealed a transcript with a sequence similar to the human complement component C3. Here we present the analysis of this transcript. cDNA fragments encoding the C3 homologue (Lox-C3) were amplified from total RNA isolated from the venom glands of L. laeta by RACE-PCR. Lox-C3 is a 5178 bps cDNA sequence encoding a 190kDa protein, with a domain configuration similar to human C3. Multiple alignments of C3-like proteins revealed two processing sites, suggesting that Lox-C3 is composed of three chains. Furthermore, the amino acids consensus sequences for the thioester was found, in addition to putative sequences responsible for FB binding. The phylogenetic analysis showed that Lox-C3 belongs to the same group as two C3 isoforms from the spider Hasarius adansoni (Family Salcitidae), showing 53% homology with these. This is the first characterization of a Loxosceles cDNA sequence encoding a human C3 homologue, and this finding, together with our previous finding of the expression of a FB-like molecule, suggests that this spider species also has a complement system. This work will help to improve our understanding of the innate immune system in these spiders and the ancestral structure of C3. Copyright © 2016 Elsevier GmbH. All rights reserved.
Frazier, Kendall S; Sobry, Cécile; Derr, Victoria; Adams, Mike J; Besten, Cathaline Den; De Kimpe, Sjef; Francis, Ian; Gales, Tracy L; Haworth, Richard; Maguire, Shaun R; Mirabile, Rosanna C; Mullins, David; Palate, Bernard; Doorten, Yolanda Ponstein-Simarro; Ridings, James E; Scicchitano, Marshall S; Silvano, Jérémy; Woodfine, Jennie
2014-07-01
Chronic administration of drisapersen, a 2'-OMe phosphorothioate antisense oligonucleotide (AON) to mice and monkeys resulted in renal tubular accumulation, with secondary tubular degeneration. Glomerulopathy occurred in both species with species-specific characteristics. Glomerular lesions in mice were characterized by progressive hyaline matrix accumulation, accompanied by the presence of renal amyloid and with subsequent papillary necrosis. Early changes involved glomerular endothelial hypertrophy and degeneration, but the chronic glomerular amyloid and hyaline alterations in mice appeared to be species specific. An immune-mediated mechanism for the glomerular lesions in mice was supported by early inflammatory changes including increased expression of inflammatory cytokines and other immunomodulatory genes within the renal cortex, increased stimulation of CD68 protein, and systemic elevation of monocyte chemotactic protein 1. In contrast, kidneys from monkeys given drisapersen chronically showed less severe glomerular changes characterized by increased mesangial and inflammatory cells, endothelial cell hypertrophy, and subepithelial and membranous electron-dense deposits, with ultrastructural and immunohistochemical characteristics of complement and complement-related fragments. Lesions in monkeys resembled typical features of C3 glomerulopathy, a condition described in man and experimental animals to be linked to dysregulation of the alternative complement pathway. Thus, inflammatory/immune mechanisms appear critical to glomerular injury with species-specific sensitivities for mouse and monkey. The lower observed proinflammatory activity in humans as compared to mice and monkeys may reflect a lower risk of glomerular injury in patients receiving AON therapy. © 2014 by The Author(s).
*C5a/CD88 signaling alters blood-brain barrier integrity in lupus through NFκb
Jacob, Alexander; Hack, Bradley; Chen, Peili; Quigg, Richard J.; Alexander, Jessy J.
2011-01-01
Inflammation is a key factor in a number of neurodegenerative diseases including systemic lupus erythematosus (SLE). The complement system is an important mechanism in initiating and amplifying inflammation. Our recent studies demonstrate that C5a, a protein fragment generated during complement activation could alter the blood-brain barrier (BBB) integrity, and thereby disturb the brain microenvironment. To understand the mechanism by which this occurs, we examined the effects of C5a on apoptosis, translocation of nuclear factor-κB (NFκb) and the expression of Iκbα, MAPK, CREB and TJ protein, zona occludens (ZO-1) in mouse brain endothelial cells. Apoptosis was examined by DNA laddering and caspase-3 activity and the distribution of the ZO-1 and the p65 subunit of NFκB were determined by immunofluorescence. Inhibition of CD88 reduced translocation of NFκb into the nucleus, altered ZO-1 at the interfaces of neighboring cells, decreased caspase-3 activity and prevented apoptosis in these cells. Our results indicate that signaling through CD88 regulates the BBB in a NFκb dependent manner. These studies suggest that the C5a receptor, CD88 is a promising therapeutic target that will reduce NFκb signaling cascades in inflammatory settings. PMID:21929539
Ben Khalifa, N; Tyteca, D; Courtoy, P J; Renauld, J C; Constantinescu, S N; Octave, J N; Kienlen-Campard, P
2012-01-01
The two major isoforms of the human amyloid precursor protein (APP) are APP695 and APP751. They differ by the insertion of a Kunitz-type protease inhibitor (KPI) sequence in the extracellular domain of APP751. APP-KPI isoforms are increased in Alzheimer's disease brains, and they could be associated with disease progression. Recent studies have shown that APP processing to Aβ is regulated by homodimerization, which involves both extracellular and juxtamembrane/transmembrane (JM/TM) regions. Our aim is to understand the mechanisms controlling APP dimerization and the contribution of the ectodomain and JM/TM regions to this process. We used bimolecular fluorescence complementation approaches coupled to fluorescence-activated cell sorting analysis to measure the dimerization level of different APP isoforms and APP C-terminal fragments (C99) mutated in their JM/TM region. APP751 was found to form significantly more homodimers than APP695. Mutation of dimerization motifs in the TM domain of APP or C99 did not significantly affect fluorescence complementation. These findings indicate that the KPI domain plays a major role in APP dimerization. They set the basis for further investigation of the relation between dimerization, metabolism and function of APP. Copyright © 2012 S. Karger AG, Basel.
Dzelzkalns, V A; Bogorad, L
1988-01-01
Photosynthesis-defective mutants of the transformable cyanobacterium Synechocystis 6803 have been isolated following nitrosoguanidine mutagenesis. The photosystem II- phenotype of one of these mutants is shown by DNA sequencing to be attributable to a short deletion in psbC, the gene encoding the 44-kd, chlorophyll-binding protein of photosystem II. Although not a component of the reaction center of photosystem II, the 44-kd protein is none the less shown to be essential in vivo for photosystem II activity. The deletion in psbC also results in greatly diminished levels of D-2 (a component of the reaction center of photosystem II) indicating that the loss of the product of the psbC gene affects the assembly or stability of the photosystem II reaction center. The isolation of a clone capable of restoring both photosystem II activity and photoautotrophy to the mutant cells was aided by the observation that restriction fragments or cloned Synechocystis 6803 DNA applied in liquid or in melted agarose directly onto a lawn of Synechocystis 6803 will lead to the transformation of the cells. This in situ 'dot' transformation procedure provides a convenient method for the rapid identification of fractions or clones containing complementing Synechocystis 6803 DNA. Images PMID:3130247
He, S Y; Lindeberg, M; Chatterjee, A K; Collmer, A
1991-01-01
The out genes of the enterobacterial plant pathogen Erwinia chrysanthemi are responsible for the efficient extracellular secretion of multiple plant cell wall-degrading enzymes, including four isozymes of pectate lyase, exo-poly-alpha-D-galacturonosidase, pectin methylesterase, and cellulase. Out- mutants of Er. chrysanthemi are unable to export any of these proteins beyond the periplasm and are severely reduced in virulence. We have cloned out genes from Er. chrysanthemi in the stable, low-copy-number cosmid pCPP19 by complementing several transposon-induced mutations. The cloned out genes were clustered in a 12-kilobase chromosomal DNA region, complemented all existing out mutations in Er. chrysanthemi EC16, and enabled Escherichia coli strains to efficiently secrete the extracellular pectic enzymes produced from cloned Er. chrysanthemi genes, while retaining the periplasmic marker protein beta-lactamase. DNA sequencing of a 2.4-kilobase EcoRI fragment within the out cluster revealed four genes arranged colinearly and sharing substantial similarity with the Klebsiella pneumoniae genes pulH, pulI, pulJ, and pulK, which are necessary for pullulanase secretion. However, K. pneumoniae cells harboring the cloned Er. chrysanthemi pelE gene were unable to secrete the Erwinia pectate lyase. Furthermore, the Er. chrysanthemi Out system was unable to secrete an extracellular pectate lyase encoded by a gene from a closely related plant pathogen. Erwinia carotovora ssp. carotovora. The results suggest that these enterobacteria secrete polysaccharidases by a conserved mechanism whose protein-recognition capacities have diverged. Images PMID:1992458
Complement, a target for therapy in inflammatory and degenerative diseases.
Morgan, B Paul; Harris, Claire L
2015-12-01
The complement system is a key innate immune defence against infection and an important driver of inflammation; however, these very properties can also cause harm. Inappropriate or uncontrolled activation of complement can cause local and/or systemic inflammation, tissue damage and disease. Complement provides numerous options for drug development as it is a proteolytic cascade that involves nine specific proteases, unique multimolecular activation and lytic complexes, an arsenal of natural inhibitors, and numerous receptors that bind to activation fragments. Drug design is facilitated by the increasingly detailed structural understanding of the molecules involved in the complement system. Only two anti-complement drugs are currently on the market, but many more are being developed for diseases that include infectious, inflammatory, degenerative, traumatic and neoplastic disorders. In this Review, we describe the history, current landscape and future directions for anti-complement therapies.
Ghosh-Choudhury, N; Butcher, M; Ghosh, H P
1990-03-01
A DNA fragment of the herpes simplex virus type 1 genome encoding glycoprotein C (gC-1) has been cloned into different eukaryotic expression vectors for transient and stable expression of the glycoprotein in a number of cell lines. All of these expression vectors use a non-HSV promoter, such as the adenovirus major late promoter or murine leukemia virus long terminal repeat promoter to express gC-1 in COS and CHO cells or 3T3 cells. The gC-1 protein synthesized was fully glycosylated with both N- and O-linked oligosaccharides. Synthesis of the mature 120K gC-1 glycoprotein involved partially glycosylated 100K and 105K proteins and the non-glycosylated 70K protein as intermediate molecules. Immunofluorescence studies showed that the expressed gC-1 was localized intracellularly in the nuclear envelope as well as on the cell surface. The expressed gC-1 was biologically active and could act as a receptor for the complement component C3b in the absence of other HSV proteins.
Unique structure of iC3b resolved at a resolution of 24 Å by 3D-electron microscopy.
Alcorlo, Martin; Martínez-Barricarte, Ruben; Fernández, Francisco J; Rodríguez-Gallego, César; Round, Adam; Vega, M Cristina; Harris, Claire L; de Cordoba, Santiago Rodríguez; Llorca, Oscar
2011-08-09
Activation of C3, deposition of C3b on the target surface, and subsequent amplification by formation of a C3-cleaving enzyme (C3-convertase; C3bBb) triggers the effector functions of complement that result in inflammation and cell lysis. Concurrently, surface-bound C3b is proteolyzed to iC3b by factor I and appropriate cofactors. iC3b then interacts with the complement receptors (CR) of the Ig superfamily, CR2 (CD21), CR3 (CD11b/CD18), and CR4 (CD11c/CD18) on leukocytes, down-modulating inflammation, enhancing B cell-mediated immunity, and targeting pathogens for clearance by phagocytosis. Using EM and small-angle X-ray scattering, we now present a medium-resolution structure of iC3b (24 Å). iC3b displays a unique conformation with structural features distinct from any other C3 fragment. The macroglobulin ring in iC3b is similar to that in C3b, whereas the TED (thioester-containing domain) domain and the remnants of the CUB (complement protein subcomponents C1r/C1s, urchin embryonic growth factor and bone morphogenetic protein 1) domain have moved to locations more similar to where they were in native C3. A consequence of this large conformational change is the disruption of the factor B binding site, which renders iC3b unable to assemble a C3-convertase. This structural model also justifies the decreased interaction between iC3b and complement regulators and the recognition of iC3b by the CR of the Ig superfamily, CR2, CR3, and CR4. These data further illustrate the extraordinary conformational versatility of C3 to accommodate a great diversity of functional activities.
2017-01-01
Tamm-Horsfall protein (THP) is an abundant urinary protein of renal origin. We hypothesize that THP can act as an inhibitor of complement since THP binds complement 1q (C1q) of the classical complement pathway, inhibits activation of this pathway, and is important in decreasing renal ischemia-reperfusion injury (a complement-mediated condition). In this study, we began to investigate whether THP interacted with the alternate complement pathway via complement factor H (CFH). THP was shown to bind CFH using ligand blots and in an ELISA (KD of 1 × 10−6 M). Next, the ability of THP to alter CFH’s normal action as it functioned as a cofactor in complement factor I (CFI)–mediated complement 3b (C3b) degradation was investigated. Unexpectedly, control experiments in these in vitro assays suggested that THP, without added CFH, could act as a cofactor in CFI-mediated C3b degradation. This cofactor activity was present equally in THP isolated from 10 different individuals. While an ELISA demonstrated small amounts of CFH contaminating THP samples, these CFH amounts were insufficient to explain the degree of cofactor activity present in THP. An ELISA demonstrated that THP directly bound C3b (KD ~ 5 × 10−8 m), a prerequisite for a protein acting as a C3b degradation cofactor. The cofactor activity of THP likely resides in the protein portion of THP since partially deglycosylated THP still retained cofactor activity. In conclusion, THP appears to participate directly in complement inactivation by its ability to act as a cofactor for C3b degradation, thus adding support to the hypothesis that THP might act as an endogenous urinary tract inhibitor of complement. PMID:28742158
Du, Yiqun; Teng, Xiaoyan; Wang, Na; Zhang, Xin; Chen, Jianfeng; Ding, Peipei; Qiao, Qian; Wang, Qingkai; Zhang, Long; Yang, Chaoqun; Yang, Zhangmin; Chu, Yiwei; Du, Xiang; Zhou, Xuhui; Hu, Weiguo
2014-01-31
The complement system can be activated spontaneously for immune surveillance or induced to clear invading pathogens, in which the membrane attack complex (MAC, C5b-9) plays a critical role. CD59 is the sole membrane complement regulatory protein (mCRP) that restricts MAC assembly. CD59, therefore, protects innocent host cells from attacks by the complement system, and host cells require the constitutive and inducible expression of CD59 to protect themselves from deleterious destruction by complement. However, the mechanisms that underlie CD59 regulation remain largely unknown. In this study we demonstrate that the widely expressed transcription factor Sp1 may regulate the constitutive expression of CD59, whereas CREB-binding protein (CBP)/p300 bridge NF-κB and CREB, which surprisingly functions as an enhancer-binding protein to induce the up-regulation of CD59 during in lipopolysaccharide (LPS)-triggered complement activation, thus conferring host defense against further MAC-mediated destruction. Moreover, individual treatment with LPS, TNF-α, and the complement activation products (sublytic MAC (SC5b-9) and C5a) could increase the expression of CD59 mainly by activating NF-κB and CREB signaling pathways. Together, our findings identify a novel gene regulation mechanism involving CBP/p300, NF-κB, and CREB; this mechanism suggests potential drug targets for controlling various complement-related human diseases.
Shavkunov, Alexander; Panova, Neli; Prasai, Anesh; Veselenak, Ron; Bourne, Nigel; Stoilova-McPhie, Svetla; Laezza, Fernanda
2012-04-01
Protein-protein interactions are critical molecular determinants of ion channel function and emerging targets for pharmacological interventions. Yet, current methodologies for the rapid detection of ion channel macromolecular complexes are still lacking. In this study we have adapted a split-luciferase complementation assay (LCA) for detecting the assembly of the voltage-gated Na+ (Nav) channel C-tail and the intracellular fibroblast growth factor 14 (FGF14), a functionally relevant component of the Nav channelosome that controls gating and targeting of Nav channels through direct interaction with the channel C-tail. In the LCA, two complementary N-terminus and C-terminus fragments of the firefly luciferase were fused, respectively, to a chimera of the CD4 transmembrane segment and the C-tail of Nav1.6 channel (CD4-Nav1.6-NLuc) or FGF14 (CLuc-FGF14). Co-expression of CLuc-FGF14 and CD4-Nav1.6-NLuc in live cells led to a robust assembly of the FGF14:Nav1.6 C-tail complex, which was attenuated by introducing single-point mutations at the predicted FGF14:Nav channel interface. To evaluate the dynamic regulation of the FGF14:Nav1.6 C-tail complex by signaling pathways, we investigated the effect of kinase inhibitors on the complex formation. Through a platform of counter screenings, we show that the p38/MAPK inhibitor, PD169316, and the IκB kinase inhibitor, BAY 11-7082, reduce the FGF14:Nav1.6 C-tail complementation, highlighting a potential role of the p38MAPK and the IκB/NFκB pathways in controlling neuronal excitability through protein-protein interactions. We envision the methodology presented here as a new valuable tool to allow functional evaluations of protein-channel complexes toward probe development and drug discovery targeting ion channels implicated in human disorders.
Complement factor H family proteins in their non-canonical role as modulators of cellular functions.
Józsi, Mihály; Schneider, Andrea E; Kárpáti, Éva; Sándor, Noémi
2018-01-04
Complement factor H is a major regulator of the alternative pathway of the complement system. The factor H-related proteins are less characterized, but recent data indicate that they rather promote complement activation. These proteins have some common ligands with factor H and have both overlapping and distinct functions depending on domain composition and the degree of conservation of amino acid sequence. Factor H and some of the factor H-related proteins also appear in a non-canonical function that is beyond their role in the modulation of complement activation. This review covers our current understanding on this emerging role of factor H family proteins in modulating the activation and function of various cells by binding to receptors or receptor ligands. Copyright © 2018 Elsevier Ltd. All rights reserved.
Rendahl, K G; Jones, K R; Kulkarni, S J; Bagully, S H; Hall, J C
1992-02-01
Genetic and molecular results are here presented revealing that the dissonance (diss) courtship song mutation is an allele of the no-on-transient-A (nonA) locus of Drosophila melanogaster. diss (now called nonAdiss) was originally isolated as a mutant with aberrant pulse song, although it was then noted to exhibit defects in responses to visual stimuli as well. The lack of transient spikes in the electroretinogram (ERG) and optomotor blindness associated with nonAdiss are shown to be similar to the visual abnormalities caused by the original nonA mutations. nonAdiss failed to complement either the ERG or optomotor defects associated with four other nonA mutations. However, all four of these nonA mutants--which were isolated on visual criteria alone--sang a normal courtship song. nonAdiss complemented at least three of the nonA mutations with regard to the singing phenotype, as assessed by a new method for temporal analysis of the male's pulse song. Both visual and song abnormalities caused by nonAdiss were rescued by P-element-mediated transformation with overlapping 11 and 16 kilobase (kb) fragments of genomic DNA (originally cloned from the nonA locus by Jones and Rubin, 1990). Analysis of behavioral phenotypes in transformed flies carrying mutagenized versions of the 11 kb genomic fragment (in a nonAdiss genomic background) localized the rescuing DNA to a region containing an open reading frame that encodes a polypeptide (NONA) with similarity to a family of RNA-binding proteins. Immunohistochemical determination of NONA's spatial and temporal expression revealed that it is localized to the nuclei of cells in many neural and non-neural tissues, at all stages of the life cycle after very early in development. Genetic connections between the control of two quite different behaviors--reproductive and visual--are discussed, along with precedences for generally expressed gene products playing roles in specific behaviors.
Fragger: a protein fragment picker for structural queries.
Berenger, Francois; Simoncini, David; Voet, Arnout; Shrestha, Rojan; Zhang, Kam Y J
2017-01-01
Protein modeling and design activities often require querying the Protein Data Bank (PDB) with a structural fragment, possibly containing gaps. For some applications, it is preferable to work on a specific subset of the PDB or with unpublished structures. These requirements, along with specific user needs, motivated the creation of a new software to manage and query 3D protein fragments. Fragger is a protein fragment picker that allows protein fragment databases to be created and queried. All fragment lengths are supported and any set of PDB files can be used to create a database. Fragger can efficiently search a fragment database with a query fragment and a distance threshold. Matching fragments are ranked by distance to the query. The query fragment can have structural gaps and the allowed amino acid sequences matching a query can be constrained via a regular expression of one-letter amino acid codes. Fragger also incorporates a tool to compute the backbone RMSD of one versus many fragments in high throughput. Fragger should be useful for protein design, loop grafting and related structural bioinformatics tasks.
Holmes, Amie L; Joyce, Kellie; Xie, Hong; Falank, Carolyne; Hinz, John M; Wise, John Pierce
2014-04-01
Depleted uranium (DU) is extensively used in both industry and military applications. The potential for civilian and military personnel exposure to DU is rising, but there are limited data on the potential health hazards of DU exposure. Previous laboratory research indicates DU is a potential carcinogen, but epidemiological studies remain inconclusive. DU is genotoxic, inducing DNA double strand breaks, chromosome damage and mutations, but the mechanisms of genotoxicity or repair pathways involved in protecting cells against DU-induced damage remain unknown. The purpose of this study was to investigate the effects of homologous recombination repair deficiency on DU-induced genotoxicity using RAD51D and XRCC3-deficient Chinese hamster ovary (CHO) cell lines. Cells deficient in XRCC3 (irs1SF) exhibited similar cytotoxicity after DU exposure compared to wild-type (AA8) and XRCC3-complemented (1SFwt8) cells, but DU induced more break-type and fusion-type lesions in XRCC3-deficient cells compared to wild-type and XRCC3-complemented cells. Surprisingly, loss of RAD51D did not affect DU-induced cytotoxicity or genotoxicity. DU induced selective X-chromosome fragmentation irrespective of RAD51D status, but loss of XRCC3 nearly eliminated fragmentation observed after DU exposure in wild-type and XRCC3-complemented cells. Thus, XRCC3, but not RAD51D, protects cells from DU-induced breaks and fusions and also plays a role in DU-induced chromosome fragmentation. Copyright © 2014 Elsevier B.V. All rights reserved.
Analysis of ligand-protein exchange by Clustering of Ligand Diffusion Coefficient Pairs (CoLD-CoP).
Snyder, David A; Chantova, Mihaela; Chaudhry, Saadia
2015-06-01
NMR spectroscopy is a powerful tool in describing protein structures and protein activity for pharmaceutical and biochemical development. This study describes a method to determine weak binding ligands in biological systems by using hierarchic diffusion coefficient clustering of multidimensional data obtained with a 400 MHz Bruker NMR. Comparison of DOSY spectrums of ligands of the chemical library in the presence and absence of target proteins show translational diffusion rates for small molecules upon interaction with macromolecules. For weak binders such as compounds found in fragment libraries, changes in diffusion rates upon macromolecular binding are on the order of the precision of DOSY diffusion measurements, and identifying such subtle shifts in diffusion requires careful statistical analysis. The "CoLD-CoP" (Clustering of Ligand Diffusion Coefficient Pairs) method presented here uses SAHN clustering to identify protein-binders in a chemical library or even a not fully characterized metabolite mixture. We will show how DOSY NMR and the "CoLD-CoP" method complement each other in identifying the most suitable candidates for lysozyme and wheat germ acid phosphatase. Copyright © 2015 Elsevier Inc. All rights reserved.
Wells, Laura A; Guo, Hongbo; Emili, Andrew; Sefton, Michael V
2017-02-01
Polymer beads made of 45% methacrylic acid co methyl methacrylate (MAA beads) promote vascular regenerative responses in contrast to control materials without methacrylic acid (here polymethyl methacrylate beads, PMMA). In vitro and in vivo studies suggest that MAA copolymers induce differences in macrophage phenotype and polarization and inflammatory responses, presumably due to protein adsorption differences between the beads. To explore differences in protein adsorption in an unbiased manner, we used high resolution shotgun mass spectrometry to identify and compare proteins that adsorb from human plasma or serum onto MAA and PMMA beads. From plasma, MAA beads adsorbed many complement proteins, such as C1q, C4-related proteins and the complement inhibitor factor H, while PMMA adsorbed proteins, such as albumin, C3 and apolipoproteins. Because of the differences in complement protein adsorption, follow-up studies focused on using ELISA to assess complement activation. When incubated in serum, MAA beads generated significantly lower levels of soluble C5b9 and C3a/C3a desarg in comparison to PMMA beads, indicating a decrease in complement activation with MAA beads. The differences in adsorbed protein on the two materials likely alter subsequent cell-material interactions that ultimately result in different host responses and local vascularization. Copyright © 2016 Elsevier Ltd. All rights reserved.
Vaisbuch, Edi; Romero, Roberto; Erez, Offer; Tovi, Shali Mazaki; Pedro, Kusanovic Juan; Soto, Eleazar; Gotsch, Francesca; Dong, Zhong; Chaiworapongsa, Tinnakorn; Kim, Sun Kwon; Mittal, Pooja; Pacora, Percy; Yeo, Lami; Hassan, Sonia S.
2013-01-01
Objective Fragment Bb is an activator of the alternative pathway of the complement system. Recently, increased first trimester maternal plasma concentrations of this fragment were reported in patients destined to have a spontaneous preterm delivery before 34 weeks of gestation. The aim of this study was to determine whether the amniotic fluid (AF) concentrations of fragment Bb change with gestational age, spontaneous labor (term and preterm), and in the presence of intra-amniotic infection/ inflammation (IAI). Study design This cross-sectional study included patients in the following groups: 1) midtrimester (n=64); 2) term in spontaneous labor (n=70); 3) term not in labor (n=43); 4) spontaneous preterm labor (PTL) who delivered at term (n=76); 5) PTL without IAI who delivered preterm (n=73); 6) PTL with IAI (n=76); 7) prelabor rupture of the membranes (preterm PROM) without IAI (n=71); and 8) preterm PROM with IAI (n=71). Fragment Bb concentration in amniotic fluid was determined by an enzyme-linked immunoassay. Non-parametric statistics were used for analyses. Results 1) Fragment Bb was detected in all AF samples (n=544); 2) The median AF concentration of fragment Bb in patients at term not in labor was significantly higher than that of those in the mid-trimester [2.42 μg/mL, interquartile range (IQR) 1.78-3.22 vs. 1.64 μg/mL, IQR 1.06-3.49; p<0.001]; 3) Among patients with PTL, those with IAI had a higher median AF fragment Bb concentration than that of woman without IAI who delivered preterm (4.82 μg/mL, IQR 3.32-6.08 vs. 3.67 μg/mL, IQR 2.35-4.57; p<0.001) and than that of women with an episode of PTL who delivered at term (3.21 μg/mL, IQR 2.39-4.16; p<0.001); 4) Similarly, among patients with preterm PROM, the median AF fragment Bb concentration was higher in individuals with IAI than in those without IAI (4.24 μg/mL, IQR 2.58-5.79 vs. 2.79 μg/mL, IQR 2.09-3.89; p<0.001). 5) Among patients at term, the median AF fragment Bb concentration did not differ between women with spontaneous labor and those without labor (term in labor: 2.47 μg/mL, IQR 1.86-3.22; p=0.97). Conclusions 1) Fragment Bb, an activator of the alternative complement pathway, is a physiologic constituent of the amniotic fluid, and its concentration increases with advancing gestational age; 2) Amniotic fluid concentrations of fragment Bb are higher in pregnancies complicated with IAI; and 3) Labor at term is not associated with changes in the amniotic fluid concentrations of fragment Bb. These findings suggest a role for fragment Bb in the host immune response against IAI. PMID:19603351
Mitochondrial antibodies in primary biliary cirrhosis
Berg, P. A.; Roitt, I. M.; Doniach, D.; Cooper, H. M.
1969-01-01
The effect on the mitochondrial antigen of different agents known to influence the integrity and structure of membranes has been studied using quantitative complement fixation with autoantibodies from the serum of a patient with primary biliary cirrhosis. The susceptibility to proteolytic enzymes suggests that the antigen is a protein. Activity depends upon an association with phospholipids. Addition of phospholipids prevents loss of antigen during artificial ageing of mitochondria at 37°. Activity is lost after treatment with phospholipases or solvents which extract phospholipids. Antigen is also destroyed by surface active agents which dissociate the link with phospholipid but those which weaken bonds between phospholipids and hydrophobic molecules yield fragments of antigen-containing membrane structures which, nonetheless, still react with the mitochondrial autoantibody. ImagesFIG. 2FIG. 4 PMID:5804537
Protein-Templated Fragment Ligations-From Molecular Recognition to Drug Discovery.
Jaegle, Mike; Wong, Ee Lin; Tauber, Carolin; Nawrotzky, Eric; Arkona, Christoph; Rademann, Jörg
2017-06-19
Protein-templated fragment ligation is a novel concept to support drug discovery and can help to improve the efficacy of protein ligands. Protein-templated fragment ligations are chemical reactions between small molecules ("fragments") utilizing a protein's surface as a reaction vessel to catalyze the formation of a protein ligand with increased binding affinity. The approach exploits the molecular recognition of reactive small-molecule fragments by proteins both for ligand assembly and for the identification of bioactive fragment combinations. In this way, chemical synthesis and bioassay are integrated in one single step. This Review discusses the biophysical basis of reversible and irreversible fragment ligations and gives an overview of the available methods to detect protein-templated ligation products. The chemical scope and recent applications as well as future potential of the concept in drug discovery are reviewed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Józsi, Mihály; Meri, Seppo
2014-01-01
Factor H-related proteins (CFHRs) are plasma glycoproteins related in structure and antigenicity to each other and to the complement inhibitory protein factor H. Such proteins are found in most mammals but their number and domain composition vary. This chapter summarizes our current knowledge on the human factor H-related proteins. In contrast to factor H, they have no strong complement inhibitory activity, although for some of them regulatory or complement modulatory activity has been reported. A common feature of CFHRs is that they bind to the C3b component of complement. Novel links between CFHRs and various diseases (C3 glomerulopathies, atypical hemolytic uremic syndrome and age-related macular degeneration) have been revealed in recent years, but we are still far from understanding their biological function.
Scavuzzo-Duggan, Tess R.; Chaves, Arielle M.; Roberts, Alison W.
2015-07-14
Here, a method for rapid in vivo functional analysis of engineered proteins was developed using Physcomitrella patens. A complementation assay was designed for testing structure/function relationships in cellulose synthase (CESA) proteins. The components of the assay include (1) construction of test vectors that drive expression of epitope-tagged PpCESA5 carrying engineered mutations, (2) transformation of a ppcesa5 knockout line that fails to produce gametophores with test and control vectors, (3) scoring the stable transformants for gametophore production, (4) statistical analysis comparing complementation rates for test vectors to positive and negative control vectors, and (5) analysis of transgenic protein expression by Westernmore » blotting. The assay distinguished mutations that generate fully functional, nonfunctional, and partially functional proteins. In conclusion, compared with existing methods for in vivo testing of protein function, this complementation assay provides a rapid method for investigating protein structure/function relationships in plants.« less
Mark, Linda; Spiller, O Brad; Okroj, Marcin; Chanas, Simon; Aitken, Jim A; Wong, Scott W; Damania, Blossom; Blom, Anna M; Blackbourn, David J
2007-04-01
The diversity of viral strategies to modulate complement activation indicates that this component of the immune system has significant antiviral potential. One example is the Kaposi's sarcoma-associated herpesvirus (KSHV) complement control protein (KCP), which inhibits progression of the complement cascade. Rhesus rhadinovirus (RRV), like KSHV, is a member of the subfamily Gammaherpesvirinae and currently provides the only in vivo model of KSHV pathobiology in primates. In the present study, we characterized the KCP homologue encoded by RRV, RRV complement control protein (RCP). Two strains of RRV have been sequenced to date (H26-95 and 17577), and the RCPs they encode differ substantially in structure: RCP from strain H26-95 has four complement control protein (CCP) domains, whereas RCP from strain 17577 has eight CCP domains. Transcriptional analyses of the RCP gene (ORF4, referred to herein as RCP) in infected rhesus macaque fibroblasts mapped the ends of the transcripts of both strains. They revealed that H26-95 encodes a full-length, unspliced RCP transcript, while 17577 RCP generates a full-length unspliced mRNA and two alternatively spliced transcripts. Western blotting confirmed that infected cells express RCP, and immune electron microscopy disclosed this protein on the surface of RRV virions. Functional studies of RCP encoded by both RRV strains revealed their ability to suppress complement activation by the classical (antibody-mediated) pathway. These data provide the foundation for studies into the biological significance of gammaherpesvirus complement regulatory proteins in a tractable, non-human primate model.
Mark, Linda; Spiller, O. Brad; Okroj, Marcin; Chanas, Simon; Aitken, Jim A.; Wong, Scott W.; Damania, Blossom; Blom, Anna M.; Blackbourn, David J.
2007-01-01
The diversity of viral strategies to modulate complement activation indicates that this component of the immune system has significant antiviral potential. One example is the Kaposi's sarcoma-associated herpesvirus (KSHV) complement control protein (KCP), which inhibits progression of the complement cascade. Rhesus rhadinovirus (RRV), like KSHV, is a member of the subfamily Gammaherpesvirinae and currently provides the only in vivo model of KSHV pathobiology in primates. In the present study, we characterized the KCP homologue encoded by RRV, RRV complement control protein (RCP). Two strains of RRV have been sequenced to date (H26-95 and 17577), and the RCPs they encode differ substantially in structure: RCP from strain H26-95 has four complement control protein (CCP) domains, whereas RCP from strain 17577 has eight CCP domains. Transcriptional analyses of the RCP gene (ORF4, referred to herein as RCP) in infected rhesus macaque fibroblasts mapped the ends of the transcripts of both strains. They revealed that H26-95 encodes a full-length, unspliced RCP transcript, while 17577 RCP generates a full-length unspliced mRNA and two alternatively spliced transcripts. Western blotting confirmed that infected cells express RCP, and immune electron microscopy disclosed this protein on the surface of RRV virions. Functional studies of RCP encoded by both RRV strains revealed their ability to suppress complement activation by the classical (antibody-mediated) pathway. These data provide the foundation for studies into the biological significance of gammaherpesvirus complement regulatory proteins in a tractable, non-human primate model. PMID:17287274
Identifying protein domains by global analysis of soluble fragment data.
Bulloch, Esther M M; Kingston, Richard L
2014-11-15
The production and analysis of individual structural domains is a common strategy for studying large or complex proteins, which may be experimentally intractable in their full-length form. However, identifying domain boundaries is challenging if there is little structural information concerning the protein target. One experimental procedure for mapping domains is to screen a library of random protein fragments for solubility, since truncation of a domain will typically expose hydrophobic groups, leading to poor fragment solubility. We have coupled fragment solubility screening with global data analysis to develop an effective method for identifying structural domains within a protein. A gene fragment library is generated using mechanical shearing, or by uracil doping of the gene and a uracil-specific enzymatic digest. A split green fluorescent protein (GFP) assay is used to screen the corresponding protein fragments for solubility when expressed in Escherichia coli. The soluble fragment data are then analyzed using two complementary approaches. Fragmentation "hotspots" indicate possible interdomain regions. Clustering algorithms are used to group related fragments, and concomitantly predict domain location. The effectiveness of this Domain Seeking procedure is demonstrated by application to the well-characterized human protein p85α. Copyright © 2014 Elsevier Inc. All rights reserved.
Swart, Estienne C.; Bracht, John R.; Magrini, Vincent; Minx, Patrick; Chen, Xiao; Zhou, Yi; Khurana, Jaspreet S.; Goldman, Aaron D.; Nowacki, Mariusz; Schotanus, Klaas; Jung, Seolkyoung; Fulton, Robert S.; Ly, Amy; McGrath, Sean; Haub, Kevin; Wiggins, Jessica L.; Storton, Donna; Matese, John C.; Parsons, Lance; Chang, Wei-Jen; Bowen, Michael S.; Stover, Nicholas A.; Jones, Thomas A.; Eddy, Sean R.; Herrick, Glenn A.; Doak, Thomas G.; Wilson, Richard K.; Mardis, Elaine R.; Landweber, Laura F.
2013-01-01
The macronuclear genome of the ciliate Oxytricha trifallax displays an extreme and unique eukaryotic genome architecture with extensive genomic variation. During sexual genome development, the expressed, somatic macronuclear genome is whittled down to the genic portion of a small fraction (∼5%) of its precursor “silent” germline micronuclear genome by a process of “unscrambling” and fragmentation. The tiny macronuclear “nanochromosomes” typically encode single, protein-coding genes (a small portion, 10%, encode 2–8 genes), have minimal noncoding regions, and are differentially amplified to an average of ∼2,000 copies. We report the high-quality genome assembly of ∼16,000 complete nanochromosomes (∼50 Mb haploid genome size) that vary from 469 bp to 66 kb long (mean ∼3.2 kb) and encode ∼18,500 genes. Alternative DNA fragmentation processes ∼10% of the nanochromosomes into multiple isoforms that usually encode complete genes. Nucleotide diversity in the macronucleus is very high (SNP heterozygosity is ∼4.0%), suggesting that Oxytricha trifallax may have one of the largest known effective population sizes of eukaryotes. Comparison to other ciliates with nonscrambled genomes and long macronuclear chromosomes (on the order of 100 kb) suggests several candidate proteins that could be involved in genome rearrangement, including domesticated MULE and IS1595-like DDE transposases. The assembly of the highly fragmented Oxytricha macronuclear genome is the first completed genome with such an unusual architecture. This genome sequence provides tantalizing glimpses into novel molecular biology and evolution. For example, Oxytricha maintains tens of millions of telomeres per cell and has also evolved an intriguing expansion of telomere end-binding proteins. In conjunction with the micronuclear genome in progress, the O. trifallax macronuclear genome will provide an invaluable resource for investigating programmed genome rearrangements, complementing studies of rearrangements arising during evolution and disease. PMID:23382650
Complement in autoimmune diseases.
Vignesh, Pandiarajan; Rawat, Amit; Sharma, Madhubala; Singh, Surjit
2017-02-01
The complement system is an ancient and evolutionary conserved element of the innate immune mechanism. It comprises of more than 20 serum proteins most of which are synthesized in the liver. These proteins are synthesized as inactive precursor proteins which are activated by appropriate stimuli. The activated forms of these proteins act as proteases and cleave other components successively in amplification pathways leading to exponential generation of final effectors. Three major pathways of complement pathways have been described, namely the classical, alternative and lectin pathways which are activated by different stimuli. However, all the 3 pathways converge on Complement C3. Cleavage of C3 and C5 successively leads to the production of the membrane attack complex which is final common effector. Excessive and uncontrolled activation of the complement has been implicated in the host of autoimmune diseases. But the complement has also been bemusedly described as the proverbial "double edged sword". On one hand, complement is the final effector of tissue injury in autoimmune diseases and on the other, deficiencies of some components of the complement can result in autoimmune diseases. Currently available tools such as enzyme based immunoassays for functional assessment of complement pathways, flow cytometry, next generation sequencing and proteomics-based approaches provide an exciting opportunity to study this ancient yet mysterious element of innate immunity. Copyright © 2017 Elsevier B.V. All rights reserved.
Okroj, Marcin; Mark, Linda; Stokowska, Anna; Wong, Scott W; Rose, Nicola; Blackbourn, David J; Villoutreix, Bruno O; Spiller, O Brad; Blom, Anna M
2009-01-02
Rhesus rhadinovirus (RRV) is currently the closest known, fully sequenced homolog of human Kaposi sarcoma-associated herpesvirus. Both these viruses encode complement inhibitors as follows: Kaposi sarcoma-associated herpesvirus-complement control protein (KCP) and RRV-complement control protein (RCP). Previously we characterized in detail the functional properties of KCP as a complement inhibitor. Here, we performed comparative analyses for two variants of RCP protein, encoded by RRV strains H26-95 and 17577. Both RCP variants and KCP inhibited human and rhesus complement when tested in hemolytic assays measuring all steps of activation via the classical and the alternative pathway. RCP variants from both RRV strains supported C3b and C4b degradation by factor I and decay acceleration of the classical C3 convertase, similar to KCP. Additionally, the 17577 RCP variant accelerated decay of the alternative C3 convertase, which was not seen for KCP. In contrast to KCP, RCP showed no affinity to heparin and is the first described complement inhibitor in which the binding site for C3b/C4b does not interact with heparin. Molecular modeling shows a structural disruption in the region of RCP that corresponds to the KCP-heparin-binding site. This makes RRV a superior model for future in vivo investigations of complement evasion, as RCP does not play a supportive role in viral attachment as KCP does.
Regulation of macrophage migration by products of the complement system.
Bianco, C; Götze, O; Cohn, Z A
1979-01-01
Agents formerly shown to induce rapid macrophage spreading were examined for their ability to modify the migration of macrophages in the capillary tube assay. Products of the activation of the contact phase of blood coagulation as well as the purified component Bb, the large cleavage fragment of factor B of the alternative complement pathway produced a dose-dependent inhibition of migration. In addition, inflammatory macrophages elicited with either a lipopolysaccharide endotoxin or thioglycollate medium exhibited rapid spreading and inhibited migration, whereas resident cells did not. A close correlation existed, therefore, between enhanced spreading and inhibited migration under both in vitro induced and in vivo situations. Cleavage products of component C5 of the classical complement pathway enhanced macrophage migration and did not alter spreading. In mixtures of C5 cleavage products and Bb, the predominant peptide determined the outcome of the reaction. Factor B, a normal secretory product of macrophages, may represent a common substrate for several of the proteases that induce spreading, inhibit migration, and lead to the generation of the enzymatically active fragment Bb. PMID:284412
Monitoring Single-Molecule Protein Dynamics with a Carbon Nanotube Transistor
NASA Astrophysics Data System (ADS)
Collins, Philip G.
2014-03-01
Nanoscale electronic devices like field-effect transistors have long promised to provide sensitive, label-free detection of biomolecules. Single-walled carbon nanotubes press this concept further by not just detecting molecules but also monitoring their dynamics in real time. Recent measurements have demonstrated this premise by monitoring the single-molecule processivity of three different enzymes: lysozyme, protein Kinase A, and the Klenow fragment of DNA polymerase I. With all three enzymes, single molecules tethered to nanotube transistors were electronically monitored for 10 or more minutes, allowing us to directly observe a range of activity including rare transitions to chemically inactive and hyperactive conformations. The high bandwidth of the nanotube transistors further allow every individual chemical event to be clearly resolved, providing excellent statistics from tens of thousands of turnovers by a single enzyme. Initial success with three different enzymes indicates the generality and attractiveness of the nanotube devices as a new tool to complement other single-molecule techniques. Research on transduction mechanisms provides the design rules necessary to further generalize this architecture and apply it to other proteins. The purposeful incorporation of just one amino acid is sufficient to fabricate effective, single molecule sensors from a wide range of enzymes or proteins.
Castiblanco-Valencia, Mónica Marcela; Fraga, Tatiana Rodrigues; Pagotto, Ana Helena; Serrano, Solange Maria de Toledo; Abreu, Patricia Antonia Estima; Barbosa, Angela Silva; Isaac, Lourdes
2016-05-01
Plasminogen is a single-chain glycoprotein found in human plasma as the inactive precursor of plasmin. When converted to proteolytically active plasmin, plasmin(ogen) regulates both complement and coagulation cascades, thus representing an important target for pathogenic microorganisms. Leptospira interrogans binds plasminogen, which is converted to active plasmin. Leptospiral immunoglobulin-like (Lig) proteins are surface exposed molecules that interact with extracellular matrix components and complement regulators, including proteins of the FH family and C4BP. In this work, we demonstrate that these multifunctional molecules also bind plasminogen through both N- and C-terminal domains. These interactions are dependent on lysine residues and are affected by ionic strength. Competition assays suggest that plasminogen does not share binding sites with C4BP or FH on Lig proteins at physiological molar ratios. Plasminogen bound to Lig proteins is converted to proteolytic active plasmin in the presence of urokinase-type plasminogen activator (uPA). Lig-bound plasmin is able to cleave the physiological substrates fibrinogen and the complement proteins C3b and C5. Taken together, our data point to a new role of LigA and LigB in leptospiral invasion and complement immune evasion. Plasmin(ogen) acquisition by these versatile proteins may contribute to Leptospira infection, favoring bacterial survival and dissemination inside the host. Copyright © 2016. Published by Elsevier GmbH.
Barbosa, Angela S.; Monaris, Denize; Silva, Ludmila B.; Morais, Zenaide M.; Vasconcellos, Sílvio A.; Cianciarullo, Aurora M.; Isaac, Lourdes; Abreu, Patricia A. E.
2010-01-01
We have previously shown that pathogenic leptospiral strains are able to bind C4b binding protein (C4BP). Surface-bound C4BP retains its cofactor activity, indicating that acquisition of this complement regulator may contribute to leptospiral serum resistance. In the present study, the abilities of seven recombinant putative leptospiral outer membrane proteins to interact with C4BP were evaluated. The protein encoded by LIC11947 interacted with this human complement regulator in a dose-dependent manner. The cofactor activity of C4BP bound to immobilized recombinant LIC11947 (rLIC11947) was confirmed by detecting factor I-mediated cleavage of C4b. rLIC11947 was therefore named LcpA (for leptospiral complement regulator-acquiring protein A). LcpA was shown to be an outer membrane protein by using immunoelectron microscopy, cell surface proteolysis, and Triton X-114 fractionation. The gene coding for LcpA is conserved among pathogenic leptospiral strains. This is the first characterization of a Leptospira surface protein that binds to the human complement regulator C4BP in a manner that allows this important regulator to control complement system activation mediated either by the classical pathway or by the lectin pathway. This newly identified protein may play a role in immune evasion by Leptospira spp. and may therefore represent a target for the development of a human vaccine against leptospirosis. PMID:20404075
Qin, Zhiwei; Baker, Alexander Thomas; Raab, Andrea; Huang, Sheng; Wang, Tiehui; Yu, Yi; Jaspars, Marcel; Secombes, Christopher J; Deng, Hai
2013-05-24
Holomycin and its derivatives belong to a class of broad-spectrum antibacterial natural products containing a rare dithiolopyrrolone heterobicyclic scaffold. The antibacterial mechanism of dithiolopyrrolone compounds has been attributed to the inhibition of bacterial RNA polymerase activities, although the exact mode of action has not been established in vitro. Some dithiopyrrolone derivatives display potent anticancer activities. Recently the biosynthetic gene cluster of holomycin has been identified and characterized in Streptomyces clavuligerus. Here we report that the fish pathogen Yersinia ruckeri is a holomycin producer, as evidenced through genome mining, chemical isolation, and structural elucidation as well as genetic manipulation. We also identified a unique regulatory gene hom15 at one end of the gene cluster encoding a cold-shock-like protein that likely regulates the production of holomycin in low cultivation temperatures. Inactivation of hom15 resulted in a significant loss of holomycin production. Finally, gene disruption of an RNA methyltransferase gene hom12 resulted in the sensitivity of the mutant toward holomycin. A complementation experiment of hom12 restored the resistance against holomycin. Although the wild-type Escherichia coli BL21(DE3) Gold is susceptible to holomycin, the mutant harboring hom12 showed tolerance toward holomycin. High resolution liquid chromatography (LC)-ESI/MS analysis of digested RNA fragments demonstrated that the wild-type Y. ruckeri and E. coli harboring hom12 contain a methylated RNA fragment, whereas the mutated Y. ruckeri and the wild-type E. coli only contain normal non-methylated RNA fragments. Taken together, our results strongly suggest that this putative RNA methyltransferase Hom12 is the self-resistance protein that methylates the RNA of Y. ruckeri to reduce the cytotoxic effect of holomycin during holomycin production.
Jackson, Christopher J; Norman, John E; Schnare, Murray N; Gray, Michael W; Keeling, Patrick J; Waller, Ross F
2007-01-01
Background Dinoflagellates comprise an ecologically significant and diverse eukaryotic phylum that is sister to the phylum containing apicomplexan endoparasites. The mitochondrial genome of apicomplexans is uniquely reduced in gene content and size, encoding only three proteins and two ribosomal RNAs (rRNAs) within a highly compacted 6 kb DNA. Dinoflagellate mitochondrial genomes have been comparatively poorly studied: limited available data suggest some similarities with apicomplexan mitochondrial genomes but an even more radical type of genomic organization. Here, we investigate structure, content and expression of dinoflagellate mitochondrial genomes. Results From two dinoflagellates, Crypthecodinium cohnii and Karlodinium micrum, we generated over 42 kb of mitochondrial genomic data that indicate a reduced gene content paralleling that of mitochondrial genomes in apicomplexans, i.e., only three protein-encoding genes and at least eight conserved components of the highly fragmented large and small subunit rRNAs. Unlike in apicomplexans, dinoflagellate mitochondrial genes occur in multiple copies, often as gene fragments, and in numerous genomic contexts. Analysis of cDNAs suggests several novel aspects of dinoflagellate mitochondrial gene expression. Polycistronic transcripts were found, standard start codons are absent, and oligoadenylation occurs upstream of stop codons, resulting in the absence of termination codons. Transcripts of at least one gene, cox3, are apparently trans-spliced to generate full-length mRNAs. RNA substitutional editing, a process previously identified for mRNAs in dinoflagellate mitochondria, is also implicated in rRNA expression. Conclusion The dinoflagellate mitochondrial genome shares the same gene complement and fragmentation of rRNA genes with its apicomplexan counterpart. However, it also exhibits several unique characteristics. Most notable are the expansion of gene copy numbers and their arrangements within the genome, RNA editing, loss of stop codons, and use of trans-splicing. PMID:17897476
Complement in Non-Antibody-Mediated Kidney Diseases
Angeletti, Andrea; Reyes-Bahamonde, Joselyn; Cravedi, Paolo; Campbell, Kirk N.
2017-01-01
The complement system is part of the innate immune response that plays important roles in protecting the host from foreign pathogens. The complement components and relative fragment deposition have long been recognized to be strongly involved also in the pathogenesis of autoantibody-related kidney glomerulopathies, leading to direct glomerular injury and recruitment of infiltrating inflammation pathways. More recently, unregulated complement activation has been shown to be associated with progression of non-antibody-mediated kidney diseases, including focal segmental glomerulosclerosis, C3 glomerular disease, thrombotic microangiopathies, or general fibrosis generation in progressive chronic kidney diseases. Some of the specific mechanisms associated with complement activation in these diseases were recently clarified, showing a dominant role of alternative activation pathway. Over the last decade, a growing number of anticomplement agents have been developed, and some of them are being approved for clinical use or already in use. Therefore, anticomplement therapies represent a realistic choice of therapeutic approaches for complement-related diseases. Herein, we review the complement system activation, regulatory mechanisms, their involvement in non-antibody-mediated glomerular diseases, and the recent advances in complement-targeting agents as potential therapeutic strategies. PMID:28748184
Role of Complement on Broken Surfaces After Trauma.
Huber-Lang, Markus; Ignatius, Anita; Brenner, Rolf E
2015-01-01
Activation of both the complement and coagulation cascade after trauma and subsequent local and systemic inflammatory response represent a major scientific and clinical problem. After severe tissue injury and bone fracture, exposure of innate immunity to damaged cells and molecular debris is considered a main trigger of the posttraumatic danger response. However, the effects of cellular fragments (e.g., histones) on complement activation remain enigmatic. Furthermore, direct effects of "broken" bone and cartilage surfaces on the fluid phase response of complement and its interaction with key cells of connective tissues are still unknown. Here, we summarize data suggesting direct and indirect complement activation by extracellular and cellular danger associated molecular patterns. In addition, key complement components and the corresponding receptors (such as C3aR, C5aR) have been detected on "exposed surfaces" of the damaged regions. On a cellular level, multiple effects of complement activation products on osteoblasts, osteoclasts, chondrocytes and mesenchymal stem cells have been found.In conclusion, the complement system may be activated by trauma-altered surfaces and is crucially involved in connective tissue healing and posttraumatic systemic inflammatory response.
BcL-xL Conformational Changes upon Fragment Binding Revealed by NMR
Aguirre, Clémentine; ten Brink, Tim; Walker, Olivier; Guillière, Florence; Davesne, Dany; Krimm, Isabelle
2013-01-01
Protein-protein interactions represent difficult but increasingly important targets for the design of therapeutic compounds able to interfere with biological processes. Recently, fragment-based strategies have been proposed as attractive approaches for the elaboration of protein-protein surface inhibitors from fragment-like molecules. One major challenge in targeting protein-protein interactions is related to the structural adaptation of the protein surface upon molecular recognition. Methods capable of identifying subtle conformational changes of proteins upon fragment binding are therefore required at the early steps of the drug design process. In this report we present a fast NMR method able to probe subtle conformational changes upon fragment binding. The approach relies on the comparison of experimental fragment-induced Chemical Shift Perturbation (CSP) of amine protons to CSP simulated for a set of docked fragment poses, considering the ring-current effect from fragment binding. We illustrate the method by the retrospective analysis of the complex between the anti-apoptotic Bcl-xL protein and the fragment 4′-fluoro-[1,1′-biphenyl]-4-carboxylic acid that was previously shown to bind one of the Bcl-xL hot spots. The CSP-based approach shows that the protein undergoes a subtle conformational rearrangement upon interaction, for residues located in helices 2, 3 and the very beginning of 5. Our observations are corroborated by residual dipolar coupling measurements performed on the free and fragment-bound forms of the Bcl-xL protein. These NMR-based results are in total agreement with previous molecular dynamic calculations that evidenced a high flexibility of Bcl-xL around the binding site. Here we show that CSP of protein amine protons are useful and reliable structural probes. Therefore, we propose to use CSP simulation to assess protein conformational changes upon ligand binding in the fragment-based drug design approach. PMID:23717610
Evasion Mechanisms Used by Pathogens to Escape the Lectin Complement Pathway.
Rosbjerg, Anne; Genster, Ninette; Pilely, Katrine; Garred, Peter
2017-01-01
The complement system is a crucial defensive network that protects the host against invading pathogens. It is part of the innate immune system and can be initiated via three pathways: the lectin, classical and alternative activation pathway. Overall the network compiles a group of recognition molecules that bind specific patterns on microbial surfaces, a group of associated proteases that initiates the complement cascade, and a group of proteins that interact in proteolytic complexes or the terminal pore-forming complex. In addition, various regulatory proteins are important for controlling the level of activity. The result is a pro-inflammatory response meant to combat foreign microbes. Microbial elimination is, however, not a straight forward procedure; pathogens have adapted to their environment by evolving a collection of evasion mechanisms that circumvent the human complement system. Complement evasion strategies features different ways of exploiting human complement proteins and moreover features different pathogen-derived proteins that interfere with the normal processes. Accumulated, these mechanisms target all three complement activation pathways as well as the final common part of the cascade. This review will cover the currently known lectin pathway evasion mechanisms and give examples of pathogens that operate these to increase their chance of invasion, survival and dissemination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Yufeng; Tolic, Nikola; Piehowski, Paul D.
We report development of an approach providing high-resolution RPLC of proteins and its utility for mass spectrometry-based top-down proteomics. A chromatographic peak capacity of ~450 was achieved for proteins and large polypeptides having MWs up to 43 kDa in the context of proteomics applications. RPLC column lengths from 20 to 200 cm, particle sizes from 1.5 to 5 m, bonding alkyl chains from C1 to C2, C4, C8, and C18, and particle surface structures that spanned porous, superficially porous (porous shell, core-shell), and nonporous were investigated at pressures up to14K psi. Column length was found as the most important factormore » for >20 kDa proteins in gradient RPLC, and shortening column length degraded RPLC resolution and sensitivity regardless of the size and surface structure of the packing particles used. The alkyl chains bonded to the silica particle surface significantly affected the RPLC recovery and efficiency, and short alkyl C1-C4 phases provided higher sensitivity and resolution than C8 and C18 phases. Long gradient separations (e.g., >10 hours) with long columns (e.g., 100 cm) were particularly effective in conjunction with use of high accuracy mass spectrometers (e.g., the Orbitrap Elite) for top-down proteomics with improved proteoform coverage by allowing multiple HCD, CID, and ETD dissociation modes. It was also found that HCD produced small fragments useful for proteoform identification, while low energy CID and ETD often complemented HCD by providing large fragments.« less
Targeting complement-mediated immunoregulation for cancer immunotherapy.
Kolev, Martin; Markiewski, Maciej M
2018-06-01
Complement was initially discovered as an assembly of plasma proteins "complementing" the cytolytic activity of antibodies. However, our current knowledge places this complex system of several plasma proteins, receptors, and regulators in the center of innate immunity as a bridge between the initial innate responses and adaptive immune reactions. Consequently, complement appears to be pivotal for elimination of pathogens, not only as an early response defense, but by directing the subsequent adaptive immune response. The discovery of functional intracellular complement and its roles in cellular metabolism opened novel avenues for research and potential therapeutic implications. The recent studies demonstrating immunoregulatory functions of complement in the tumor microenvironment and the premetastatic niche shifted the paradigm on our understanding of functions of the complement system in regulating immunity. Several complement proteins, through their interaction with cells in the tumor microenvironment and in metastasis-targeted organs, contribute to modulating tumor growth, antitumor immunity, angiogenesis, and therefore, the overall progression of malignancy and, perhaps, responsiveness of cancer to different therapies. Here, we focus on recent progress in our understanding of immunostimulatory vs. immunoregulatory functions of complement and potential applications of these findings to the design of novel therapies for cancer patients. Copyright © 2018 Elsevier Ltd. All rights reserved.
A murC gene from coryneform bacteria.
Wachi, M; Wijayarathna, C D; Teraoka, H; Nagai, K
1999-02-01
The upstream flanking region of the ftsQ and ftsZ genes of Brevibacterium flavum MJ233, which belongs to the coryneform bacteria, was amplified by the inverse polymerase chain reaction method and cloned in Escherichia coli. Complementation analysis of E. coli mutant with a defective cell-wall synthesis mechanism with the cloned fragment and its DNA sequencing indicated the presence of the murC gene, encoding UDP-N-acetylmuramate:L-alanine ligase involved in peptidoglycan synthesis, just upstream from the ftsQ gene. The B. flavum murC gene could encode a protein of 486 amino acid residues with a calculated molecular mass of 51 198 Da. A 50-kDa protein was synthesized by the B. flavum murC gene in an in vitro transcription/translation system using E. coli S30 lysate. These results indicate that the genes responsible for cell-wall synthesis and cell division are located as a cluster in B. flavum similar to the E. coli mra region.
Genetic and physical analyses of Methylobacterium organophilum XX genes encoding methanol oxidation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Machlin, S.M.; Tam, P.E.; Bastien, C.A.
When allyl alcohol was used as a suicide substrate, spontaneous mutants and UV light- and nitrous acid-generated mutants of Methylobacterium organophilum XX were selected which grew on methylamine but not on methanol. There was no detectable methanol dehydrogenase (MDH) activity in crude extracts of these mutants, yet Western blots revealed that some mutants still produced MDH protein. Complementation of 50 mutants by a cosmid gene bank of M. organophilum XX demonstrated that three major regions of the genome, each of which was separated by a minimum of 40 kilobases, were required for expression of active MDH. By subcloning and Tn5more » insertion mutagenesis of subcloned fragments, at least 11 genes clustered within these three regions were subsequently identified. The identity of the MDH structural gene, which was initially determined by hybridization to the structural gene of Methylobacterium sp. strain AM1, was confirmed by Western blot analysis of an MDH-..beta..-galactosidase fusion protein.« less
Structural Basis of Transcriptional Gene Silencing Mediated by Arabidopsis MOM1
Nishimura, Taisuke; Molinard, Guillaume; Petty, Tom J.; Broger, Larissa; Gabus, Caroline; Halazonetis, Thanos D.; Thore, Stéphane; Paszkowski, Jerzy
2012-01-01
Shifts between epigenetic states of transcriptional activity are typically correlated with changes in epigenetic marks. However, exceptions to this rule suggest the existence of additional, as yet uncharacterized, layers of epigenetic regulation. MOM1, a protein of 2,001 amino acids that acts as a transcriptional silencer, represents such an exception. Here we define the 82 amino acid domain called CMM2 (Conserved MOM1 Motif 2) as a minimal MOM1 fragment capable of transcriptional regulation. As determined by X-ray crystallography, this motif folds into an unusual hendecad-based coiled-coil. Structure-based mutagenesis followed by transgenic complementation tests in plants demonstrate that CMM2 and its dimerization are effective for transcriptional suppression at chromosomal loci co-regulated by MOM1 and the siRNA pathway but not at loci controlled by MOM1 in an siRNA–independent fashion. These results reveal a surprising separation of epigenetic activities that enable the single, large MOM1 protein to coordinate cooperating mechanisms of epigenetic regulation. PMID:22346760
Structural basis of transcriptional gene silencing mediated by Arabidopsis MOM1.
Nishimura, Taisuke; Molinard, Guillaume; Petty, Tom J; Broger, Larissa; Gabus, Caroline; Halazonetis, Thanos D; Thore, Stéphane; Paszkowski, Jerzy
2012-02-01
Shifts between epigenetic states of transcriptional activity are typically correlated with changes in epigenetic marks. However, exceptions to this rule suggest the existence of additional, as yet uncharacterized, layers of epigenetic regulation. MOM1, a protein of 2,001 amino acids that acts as a transcriptional silencer, represents such an exception. Here we define the 82 amino acid domain called CMM2 (Conserved MOM1 Motif 2) as a minimal MOM1 fragment capable of transcriptional regulation. As determined by X-ray crystallography, this motif folds into an unusual hendecad-based coiled-coil. Structure-based mutagenesis followed by transgenic complementation tests in plants demonstrate that CMM2 and its dimerization are effective for transcriptional suppression at chromosomal loci co-regulated by MOM1 and the siRNA pathway but not at loci controlled by MOM1 in an siRNA-independent fashion. These results reveal a surprising separation of epigenetic activities that enable the single, large MOM1 protein to coordinate cooperating mechanisms of epigenetic regulation.
Identification of a Naegleria fowleri Membrane Protein Reactive with Anti-Human CD59 Antibody
Fritzinger, Angela E.; Toney, Denise M.; MacLean, Rebecca C.; Marciano-Cabral, Francine
2006-01-01
Naegleria fowleri, the causative agent of primary amebic meningoencephalitis, is resistant to complement lysis. The presence of a complement regulatory protein on the surface of N. fowleri was investigated. Southern blot and Northern blot analyses demonstrated hybridization of a radiolabeled cDNA probe for CD59 to genomic DNA and RNA, respectively, from pathogenic N. fowleri. An 18-kDa immunoreactive protein was detected on the membrane of N. fowleri by Western immunoblot and immunofluorescence analyses with monoclonal antibodies for human CD59. Complement component C9 immunoprecipitated with the N. fowleri “CD59-like” protein from amebae incubated with normal human serum. In contrast, a gene or protein similar to CD59 was not detected in nonpathogenic, complement-sensitive N. gruberi amebae. Collectively, our studies suggest that a protein reactive with antibodies to human CD59 is present on the surface of N. fowleri amebae and may play a role in resistance to lysis by cytolytic proteins. PMID:16428768
Enzyme-linked immunosorbent assay detection and bioactivity of Cry1Ab protein fragments.
Albright, Vurtice C; Hellmich, Richard L; Coats, Joel R
2016-12-01
The continuing use of transgenic crops has led to an increased interest in the fate of insecticidal crystalline (Cry) proteins in the environment. Enzyme-linked immunosorbent assays (ELISAs) have emerged as the preferred detection method for Cry proteins in environmental matrices. Concerns exist that ELISAs are capable of detecting fragments of Cry proteins, which may lead to an overestimation of the concentration of these proteins in the environment. Five model systems were used to generate fragments of the Cry1Ab protein, which were then analyzed by ELISAs and bioassays. Fragments from 4 of the model systems were not detectable by ELISA and did not retain bioactivity. Fragments from the proteinase K model system were detectable by ELISA and retained bioactivity. In most cases, ELISAs appear to provide an accurate estimation of the amount of Cry proteins in the environment, as detectable fragments retained bioactivity and nondetectable fragments did not retain bioactivity. Environ Toxicol Chem 2016;35:3101-3112. © 2016 SETAC. © 2016 SETAC.
Hikiji, T; Ohkuma, M; Takagi, M; Yano, K
1989-10-01
The host-vector system of an n-alkane-assimilating-yeast, Candida maltosa, which we previously constructed using an autonomously replicating sequence (ARS) region isolated from the genome of this yeast, utilizes C. maltosa J288 (leu2-) as a host. As this host had a serious growth defect on n-alkane, we developed an improved host-vector system using C. maltosa CH1 (his-) as host. The vectors were constructed with the Candida ARS region and a DNA fragment isolated from the genome of C. maltosa. Since this DNA fragment could complement histidine auxotrophy of both C. maltosa CH1 and S. cerevisiae (his5-), we termed the gene contained in this DNA fragment C-HIS5. The vectors were characterized in terms of transformation frequency and stability, and the nucleotide sequence of C-HIS5 was determined. The deduced amino acid sequence (389 residues) shared 51% homology with that of HIS5 of S. cerevisiae (384 residues; Nishiwaki et al. 1987).
Cell Wall and Secreted Proteins of Candida albicans: Identification, Function, and Expression
Chaffin, W. Lajean; López-Ribot, José Luis; Casanova, Manuel; Gozalbo, Daniel; Martínez, José P.
1998-01-01
The cell wall is essential to nearly every aspect of the biology and pathogenicity of Candida albicans. Although it was intially considered an almost inert cellular structure that protected the protoplast against osmotic offense, more recent studies have demonstrated that it is a dynamic organelle. The major components of the cell wall are glucan and chitin, which are associated with structural rigidity, and mannoproteins. The protein component, including both mannoprotein and nonmannoproteins, comprises some 40 or more moieties. Wall proteins may differ in their expression, secretion, or topological location within the wall structure. Proteins may be modified by glycosylation (primarily addition of mannose residues), phosphorylation, and ubiquitination. Among the secreted enzymes are those that are postulated to have substrates within the cell wall and those that find substrates in the extracellular environment. Cell wall proteins have been implicated in adhesion to host tissues and ligands. Fibrinogen, complement fragments, and several extracellular matrix components are among the host proteins bound by cell wall proteins. Proteins related to the hsp70 and hsp90 families of conserved stress proteins and some glycolytic enzyme proteins are also found in the cell wall, apparently as bona fide components. In addition, the expression of some proteins is associated with the morphological growth form of the fungus and may play a role in morphogenesis. Finally, surface mannoproteins are strong immunogens that trigger and modulate the host immune response during candidiasis. PMID:9529890
Hertveldt, Kirsten; Beliën, Tim; Volckaert, Guido
2009-01-01
In M13 phage display, proteins and peptides are exposed on one of the surface proteins of filamentous phage particles and become accessible to affinity enrichment against a bait of interest. We describe the construction of fragmented whole genome and gene fragment phage display libraries and interaction selection by panning. This strategy allows the identification and characterization of interacting proteins on a genomic scale by screening the fragmented "proteome" against protein baits. Gene fragment libraries allow a more in depth characterization of the protein-protein interaction site by identification of the protein region involved in the interaction.
Medina, Eva; van Rooijen, Willemien J.; Spaan, András N.; van Kessel, Kok P. M.; Höök, Magnus; Rooijakkers, Suzan H. M.
2013-01-01
Upon contact with human plasma, bacteria are rapidly recognized by the complement system that labels their surface for uptake and clearance by phagocytic cells. Staphylococcus aureus secretes the 16 kD Extracellular fibrinogen binding protein (Efb) that binds two different plasma proteins using separate domains: the Efb N-terminus binds to fibrinogen, while the C-terminus binds complement C3. In this study, we show that Efb blocks phagocytosis of S. aureus by human neutrophils. In vitro, we demonstrate that Efb blocks phagocytosis in plasma and in human whole blood. Using a mouse peritonitis model we show that Efb effectively blocks phagocytosis in vivo, either as a purified protein or when produced endogenously by S. aureus. Mutational analysis revealed that Efb requires both its fibrinogen and complement binding residues for phagocytic escape. Using confocal and transmission electron microscopy we show that Efb attracts fibrinogen to the surface of complement-labeled S. aureus generating a ‘capsule’-like shield. This thick layer of fibrinogen shields both surface-bound C3b and antibodies from recognition by phagocytic receptors. This information is critical for future vaccination attempts, since opsonizing antibodies may not function in the presence of Efb. Altogether we discover that Efb from S. aureus uniquely escapes phagocytosis by forming a bridge between a complement and coagulation protein. PMID:24348255
Varshavsky, Alexander
2012-01-01
Despite extensive understanding of sleep regulation, the molecular-level cause and function of sleep are unknown. I suggest that they originate in individual neurons and stem from increased production of protein fragments during wakefulness. These fragments are transient parts of protein complexes in which the fragments were generated. Neuronal Ca2+ fluxes are higher during wakefulness than during sleep. Subunits of transmembrane channels and other proteins are cleaved by Ca2+-activated calpains and by other nonprocessive proteases, including caspases and secretases. In the proposed concept, termed the fragment generation (FG) hypothesis, sleep is a state during which the production of fragments is decreased (owing to lower Ca2+ transients) while fragment-destroying pathways are upregulated. These changes facilitate the elimination of fragments and the remodeling of protein complexes in which the fragments resided. The FG hypothesis posits that a proteolytic cleavage, which produces two fragments, can have both deleterious effects and fitness-increasing functions. This (previously not considered) dichotomy can explain both the conservation of cleavage sites in proteins and the evolutionary persistence of sleep, because sleep would counteract deleterious aspects of protein fragments. The FG hypothesis leads to new explanations of sleep phenomena, including a longer sleep after sleep deprivation. Studies in the 1970s showed that ethanol-induced sleep in mice can be strikingly prolonged by intracerebroventricular injections of either Ca2+ alone or Ca2+ and its ionophore (Erickson et al., Science 1978;199:1219–1221; Harris, Pharmacol Biochem Behav 1979;10:527–534; Erickson et al., Pharmacol Biochem Behav 1980;12:651–656). These results, which were never interpreted in connection to protein fragments or the function of sleep, may be accounted for by the FG hypothesis about molecular causation of sleep. PMID:22930402
Hess, Katharina; Ajjan, Ramzi; Phoenix, Fladia; Dobó, József; Gál, Péter; Schroeder, Verena
2012-01-01
Background Numerous interactions between the coagulation and complement systems have been shown. Recently, links between coagulation and mannan-binding lectin-associated serine protease-1 (MASP-1) of the complement lectin pathway have been proposed. Our aim was to investigate MASP-1 activation of factor XIII (FXIII), fibrinogen, prothrombin, and thrombin-activatable fibrinolysis inhibitor (TAFI) in plasma-based systems, and to analyse effects of MASP-1 on plasma clot formation, structure and lysis. Methodology/Principal Findings We used a FXIII incorporation assay and specific assays to measure the activation products prothrombin fragment F1+2, fibrinopeptide A (FPA), and activated TAFI (TAFIa). Clot formation and lysis were assessed by turbidimetric assay. Clot structure was studied by scanning electron microscopy. MASP-1 activated FXIII and, contrary to thrombin, induced FXIII activity faster in the Val34 than the Leu34 variant. MASP-1-dependent generation of F1+2, FPA and TAFIa showed a dose-dependent response in normal citrated plasma (NCP), albeit MASP-1 was much less efficient than FXa or thrombin. MASP-1 activation of prothrombin and TAFI cleavage were confirmed in purified systems. No FPA generation was observed in prothrombin-depleted plasma. MASP-1 induced clot formation in NCP, affected clot structure, and prolonged clot lysis. Conclusions/Significance We show that MASP-1 interacts with plasma clot formation on different levels and influences fibrin structure. Although MASP-1-induced fibrin formation is thrombin-dependent, MASP-1 directly activates prothrombin, FXIII and TAFI. We suggest that MASP-1, in concerted action with other complement and coagulation proteins, may play a role in fibrin clot formation. PMID:22536427
Defining the Complement Biomarker Profile of C3 Glomerulopathy
Zhang, Yuzhou; Nester, Carla M.; Martin, Bertha; Skjoedt, Mikkel-Ole; Meyer, Nicole C.; Shao, Dingwu; Borsa, Nicolò; Palarasah, Yaseelan
2014-01-01
Background and objectives C3 glomerulopathy (C3G) applies to a group of renal diseases defined by a specific renal biopsy finding: a dominant pattern of C3 fragment deposition on immunofluorescence. The primary pathogenic mechanism involves abnormal control of the alternative complement pathway, although a full description of the disease spectrum remains to be determined. This study sought to validate and define the association of complement dysregulation with C3G and to determine whether specific complement pathway abnormalities could inform disease definition. Design, setting, participants, & measurements This study included 34 patients with C3G (17 with C3 glomerulonephritis [C3GN] and 17 with dense deposit disease [DDD]) diagnosed between 2008 and 2013 selected from the C3G Registry. Control samples (n=100) were recruited from regional blood drives. Nineteen complement biomarkers were assayed on all samples. Results were compared between C3G disease categories and with normal controls. Results Assessment of the alternative complement pathway showed that compared with controls, patients with C3G had lower levels of serum C3 (P<0.001 for both DDD and C3GN) and factor B (P<0.001 for both DDD and C3GN) as well as higher levels of complement breakdown products including C3d (P<0.001 for both DDD and C3GN) and Bb (P<0.001 for both DDD and C3GN). A comparison of terminal complement pathway proteins showed that although C5 levels were significantly suppressed (P<0.001 for both DDD and C3GN) its breakdown product C5a was significantly higher only in patients with C3GN (P<0.05). Of the other terminal pathway components (C6–C9), the only significant difference was in C7 levels between patients with C3GN and controls (P<0.01). Soluble C5b-9 was elevated in both diseases but only the difference between patients with C3GN and controls reached statistical significance (P<0.001). Levels of C3 nephritic factor activity were qualitatively higher in patients with DDD compared with patients with C3GN. Conclusions Complement biomarkers are significantly abnormal in patients with C3G compared with controls. These data substantiate the link between complement dysregulation and C3G and identify C3G interdisease differences. PMID:25341722
Lee, Chang-Han; Romain, Gabrielle; Yan, Wupeng; Watanabe, Makiko; Charab, Wissam; Todorova, Biliana; Lee, Jiwon; Triplett, Kendra; Donkor, Moses; Lungu, Oana I; Lux, Anja; Marshall, Nicholas; Lindorfer, Margaret A; Goff, Odile Richard-Le; Balbino, Bianca; Kang, Tae Hyun; Tanno, Hidetaka; Delidakis, George; Alford, Corrine; Taylor, Ronald P; Nimmerjahn, Falk; Varadarajan, Navin; Bruhns, Pierre; Zhang, Yan Jessie; Georgiou, George
2017-08-01
Engineered crystallizable fragment (Fc) regions of antibody domains, which assume a unique and unprecedented asymmetric structure within the homodimeric Fc polypeptide, enable completely selective binding to the complement component C1q and activation of complement via the classical pathway without any concomitant engagement of the Fcγ receptor (FcγR). We used the engineered Fc domains to demonstrate in vitro and in mouse models that for therapeutic antibodies, complement-dependent cell-mediated cytotoxicity (CDCC) and complement-dependent cell-mediated phagocytosis (CDCP) by immunological effector molecules mediated the clearance of target cells with kinetics and efficacy comparable to those of the FcγR-dependent effector functions that are much better studied, while they circumvented certain adverse reactions associated with FcγR engagement. Collectively, our data highlight the importance of CDCC and CDCP in monoclonal-antibody function and provide an experimental approach for delineating the effect of complement-dependent effector-cell engagement in various therapeutic settings.
Britto, S Mary; Shanthakumari, D; Agilan, B; Radhiga, T; Kanimozhi, G; Prasad, N Rajendra
2017-09-01
Exposure to solar ultraviolet-B (UVB) radiation leads to the formation of cyclobutane pyrimidine dimers (CPDs). We investigated the protective effect of apigenin against UVB-induced CPDs formation in human dermal fibroblasts cells (HDFa). For this purpose, HDFa cells were treated with apigenin (15μM) prior to UVB irradiation (20mJ/cm 2 ); DNA damage and subsequent molecular end points were observed. Exposure to UVB radiation increased significant CPDs formation in HDFa cells and the frequencies of CPDs were reduced by treatment with apigenin (15μM). UVB-induced CPDs downregulates the expression of nucleotide excision repair (NER) genes such as xeroderma pigmentosum complementation group C, B, G and F (XPC, XPB, XPG and XPF), transcription factor II human (TFIIH) and excision repair cross-complementation group 1 (ERCC1) in HDFa cells. Conversely, apigenin treatment restored UVB-induced loss of NER proteins in HDFa cells, which indicates its preventive effect against CPDs formation. Besides, single low dose UVB-exposure induced nuclear fragmentation, apoptotic frequency and apoptotic proteins expression (Bax and Caspase-3) have been prevented by the apigenin pretreatment. Furthermore, apigenin exhibits strong UV absorbance property and showed 10.08 SPF value. Thus, apigenin can protect skin cells against UVB-induced CPDs formation probably through its sunscreen effect. Hence, apigenin can be considered as an effective protective agent against UV induced skin damages. Copyright © 2017 Elsevier B.V. All rights reserved.
Human access and landscape structure effects on Andean forest bird richness
NASA Astrophysics Data System (ADS)
Aubad, Jorge; Aragón, Pedro; Rodríguez, Miguel Á.
2010-07-01
We analyzed the influence of human access and landscape structure on forest bird species richness in a fragmented landscape of the Colombian Andes. In Latin America, habitat loss and fragmentation are considered as the greatest threats to biodiversity because a large number of countryside villagers complement their food and incomes with the extraction of forest resources. Anthropogenic actions may also affect forest species by bird hunting or indirectly through modifying the structure of forest habitats. We surveyed 14 secondary cloud forest remnants to generate bird species richness data for each of them. We also quantified six landscape structure descriptors of forest patch size (patch area and core area), shape (perimeter of each fragment and the Patton's shape index) and isolation (nearest neighbor distance and edge contrast), and generated (using principal components analysis) a synthetic human influence variable based on the distance of each fragment to roads and villages, as well as the total slope of the fragments. Species richness was related to these variables using generalized linear models (GLMs) complemented with model selection techniques based on information theory and partial regression analysis. We found that forest patch size and accessibility were key drivers of bird richness, which increased toward largest patches, but decreased in those more accessible to humans and their potential disturbances. Both patch area and human access effects on forest bird species richness were complementary and similar in magnitude. Our results provide a basis for biodiversity conservation plans and initiatives of Andean forest diversity.
Evasion Mechanisms Used by Pathogens to Escape the Lectin Complement Pathway
Rosbjerg, Anne; Genster, Ninette; Pilely, Katrine; Garred, Peter
2017-01-01
The complement system is a crucial defensive network that protects the host against invading pathogens. It is part of the innate immune system and can be initiated via three pathways: the lectin, classical and alternative activation pathway. Overall the network compiles a group of recognition molecules that bind specific patterns on microbial surfaces, a group of associated proteases that initiates the complement cascade, and a group of proteins that interact in proteolytic complexes or the terminal pore-forming complex. In addition, various regulatory proteins are important for controlling the level of activity. The result is a pro-inflammatory response meant to combat foreign microbes. Microbial elimination is, however, not a straight forward procedure; pathogens have adapted to their environment by evolving a collection of evasion mechanisms that circumvent the human complement system. Complement evasion strategies features different ways of exploiting human complement proteins and moreover features different pathogen-derived proteins that interfere with the normal processes. Accumulated, these mechanisms target all three complement activation pathways as well as the final common part of the cascade. This review will cover the currently known lectin pathway evasion mechanisms and give examples of pathogens that operate these to increase their chance of invasion, survival and dissemination. PMID:28553281
Maternal and fetal alternative complement pathway activation in early severe preeclampsia.
Hoffman, M Camille; Rumer, Kristen K; Kramer, Anita; Lynch, Anne M; Winn, Virginia D
2014-01-01
We sought to determine whether alternative complement activation fragment Bb (Bb) levels are elevated in the maternal, fetal, and placental blood in cases of severe preeclampsia (PE) compared with normotensive controls. This was a cross-sectional study of women admitted at ≥24 weeks gestation with or without severe PE. Maternal plasma was collected at the time of enrollment. Umbilical venous cord and intervillous space blood were collected at delivery. Plasma Bb levels were assessed using ELISA. Bb levels were compared between cases and controls. Median Bb levels were higher in the maternal plasma of severe PE subjects (n = 24) than in controls (n = 20), 1.45 ± 1.03 versus 0.65 ± 0.23 μg/mL, P < 0.001. In umbilical venous plasma, Bb levels were higher in severe PE subjects (n = 15) compared with controls (n = 15), 2.48 ± 1.40 versus 1.01 ± 0.57 μg/mL, P = 0.01. Activation fragment Bb is increased in the maternal and umbilical venous blood of cases of severe PE when compared with normotensive controls. These data provide support for alternative complement pathway involvement in the pathogenesis of severe PE and demonstrate that alternative complement activation occurs not only in the maternal but also in the fetal compartment. © 2013 John Wiley & Sons Ltd.
Yang, Zhenhua; Wu, Rui; Li, Robert W; Li, Ling; Xiong, Zhongliang; Zhao, Haizhong; Guo, Deyin; Pan, Zishu
2012-04-01
A trans-complemented chimeric CSF-JE virus replicon was constructed using an infectious cDNA clone of the CSF virus (CSFV) Alfort/187 strain. The CSFV E2 gene was deleted, and a fragment containing the region encoding a truncated envelope protein (tE, amino acid 292-402, domain III) of JE virus (JEV) was inserted into the resultant plasmid, pA187delE2, to generate the recombinant cDNA clone pA187delE2/JEV-tE. Porcine kidney 15 (PK15) cells that constitutively express the CSFV E2p7 proteins were then transfected with in vitro-transcribed RNA from pA187delE2/JEV-tE. As a result, the chimeric CSF-JE virus replicon particle (VRP), rv187delE2/JEV-tE, was rescued. In a mouse model, immunization with the chimeric CSF-JE VRP induced strong production of JEV-specific antibody and conferred protection against a lethal JEV challenge. Pigs immunized with CSF-JE VRP displayed strong anti-CSFV and anti-JEV antibody responses and protection against CSFV and JEV challenge infections. Our evidence suggests that E2-complemented CSF-JE VRP not only has potential as a live-attenuated non-transmissible vaccine candidate against CSF and JE but also serves as a potential DIVA (Differentiating Infected from Vaccinated Animals) vaccine for CSF in pigs. Together, our data suggest that the non-transmissible chimeric VRP expressing foreign antigenic proteins may represent a promising strategy for bivalent DIVA vaccine design. Copyright © 2012 Elsevier B.V. All rights reserved.
Knowledge-based fragment binding prediction.
Tang, Grace W; Altman, Russ B
2014-04-01
Target-based drug discovery must assess many drug-like compounds for potential activity. Focusing on low-molecular-weight compounds (fragments) can dramatically reduce the chemical search space. However, approaches for determining protein-fragment interactions have limitations. Experimental assays are time-consuming, expensive, and not always applicable. At the same time, computational approaches using physics-based methods have limited accuracy. With increasing high-resolution structural data for protein-ligand complexes, there is now an opportunity for data-driven approaches to fragment binding prediction. We present FragFEATURE, a machine learning approach to predict small molecule fragments preferred by a target protein structure. We first create a knowledge base of protein structural environments annotated with the small molecule substructures they bind. These substructures have low-molecular weight and serve as a proxy for fragments. FragFEATURE then compares the structural environments within a target protein to those in the knowledge base to retrieve statistically preferred fragments. It merges information across diverse ligands with shared substructures to generate predictions. Our results demonstrate FragFEATURE's ability to rediscover fragments corresponding to the ligand bound with 74% precision and 82% recall on average. For many protein targets, it identifies high scoring fragments that are substructures of known inhibitors. FragFEATURE thus predicts fragments that can serve as inputs to fragment-based drug design or serve as refinement criteria for creating target-specific compound libraries for experimental or computational screening.
Knowledge-based Fragment Binding Prediction
Tang, Grace W.; Altman, Russ B.
2014-01-01
Target-based drug discovery must assess many drug-like compounds for potential activity. Focusing on low-molecular-weight compounds (fragments) can dramatically reduce the chemical search space. However, approaches for determining protein-fragment interactions have limitations. Experimental assays are time-consuming, expensive, and not always applicable. At the same time, computational approaches using physics-based methods have limited accuracy. With increasing high-resolution structural data for protein-ligand complexes, there is now an opportunity for data-driven approaches to fragment binding prediction. We present FragFEATURE, a machine learning approach to predict small molecule fragments preferred by a target protein structure. We first create a knowledge base of protein structural environments annotated with the small molecule substructures they bind. These substructures have low-molecular weight and serve as a proxy for fragments. FragFEATURE then compares the structural environments within a target protein to those in the knowledge base to retrieve statistically preferred fragments. It merges information across diverse ligands with shared substructures to generate predictions. Our results demonstrate FragFEATURE's ability to rediscover fragments corresponding to the ligand bound with 74% precision and 82% recall on average. For many protein targets, it identifies high scoring fragments that are substructures of known inhibitors. FragFEATURE thus predicts fragments that can serve as inputs to fragment-based drug design or serve as refinement criteria for creating target-specific compound libraries for experimental or computational screening. PMID:24762971
Cordes, Frank S; Kraiczy, Peter; Roversi, Pietro; Simon, Markus M; Brade, Volker; Jahraus, Oliver; Wallis, Russell; Goodstadt, Leo; Ponting, Chris P; Skerka, Christine; Zipfel, Peter F; Wallich, Reinhard; Lea, Susan M
2006-05-01
Borrelia burgdorferi, a spirochaete transmitted to human hosts during feeding of infected Ixodes ticks, is the causative agent of Lyme disease, the most frequent vector-borne disease in Eurasia and North America. Sporadically Lyme disease develops into a chronic, multisystemic disorder. Serum-resistant B. burgdorferi strains bind complement factor H (FH) and FH-like protein 1 (FHL-1) on the spirochaete surface. This binding is dependent on the expression of proteins termed complement-regulator acquiring surface proteins (CRASPs). The atomic structure of BbCRASP-1, the key FHL-1/FH-binding protein of B. burgdorferi, has recently been determined. Our analysis indicates that its protein topology apparently evolved to provide a high affinity interaction site for FH/FHL-1 and leads to an atomic-level hypothesis for the functioning of BbCRASP-1. This work demonstrates that pathogens interact with complement regulators in ways that are distinct from the mechanisms used by the host and are thus obvious targets for drug design.
Varshavsky, Alexander
2012-11-01
Despite extensive understanding of sleep regulation, the molecular-level cause and function of sleep are unknown. I suggest that they originate in individual neurons and stem from increased production of protein fragments during wakefulness. These fragments are transient parts of protein complexes in which the fragments were generated. Neuronal Ca²⁺ fluxes are higher during wakefulness than during sleep. Subunits of transmembrane channels and other proteins are cleaved by Ca²⁺-activated calpains and by other nonprocessive proteases, including caspases and secretases. In the proposed concept, termed the fragment generation (FG) hypothesis, sleep is a state during which the production of fragments is decreased (owing to lower Ca²⁺ transients) while fragment-destroying pathways are upregulated. These changes facilitate the elimination of fragments and the remodeling of protein complexes in which the fragments resided. The FG hypothesis posits that a proteolytic cleavage, which produces two fragments, can have both deleterious effects and fitness-increasing functions. This (previously not considered) dichotomy can explain both the conservation of cleavage sites in proteins and the evolutionary persistence of sleep, because sleep would counteract deleterious aspects of protein fragments. The FG hypothesis leads to new explanations of sleep phenomena, including a longer sleep after sleep deprivation. Studies in the 1970s showed that ethanol-induced sleep in mice can be strikingly prolonged by intracerebroventricular injections of either Ca²⁺ alone or Ca²⁺ and its ionophore (Erickson et al., Science 1978;199:1219-1221; Harris, Pharmacol Biochem Behav 1979;10:527-534; Erickson et al., Pharmacol Biochem Behav 1980;12:651-656). These results, which were never interpreted in connection to protein fragments or the function of sleep, may be accounted for by the FG hypothesis about molecular causation of sleep. Copyright © 2012 The Protein Society.
The Surface-Exposed Protein SntA Contributes to Complement Evasion in Zoonotic Streptococcus suis.
Deng, Simin; Xu, Tong; Fang, Qiong; Yu, Lei; Zhu, Jiaqi; Chen, Long; Liu, Jiahui; Zhou, Rui
2018-01-01
Streptococcus suis is an emerging zoonotic pathogen causing streptococcal toxic shock like syndrome (STSLS), meningitis, septicemia, and even sudden death in human and pigs. Serious septicemia indicates this bacterium can evade the host complement surveillance. In our previous study, a functionally unknown protein SntA of S. suis has been identified as a heme-binding protein, and contributes to virulence in pigs. SntA can interact with the host antioxidant protein AOP2 and consequently inhibit its antioxidant activity. In the present study, SntA is identified as a cell wall anchored protein that functions as an important player in S. suis complement evasion. The C3 deposition and membrane attack complex (MAC) formation on the surface of sntA -deleted mutant strain Δ sntA are demonstrated to be significantly higher than the parental strain SC-19 and the complementary strain CΔ sntA . The abilities of anti-phagocytosis, survival in blood, and in vivo colonization of Δ sntA are obviously reduced. SntA can interact with C1q and inhibit hemolytic activity via the classical pathway. Complement activation assays reveal that SntA can also directly activate classical and lectin pathways, resulting in complement consumption. These two complement evasion strategies may be crucial for the pathogenesis of this zoonotic pathogen. Concerning that SntA is a bifunctional 2',3'-cyclic nucleotide 2'-phosphodiesterase/3'-nucleotidase in many species of Gram-positive bacteria, these complement evasion strategies may have common biological significance.
The response to unfolded protein is involved in osmotolerance of Pichia pastoris
2010-01-01
Background The effect of osmolarity on cellular physiology has been subject of investigation in many different species. High osmolarity is of importance for biotechnological production processes, where high cell densities and product titers are aspired. Several studies indicated that increased osmolarity of the growth medium can have a beneficial effect on recombinant protein production in different host organisms. Thus, the effect of osmolarity on the cellular physiology of Pichia pastoris, a prominent host for recombinant protein production, was studied in carbon limited chemostat cultures at different osmolarities. Transcriptome and proteome analyses were applied to assess differences upon growth at different osmolarities in both, a wild type strain and an antibody fragment expressing strain. While our main intention was to analyze the effect of different osmolarities on P. pastoris in general, this was complemented by studying it in context with recombinant protein production. Results In contrast to the model yeast Saccharomyces cerevisiae, the main osmolyte in P. pastoris was arabitol rather than glycerol, demonstrating differences in osmotic stress response as well as energy metabolism. 2D Fluorescence Difference Gel electrophoresis and microarray analysis were applied and demonstrated that processes such as protein folding, ribosome biogenesis and cell wall organization were affected by increased osmolarity. These data indicated that upon increased osmolarity less adaptations on both the transcript and protein level occurred in a P. pastoris strain, secreting the Fab fragment, compared with the wild type strain. No transcriptional activation of the high osmolarity glycerol (HOG) pathway was observed at steady state conditions. Furthermore, no change of the specific productivity of recombinant Fab was observed at increased osmolarity. Conclusion These data point out that the physiological response to increased osmolarity is different to S. cerevisiae. Increased osmolarity resulted in an unfolded protein response (UPR) like response in P. pastoris and lead to pre-conditioning of the recombinant Fab producing strain of P. pastoris to growth at high osmolarity. The current data demonstrate a strong similarity of environmental stress response mechanisms and recombinant protein related stresses. Therefore, these results might be used in future strain and bioprocess engineering of this biotechnologically relevant yeast. PMID:20346137
Discovery and identification of potential biomarkers of pediatric Acute Lymphoblastic Leukemia
Shi, Linan; Zhang, Jun; Wu, Peng; Feng, Kai; Li, Jing; Xie, Zhensheng; Xue, Peng; Cai, Tanxi; Cui, Ziyou; Chen, Xiulan; Hou, Junjie; Zhang, Jianzhong; Yang, Fuquan
2009-01-01
Background Acute lymphoblastic leukemia (ALL) is a common form of cancer in children. Currently, bone marrow biopsy is used for diagnosis. Noninvasive biomarkers for the early diagnosis of pediatric ALL are urgently needed. The aim of this study was to discover potential protein biomarkers for pediatric ALL. Methods Ninety-four pediatric ALL patients and 84 controls were randomly divided into a "training" set (45 ALL patients, 34 healthy controls) and a test set (49 ALL patients, 30 healthy controls and 30 pediatric acute myeloid leukemia (AML) patients). Serum proteomic profiles were measured using surface-enhanced laser desorption/ionization-time-of-flight mass spectroscopy (SELDI-TOF-MS). A classification model was established by Biomarker Pattern Software (BPS). Candidate protein biomarkers were purified by HPLC, identified by LC-MS/MS and validated using ProteinChip immunoassays. Results A total of 7 protein peaks (9290 m/z, 7769 m/z, 15110 m/z, 7564 m/z, 4469 m/z, 8937 m/z, 8137 m/z) were found with differential expression levels in the sera of pediatric ALL patients and controls using SELDI-TOF-MS and then analyzed by BPS to construct a classification model in the "training" set. The sensitivity and specificity of the model were found to be 91.8%, and 90.0%, respectively, in the test set. Two candidate protein peaks (7769 and 9290 m/z) were found to be down-regulated in ALL patients, where these were identified as platelet factor 4 (PF4) and pro-platelet basic protein precursor (PBP). Two other candidate protein peaks (8137 and 8937 m/z) were found up-regulated in the sera of ALL patients, and these were identified as fragments of the complement component 3a (C3a). Conclusion Platelet factor (PF4), connective tissue activating peptide III (CTAP-III) and two fragments of C3a may be potential protein biomarkers of pediatric ALL and used to distinguish pediatric ALL patients from healthy controls and pediatric AML patients. Further studies with additional populations or using pre-diagnostic sera are needed to confirm the importance of these findings as diagnostic markers of pediatric ALL. PMID:19291297
Preeclampsia in autologous and oocyte donation pregnancy: is there a different pathophysiology?
Lashley, Lisa E E L O; Buurma, Aletta; Swings, Godelieve M J S; Eikmans, Michael; Anholts, Jacqueline D H; Bakker, Jaap A; Claas, Frans H J
2015-06-01
Oocyte donation (OD) is a specific method of artificial reproductive technology that is accompanied by a higher risk of preeclampsia during pregnancy. The pathophysiological mechanism underlying preeclampsia in OD pregnancies is thought to differ from preeclampsia in autologous pregnancies. As preeclampsia in autologous pregnancies is suggested to be associated with complement activation, we studied C4d deposition, circulating complement components and placental complement regulatory proteins in preeclamptic OD pregnancies. Women with uncomplicated and preeclamptic pregnancies after OD or spontaneous conception were selected. We stained the placentas for C4d, marker for complement activation, measured complement factors C1q, C3 and C4 in maternal sera and quantified the placental mRNA expression of complement regulatory proteins CD46, CD55 and CD59. A significantly (p < 0.03) higher incidence of C4d deposition was observed in placentas from women with preeclampsia compared with uncomplicated pregnancies, both OD and autologous. The level of complement factors in serum did not differ between the groups. Children born in the autologous preeclampsia group were significantly lower in birth weight (p < 10th percentile) compared with the preeclamptic OD group. In addition, the placental mRNA expression level of complement regulatory proteins was significantly lower in uncomplicated and preeclamptic OD compared with the autologous pregnancies. In line with autologous preeclampsia pregnancies, there is excessive activation of complement in preeclamptic OD pregnancies. However, in contrast to autologous pregnancies this is not associated with counterbalancing upregulation of complement regulatory proteins. Furthermore, C4d deposition in OD pregnancies is not related to the severity of preeclampsia, suggesting another trigger or regulatory mechanism of placental C4d deposition in preeclamptic OD pregnancies. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Complement Evasion by Pathogenic Leptospira.
Fraga, Tatiana Rodrigues; Isaac, Lourdes; Barbosa, Angela Silva
2016-01-01
Leptospirosis is a neglected infectious disease caused by spirochetes from the genus Leptospira . Pathogenic microorganisms, notably those which reach the blood circulation such as Leptospira , have evolved multiple strategies to escape the host complement system, which is important for innate and acquired immunity. Leptospira avoid complement-mediated killing through: (i) recruitment of host complement regulators; (ii) acquisition of host proteases that cleave complement proteins on the bacterial surface; and, (iii) secretion of proteases that inactivate complement proteins in the Leptospira surroundings. The recruitment of host soluble complement regulatory proteins includes the acquisition of Factor H (FH) and FH-like-1 (alternative pathway), C4b-binding protein (C4BP) (classical and lectin pathways), and vitronectin (Vn) (terminal pathway). Once bound to the leptospiral surface, FH and C4BP retain cofactor activity of Factor I in the cleavage of C3b and C4b, respectively. Vn acquisition by leptospires may result in terminal pathway inhibition by blocking C9 polymerization. The second evasion mechanism lies in plasminogen (PLG) binding to the leptospiral surface. In the presence of host activators, PLG is converted to enzymatically active plasmin, which is able to degrade C3b, C4b, and C5 at the surface of the pathogen. A third strategy used by leptospires to escape from complement system is the active secretion of proteases. Pathogenic, but not saprophytic leptospires, are able to secrete metalloproteases that cleave C3 (central complement molecule), Factor B (alternative pathway), and C4 and C2 (classical and lectin pathways). The purpose of this review is to fully explore these complement evasion mechanisms, which act together to favor Leptospira survival and multiplication in the host.
Complement Evasion by Pathogenic Leptospira
Fraga, Tatiana Rodrigues; Isaac, Lourdes; Barbosa, Angela Silva
2016-01-01
Leptospirosis is a neglected infectious disease caused by spirochetes from the genus Leptospira. Pathogenic microorganisms, notably those which reach the blood circulation such as Leptospira, have evolved multiple strategies to escape the host complement system, which is important for innate and acquired immunity. Leptospira avoid complement-mediated killing through: (i) recruitment of host complement regulators; (ii) acquisition of host proteases that cleave complement proteins on the bacterial surface; and, (iii) secretion of proteases that inactivate complement proteins in the Leptospira surroundings. The recruitment of host soluble complement regulatory proteins includes the acquisition of Factor H (FH) and FH-like-1 (alternative pathway), C4b-binding protein (C4BP) (classical and lectin pathways), and vitronectin (Vn) (terminal pathway). Once bound to the leptospiral surface, FH and C4BP retain cofactor activity of Factor I in the cleavage of C3b and C4b, respectively. Vn acquisition by leptospires may result in terminal pathway inhibition by blocking C9 polymerization. The second evasion mechanism lies in plasminogen (PLG) binding to the leptospiral surface. In the presence of host activators, PLG is converted to enzymatically active plasmin, which is able to degrade C3b, C4b, and C5 at the surface of the pathogen. A third strategy used by leptospires to escape from complement system is the active secretion of proteases. Pathogenic, but not saprophytic leptospires, are able to secrete metalloproteases that cleave C3 (central complement molecule), Factor B (alternative pathway), and C4 and C2 (classical and lectin pathways). The purpose of this review is to fully explore these complement evasion mechanisms, which act together to favor Leptospira survival and multiplication in the host. PMID:28066433
Temperature-sensitive Mutants of Sindbis Virus: Biochemical Correlates of Complementation
Burge, Boyce W.; Pfefferkorn, E. R.
1967-01-01
Temperature-sensitive mutants of Sindbis virus fail to grow at a temperature that permits growth of the wild type, but when certain pairs of these mutants, mixed together, infect cells at that temperature, viral growth (i.e., complementation) occurs. The yield from this complementation, however, is of the same order of magnitude as the infectivity in the inoculum. Since in animal virus infections the protein components of the virion probably enter the cell with the viral nucleic acid, it was necessary to demonstrate that the observed complementation required synthesis of new viral protein and nucleic acid rather than some sort of rearrangement of the structural components of the inoculum. To demonstrate that complementation does require new biosynthesis, three biochemical events of normal virus growth have been observed during complementation and correlated with the efficiency of viral growth seen in complementation. These events include: (i) entrance of parental viral ribonucleic acid (RNA) into a double-stranded form; (ii) subsequent synthesis of viral RNA; and (iii) synthesis and subsequent incorporation of viral protein(s) into cell membranes where they were detected by hemadsorption. Although the infecting single-stranded RNA genome of the wild type was converted to a ribonuclease-resistant form, the genome of a mutant (ts-11) incapable of RNA synthesis at a nonpermissive temperature was not so converted. However, during complementation with another mutant also defective in viral RNA synthesis, some of the RNA of mutant ts-11 was converted to a ribonuclease-resistant form, and total synthesis of virus-specific RNA was markedly enhanced. The virus-specific alteration of the cell surface, detected by hemadsorption, was also extensively increased during complementation. These observations support the view that complementation between temperature-sensitive mutants and replication of wild-type virus are similar processes. PMID:5630228
Brodie, Nicholas I; Huguet, Romain; Zhang, Terry; Viner, Rosa; Zabrouskov, Vlad; Pan, Jingxi; Petrotchenko, Evgeniy V; Borchers, Christoph H
2018-03-06
Top-down hydrogen-deuterium exchange (HDX) analysis using electron capture or transfer dissociation Fourier transform mass spectrometry (FTMS) is a powerful method for the analysis of secondary structure of proteins in solution. The resolution of the method is a function of the degree of fragmentation of backbone bonds in the proteins. While fragmentation is usually extensive near the N- and C-termini, electron capture (ECD) or electron transfer dissociation (ETD) fragmentation methods sometimes lack good coverage of certain regions of the protein, most often in the middle of the sequence. Ultraviolet photodissociation (UVPD) is a recently developed fast-fragmentation technique, which provides extensive backbone fragmentation that can be complementary in sequence coverage to the aforementioned electron-based fragmentation techniques. Here, we explore the application of electrospray ionization (ESI)-UVPD FTMS on an Orbitrap Fusion Lumos Tribrid mass spectrometer to top-down HDX analysis of proteins. We have incorporated UVPD-specific fragment-ion types and fragment-ion mixtures into our isotopic envelope fitting software (HDX Match) for the top-down HDX analysis. We have shown that UVPD data is complementary to ETD, thus improving the overall resolution when used as a combined approach.
Simonelig, M.; Elliott, K.; Mitchelson, A.; O'Hare, K.
1996-01-01
The Su(f) protein of Drosophila melanogaster shares extensive homologies with proteins from yeast (RNA14) and man (77 kD subunit of cleavage stimulation factor) that are required for 3' end processing of mRNA. These homologies suggest that su(f) is involved in mRNA 3' end formation and that some aspects of this process are conserved throughout eukaryotes. We have investigated the genetic and molecular complexity of the su(f) locus. The su(f) gene is transcribed to produce three RNAs and could encode two proteins. Using constructs that contain different parts of the locus, we show that only the larger predicted gene product of 84 kD is required for the wild-type function of su(f). Some lethal alleles of su(f) complement to produce viable combinations. The structures of complementing and noncomplementing su(f) alleles indicate that 84-kD Su(f) proteins mutated in different domains can act in combination for partial su(f) function. Our results suggest protein-protein interaction between or within wild-type Su(f) molecules. PMID:8846900
Strojan, Klemen; Leonardi, Adrijana; Bregar, Vladimir B; Križaj, Igor; Svete, Jurij; Pavlin, Mojca
2017-01-01
Protein corona of nanoparticles (NPs), which forms when these particles come in to contact with protein-containing fluids, is considered as an overlooked factor in nanomedicine. Through numerous studies it has been becoming increasingly evident that it importantly dictates the interaction of NPs with their surroundings. Several factors that determine the compositions of NPs protein corona have been identified in recent years, but one has remained largely ignored-the composition of media used for dispersion of NPs. Here, we determined the effect of dispersion media on the composition of protein corona of polyacrylic acid-coated cobalt ferrite NPs (PAA NPs) and silica NPs. Our results confirmed some of the basic premises such as NPs type-dependent specificity of the protein corona. But more importantly, we demonstrated the effect of the dispersion media on the protein corona composition. The differences between constituents of the media used for dispersion of NPs, such as divalent ions and macromolecules were responsible for the differences in protein corona composition formed in the presence of fetal bovine serum (FBS). Our results suggest that the protein corona composition is a complex function of the constituents present in the media used for dispersion of NPs. Regardless of the dispersion media and FBS concentration, majority of proteins from either PAA NPs or silica NPs coronas were involved in the process of transport and hemostasis. Interestingly, corona of silica NPs contained three complement system related proteins: complement factor H, complement C3 and complement C4 while PAA NPs bound only one immune system related protein, α-2-glycoprotein. Importantly, relative abundance of complement C3 protein in corona of silica NPs was increased when NPs were dispersed in NaCl, which further implies the relevance of dispersion media used to prepare NPs.
Strojan, Klemen; Leonardi, Adrijana; Bregar, Vladimir B.; Križaj, Igor; Svete, Jurij; Pavlin, Mojca
2017-01-01
Protein corona of nanoparticles (NPs), which forms when these particles come in to contact with protein-containing fluids, is considered as an overlooked factor in nanomedicine. Through numerous studies it has been becoming increasingly evident that it importantly dictates the interaction of NPs with their surroundings. Several factors that determine the compositions of NPs protein corona have been identified in recent years, but one has remained largely ignored—the composition of media used for dispersion of NPs. Here, we determined the effect of dispersion media on the composition of protein corona of polyacrylic acid-coated cobalt ferrite NPs (PAA NPs) and silica NPs. Our results confirmed some of the basic premises such as NPs type-dependent specificity of the protein corona. But more importantly, we demonstrated the effect of the dispersion media on the protein corona composition. The differences between constituents of the media used for dispersion of NPs, such as divalent ions and macromolecules were responsible for the differences in protein corona composition formed in the presence of fetal bovine serum (FBS). Our results suggest that the protein corona composition is a complex function of the constituents present in the media used for dispersion of NPs. Regardless of the dispersion media and FBS concentration, majority of proteins from either PAA NPs or silica NPs coronas were involved in the process of transport and hemostasis. Interestingly, corona of silica NPs contained three complement system related proteins: complement factor H, complement C3 and complement C4 while PAA NPs bound only one immune system related protein, α-2-glycoprotein. Importantly, relative abundance of complement C3 protein in corona of silica NPs was increased when NPs were dispersed in NaCl, which further implies the relevance of dispersion media used to prepare NPs. PMID:28052135
Complement research in the 18th-21st centuries: Progress comes with new technology.
Sim, R B; Schwaeble, W; Fujita, T
2016-10-01
The complement system has been studied for about 120 years. Progress in defining this large and complex system has been dependent on the research technologies available, but since the introduction of protein chromatography, electrophoresis, and antibody-based assay methods in the 1950s and 60s, and sequencing of proteins and DNA in the 70s and 80s, there has been very rapid accumulation of data. With more recent improvements in 3D structure determination (nmr and X-ray crystallography), the structures of most of the complement proteins have now been solved. Complement research since 1990 has been greatly stimulated by the discoveries of the multiple proteins in the lectin pathway, the strong association of Factor H, C3, Factor B allelic variants with adult macular degeneration and atypical haemolytic uremic syndrome, and the introduction of the anti-C5 monoclonal antibody as a therapy for paroxysmal nocturnal hemoglobinuria and atypical haemolytic uremic syndrome. Potential new roles for complement in tissue development and the search for novel therapeutics suggest a very active future for complement research. Copyright © 2016 Elsevier GmbH. All rights reserved.
Macedo, Ana Catarina Lunz; Isaac, Lourdes
2016-01-01
The complement system plays an important role in the innate and acquired immune response against pathogens. It consists of more than 30 proteins found in soluble form or attached to cell membranes. Most complement proteins circulate in inactive forms and can be sequentially activated by the classical, alternative, or lectin pathways. Biological functions, such as opsonization, removal of apoptotic cells, adjuvant function, activation of B lymphocytes, degranulation of mast cells and basophils, and solubilization and clearance of immune complex and cell lysis, are dependent on complement activation. Although the activation of the complement system is important to avoid infections, it also can contribute to the inflammatory response triggered by immune complex deposition in tissues in autoimmune diseases. Paradoxically, the deficiency of early complement proteins from the classical pathway (CP) is strongly associated with development of systemic lupus erythematous (SLE) – mainly C1q deficiency (93%) and C4 deficiency (75%). The aim of this review is to focus on the deficiencies of early components of the CP (C1q, C1r, C1s, C4, and C2) proteins in SLE patients. PMID:26941740
Complement Evasion Strategies of Viruses: An Overview
Agrawal, Palak; Nawadkar, Renuka; Ojha, Hina; Kumar, Jitendra; Sahu, Arvind
2017-01-01
Being a major first line of immune defense, the complement system keeps a constant vigil against viruses. Its ability to recognize large panoply of viruses and virus-infected cells, and trigger the effector pathways, results in neutralization of viruses and killing of the infected cells. This selection pressure exerted by complement on viruses has made them evolve a multitude of countermeasures. These include targeting the recognition molecules for the avoidance of detection, targeting key enzymes and complexes of the complement pathways like C3 convertases and C5b-9 formation – either by encoding complement regulators or by recruiting membrane-bound and soluble host complement regulators, cleaving complement proteins by encoding protease, and inhibiting the synthesis of complement proteins. Additionally, viruses also exploit the complement system for their own benefit. For example, they use complement receptors as well as membrane regulators for cellular entry as well as their spread. Here, we provide an overview on the complement subversion mechanisms adopted by the members of various viral families including Poxviridae, Herpesviridae, Adenoviridae, Flaviviridae, Retroviridae, Picornaviridae, Astroviridae, Togaviridae, Orthomyxoviridae and Paramyxoviridae. PMID:28670306
Banadakoppa, M; Chauhan, M S; Havemann, D; Balakrishnan, M; Dominic, J S; Yallampalli, C
2014-01-01
Spontaneous abortion in early pregnancy due to unknown reasons is a common problem. The excess complement activation and consequent placental inflammation and anti-angiogenic milieu is emerging as an important associated factor in many pregnancy-related complications. In the present study we sought to examine the expression of complement inhibitory proteins at the feto–maternal interface and levels of complement split products in the circulation to understand their role in spontaneous abortion. Consenting pregnant women who either underwent elective abortion due to non-clinical reasons (n = 13) or suffered miscarriage (n = 14) were recruited for the study. Systemic levels of complement factors C3a and C5a were measured by enzyme-linked immunosorbent assay (ELISA). Plasma C5 and C3 protein levels were examined by Western blot. Expressions of complement regulatory proteins such as CD46 and CD55 in the decidua were investigated by quantitative polymerase chain reaction (PCR) and Western blot. The median of plasma C3a level was 82·83 ng/ml and 66·17 ng/ml in elective and spontaneous abortion patients, respectively. Medians of plasma C5a levels in elective and spontaneous abortion patients were 0·96 ng/ml and 1·14 ng/ml, respectively. Only plasma C5a levels but not C3a levels showed significant elevation in spontaneous abortion patients compared to elective abortion patients. Further, there was a threefold decrease in the mRNA expressions of complement inhibitory proteins CD46 and CD55 in the decidua obtained from spontaneous abortion patients compared to that of elective abortion patients. These data suggested that dysregulated complement cascade may be associated with spontaneous abortion. PMID:24802103
Fragment-based drug discovery and its application to challenging drug targets.
Price, Amanda J; Howard, Steven; Cons, Benjamin D
2017-11-08
Fragment-based drug discovery (FBDD) is a technique for identifying low molecular weight chemical starting points for drug discovery. Since its inception 20 years ago, FBDD has grown in popularity to the point where it is now an established technique in industry and academia. The approach involves the biophysical screening of proteins against collections of low molecular weight compounds (fragments). Although fragments bind to proteins with relatively low affinity, they form efficient, high quality binding interactions with the protein architecture as they have to overcome a significant entropy barrier to bind. Of the biophysical methods available for fragment screening, X-ray protein crystallography is one of the most sensitive and least prone to false positives. It also provides detailed structural information of the protein-fragment complex at the atomic level. Fragment-based screening using X-ray crystallography is therefore an efficient method for identifying binding hotspots on proteins, which can then be exploited by chemists and biologists for the discovery of new drugs. The use of FBDD is illustrated here with a recently published case study of a drug discovery programme targeting the challenging protein-protein interaction Kelch-like ECH-associated protein 1:nuclear factor erythroid 2-related factor 2. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
[Renal risks of dietary complements: a forgotten cause].
Dori, Olympia; Humbert, Antoine; Burnier, Michel; Teta, Daniel
2014-02-26
The use of dietary complements like vitamins, minerals, trace elements, proteins, aminoacids and plant-derived agents is prevalent in the general population, in order to promote health and treat diseases. Dietary complements are considered as safe natural products and are easily available without prescription. However, these can lead to severe renal toxicity, especially in cases of unknown pre-existing chronic kidney disease (CKD). In particular, Chinese herbs including aristolochic acid, high doses of vitamine C, creatine and protein complements may lead to acute and chronic renal failure, sometimes irreversible. Dietary complement toxicity should be suspected in any case of unexplained renal impairement. In the case of pre-existing CKD, the use of potentially nephrotoxic dietary complements should be screened for.
Antibody Fab display and selection through fusion to the pIX coat protein of filamentous phage.
Tornetta, Mark; Baker, Scott; Whitaker, Brian; Lu, Jin; Chen, Qiang; Pisors, Eileen; Shi, Lei; Luo, Jinquan; Sweet, Raymond; Tsui, Ping
2010-08-31
Fab antibody display on filamentous phage is widely applied to de novo antibody discovery and engineering. Here we describe a phagemid system for the efficient display and affinity selection of Fabs through linkage to the minor coat protein pIX. Display was successful by fusion of either Fd or Lc through a short linker to the amino terminus of pIX and co-expression of the counter Lc or Fd as a secreted, soluble fragment. Assembly of functional Fab was confirmed by demonstration of antigen-specific binding using antibodies of known specificity. Phage displaying a Fab specific for RSV-F protein with Fd linked to pIX showed efficient, antigen-specific enrichment when mixed with phage displaying a different specificity. The functionality of this system for antibody engineering was evaluated in an optimization study. A RSV-F protein specific antibody with an affinity of about 2nM was randomized at 4 positions in light chain CDR1. Three rounds of selection with decreasing antigen concentration yielded Fabs with an affinity improvement up to 70-fold and showed a general correlation between enrichment frequency and affinity. We conclude that the pIX coat protein complements other display systems in filamentous phage as an efficient vehicle for low copy display and selection of Fab proteins. 2010 Elsevier B.V. All rights reserved.
Früh, Virginie; Zhou, Yunpeng; Chen, Dan; Loch, Caroline; Eiso, AB; Grinkova, Yelena N.; Verheij, Herman; Sligar, Stephen G; Bushweller, John H.; Siegal, Gregg
2014-01-01
Summary Membrane proteins are important pharmaceutical targets, but they pose significant challenges for fragment based drug discovery approaches. Here we present the first successful use of biophysical methods to screen for fragment ligands to an integral membrane protein. The E. coli inner membrane protein DsbB was solubilized in detergent micelles and lipid bilayer nanodiscs. The solubilized protein was immobilized with retention of functionality and used to screen 1,071 drug fragments for binding using Target Immobilized NMR Screening. Biochemical and biophysical validation of the 8 most potent hits revealed an IC50 range of 7 to 200 μM. The ability to insert a broad array of membrane proteins into nanodiscs, combined with the efficiency of TINS, demonstrates the feasibility of finding fragments targeting membrane proteins. PMID:20797617
Isolation of ntrA-like mutants of Azotobacter vinelandii.
Santero, E; Luque, F; Medina, J R; Tortolero, M
1986-01-01
A number of chlorate-resistant mutants of Azotobacter vinelandii affected in a general control of nitrogen metabolism were isolated. These mutants could not utilize dinitrogen, nitrate, or nitrite as a nitrogen source. The reason for this inability is that they were simultaneously deficient in nitrogenase and nitrate and nitrite reductase activities. They were complemented by a cosmid carrying a DNA fragment of A. vinelandii able to complement ntrA mutants of Escherichia coli, so they seemed to be ntrA-like mutants. PMID:3009406
Posttranscriptional modifications in the A-loop of 23S rRNAs from selected archaea and eubacteria.
Hansen, M A; Kirpekar, F; Ritterbusch, W; Vester, B
2002-02-01
Posttranscriptional modifications were mapped in helices 90-92 of 23S rRNA from the following phylogenetically diverse organisms: Haloarcula marismortui, Sulfolobus acidocaldarius, Bacillus subtilis, and Bacillus stearothermophilus. Helix 92 is a component of the ribosomal A-site, which contacts the aminoacyl-tRNA during protein synthesis, implying that posttranscriptional modifications in helices 90-92 may be important for ribosome function. RNA fragments were isolated from 23S rRNA by site-directed RNase H digestion. A novel method of mapping modifications by analysis of short, nucleotide-specific, RNase digestion fragments with Matrix Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) was utilized. The MALDI-MS data were complemented by two primer extension techniques using reverse transcriptase. One technique utilizes decreasing concentrations of deoxynucleotide triphosphates to map 2'-O-ribose methylations. In the other, the rRNA is chemically modified, followed by mild alkaline hydrolysis to map pseudouridines (psis). A total of 10 posttranscriptionally methylated nucleotides and 6 psis were detected in the five organisms. Eight of the methylated nucleotides and one psi have not been reported previously. The distribution of modified nucleotides and their locations on the surface of the ribosomal peptidyl transferase cleft suggests functional importance.
Introducing inducible fluorescent split cholesterol oxidase to mammalian cells.
Chernov, Konstantin G; Neuvonen, Maarit; Brock, Ivonne; Ikonen, Elina; Verkhusha, Vladislav V
2017-05-26
Cholesterol oxidase (COase) is a bacterial enzyme catalyzing the first step in the biodegradation of cholesterol. COase is an important biotechnological tool for clinical diagnostics and production of steroid drugs and insecticides. It is also used for tracking intracellular cholesterol; however, its utility is limited by the lack of an efficient temporal control of its activity. To overcome this we have developed a regulatable fragment complementation system for COase cloned from Chromobacterium sp. The enzyme was split into two moieties that were fused to FKBP (FK506-binding protein) and FRB (rapamycin-binding domain) pair and split GFP fragments. The addition of rapamycin reconstituted a fluorescent enzyme, termed split GFP-COase, the fluorescence level of which correlated with its oxidation activity. A rapid decrease of cellular cholesterol induced by intracellular expression of the split GFP-COase promoted the dissociation of a cholesterol biosensor D4H from the plasma membrane. The process was reversible as upon rapamycin removal, the split GFP-COase fluorescence was lost, and cellular cholesterol levels returned to normal. These data demonstrate that the split GFP-COase provides a novel tool to manipulate cholesterol in mammalian cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Kurbegovic, Almira; Kim, Hyunho; Xu, Hangxue; Yu, Shengqiang; Cruanès, Julie; Maser, Robin L.; Boletta, Alessandra; Trudel, Marie
2014-01-01
Polycystin-1 (Pc1) cleavage at the G protein-coupled receptor (GPCR) proteolytic site (GPS) is required for normal kidney morphology in humans and mice. We found a complex pattern of endogenous Pc1 forms by GPS cleavage. GPS cleavage generates not only the heterodimeric cleaved full-length Pc1 (Pc1cFL) in which the N-terminal fragment (NTF) remains noncovalently associated with the C-terminal fragment (CTF) but also a novel (Pc1) form (Pc1deN) in which NTF becomes detached from CTF. Uncleaved Pc1 (Pc1U) resides primarily in the endoplasmic reticulum (ER), whereas both Pc1cFL and Pc1deN traffic through the secretory pathway in vivo. GPS cleavage is not a prerequisite, however, for Pc1 trafficking in vivo. Importantly, Pc1deN is predominantly found at the plasma membrane of renal epithelial cells. By functional genetic complementation with five Pkd1 mouse models, we discovered that CTF plays a crucial role in Pc1deN trafficking. Our studies support GPS cleavage as a critical regulatory mechanism of Pc1 biogenesis and trafficking for proper kidney development and homeostasis. PMID:24958103
Herbert, Andrew P; Kavanagh, David; Johansson, Conny; Morgan, Hugh P; Blaum, Bärbel S; Hannan, Jonathan P; Barlow, Paul N; Uhrín, Dušan
2012-03-06
Numerous complement factor H (FH) mutations predispose patients to atypical hemolytic uremic syndrome (aHUS) and other disorders arising from inadequately regulated complement activation. No unifying structural or mechanistic consequences have been ascribed to these mutants beyond impaired self-cell protection. The S1191L and V1197A mutations toward the C-terminus of FH, which occur in patients singly or together, arose from gene conversion between CFH encoding FH and CFHR1 encoding FH-related 1. We show that neither single nor double mutations structurally perturbed recombinant proteins consisting of the FH C-terminal modules, 19 and 20 (FH19-20), although all three FH19-20 mutants were poor, compared to wild-type FH19-20, at promoting hemolysis of C3b-coated erythrocytes through competition with full-length FH. Indeed, our new crystal structure of the S1191L mutant of FH19-20 complexed with an activation-specific complement fragment, C3d, was nearly identical to that of the wild-type FH19-20:C3d complex, consistent with mutants binding to C3b with wild-type-like affinity. The S1191L mutation enhanced thermal stability of module 20, whereas the V1197A mutation dramatically decreased it. Thus, although mutant proteins were folded at 37 °C, they differ in conformational rigidity. Neither single substitutions nor double substitutions increased measurably the extent of FH19-20 self-association, nor did these mutations significantly affect the affinity of FH19-20 for three glycosaminoglycans, despite critical roles of module 20 in recognizing polyanionic self-surface markers. Unexpectedly, FH19-20 mutants containing Leu1191 self-associated on a heparin-coated surface to a higher degree than on surfaces coated with dermatan or chondroitin sulfates. Thus, potentially disease-related functional distinctions between mutants, and between FH and FH-related 1, may manifest in the presence of specific glycosaminoglycans.
Castiblanco-Valencia, Mónica M.; Fraga, Tatiana R.; Breda, Leandro C.D.; Vasconcellos, Sílvio A.; Figueira, Cláudio P.; Picardeau, Mathieu; Wunder, Elsio; Ko, Albert I.; Barbosa, Angela S.; Isaac, Lourdes
2017-01-01
Leptospiral immunoglobulin-like (Lig) proteins are surface exposed molecules present in pathogenic but not in saprophytic Leptospira species. We have previously shown that Lig proteins interact with the soluble complement regulators Factor H (FH), FH like-1 (FHL-1), FH related-1 (FHR-1) and C4b Binding Protein (C4BP). In this study, we used the saprophyte L. biflexa serovar Patoc as a surrogate host to address the specific role of LigA and LigB proteins in leptospiral complement evasion. L. biflexa expressing LigA or LigB was able to acquire FH and C4BP. Bound complement regulators retained their cofactor activities of FI in the proteolytic cleavage of C3b and C4b. Moreover, heterologous expression of ligA and ligB genes in the saprophyte L. biflexa enhanced bacterial survival in human serum. Complement deposition on lig-transformed L. biflexa was assessed by flow cytometry analysis. With regard to MAC deposition, L. biflexa expressing LigA or LigB presented an intermediate profile: MAC deposition levels were greater than those found in the pathogenic L. interrogans, but lower than those observed for L. biflexa wildtype. In conclusion, Lig proteins contribute to in vitro control of complement activation on the leptospiral surface, promoting an increased bacterial survival in human serum. PMID:26976804
The APSES protein Sok2 is a positive regulator of sporulation in Ashbya gossypii.
Wasserstrom, Lisa; Dünkler, Alexander; Walther, Andrea; Wendland, Jürgen
2017-12-01
Ashbya gossypii is a homothallic, flavinogenic, filamentous ascomycete that starts overproduction of riboflavin and fragments its mycelium quantitatively into spore producing sporangia at the end of a growth phase. Mating is not required for sporulation and the standard homothallic laboratory strain is a MATa strain. Here we show that ectopic expression of Saccharomyces cerevisiae MATα2 in A. gossypii completely suppresses sporulation, inhibits riboflavin overproduction and downregulates among others AgSOK2. AgSok2 belongs to a fungal-specific group of (APSES) transcription factors. Deletion of AgSOK2 strongly reduces riboflavin production and blocks sporulation. The initiator of meiosis, AgIME1, is a transcription factor essential for sporulation. We characterized the AgIME1 promoter region required for complementation of the Agime1 mutant. Reporter assays with AgIME1 promoter fragments fused to lacZ showed that AgSok2 does not control AgIME1 transcription. However, global transcriptome analysis identified two other essential regulators of sporulation, AgIME2 and AgNDT80, as potential targets of AgSok2. Our data suggest that sporulation and riboflavin production in A. gossypii are under mating type locus and nutritional control. Sok2, a target of the cAMP/protein kinase A pathway, serves as a central positive regulator to promote sporulation. This contrasts Saccharomyces cerevisiae where Sok2 is a repressor of IME1 transcription. © 2017 John Wiley & Sons Ltd.
FRAGSION: ultra-fast protein fragment library generation by IOHMM sampling.
Bhattacharya, Debswapna; Adhikari, Badri; Li, Jilong; Cheng, Jianlin
2016-07-01
Speed, accuracy and robustness of building protein fragment library have important implications in de novo protein structure prediction since fragment-based methods are one of the most successful approaches in template-free modeling (FM). Majority of the existing fragment detection methods rely on database-driven search strategies to identify candidate fragments, which are inherently time-consuming and often hinder the possibility to locate longer fragments due to the limited sizes of databases. Also, it is difficult to alleviate the effect of noisy sequence-based predicted features such as secondary structures on the quality of fragment. Here, we present FRAGSION, a database-free method to efficiently generate protein fragment library by sampling from an Input-Output Hidden Markov Model. FRAGSION offers some unique features compared to existing approaches in that it (i) is lightning-fast, consuming only few seconds of CPU time to generate fragment library for a protein of typical length (300 residues); (ii) can generate dynamic-size fragments of any length (even for the whole protein sequence) and (iii) offers ways to handle noise in predicted secondary structure during fragment sampling. On a FM dataset from the most recent Critical Assessment of Structure Prediction, we demonstrate that FGRAGSION provides advantages over the state-of-the-art fragment picking protocol of ROSETTA suite by speeding up computation by several orders of magnitude while achieving comparable performance in fragment quality. Source code and executable versions of FRAGSION for Linux and MacOS is freely available to non-commercial users at http://sysbio.rnet.missouri.edu/FRAGSION/ It is bundled with a manual and example data. chengji@missouri.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Xu, Ting; Xie, Jiasong; Li, Jianming; Luo, Ming; Ye, Shigen; Wu, Xinzhong
2012-06-01
A SMARTer™ cDNA library of hemocyte from Rickettsia-like organism (RLO) challenged oyster, Crassostrea ariakensis Gould was constructed. Random clones (400) were selected and single-pass sequenced, resulted in 200 unique sequences containing 96 known genes and 104 unknown genes. The 96 known genes were categorized into 11 groups based on their biological process. Furthermore, we identified and characterized three complement-related fragments (CaC1q1, CaC1q2 and CaC3). Tissue distribution analysis revealed that all of three fragments were ubiquitously expressed in all tissues studied including hemocyte, gills, mantle, digestive glands, gonads and adductor muscle, while the highest level was seen in the hemocyte. Temporal expression profile in the hemocyte monolayers reveled that the mRNA expression levels of three fragments presented huge increase after the RLO incubation at 3 h and 6 h in post-challenge, respectively. And the maximal expression levels at 3 h in post-challenge are about 256, 104 and 64 times higher than the values detected in the control of CaC1q1, CaC1q2 and CaC3, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.
Conde, Jonas Nascimento; da Silva, Emiliana Mandarano; Allonso, Diego; Coelho, Diego Rodrigues; Andrade, Iamara da Silva; de Medeiros, Luciano Neves; Menezes, Joice Lima; Barbosa, Angela Silva
2016-01-01
ABSTRACT Dengue virus (DENV) infects millions of people worldwide and is a major public health problem. DENV nonstructural protein 1 (NS1) is a conserved glycoprotein that associates with membranes and is also secreted into the plasma in DENV-infected patients. The present study describes a novel mechanism by which NS1 inhibits the terminal complement pathway. We first identified the terminal complement regulator vitronectin (VN) as a novel DENV2 NS1 binding partner by using a yeast two-hybrid system. This interaction was further assessed by enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR) assay. The NS1-VN complex was also detected in plasmas from DENV-infected patients, suggesting that this interaction occurs during DENV infection. We also demonstrated that the DENV2 NS1 protein, either by itself or by interacting with VN, hinders the formation of the membrane attack complex (MAC) and C9 polymerization. Finally, we showed that DENV2, West Nile virus (WNV), and Zika virus (ZIKV) NS1 proteins produced in mammalian cells inhibited C9 polymerization. Taken together, our results points to a role for NS1 as a terminal pathway inhibitor of the complement system. IMPORTANCE Dengue is the most important arthropod-borne viral disease nowadays and is caused by dengue virus (DENV). The flavivirus NS1 glycoprotein has been characterized functionally as a complement evasion protein that can attenuate the activation of the classical, lectin, and alternative pathways. The present study describes a novel mechanism by which DENV NS1 inhibits the terminal complement pathway. We identified the terminal complement regulator vitronectin (VN) as a novel DENV NS1 binding partner, and the NS1-VN complex was detected in plasmas from DENV-infected patients, suggesting that this interaction occurs during DENV infection. We also demonstrated that the NS1-VN complex inhibited membrane attack complex (MAC) formation, thus interfering with the complement terminal pathway. Interestingly, NS1 itself also inhibited MAC activity, suggesting a direct role of this protein in the inhibition process. Our findings imply a role for NS1 as a terminal pathway inhibitor of the complement system. PMID:27512066
Okujava, Rusudan; Guye, Patrick; Lu, Yun-Yueh; Mistl, Claudia; Polus, Florine; Vayssier-Taussat, Muriel; Halin, Cornelia; Rolink, Antonius G; Dehio, Christoph
2014-06-01
Numerous bacterial pathogens secrete multiple effectors to modulate host cellular functions. These effectors may interfere with each other to efficiently control the infection process. Bartonellae are Gram-negative, facultative intracellular bacteria using a VirB type IV secretion system to translocate a cocktail of Bartonella effector proteins (Beps) into host cells. Based on in vitro infection models we demonstrate here that BepE protects infected migratory cells from injurious effects triggered by BepC and is required for in vivo dissemination of bacteria from the dermal site of inoculation to blood. Human endothelial cells (HUVECs) infected with a ΔbepE mutant of B. henselae (Bhe) displayed a cell fragmentation phenotype resulting from Bep-dependent disturbance of rear edge detachment during migration. A ΔbepCE mutant did not show cell fragmentation, indicating that BepC is critical for triggering this deleterious phenotype. Complementation of ΔbepE with BepEBhe or its homologues from other Bartonella species abolished cell fragmentation. This cyto-protective activity is confined to the C-terminal Bartonella intracellular delivery (BID) domain of BepEBhe (BID2.EBhe). Ectopic expression of BID2.EBhe impeded the disruption of actin stress fibers by Rho Inhibitor 1, indicating that BepE restores normal cell migration via the RhoA signaling pathway, a major regulator of rear edge retraction. An intradermal (i.d.) model for B. tribocorum (Btr) infection in the rat reservoir host mimicking the natural route of infection by blood sucking arthropods allowed demonstrating a vital role for BepE in bacterial dissemination from derma to blood. While the Btr mutant ΔbepDE was abacteremic following i.d. inoculation, complementation with BepEBtr, BepEBhe or BIDs.EBhe restored bacteremia. Given that we observed a similar protective effect of BepEBhe on infected bone marrow-derived dendritic cells migrating through a monolayer of lymphatic endothelial cells we propose that infected dermal dendritic cells may be involved in disseminating Bartonella towards the blood stream in a BepE-dependent manner.
Okujava, Rusudan; Guye, Patrick; Lu, Yun-Yueh; Mistl, Claudia; Polus, Florine; Vayssier-Taussat, Muriel; Halin, Cornelia; Rolink, Antonius G.; Dehio, Christoph
2014-01-01
Numerous bacterial pathogens secrete multiple effectors to modulate host cellular functions. These effectors may interfere with each other to efficiently control the infection process. Bartonellae are Gram-negative, facultative intracellular bacteria using a VirB type IV secretion system to translocate a cocktail of Bartonella effector proteins (Beps) into host cells. Based on in vitro infection models we demonstrate here that BepE protects infected migratory cells from injurious effects triggered by BepC and is required for in vivo dissemination of bacteria from the dermal site of inoculation to blood. Human endothelial cells (HUVECs) infected with a ΔbepE mutant of B. henselae (Bhe) displayed a cell fragmentation phenotype resulting from Bep-dependent disturbance of rear edge detachment during migration. A ΔbepCE mutant did not show cell fragmentation, indicating that BepC is critical for triggering this deleterious phenotype. Complementation of ΔbepE with BepEBhe or its homologues from other Bartonella species abolished cell fragmentation. This cyto-protective activity is confined to the C-terminal Bartonella intracellular delivery (BID) domain of BepEBhe (BID2.EBhe). Ectopic expression of BID2.EBhe impeded the disruption of actin stress fibers by Rho Inhibitor 1, indicating that BepE restores normal cell migration via the RhoA signaling pathway, a major regulator of rear edge retraction. An intradermal (i.d.) model for B. tribocorum (Btr) infection in the rat reservoir host mimicking the natural route of infection by blood sucking arthropods allowed demonstrating a vital role for BepE in bacterial dissemination from derma to blood. While the Btr mutant ΔbepDE was abacteremic following i.d. inoculation, complementation with BepEBtr, BepEBhe or BIDs.EBhe restored bacteremia. Given that we observed a similar protective effect of BepEBhe on infected bone marrow-derived dendritic cells migrating through a monolayer of lymphatic endothelial cells we propose that infected dermal dendritic cells may be involved in disseminating Bartonella towards the blood stream in a BepE-dependent manner. PMID:24945914
Fragment-based protein-protein interaction antagonists of a viral dimeric protease
Gable, Jonathan E.; Lee, Gregory M.; Acker, Timothy M.; Hulce, Kaitlin R.; Gonzalez, Eric R.; Schweigler, Patrick; Melkko, Samu; Farady, Christopher J.; Craik, Charles S.
2016-01-01
Fragment-based drug discovery has shown promise as an approach for challenging targets such as protein-protein interfaces. We developed and applied an activity-based fragment screen against dimeric Kaposi’s sarcoma-associated herpesvirus protease (KSHV Pr) using an optimized fluorogenic substrate. Dose response determination was performed as a confirmation screen and NMR spectroscopy was used to map fragment inhibitor binding to KSHV Pr. Kinetic assays demonstrated that several initial hits also inhibit human cytomegalovirus protease (HCMV Pr). Binding of these hits to HCMV Pr was also confirmed via NMR spectroscopy. Despite the use of a target-agnostic fragment library, more than 80% of confirmed hits disrupted dimerization and bound to a previously reported pocket at the dimer interface of KSHV Pr, not to the active site. One class of fragments, an aminothiazole scaffold, was further explored using commercially available analogs. These compounds demonstrated greater than 100-fold improvement of inhibition. This study illustrates the power of fragment-based screening for these challenging enzymatic targets and provides an example of the potential druggability of pockets at protein-protein interfaces. PMID:26822284
Variola virus immune evasion design: expression of a highly efficient inhibitor of human complement.
Rosengard, Ariella M; Liu, Yu; Nie, Zhiping; Jimenez, Robert
2002-06-25
Variola virus, the most virulent member of the genus Orthopoxvirus, specifically infects humans and has no other animal reservoir. Variola causes the contagious disease smallpox, which has a 30-40% mortality rate. Conversely, the prototype orthopoxvirus, vaccinia, causes no disease in immunocompetent humans and was used in the global eradication of smallpox, which ended in 1977. However, the threat of smallpox persists because clandestine stockpiles of variola still exist. Although variola and vaccinia share remarkable DNA homology, the strict human tropism of variola suggests that its proteins are better suited than those of vaccinia to overcome the human immune response. Here, we demonstrate the functional advantage of a variola complement regulatory protein over that of its vaccinia homologue. Because authentic variola proteins are not available for study, we molecularly engineered and characterized the smallpox inhibitor of complement enzymes (SPICE), a homologue of a vaccinia virulence factor, vaccinia virus complement control protein (VCP). SPICE is nearly 100-fold more potent than VCP at inactivating human C3b and 6-fold more potent at inactivating C4b. SPICE is also more human complement-specific than is VCP. By inactivating complement components, SPICE serves to inhibit the formation of the C3/C5 convertases necessary for complement-mediated viral clearance. SPICE provides the first evidence that variola proteins are particularly adept at overcoming human immunity, and the decreased function of VCP suggests one reason why the vaccinia virus vaccine was associated with relatively low mortality. Disabling SPICE may be therapeutically useful if smallpox reemerges.
Variola virus immune evasion design: Expression of a highly efficient inhibitor of human complement
Rosengard, Ariella M.; Liu, Yu; Nie, Zhiping; Jimenez, Robert
2002-01-01
Variola virus, the most virulent member of the genus Orthopoxvirus, specifically infects humans and has no other animal reservoir. Variola causes the contagious disease smallpox, which has a 30–40% mortality rate. Conversely, the prototype orthopoxvirus, vaccinia, causes no disease in immunocompetent humans and was used in the global eradication of smallpox, which ended in 1977. However, the threat of smallpox persists because clandestine stockpiles of variola still exist. Although variola and vaccinia share remarkable DNA homology, the strict human tropism of variola suggests that its proteins are better suited than those of vaccinia to overcome the human immune response. Here, we demonstrate the functional advantage of a variola complement regulatory protein over that of its vaccinia homologue. Because authentic variola proteins are not available for study, we molecularly engineered and characterized the smallpox inhibitor of complement enzymes (SPICE), a homologue of a vaccinia virulence factor, vaccinia virus complement control protein (VCP). SPICE is nearly 100-fold more potent than VCP at inactivating human C3b and 6-fold more potent at inactivating C4b. SPICE is also more human complement-specific than is VCP. By inactivating complement components, SPICE serves to inhibit the formation of the C3/C5 convertases necessary for complement-mediated viral clearance. SPICE provides the first evidence that variola proteins are particularly adept at overcoming human immunity, and the decreased function of VCP suggests one reason why the vaccinia virus vaccine was associated with relatively low mortality. Disabling SPICE may be therapeutically useful if smallpox reemerges. PMID:12034872
Myasthenia gravis: the role of complement at the neuromuscular junction.
Howard, James F
2018-01-01
Generalized myasthenia gravis (gMG) is a rare autoimmune disorder characterized by skeletal muscle weakness caused by disrupted neurotransmission at the neuromuscular junction (NMJ). Approximately 74-88% of patients with gMG have acetylcholine receptor (AChR) autoantibodies. Complement plays an important role in innate and antibody-mediated immunity, and activation and amplification of complement results in the formation of membrane attack complexes (MACs), lipophilic proteins that damage cell membranes. The role of complement in gMG has been demonstrated in animal models and patients. Studies in animals lacking specific complement proteins have confirmed that MAC formation is required to induce experimental autoimmune MG (EAMG) and NMJ damage. Complement inhibition in EAMG models can prevent disease induction and reverse its progression. Patients with anti-AChR + MG have autoantibodies and MACs present at NMJs. Damaged NMJs are associated with more severe disease, fewer AChRs, and MACs in synaptic debris. Current MG therapies do not target complement directly. Eculizumab is a humanized monoclonal antibody that inhibits cleavage of complement protein C5, preventing MAC formation. Eculizumab treatment improved symptoms compared with placebo in a phase II study in patients with refractory gMG. Direct complement inhibition could preserve NMJ physiology and muscle function in patients with anti-AChR + gMG. © 2017 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals Inc. on behalf of The New York Academy of Sciences.
Schmiesing, Jessica; Schlüter, Hartmut; Ullrich, Kurt; Braulke, Thomas; Mühlhausen, Chris
2014-01-01
Glutaric aciduria type 1 (GA1) is an inherited neurometabolic disorder caused by mutations in the GCDH gene encoding glutaryl-CoA dehydrogenase (GCDH), which forms homo- and heteromeric complexes in the mitochondrial matrix. GA1 patients are prone to the development of encephalopathic crises which lead to an irreversible disabling dystonic movement disorder. The clinical and biochemical manifestations of GA1 vary considerably and lack correlations to the genotype. Using an affinity chromatography approach we report here for the first time on the identification of mitochondrial proteins interacting directly with GCDH. Among others, dihydrolipoamide S-succinyltransferase (DLST) involved in the formation of glutaryl-CoA, and the β-subunit of the electron transfer flavoprotein (ETFB) serving as electron acceptor, were identified as GCDH binding partners. We have adapted the yellow fluorescent protein-based fragment complementation assay and visualized the oligomerization of GCDH as well as its direct interaction with DLST and ETFB in mitochondria of living cells. These data suggest that GCDH is a constituent of multimeric mitochondrial dehydrogenase complexes, and the characterization of their interrelated functions may provide new insights into the regulation of lysine oxidation and the pathophysiology of GA1.
Schmiesing, Jessica; Schlüter, Hartmut; Ullrich, Kurt; Braulke, Thomas; Mühlhausen, Chris
2014-01-01
Glutaric aciduria type 1 (GA1) is an inherited neurometabolic disorder caused by mutations in the GCDH gene encoding glutaryl-CoA dehydrogenase (GCDH), which forms homo- and heteromeric complexes in the mitochondrial matrix. GA1 patients are prone to the development of encephalopathic crises which lead to an irreversible disabling dystonic movement disorder. The clinical and biochemical manifestations of GA1 vary considerably and lack correlations to the genotype. Using an affinity chromatography approach we report here for the first time on the identification of mitochondrial proteins interacting directly with GCDH. Among others, dihydrolipoamide S-succinyltransferase (DLST) involved in the formation of glutaryl-CoA, and the β-subunit of the electron transfer flavoprotein (ETFB) serving as electron acceptor, were identified as GCDH binding partners. We have adapted the yellow fluorescent protein-based fragment complementation assay and visualized the oligomerization of GCDH as well as its direct interaction with DLST and ETFB in mitochondria of living cells. These data suggest that GCDH is a constituent of multimeric mitochondrial dehydrogenase complexes, and the characterization of their interrelated functions may provide new insights into the regulation of lysine oxidation and the pathophysiology of GA1. PMID:24498361
A Novel System for Visualizing Alphavirus Assembly
Steel, J. Jordan; Geiss, Brian J.
2015-01-01
Alphaviruses are small, enveloped RNA viruses that form infectious particles by budding through the cellular plasma membrane. To help visualize and understand the intracellular assembly of alphavirus virions we have developed a bimolecular fluorescence complementation-based system (BiFC) that allows visualization of capsid and E2 subcellular localization and association in live cells. In this system, N- or C-terminal Venus fluorescent protein fragments (VN- and VC-) are fused to the N-terminus of the capsid protein on the Sindbis virus structural polyprotein, which results in the formation of fluorescent capsid-like structures in the absence of viral genomes that associate with the plasma membrane of cells. Mutation of the capsid autoprotease active site blocks structural polyprotein processing and alters the subcellular distribution of capsid fluorescence. Incorporating mCherry into the extracellular domain of the E2 glycoprotein allows the visualization of E2 glycoprotein localization and showed a close association of the E2 and capsid proteins at the plasma membrane as expected. These results suggest that this system is a useful new tool to study alphavirus assembly in live cells and may be useful in identifying molecules that inhibit alphavirus virion formation. PMID:26122073
Analysis of the functional aspects and seminal plasma proteomic profile of sperm from smokers.
Antoniassi, Mariana Pereira; Intasqui, Paula; Camargo, Mariana; Zylbersztejn, Daniel Suslik; Carvalho, Valdemir Melechco; Cardozo, Karina H M; Bertolla, Ricardo Pimenta
2016-11-01
To evaluate the effect of smoking on sperm functional quality and seminal plasma proteomic profile. Sperm functional tests were performed in 20 non-smoking men with normal semen quality, according to the World Health Organization (2010) and in 20 smoking patients. These included: evaluation of DNA fragmentation by alkaline Comet assay; analysis of mitochondrial activity using DAB staining; and acrosomal integrity evaluation by PNA binding. The remaining semen was centrifuged and seminal plasma was used for proteomic analysis (liquid chromatography-tandem mass spectrometry). The quantified proteins were used for Venn diagram construction in Cytoscape 3.2.1 software, using the PINA4MS plug-in. Then, differentially expressed proteins were used for functional enrichment analysis of Gene Ontology categories, Kyoto Encyclopedia of Genes and Genomes and Reactome, using Cytoscape software and the ClueGO 2.2.0 plug-in. Smokers had a higher percentage of sperm DNA damage (Comet classes III and IV; P < 0.01), partially and fully inactive mitochondria (DAB classes III and IV; P = 0.001 and P = 0.006, respectively) and non-intact acrosomes (P < 0.01) when compared with the control group. With respect to proteomic analysis, 422 proteins were identified and quantified, of which one protein was absent, 27 proteins were under-represented and six proteins were over-represented in smokers. Functional enrichment analysis showed the enrichment of antigen processing and presentation, positive regulation of prostaglandin secretion involved in immune response, protein kinase A signalling and arachidonic acid secretion, complement activation, regulation of the cytokine-mediated signalling pathway and regulation of acute inflammatory response in the study group (smokers). In conclusion, cigarette smoking was associated with an inflammatory state in the accessory glands and in the testis, as shown by enriched proteomic pathways. This state causes an alteration in sperm functional quality, which is characterized by decreased acrosome integrity and mitochondrial activity, as well as by increased nuclear DNA fragmentation. © 2016 The Authors BJU International © 2016 BJU International Published by John Wiley & Sons Ltd.
Boyd, D A; Cvitkovitch, D G; Hamilton, I R
1994-01-01
We report the sequencing of a 2,242-bp region of the Streptococcus mutants NG5 genome containing the genes for ptsH and ptsI, which encode HPr and enzyme I (EI), respectively, of the phosphoenolpyruvate-dependent phosphotransferase transport system. The sequence was obtained from two cloned overlapping genomic fragments; one expresses HPr and a truncated EI, while the other expresses a full-length EI in Escherichia coli, as determined by Western immunoblotting. The ptsI gene appeared to be expressed from a region located in the ptsH gene. The S. mutans NG5 pts operon does not appear to be linked to other phosphotransferase transport system proteins as has been found in other bacteria. A positive fermentation pattern on MacConkey-glucose plates by an E. coli ptsI mutant harboring the S. mutans NG5 ptsI gene on a plasmid indicated that the S. mutans NG5 EI can complement a defect in the E. coli gene. This was confirmed by protein phosphorylation experiments with 32P-labeled phosphoenolpyruvate indicating phosphotransfer from the S. mutans NG5 EI to the E. coli HPr. Two forms of the cloned EI, both truncated to varying degrees in the C-terminal region, were inefficiently phosphorylated and unable to complement fully the ptsI defect in the E. coli mutant. The deduced amino acid sequence of HPr shows a high degree of homology, particularly around the active site, to the same protein from other gram-positive bacteria, notably, S. salivarius, and to a lesser extent with those of gram-negative bacteria. The deduced amino acid sequence of S. mutans NG5 EI also shares several regions of homology with other sequenced EIs, notably, with the region around the active site, a region that contains the only conserved cystidyl residue among the various proteins and which may be involved in substrate binding. Images PMID:8132321
Pietrocola, Giampiero; Rindi, Simonetta; Rosini, Roberto; Buccato, Scilla
2016-01-01
The group B Streptococcus (GBS) is a leading cause of neonatal invasive disease. GBS bacteria are surrounded by a thick capsular polysaccharide that is a potent inhibitor of complement deposition via the alternative pathway. Several of its surface molecules can however activate the classical and lectin complement pathways, rendering this species still vulnerable to phagocytic killing. In this study we have identified a novel secreted protein named complement interfering protein (CIP) that downregulates complement activation via the classical and lectin pathways, but not the alternative pathway. The CIP protein showed high affinity toward C4b and inhibited its interaction with C2, presumably preventing the formation of the C4bC2a convertase. Addition of recombinant CIP to GBS cip-negative bacteria resulted in decreased deposition of C3b on their surface and in diminished phagocytic killing in a whole-blood assay. Our data reveal a novel strategy exploited by GBS to counteract innate immunity and could be valuable for the development of anti-infective agents against this important pathogen. PMID:26608922
Homologous species restriction of the complement-mediated killing of nucleated cells.
Yamamoto, H; Blaas, P; Nicholson-Weller, A; Hänsch, G M
1990-01-01
The homologous restriction of complement (C) lysis is attributed to membrane proteins: decay-accelerating factor (DAF), C8 binding protein (C8bp) and P18/CD59. Since these proteins are also expressed on peripheral blood cells, species restriction was tested for in the complement-mediated killing of antibody-coated human leucocytes by human or rabbit complement. Killing was more efficient when rabbit complement was used. Preincubation of cells with an antibody to DAF abolished the difference. When C1-7 sites were first attached to the cells and either rabbit or human C8, C9 were added, the killing of monocytes and lymphocytes was equally efficient; only in polymorphonuclear neutrophils was a higher efficiency of rabbit C8, C9 seen. Thus, in contrast to haemolysis, restriction occurred predominantly at the C3 level and the action of the terminal complement components was not inhibited. Since C8bp isolated from peripheral blood cells showed essentially similar characteristics as the erythrocyte-derived C8bp, the failure of C8bp to inhibit the action of the terminal components on nucleated cells might reflect differences of the complement membrane interactions between erythrocytes or nucleated cells, respectively. Images Figure 5 PMID:1697561
Sockett, R E; Donohue, T J; Varga, A R; Kaplan, S
1989-01-01
A reaction center H- strain (RCH-) of Rhodobacter sphaeroides, PUHA1, was made by in vitro deletion of an XhoI restriction endonuclease fragment from the puhA gene coupled with insertion of a kanamycin resistance gene cartridge. The resulting construct was delivered to R. sphaeroides wild-type 2.4.1, with the defective puhA gene replacing the wild-type copy by recombination, followed by selection for kanamycin resistance. When grown under conditions known to induce intracytoplasmic membrane development, PUHA1 synthesized a pigmented intracytoplasmic membrane. Spectral analysis of this membrane showed that it was deficient in B875 spectral complexes as well as functional reaction centers and that the level of B800-850 spectral complexes was greater than in the wild type. The RCH- strain was photosythetically incompetent, but photosynthetic growth was restored by complementation with a 1.45-kilobase (kb) BamHI restriction endonuclease fragment containing the puhA gene carried in trans on plasmid pRK404. B875 spectral complexes were not restored by complementation with the 1.45-kb BamHI restriction endonuclease fragment containing the puhA gene but were restored along with photosynthetic competence by complementation with DNA from a cosmid carrying the puhA gene, as well as a flanking DNA sequence. Interestingly, B875 spectral complexes, but not photosynthetic competence, were restored to PUHA1 by introduction in trans of a 13-kb BamHI restriction endonuclease fragment carrying genes encoding the puf operon region of the DNA. The effect of the puhA deletion was further investigated by an examination of the levels of specific mRNA species derived from the puf and puc operons, as well as by determinations of the relative abundances of polypeptides associated with various spectral complexes by immunological methods. The roles of puhA and other genetic components in photosynthetic gene expression and membrane assembly are discussed. Images PMID:2644200
Van Molle, Inge; Thomann, Andreas; Buckley, Dennis L; So, Ernest C; Lang, Steffen; Crews, Craig M; Ciulli, Alessio
2012-10-26
Fragment screening is widely used to identify attractive starting points for drug design. However, its potential and limitations to assess the tractability of often challenging protein:protein interfaces have been underexplored. Here, we address this question by means of a systematic deconstruction of lead-like inhibitors of the pVHL:HIF-1α interaction into their component fragments. Using biophysical techniques commonly employed for screening, we could only detect binding of fragments that violate the Rule of Three, are more complex than those typically screened against classical druggable targets, and occupy two adjacent binding subsites at the interface rather than just one. Analyses based on ligand and group lipophilicity efficiency of anchored fragments were applied to dissect the individual subsites and probe for binding hot spots. The implications of our findings for targeting protein interfaces by fragment-based approaches are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.
Delimitation of essential genes of cassava latent virus DNA 2.
Etessami, P; Callis, R; Ellwood, S; Stanley, J
1988-01-01
Insertion and deletion mutagenesis of both extended open reading frames (ORFs) of cassava latent virus DNA 2 destroys infectivity. Infectivity is restored by coinoculating constructs that contain single mutations within different ORFs. Although frequent intermolecular recombination produces dominant parental-type virus, mutants can be retained within the virus population indicating that they are competent for replication and suggesting that rescue can occur by complementation of trans acting gene products. By cloning specific fragments into DNA 1 coat protein deletion vectors we have delimited the DNA 2 coding regions and provide substantive evidence that both are essential for virus infection. Although a DNA 2 component is unique to whitefly-transmitted geminiviruses, the results demonstrate that neither coding region is involved solely in insect transmission. The requirement for a bipartite genome for whitefly-transmitted geminiviruses is discussed. Images PMID:3387209
Lynch, Anne M; Eckel, Robert H; Murphy, James R; Gibbs, Ronald S; West, Nancy A; Giclas, Patricia C; Salmon, Jane E; Holers, V Michael
2012-05-01
We hypothesized that women who are obese before they become pregnant and also have elevations of complement Bb and C3a in the top quartile in early pregnancy would have the highest risk of preeclampsia compared with a referent group of women who were not obese and had levels of complement less than the top quartile. This was a prospective study of 1013 women recruited at less than 20 weeks' gestation. An EDTA-plasma sample was obtained, and complement fragments were measured using enzyme-linked immunosorbent assays. The data were analyzed using univariable and multivariable logistic regression analysis. Women who were obese with levels of Bb or C3a in the top quartile were 10.0 (95% confidence interval, 3.3-30) and 8.8 (95% confidence interval, 3-24) times, respectively, more likely to develop preeclampsia compared with the referent group. We demonstrate a combined impact of obesity and elevated complement on the development of preeclampsia. Copyright © 2012. Published by Mosby, Inc.
[Fragment-based drug discovery: concept and aim].
Tanaka, Daisuke
2010-03-01
Fragment-Based Drug Discovery (FBDD) has been recognized as a newly emerging lead discovery methodology that involves biophysical fragment screening and chemistry-driven fragment-to-lead stages. Although fragments, defined as structurally simple and small compounds (typically <300 Da), have not been employed in conventional high-throughput screening (HTS), the recent significant progress in the biophysical screening methods enables fragment screening at a practical level. The intention of FBDD primarily turns our attention to weakly but specifically binding fragments (hit fragments) as the starting point of medicinal chemistry. Hit fragments are then promoted to more potent lead compounds through linking or merging with another hit fragment and/or attaching functional groups. Another positive aspect of FBDD is ligand efficiency. Ligand efficiency is a useful guide in screening hit selection and hit-to-lead phases to achieve lead-likeness. Owing to these features, a number of successful applications of FBDD to "undruggable targets" (where HTS and other lead identification methods failed to identify useful lead compounds) have been reported. As a result, FBDD is now expected to complement more conventional methodologies. This review, as an introduction of the following articles, will summarize the fundamental concepts of FBDD and will discuss its advantages over other conventional drug discovery approaches.
Targeting the Human Complement Membrane Attack Complex to Selectively Kill Prostate Cancer Cells
2012-10-01
prostate cancer cells in vitro . Evaluate CD59 expression in human prostate cancer microarrays. Aim 4: Evaluate toxicity and efficacy of the lead...findings suggest PSA may also have immunoregulatory activity in the seminal plasma to aid in normal fertility that may have been co-opted by prostate...cleavage fragments have not been described. PSA can cleave C3 and generate the 37 kDa fragment in vitro . PSA is the major chymotrypsin-like serine
Mini G protein probes for active G protein-coupled receptors (GPCRs) in live cells.
Wan, Qingwen; Okashah, Najeah; Inoue, Asuka; Nehmé, Rony; Carpenter, Byron; Tate, Christopher G; Lambert, Nevin A
2018-05-11
G protein-coupled receptors (GPCRs) are key signaling proteins that regulate nearly every aspect of cell function. Studies of GPCRs have benefited greatly from the development of molecular tools to monitor receptor activation and downstream signaling. Here, we show that mini G proteins are robust probes that can be used in a variety of assay formats to report GPCR activity in living cells. Mini G (mG) proteins are engineered GTPase domains of Gα subunits that were developed for structural studies of active-state GPCRs. Confocal imaging revealed that mG proteins fused to fluorescent proteins were located diffusely in the cytoplasm and translocated to sites of receptor activation at the cell surface and at intracellular organelles. Bioluminescence resonance energy transfer (BRET) assays with mG proteins fused to either a fluorescent protein or luciferase reported agonist, superagonist, and inverse agonist activities. Variants of mG proteins (mGs, mGsi, mGsq, and mG12) corresponding to the four families of Gα subunits displayed appropriate coupling to their cognate GPCRs, allowing quantitative profiling of subtype-specific coupling to individual receptors. BRET between luciferase-mG fusion proteins and fluorescent markers indicated the presence of active GPCRs at the plasma membrane, Golgi apparatus, and endosomes. Complementation assays with fragments of NanoLuc luciferase fused to GPCRs and mG proteins reported constitutive receptor activity and agonist-induced activation with up to 20-fold increases in luminescence. We conclude that mG proteins are versatile tools for studying GPCR activation and coupling specificity in cells and should be useful for discovering and characterizing G protein subtype-biased ligands. © 2018 Wan et al.
Castiblanco-Valencia, Mónica M; Fraga, Tatiana R; Breda, Leandro C D; Vasconcellos, Sílvio A; Figueira, Cláudio P; Picardeau, Mathieu; Wunder, Elsio; Ko, Albert I; Barbosa, Angela S; Isaac, Lourdes
2016-05-01
Leptospiral immunoglobulin-like (Lig) proteins are surface exposed molecules present in pathogenic but not in saprophytic Leptospira species. We have previously shown that Lig proteins interact with the soluble complement regulators Factor H (FH), FH like-1 (FHL-1), FH related-1 (FHR-1) and C4b Binding Protein (C4BP). In this study, we used the saprophyte L. biflexa serovar Patoc as a surrogate host to address the specific role of LigA and LigB proteins in leptospiral complement evasion. L. biflexa expressing LigA or LigB was able to acquire FH and C4BP. Bound complement regulators retained their cofactor activities of FI in the proteolytic cleavage of C3b and C4b. Moreover, heterologous expression of ligA and ligB genes in the saprophyte L. biflexa enhanced bacterial survival in human serum. Complement deposition on lig-transformed L. biflexa was assessed by flow cytometry analysis. With regard to MAC deposition, L. biflexa expressing LigA or LigB presented an intermediate profile: MAC deposition levels were greater than those found in the pathogenic L. interrogans, but lower than those observed for L. biflexa wildtype. In conclusion, Lig proteins contribute to in vitro control of complement activation on the leptospiral surface, promoting an increased bacterial survival in human serum. Copyright © 2016 European Federation of Immunological Societies. All rights reserved.
Rysavy, Steven J; Beck, David A C; Daggett, Valerie
2014-11-01
Protein function is intimately linked to protein structure and dynamics yet experimentally determined structures frequently omit regions within a protein due to indeterminate data, which is often due protein dynamics. We propose that atomistic molecular dynamics simulations provide a diverse sampling of biologically relevant structures for these missing segments (and beyond) to improve structural modeling and structure prediction. Here we make use of the Dynameomics data warehouse, which contains simulations of representatives of essentially all known protein folds. We developed novel computational methods to efficiently identify, rank and retrieve small peptide structures, or fragments, from this database. We also created a novel data model to analyze and compare large repositories of structural data, such as contained within the Protein Data Bank and the Dynameomics data warehouse. Our evaluation compares these structural repositories for improving loop predictions and analyzes the utility of our methods and models. Using a standard set of loop structures, containing 510 loops, 30 for each loop length from 4 to 20 residues, we find that the inclusion of Dynameomics structures in fragment-based methods improves the quality of the loop predictions without being dependent on sequence homology. Depending on loop length, ∼ 25-75% of the best predictions came from the Dynameomics set, resulting in lower main chain root-mean-square deviations for all fragment lengths using the combined fragment library. We also provide specific cases where Dynameomics fragments provide better predictions for NMR loop structures than fragments from crystal structures. Online access to these fragment libraries is available at http://www.dynameomics.org/fragments. © 2014 The Protein Society.
Fragment-Based Protein-Protein Interaction Antagonists of a Viral Dimeric Protease.
Gable, Jonathan E; Lee, Gregory M; Acker, Timothy M; Hulce, Kaitlin R; Gonzalez, Eric R; Schweigler, Patrick; Melkko, Samu; Farady, Christopher J; Craik, Charles S
2016-04-19
Fragment-based drug discovery has shown promise as an approach for challenging targets such as protein-protein interfaces. We developed and applied an activity-based fragment screen against dimeric Kaposi's sarcoma-associated herpesvirus protease (KSHV Pr) using an optimized fluorogenic substrate. Dose-response determination was performed as a confirmation screen, and NMR spectroscopy was used to map fragment inhibitor binding to KSHV Pr. Kinetic assays demonstrated that several initial hits also inhibit human cytomegalovirus protease (HCMV Pr). Binding of these hits to HCMV Pr was also confirmed by NMR spectroscopy. Despite the use of a target-agnostic fragment library, more than 80 % of confirmed hits disrupted dimerization and bound to a previously reported pocket at the dimer interface of KSHV Pr, not to the active site. One class of fragments, an aminothiazole scaffold, was further explored using commercially available analogues. These compounds demonstrated greater than 100-fold improvement of inhibition. This study illustrates the power of fragment-based screening for these challenging enzymatic targets and provides an example of the potential druggability of pockets at protein-protein interfaces. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beskrovnaya, O.Yu.; Fonshtein, M.Yu.; Kolibaba, L.G.
1989-01-01
Molecular cloning of Corynebacterium glutamicum genes for threonine and lysine synthesis has been done in Escherichia coli cells. The clonal library of EcoRI fragments of chromosomal DNA of C. glutamicum was constructed on the plasmid vector /lambda/pSL5. The genes for threonine and lysine synthesis were identified by complementation of E. coli mutations in thrB and lysA genes, respectively. Recombinant plasmids, isolated from independent ThrB/sup +/ clone have a common 4.1-kb long EcoRI DNA fragment. Hybrid plasmids isolated from LysA/sup +/ transductants of E. coli have common 2.2 and 3.3 kb long EcoRI fragments of C. glutamicum DNA. The hybrid plasmidsmore » consistently transduced the markers thrB/sup +/ and lysA/sup +/. The Southern hybridization analysis showed that the cloned DNA fragments hybridized with the fragments of identical length in C. glutamicum chromosomes.« less
NASA Astrophysics Data System (ADS)
Ashwood, Christopher; Lin, Chi-Hung; Thaysen-Andersen, Morten; Packer, Nicolle H.
2018-03-01
Profiling cellular protein glycosylation is challenging due to the presence of highly similar glycan structures that play diverse roles in cellular physiology. As the anomericity and the exact linkage type of a single glycosidic bond can influence glycan function, there is a demand for improved and automated methods to confirm detailed structural features and to discriminate between structurally similar isomers, overcoming a significant bottleneck in the analysis of data generated by glycomics experiments. We used porous graphitized carbon-LC-ESI-MS/MS to separate and detect released N- and O-glycan isomers from mammalian model glycoproteins using negative mode resonance activation CID-MS/MS. By interrogating similar fragment spectra from closely related glycan isomers that differ only in arm position and sialyl linkage, product fragment ions for discrimination between these features were discovered. Using the Skyline software, at least two diagnostic fragment ions of high specificity were validated for automated discrimination of sialylation and arm position in N-glycan structures, and sialylation in O-glycan structures, complementing existing structural diagnostic ions. These diagnostic ions were shown to be useful for isomer discrimination using both linear and 3D ion trap mass spectrometers when analyzing complex glycan mixtures from cell lysates. Skyline was found to serve as a useful tool for automated assessment of glycan isomer discrimination. This platform-independent workflow can potentially be extended to automate the characterization and quantitation of other challenging glycan isomers. [Figure not available: see fulltext.
Identification and therapeutic potential of a vitronectin binding region of meningococcal msf.
Hill, Darryl J; Griffiths, Natalie J; Borodina, Elena; Andreae, Clio A; Sessions, Richard B; Virji, Mumtaz
2015-01-01
The human pathogen Neisseria meningitides (Nm) attains serum resistance via a number of mechanisms, one of which involves binding to the host complement regulator protein vitronectin. We have shown previously that the Meningococcal surface fibril (Msf), a trimeric autotransporter, binds to the activated form of vitronectin (aVn) to increase Nm survival in human serum. In this study, we aimed to identify the aVn-binding region of Msf to assess its potential as an antigen which can elicit antibodies that block aVn binding and/or possess bactericidal properties. Using several recombinant Msf fragments spanning its surface-exposed region, the smallest aVn-binding recombinants were found to span residues 1-86 and 39-124. The use of further deletion constructs and overlapping recombinant Msf fragments suggested that a region of Msf comprising residues 39-82 may be primarily important for aVn binding and that other regions may also be involved but to a lesser extent. Molecular modelling implicated K66 and K68, conserved in all available Msf sequences, to be involved in the interaction. Recombinant fragments which bound to aVn were able to reduce the survival advantage conveyed by aVn-interaction in serum bactericidal assays. Antibodies raised against one such fragment inhibited aVn binding to Msf. In addition, the antibodies enhanced specific killing of Msf-expressing Nm in a dose-dependent manner. Overall, this study identifies an aVn-binding region of Msf, an adhesin known to impart serum resistance properties to the pathogen; and shows that this region of Msf can elicit antibodies with dual properties which reduce pathogen survival within the host and thus has potential as a vaccine antigen.
Identification and Therapeutic Potential of a Vitronectin Binding Region of Meningococcal Msf
Hill, Darryl J.; Griffiths, Natalie J.; Borodina, Elena; Andreae, Clio A.; Sessions, Richard B.; Virji, Mumtaz
2015-01-01
The human pathogen Neisseria meningitides (Nm) attains serum resistance via a number of mechanisms, one of which involves binding to the host complement regulator protein vitronectin. We have shown previously that the Meningococcal surface fibril (Msf), a trimeric autotransporter, binds to the activated form of vitronectin (aVn) to increase Nm survival in human serum. In this study, we aimed to identify the aVn-binding region of Msf to assess its potential as an antigen which can elicit antibodies that block aVn binding and/or possess bactericidal properties. Using several recombinant Msf fragments spanning its surface-exposed region, the smallest aVn-binding recombinants were found to span residues 1-86 and 39-124. The use of further deletion constructs and overlapping recombinant Msf fragments suggested that a region of Msf comprising residues 39-82 may be primarily important for aVn binding and that other regions may also be involved but to a lesser extent. Molecular modelling implicated K66 and K68, conserved in all available Msf sequences, to be involved in the interaction. Recombinant fragments which bound to aVn were able to reduce the survival advantage conveyed by aVn-interaction in serum bactericidal assays. Antibodies raised against one such fragment inhibited aVn binding to Msf. In addition, the antibodies enhanced specific killing of Msf-expressing Nm in a dose-dependent manner. Overall, this study identifies an aVn-binding region of Msf, an adhesin known to impart serum resistance properties to the pathogen; and shows that this region of Msf can elicit antibodies with dual properties which reduce pathogen survival within the host and thus has potential as a vaccine antigen. PMID:25826209
Complement factor H-related proteins in IgA nephropathy-sometimes a gentle nudge does the trick.
Thurman, Joshua M; Laskowski, Jennifer
2017-10-01
Complement activation probably contributes to glomerular inflammation and damage in IgA nephropathy. In this issue, 2 groups report that levels of factor H-related protein 1 are elevated in patients with IgA nephropathy and correlate with disease progression. These studies provide new evidence that the complement cascade is important to the pathogenesis of this disease. These results also suggest that factor H-related protein 1 levels may be useful for identifying those patients at high risk of disease progression. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
The dual role of fragments in fragment-assembly methods for de novo protein structure prediction
Handl, Julia; Knowles, Joshua; Vernon, Robert; Baker, David; Lovell, Simon C.
2013-01-01
In fragment-assembly techniques for protein structure prediction, models of protein structure are assembled from fragments of known protein structures. This process is typically guided by a knowledge-based energy function and uses a heuristic optimization method. The fragments play two important roles in this process: they define the set of structural parameters available, and they also assume the role of the main variation operators that are used by the optimiser. Previous analysis has typically focused on the first of these roles. In particular, the relationship between local amino acid sequence and local protein structure has been studied by a range of authors. The correlation between the two has been shown to vary with the window length considered, and the results of these analyses have informed directly the choice of fragment length in state-of-the-art prediction techniques. Here, we focus on the second role of fragments and aim to determine the effect of fragment length from an optimization perspective. We use theoretical analyses to reveal how the size and structure of the search space changes as a function of insertion length. Furthermore, empirical analyses are used to explore additional ways in which the size of the fragment insertion influences the search both in a simulation model and for the fragment-assembly technique, Rosetta. PMID:22095594
Fukunishi, Yoshifumi
2010-01-01
For fragment-based drug development, both hit (active) compound prediction and docking-pose (protein-ligand complex structure) prediction of the hit compound are important, since chemical modification (fragment linking, fragment evolution) subsequent to the hit discovery must be performed based on the protein-ligand complex structure. However, the naïve protein-compound docking calculation shows poor accuracy in terms of docking-pose prediction. Thus, post-processing of the protein-compound docking is necessary. Recently, several methods for the post-processing of protein-compound docking have been proposed. In FBDD, the compounds are smaller than those for conventional drug screening. This makes it difficult to perform the protein-compound docking calculation. A method to avoid this problem has been reported. Protein-ligand binding free energy estimation is useful to reduce the procedures involved in the chemical modification of the hit fragment. Several prediction methods have been proposed for high-accuracy estimation of protein-ligand binding free energy. This paper summarizes the various computational methods proposed for docking-pose prediction and their usefulness in FBDD.
A Physical Interaction Network of Dengue Virus and Human Proteins*
Khadka, Sudip; Vangeloff, Abbey D.; Zhang, Chaoying; Siddavatam, Prasad; Heaton, Nicholas S.; Wang, Ling; Sengupta, Ranjan; Sahasrabudhe, Sudhir; Randall, Glenn; Gribskov, Michael; Kuhn, Richard J.; Perera, Rushika; LaCount, Douglas J.
2011-01-01
Dengue virus (DENV), an emerging mosquito-transmitted pathogen capable of causing severe disease in humans, interacts with host cell factors to create a more favorable environment for replication. However, few interactions between DENV and human proteins have been reported to date. To identify DENV-human protein interactions, we used high-throughput yeast two-hybrid assays to screen the 10 DENV proteins against a human liver activation domain library. From 45 DNA-binding domain clones containing either full-length viral genes or partially overlapping gene fragments, we identified 139 interactions between DENV and human proteins, the vast majority of which are novel. These interactions involved 105 human proteins, including six previously implicated in DENV infection and 45 linked to the replication of other viruses. Human proteins with functions related to the complement and coagulation cascade, the centrosome, and the cytoskeleton were enriched among the DENV interaction partners. To determine if the cellular proteins were required for DENV infection, we used small interfering RNAs to inhibit their expression. Six of 12 proteins targeted (CALR, DDX3X, ERC1, GOLGA2, TRIP11, and UBE2I) caused a significant decrease in the replication of a DENV replicon. We further showed that calreticulin colocalized with viral dsRNA and with the viral NS3 and NS5 proteins in DENV-infected cells, consistent with a direct role for calreticulin in DENV replication. Human proteins that interacted with DENV had significantly higher average degree and betweenness than expected by chance, which provides additional support for the hypothesis that viruses preferentially target cellular proteins that occupy central position in the human protein interaction network. This study provides a valuable starting point for additional investigations into the roles of human proteins in DENV infection. PMID:21911577
Towards novel therapeutics for HIV through fragment-based screening and drug design.
Tiefendbrunn, Theresa; Stout, C David
2014-01-01
Fragment-based drug discovery has been applied with varying levels of success to a number of proteins involved in the HIV (Human Immunodeficiency Virus) life cycle. Fragment-based approaches have led to the discovery of novel binding sites within protease, reverse transcriptase, integrase, and gp41. Novel compounds that bind to known pockets within CCR5 have also been identified via fragment screening, and a fragment-based approach to target the TAR-Tat interaction was explored. In the context of HIV-1 reverse transcriptase (RT), fragment-based approaches have yielded fragment hits with mid-μM activity in an in vitro activity assay, as well as fragment hits that are active against drug-resistant variants of RT. Fragment-based drug discovery is a powerful method to elucidate novel binding sites within proteins, and the method has had significant success in the context of HIV proteins.
Variola virus immune evasion proteins.
Dunlop, Lance R; Oehlberg, Katherine A; Reid, Jeremy J; Avci, Dilek; Rosengard, Ariella M
2003-09-01
Variola virus, the causative agent of smallpox, encodes approximately 200 proteins. Over 80 of these proteins are located in the terminal regions of the genome, where proteins associated with host immune evasion are encoded. To date, only two variola proteins have been characterized. Both are located in the terminal regions and demonstrate immunoregulatory functions. One protein, the smallpox inhibitor of complement enzymes (SPICE), is homologous to a vaccinia virus virulence factor, the vaccinia virus complement-control protein (VCP), which has been found experimentally to be expressed early in the course of vaccinia infection. Both SPICE and VCP are similar in structure and function to the family of mammalian complement regulatory proteins, which function to prevent inadvertent injury to adjacent cells and tissues during complement activation. The second variola protein is the variola virus high-affinity secreted chemokine-binding protein type II (CKBP-II, CBP-II, vCCI), which binds CC-chemokine receptors. The vaccinia homologue of CKBP-II is secreted both early and late in infection. CKBP-II proteins are highly conserved among orthopoxviruses, sharing approximately 85% homology, but are absent in eukaryotes. This characteristic sets it apart from other known virulence factors in orthopoxviruses, which share sequence homology with known mammalian immune regulatory gene products. Future studies of additional variola proteins may help illuminate factors associated with its virulence, pathogenesis and strict human tropism. In addition, these studies may also assist in the development of targeted therapies for the treatment of both smallpox and human immune-related diseases.
Sandra, Koen; Steenbeke, Mieke; Vandenheede, Isabel; Vanhoenacker, Gerd; Sandra, Pat
2017-11-10
In recent years, two-dimensional liquid chromatography (2D-LC) has seen an enormous evolution and one of the fields where it is being widely adopted is in the analysis of therapeutic monoclonal antibodies (mAbs). We here further add to the many flavours of this powerful technology. Workflows based on heart-cutting (LC-LC) and comprehensive (LC×LC) 2D-LC are described that allow to guide the clone selection process in mAb and biosimilar development. Combining Protein A affinity chromatography in the first dimension with size exclusion (SEC), cation exchange (CEX) or reversed-phase liquid chromatography-mass spectrometry (RPLC-MS) in the second dimension simultaneously allows to assess mAb titer and critical structural aspects such as aggregation, fragmentation, charge heterogeneity, molecular weight (MW), amino acid sequence and glycosylation. Complementing the LC-LC measurements at intact protein level with LC×LC based peptide mapping provides the necessary information to make clear decisions on which clones to take further into development. Copyright © 2017 Elsevier B.V. All rights reserved.
Banadakoppa, M; Chauhan, M S; Havemann, D; Balakrishnan, M; Dominic, J S; Yallampalli, C
2014-09-01
Spontaneous abortion in early pregnancy due to unknown reasons is a common problem. The excess complement activation and consequent placental inflammation and anti-angiogenic milieu is emerging as an important associated factor in many pregnancy-related complications. In the present study we sought to examine the expression of complement inhibitory proteins at the feto-maternal interface and levels of complement split products in the circulation to understand their role in spontaneous abortion. Consenting pregnant women who either underwent elective abortion due to non-clinical reasons (n = 13) or suffered miscarriage (n = 14) were recruited for the study. Systemic levels of complement factors C3a and C5a were measured by enzyme-linked immunosorbent assay (ELISA). Plasma C5 and C3 protein levels were examined by Western blot. Expressions of complement regulatory proteins such as CD46 and CD55 in the decidua were investigated by quantitative polymerase chain reaction (PCR) and Western blot. The median of plasma C3a level was 82·83 ng/ml and 66·17 ng/ml in elective and spontaneous abortion patients, respectively. Medians of plasma C5a levels in elective and spontaneous abortion patients were 0·96 ng/ml and 1·14 ng/ml, respectively. Only plasma C5a levels but not C3a levels showed significant elevation in spontaneous abortion patients compared to elective abortion patients. Further, there was a threefold decrease in the mRNA expressions of complement inhibitory proteins CD46 and CD55 in the decidua obtained from spontaneous abortion patients compared to that of elective abortion patients. These data suggested that dysregulated complement cascade may be associated with spontaneous abortion. © 2014 British Society for Immunology.
Building a Better Fragment Library for De Novo Protein Structure Prediction
de Oliveira, Saulo H. P.; Shi, Jiye; Deane, Charlotte M.
2015-01-01
Fragment-based approaches are the current standard for de novo protein structure prediction. These approaches rely on accurate and reliable fragment libraries to generate good structural models. In this work, we describe a novel method for structure fragment library generation and its application in fragment-based de novo protein structure prediction. The importance of correct testing procedures in assessing the quality of fragment libraries is demonstrated. In particular, the exclusion of homologs to the target from the libraries to correctly simulate a de novo protein structure prediction scenario, something which surprisingly is not always done. We demonstrate that fragments presenting different predominant predicted secondary structures should be treated differently during the fragment library generation step and that exhaustive and random search strategies should both be used. This information was used to develop a novel method, Flib. On a validation set of 41 structurally diverse proteins, Flib libraries presents both a higher precision and coverage than two of the state-of-the-art methods, NNMake and HHFrag. Flib also achieves better precision and coverage on the set of 275 protein domains used in the two previous experiments of the the Critical Assessment of Structure Prediction (CASP9 and CASP10). We compared Flib libraries against NNMake libraries in a structure prediction context. Of the 13 cases in which a correct answer was generated, Flib models were more accurate than NNMake models for 10. “Flib is available for download at: http://www.stats.ox.ac.uk/research/proteins/resources”. PMID:25901595
Electrostatic Steering Accelerates C3d:CR2 Association.
Mohan, Rohith R; Huber, Gary A; Morikis, Dimitrios
2016-08-25
Electrostatic effects are ubiquitous in protein interactions and are found to be pervasive in the complement system as well. The interaction between complement fragment C3d and complement receptor 2 (CR2) has evolved to become a link between innate and adaptive immunity. Electrostatic interactions have been suggested to be the driving factor for the association of the C3d:CR2 complex. In this study, we investigate the effects of ionic strength and mutagenesis on the association of C3d:CR2 through Brownian dynamics simulations. We demonstrate that the formation of the C3d:CR2 complex is ionic strength-dependent, suggesting the presence of long-range electrostatic steering that accelerates the complex formation. Electrostatic steering occurs through the interaction of an acidic surface patch in C3d and the positively charged CR2 and is supported by the effects of mutations within the acidic patch of C3d that slow or diminish association. Our data are in agreement with previous experimental mutagenesis and binding studies and computational studies. Although the C3d acidic patch may be locally destabilizing because of unfavorable Coulombic interactions of like charges, it contributes to the acceleration of association. Therefore, acceleration of function through electrostatic steering takes precedence to stability. The site of interaction between C3d and CR2 has been the target for delivery of CR2-bound nanoparticle, antibody, and small molecule biomarkers, as well as potential therapeutics. A detailed knowledge of the physicochemical basis of C3d:CR2 association may be necessary to accelerate biomarker and drug discovery efforts.
Immune response and histology of humoral rejection in kidney transplantation.
González-Molina, Miguel; Ruiz-Esteban, Pedro; Caballero, Abelardo; Burgos, Dolores; Cabello, Mercedes; Leon, Miriam; Fuentes, Laura; Hernandez, Domingo
2016-01-01
The adaptive immune response forms the basis of allograft rejection. Its weapons are direct cellular cytotoxicity, identified from the beginning of organ transplantation, and/or antibodies, limited to hyperacute rejection by preformed antibodies and not as an allogenic response. This resulted in allogenic response being thought for decades to have just a cellular origin. But the experimental studies by Gorer demonstrating tissue damage in allografts due to antibodies secreted by B lymphocytes activated against polymorphic molecules were disregarded. The special coexistence of binding and unbinding between antibodies and antigens of the endothelial cell membranes has been the cause of the delay in demonstrating the humoral allogenic response. The endothelium, the target tissue of antibodies, has a high turnover, and antigen-antibody binding is non-covalent. If endothelial cells are attacked by the humoral response, immunoglobulins are rapidly removed from their surface by shedding and/or internalization, as well as degrading the components of the complement system by the action of MCP, DAF and CD59. Thus, the presence of complement proteins in the membrane of endothelial cells is transient. In fact, the acute form of antibody-mediated rejection was not demonstrated until C4d complement fragment deposition was identified, which is the only component that binds covalently to endothelial cells. This review examines the relationship between humoral immune response and the types of acute and chronic histological lesion shown on biopsy of the transplanted organ. Copyright © 2016 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.
Predicting "Hot" and "Warm" Spots for Fragment Binding.
Rathi, Prakash Chandra; Ludlow, R Frederick; Hall, Richard J; Murray, Christopher W; Mortenson, Paul N; Verdonk, Marcel L
2017-05-11
Computational fragment mapping methods aim to predict hotspots on protein surfaces where small fragments will bind. Such methods are popular for druggability assessment as well as structure-based design. However, to date researchers developing or using such tools have had no clear way of assessing the performance of these methods. Here, we introduce the first diverse, high quality validation set for computational fragment mapping. The set contains 52 diverse examples of fragment binding "hot" and "warm" spots from the Protein Data Bank (PDB). Additionally, we describe PLImap, a novel protocol for fragment mapping based on the Protein-Ligand Informatics force field (PLIff). We evaluate PLImap against the new fragment mapping test set, and compare its performance to that of simple shape-based algorithms and fragment docking using GOLD. PLImap is made publicly available from https://bitbucket.org/AstexUK/pli .
Rainer, Johannes; Rambach, Günter; Kaltseis, Josef; Hagleitner, Magdalena; Heiss, Silvia; Speth, Cornelia
2011-10-01
Representatives of the genus Pseudallescheria (anamorph: Scedosporium) are saprobes and the aetiologic agent of invasive mycosis in humans. After dissemination, the central nervous system (CNS) is one of the most affected organs. Prerequisites for the survival of Pseudallescheria/Scedosporium in the host are the ability to acquire nutrients and to evade the immune attack. The cleavage of complement compounds via the secretion of fungal proteases might meet both challenges since proteolytic degradation of proteins can provide nutrients and destroy the complement factors, a fast and effective immune weapon in the CNS. Therefore, we studied the capacity of different Pseudallescheria/Scedosporium species to degrade key elements of the complement cascade in the cerebrospinal fluid and investigated a correlation with the phylogenetic background. The majority of the Pseudallescheria apiosperma isolates tested were demonstrated to efficiently eliminate proteins like complement factors C3 and C1q, thus affecting two main components of a functional complement cascade, presumably by proteolytic degradation, and using them as nutrient source. In contrast, the tested strains of Pseudallescheria boydii have no or only weak capacity to eliminate these complement proteins. We hypothesise that the ability of Pseudallescheria/Scedosporium strains to acquire nutrients and to undermine the complement attack is at least partly phylogenetically determined. © 2011 Blackwell Verlag GmbH.
Binding-Site Assessment by Virtual Fragment Screening
Huang, Niu; Jacobson, Matthew P.
2010-01-01
The accurate prediction of protein druggability (propensity to bind high-affinity drug-like small molecules) would greatly benefit the fields of chemical genomics and drug discovery. We have developed a novel approach to quantitatively assess protein druggability by computationally screening a fragment-like compound library. In analogy to NMR-based fragment screening, we dock ∼11000 fragments against a given binding site and compute a computational hit rate based on the fraction of molecules that exceed an empirically chosen score cutoff. We perform a large-scale evaluation of the approach on four datasets, totaling 152 binding sites. We demonstrate that computed hit rates correlate with hit rates measured experimentally in a previously published NMR-based screening method. Secondly, we show that the in silico fragment screening method can be used to distinguish known druggable and non-druggable targets, including both enzymes and protein-protein interaction sites. Finally, we explore the sensitivity of the results to different receptor conformations, including flexible protein-protein interaction sites. Besides its original aim to assess druggability of different protein targets, this method could be used to identifying druggable conformations of flexible binding site for lead discovery, and suggesting strategies for growing or joining initial fragment hits to obtain more potent inhibitors. PMID:20404926
Clinical roundtable monograph: Paroxysmal nocturnal hemoglobinuria: a case-based discussion.
Szer, Jeff; Hill, Anita; Weitz, Ilene Ceil
2012-11-01
Paroxysmal nocturnal hemoglobinuria (PNH) is a rare, acquired disorder characterized by chronic intravascular hemolysis as the primary clinical manifestation and morbidities that include anemia, thrombosis, renal impairment, pulmonary hypertension, and bone marrow failure. The prevalence of the PNH clone (from <1-100% PNH granulocytes) is approximately 16 per million, and careful monitoring is required. The average age of onset of the clinical disease is the early 30s, although it can present at all ages. PNH is caused by the acquisition of a somatic mutation of the gene phosphatidylinositol glycan anchor (PIG-A) in a multipotent hematopoietic stem cell (HSC), with clonal expansion of the mutated HSC. The mutation causes a deficiency in the synthesis of glycosylphosphatidylinositol (GPI). In cells derived from normal HSCs, the complement regulatory proteins CD55 and CD59 are anchored to the hematopoietic cell membrane surface via GPI, protecting the cells from complement-mediated lysis. However, in patients with PNH, these 2 proteins, along with numerous other GPI-linked proteins, are absent from the cell surface of red cells, granulocytes, monocytes, and platelets, resulting in complement-mediated intravascular hemolysis and other complications. Lysis of red blood cells is the most obvious manifestation, but as other cell lineages are also affected, this complement-mediated attack contributes to additional complications, such as thrombosis. Eculizumab, a humanized monoclonal antibody against the C5 complement protein, is the only effective drug therapy for PNH patients. The antibody prevents cleavage of the C5 protein by C5 convertase, in turn preventing generation of C5b-9 and release of C5a, thereby protecting from hemolysis of cells lacking the CD59 surface protein and other complications associated with complement activation. Drs. Ilene C. Weitz, Anita Hill, and Jeff Szer discuss 3 recent cases of patients with PNH.
Conde, Jonas Nascimento; da Silva, Emiliana Mandarano; Allonso, Diego; Coelho, Diego Rodrigues; Andrade, Iamara da Silva; de Medeiros, Luciano Neves; Menezes, Joice Lima; Barbosa, Angela Silva; Mohana-Borges, Ronaldo
2016-11-01
Dengue virus (DENV) infects millions of people worldwide and is a major public health problem. DENV nonstructural protein 1 (NS1) is a conserved glycoprotein that associates with membranes and is also secreted into the plasma in DENV-infected patients. The present study describes a novel mechanism by which NS1 inhibits the terminal complement pathway. We first identified the terminal complement regulator vitronectin (VN) as a novel DENV2 NS1 binding partner by using a yeast two-hybrid system. This interaction was further assessed by enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR) assay. The NS1-VN complex was also detected in plasmas from DENV-infected patients, suggesting that this interaction occurs during DENV infection. We also demonstrated that the DENV2 NS1 protein, either by itself or by interacting with VN, hinders the formation of the membrane attack complex (MAC) and C9 polymerization. Finally, we showed that DENV2, West Nile virus (WNV), and Zika virus (ZIKV) NS1 proteins produced in mammalian cells inhibited C9 polymerization. Taken together, our results points to a role for NS1 as a terminal pathway inhibitor of the complement system. Dengue is the most important arthropod-borne viral disease nowadays and is caused by dengue virus (DENV). The flavivirus NS1 glycoprotein has been characterized functionally as a complement evasion protein that can attenuate the activation of the classical, lectin, and alternative pathways. The present study describes a novel mechanism by which DENV NS1 inhibits the terminal complement pathway. We identified the terminal complement regulator vitronectin (VN) as a novel DENV NS1 binding partner, and the NS1-VN complex was detected in plasmas from DENV-infected patients, suggesting that this interaction occurs during DENV infection. We also demonstrated that the NS1-VN complex inhibited membrane attack complex (MAC) formation, thus interfering with the complement terminal pathway. Interestingly, NS1 itself also inhibited MAC activity, suggesting a direct role of this protein in the inhibition process. Our findings imply a role for NS1 as a terminal pathway inhibitor of the complement system. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
NASA Astrophysics Data System (ADS)
Neumann, Lars; Ritscher, Allegra; Müller, Gerhard; Hafenbradl, Doris
2009-08-01
For the detection of the precise and unambiguous binding of fragments to a specific binding site on the target protein, we have developed a novel reporter displacement binding assay technology. The application of this technology for the fragment screening as well as the fragment evolution process with a specific modelling based design strategy is demonstrated for inhibitors of the protein kinase p38alpha. In a fragment screening approach seed fragments were identified which were then used to build compounds from the deep-pocket towards the hinge binding area of the protein kinase p38alpha based on a modelling approach. BIRB796 was used as a blueprint for the alignment of the fragments. The fragment evolution of these deep-pocket binding fragments towards the fully optimized inhibitor BIRB796 included the modulation of the residence time as well as the affinity. The goal of our study was to evaluate the robustness and efficiency of our novel fragment screening technology at high fragment concentrations, compare the screening data with biochemical activity data and to demonstrate the evolution of the hit fragments with fast kinetics, into slow kinetic inhibitors in an in silico approach.
Pietrocola, Giampiero; Rindi, Simonetta; Rosini, Roberto; Buccato, Scilla; Speziale, Pietro; Margarit, Immaculada
2016-01-01
The group B Streptococcus (GBS) is a leading cause of neonatal invasive disease. GBS bacteria are surrounded by a thick capsular polysaccharide that is a potent inhibitor of complement deposition via the alternative pathway. Several of its surface molecules can however activate the classical and lectin complement pathways, rendering this species still vulnerable to phagocytic killing. In this study we have identified a novel secreted protein named complement interfering protein (CIP) that downregulates complement activation via the classical and lectin pathways, but not the alternative pathway. The CIP protein showed high affinity toward C4b and inhibited its interaction with C2, presumably preventing the formation of the C4bC2a convertase. Addition of recombinant CIP to GBS cip-negative bacteria resulted in decreased deposition of C3b on their surface and in diminished phagocytic killing in a whole-blood assay. Our data reveal a novel strategy exploited by GBS to counteract innate immunity and could be valuable for the development of anti-infective agents against this important pathogen. Copyright © 2015 by The American Association of Immunologists, Inc.
An 'instant gene bank' method for gene cloning by mutant complementation.
Gems, D; Aleksenko, A; Belenky, L; Robertson, S; Ramsden, M; Vinetski, Y; Clutterbuck, A J
1994-02-01
We describe a new method of gene cloning by complementation of mutant alleles which obviates the need for construction of a gene library in a plasmid vector in vitro and its amplification in Escherichia coli. The method involves simultaneous transformation of mutant strains of the fungus Aspergillus nidulans with (i) fragmented chromosomal DNA from a donor species and (ii) DNA of a plasmid without a selectable marker gene, but with a fungal origin of DNA replication ('helper plasmid'). Transformant colonies appear as the result of the joining of chromosomal DNA fragments carrying the wild-type copies of the mutant allele with the helper plasmid. Joining may occur either by ligation (if the helper plasmid is in linear form) or recombination (if it is cccDNA). This event occurs with high efficiency in vivo, and generates an autonomously replicating plasmid cointegrate. Transformants containing Penicillium chrysogenum genomic DNA complementing A. nidulans niaD, nirA and argB mutations have been obtained. While some of these cointegrates were evidently rearranged or consisted only of unaltered replicating plasmid, in other cases plasmids could be recovered into E. coli and were subsequently shown to contain the selected gene. The utility of this "instant gene bank" technique is demonstrated here by the molecular cloning of the P. canescens trpC gene.
Using animal models to determine the significance of complement activation in Alzheimer's disease
Loeffler, David A
2004-01-01
Complement inflammation is a major inflammatory mechanism whose function is to promote the removal of microorganisms and the processing of immune complexes. Numerous studies have provided evidence for an increase in this process in areas of pathology in the Alzheimer's disease (AD) brain. Because complement activation proteins have been demonstrated in vitro to exert both neuroprotective and neurotoxic effects, the significance of this process in the development and progression of AD is unclear. Studies in animal models of AD, in which brain complement activation can be experimentally altered, should be of value for clarifying this issue. However, surprisingly little is known about complement activation in the transgenic animal models that are popular for studying this disorder. An optimal animal model for studying the significance of complement activation on Alzheimer's – related neuropathology should have complete complement activation associated with senile plaques, neurofibrillary tangles (if present), and dystrophic neurites. Other desirable features include both classical and alternative pathway activation, increased neuronal synthesis of native complement proteins, and evidence for an increase in complement activation prior to the development of extensive pathology. In order to determine the suitability of different animal models for studying the role of complement activation in AD, the extent of complement activation and its association with neuropathology in these models must be understood. PMID:15479474
The potential of combining ion trap/MS/MS and TOF/MS for identification of emerging contaminants
Ferrer, I.; Furlong, E.T.; Heine, C.E.; Thurman, E.M.
2002-01-01
The use of a method combining ion trap tandem mass spectrometry (MS/MS) and time of flight mass spectrometry (TOF/MS) for identification of emerging contaminates was discussed. The two tools together complemented each other in sensitivity, fragmentation and accurate mass determination. Liquid chromatography/electrospray ionization/ion-trap tandem mass spectrometry (LC/ESI/MS/MS), in positive ion mode of operation, was used to separate and identify specific compounds. Diagnostic fragment ions were obtained for a polyethyleneglycol(PEG) homolog by ion trap MS/MS, and fragments were measured by TOF/MS. It was observed that the combined method gave an exact mass measurement that differed from the calculated mass.
Systematic analysis of protein identity between Zika virus and other arthropod-borne viruses.
Chang, Hsiao-Han; Huber, Roland G; Bond, Peter J; Grad, Yonatan H; Camerini, David; Maurer-Stroh, Sebastian; Lipsitch, Marc
2017-07-01
To analyse the proportions of protein identity between Zika virus and dengue, Japanese encephalitis, yellow fever, West Nile and chikungunya viruses as well as polymorphism between different Zika virus strains. We used published protein sequences for the Zika virus and obtained protein sequences for the other viruses from the National Center for Biotechnology Information (NCBI) protein database or the NCBI virus variation resource. We used BLASTP to find regions of identity between viruses. We quantified the identity between the Zika virus and each of the other viruses, as well as within-Zika virus polymorphism for all amino acid k -mers across the proteome, with k ranging from 6 to 100. We assessed accessibility of protein fragments by calculating the solvent accessible surface area for the envelope and nonstructural-1 (NS1) proteins. In total, we identified 294 Zika virus protein fragments with both low proportion of identity with other viruses and low levels of polymorphisms among Zika virus strains. The list includes protein fragments from all Zika virus proteins, except NS3. NS4A has the highest number (190 k -mers) of protein fragments on the list. We provide a candidate list of protein fragments that could be used when developing a sensitive and specific serological test to detect previous Zika virus infections.
Rysavy, Steven J; Beck, David AC; Daggett, Valerie
2014-01-01
Protein function is intimately linked to protein structure and dynamics yet experimentally determined structures frequently omit regions within a protein due to indeterminate data, which is often due protein dynamics. We propose that atomistic molecular dynamics simulations provide a diverse sampling of biologically relevant structures for these missing segments (and beyond) to improve structural modeling and structure prediction. Here we make use of the Dynameomics data warehouse, which contains simulations of representatives of essentially all known protein folds. We developed novel computational methods to efficiently identify, rank and retrieve small peptide structures, or fragments, from this database. We also created a novel data model to analyze and compare large repositories of structural data, such as contained within the Protein Data Bank and the Dynameomics data warehouse. Our evaluation compares these structural repositories for improving loop predictions and analyzes the utility of our methods and models. Using a standard set of loop structures, containing 510 loops, 30 for each loop length from 4 to 20 residues, we find that the inclusion of Dynameomics structures in fragment-based methods improves the quality of the loop predictions without being dependent on sequence homology. Depending on loop length, ∼25–75% of the best predictions came from the Dynameomics set, resulting in lower main chain root-mean-square deviations for all fragment lengths using the combined fragment library. We also provide specific cases where Dynameomics fragments provide better predictions for NMR loop structures than fragments from crystal structures. Online access to these fragment libraries is available at http://www.dynameomics.org/fragments. PMID:25142412
Assembling a protein-protein interaction map of the SSU processome from existing datasets.
Lim, Young H; Charette, J Michael; Baserga, Susan J
2011-03-10
The small subunit (SSU) processome is a large ribonucleoprotein complex involved in small ribosomal subunit assembly. It consists of the U3 snoRNA and ∼72 proteins. While most of its components have been identified, the protein-protein interactions (PPIs) among them remain largely unknown, and thus the assembly, architecture and function of the SSU processome remains unclear. We queried PPI databases for SSU processome proteins to quantify the degree to which the three genome-wide high-throughput yeast two-hybrid (HT-Y2H) studies, the genome-wide protein fragment complementation assay (PCA) and the literature-curated (LC) datasets cover the SSU processome interactome. We find that coverage of the SSU processome PPI network is remarkably sparse. Two of the three HT-Y2H studies each account for four and six PPIs between only six of the 72 proteins, while the third study accounts for as little as one PPI and two proteins. The PCA dataset has the highest coverage among the genome-wide studies with 27 PPIs between 25 proteins. The LC dataset was the most extensive, accounting for 34 proteins and 38 PPIs, many of which were validated by independent methods, thereby further increasing their reliability. When the collected data were merged, we found that at least 70% of the predicted PPIs have yet to be determined and 26 proteins (36%) have no known partners. Since the SSU processome is conserved in all Eukaryotes, we also queried HT-Y2H datasets from six additional model organisms, but only four orthologues and three previously known interologous interactions were found. This provides a starting point for further work on SSU processome assembly, and spotlights the need for a more complete genome-wide Y2H analysis.
Assembling a Protein-Protein Interaction Map of the SSU Processome from Existing Datasets
Baserga, Susan J.
2011-01-01
Background The small subunit (SSU) processome is a large ribonucleoprotein complex involved in small ribosomal subunit assembly. It consists of the U3 snoRNA and ∼72 proteins. While most of its components have been identified, the protein-protein interactions (PPIs) among them remain largely unknown, and thus the assembly, architecture and function of the SSU processome remains unclear. Methodology We queried PPI databases for SSU processome proteins to quantify the degree to which the three genome-wide high-throughput yeast two-hybrid (HT-Y2H) studies, the genome-wide protein fragment complementation assay (PCA) and the literature-curated (LC) datasets cover the SSU processome interactome. Conclusions We find that coverage of the SSU processome PPI network is remarkably sparse. Two of the three HT-Y2H studies each account for four and six PPIs between only six of the 72 proteins, while the third study accounts for as little as one PPI and two proteins. The PCA dataset has the highest coverage among the genome-wide studies with 27 PPIs between 25 proteins. The LC dataset was the most extensive, accounting for 34 proteins and 38 PPIs, many of which were validated by independent methods, thereby further increasing their reliability. When the collected data were merged, we found that at least 70% of the predicted PPIs have yet to be determined and 26 proteins (36%) have no known partners. Since the SSU processome is conserved in all Eukaryotes, we also queried HT-Y2H datasets from six additional model organisms, but only four orthologues and three previously known interologous interactions were found. This provides a starting point for further work on SSU processome assembly, and spotlights the need for a more complete genome-wide Y2H analysis. PMID:21423703
Novel Evasion Mechanisms of the Classical Complement Pathway
Garcia, Brandon L.; Zwarthoff, Seline A.; Rooijakkers, Suzan H. M.; Geisbrecht, Brian V.
2016-01-01
Complement is a network of soluble and cell surface-associated proteins which gives rise to a self-amplifying, yet tightly regulated system with fundamental roles in immune surveillance and clearance. Complement becomes activated on the surface of ‘non-self’ cells by one of three initiating mechanisms known as the classical, lectin, or alternative pathways. Evasion of complement function is a hallmark of invasive pathogens and hematophagous organisms. While many complement inhibition strategies hinge on hijacking activities of endogenous complement regulatory proteins, an increasing number of uniquely evolved evasion molecules have been discovered over the past decade. In this review we focus on several recent investigations which have revealed mechanistically distinct inhibitors of the classical pathway. Because the classical pathway is an important and specific mediator of various autoimmune and inflammatory disorders, in-depth knowledge of novel evasion mechanisms could direct future development of therapeutic anti-inflammatory molecules. PMID:27591336
Novel Evasion Mechanisms of the Classical Complement Pathway.
Garcia, Brandon L; Zwarthoff, Seline A; Rooijakkers, Suzan H M; Geisbrecht, Brian V
2016-09-15
Complement is a network of soluble and cell surface-associated proteins that gives rise to a self-amplifying, yet tightly regulated system with fundamental roles in immune surveillance and clearance. Complement becomes activated on the surface of nonself cells by one of three initiating mechanisms known as the classical, lectin, and alternative pathways. Evasion of complement function is a hallmark of invasive pathogens and hematophagous organisms. Although many complement-inhibition strategies hinge on hijacking activities of endogenous complement regulatory proteins, an increasing number of uniquely evolved evasion molecules have been discovered over the past decade. In this review, we focus on several recent investigations that revealed mechanistically distinct inhibitors of the classical pathway. Because the classical pathway is an important and specific mediator of various autoimmune and inflammatory disorders, in-depth knowledge of novel evasion mechanisms could direct future development of therapeutic anti-inflammatory molecules. Copyright © 2016 by The American Association of Immunologists, Inc.
Combinatorial Labeling Method for Improving Peptide Fragmentation in Mass Spectrometry
NASA Astrophysics Data System (ADS)
Kuchibhotla, Bhanuramanand; Kola, Sankara Rao; Medicherla, Jagannadham V.; Cherukuvada, Swamy V.; Dhople, Vishnu M.; Nalam, Madhusudhana Rao
2017-06-01
Annotation of peptide sequence from tandem mass spectra constitutes the central step of mass spectrometry-based proteomics. Peptide mass spectra are obtained upon gas-phase fragmentation. Identification of the protein from a set of experimental peptide spectral matches is usually referred as protein inference. Occurrence and intensity of these fragment ions in the MS/MS spectra are dependent on many factors such as amino acid composition, peptide basicity, activation mode, protease, etc. Particularly, chemical derivatizations of peptides were known to alter their fragmentation. In this study, the influence of acetylation, guanidinylation, and their combination on peptide fragmentation was assessed initially on a lipase (LipA) from Bacillus subtilis followed by a bovine six protein mix digest. The dual modification resulted in improved fragment ion occurrence and intensity changes, and this resulted in the equivalent representation of b- and y-type fragment ions in an ion trap MS/MS spectrum. The improved representation has allowed us to accurately annotate the peptide sequences de novo. Dual labeling has significantly reduced the false positive protein identifications in standard bovine six peptide digest. Our study suggests that the combinatorial labeling of peptides is a useful method to validate protein identifications for high confidence protein inference. [Figure not available: see fulltext.
Caswell, Clayton C; Han, Runlin; Hovis, Kelley M; Ciborowski, Pawel; Keene, Douglas R; Marconi, Richard T; Lukomski, Slawomir
2008-02-01
Non-specific activation of the complement system is regulated by the plasma glycoprotein factor H (FH). Bacteria can avoid complement-mediated opsonization and phagocytosis through acquiring FH to the cell surface. Here, we characterize an interaction between the streptococcal collagen-like protein Scl1.6 of M6-type group A Streptococcus (GAS) and FH. Using affinity chromatography with immobilized recombinant Scl1.6 protein, we co-eluted human plasma proteins with molecular weight of 155 kDa, 43 kDa and 38 kDa. Mass spectrometry identified the 155 kDa band as FH and two other bands as isoforms of the FH-related protein-1. The identities of all three bands were confirmed by Western immunoblotting with specific antibodies. Structure-function relation studies determined that the globular domain of the Scl1.6 variant specifically binds FH while fused to collagenous tails of various lengths. This binding is not restricted to Scl1.6 as the phylogenetically linked Scl1.55 variant also binds FH. Functional analyses demonstrated the cofactor activity of the rScl1.6-bound FH for factor I-mediated cleavage of C3b. Finally, purified FH bound to the Scl1.6 protein present in the cell wall material obtained from M6-type GAS. In conclusion, we have identified a functional interaction between Scl1 and plasma FH, which may contribute to GAS evasion of complement-mediated opsonization and phagocytosis.
Kulp, John L.; Cloudsdale, Ian S.; Kulp, John L.
2017-01-01
Chemically diverse fragments tend to collectively bind at localized sites on proteins, which is a cornerstone of fragment-based techniques. A central question is how general are these strategies for predicting a wide variety of molecular interactions such as small molecule-protein, protein-protein and protein-nucleic acid for both experimental and computational methods. To address this issue, we recently proposed three governing principles, (1) accurate prediction of fragment-macromolecule binding free energy, (2) accurate prediction of water-macromolecule binding free energy, and (3) locating sites on a macromolecule that have high affinity for a diversity of fragments and low affinity for water. To test the generality of these concepts we used the computational technique of Simulated Annealing of Chemical Potential to design one small fragment to break the RecA-RecA protein-protein interaction and three fragments that inhibit peptide-deformylase via water-mediated multi-body interactions. Experiments confirm the predictions that 6-hydroxydopamine potently inhibits RecA and that PDF inhibition quantitatively tracks the water-mediated binding predictions. Additionally, the principles correctly predict the essential bound waters in HIV Protease, the surprisingly extensive binding site of elastase, the pinpoint location of electron transfer in dihydrofolate reductase, the HIV TAT-TAR protein-RNA interactions, and the MDM2-MDM4 differential binding to p53. The experimental confirmations of highly non-obvious predictions combined with the precise characterization of a broad range of known phenomena lend strong support to the generality of fragment-based methods for characterizing molecular recognition. PMID:28837642
Kulp, John L; Cloudsdale, Ian S; Kulp, John L; Guarnieri, Frank
2017-01-01
Chemically diverse fragments tend to collectively bind at localized sites on proteins, which is a cornerstone of fragment-based techniques. A central question is how general are these strategies for predicting a wide variety of molecular interactions such as small molecule-protein, protein-protein and protein-nucleic acid for both experimental and computational methods. To address this issue, we recently proposed three governing principles, (1) accurate prediction of fragment-macromolecule binding free energy, (2) accurate prediction of water-macromolecule binding free energy, and (3) locating sites on a macromolecule that have high affinity for a diversity of fragments and low affinity for water. To test the generality of these concepts we used the computational technique of Simulated Annealing of Chemical Potential to design one small fragment to break the RecA-RecA protein-protein interaction and three fragments that inhibit peptide-deformylase via water-mediated multi-body interactions. Experiments confirm the predictions that 6-hydroxydopamine potently inhibits RecA and that PDF inhibition quantitatively tracks the water-mediated binding predictions. Additionally, the principles correctly predict the essential bound waters in HIV Protease, the surprisingly extensive binding site of elastase, the pinpoint location of electron transfer in dihydrofolate reductase, the HIV TAT-TAR protein-RNA interactions, and the MDM2-MDM4 differential binding to p53. The experimental confirmations of highly non-obvious predictions combined with the precise characterization of a broad range of known phenomena lend strong support to the generality of fragment-based methods for characterizing molecular recognition.
Winkler, Mark T; Bushey, Ryan T; Gottlin, Elizabeth B; Campa, Michael J; Guadalupe, Eross S; Volkheimer, Alicia D; Weinberg, J Brice; Patz, Edward F
2017-01-01
Rituximab therapy for B cell chronic lymphocytic leukemia (B-CLL) has met with mixed success. Among several factors to which resistance can be attributed is failure to activate complement dependent cytotoxicity (CDC) due to protective complement regulatory proteins, including the soluble regulator complement factor H (CFH). We hypothesized that rituximab killing of non-responsive B-CLL cells could be augmented by a novel human monoclonal antibody against CFH. The B cells from 11 patients with B-CLL were tested ex vivo in CDC assays with combinations of CFH monoclonal antibody, rituximab, and a negative control antibody. CDC of rituximab non-responsive malignant B cells from CLL patients could in some cases be augmented by the CFH monoclonal antibody. Antibody-mediated cytotoxicity of cells was dependent upon functional complement. In one case where B-CLL cells were refractory to CDC by the combination of rituximab plus CFH monoclonal antibody, additionally neutralizing the membrane complement regulatory protein CD59 allowed CDC to occur. Inhibiting CDC regulatory proteins such as CFH holds promise for overcoming resistance to rituximab therapy in B-CLL.
Collier, James H; Lesk, Arthur M; Garcia de la Banda, Maria; Konagurthu, Arun S
2012-07-01
Searching for well-fitting 3D oligopeptide fragments within a large collection of protein structures is an important task central to many analyses involving protein structures. This article reports a new web server, Super, dedicated to the task of rapidly screening the protein data bank (PDB) to identify all fragments that superpose with a query under a prespecified threshold of root-mean-square deviation (RMSD). Super relies on efficiently computing a mathematical bound on the commonly used structural similarity measure, RMSD of superposition. This allows the server to filter out a large proportion of fragments that are unrelated to the query; >99% of the total number of fragments in some cases. For a typical query, Super scans the current PDB containing over 80,500 structures (with ∼40 million potential oligopeptide fragments to match) in under a minute. Super web server is freely accessible from: http://lcb.infotech.monash.edu.au/super.
Peterson, Sheri L.; Nguyen, Hal X.; Mendez, Oscar A.
2015-01-01
Traumatic injury to CNS fiber tracts is accompanied by failure of severed axons to regenerate and results in lifelong functional deficits. The inflammatory response to CNS trauma is mediated by a diverse set of cells and proteins with varied, overlapping, and opposing effects on histological and behavioral recovery. Importantly, the contribution of individual inflammatory complement proteins to spinal cord injury (SCI) pathology is not well understood. Although the presence of complement components increases after SCI in association with axons and myelin, it is unknown whether complement proteins affect axon growth or regeneration. We report a novel role for complement C1q in neurite outgrowth in vitro and axon regrowth after SCI. In culture, C1q increased neurite length on myelin. Protein and molecular assays revealed that C1q interacts directly with myelin associated glycoprotein (MAG) in myelin, resulting in reduced activation of growth inhibitory signaling in neurons. In agreement with a C1q-outgrowth-enhancing mechanism in which C1q binding to MAG reduces MAG signaling to neurons, complement C1q blocked both the growth inhibitory and repulsive turning effects of MAG in vitro. Furthermore, C1q KO mice demonstrated increased sensory axon turning within the spinal cord lesion after SCI with peripheral conditioning injury, consistent with C1q-mediated neutralization of MAG. Finally, we present data that extend the role for C1q in axon growth and guidance to include the sprouting patterns of descending corticospinal tract axons into spinal gray matter after dorsal column transection SCI. PMID:25762679
NASA Astrophysics Data System (ADS)
Susnea, Iuliana; Bunk, Sebastian; Wendel, Albrecht; Hermann, Corinna; Przybylski, Michael
2011-04-01
We report here an affinity-proteomics approach that combines 2D-gel electrophoresis and immunoblotting with high performance mass spectrometry to the identification of both full length protein antigens and antigenic fragments of Chlamydophila pneumoniae (C. pneumoniae). The present affinity-mass spectrometry approach effectively utilized high resolution FTICR mass spectrometry and LC-tandem-MS for protein identification, and enabled the identification of several new highly antigenic C. pneumoniae proteins that were not hitherto reported or previously detected only in other Chlamydia species, such as Chlamydia trachomatis. Moreover, high resolution affinity-MS provided the identification of several neo-antigenic protein fragments containing N- and C-terminal, and central domains such as fragments of the membrane protein Pmp21 and the secreted chlamydial proteasome-like factor (Cpaf), representing specific biomarker candidates.
Zill, Oliver A.; Scannell, Devin R.; Kuei, Jeffrey; Sadhu, Meru; Rine, Jasper
2012-01-01
The genetic bases for species-specific traits are widely sought, but reliable experimental methods with which to identify functionally divergent genes are lacking. In the Saccharomyces genus, interspecies complementation tests can be used to evaluate functional conservation and divergence of biological pathways or networks. Silent information regulator (SIR) proteins in S. bayanus provide an ideal test case for this approach because they show remarkable divergence in sequence and paralog number from those found in the closely related S. cerevisiae. We identified genes required for silencing in S. bayanus using a genetic screen for silencing-defective mutants. Complementation tests in interspecies hybrids identified an evolutionarily conserved Sir-protein-based silencing machinery, as defined by two interspecies complementation groups (SIR2 and SIR3). However, recessive mutations in S. bayanus SIR4 isolated from this screen could not be complemented by S. cerevisiae SIR4, revealing species-specific functional divergence in the Sir4 protein despite conservation of the overall function of the Sir2/3/4 complex. A cladistic complementation series localized the occurrence of functional changes in SIR4 to the S. cerevisiae and S. paradoxus branches of the Saccharomyces phylogeny. Most of this functional divergence mapped to sequence changes in the Sir4 PAD. Finally, a hemizygosity modifier screen in the interspecies hybrids identified additional genes involved in S. bayanus silencing. Thus, interspecies complementation tests can be used to identify (1) mutations in genetically underexplored organisms, (2) loci that have functionally diverged between species, and (3) evolutionary events of functional consequence within a genus. PMID:22923378
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boskey, Adele L., E-mail: boskeya@hss.edu; Christensen, Brian, E-mail: bc@mb.au.dk; Taleb, Hayat, E-mail: Talebh@hss.edu
Highlights: Black-Right-Pointing-Pointer Thrombin-cleaved fragments of milk-osteopontin effect hydroxyapatite formation differently. Black-Right-Pointing-Pointer N- and C-terminal fragments promoted hydroxyapatite formation and growth. Black-Right-Pointing-Pointer A central fragment inhibited hydroxyapatite formation and growth. Black-Right-Pointing-Pointer Binding to collagen or hydroxyapatite seed crystals modified these effects. -- Abstract: The manuscript tests the hypothesis that posttranslational modification of the SIBLING family of proteins in general and osteopontin in particular modify the abilities of these proteins to regulate in vitro hydroxyapatite (HA) formation. Osteopontin has diverse effects on hydroxyapatite (HA) mineral crystallite formation and growth depending on the extent of phosphorylation. We hypothesized that different regions of full-lengthmore » OPN would also have distinct effects on the mineralization process. Thrombin fragmentation of milk OPN (mOPN) was used to test this hypothesis. Three fragments were tested in a de novo HA formation assay; an N-terminal fragment (aa 1-147), a central fragment (aa 148-204) denoted SKK-fragment and a C-terminal fragment (aa 205-262). Compared to intact mOPN the C- and N-terminal fragments behaved comparably, promoting HA formation and growth, but the central SKK-fragment acted as a mineralization inhibitor. In a seeded growth experiment all fragments inhibited mineral proliferation, but the SKK-fragment was the most effective inhibitor. These effects, seen in HA-formation and seeded growth assays in a gelatin gel system and in a pH-stat experiment were lost when the protein or fragments were dephosphorylated. Effects of the fully phosphorylated protein and fragments were also altered in the presence of fibrillar collagen. The diverse effects can be explained in terms of the intrinsically disordered nature of OPN and its fragments which enable them to interact with their multiple partners.« less
Maye, Susan; Stanton, Catherine; Fitzgerald, Gerald F; Kelly, Philip M
2015-08-01
While the Complement protein system in human milk is well characterised, there is little information on its presence and activity in bovine milk. Complement forms part of the innate immune system, hence the importance of its contribution during milk ingestion to the overall defences of the neonate. A bactericidal sequestration assay, featuring a Complement sensitive strain, Escherichia coli 0111, originally used to characterise Complement activity in human milk was successfully applied to freshly drawn bovine milk samples, thus, providing an opportunity to compare Complement activities in both human and bovine milks. Although not identical in response, the levels of Complement activity in bovine milk were found to be closely comparable with that of human milk. Differential counts of Esch. coli 0111 after 2 h incubation were 6.20 and 6.06 log CFU/ml, for raw bovine and human milks, respectively - the lower value representing a stronger Complement response. Exposing bovine milk to a range of thermal treatments e.g. 42, 45, 65, 72, 85 or 95 °C for 10 min, progressively inhibited Complement activity by increasing temperature, thus confirming the heat labile nature of this immune protein system. Low level Complement activity was found, however, in 65 and 72 °C heat treated samples and in retailed pasteurised milk which highlights the outer limit to which high temperature, short time (HTST) industrial thermal processes should be applied if retention of activity is a priority. Concentration of Complement in the fat phase was evident following cream separation, and this was also reflected in the further loss of activity recorded in low fat variants of retailed pasteurised milk. Laboratory-based churning of the cream during simulated buttermaking generated an aqueous (buttermilk) phase with higher levels of Complement activity than the fat phase, thus pointing to a likely association with the milk fat globule membrane (MFGM) layer.
When fragments link: a bibliometric perspective on the development of fragment-based drug discovery.
Romasanta, Angelo K S; van der Sijde, Peter; Hellsten, Iina; Hubbard, Roderick E; Keseru, Gyorgy M; van Muijlwijk-Koezen, Jacqueline; de Esch, Iwan J P
2018-05-05
Fragment-based drug discovery (FBDD) is a highly interdisciplinary field, rich in ideas integrated from pharmaceutical sciences, chemistry, biology, and physics, among others. To enrich our understanding of the development of the field, we used bibliometric techniques to analyze 3642 publications in FBDD, complementing accounts by key practitioners. Mapping its core papers, we found the transfer of knowledge from academia to industry. Co-authorship analysis showed that university-industry collaboration has grown over time. Moreover, we show how ideas from other scientific disciplines have been integrated into the FBDD paradigm. Keyword analysis showed that the field is organized into four interconnected practices: library design, fragment screening, computational methods, and optimization. This study highlights the importance of interactions among various individuals and institutions from diverse disciplines in newly emerging scientific fields. Copyright © 2018. Published by Elsevier Ltd.
21 CFR 866.5250 - Complement C2 inhibitor (inactivator) immunological test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... the reagents used to measure by immunochemical techniques the complement C1 inhibitor (a plasma protein) in serum. Complement C1 inhibitor occurs normally in plasma and blocks the action of the C1...
21 CFR 866.5250 - Complement C2 inhibitor (inactivator) immunological test system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... the reagents used to measure by immunochemical techniques the complement C1 inhibitor (a plasma protein) in serum. Complement C1 inhibitor occurs normally in plasma and blocks the action of the C1...
21 CFR 866.5250 - Complement C2 inhibitor (inactivator) immunological test system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... the reagents used to measure by immunochemical techniques the complement C1 inhibitor (a plasma protein) in serum. Complement C1 inhibitor occurs normally in plasma and blocks the action of the C1...
21 CFR 866.5250 - Complement C 2 inhibitor (inactivator) immunological test system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... the reagents used to measure by immunochemical techniques the complement C1 inhibitor (a plasma protein) in serum. Complement C1 inhibitor occurs normally in plasma and blocks the action of the C1...
21 CFR 866.5250 - Complement C 2 inhibitor (inactivator) immunological test system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... the reagents used to measure by immunochemical techniques the complement C1 inhibitor (a plasma protein) in serum. Complement C1 inhibitor occurs normally in plasma and blocks the action of the C1...
Inhibitor of MYC identified in a Kröhnke pyridine library
Hart, Jonathan R.; Garner, Amanda L.; Yu, Jing; Ito, Yoshihiro; Sun, Minghao; Ueno, Lynn; Rhee, Jin-Kyu; Baksh, Michael M.; Stefan, Eduard; Hartl, Markus; Bister, Klaus; Vogt, Peter K.; Janda, Kim D.
2014-01-01
In a fluorescence polarization screen for the MYC–MAX interaction, we have identified a novel small-molecule inhibitor of MYC, KJ-Pyr-9, from a Kröhnke pyridine library. The Kd of KJ-Pyr-9 for MYC in vitro is 6.5 ± 1.0 nM, as determined by backscattering interferometry; KJ-Pyr-9 also interferes with MYC–MAX complex formation in the cell, as shown in a protein fragment complementation assay. KJ-Pyr-9 specifically inhibits MYC-induced oncogenic transformation in cell culture; it has no or only weak effects on the oncogenic activity of several unrelated oncoproteins. KJ-Pyr-9 preferentially interferes with the proliferation of MYC-overexpressing human and avian cells and specifically reduces the MYC-driven transcriptional signature. In vivo, KJ-Pyr-9 effectively blocks the growth of a xenotransplant of MYC-amplified human cancer cells. PMID:25114221
Piddington, C S; Kovacevich, B R; Rambosek, J
1995-01-01
Dibenzothiophene (DBT), a model compound for sulfur-containing organic molecules found in fossil fuels, can be desulfurized to 2-hydroxybiphenyl (2-HBP) by Rhodococcus sp. strain IGTS8. Complementation of a desulfurization (dsz) mutant provided the genes from Rhodococcus sp. strain IGTS8 responsible for desulfurization. A 6.7-kb TaqI fragment cloned in Escherichia coli-Rhodococcus shuttle vector pRR-6 was found to both complement this mutation and confer desulfurization to Rhodococcus fascians, which normally is not able to desulfurize DBT. Expression of this fragment in E. coli also conferred the ability to desulfurize DBT. A molecular analysis of the cloned fragment revealed a single operon containing three open reading frames involved in the conversion of DBT to 2-HBP. The three genes were designated dszA, dszB, and dszC. Neither the nucleotide sequences nor the deduced amino acid sequences of the enzymes exhibited significant similarity to sequences obtained from the GenBank, EMBL, and Swiss-Prot databases, indicating that these enzymes are novel enzymes. Subclone analyses revealed that the gene product of dszC converts DBT directly to DBT-sulfone and that the gene products of dszA and dszB act in concert to convert DBT-sulfone to 2-HBP. PMID:7574582
Basrai, M A; Kingsbury, J; Koshland, D; Spencer, F; Hieter, P
1996-01-01
A chromosome transmission fidelity (ctf) mutant, s138, of Saccharomyces cerevisiae was identified by its centromere (CEN) transcriptional readthrough phenotype, suggesting perturbed kinetochore integrity in vivo. The gene complementing the s138 mutation was found to be identical to the S. cerevisiae SPT4 gene. The s138 mutation is a missense mutation in the second of four conserved cysteine residues positioned similarly to those of zinc finger proteins, and we henceforth refer to the mutation of spt4-138. Both spt4-138 and spt4 delta strains missegregate a chromosome fragment at the permissive temperature, are temperature sensitive for growth at 37 degrees C, and upon a shift to the nonpermissive temperature show an accumulation of large budded cells, each with a nucleus. Previous studies suggest that Spt4p functions in a complex with Spt5p and Spt6p, and we determined that spt6-140 also causes missegregation of a chromosome fragment. Double mutants carrying spt4 delta 2::HIS3 and kinetochore mutation ndc10-42 or ctf13-30 show a synthetic conditional phenotype. Both spt4-138 and spt4 delta strains exhibit synergistic chromosome instability in combination with CEN DNA mutations and show in vitro defects in microtubule binding to minichromosomes. These results indicate that Spt4p plays a role in chromosome segregation. The results of in vivo genetic interactions with mutations in kinetochore proteins and CEN DNA and of in vitro biochemical assays suggest that Spt4p is important for kinetochore function. PMID:8649393
Should development of Alzheimer's disease-specific intravenous immunoglobulin be considered?
Loeffler, David A
2014-12-05
Recent phase II and III studies with intravenous immunoglobulin (IVIG) in patients with Alzheimer's disease (AD) did not find evidence for the slowing of AD progression compared to placebo-treated patients, in contrast to encouraging results in pilot studies. An additional phase III trial is ongoing. If negative results are found, then further AD studies with IVIG are unlikely unless a manufacturer opts for a trial with high-dose IVIG, which would increase its anti-inflammatory effects but also the risk for adverse events. An alternative approach could be an AD-specific IVIG, supplementing IVIG with higher concentrations of selected antibodies purified from it or produced via recombinant polyclonal antibody technology. These antibodies could include those to amyloid-beta (Aβ, tau protein, inflammatory cytokines, complement activation proteins, and the receptor for advanced glycation end products. IgG fragment crystallizable (Fc) fragments containing terminal sialic acid could be added to increase anti-inflammatory effects. While this product might be more effective in slowing AD clinical progression than current IVIG, there are difficulties with this approach. Preclinical studies would be required to determine which of the antibodies of interest for supplementing current IVIG (for example, antibodies to phosphorylated or oligomeric tau) are actually present (and, therefore, available for purification) in IVIG, and the effects of the product in mouse models of AD. An Investigational New Drug application for an AD-specific IVIG would require United States Food and Drug Administration approval. If the drug would be found to benefit AD patients, meeting the increased demand for IVIG would be challenging.
Król, Marcin; Roterman, Irena; Piekarska, Barbara; Konieczny, Leszek; Rybarska, Janina; Stopa, Barbara; Spólnik, Paweł
2005-05-15
It was shown experimentally that binding of a micelle composed of Congo red molecules to immunological complexes leads to the enhanced stability of the latter, and simultaneously prevents binding of a complement molecule (C1q). The dye binds in a cavity created by the removal of N-terminal polypeptide chain, as observed experimentally in a model system-immunoglobulin G (IgG) light chain dimer. Molecular Dynamics (MD) simulations of three forms of IgG light chain dimer, with and without the dye, were performed to investigate the role of N-terminal fragment and self-assembled ligand in coupling between V and C domains. Root-mean-square distance (RMSD) time profiles show that removal of N-terminal fragment leads to destabilization of V domain. A micelle composed of four self-assembled dye molecules stabilizes and fixes the domain. Analysis of root-mean-square fluctuation (RMSF) values and dynamic cross-correlation matrices (DCCM) reveals that removal of N-terminal fragment results in complete decoupling between V and C domains. Binding of self-assembled Congo red molecules improves the coupling, albeit slightly. The disruption of a small beta-sheet composed of N- and C-terminal fragments of the domain (NC sheet) is the most likely reason for the decoupling. Self-assembled ligand, bound in the place originally occupied by N-terminal fragment, is not able to take over the function of the beta-sheet. Lack of correlation of motions between residues in V and C domains denotes that light chain-Congo red complexes have hampered ability to transmit conformational changes between domains. This is a likely explanation of the lack of complement binding by immunological complexes, which bind Congo red, and supports the idea that the NC sheet is the key structural fragment taking part in immunological signal transduction. Copyright 2005 Wiley-Liss, Inc.
Shi, Kaibin; Wang, Zhen; Liu, Yuanchu; Gong, Ye; Fu, Ying; Li, Shaowu; Wood, Kristofer; Hao, Junwei; Zhang, Guang-Xian; Shi, Fu-Dong; Yan, Yaping
2016-11-01
A major hurdle for effective stem cell therapy is ongoing inflammation in the target organ. Reconditioning the lesion microenvironment may be an effective way to promote stem cell therapy. In this study, we showed that engineered neural stem cells (NSCs) with complement factor H-related protein 1, a complement inhibitor protein, can attenuate inflammatory infiltration and immune-mediated damage of astrocytes, an important pathogenic progress in patients with neuromyelitis optica spectrum disorders. Furthermore, we demonstrated that transplantation of the complement factor H-related protein 1-modified NSCs effectively blocked the complement activation cascade and inhibited formation of the membrane attack complex, thus contributing to the protection of endogenous and transplanted NSC-differentiated astrocytes. Therefore, manipulation of the lesion microenvironment contributes to a more effective cell replacement therapeutic strategy for autoimmune diseases of the CNS. Copyright © 2016 by The American Association of Immunologists, Inc.
A pore-forming protein implements VLR-activated complement cytotoxicity in lamprey.
Wu, Fenfang; Feng, Bo; Ren, Yong; Wu, Di; Chen, Yue; Huang, Shengfeng; Chen, Shangwu; Xu, Anlong
2017-01-01
Lamprey is a basal vertebrate with a unique adaptive immune system, which uses variable lymphocyte receptors (VLRs) for antigen recognition. Our previous study has shown that lamprey possessed a distinctive complement pathway activated by VLR. In this study, we identified a natterin family member-lamprey pore-forming protein (LPFP) with a jacalin-like lectin domain and an aerolysin-like pore-forming domain. LPFP had a high affinity with mannan and could form oligomer in the presence of mannan. LPFP could deposit on the surface of target cells, form pore-like complex resembling a wheel with hub and spokes, and mediate powerful cytotoxicity on target cells. These pore-forming proteins along with VLRs and complement molecules were essential for the specific cytotoxicity against exogenous pathogens and tumor cells. This unique cytotoxicity implemented by LPFP might emerge before or in parallel with the IgG-based classical complement lytic pathway completed by polyC9.
NASA Technical Reports Server (NTRS)
Carter, Daniel C. (Inventor)
1998-01-01
In accordance with the present invention, biologically active protein fragments can be constructed which contain only those specific portions of the serum albumin family of proteins such as regions known as subdomains IIA and IIIA which are primarily responsible for the binding properties of the serum albumins. The artificial serums that can be prepared from these biologically active protein fragments are advantageous in that they can be produced much more easily than serums containing the whole albumin, yet still retain all or most of the original binding potential of the full albumin proteins. In addition, since the protein fragment serums of the present invention can be made from non-natural sources using conventional recombinant DNA techniques, they are far safer than serums containing natural albumin because they do not carry the potentially harmful viruses and other contaminants that will be found in the natural substances.
Posttranscriptional modifications in the A-loop of 23S rRNAs from selected archaea and eubacteria.
Hansen, M A; Kirpekar, F; Ritterbusch, W; Vester, B
2002-01-01
Posttranscriptional modifications were mapped in helices 90-92 of 23S rRNA from the following phylogenetically diverse organisms: Haloarcula marismortui, Sulfolobus acidocaldarius, Bacillus subtilis, and Bacillus stearothermophilus. Helix 92 is a component of the ribosomal A-site, which contacts the aminoacyl-tRNA during protein synthesis, implying that posttranscriptional modifications in helices 90-92 may be important for ribosome function. RNA fragments were isolated from 23S rRNA by site-directed RNase H digestion. A novel method of mapping modifications by analysis of short, nucleotide-specific, RNase digestion fragments with Matrix Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) was utilized. The MALDI-MS data were complemented by two primer extension techniques using reverse transcriptase. One technique utilizes decreasing concentrations of deoxynucleotide triphosphates to map 2'-O-ribose methylations. In the other, the rRNA is chemically modified, followed by mild alkaline hydrolysis to map pseudouridines (psis). A total of 10 posttranscriptionally methylated nucleotides and 6 psis were detected in the five organisms. Eight of the methylated nucleotides and one psi have not been reported previously. The distribution of modified nucleotides and their locations on the surface of the ribosomal peptidyl transferase cleft suggests functional importance. PMID:11911366
Partial Gene Cloning and Enzyme Structure Modeling of Exolevanase Fragment from Bacillus subtilis
NASA Astrophysics Data System (ADS)
Azhar, M.; Natalia, D.; Syukur, S.; Andriani, N.; Jamsari, J.
2018-04-01
Inulin hydrolysis thermophilic and thermotolerant bacteria are potential sources of inulin hydrolysis enzymes. Partial gene that encodes inulin hydrolysis enzymes had been isolated from Bacillus subtilis using polymerase chain reaction (PCR) method with the DPE.slFandDPE.eR degenerative primers. The partial gene was cloned into pGEM-T Easy vector with E. coli as host cells and analyzed using BLASTx, CrustalW2, and Phyre2 programs. Size of thepartial gene had been found539 bp that encoded 179aminoacid residues of protein fragment. The sequences of protein fragment was more similar to exolevanase than exoinulinase. The protein fragment had conserved motif FSGS, and specific hits GH32 β-fructosidase. It had three residues of active site and five residues of substrate binding. The active site on the protein fragment were D (1-WLNDP-5), D (125-FRDPK-129) and E (177-WEC-179). Substrate binding on the protein fragment were ND (1-WLNDP-5), Q (18-FYQY-21), FS (60-FSGS-63) RD (125-FRDPK-129) and E (177-WEC-179).
The Impact of Phosphorylation on Electron Capture Dissociation of Proteins: A Top-Down Perspective
NASA Astrophysics Data System (ADS)
Chen, Bifan; Guo, Xiao; Tucholski, Trisha; Lin, Ziqing; McIlwain, Sean; Ge, Ying
2017-09-01
Electron capture dissociation (ECD) is well suited for the characterization of phosphoproteins, with which labile phosphate groups are generally preserved during the fragmentation process. However, the impact of phosphorylation on ECD fragmentation of intact proteins remains unclear. Here, we have performed a systematic investigation of the phosphorylation effect on ECD of intact proteins by comparing the ECD cleavages of mono-phosphorylated α-casein, multi-phosphorylated β-casein, and immunoaffinity-purified phosphorylated cardiac troponin I with those of their unphosphorylated counterparts, respectively. In contrast to phosphopeptides, phosphorylation has significantly reduced deleterious effects on the fragmentation of intact proteins during ECD. On a global scale, the fragmentation patterns are highly comparable between unphosphorylated and phosphorylated precursors under the same ECD conditions, despite a slight decrease in the number of fragment ions observed for the phosphorylated forms. On a local scale, single phosphorylation of intact proteins imposes minimal effects on fragmentation near the phosphorylation sites, but multiple phosphorylations in close proximity result in a significant reduction of ECD bond cleavages. [Figure not available: see fulltext.
Mills, D A; Flickinger, M C
1993-01-01
The lysA gene of Bacillus methanolicus MGA3 was cloned by complementation of an auxotrophic Escherichia coli lysA22 mutant with a genomic library of B. methanolicus MGA3 chromosomal DNA. Subcloning localized the B. methanolicus MGA3 lysA gene into a 2.3-kb SmaI-SstI fragment. Sequence analysis of the 2.3-kb fragment indicated an open reading frame encoding a protein of 48,223 Da, which was similar to the meso-diaminopimelate (DAP) decarboxylase amino acid sequences of Bacillus subtilis (62%) and Corynebacterium glutamicum (40%). Amino acid sequence analysis indicated several regions of conservation among bacterial DAP decarboxylases, eukaryotic ornithine decarboxylases, and arginine decarboxylases, suggesting a common structural arrangement for positioning of substrate and the cofactor pyridoxal 5'-phosphate. The B. methanolicus MGA3 DAP decarboxylase was shown to be a dimer (M(r) 86,000) with a subunit molecular mass of approximately 50,000 Da. This decarboxylase is inhibited by lysine (Ki = 0.93 mM) with a Km of 0.8 mM for DAP. The inhibition pattern suggests that the activity of this enzyme in lysine-overproducing strains of B. methanolicus MGA3 may limit lysine synthesis. Images PMID:8215365
Mills, D A; Flickinger, M C
1993-09-01
The lysA gene of Bacillus methanolicus MGA3 was cloned by complementation of an auxotrophic Escherichia coli lysA22 mutant with a genomic library of B. methanolicus MGA3 chromosomal DNA. Subcloning localized the B. methanolicus MGA3 lysA gene into a 2.3-kb SmaI-SstI fragment. Sequence analysis of the 2.3-kb fragment indicated an open reading frame encoding a protein of 48,223 Da, which was similar to the meso-diaminopimelate (DAP) decarboxylase amino acid sequences of Bacillus subtilis (62%) and Corynebacterium glutamicum (40%). Amino acid sequence analysis indicated several regions of conservation among bacterial DAP decarboxylases, eukaryotic ornithine decarboxylases, and arginine decarboxylases, suggesting a common structural arrangement for positioning of substrate and the cofactor pyridoxal 5'-phosphate. The B. methanolicus MGA3 DAP decarboxylase was shown to be a dimer (M(r) 86,000) with a subunit molecular mass of approximately 50,000 Da. This decarboxylase is inhibited by lysine (Ki = 0.93 mM) with a Km of 0.8 mM for DAP. The inhibition pattern suggests that the activity of this enzyme in lysine-overproducing strains of B. methanolicus MGA3 may limit lysine synthesis.
Wen, Qiong; Zhang, Li; Mao, Hai-Ping; Tang, Xue-Qing; Rong, Rong; Fan, Jin-Jin; Yu, Xue-Qing
2013-08-30
Peritoneal membranes can be categorized as high, high average, low average, and low transporters, based on the removal or transport rate of solutes. In this study, we used proteomic analysis to determine the differences in proteins removed by different types of peritoneal membranes. Peritoneal transport characteristics in patients who received peritoneal dialysis therapy were assessed by a peritoneal equilibration test. Two-dimensional differential gel electrophoresis technology followed by quantitative analysis was performed to study the variation in protein expression from peritoneal dialysis effluents (PDE) among different groups. Proteins were identified by MALDI-TOF-MS/MS analyses. Further validation in PDE or serum was performed utilizing ELISA analysis. Proteomics analysis revealed ten protein spots with significant differences in intensity levels among different groups, including vitamin D-binding protein, complement C3, apolipoprotein-A1, complement factor C4A, haptoglobin, alpha-1 antitrypsin, immunoglobulin kappa light chain, alpha-2-microglobulin, retinol-binding protein 4 and transthyretin. The levels of vitamin D-binding protein, complement C3, and apolipoprotein-A1 in PDE derived from different groups were greatly varied (P<0.05). However, no significant difference was found in the serum levels of these proteins among different groups (P>0.05 for all groups). This study provides a novel overview of the differences in PDE proteomes of four types of peritoneal membranes. Vitamin D-binding protein, complement C3, and apolipoprotein-A1 showed enhanced expression in PDE of patients with high transporter. Copyright © 2013 Elsevier Inc. All rights reserved.
Critical Features of Fragment Libraries for Protein Structure Prediction
dos Santos, Karina Baptista
2017-01-01
The use of fragment libraries is a popular approach among protein structure prediction methods and has proven to substantially improve the quality of predicted structures. However, some vital aspects of a fragment library that influence the accuracy of modeling a native structure remain to be determined. This study investigates some of these features. Particularly, we analyze the effect of using secondary structure prediction guiding fragments selection, different fragments sizes and the effect of structural clustering of fragments within libraries. To have a clearer view of how these factors affect protein structure prediction, we isolated the process of model building by fragment assembly from some common limitations associated with prediction methods, e.g., imprecise energy functions and optimization algorithms, by employing an exact structure-based objective function under a greedy algorithm. Our results indicate that shorter fragments reproduce the native structure more accurately than the longer. Libraries composed of multiple fragment lengths generate even better structures, where longer fragments show to be more useful at the beginning of the simulations. The use of many different fragment sizes shows little improvement when compared to predictions carried out with libraries that comprise only three different fragment sizes. Models obtained from libraries built using only sequence similarity are, on average, better than those built with a secondary structure prediction bias. However, we found that the use of secondary structure prediction allows greater reduction of the search space, which is invaluable for prediction methods. The results of this study can be critical guidelines for the use of fragment libraries in protein structure prediction. PMID:28085928
Critical Features of Fragment Libraries for Protein Structure Prediction.
Trevizani, Raphael; Custódio, Fábio Lima; Dos Santos, Karina Baptista; Dardenne, Laurent Emmanuel
2017-01-01
The use of fragment libraries is a popular approach among protein structure prediction methods and has proven to substantially improve the quality of predicted structures. However, some vital aspects of a fragment library that influence the accuracy of modeling a native structure remain to be determined. This study investigates some of these features. Particularly, we analyze the effect of using secondary structure prediction guiding fragments selection, different fragments sizes and the effect of structural clustering of fragments within libraries. To have a clearer view of how these factors affect protein structure prediction, we isolated the process of model building by fragment assembly from some common limitations associated with prediction methods, e.g., imprecise energy functions and optimization algorithms, by employing an exact structure-based objective function under a greedy algorithm. Our results indicate that shorter fragments reproduce the native structure more accurately than the longer. Libraries composed of multiple fragment lengths generate even better structures, where longer fragments show to be more useful at the beginning of the simulations. The use of many different fragment sizes shows little improvement when compared to predictions carried out with libraries that comprise only three different fragment sizes. Models obtained from libraries built using only sequence similarity are, on average, better than those built with a secondary structure prediction bias. However, we found that the use of secondary structure prediction allows greater reduction of the search space, which is invaluable for prediction methods. The results of this study can be critical guidelines for the use of fragment libraries in protein structure prediction.
Engberg, Anna E; Nilsson, Per H; Huang, Shan; Fromell, Karin; Hamad, Osama A; Mollnes, Tom Eirik; Rosengren-Holmberg, Jenny P; Sandholm, Kerstin; Teramura, Yuji; Nicholls, Ian A; Nilsson, Bo; Ekdahl, Kristina N
2015-01-01
Inappropriate complement activation is often responsible for incompatibility reactions that occur when biomaterials are used. Complement activation is therefore a criterion included in legislation regarding biomaterials testing. However, no consensus is yet available regarding appropriate complement-activation-related test parameters. We examined protein adsorption in plasma and complement activation/cytokine release in whole blood incubated with well-characterized polymers. Strong correlations were found between the ratio of C4 to its inhibitor C4BP and generation of 10 (mainly pro-inflammatory) cytokines, including IL-17, IFN-γ, and IL-6. The levels of complement activation products correlated weakly (C3a) or not at all (C5a, sC5b-9), confirming their poor predictive values. We have demonstrated a direct correlation between downstream biological effects and the proteins initially adhering to an artificial surface after contact with blood. Consequently, we propose the C4/C4BP ratio as a robust, predictor of biocompatibility with superior specificity and sensitivity over the current gold standard. Copyright © 2014 Elsevier Ltd. All rights reserved.
Chen, Yulong; Terajima, Masahiko; Banerjee, Priyam; Guo, Houfu; Liu, Xin; Yu, Jiang; Yamauchi, Mitsuo; Kurie, Jonathan M
2017-04-05
Bruck Syndrome is a connective tissue disease associated with inactivating mutations in lysyl hydroxylase 2 (LH2/PLOD2) or FK506 binding protein 65 (FKBP65/FKBP10). However, the functional relationship between LH2 and FKBP65 remains unclear. Here, we postulated that peptidyl prolyl isomerase (PPIase) activity of FKBP65 positively modulates LH2 enzymatic activity and is critical for the formation of hydroxylysine-aldehyde derived intermolecular collagen cross-links (HLCCs). To test this hypothesis, we analyzed collagen cross-links in Fkbp10-null and -wild-type murine embryonic fibroblasts. Although LH2 protein levels did not change, FKBP65 deficiency significantly diminished HLCCs and increased the non-hydroxylated lysine-aldehyde-derived collagen cross-links (LCCs), a pattern consistent with loss of LH2 enzymatic activity. The HLCC-to-LCC ratio was rescued in FKBP65-deficient murine embryonic fibroblasts by reconstitution with wild-type but not mutant FKBP65 that lacks intact PPIase domains. Findings from co-immunoprecipitation, protein-fragment complementation, and co-immunofluorescence assays showed that LH2 and FKBP65 are part of a common protein complex. We conclude that FKBP65 regulates LH2-mediated collagen cross-linking. Because LH2 promotes fibrosis and cancer metastasis, our findings suggest that pharmacologic strategies to target FKBP65 and LH2 may have complementary therapeutic activities.
Chen, Yulong; Terajima, Masahiko; Banerjee, Priyam; Guo, Houfu; Liu, Xin; Yu, Jiang; Yamauchi, Mitsuo; Kurie, Jonathan M.
2017-01-01
Bruck Syndrome is a connective tissue disease associated with inactivating mutations in lysyl hydroxylase 2 (LH2/PLOD2) or FK506 binding protein 65 (FKBP65/FKBP10). However, the functional relationship between LH2 and FKBP65 remains unclear. Here, we postulated that peptidyl prolyl isomerase (PPIase) activity of FKBP65 positively modulates LH2 enzymatic activity and is critical for the formation of hydroxylysine-aldehyde derived intermolecular collagen cross-links (HLCCs). To test this hypothesis, we analyzed collagen cross-links in Fkbp10-null and –wild-type murine embryonic fibroblasts. Although LH2 protein levels did not change, FKBP65 deficiency significantly diminished HLCCs and increased the non-hydroxylated lysine-aldehyde–derived collagen cross-links (LCCs), a pattern consistent with loss of LH2 enzymatic activity. The HLCC-to-LCC ratio was rescued in FKBP65-deficient murine embryonic fibroblasts by reconstitution with wild-type but not mutant FKBP65 that lacks intact PPIase domains. Findings from co-immunoprecipitation, protein-fragment complementation, and co-immunofluorescence assays showed that LH2 and FKBP65 are part of a common protein complex. We conclude that FKBP65 regulates LH2-mediated collagen cross-linking. Because LH2 promotes fibrosis and cancer metastasis, our findings suggest that pharmacologic strategies to target FKBP65 and LH2 may have complementary therapeutic activities. PMID:28378777
Bartsevich, V V; Pakrasi, H B
1995-01-01
During photosynthesis, the photosystem II (PSII) pigment-protein complex catalyzes oxygen evolution, a reaction in which a four-manganese ensemble plays a crucial role. Using a newly developed selection scheme, we have isolated BP13, a random photosynthesis-deficient mutant strain of the cyanobacterium, Synechocystis 6803. This mutant grew slowly under photoautotrophic conditions, and had a low oxygen evolution activity. Biochemical analysis revealed that the lesion in this mutant strain had specifically affected the Mn ensemble in PSII. Interestingly, incubation of BP13 cells with micromolar levels of added Mn induced rapid recovery of oxygen evolution activity. The mutant could be complemented with a fragment of wild-type chromosomal DNA containing three closely linked genes, mntA, mntB and mntC. These gene products showed significant sequence similarities with polypeptide components of bacterial permeases that are members of the 'ABC (ATP binding cassette) superfamily' of transporter proteins. We determined that in the BP13 strain, a single nucleotide change had resulted in the replacement of an alanine by an aspartic acid residue in MntA, a soluble protein containing ATP binding motifs. These results suggest that the mntCAB gene cluster encodes polypeptide components of a Mn transporter, the first such protein complex identified in any organism. PMID:7743991
The DNA-bending protein HMGB1 is a cellular cofactor of Sleeping Beauty transposition.
Zayed, Hatem; Izsvák, Zsuzsanna; Khare, Dheeraj; Heinemann, Udo; Ivics, Zoltán
2003-05-01
Sleeping Beauty (SB) is the most active Tc1/ mariner-type transposon in vertebrates. SB contains two transposase-binding sites (DRs) at the end of each terminal inverted repeat (IR), a feature termed the IR/DR structure. We investigated the involvement of cellular proteins in the regulation of SB transposition. Here, we establish that the DNA-bending, high-mobility group protein, HMGB1 is a host-encoded cofactor of SB transposition. Transposition was severely reduced in mouse cells deficient in HMGB1. This effect was rescued by transient over-expression of HMGB1, and was partially complemented by HMGB2, but not with the HMGA1 protein. Over-expression of HMGB1 in wild-type mouse cells enhanced transposition, indicating that HMGB1 can be a limiting factor of transposition. SB transposase was found to interact with HMGB1 in vivo, suggesting that the transposase may recruit HMGB1 to transposon DNA. HMGB1 stimulated preferential binding of the transposase to the DR further from the cleavage site, and promoted bending of DNA fragments containing the transposon IR. We propose that the role of HMGB1 is to ensure that transposase-transposon complexes are first formed at the internal DRs, and subsequently to promote juxtaposition of functional sites in transposon DNA, thereby assisting the formation of synaptic complexes.
Huschmann, Franziska U; Linnik, Janina; Sparta, Karine; Ühlein, Monika; Wang, Xiaojie; Metz, Alexander; Schiebel, Johannes; Heine, Andreas; Klebe, Gerhard; Weiss, Manfred S; Mueller, Uwe
2016-05-01
Crystallographic screening of the binding of small organic compounds (termed fragments) to proteins is increasingly important for medicinal chemistry-oriented drug discovery. To enable such experiments in a widespread manner, an affordable 96-compound library has been assembled for fragment screening in both academia and industry. The library is selected from already existing protein-ligand structures and is characterized by a broad ligand diversity, including buffer ingredients, carbohydrates, nucleotides, amino acids, peptide-like fragments and various drug-like organic compounds. When applied to the model protease endothiapepsin in a crystallographic screening experiment, a hit rate of nearly 10% was obtained. In comparison to other fragment libraries and considering that no pre-screening was performed, this hit rate is remarkably high. This demonstrates the general suitability of the selected compounds for an initial fragment-screening campaign. The library composition, experimental considerations and time requirements for a complete crystallographic fragment-screening campaign are discussed as well as the nine fully refined obtained endothiapepsin-fragment structures. While most of the fragments bind close to the catalytic centre of endothiapepsin in poses that have been observed previously, two fragments address new sites on the protein surface. ITC measurements show that the fragments bind to endothiapepsin with millimolar affinity.
Kügler, Jonas; Nieswandt, Simone; Gerlach, Gerald F; Meens, Jochen; Schirrmann, Thomas; Hust, Michael
2008-09-01
The identification of immunogenic polypeptides of pathogens is helpful for the development of diagnostic assays and therapeutic applications like vaccines. Routinely, these proteins are identified by two-dimensional polyacrylamide gel electrophoresis and Western blot using convalescent serum, followed by mass spectrometry. This technology, however, is limited, because low or differentially expressed proteins, e.g. dependent on pathogen-host interaction, cannot be identified. In this work, we developed and improved a M13 genomic phage display-based method for the selection of immunogenic polypeptides of Mycoplasma hyopneumoniae, a pathogen causing porcine enzootic pneumonia. The fragmented genome of M. hyopneumoniae was cloned into a phage display vector, and the genomic library was packaged using the helperphage Hyperphage to enrich open reading frames (ORFs). Afterwards, the phage display library was screened by panning using convalescent serum. The analysis of individual phage clones resulted in the identification of five genes encoding immunogenic proteins, only two of which had been previously identified and described as immunogenic. This M13 genomic phage display, directly combining ORF enrichment and the presentation of the corresponding polypeptide on the phage surface, complements proteome-based methods for the identification of immunogenic polypeptides and is particularly well suited for the use in mycoplasma species.
Garner, Bridget C; Kuroki, Keiichi; Stoker, Aaron M; Cook, Cristi R; Cook, James L
2013-03-01
To identify proteins with differential expression between healthy dogs and dogs with stifle joint osteoarthritis secondary to cranial cruciate ligament (CCL) disease. Serum and synovial fluid samples obtained from dogs with stifle joint osteoarthritis before (n = 10) and after (8) surgery and control dogs without osteoarthritis (9) and archived synovial membrane and articular cartilage samples obtained from dogs with stifle joint osteoarthritis (5) and dogs without arthritis (5). Serum and synovial fluid samples were analyzed via liquid chromatography-tandem mass spectrometry; results were compared against a nonredundant protein database. Expression of complement component 3 in archived tissue samples was determined via immunohistochemical methods. No proteins had significantly different expression between serum samples of control dogs versus those of dogs with stifle joint osteoarthritis. Eleven proteins (complement component 3 precursor, complement factor I precursor, apolipoprotein B-100 precursor, serum paraoxonase and arylesterase 1, zinc-alpha-2-glycoprotein precursor, serum amyloid A, transthyretin precursor, retinol-binding protein 4 precursor, alpha-2-macroglobulin precursor, angiotensinogen precursor, and fibronectin 1 isoform 1 preproprotein) had significantly different expression (> 2.0-fold) between synovial fluid samples obtained before surgery from dogs with stifle joint osteoarthritis versus those obtained from control dogs. Complement component 3 was strongly expressed in all (5/5) synovial membrane samples of dogs with stifle joint osteoarthritis and weakly expressed in 3 of 5 synovial membrane samples of dogs without stifle joint arthritis. Findings suggested that the complement system and proteins involved in lipid and cholesterol metabolism may have a role in stifle joint osteoarthritis, CCL disease, or both.
Beach, D; Piper, M; Nurse, P
1982-01-01
A gene bank of partial Sau3A restriction fragments of S. pombe DNA has been constructed in the plasmid vector, pDB248', which is capable of high frequency transformation of S. pombe. Procedures are described which enable plasmids to be recovered from S. pombe by their reintroduction into E. coli. These methods have been used to detect the S. pombe genes lys 1+, ade 6+ and his 2+ in the gene bank by complementation of mutant gene functions, and to physically isolate the lys 1+ gene.
Ramos-Sevillano, Elisa; Urzainqui, Ana; Campuzano, Susana; Moscoso, Miriam; González-Camacho, Fernando; Domenech, Mirian; Rodríguez de Córdoba, Santiago; Sánchez-Madrid, Francisco; Brown, Jeremy S.; García, Ernesto
2014-01-01
The complement system is a key component of the host immune response for the recognition and clearance of Streptococcus pneumoniae. In this study, we demonstrate that the amidase LytA, the main pneumococcal autolysin, inhibits complement-mediated immunity independently of effects on pneumolysin by a complex process of impaired complement activation, increased binding of complement regulators, and direct degradation of complement C3. The use of human sera depleted of either C1q or factor B confirmed that LytA prevented activation of both the classical and alternative pathways, whereas pneumolysin inhibited only the classical pathway. LytA prevented binding of C1q and the acute-phase protein C-reactive protein to S. pneumoniae, thereby reducing activation of the classical pathway on the bacterial surface. In addition, LytA increased recruitment of the complement downregulators C4BP and factor H to the pneumococcal cell wall and directly cleaved C3b and iC3b to generate degradation products. As a consequence, C3b deposition and phagocytosis increased in the absence of LytA and were markedly enhanced for the lytA ply double mutant, confirming that a combination of LytA and Ply is essential for the establishment of pneumococcal pneumonia and sepsis in a murine model of infection. These data demonstrate that LytA has pleiotropic effects on complement activation, a finding which, in combination with the effects of pneumolysin on complement to assist with pneumococcal complement evasion, confirms a major role of both proteins for the full virulence of the microorganism during septicemia. PMID:25404032
Min, Li; Cheng, Jianbo; Zhao, Shengguo; Tian, He; Zhang, Yangdong; Li, Songli; Yang, Hongjian; Zheng, Nan; Wang, Jiaqi
2016-09-02
Heat stress (HS) has an enormous economic impact on the dairy industry. In recent years, many researchers have investigated changes in the gene expression and metabolomics profiles in dairy cows caused by HS. However, the proteomics profiles of heat-stressed dairy cows have not yet been completely elucidated. We compared plasma proteomics from HS-free and heat-stressed dairy cows using an iTRAQ labeling approach. After the depletion of high abundant proteins in the plasma, 1472 proteins were identified. Of these, 85 proteins were differentially abundant in cows exposed to HS relative to HS-free. Database searches combined with GO and KEGG pathway enrichment analyses revealed that many components of the complement and coagulation cascades were altered in heat-stressed cows compared with HS-free cows. Of these, many factors in the complement system (including complement components C1, C3, C5, C6, C7, C8, and C9, complement factor B, and factor H) were down-regulated by HS, while components of the coagulation system (including coagulation factors, vitamin K-dependent proteins, and fibrinogens) were up-regulated by HS. In conclusion, our results indicate that HS decreases plasma levels of complement system proteins, suggesting that immune function is impaired in dairy cows exposed to HS. Though many aspects of heat stress (HS) have been extensively researched, relatively little is known about the proteomics profile changes that occur during heat exposure. In this work, we employed a proteomics approach to investigate differential abundance of plasma proteins in HS-free and heat-stressed dairy cows. Database searches combined with GO and KEGG pathway enrichment analyses revealed that HS resulted in a decrease in complement components, suggesting that heat-stressed dairy cows have impaired immune function. In addition, through integrative analyses of proteomics and previous metabolomics, we showed enhanced glycolysis, lipid metabolic pathway shifts, and nitrogen repartitioning in dairy cows exposed to HS. Our findings expand our current knowledge on the effects of HS on plasma proteomics in dairy cows and offer a new perspective for future research. Copyright © 2016 Elsevier B.V. All rights reserved.
Zinc-induced Self-association of Complement C3b and Factor H
Nan, Ruodan; Tetchner, Stuart; Rodriguez, Elizabeth; Pao, Po-Jung; Gor, Jayesh; Lengyel, Imre; Perkins, Stephen J.
2013-01-01
The sub-retinal pigment epithelial deposits that are a hallmark of age-related macular degeneration contain both C3b and millimolar levels of zinc. C3 is the central protein of complement, whereas C3u is formed by the spontaneous hydrolysis of the thioester bridge in C3. During activation, C3 is cleaved to form active C3b, then C3b is inactivated by Factor I and Factor H to form the C3c and C3d fragments. The interaction of zinc with C3 was quantified using analytical ultracentrifugation and x-ray scattering. C3, C3u, and C3b associated strongly in >100 μm zinc, whereas C3c and C3d showed weak association. With zinc, C3 forms soluble oligomers, whereas C3u and C3b precipitate. We conclude that the C3, C3u, and C3b association with zinc depended on the relative positions of C3d and C3c in each protein. Computational predictions showed that putative weak zinc binding sites with different capacities exist in all five proteins, in agreement with experiments. Factor H forms large oligomers in >10 μm zinc. In contrast to C3b or Factor H alone, the solubility of the central C3b-Factor H complex was much reduced at 60 μm zinc and even more so at >100 μm zinc. The removal of the C3b-Factor H complex by zinc explains the reduced C3u/C3b inactivation rates by zinc. Zinc-induced precipitation may contribute to the initial development of sub-retinal pigment epithelial deposits in the retina as well as reducing the progression to advanced age-related macular degeneration in higher risk patients. PMID:23661701
Ma, Cui; Beyer, Andreas M; Durand, Matthew; Clough, Anne V; Zhu, Daling; Norwood Toro, Laura; Terashvili, Maia; Ebben, Johnathan D; Hill, R Blake; Audi, Said H; Medhora, Meetha; Jacobs, Elizabeth R
2018-03-01
We explored mechanisms that alter mitochondrial structure and function in pulmonary endothelial cells (PEC) function after hyperoxia. Mitochondrial structures of PECs exposed to hyperoxia or normoxia were visualized and mitochondrial fragmentation quantified. Expression of pro-fission or fusion proteins or autophagy-related proteins were assessed by Western blot. Mitochondrial oxidative state was determined using mito-roGFP. Tetramethylrhodamine methyl ester estimated mitochondrial polarization in treatment groups. The role of mitochondrially derived reactive oxygen species in mt-fragmentation was investigated with mito-TEMPOL and mitochondrial DNA (mtDNA) damage studied by using ENDO III (mt-tat-endonuclease III), a protein that repairs mDNA damage. Drp-1 (dynamin-related protein 1) was overexpressed or silenced to test the role of this protein in cell survival or transwell resistance. Hyperoxia increased fragmentation of PEC mitochondria in a time-dependent manner through 48 hours of exposure. Hyperoxic PECs exhibited increased phosphorylation of Drp-1 (serine 616), decreases in Mfn1 (mitofusion protein 1), but increases in OPA-1 (optic atrophy 1). Pro-autophagy proteins p62 (LC3 adapter-binding protein SQSTM1/p62), PINK-1 (PTEN-induced putative kinase 1), and LC3B (microtubule-associated protein 1A/1B-light chain 3) were increased. Returning cells to normoxia for 24 hours reversed the increased mt-fragmentation and changes in expression of pro-fission proteins. Hyperoxia-induced changes in mitochondrial structure or cell survival were mitigated by antioxidants mito-TEMPOL, Drp-1 silencing, or inhibition or protection by the mitochondrial endonuclease ENDO III. Hyperoxia induced oxidation and mitochondrial depolarization and impaired transwell resistance. Decrease in resistance was mitigated by mito-TEMPOL or ENDO III and reproduced by overexpression of Drp-1. Because hyperoxia evoked mt-fragmentation, cell survival and transwell resistance are prevented by ENDO III and mito-TEMPOL and Drp-1 silencing, and these data link hyperoxia-induced mt-DNA damage, Drp-1 expression, mt-fragmentation, and PEC dysfunction. © 2018 American Heart Association, Inc.
The Fanconi anemia pathway requires FAA phosphorylation and FAA/FAC nuclear accumulation
Yamashita, Takayuki; Kupfer, Gary M.; Naf, Dieter; Suliman, Ahmed; Joenje, Hans; Asano, Shigetaka; D’Andrea, Alan D.
1998-01-01
Fanconi anemia (FA) is an autosomal recessive cancer susceptibility syndrome with at least eight complementation groups (A–H). Two FA genes, corresponding to complementation groups A and C, have been cloned, but the function of the FAA and FAC proteins remains unknown. We have recently shown that the FAA and FAC proteins bind and form a nuclear complex. In the current study, we analyzed the FAA and FAC proteins in normal lymphoblasts and lymphoblasts from multiple FA complementation groups. In contrast to normal controls, FA cells derived from groups A, B, C, E, F, G, and H were defective in the formation of the FAA/FAC protein complex, the phosphorylation of the FAA protein, and the accumulation of the FAA/FAC protein complex in the nucleus. These biochemical events seem to define a signaling pathway required for the maintenance of genomic stability and normal hematopoiesis. Our results support the idea that multiple gene products cooperate in the FA Pathway. PMID:9789045
Super: a web server to rapidly screen superposable oligopeptide fragments from the protein data bank
Collier, James H.; Lesk, Arthur M.; Garcia de la Banda, Maria; Konagurthu, Arun S.
2012-01-01
Searching for well-fitting 3D oligopeptide fragments within a large collection of protein structures is an important task central to many analyses involving protein structures. This article reports a new web server, Super, dedicated to the task of rapidly screening the protein data bank (PDB) to identify all fragments that superpose with a query under a prespecified threshold of root-mean-square deviation (RMSD). Super relies on efficiently computing a mathematical bound on the commonly used structural similarity measure, RMSD of superposition. This allows the server to filter out a large proportion of fragments that are unrelated to the query; >99% of the total number of fragments in some cases. For a typical query, Super scans the current PDB containing over 80 500 structures (with ∼40 million potential oligopeptide fragments to match) in under a minute. Super web server is freely accessible from: http://lcb.infotech.monash.edu.au/super. PMID:22638586
Boyle, Michelle J; Reiling, Linda; Feng, Gaoqian; Langer, Christine; Osier, Faith H; Aspeling-Jones, Harvey; Cheng, Yik Sheng; Stubbs, Janine; Tetteh, Kevin K A; Conway, David J; McCarthy, James S; Muller, Ivo; Marsh, Kevin; Anders, Robin F; Beeson, James G
2015-03-17
Antibodies play major roles in immunity to malaria; however, a limited understanding of mechanisms mediating protection is a major barrier to vaccine development. We have demonstrated that acquired human anti-malarial antibodies promote complement deposition on the merozoite to mediate inhibition of erythrocyte invasion through C1q fixation and activation of the classical complement pathway. Antibody-mediated complement-dependent (Ab-C') inhibition was the predominant invasion-inhibitory activity of human antibodies; most antibodies were non-inhibitory without complement. Inhibitory activity was mediated predominately via C1q fixation, and merozoite surface proteins 1 and 2 were identified as major targets. Complement fixation by antibodies was very strongly associated with protection from both clinical malaria and high-density parasitemia in a prospective longitudinal study of children. Ab-C' inhibitory activity could be induced by human immunization with a candidate merozoite surface-protein vaccine. Our findings demonstrate that human anti-malarial antibodies have evolved to function by fixing complement for potent invasion-inhibitory activity and protective immunity. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Complement and the control of HIV infection: an evolving story.
Frank, Michael M; Hester, Christopher; Jiang, Haixiang
2014-05-01
Thirty years ago, investigators isolated and later determined the structure of HIV-1 and its envelope proteins. Using techniques that were effective with other viruses, they prepared vaccines designed to generate antibody or T-cell responses, but they were ineffective in clinical trials. In this article, we consider the role of complement in host defense against enveloped viruses, the role it might play in the antibody response and why complement has not controlled HIV-1 infection. Complement consists of a large group of cell-bound and plasma proteins that are an integral part of the innate immune system. They provide a first line of defense against microbes and also play a role in the immune response. Here we review the studies of complement-mediated HIV destruction and the role of complement in the HIV antibody response. HIV-1 has evolved a complex defense to prevent complement-mediated killing reviewed here. As part of these studies, we have discovered that HIV-1 envelope, on administration into animals, is rapidly broken down into small peptides that may prove to be very inefficient at provident the type of antigenic stimulation that leads to an effective immune response. Improving complement binding and stabilizing envelope may improve the vaccine response.
NASA Technical Reports Server (NTRS)
Chapes, S. K.; Woods, K. M.; Armstrong, J. W.; Spooner, B. S. (Principal Investigator)
1993-01-01
This manuscript briefly reviews ground-based and flight experiments, discusses how those experiments complement each other, and details how those experiments lead us to speculate about the gravity-sensitive nature of protein kinase C.
Ferreira, Viviana P.; Fazito Vale, Vladimir; Pangburn, Michael K.; Abdeladhim, Maha; Ferreira Mendes-Sousa, Antonio; Coutinho-Abreu, Iliano V.; Rasouli, Manoochehr; Brandt, Elizabeth A.; Meneses, Claudio; Lima, Kolyvan Ferreira; Nascimento Araújo, Ricardo; Horácio Pereira, Marcos; Kotsyfakis, Michalis; Oliveira, Fabiano; Kamhawi, Shaden; Ribeiro, Jose M. C.; Gontijo, Nelder F.; Collin, Nicolas; Valenzuela, Jesus G.
2016-01-01
Blood-feeding insects inject potent salivary components including complement inhibitors into their host’s skin to acquire a blood meal. Sand fly saliva was shown to inhibit the classical pathway of complement; however, the molecular identity of the inhibitor remains unknown. Here, we identified SALO as the classical pathway complement inhibitor. SALO, an 11 kDa protein, has no homology to proteins of any other organism apart from New World sand flies. rSALO anti-complement activity has the same chromatographic properties as the Lu. longipalpis salivary gland homogenate (SGH)counterparts and anti-rSALO antibodies blocked the classical pathway complement activity of rSALO and SGH. Both rSALO and SGH inhibited C4b deposition and cleavage of C4. rSALO, however, did not inhibit the protease activity of C1s nor the enzymatic activity of factor Xa, uPA, thrombin, kallikrein, trypsin and plasmin. Importantly, rSALO did not inhibit the alternative or the lectin pathway of complement. In conclusion our data shows that SALO is a specific classical pathway complement inhibitor present in the saliva of Lu. longipalpis. Importantly, due to its small size and specificity, SALO may offer a therapeutic alternative for complement classical pathway-mediated pathogenic effects in human diseases. PMID:26758086
Bai, Fang; Morcos, Faruck; Cheng, Ryan R; Jiang, Hualiang; Onuchic, José N
2016-12-13
Protein-protein interactions play a central role in cellular function. Improving the understanding of complex formation has many practical applications, including the rational design of new therapeutic agents and the mechanisms governing signal transduction networks. The generally large, flat, and relatively featureless binding sites of protein complexes pose many challenges for drug design. Fragment docking and direct coupling analysis are used in an integrated computational method to estimate druggable protein-protein interfaces. (i) This method explores the binding of fragment-sized molecular probes on the protein surface using a molecular docking-based screen. (ii) The energetically favorable binding sites of the probes, called hot spots, are spatially clustered to map out candidate binding sites on the protein surface. (iii) A coevolution-based interface interaction score is used to discriminate between different candidate binding sites, yielding potential interfacial targets for therapeutic drug design. This approach is validated for important, well-studied disease-related proteins with known pharmaceutical targets, and also identifies targets that have yet to be studied. Moreover, therapeutic agents are proposed by chemically connecting the fragments that are strongly bound to the hot spots.
Myamoto, Daniela Tiemi; Pidde-Queiroz, Giselle; Gonçalves-de-Andrade, Rute Maria; Pedroso, Aurélio; van den Berg, Carmen W; Tambourgi, Denise V
2016-01-01
The human complement system is composed of more than 30 proteins and many of these have conserved domains that allow tracing the phylogenetic evolution. The complement system seems to be initiated with the appearance of C3 and factor B (FB), the only components found in some protostomes and cnidarians, suggesting that the alternative pathway is the most ancient. Here, we present the characterization of an arachnid homologue of the human complement component FB from the spider Loxosceles laeta. This homologue, named Lox-FB, was identified from a total RNA L. laeta spider venom gland library and was amplified using RACE-PCR techniques and specific primers. Analysis of the deduced amino acid sequence and the domain structure showed significant similarity to the vertebrate and invertebrate FB/C2 family proteins. Lox-FB has a classical domain organization composed of a control complement protein domain (CCP), a von Willebrand Factor domain (vWFA), and a serine protease domain (SP). The amino acids involved in Mg2+ metal ion dependent adhesion site (MIDAS) found in the vWFA domain in the vertebrate C2/FB proteins are well conserved; however, the classic catalytic triad present in the serine protease domain is not conserved in Lox-FB. Similarity and phylogenetic analyses indicated that Lox-FB shares a major identity (43%) and has a close evolutionary relationship with the third isoform of FB-like protein (FB-3) from the jumping spider Hasarius adansoni belonging to the Family Salcitidae.
Myamoto, Daniela Tiemi; Pidde-Queiroz, Giselle; Gonçalves-de-Andrade, Rute Maria; Pedroso, Aurélio; van den Berg, Carmen W.; Tambourgi, Denise V.
2016-01-01
The human complement system is composed of more than 30 proteins and many of these have conserved domains that allow tracing the phylogenetic evolution. The complement system seems to be initiated with the appearance of C3 and factor B (FB), the only components found in some protostomes and cnidarians, suggesting that the alternative pathway is the most ancient. Here, we present the characterization of an arachnid homologue of the human complement component FB from the spider Loxosceles laeta. This homologue, named Lox-FB, was identified from a total RNA L. laeta spider venom gland library and was amplified using RACE-PCR techniques and specific primers. Analysis of the deduced amino acid sequence and the domain structure showed significant similarity to the vertebrate and invertebrate FB/C2 family proteins. Lox-FB has a classical domain organization composed of a control complement protein domain (CCP), a von Willebrand Factor domain (vWFA), and a serine protease domain (SP). The amino acids involved in Mg2+ metal ion dependent adhesion site (MIDAS) found in the vWFA domain in the vertebrate C2/FB proteins are well conserved; however, the classic catalytic triad present in the serine protease domain is not conserved in Lox-FB. Similarity and phylogenetic analyses indicated that Lox-FB shares a major identity (43%) and has a close evolutionary relationship with the third isoform of FB-like protein (FB-3) from the jumping spider Hasarius adansoni belonging to the Family Salcitidae. PMID:26771533
Wang, Xin; Sheng, Lili; Yang, Xiaoyi
2017-04-01
Microalgal components were isolated gradually to get lipid-rich, protein-rich and carbohydrate-rich components. The aim of this work was to study pyrolysis mechanism of microalgae by real isolated real algae components. Thermogrametric analysis (DTG) curve of microalgae was fitted by single pyrolysis curves of protein, lipid and carbohydrate except special zones, which likely affected by cell disruption and hydrolysis mass loss. Experimental microalgae liquefaction without water index N was 0.6776, 0.3861 and 0.2856 for isolated lipid, protein and carbohydrate. Pyrolysis pathways of lipid are decarboxylation, decarbonylation, fragmentation of glycerin moieties and steroid to form hydrocarbons, carboxylic acids and esters. Pyrolysis pathways of protein are decarboxylation, deamination, hydrocarbon residue fragmentation, dimerization and fragmentation of peptide bonds to form amide/amines/nitriles, esters, hydrocarbons and N-heterocyclic compounds, especially diketopiperazines (DKPs). Pyrolysis pathways of carbohydrate are dehydrated reactions and further fragmentation to form ketones and aldehyde, decomposition of lignin to form phenols, and fragmentation of lipopolysaccharides. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
de Souza, Ludmilla Regina; Alexandre Muehlmann, Luis; Carneiro Matos, Lívia; Simón-Vázquez, Rosana; Guerreiro Marques Lacava, Zulmira; Maurício Batista De-Paula, Alfredo; Mosiniewicz-Szablewska, Ewa; Suchocki, Piotr; César Morais, Paulo; González-Fernández, África; Nair Báo, Sônia; Bentes Azevedo, Ricardo
2015-12-01
Selol is a semi-synthetic compound containing selenite that is effective against cancerous cells and safer for clinical applications in comparison with other inorganic forms of selenite. Recently, we have developed a formulation of poly(methyl vinyl ether-co-maleic anhydride)-shelled selol nanocapsules (SPN), which reduced the proliferative activity of lung adenocarcinoma cells and presented little deleterious effects on normal cells in in vitro studies. In this study, we report on the antitumor activity and systemic effects induced by this formulation in chemically induced lung adenocarcinoma-bearing mice. The in vivo antitumor activity of the SPN was verified by macroscopic quantification, immunohistochemistry and morphological analyses. Toxicity analyses were performed by evaluations of the kidney, liver, and spleen; analyses of hemogram and plasma levels of alanine aminotransferase, aspartate transaminase, urea, and creatinine; and DNA fragmentation and cell cycle activity of the bone marrow cells. Furthermore, we investigated the potential of the SPN formulation to cause hemolysis, activate the complement system, provoke an inflammatory response and change the conformation of the plasma proteins. Our results showed that the SPN reduced the area of the surface tumor nodules but not the total number of tumor nodules. The biochemical and hematological findings were suggestive of the low systemic toxicity of the SPN formulation. The surface properties of the selol nanocapsules point to characteristics that are consistent with the treatment of the tumors in vivo: low hemolytic activity, weak inflammatory reaction with no activation of the complement system, and mild or absent conformational changes of the plasma proteins. In conclusion, this report suggests that the SPN formulation investigated herein exhibits anti-tumoral effects against lung adenocarcinoma in vivo and is associated with low systemic toxicity and high biocompatibility.
Li, Jialiang; Todaro, Louis; Mootoo, David R
2011-11-01
We describe a synthetic strategy for the angelimicin family of anthraquinoid natural products that involves converting a central highly oxygenated decalin intermediate to the AB and A'B' subunits. Herein, we report the synthesis of the bicyclic A'B' subunit that complements our earlier route to the tricyclic AB framework. The differentiating tact in the two syntheses focused on controlling the Suárez radical fragmentation of lactol precursors by modulating the substrate's structural rigidity. A more flexible lactol gave the tricyclic AB framework, whereas a more rigid substrate led to the bicyclic A'B' precursor, presumably through divergent pathways from the radical produced in the initial fragmentation step. These results establish a versatile advanced synthetic precursor for the angelimicins, and on a more general note, illustrate strategies for applying the Suárez fragmentation to diverse and complex molecular frameworks.
NASA Astrophysics Data System (ADS)
Haverland, Nicole A.; Skinner, Owen S.; Fellers, Ryan T.; Tariq, Areeba A.; Early, Bryan P.; LeDuc, Richard D.; Fornelli, Luca; Compton, Philip D.; Kelleher, Neil L.
2017-06-01
Fragmentation of intact proteins in the gas phase is influenced by amino acid composition, the mass and charge of precursor ions, higher order structure, and the dissociation technique used. The likelihood of fragmentation occurring between a pair of residues is referred to as the fragmentation propensity and is calculated by dividing the total number of assigned fragmentation events by the total number of possible fragmentation events for each residue pair. Here, we describe general fragmentation propensities when performing top-down mass spectrometry (TDMS) using denaturing or native electrospray ionization. A total of 5311 matched fragmentation sites were collected for 131 proteoforms that were analyzed over 165 experiments using native top-down mass spectrometry (nTDMS). These data were used to determine the fragmentation propensities for 399 residue pairs. In comparison to denatured top-down mass spectrometry (dTDMS), the fragmentation pathways occurring either N-terminal to proline or C-terminal to aspartic acid were even more enhanced in nTDMS compared with other residues. More generally, 257/399 (64%) of the fragmentation propensities were significantly altered ( P ≤ 0.05) when using nTDMS compared with dTDMS, and of these, 123 were altered by 2-fold or greater. The most notable enhancements of fragmentation propensities for TDMS in native versus denatured mode occurred (1) C-terminal to aspartic acid, (2) between phenylalanine and tryptophan (F|W), and (3) between tryptophan and alanine (W|A). The fragmentation propensities presented here will be of high value in the development of tailored scoring systems used in nTDMS of both intact proteins and protein complexes. [Figure not available: see fulltext.
Amplitude spectrum distance: measuring the global shape divergence of protein fragments.
Galiez, Clovis; Coste, François
2015-08-14
In structural bioinformatics, there is an increasing interest in identifying and understanding the evolution of local protein structures regarded as key structural or functional protein building blocks. A central need is then to compare these, possibly short, fragments by measuring efficiently and accurately their (dis)similarity. Progress towards this goal has given rise to scores enabling to assess the strong similarity of fragments. Yet, there is still a lack of more progressive scores, with meaningful intermediate values, for the comparison, retrieval or clustering of distantly related fragments. We introduce here the Amplitude Spectrum Distance (ASD), a novel way of comparing protein fragments based on the discrete Fourier transform of their C(α) distance matrix. Defined as the distance between their amplitude spectra, ASD can be computed efficiently and provides a parameter-free measure of the global shape dissimilarity of two fragments. ASD inherits from nice theoretical properties, making it tolerant to shifts, insertions, deletions, circular permutations or sequence reversals while satisfying the triangle inequality. The practical interest of ASD with respect to RMSD, RMSDd, BC and TM scores is illustrated through zinc finger retrieval experiments and concrete structure examples. The benefits of ASD are also illustrated by two additional clustering experiments: domain linkers fragments and complementarity-determining regions of antibodies. Taking advantage of the Fourier transform to compare fragments at a global shape level, ASD is an objective and progressive measure taking into account the whole fragments. Its practical computation time and its properties make ASD particularly relevant for applications requiring meaningful measures on distantly related protein fragments, such as similar fragments retrieval asking for high recalls as shown in the experiments, or for any application taking also advantage of triangle inequality, such as fragments clustering. ASD program and source code are freely available at: http://www.irisa.fr/dyliss/public/ASD/.
Electrostatic Steering Accelerates C3d:CR2 Association
2016-01-01
Electrostatic effects are ubiquitous in protein interactions and are found to be pervasive in the complement system as well. The interaction between complement fragment C3d and complement receptor 2 (CR2) has evolved to become a link between innate and adaptive immunity. Electrostatic interactions have been suggested to be the driving factor for the association of the C3d:CR2 complex. In this study, we investigate the effects of ionic strength and mutagenesis on the association of C3d:CR2 through Brownian dynamics simulations. We demonstrate that the formation of the C3d:CR2 complex is ionic strength-dependent, suggesting the presence of long-range electrostatic steering that accelerates the complex formation. Electrostatic steering occurs through the interaction of an acidic surface patch in C3d and the positively charged CR2 and is supported by the effects of mutations within the acidic patch of C3d that slow or diminish association. Our data are in agreement with previous experimental mutagenesis and binding studies and computational studies. Although the C3d acidic patch may be locally destabilizing because of unfavorable Coulombic interactions of like charges, it contributes to the acceleration of association. Therefore, acceleration of function through electrostatic steering takes precedence to stability. The site of interaction between C3d and CR2 has been the target for delivery of CR2-bound nanoparticle, antibody, and small molecule biomarkers, as well as potential therapeutics. A detailed knowledge of the physicochemical basis of C3d:CR2 association may be necessary to accelerate biomarker and drug discovery efforts. PMID:27092816
Alzheimer CSF biomarkers may be misleading in normal-pressure hydrocephalus
2014-01-01
Objective: This article discusses why CSF biomarkers found in normal-pressure hydrocephalus (NPH) can be misleading when distinguishing NPH from comorbid NPH with Alzheimer disease (AD). Methods: We describe NPH CSF biomarkers and how shunt surgery can change them. We hypothesize the effects that hydrocephalus may play on interstitial fluid space and amyloid precursor protein (APP) fragment drainage into the CSF based on a recent report and how this may explain the misleading CSF NPH biomarker findings. Results: In NPH, β-amyloid protein 42 (Aβ42) is low (as in AD), but total tau (t-tau) and phospho-tau (p-tau) levels are normal, providing conflicting biomarker findings. Low Aβ42 supports an AD diagnosis but tau findings do not. Importantly, not only Aβ42, but all APP fragments and tau proteins are low in NPH CSF. Further, these proteins increase after shunting. An increase in interstitial space and APP fragment drainage into the CSF during sleep was reported recently. Conclusions: In the setting of hydrocephalus when the brain is compressed, a decrease in interstitial space and APP protein fragment drainage into the CSF may be impeded, resulting in low levels of all APP fragments and tau proteins, which has been reported. Shunting, which decompresses the brain, would create more room for the interstitial space to increase and protein waste fragments to drain into the CSF. In fact, CSF proteins increase after shunting. CSF biomarkers in pre-shunt NPH have low Aβ42 and tau protein levels, providing misleading information to distinguish NPH from comorbid NPH plus AD. PMID:25332445
Identification of C1q as a Binding Protein for Advanced Glycation End Products.
Chikazawa, Miho; Shibata, Takahiro; Hatasa, Yukinori; Hirose, Sayumi; Otaki, Natsuki; Nakashima, Fumie; Ito, Mika; Machida, Sachiko; Maruyama, Shoichi; Uchida, Koji
2016-01-26
Advanced glycation end products (AGEs) make up a heterogeneous group of molecules formed from the nonenzymatic reaction of reducing sugars with the free amino groups of proteins. The abundance of AGEs in a variety of age-related diseases, including diabetic complications and atherosclerosis, and their pathophysiological effects suggest the existence of innate defense mechanisms. Here we examined the presence of serum proteins that are capable of binding glycated bovine serum albumin (AGEs-BSA), prepared upon incubation of BSA with dehydroascorbate, and identified complement component C1q subcomponent subunit A as a novel AGE-binding protein in human serum. A molecular interaction analysis showed the specific binding of C1q to the AGEs-BSA. In addition, we identified DNA-binding regions of C1q, including a collagen-like domain, as the AGE-binding site and established that the amount of positive charge on the binding site was the determining factor. C1q indeed recognized several other modified proteins, including acylated proteins, suggesting that the binding specificity of C1q might be ascribed, at least in part, to the electronegative potential of the ligand proteins. We also observed that C1q was involved in the AGEs-BSA-activated deposition of complement proteins, C3b and C4b. In addition, the AGEs-BSA mediated the proteolytic cleavage of complement protein 5 to release C5a. These findings provide the first evidence of AGEs as a new ligand recognized by C1q, stimulating the C1q-dependent classical complement pathway.
Enzyme-linked immunosorbent assay detection and bioactivity of Cry1Ab protein fragments
USDA-ARS?s Scientific Manuscript database
Enzyme-linked immunosorbent assay (ELISA) has emerged as the preferred detection method for Cry proteins in environmental matrices. Concerns exist that ELISAs are capable of detecting fragments of Cry proteins, which may lead to an over-estimation of the concentration of these proteins in the enviro...
Complement dysregulation and disease: from genes and proteins to diagnostics and drugs.
de Cordoba, Santiago Rodriguez; Tortajada, Agustin; Harris, Claire L; Morgan, B Paul
2012-11-01
During the last decade, numerous studies have associated genetic variations in complement components and regulators with a number of chronic and infectious diseases. The functional characterization of these complement protein variants, in addition to recent structural advances in understanding of the assembly, activation and regulation of the AP C3 convertase, have provided important insights into the pathogenic mechanisms involved in some of these complement related disorders. This knowledge has identified potential targets for complement inhibitory therapies which are demonstrating efficacy and generating considerable expectation in changing the natural history of these diseases. Comprehensive understanding of the genetic and non-genetic risk factors contributing to these disorders will also result in targeting of the right patient groups in a stratified medicine approach through better diagnostics and individually tailored treatments, thereby improving management of patients. Crown Copyright © 2012. Published by Elsevier GmbH. All rights reserved.
Yin, Xingyu; Scalia, Alexander; Leroy, Ludmila; Cuttitta, Christina M; Polizzo, Gina M; Ericson, Daniel L; Roessler, Christian G; Campos, Olven; Ma, Millie Y; Agarwal, Rakhi; Jackimowicz, Rick; Allaire, Marc; Orville, Allen M; Sweet, Robert M; Soares, Alexei S
2014-05-01
Acoustic droplet ejection (ADE) is a powerful technology that supports crystallographic applications such as growing, improving and manipulating protein crystals. A fragment-screening strategy is described that uses ADE to co-crystallize proteins with fragment libraries directly on MiTeGen MicroMeshes. Co-crystallization trials can be prepared rapidly and economically. The high speed of specimen preparation and the low consumption of fragment and protein allow the use of individual rather than pooled fragments. The Echo 550 liquid-handling instrument (Labcyte Inc., Sunnyvale, California, USA) generates droplets with accurate trajectories, which allows multiple co-crystallization experiments to be discretely positioned on a single data-collection micromesh. This accuracy also allows all components to be transferred through small apertures. Consequently, the crystallization tray is in equilibrium with the reservoir before, during and after the transfer of protein, precipitant and fragment to the micromesh on which crystallization will occur. This strict control of the specimen environment means that the crystallography experiments remain identical as the working volumes are decreased from the few microlitres level to the few nanolitres level. Using this system, lysozyme, thermolysin, trypsin and stachydrine demethylase crystals were co-crystallized with a small 33-compound mini-library to search for fragment hits. This technology pushes towards a much faster, more automated and more flexible strategy for structure-based drug discovery using as little as 2.5 nl of each major component.
Yin, Xingyu; Scalia, Alexander; Leroy, Ludmila; Cuttitta, Christina M.; Polizzo, Gina M.; Ericson, Daniel L.; Roessler, Christian G.; Campos, Olven; Ma, Millie Y.; Agarwal, Rakhi; Jackimowicz, Rick; Allaire, Marc; Orville, Allen M.; Sweet, Robert M.; Soares, Alexei S.
2014-01-01
Acoustic droplet ejection (ADE) is a powerful technology that supports crystallographic applications such as growing, improving and manipulating protein crystals. A fragment-screening strategy is described that uses ADE to co-crystallize proteins with fragment libraries directly on MiTeGen MicroMeshes. Co-crystallization trials can be prepared rapidly and economically. The high speed of specimen preparation and the low consumption of fragment and protein allow the use of individual rather than pooled fragments. The Echo 550 liquid-handling instrument (Labcyte Inc., Sunnyvale, California, USA) generates droplets with accurate trajectories, which allows multiple co-crystallization experiments to be discretely positioned on a single data-collection micromesh. This accuracy also allows all components to be transferred through small apertures. Consequently, the crystallization tray is in equilibrium with the reservoir before, during and after the transfer of protein, precipitant and fragment to the micromesh on which crystallization will occur. This strict control of the specimen environment means that the crystallography experiments remain identical as the working volumes are decreased from the few microlitres level to the few nanolitres level. Using this system, lysozyme, thermolysin, trypsin and stachydrine demethylase crystals were co-crystallized with a small 33-compound mini-library to search for fragment hits. This technology pushes towards a much faster, more automated and more flexible strategy for structure-based drug discovery using as little as 2.5 nl of each major component. PMID:24816088
Lead generation and examples opinion regarding how to follow up hits.
Orita, Masaya; Ohno, Kazuki; Warizaya, Masaichi; Amano, Yasushi; Niimi, Tatsuya
2011-01-01
In fragment-based drug discovery (FBDD), not only identifying the starting fragment hit to be developed but also generating a drug lead from that starting fragment hit is important. Converting fragment hits to leads is generally similar to a high-throughput screening (HTS) hits-to-leads approach in that properties associated with activity for a target protein, such as selectivity against other targets and absorption, distribution, metabolism, excretion, and toxicity (ADME/Tox), and physicochemical properties should be taken into account. However, enhancing the potency of the fragment hit is a key requirement in FBDD, unlike HTS, because initial fragment hits are generally weak. This enhancement is presently achieved by adding additional chemical groups which bind to additional parts of the target protein or by joining or combining two or more hit fragments; however, strategies for effecting greater improvements in effective activity are needed. X-ray analysis is a key technology attractive for converting fragments to drug leads. This method makes it clear whether a fragment hit can act as an anchor and provides insight regarding introduction of functional groups to improve fragment activity. Data on follow-up chemical synthesis of fragment hits has allowed for the differentiation of four different strategies: fragment optimization, fragment linking, fragment self-assembly, and fragment evolution. Here, we discuss our opinion regarding how to follow up on fragment hits, with a focus on the importance of fragment hits as an anchor moiety to so-called hot spots in the target protein using crystallographic data. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Durbin, Kenneth R.; Skinner, Owen S.; Fellers, Ryan T.; Kelleher, Neil L.
2015-05-01
Gaseous fragmentation of intact proteins is multifaceted and can be unpredictable by current theories in the field. Contributing to the complexity is the multitude of precursor ion states and fragmentation channels. Terminal fragment ions can be re-fragmented, yielding product ions containing neither terminus, termed internal fragment ions. In an effort to better understand and capitalize upon this fragmentation process, we collisionally dissociated the high (13+), middle (10+), and low (7+) charge states of electrosprayed ubiquitin ions. Both terminal and internal fragmentation processes were quantified through step-wise increases of voltage potential in the collision cell. An isotope fitting algorithm matched observed product ions to theoretical terminal and internal fragment ions. At optimal energies for internal fragmentation of the 10+, nearly 200 internal fragments were observed; on average each of the 76 residues in ubiquitin was covered by 24.1 internal fragments. A pertinent finding was that formation of internal ions occurs at similar energy thresholds as terminal b- and y-ion types in beam-type activation. This large amount of internal fragmentation is frequently overlooked during top-down mass spectrometry. As such, we present several new approaches to visualize internal fragments through modified graphical fragment maps. With the presented advances of internal fragment ion accounting and visualization, the total percentage of matched fragment ions increased from approximately 40% to over 75% in a typical beam-type MS/MS spectrum. These sequence coverage improvements offer greater characterization potential for whole proteins with no needed experimental changes and could be of large benefit for future high-throughput intact protein analysis.
Yoshida, Yoko; Miyata, Toshiyuki; Matsumoto, Masanori; Shirotani-Ikejima, Hiroko; Uchida, Yumiko; Ohyama, Yoshifumi; Kokubo, Tetsuro; Fujimura, Yoshihiro
2015-01-01
For thrombotic microangiopathies (TMAs), the diagnosis of atypical hemolytic uremic syndrome (aHUS) is made by ruling out Shiga toxin-producing Escherichia coli (STEC)-associated HUS and ADAMTS13 activity-deficient thrombotic thrombocytopenic purpura (TTP), often using the exclusion criteria for secondary TMAs. Nowadays, assays for ADAMTS13 activity and evaluation for STEC infection can be performed within a few hours. However, a confident diagnosis of aHUS often requires comprehensive gene analysis of the alternative complement activation pathway, which usually takes at least several weeks. However, predisposing genetic abnormalities are only identified in approximately 70% of aHUS. To facilitate the diagnosis of complement-mediated aHUS, we describe a quantitative hemolytic assay using sheep red blood cells (RBCs) and human citrated plasma, spiked with or without a novel inhibitory anti-complement factor H (CFH) monoclonal antibody. Among 45 aHUS patients in Japan, 24% (11/45) had moderate-to-severe (≥50%) hemolysis, whereas the remaining 76% (34/45) patients had mild or no hemolysis (<50%). The former group is largely attributed to CFH-related abnormalities, and the latter group has C3-p.I1157T mutations (16/34), which were identified by restriction fragment length polymorphism (RFLP) analysis. Thus, a quantitative hemolytic assay coupled with RFLP analysis enabled the early diagnosis of complement-mediated aHUS in 60% (27/45) of patients in Japan within a week of presentation. We hypothesize that this novel quantitative hemolytic assay would be more useful in a Caucasian population, who may have a higher proportion of CFH mutations than Japanese patients. PMID:25951460
Birone, Claire; Brown, Maria; Hernandez, Jesus; Neff, Sherry; Williams, Daniel; Allaire, Marc; Orville, Allen M.; Sweet, Robert M.; Soares, Alexei S.
2014-01-01
High throughput screening technologies such as acoustic droplet ejection (ADE) greatly increase the rate at which X-ray diffraction data can be acquired from crystals. One promising high throughput screening application of ADE is to rapidly combine protein crystals with fragment libraries. In this approach, each fragment soaks into a protein crystal either directly on data collection media or on a moving conveyor belt which then delivers the crystals to the X-ray beam. By simultaneously handling multiple crystals combined with fragment specimens, these techniques relax the automounter duty-cycle bottleneck that currently prevents optimal exploitation of third generation synchrotrons. Two factors limit the speed and scope of projects that are suitable for fragment screening using techniques such as ADE. Firstly, in applications where the high throughput screening apparatus is located inside the X-ray station (such as the conveyor belt system described above), the speed of data acquisition is limited by the time required for each fragment to soak into its protein crystal. Secondly, in applications where crystals are combined with fragments directly on data acquisition media (including both of the ADE methods described above), the maximum time that fragments have to soak into crystals is limited by evaporative dehydration of the protein crystals during the fragment soak. Here we demonstrate that both of these problems can be minimized by using small crystals, because the soak time required for a fragment hit to attain high occupancy depends approximately linearly on crystal size. PMID:24988328
Cole, Krystal; Roessler, Christian G; Mulé, Elizabeth A; Benson-Xu, Emma J; Mullen, Jeffrey D; Le, Benjamin A; Tieman, Alanna M; Birone, Claire; Brown, Maria; Hernandez, Jesus; Neff, Sherry; Williams, Daniel; Allaire, Marc; Orville, Allen M; Sweet, Robert M; Soares, Alexei S
2014-01-01
High throughput screening technologies such as acoustic droplet ejection (ADE) greatly increase the rate at which X-ray diffraction data can be acquired from crystals. One promising high throughput screening application of ADE is to rapidly combine protein crystals with fragment libraries. In this approach, each fragment soaks into a protein crystal either directly on data collection media or on a moving conveyor belt which then delivers the crystals to the X-ray beam. By simultaneously handling multiple crystals combined with fragment specimens, these techniques relax the automounter duty-cycle bottleneck that currently prevents optimal exploitation of third generation synchrotrons. Two factors limit the speed and scope of projects that are suitable for fragment screening using techniques such as ADE. Firstly, in applications where the high throughput screening apparatus is located inside the X-ray station (such as the conveyor belt system described above), the speed of data acquisition is limited by the time required for each fragment to soak into its protein crystal. Secondly, in applications where crystals are combined with fragments directly on data acquisition media (including both of the ADE methods described above), the maximum time that fragments have to soak into crystals is limited by evaporative dehydration of the protein crystals during the fragment soak. Here we demonstrate that both of these problems can be minimized by using small crystals, because the soak time required for a fragment hit to attain high occupancy depends approximately linearly on crystal size.
Visan, Lucian; Rouleau, Nicolas; Proust, Emilie; Peyrot, Loïc; Donadieu, Arnaud; Ochs, Martina
2018-02-01
Currently marketed Streptococcus pneumoniae (Spn) vaccines, which contain polysaccharide capsular antigens from the most common Spn serotypes, have substantially reduced pneumococcal disease rates but have limited coverage. A trivalent pneumococcal protein vaccine containing pneumococcal choline-binding protein A (PcpA), pneumococcal histidine triad protein D (PhtD), and detoxified pneumolysin is being developed to provide broader, cross-serotype protection. Antibodies against detoxified pneumolysin protect against bacterial pneumonia by neutralizing Spn-produced pneumolysin, but how anti-PhtD and anti-PcpA antibodies protect against Spn has not been established. Here, we used a murine passive protection sepsis model to investigate the mechanism of protection by anti-PhtD and anti-PcpA antibodies. Depleting complement using cobra venom factor eliminated protection by anti-PhtD and anti-PcpA monoclonal antibodies (mAbs). Consistent with a requirement for complement, complement C3 deposition on Spn in vitro was enhanced by anti-PhtD and anti-PcpA mAbs and by sera from PhtD- and PcpA-immunized rabbits and humans. Moreover, in the presence of complement, anti-PhtD and anti-PcpA mAbs increased uptake of Spn by human granulocytes. Depleting neutrophils using anti-Ly6G mAbs, splenectomy, or a combination of both did not affect passive protection against Spn, whereas depleting macrophages using clodronate liposomes eliminated protection. These results suggest anti-PhtD and anti-PcpA antibodies induced by pneumococcal protein vaccines protect against Spn by a complement- and macrophage-dependent opsonophagocytosis.
Application of Tandem Two-Dimensional Mass Spectrometry for Top-Down Deep Sequencing of Calmodulin.
Floris, Federico; Chiron, Lionel; Lynch, Alice M; Barrow, Mark P; Delsuc, Marc-André; O'Connor, Peter B
2018-06-04
Two-dimensional mass spectrometry (2DMS) involves simultaneous acquisition of the fragmentation patterns of all the analytes in a mixture by correlating their precursor and fragment ions by modulating precursor ions systematically through a fragmentation zone. Tandem two-dimensional mass spectrometry (MS/2DMS) unites the ultra-high accuracy of Fourier transform ion cyclotron resonance (FT-ICR) MS/MS and the simultaneous data-independent fragmentation of 2DMS to achieve extensive inter-residue fragmentation of entire proteins. 2DMS was recently developed for top-down proteomics (TDP), and applied to the analysis of calmodulin (CaM), reporting a cleavage coverage of about ~23% using infrared multiphoton dissociation (IRMPD) as fragmentation technique. The goal of this work is to expand the utility of top-down protein analysis using MS/2DMS in order to extend the cleavage coverage in top-down proteomics further into the interior regions of the protein. In this case, using MS/2DMS, the cleavage coverage of CaM increased from ~23% to ~42%. Graphical Abstract Two-dimensional mass spectrometry, when applied to primary fragment ions from the source, allows deep-sequencing of the protein calmodulin.
Kang, Yuan; Dong, Xinran; Zhou, Qiongjie; Zhang, Ying; Cheng, Yan; Hu, Rong; Su, Cuihong; Jin, Hong; Liu, Xiaohui; Ma, Duan; Tian, Weidong; Li, Xiaotian
2012-03-01
This study aimed to identify candidate protein biomarkers from maternal serum for Down syndrome (DS) by integrated proteomic and bioinformatics analysis. A pregnancy DS group of 18 women and a control group with the same number were prepared, and the maternal serum proteins were analyzed by isobaric tags for relative and absolute quantitation and mass spectrometry, to identify DS differentially expressed maternal serum proteins (DS-DEMSPs). Comprehensive bioinformatics analysis was then employed to analyze DS-DEMSPs both in this paper and seven related publications. Down syndrome differentially expressed maternal serum proteins from different studies are significantly enriched with common Gene Ontology functions, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, transcription factor binding sites, and Pfam protein domains, However, the DS-DEMSPs are less functionally related to known DS-related genes. These evidences suggest that common molecular mechanisms induced by secondary effects may be present upon DS carrying. A simple scoring scheme revealed Alpha-2-macroglobulin, Apolipoprotein A1, Apolipoprotein E, Complement C1s subcomponent, Complement component 5, Complement component 8, alpha polypeptide, Complement component 8, beta polypeptide and Fibronectin as potential DS biomarkers. The integration of proteomics and bioinformatics studies provides a novel approach to develop new prenatal screening methods for noninvasive yet accurate diagnosis of DS. Copyright © 2012 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Wang, Baiyang; Chen, Yi-Bin; Ayalon, Oran; Bender, Jeffrey; Garen, Alan
1999-02-01
Two antimelanoma immunoconjugates containing a human single-chain Fv (scFv) targeting domain conjugated to the Fc effector domain of human IgG1 were synthesized as secreted two-chain molecules in Chinese hamster ovary and Drosophila S2 cells, and purified by affinity chromatography on protein A. The scFv targeting domains originally were isolated as melanoma-specific clones from a scFv fusion-phage library, derived from the antibody repertoire of a vaccinated melanoma patient. The purified immunoconjugates showed similar binding specificity as did the fusion-phage clones. Binding occurred to human melanoma cells but not to human melanocytes or to several other types of normal cells and tumor cells. A 250-kDa melanoma protein was immunoprecipitated by the immunoconjugates and analyzed by mass spectrometry, using two independent procedures. A screen of protein sequence databases showed an exact match of several peptide masses between the immunoprecipitated protein and the core protein of a chondroitin sulfate proteoglycan, which is expressed on the surface of most human melanoma cells. The Fc effector domain of the immunoconjugates binds natural killer (NK) cells and also the C1q protein that initiates the complement cascade; both NK cells and complement can activate powerful cytolytic responses against the targeted tumor cells. An in vitro cytolysis assay was used to test for an immunoconjugate-dependent specific cytolytic response against cultured human melanoma cells by NK cells and complement. The melanoma cells, but not the human fibroblast cells used as the control, were efficiently lysed by both NK cells and complement in the presence of the immunoconjugates. The in vitro results suggest that the immunoconjugates also could activate a specific cytolytic immune response against melanoma tumors in vivo.
Padmanabhan, Prasad Kottayil; Zghidi-Abouzid, Ouafa; Samant, Mukesh; Dumas, Carole; Aguiar, Bruno Guedes; Estaquier, Jerome; Papadopoulou, Barbara
2016-01-01
DDX3 is a highly conserved member of ATP-dependent DEAD-box RNA helicases with multiple functions in RNA metabolism and cellular signaling. Here, we describe a novel function for DDX3 in regulating the mitochondrial stress response in the parasitic protozoan Leishmania. We show that genetic inactivation of DDX3 leads to the accumulation of mitochondrial reactive oxygen species (ROS) associated with a defect in hydrogen peroxide detoxification. Upon stress, ROS production is greatly enhanced, causing mitochondrial membrane potential loss, mitochondrial fragmentation, and cell death. Importantly, this phenotype is exacerbated upon oxidative stress in parasites forced to use the mitochondrial oxidative respiratory machinery. Furthermore, we show that in the absence of DDX3, levels of major components of the unfolded protein response as well as of polyubiquitinated proteins increase in the parasite, particularly in the mitochondrion, as an indicator of mitochondrial protein damage. Consistent with these findings, immunoprecipitation and mass-spectrometry studies revealed potential interactions of DDX3 with key components of the cellular stress response, particularly the antioxidant response, the unfolded protein response, and the AAA-ATPase p97/VCP/Cdc48, which is essential in mitochondrial protein quality control by driving proteosomal degradation of polyubiquitinated proteins. Complementation studies using DDX3 deletion mutants lacking conserved motifs within the helicase core support that binding of DDX3 to ATP is essential for DDX3's function in mitochondrial proteostasis. As a result of the inability of DDX3-depleted Leishmania to recover from ROS damage and to survive various stresses in the host macrophage, parasite intracellular development was impaired. Collectively, these observations support a central role for the Leishmania DDX3 homolog in preventing ROS-mediated damage and in maintaining mitochondrial protein quality control. PMID:27735940
Haspel, Nurit; Geisbrecht, Brian V; Lambris, John; Kavraki, Lydia
2010-03-01
We present a novel multi-level methodology to explore and characterize the low energy landscape and the thermodynamics of proteins. Traditional conformational search methods typically explore only a small portion of the conformational space of proteins and are hard to apply to large proteins due to the large amount of calculations required. In our multi-scale approach, we first provide an initial characterization of the equilibrium state ensemble of a protein using an efficient computational conformational sampling method. We then enrich the obtained ensemble by performing short Molecular Dynamics (MD) simulations on selected conformations from the ensembles as starting points. To facilitate the analysis of the results, we project the resulting conformations on a low-dimensional landscape to efficiently focus on important interactions and examine low energy regions. This methodology provides a more extensive sampling of the low energy landscape than an MD simulation starting from a single crystal structure as it explores multiple trajectories of the protein. This enables us to obtain a broader view of the dynamics of proteins and it can help in understanding complex binding, improving docking results and more. In this work, we apply the methodology to provide an extensive characterization of the bound complexes of the C3d fragment of human Complement component C3 and one of its powerful bacterial inhibitors, the inhibitory domain of Staphylococcus aureus extra-cellular fibrinogen-binding domain (Efb-C) and two of its mutants. We characterize several important interactions along the binding interface and define low free energy regions in the three complexes. Proteins 2010. (c) 2009 Wiley-Liss, Inc.
Corsaro, Alessandro; Thellung, Stefano; Bucciarelli, Tonino; Scotti, Luca; Chiovitti, Katia; Villa, Valentina; D'Arrigo, Cristina; Aceto, Antonio; Florio, Tullio
2011-03-01
Mutations in prion protein are thought to be causative of inherited prion diseases favoring the spontaneous conversion of the normal prion protein into the scrapie-like pathological prion protein. We previously reported that, by controlled thermal denaturation, human prion protein fragment 90-231 acquires neurotoxic properties when transformed in a β-rich conformation, resembling the scrapie-like conformation. In this study we generated prion protein fragment 90-231 bearing mutations identified in familial prion diseases (D202N and E200K), to analyze their role in the induction of a neurotoxic conformation. Prion protein fragment 90-231(wild type) and the D202N mutant were not toxic in native conformation but induced cell death only after thermal denaturation. Conversely, prion protein fragment 90-231(E200K) was highly toxic in its native structure, suggesting that E200K mutation per se favors the acquisition of a peptide neurotoxic conformation. To identify the structural determinants of prion protein fragment 90-231 toxicity, we show that while the wild type peptide is structured in α-helix, hPrP90-231 E200K is spontaneously refolded in a β-structured conformer characterized by increased proteinase K resistance and propensity to generate fibrils. However, the most significant difference induced by E200K mutation in prion protein fragment 90-231 structure in native conformation we observed, was an increase in the exposure of hydrophobic amino-acids on protein surface that was detected in wild type and D202N proteins only after thermal denaturation. In conclusion, we propose that increased hydrophobicity is one of the main determinants of toxicity induced by different mutations in prion protein-derived peptides. Copyright © 2010 Elsevier Ltd. All rights reserved.
Protective responses to sublytic complement in the retinal pigment epithelium
Tan, Li Xuan; Toops, Kimberly A.; Lakkaraju, Aparna
2016-01-01
The retinal pigment epithelium (RPE) is a key site of injury in inherited and age-related macular degenerations. Abnormal activation of the complement system is a feature of these blinding diseases, yet how the RPE combats complement attack is poorly understood. The complement cascade terminates in the cell-surface assembly of membrane attack complexes (MACs), which promote inflammation by causing aberrant signal transduction. Here, we investigated mechanisms crucial for limiting MAC assembly and preserving cellular integrity in the RPE and asked how these are compromised in models of macular degeneration. Using polarized primary RPE and the pigmented Abca4−/− Stargardt disease mouse model, we provide evidence for two protective responses occurring within minutes of complement attack, which are essential for maintaining mitochondrial health in the RPE. First, accelerated recycling of the membrane-bound complement regulator CD59 to the RPE cell surface inhibits MAC formation. Second, fusion of lysosomes with the RPE plasma membrane immediately after complement attack limits sustained elevations in intracellular calcium and prevents mitochondrial injury. Cholesterol accumulation in the RPE, induced by vitamin A dimers or oxidized LDL, inhibits these defense mechanisms by activating acid sphingomyelinase (ASMase), which increases tubulin acetylation and derails organelle traffic. Defective CD59 recycling and lysosome exocytosis after complement attack lead to mitochondrial fragmentation and oxidative stress in the RPE. Drugs that stimulate cholesterol efflux or inhibit ASMase restore both these critical safeguards in the RPE and avert complement-induced mitochondrial injury in vitro and in Abca4−/− mice, indicating that they could be effective therapeutic approaches for macular degenerations. PMID:27432952
Fragment screening by SPR and advanced application to GPCRs.
Shepherd, Claire A; Hopkins, Andrew L; Navratilova, Iva
2014-01-01
Surface plasmon resonance (SPR) is one of the primary biophysical methods for the screening of low molecular weight 'fragment' libraries, due to its low protein consumption and 'label-free' methodology. SPR biosensor interaction analysis is employed to both screen and confirm the binding of compounds in fragment screening experiments, as it provides accurate information on the affinity and kinetics of molecular interactions. The most advanced application of the use of SPR for fragment screening is against membrane protein drug targets, such G-protein coupled receptors (GPCRs). Biophysical GPCR assays using SPR have been validated with pharmacological measurements approximate to cell-based methods, yet provide the advantage of biophysical methods in their ability to measure the weak affinities of low molecular weight fragments. A number of SPR fragment screens against GPCRs have now been disclosed in the literature. SPR fragment screening is proving versatile to screen both thermostabilised GPCRs and solubilised wild type receptors. In this chapter, we discuss the state-of-the-art in GPCR fragment screening by SPR and the technical considerations in performing such experiments. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Giroud, Maude; Harder, Michael; Kuhn, Bernd; Haap, Wolfgang; Trapp, Nils; Schweizer, W Bernd; Schirmeister, Tanja; Diederich, François
2016-05-19
The π-stacking of fluorinated benzene rings on protein backbone amide groups was investigated, using a dual approach comprising enzyme-ligand binding studies complemented by high-level quantum chemical calculations. In the experimental study, the phenyl substituent of triazine nitrile inhibitors of human cathepsin L (hCatL), which stacks onto the peptide amide bond Gly67-Gly68 at the entrance of the S3 pocket, was systematically fluorinated, and differences in inhibitory potency were measured in a fluorimetric assay. Binding affinity is influenced by lipophilicity (clog P), the dipole and quadrupole moments of the fluorinated rings, but also by additional interactions of the introduced fluorine atoms with the local environment of the pocket. Generally, the higher the degree of fluorination, the better the binding affinities. Gas phase calculations strongly support the contributions of the molecular quadrupole moments of the fluorinated phenyl rings to the π-stacking interaction with the peptide bond. These findings provide useful guidelines for enhancing π-stacking on protein amide fragments. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shang, Yonglei; Tesar, Devin; Hötzel, Isidro
2015-10-01
A recently described dual-host phage display vector that allows expression of immunoglobulin G (IgG) in mammalian cells bypasses the need for subcloning of phage display clone inserts to mammalian vectors for IgG expression in large antibody discovery and optimization campaigns. However, antibody discovery and optimization campaigns usually need different antibody formats for screening, requiring reformatting of the clones in the dual-host phage display vector to an alternative vector. We developed a modular protein expression system mediated by RNA trans-splicing to enable the expression of different antibody formats from the same phage display vector. The heavy-chain region encoded by the phage display vector is directly and precisely fused to different downstream heavy-chain sequences encoded by complementing plasmids simply by joining exons in different pre-mRNAs by trans-splicing. The modular expression system can be used to efficiently express structurally correct IgG and Fab fragments or other antibody formats from the same phage display clone in mammalian cells without clone reformatting. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Zhang, Zhifei; Yang, Jing; Wei, Junfei; Yang, Yaping; Chen, Xiaoqin; Zhao, Xi; Gu, Yuan; Cui, Shijuan; Zhu, Xinping
2011-01-01
Background Paramyosin is a thick myofibrillar protein found exclusively in invertebrates. Evidence suggested that paramyosin from helminths serves not only as a structural protein but also as an immunomodulatory agent. We previously reported that recombinant Trichinella spiralis paramyosin (Ts-Pmy) elicited a partial protective immunity in mice. In this study, the ability of Ts-Pmy to bind host complement components and protect against host complement attack was investigated. Methods and Findings In this study, the transcriptional and protein expression levels of Ts-Pmy were determined in T. spiralis newborn larva (NBL), muscle larva (ML) and adult worm developmental stages by RT-PCR and western blot analysis. Expression of Ts-Pmy at the outer membrane was observed in NBL and adult worms using immunogold electron microscopy and immunofluorescence staining. Functional analysis revealed that recombinant Ts-Pmy(rTs-Pmy) strongly bound to complement components C8 and C9 and inhibited the polymerization of C9 during the formation of the membrane attack complex (MAC). rTs-Pmy also inhibited the lysis of rabbit erythrocytes (ER) elicited by an alternative pathway-activated complement from guinea pig serum. Inhibition of native Ts-Pmy on the surface of NBL with a specific antiserum reduced larvae viability when under the attack of complement in vitro. In vivo passive transfer of anti-Ts-Pmy antiserum and complement-treated larvae into mice also significantly reduced the number of larvae that developed to ML. Conclusion These studies suggest that the outer membrane form of T. spiralis paramyosin plays an important role in the evasion of the host complement attack. PMID:21750743
Complement in Lupus Nephritis: New Perspectives.
Bao, Lihua; Cunningham, Patrick N; Quigg, Richard J
2015-09-01
Systemic lupus erythematosus (SLE) is an autoimmune disorder caused by loss of tolerance to self-antigens, the production of autoantibodies and deposition of complement-fixing immune complexes (ICs) in injured tissues. SLE is characterized by a wide range of clinical manifestations and targeted organs, with lupus nephritis being one of the most serious complications. The complement system consists of three pathways and is tightly controlled by a set of regulatory proteins to prevent injudicious complement activation on host tissue. The involvement of the complement system in the pathogenesis of SLE is well accepted; yet, its exact role is still not clear. Complement plays dual roles in the pathogenesis of SLE. On the one hand, the complement system appears to have protective features in that hereditary homozygous deficiencies of classical pathway components, such as C1q and C4, are associated with an increased risk for SLE. On the other hand, IC-mediated activation of complement in affected tissues is clearly evident in both experimental and human SLE along with pathological features that are logical consequences of complement activation. Studies in genetically altered mice have shown that lack of complement inhibitors, such as complement factor H (CFH) or decay-accelerating factor (DAF) accelerates the development of experimental lupus nephritis, while treatment with recombinant protein inhibitors, such as Crry-Ig, CR2-Crry, CR2-DAF and CR2-CFH, ameliorates the disease development. Complement-targeted drugs, including soluble complement receptor 1 (TP10), C1 esterase inhibitor and a monoclonal anti-C5 antibody (eculizumab), have been shown to inhibit complement safely, and are now being investigated in a variety of clinical conditions. SLE is an autoimmune disorder which targets multiple systems. Complement is centrally involved and plays dual roles in the pathogenesis of SLE. Studies from experimental lupus models and clinical trials support the use of complement-targeted therapy in the treatment of SLE.
Teo, Guoshou; Kim, Sinae; Tsou, Chih-Chiang; Collins, Ben; Gingras, Anne-Claude; Nesvizhskii, Alexey I; Choi, Hyungwon
2015-11-03
Data independent acquisition (DIA) mass spectrometry is an emerging technique that offers more complete detection and quantification of peptides and proteins across multiple samples. DIA allows fragment-level quantification, which can be considered as repeated measurements of the abundance of the corresponding peptides and proteins in the downstream statistical analysis. However, few statistical approaches are available for aggregating these complex fragment-level data into peptide- or protein-level statistical summaries. In this work, we describe a software package, mapDIA, for statistical analysis of differential protein expression using DIA fragment-level intensities. The workflow consists of three major steps: intensity normalization, peptide/fragment selection, and statistical analysis. First, mapDIA offers normalization of fragment-level intensities by total intensity sums as well as a novel alternative normalization by local intensity sums in retention time space. Second, mapDIA removes outlier observations and selects peptides/fragments that preserve the major quantitative patterns across all samples for each protein. Last, using the selected fragments and peptides, mapDIA performs model-based statistical significance analysis of protein-level differential expression between specified groups of samples. Using a comprehensive set of simulation datasets, we show that mapDIA detects differentially expressed proteins with accurate control of the false discovery rates. We also describe the analysis procedure in detail using two recently published DIA datasets generated for 14-3-3β dynamic interaction network and prostate cancer glycoproteome. The software was written in C++ language and the source code is available for free through SourceForge website http://sourceforge.net/projects/mapdia/.This article is part of a Special Issue entitled: Computational Proteomics. Copyright © 2015 Elsevier B.V. All rights reserved.
Candida albicans Shaving to Profile Human Serum Proteins on Hyphal Surface
Marín, Elvira; Parra-Giraldo, Claudia M.; Hernández-Haro, Carolina; Hernáez, María L.; Nombela, César; Monteoliva, Lucía; Gil, Concha
2015-01-01
Candida albicans is a human opportunistic fungus and it is responsible for a wide variety of infections, either superficial or systemic. C. albicans is a polymorphic fungus and its ability to switch between yeast and hyphae is essential for its virulence. Once C. albicans obtains access to the human body, the host serum constitutes a complex environment of interaction with C. albicans cell surface in bloodstream. To draw a comprehensive picture of this relevant step in host-pathogen interaction during invasive candidiasis, we have optimized a gel-free shaving proteomic strategy to identify both, human serum proteins coating C. albicans cells and fungi surface proteins simultaneously. This approach was carried out with normal serum (NS) and heat inactivated serum (HIS). We identified 214 human and 372 C. albicans unique proteins. Proteins identified in C. albicans included 147 which were described as located at the cell surface and 52 that were described as immunogenic. Interestingly, among these C. albicans proteins, we identified 23 GPI-anchored proteins, Gpd2 and Pra1, which are involved in complement system evasion and 7 other proteins that are able to attach plasminogen to C. albicans surface (Adh1, Eno1, Fba1, Pgk1, Tdh3, Tef1, and Tsa1). Furthermore, 12 proteins identified at the C. albicans hyphae surface induced with 10% human serum were not detected in other hypha-induced conditions. The most abundant human proteins identified are involved in complement and coagulation pathways. Remarkably, with this strategy, all main proteins belonging to complement cascades were identified on the C. albicans surface. Moreover, we identified immunoglobulins, cytoskeletal proteins, metabolic proteins such as apolipoproteins and others. Additionally, we identified more inhibitors of complement and coagulation pathways, some of them serpin proteins (serine protease inhibitors), in HIS vs. NS. On the other hand, we detected a higher amount of C3 at the C. albicans surface in NS than in HIS, as validated by immunofluorescence. PMID:26696967
Screening a fragment cocktail library using ultrafiltration
Shibata, Sayaka; Zhang, Zhongsheng; Korotkov, Konstantin V.; Delarosa, Jaclyn; Napuli, Alberto; Kelley, Angela M.; Mueller, Natasha; Ross, Jennifer; Zucker, Frank H.; Buckner, Frederick S.; Merritt, Ethan A.; Verlinde, Christophe L. M. J.; Van Voorhis, Wesley C.; Hol, Wim G. J.; Fan, Erkang
2011-01-01
Ultrafiltration provides a generic method to discover ligands for protein drug targets with millimolar to micromolar Kd, the typical range of fragment-based drug discovery. This method was tailored to a 96-well format, and cocktails of fragment-sized molecules, with molecular masses between 150 and 300 Da, were screened against medical structural genomics target proteins. The validity of the method was confirmed through competitive binding assays in the presence of ligands known to bind the target proteins. PMID:21750879
Sandia National Laboratories: Lighting up disease-carrying mosquitoes
Sandia researchers added a different DNA fragment sequence called a quench probe that complements a short is so bright, QUASR can screen up to three different targets simultaneously, saving time and money international health emergency. "Conceptually, it's not difficult to adapt the assay for a different virus
Potential for a remote-sensing-aided forest resource survey for the whole globe
E. Tomppo; R. L. Czaplewski
2002-01-01
The Global Forest Resources Assessment 2000 (FRA 2000) relied primarily on information provided by countries, but FAO also conducted a remote-sensing study of tropical forests to complement country information and to bolster understanding of land-cover change processes in the tropics, especially deforestation, forest degradation, fragmentation and shifting cultivation...
Complement activation fragment Bb in early pregnancy and spontaneous preterm birth.
Lynch, Anne M; Gibbs, Ronald S; Murphy, James R; Byers, Tim; Neville, Margaret C; Giclas, Patricia C; Salmon, Jane E; Van Hecke, Trisha M; Holers, V Michael
2008-10-01
The objective of this study was to determine whether an elevated level of the complement activation fragment Bb in early pregnancy was associated with spontaneous preterm birth (SPTB) at less than 34 weeks' gestation or SPTB between 34 and 37 weeks' gestation (late SPTB). This was a prospective study of 784 women enrolled at less than 20 weeks' gestation. Following exclusions, 13 women (1.7%) had a SPTB at less than 34 weeks' gestation and 25 (3.2%) a SPTB between 34 and 37 weeks' gestation. Women with Bb in the top quartile were 4.7 times more likely to have an SPTB less than 34 weeks' gestation as compared with women who had levels of Bb in the lower 3 quartiles (95% confidence interval [CI] 1.5-14, P = .003). There was no association between Bb and late SPTB (relative risk 0.8, 95% CI 0.3-2). A significant relationship was found between an elevated Bb in early pregnancy and SPTB less than 34 weeks' gestation. These results suggest that inflammatory events in early pregnancy are part of the pathogenic mechanisms of this condition.
COMPLEMENT ACTIVATION FRAGMENT Bb IN EARLY PREGNANCY AND SPONTANEOUS PRETERM BIRTH
LYNCH, ANNE M.; GIBBS, RONALD S.; MURPHY, JAMES R.; BYERS, TIM; NEVILLE, MARGARET C.; GICLAS, PATRICIA C.; SALMON, JANE E.; VAN HECKE, TRISHA M; MICHAEL HOLERS, V.
2008-01-01
Objective To determine if an elevated level of the complement activation fragment Bb in early pregnancy was associated with spontaneous preterm birth (SPTB) at less than 34 weeks gestation or SPTB between 34 and 37 weeks gestation (late SPTB). Study Design Prospective study of 784 women enrolled at < 20 weeks gestation. Results Following exclusions, 13 women (1.7%) had a SPTB at less than 34 weeks gestation and 25 (3.2%) a SPTB between 34 and 37 weeks gestation. Women with Bb in the top quartile were 4.7 times more likely to have an SPTB less than 34 weeks gestation as compared with women who had levels of Bb in the lower three quartiles (95% CI 1.5 to 14, P = 0.003). There was no association between Bb and late SPTB (RR= 0.8, 95% CI = 0.3 to 2). Conclusions A significant relationship was found between an elevated Bb in early pregnancy and SPTB < 34 weeks gestation. These results suggest that inflammatory events in early pregnancy are part of the pathogenic mechanisms of this condition. PMID:18928972
Enhanced Wang Landau sampling of adsorbed protein conformations.
Radhakrishna, Mithun; Sharma, Sumit; Kumar, Sanat K
2012-03-21
Using computer simulations to model the folding of proteins into their native states is computationally expensive due to the extraordinarily low degeneracy of the ground state. In this paper, we develop an efficient way to sample these folded conformations using Wang Landau sampling coupled with the configurational bias method (which uses an unphysical "temperature" that lies between the collapse and folding transition temperatures of the protein). This method speeds up the folding process by roughly an order of magnitude over existing algorithms for the sequences studied. We apply this method to study the adsorption of intrinsically disordered hydrophobic polar protein fragments on a hydrophobic surface. We find that these fragments, which are unstructured in the bulk, acquire secondary structure upon adsorption onto a strong hydrophobic surface. Apparently, the presence of a hydrophobic surface allows these random coil fragments to fold by providing hydrophobic contacts that were lost in protein fragmentation. © 2012 American Institute of Physics
2018-01-01
Natural products are well known for their biological relevance, high degree of three-dimensionality, and access to areas of largely unexplored chemical space. To shape our understanding of the interaction between natural products and protein targets in the postgenomic era, we have used native mass spectrometry to investigate 62 potential protein targets for malaria using a natural-product-based fragment library. We reveal here 96 low-molecular-weight natural products identified as binding partners of 32 of the putative malarial targets. Seventy-nine (79) fragments have direct growth inhibition on Plasmodium falciparum at concentrations that are promising for the development of fragment hits against these protein targets. This adds a fragment library to the published HTS active libraries in the public domain. PMID:29436819
Vu, Hoan; Pedro, Liliana; Mak, Tin; McCormick, Brendan; Rowley, Jessica; Liu, Miaomiao; Di Capua, Angela; Williams-Noonan, Billy; Pham, Ngoc B; Pouwer, Rebecca; Nguyen, Bao; Andrews, Katherine T; Skinner-Adams, Tina; Kim, Jessica; Hol, Wim G J; Hui, Raymond; Crowther, Gregory J; Van Voorhis, Wesley C; Quinn, Ronald J
2018-04-13
Natural products are well known for their biological relevance, high degree of three-dimensionality, and access to areas of largely unexplored chemical space. To shape our understanding of the interaction between natural products and protein targets in the postgenomic era, we have used native mass spectrometry to investigate 62 potential protein targets for malaria using a natural-product-based fragment library. We reveal here 96 low-molecular-weight natural products identified as binding partners of 32 of the putative malarial targets. Seventy-nine (79) fragments have direct growth inhibition on Plasmodium falciparum at concentrations that are promising for the development of fragment hits against these protein targets. This adds a fragment library to the published HTS active libraries in the public domain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Victoria, E.J.; Pierce, S.W.; Branks, M.J.
1990-01-01
Red blood cell (RBC) autoantibodies from patients with IgG warm-type autoimmune hemolytic anemia were labeled with iodine 125 and their RBC binding behavior characterized. Epitope-bearing RBC membrane polypeptides were identified after autoantibody immunoprecipitation of labeled membranes and immunoblotting. Immunoaffinity isolation of labeled membrane proteins with 12 different IgG hemolytic autoantibodies with protein A-agarose revealed a major polypeptide at Mr 95 to 110 kd, which coelectrophoresed on sodium dodecylsulfate-polyacrylamide gel electrophoresis with a membrane component isolated with sheep IgG anti-band 3. Immunoprecipitation studies with chymotrypsinized RBCs resulted in the recovery of two labeled membrane polypeptides with molecular weights characteristically resulting frommore » the chymotryptic fragmentation of band 3. Immunoblotting with sheep IgG anti-band 3 of the immunoprecipitated polypeptides confirmed that hemolytic autoantibody binding led to recovery of band 3 or its fragments. Two 125I-labeled IgG hemolytic autoantibodies showed binding behavior consistent with epitope localization on band 3. The labeled RBC autoantibodies bound immunospecifically to all types of human RBC tested, including those of rare Rh type (Rh-null, D--) at a site density of approximately 10(6) per RBC. The 125I-IgG in two labeled autoantibodies was 84% and 92% adsorbable by human and higher nonhuman primate RBCs. Antigen-negative animal RBC bound less than 10%, consistent with immunospecific RBC binding. IgG-1 was the major subclass in five autoantibodies tested; one of six fixed complement; and autoantibody IgG appeared polyclonal by isoelectric focusing. We conclude that IgG eluted from RBCs of patients with autoimmune hemolytic anemia consists predominantly of a single totally RBC-adsorbable antibody population that binds to antigenic determinants on band 3.« less
In vitro C3 Deposition on Cryptococcus Capsule Occurs Via Multiple Complement Activation Pathways
Mershon-Shier, Kileen L.; Vasuthasawat, Alex; Takahashi, Kazue; Morrison, Sherie L.; Beenhouwer, David O.
2011-01-01
Complement can be activated via three pathways: classical, alternative, and lectin. Cryptococcus gattii and C. neoformans are closely related fungal pathogens possessing a polysaccharide capsule composed mainly of glucuronoxylomannan (GXM), which serves as a site for complement activation and deposition of complement components. We determined C3 deposition on Cryptococcus spp. by flow cytometry and confocal microscopy after incubation with serum from C57BL/6J mice as well as mice deficient in complement components C4, C3, factor B, and mannose binding lectin (MBL). C. gattii and C. neoformans activate complement in EGTA-treated serum indicating that they can activate the alternative pathway. However, complement activation was seen with factor B−/− serum suggesting activation could also take place in the absence of a functional alternative pathway. Furthermore, we uncovered a role for C4 in the alternative pathway activation by Cryptococcus spp. We also identified an unexpected and complex role for MBL in complement activation by Cryptococcus spp. No complement activation occurred in the absence of MBL-A and -C proteins although activation took place when the lectin binding activity of MBL was disrupted by calcium chelation. In addition, alternative pathway activation by C. neoformans required both MBL-A and -C, while either MBL-A or -C was sufficient for alternative pathway activation by C. gattii. Thus, complement activation by Cryptococcus spp. can take place through multiple pathways and complement activation via the alternative pathway requires the presence of C4 and MBL proteins. PMID:21723612
Chimenti, Michael S; Bulfer, Stacie L; Neitz, R Jeffrey; Renslo, Adam R; Jacobson, Matthew P; James, Thomas L; Arkin, Michelle R; Kelly, Mark J S
2015-07-01
The ubiquitous AAA+ ATPase p97 functions as a dynamic molecular machine driving several cellular processes. It is essential in regulating protein homeostasis, and it represents a potential drug target for cancer, particularly when there is a greater reliance on the endoplasmic reticulum-associated protein degradation pathway and ubiquitin-proteasome pathway to degrade an overabundance of secreted proteins. Here, we report a case study for using fragment-based ligand design approaches against this large and dynamic hexamer, which has multiple potential binding sites for small molecules. A screen of a fragment library was conducted by surface plasmon resonance (SPR) and followed up by nuclear magnetic resonance (NMR), two complementary biophysical techniques. Virtual screening was also carried out to examine possible binding sites for the experimental hits and evaluate the potential utility of fragment docking for this target. Out of this effort, 13 fragments were discovered that showed reversible binding with affinities between 140 µM and 1 mM, binding stoichiometries of 1:1 or 2:1, and good ligand efficiencies. Structural data for fragment-protein interactions were obtained with residue-specific [U-(2)H] (13)CH3-methyl-labeling NMR strategies, and these data were compared to poses from docking. The combination of virtual screening, SPR, and NMR enabled us to find and validate a number of interesting fragment hits and allowed us to gain an understanding of the structural nature of fragment binding. © 2015 Society for Laboratory Automation and Screening.
Exploring the Innate Immune System: Using Complement-Medicated Cell Lysis in the Classroom
ERIC Educational Resources Information Center
Fuller, Kevin G.
2008-01-01
The protein complement pathway comprises an important part of the innate immunity. The use of serum to demonstrate complement-mediated destruction across a series of bacterial dilutions allows an instructor to introduce a number of important biological concepts such as bacterial growth, activation cascades, and adaptive versus innate immunity.
Dakin, Stephanie Georgina; Smith, Roger Kenneth Whealands; Heinegård, Dick; Önnerfjord, Patrik; Khabut, Areej; Dudhia, Jayesh
2014-01-01
During inflammatory processes the extracellular matrix (ECM) is extensively remodeled, and many of the constituent components are released as proteolytically cleaved fragments. These degradative processes are better documented for inflammatory joint diseases than tendinopathy even though the pathogenesis has many similarities. The aims of this study were to investigate the proteomic composition of injured tendons during early and late disease stages to identify disease-specific cleavage patterns of the ECM protein cartilage oligomeric matrix protein (COMP). In addition to characterizing fragments released in naturally occurring disease, we hypothesized that stimulation of tendon explants with proinflammatory mediators in vitro would induce fragments of COMP analogous to natural disease. Therefore, normal tendon explants were stimulated with IL-1β and prostaglandin E2, and their effects on the release of COMP and its cleavage patterns were characterized. Analyses of injured tendons identified an altered proteomic composition of the ECM at all stages post injury, showing protein fragments that were specific to disease stage. IL-1β enhanced the proteolytic cleavage and release of COMP from tendon explants, whereas PGE2 had no catabolic effect. Of the cleavage fragments identified in early stage tendon disease, two fragments were generated by an IL-1-mediated mechanism. These fragments provide a platform for the development of neo-epitope assays specific to injury stage for tendon disease. PMID:24398684
Roy Choudhury, Swarup; Wang, Yuqi; Pandey, Sona
2014-07-01
Signalling pathways mediated by heterotrimeric G-proteins are common to all eukaryotes. Plants have a limited number of each of the G-protein subunits, with the most elaborate G-protein network discovered so far in soya bean (Glycine max, also known as soybean) which has four Gα, four Gβ and ten Gγ proteins. Biochemical characterization of Gα proteins from plants suggests significant variation in their properties compared with the well-characterized non-plant proteins. Furthermore, the four soya bean Gα (GmGα) proteins exhibit distinct biochemical activities among themselves, but the extent to which such biochemical differences contribute to their in vivo function is also not known. We used the yeast gpa1 mutant which displays constitutive signalling and growth arrest in the pheromone-response pathway as an in vivo model to evaluate the effect of distinct biochemical activities of GmGα proteins. We showed that specific GmGα proteins can be activated during pheromone-dependent receptor-mediated signalling in yeast and they display different strengths towards complementation of yeast gpa1 phenotypes. We also identified amino acids that are responsible for differential complementation abilities of specific Gα proteins. These data establish that specific plant Gα proteins are functional in the receptor-mediated pheromone-response pathway in yeast and that the subtle biochemical differences in their activity are physiologically relevant.
Matsushita, M; Ezekowitz, R A; Fujita, T
1995-01-01
The human mannose-binding protein (MBP) is a pattern recognition molecule that appears to play a role in initial host defence. MBP activates the complement cascade and it may act as an opsonin both in the absence and in the presence of complement. A number of distinct MBP allelic forms exist in different population groups. An allele that occurs in 5-7% of Caucasians was identified by an inability to activate the complement system. A homozygous mutation at base pair 230 of the MBP gene results in a Gly-to-Asp substitution at the fifth collagen repeat. It appears that the resultant protein, MBPD, is able to form high-order multimers that bind bacteria but do not support complement activation. Recently a novel serine protease, the MBP-associated serine protease (MASP), has been described. MBP-MASP complexes circulate in serum and result in the direct activation of a novel complement pathway (lectin pathway) in the absence of the first complement components. In this study we demonstrate that MASP and its proenzyme proMASP are unable to bind to recombinant (r)MBPD. This lack of a MASP-rMBPD association corresponds to a failure of the Gly-54-->Asp form of MBP to activate complement. Our results provide a biochemical basis for the functional deficit in the Gly-54-->Asp allelic form of MBP and suggest that the proMASP/MASP binding site maps to the fifth collagen repeat of MBP. Images Figure 1 PMID:7487919
Mapping the Complement Factor H-Related Protein 1 (CFHR1):C3b/C3d Interactions
Laskowski, Jennifer; Thurman, Joshua M.; Hageman, Gregory S.; Holers, V. Michael
2016-01-01
Complement factor H-related protein 1 (CFHR1) is a complement regulator which has been reported to regulate complement by blocking C5 convertase activity and interfering with C5b surface association. CFHR1 also competes with complement factor H (CFH) for binding to C3b, and may act as an antagonist of CFH-directed regulation on cell surfaces. We have employed site-directed mutagenesis in conjunction with ELISA-based and functional assays to isolate the binding interaction that CFHR1 undertakes with complement components C3b and C3d to a single shared interface. The C3b/C3d:CFHR1 interface is identical to that which occurs between the two C-terminal domains (SCR19-20) of CFH and C3b. Moreover, we have been able to corroborate that dimerization of CFHR1 is necessary for this molecule to bind effectively to C3b and C3d, or compete with CFH. Finally, we have established that CFHR1 competes with complement factor H-like protein 1 (CFHL-1) for binding to C3b. CFHL-1 is a CFH gene splice variant, which is almost identical to the N-terminal 7 domains of CFH (SCR1-7). CFHR1, therefore, not only competes with the C-terminus of CFH for binding to C3b, but also sterically blocks the interaction that the N-terminus of CFH undertakes with C3b, and which is required for CFH-regulation. PMID:27814381
Salam, Kazi Abdus; Wang, Richard Y; Grandinetti, Teresa; De Giorgi, Valeria; Alter, Harvey J; Allison, Robert D
2018-05-09
Erythrocytes bind circulating immune complexes (IC) and facilitate IC clearance from the circulation. Chronic hepatitis C virus (HCV) infection is associated with IC-related disorders. In this study we investigated the kinetics and mechanism of HCV and HCV-IC binding to and dissociation from erythrocytes. Cell culture-produced HCV was mixed with erythrocytes from healthy blood donors and erythrocyte-associated virus particles were quantified. Purified complement proteins, complement-depleted serum, and complement receptor antibodies were used to investigate complement-mediated HCV-erythrocyte binding. Purified HCV-specific immunoglobulin G from a chronic HCV-infected patient was used to study complement-mediated HCV-IC-erythrocyte binding. Binding of HCV to erythrocytes increased 200 to 1,000 fold after adding complement active human serum in the absence of antibody. Opsonization of free HCV occurred within 10 minutes and peak binding to erythrocytes was observed at 20-30 minutes. Complement protein C1 was required for binding, while C2, C3 and C4 significantly enhanced binding. Complement receptor 1 (CR1, CD35) antibodies blocked the binding of HCV to erythrocytes isolated from chronically infected HCV patients and healthy blood donors. HCV-ICs significantly enhanced complement-mediated binding to erythrocytes compared to unbound HCV. Dissociation of complement-opsonized HCV from erythrocytes depended on the presence of Factor I. HCV released by Factor I bound preferentially to CD19+ B cells compared to other leukocytes. These results demonstrate that complement mediates the binding of free and IC-associated HCV to CR1 on erythrocytes, and provide a mechanistic rationale for investigating the differential phenotypic expression of HCV-IC-related disease. This article is protected by copyright. All rights reserved. © 2018 by the American Association for the Study of Liver Diseases.
Definition of IgG- and albumin-binding regions of streptococcal protein G.
Akerström, B; Nielsen, E; Björck, L
1987-10-05
Protein G, the immunoglobin G-binding surface protein of group C and G streptococci, also binds serum albumin. The albumin-binding site on protein G is distinct from the immunoglobulin G-binding site. By mild acid hydrolysis of the papain-liberated protein G fragment (35 kDa), a 28-kDa fragment was produced which retained full immunoglobulin G-binding activity (determined by Scatchard plotting) but had lost all albumin-binding capacity. A protein G (65 kDa), isolated after cloning and expression of the protein G gene in Escherichia coli, had comparable affinity to immunoglobulin G (5-10 X 10(10)M-1), but much higher affinity to albumin than the 35- and 28-kDa protein G fragments (31, 2.6, and 0 X 10(9)M-1, respectively). The amino-terminal amino acid sequences of the 65-, 35-, and 28-kDa fragments allowed us to exactly locate the three fragments in an overall sequence map of protein G, based on the partial gene sequences published by Guss et al. (Guss, B., Eliasson, M., Olsson, A., Uhlen, M., Frej, A.-K., Jörnvall, H., Flock, J.-I., and Lindberg, M. (1986) EMBO J. 5, 1567-1575) and Fahnestock et al. (Fahnestock, S. R., Alexander, P., Nagle, J., and Filpula, D. (1986) J. Bacteriol. 167, 870-880). In this map could then be deduced the location of three homologous albumin-binding regions and three homologous immunoglobulin G-binding regions.
AlphaSpace: Fragment-Centric Topographical Mapping To Target Protein–Protein Interaction Interfaces
2016-01-01
Inhibition of protein–protein interactions (PPIs) is emerging as a promising therapeutic strategy despite the difficulty in targeting such interfaces with drug-like small molecules. PPIs generally feature large and flat binding surfaces as compared to typical drug targets. These features pose a challenge for structural characterization of the surface using geometry-based pocket-detection methods. An attractive mapping strategy—that builds on the principles of fragment-based drug discovery (FBDD)—is to detect the fragment-centric modularity at the protein surface and then characterize the large PPI interface as a set of localized, fragment-targetable interaction regions. Here, we introduce AlphaSpace, a computational analysis tool designed for fragment-centric topographical mapping (FCTM) of PPI interfaces. Our approach uses the alpha sphere construct, a geometric feature of a protein’s Voronoi diagram, to map out concave interaction space at the protein surface. We introduce two new features—alpha-atom and alpha-space—and the concept of the alpha-atom/alpha-space pair to rank pockets for fragment-targetability and to facilitate the evaluation of pocket/fragment complementarity. The resulting high-resolution interfacial map of targetable pocket space can be used to guide the rational design and optimization of small molecule or biomimetic PPI inhibitors. PMID:26225450
Junking, Mutita; Sawasdee, Nunghathai; Duangtum, Natapol; Cheunsuchon, Boonyarit; Limjindaporn, Thawornchai; Yenchitsomanus, Pa-thai
2014-07-01
Kidney anion exchanger 1 (kAE1) plays an important role in acid-base homeostasis by mediating chloride/bicarbornate (Cl-/HCO3-) exchange at the basolateral membrane of α-intercalated cells in the distal nephron. Impaired intracellular trafficking of kAE1 caused by mutations of SLC4A1 encoding kAE1 results in kidney disease - distal renal tubular acidosis (dRTA). However, it is not known how the intracellular sorting and trafficking of kAE1 from trans-Golgi network (TGN) to the basolateral membrane occurs. Here, we studied the role of basolateral-related sorting proteins, including the mu1 subunit of adaptor protein (AP) complexes, clathrin and protein kinase D, on kAE1 trafficking in polarized and non-polarized kidney cells. By using RNA interference, co-immunoprecipitation, yellow fluorescent protein-based protein fragment complementation assays and immunofluorescence staining, we demonstrated that AP-1 mu1A, AP-3 mu1, AP-4 mu1 and clathrin (but not AP-1 mu1B, PKD1 or PKD2) play crucial roles in intracellular sorting and trafficking of kAE1. We also demonstrated colocalization of kAE1 and basolateral-related sorting proteins in human kidney tissues by double immunofluorescence staining. These findings indicate that AP-1 mu1A, AP-3 mu1, AP-4 mu1 and clathrin are required for kAE1 sorting and trafficking from TGN to the basolateral membrane of acid-secreting α-intercalated cells. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Cropley, Vanessa; Laskaris, Liliana; Zalesky, Andrew; Weickert, Cynthia Shannon; Biase, Maria Di; Chana, Gursharan; Baune, Bernhard; Bousman, Chad; Nelson, Barnaby; McGorry, Patrick D; Everall, Ian; Pantelis, Christos
2018-01-01
Abstract Background The complement system - a key component of the innate immune system, has been proposed to contribute to the pathogenesis of schizophrenia. Recently, complement C4 was associated with increased risk of schizophrenia, and in a mouse model, developmentally-timed synaptic pruning. These observations have led to proposals that abnormal activation of the complement system might contribute to the development of schizophrenia by disrupting synaptic pruning during key developmental periods. However, despite renewed interest in the complement system in schizophrenia it remains unclear whether peripheral complement levels differ in cases compared to controls, change over the course of illness and whether they are associated with current symptomatology and brain cortical thickness. This study aimed to: i) investigate whether peripheral complement protein levels are altered at different stages of illness, and ii) identify patterns among complement protein levels that predict clinical symptoms and grey matter thickness across the cortex. Methods Complement factors C1q, C3 and C4 were quantified in 183 participants [n=83 Healthy Controls (HC), n=10 Ultra-High Risk (UHR) for psychosis, n=40 First Episode Psychosis (FEP), n=50 Chronic schizophrenia] using Multiplex ELISA. Permutation-based t-tests were used to assess between-group differences in complement protein levels at each of the three illness stages, relative to age- and gender-matched healthy controls. Canonical correlation analysis was used to identify patterns of complement protein levels that correlated with clinical symptoms and regional thickness across the cortex. Results C3 and C4 were significantly increased in FEP and UHR patients, whereas only C4 was significantly increased in chronic patients. A molecular pattern of increased C4 and decreased C3 was associated with positive and negative symptom severity in the pooled patient sample. Increased C4 levels alone, or decreased C3 levels alone, did not correlate with symptom severity as strongly as the pattern of increased C4 in combination with decreased C3. Preliminary canonical correlation analyses revealed that, in healthy controls, a molecular pattern characterised by increased C3 and decreased C4 was associated with relatively thinner paracentral, inferior parietal and inferior temporal cortices, but relatively thicker insular, in the left hemisphere. In the pooled patient group, a trend for increased C3 in combination with decreased C1q was associated with relatively thinner left lateral occipital cortex and pars orbitalis but relatively thicker pars opercularis and precuneus. Discussion Our findings indicate that peripheral complement concentration is particularly increased early and preceding psychosis and its imbalance may be associated with symptom severity and variation in regional grey matter thickness across the cortex.
Sadílek, David; Šťáhlavský, František; Vilímová, Jitka; Zima, Jan
2013-01-01
Abstract Variation in the number of chromosomes was revealed in 61 samples of Cimex lectularius Linnaeus, 1758 from the Czech Republic and other European countries, hosted on Myotis Kaup, 1829 (4) and Homo sapiens Linnaeus, 1758 (57). The karyotype of all the specimens of Cimex lectularius analysed contained 26 autosomes and a varying number of the sex chromosomes. The number of sex chromosomes showed extensive variation, and up to 20 fragments were recorded. Altogether, 12 distinct karyotypes were distinguished. The male karyotypes consisted of 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 42 and 47 chromosomes. The females usually exhibited the number of chromosomes which was complementary to the number established in the males from the same sample. However, 11 polymorphic samples were revealed in which the karyotypes of females and males were not complementary each other. The complement with 2n = 26+X1X2Y was found in 44% of the specimens and 57,4% samples of bed bugs studied. The karyotypes with higher chromosome numbers as well as individuals with chromosomal mosaics were usually found within the samples exhibiting particularly extensive variation between individuals, and such complements were not found within samples contaning a few or single specimen. The occurrence of chromosomal mosaics with the karyotype constitution varying between cells of single individual was observed in five specimens (4.3%) from five samples. We assume that polymorphism caused by fragmentation of the X chromosome may result in meiotic problems and non-disjunction can produce unbalanced gametes and result in lowered fitness of individuals carrying higher numbers of the X chromosome fragments. This effect should be apparently enhanced with the increasing number of the fragments and this may be the reason for the observed distribution pattern of individual karyotypes in the studied samples and the rarity of individuals with extremely high chromosome numbers. The assumed lowering of the fitness of individuals carrying higher numbers of the X chromosome fragments could affect population dynamics of variable populations. PMID:24455100
Mochly-Rosen, D; Miller, K G; Scheller, R H; Khaner, H; Lopez, J; Smith, B L
1992-09-08
Receptors for activated protein kinase C (RACKs) have been isolated from the particulate cell fraction of heart and brain. We previously demonstrated that binding of protein kinase C (PKC) to RACKs requires PKC activators and is via a site on PKC that is distinct from the substrate binding site. Here, we examine the possibility that the C2 region in the regulatory domain of PKC is involved in binding of PKC to RACKs. The synaptic vesicle-specific p65 protein contains two regions homologous to the C2 region of PKC. We found that three p65 fragments, containing either one or two of these PKC C2 homologous regions, bound to highly purified RACKs. Binding of the p65 fragments and PKC to RACKs was mutually exclusive; preincubation of RACKs with the p65 fragments inhibited PKC binding, and preincubation of RACKs with PKC inhibited binding of the p65 fragments. Preincubation of the p65 fragments with a peptide resembling the PKC binding site on RACKs also inhibited p65 binding to RACKs, suggesting that PKC and p65 bind to the same or nearby regions on RACKs. Since the only homologous region between PKC and the p65 fragments is the C2 region, these results suggest that the C2 region on PKC contains at least part of the RACK binding site.
Gao, Sansi; Yang, Wei; Yu, Hongjiang; Liu, Runqi; Dong, Zhihao; Zhang, Hongyou; Xia, Cheng; Xu, Chuang
2017-11-01
High concentrations of non-esterified fatty acid (NEFA) and β-hydroxybutyrate (BHBA) in cows' blood caused by ketosis are associated with inflammatory states. We hypothesised that ketosis in postparturient dairy cows would result in altered levels on inflammation-related proteins not only in plasma but also in the milk fat globule membranes (MFGM). Thirty cows were selected from a dairy farm in Heilongjiang, China. Inflammatory milk fat globule membrane proteins were detected using ELISA kits, and a fully automatic biochemical analyser was used to measure the concentrations of BHBA, NEFA, glucose (GLU) and triglyceride (TG) in plasma. MFGM protein from milk of ketotic cows contained significantly different concentrations of acute-phase response proteins (complement C3 (C3), prothrombin (F2), alpha-1-acid glycoprotein (ORM1), inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4), alpha-2-HS-glycoprotein (AHSG), complement C9 (C9), complement regulatory protein variant 4 (CD46)) in comparison with milk from non-ketotic cows. Blood concentrations of C3, complement C9 (C9), tumour necrosis factor α (TNFα), MFGM C3, monocyte differentiation antigen CD14 (CD14) and ORM1 levels were correlated with energy balance. ITIH4 and CD46 increased, and AHSG and ORM1 decreased before the onset of ketosis. These biomarkers offer potential as predictors and monitors of ketosis in at-risk cows.
fRMSDPred: Predicting Local RMSD Between Structural Fragments Using Sequence Information
2007-04-04
machine learning approaches for estimating the RMSD value of a pair of protein fragments. These estimated fragment-level RMSD values can be used to construct the alignment, assess the quality of an alignment, and identify high-quality alignment segments. We present algorithms to solve this fragment-level RMSD prediction problem using a supervised learning framework based on support vector regression and classification that incorporates protein profiles, predicted secondary structure, effective information encoding schemes, and novel second-order pairwise exponential kernel
Protein crystallization aboard the Space Shuttle and the Mir space station
NASA Technical Reports Server (NTRS)
Delbaere, Louis T. J.; Vandonselaar, Margaret; Prasad, Lata; Quail, J. W.; Birnbaum, George I.; Delucas, Lawrence J.; Moore, Karen; Bugg, Charles E.
1993-01-01
Two different protein crystallizations, namely ,the free Fab fragment of the Je142 monoclonal antibody and the complex of Fab fragment/HPr with antigen, were performed aboard the Discovery Space Shuttle flights and the Mir space station, respectively. Medium sized crystals of the Je142 Fab fragment were obtained. The Je142 Fab fragment/Hpr complex produced two medium-sized crystals after two months aboard the Mir space station. Microgravity was found to eliminate the tendency of these crystals to form clusters.
Control of cellular influx in lung and its role in pulmonary toxicology.
Lynn, W S
1984-01-01
The pulmonary influx of cytotoxic inflammatory cells, normally, in response to external toxins, is now thought to be etiologic in many of the disease syndromes of man, such as bronchitis and emphysema. Many types of effector inflammatory cells are involved, e.g., eosinophils, neutrophils, T-lymphocytes, monocytes. The diseases are characterized either by tissue destruction or by tissue hyperplasia. Agents which initiate the influx and cytotoxic secretions by these cells are legion and in general are not cell-specific. They include agents, such as phorbol esters, formyl peptides-complement fragments, elastin fragments, fatty acids (leukotrienes) as well as many uncharacterized excretions of inflammatory cells themselves, which react with specific receptors on the inflammatory cells, and secreted proteins such as fibronectin. Other agents, such as linoleic acid, digitonin and hydroxy fatty acids which are not bound by specific receptors also activate motility of inflammatory cells. The precise role of the above multiple cytotoxins in specific cellular fluxes in most pulmonary disease remains undefined. Similarly, the mechanism of cytotoxicity used by specific invading cells in specific pulmonary syndromes remains unclear. In general, macrophages are thought to destroy using specific proteases, neutrophils use oxidant radicals and proteases and eosinophils use basic surface active peptides. T-cells kill by unknown mechanisms. However, in specific clinical syndromes, it is usually not clear which cell is the cytotoxic culprit, nor is the mechanism of destruction usually known. PMID:6376103
Ford, Kristina L.; Zeng, Wei; Heazlewood, Joshua L.; ...
2015-08-28
The analysis of post-translational modifications (PTMs) by proteomics is regarded as a technically challenging undertaking. While in recent years approaches to examine and quantify protein phosphorylation have greatly improved, the analysis of many protein modifications, such as glycosylation, are still regarded as problematic. Limitations in the standard proteomics workflow, such as use of suboptimal peptide fragmentation methods, can significantly prevent the identification of glycopeptides. The current generation of tandem mass spectrometers has made available a variety of fragmentation options, many of which are becoming standard features on these instruments. Lastly, we have used three common fragmentation techniques, namely CID, HCD,more » and ETD, to analyze a glycopeptide and highlight how an integrated fragmentation approach can be used to identify the modified residue and characterize the N-glycan on a peptide.« less
Advances in fragment-based drug discovery platforms.
Orita, Masaya; Warizaya, Masaichi; Amano, Yasushi; Ohno, Kazuki; Niimi, Tatsuya
2009-11-01
Fragment-based drug discovery (FBDD) has been established as a powerful alternative and complement to traditional high-throughput screening techniques for identifying drug leads. At present, this technique is widely used among academic groups as well as small biotech and large pharmaceutical companies. In recent years, > 10 new compounds developed with FBDD have entered clinical development, and more and more attention in the drug discovery field is being focused on this technique. Under the FBDD approach, a fragment library of relatively small compounds (molecular mass = 100 - 300 Da) is screened by various methods and the identified fragment hits which normally weakly bind to the target are used as starting points to generate more potent drug leads. Because FBDD is still a relatively new drug discovery technology, further developments and optimizations in screening platforms and fragment exploitation can be expected. This review summarizes recent advances in FBDD platforms and discusses the factors important for the successful application of this technique. Under the FBDD approach, both identifying the starting fragment hit to be developed and generating the drug lead from that starting fragment hit are important. Integration of various techniques, such as computational technology, X-ray crystallography, NMR, surface plasmon resonance, isothermal titration calorimetry, mass spectrometry and high-concentration screening, must be applied in a situation-appropriate manner.
Recombinant constructs of Borrelia burgdorferi
Dattwyler, Raymond J.; Gomes-Solecki, Maria J. C.; Luft, Benjamin J.; Dunn, John J.
2007-02-20
Novel chimeric nucleic acids, encoding chimeric Borrelia proteins comprising OspC or an antigenic fragment thereof and OspA or an antigenic fragment thereof, are disclosed. Chimeric proteins encoded by the nucleic acid sequences are also disclosed. The chimeric proteins are useful as vaccine immunogens against Lyme borreliosis, as well as for immunodiagnostic reagents.
Dutta, Sanjib; Koide, Akiko; Koide, Shohei
2008-01-01
Stability evaluation of many mutants can lead to a better understanding of the sequence determinants of a structural motif and of factors governing protein stability and protein evolution. The traditional biophysical analysis of protein stability is low throughput, limiting our ability to widely explore the sequence space in a quantitative manner. In this study, we have developed a high-throughput library screening method for quantifying stability changes, which is based on protein fragment reconstitution and yeast surface display. Our method exploits the thermodynamic linkage between protein stability and fragment reconstitution and the ability of the yeast surface display technique to quantitatively evaluate protein-protein interactions. The method was applied to a fibronectin type III (FN3) domain. Characterization of fragment reconstitution was facilitated by the co-expression of two FN3 fragments, thus establishing a "yeast surface two-hybrid" method. Importantly, our method does not rely on competition between clones and thus eliminates a common limitation of high-throughput selection methods in which the most stable variants are predominantly recovered. Thus, it allows for the isolation of sequences that exhibits a desired level of stability. We identified over one hundred unique sequences for a β-bulge motif, which was significantly more informative than natural sequences of the FN3 family in revealing the sequence determinants for the β-bulge. Our method provides a powerful means to rapidly assess stability of many variants, to systematically assess contribution of different factors to protein stability and to enhance protein stability. PMID:18674545
Modularity of Protein Folds as a Tool for Template-Free Modeling of Structures.
Vallat, Brinda; Madrid-Aliste, Carlos; Fiser, Andras
2015-08-01
Predicting the three-dimensional structure of proteins from their amino acid sequences remains a challenging problem in molecular biology. While the current structural coverage of proteins is almost exclusively provided by template-based techniques, the modeling of the rest of the protein sequences increasingly require template-free methods. However, template-free modeling methods are much less reliable and are usually applicable for smaller proteins, leaving much space for improvement. We present here a novel computational method that uses a library of supersecondary structure fragments, known as Smotifs, to model protein structures. The library of Smotifs has saturated over time, providing a theoretical foundation for efficient modeling. The method relies on weak sequence signals from remotely related protein structures to create a library of Smotif fragments specific to the target protein sequence. This Smotif library is exploited in a fragment assembly protocol to sample decoys, which are assessed by a composite scoring function. Since the Smotif fragments are larger in size compared to the ones used in other fragment-based methods, the proposed modeling algorithm, SmotifTF, can employ an exhaustive sampling during decoy assembly. SmotifTF successfully predicts the overall fold of the target proteins in about 50% of the test cases and performs competitively when compared to other state of the art prediction methods, especially when sequence signal to remote homologs is diminishing. Smotif-based modeling is complementary to current prediction methods and provides a promising direction in addressing the structure prediction problem, especially when targeting larger proteins for modeling.
Transformation of Schwanniomyces occidentalis with an ADE2 gene cloned from S. occidentalis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, R.D.; Favreau, M.A.
1988-12-01
We have developed an efficient transformation system for the industrial yeast Schwanniomyces occidentalis (formerly Schwanniomyces castellii). The transformation system is based on ade2 mutants of S. occidentalis deficient for phosphoribosylaminoimidazole carboxylase that were generated by mutagenesis. As a selectable marker, we isolated and characterized the S. occidentalis ADE2 gene by complementation in an ade2 strain of Saccharomyces cerevisiae. S. occidentalis was transformed with the recombinant plasmid pADE, consisting of a 4.5-kilobase-pair (kbp) DNA fragment from S. occidentalis containing the ADE2 gene inserted into the S. cerevisiae expression vector pYcDE8 by a modification of the spheroplasting procedure of Beggs. Intact plasmidsmore » were recovered in Escherichia coli from whole-cell lysates of ADE+ transformants, indicating that plasmids were replicating autonomously. High-molecular-mass species of pADE2 were found by Southern hybridization analysis of intact genomic DNA preparations. The shift to higher molecular mass of these plasmids during electrophoresis in the presence ethidium bromide after exposure to shortwave UV suggests that they exist in a supercoiled form in the transformed host. Subclones of the 4.5-kbp insert indicated that ADE2-complementing activity and sequences conferring autonomous replication in S. occidentalis were located within a 2.7-kbp EcoRI-SphI fragment. Plasmids containing this region cloned into the bacterial vector pUC19 complemented ade2 mutants of S. occidentalis with efficiencies identical to those of the original plasmid pADE.« less
A new type of subchloroplast fragments isolated from pea chloroplasts in the presence of digitonin.
Kochubey, S M; Bondarenko, O Yu; Shevchenko, V V
2007-09-01
Heavy fragments were isolated from pea chloroplasts using digitonin treatment and differential centrifugation. The particles were characterized by a significantly lowered chlorophyll a/b ratio, contents of photosystem I (PS I) proteins and ATPase, as well as of amount of P700. The content of photosystem II (PS II) proteins decreased insignificantly, whereas that of proteins of the light-harvesting complex II did not change. The absorption and low-temperature fluorescence spectra were indicative of a decreased content of PS I. Electron microscopy of ultrathin sections of heavy fragment preparations identified them as grana with reduced content of thylakoids. The diameter of these particles was practically the same as within chloroplasts. Comparison of various characteristics of the fragments and chloroplasts from which the fragments were isolated allowed us to define a high degree of preservation of marginal regions in thylakoids present in the heavy fragment particles. Analysis of the results shows that the procedure of fragmentation produces grana with high extent of thylakoid integrity. The phenomenon of reduction of the thylakoid content in grana, occurring as our heavy fragments, is considered in the frame of our previous hypothesis concerning the peculiarities of grana organization in the transversal direction.
Prechl, József; Papp, Krisztián; Hérincs, Zoltán; Péterfy, Hajna; Lóránd, Veronika; Szittner, Zoltán; Estonba, Andone; Rovero, Paolo; Paolini, Ilaria; Del Amo, Jokin; Uribarri, Maria; Alcaro, Maria Claudia; Ruiz-Larrañaga, Otsanda; Migliorini, Paola; Czirják, László
2016-01-01
Systemic lupus erythematosus is a chronic autoimmune disease with multifactorial ethiopathogenesis. The complement system is involved in both the early and late stages of disease development and organ damage. To better understand autoantibody mediated complement consumption we examined ex vivo immune complex formation on autoantigen arrays. We recruited patients with SLE (n = 211), with other systemic autoimmune diseases (n = 65) and non-autoimmune control subjects (n = 149). Standard clinical and laboratory data were collected and serum complement levels were determined. The genotype of SNP rs1143679 in the ITGAM gene was also determined. Ex vivo formation of immune complexes, with respect to IgM, IgG, complement C4 and C3 binding, was examined using a functional immunoassay on autoantigen microarray comprising nucleic acids, proteins and lipids. Complement consumption of nucleic acids increased upon binding of IgM and IgG even when serum complement levels were decreased due to consumption in SLE patients. A negative correlation between serum complement levels and ex vivo complement deposition on nucleic acid autoantigens is demonstrated. On the contrary, complement deposition on tested protein and lipid autoantigens showed positive correlation with C4 levels. Genetic analysis revealed that the non-synonymous variant rs1143679 in complement receptor type 3 is associated with an increased production of anti-dsDNA IgG antibodies. Notwithstanding, homozygous carriers of the previously reported susceptible allele (AA) had lower levels of dsDNA specific IgM among SLE patients. Both the non-synonymous variant rs1143679 and the high ratio of nucleic acid specific IgG/IgM were associated with multiple organ involvement. In summary, secondary complement deficiency in SLE does not impair opsonization of nucleic-acid-containing autoantigens but does affect other antigens and potentially other complement dependent processes. Dysfunction of the receptor recognizing complement opsonized immune complexes promotes the development of class-switched autoantibodies targeting nucleic acids.
Kalinowska, Barbara; Banach, Mateusz; Konieczny, Leszek; Marchewka, Damian; Roterman, Irena
2014-01-01
This work discusses the role of unstructured polypeptide chain fragments in shaping the protein's hydrophobic core. Based on the "fuzzy oil drop" model, which assumes an idealized distribution of hydrophobicity density described by the 3D Gaussian, we can determine which fragments make up the core and pinpoint residues whose location conflicts with theoretical predictions. We show that the structural influence of the water environment determines the positions of disordered fragments, leading to the formation of a hydrophobic core overlaid by a hydrophilic mantle. This phenomenon is further described by studying selected proteins which are known to be unstable and contain intrinsically disordered fragments. Their properties are established quantitatively, explaining the causative relation between the protein's structure and function and facilitating further comparative analyses of various structural models. © 2014 Elsevier Inc. All rights reserved.
Griffioen, A W; Rijkers, G T; Janssens-Korpela, P; Zegers, B J
1991-01-01
The immunoregulatory function of the complement system has been the focus of many investigations. In particular, fragments of complement factor C3 have been shown to play a role in B-lymphocyte activation and proliferation, lymphokine production, and the generation of in vitro antibody production. Purified pneumococcal polysaccharides (PS) can induce direct activation of C3 via the alternative pathway. Using sera of C1q-deficient patients and healthy subjects, we demonstrated that C3d, a split product of C3 that is generated after degradation of iC3b, can be bound to PS antigens. The binding of C3d to PS can occur in the absence of specific antibodies. Subsequently, we showed that PS complexed with C3d can be recognized by complement receptor type 2 that is expressed on B cells. Treatment of B cells with a monoclonal antibody recognizing the C3d-binding site of complement receptor type 2 reduces the binding of PS-C3d to the cells. In addition, we showed that PS4 complexed with C3d exerted an increased immunogenicity compared with free PS4. Our results show that the complement system plays a role in the activation of PS-specific B cells, carrying membrane receptors for C3d. Consequently, the complement system plays a regulatory role in the antibody response to T-cell-independent type 2 antigens such as PS. PMID:1826897
Hawkins, C L; Davies, M J
1998-01-01
Stimulated monocytes and neutrophils generate hypochlorite (HOCl) via the release of the enzyme myeloperoxidase and hydrogen peroxide. HOCl damages proteins by reaction with amino acid side-chains or backbone cleavage. Little information is available about the mechanisms and intermediates involved in these reactions. EPR spin trapping has been employed to identify radicals on proteins, peptides and amino acids after treatment with HOCl. Reaction with HOCl gives both high- and low-molecular-mass nitrogen-centred, protein-derived radicals; the yield of the latter increases with both higher HOCl:protein ratios and enzymic digestion. These radicals, which arise from lysine side-chain amino groups, react with ascorbate, glutathione and Trolox. Reaction of HOCl-treated proteins with excess methionine eliminates radical formation, which is consistent with lysine-derived chloramines (via homolysis of N-Cl bonds) being the radical source. Incubation of HOCl-treated proteins, after removal of excess oxidant, gives rise to both nitrogen-centred radicals, over a period of hours, and time-dependent fragmentation of the protein. Treatment with excess methionine or antioxidants (Trolox, ascorbate, glutathione) protects against fragmentation; urate and bilirubin do not. Chloramine formation and nitrogen-centred radicals are therefore key species in HOCl-induced protein fragmentation. PMID:9620862
The antigenic complex in HIT binds to B cells via complement and complement receptor 2 (CD21)
Khandelwal, Sanjay; Lee, Grace M.; Hester, C. Garren; Poncz, Mortimer; McKenzie, Steven E.; Sachais, Bruce S.; Rauova, Lubica; Kelsoe, Garnett; Cines, Douglas B.; Frank, Michael
2016-01-01
Heparin-induced thrombocytopenia is a prothrombotic disorder caused by antibodies to platelet factor 4 (PF4)/heparin complexes. The mechanism that incites such prevalent anti-PF4/heparin antibody production in more than 50% of patients exposed to heparin in some clinical settings is poorly understood. To investigate early events associated with antigen exposure, we first examined the interaction of PF4/heparin complexes with cells circulating in whole blood. In healthy donors, PF4/heparin complexes bind preferentially to B cells (>90% of B cells bind to PF4/heparin in vitro) relative to neutrophils, monocytes, or T cells. Binding of PF4 to B cells is heparin dependent, and PF4/heparin complexes are found on circulating B cells from some, but not all, patients receiving heparin. Given the high proportion of B cells that bind PF4/heparin, we investigated complement as a mechanism for noncognate antigen recognition. Complement is activated by PF4/heparin complexes, co-localizes with antigen on B cells from healthy donors, and is present on antigen-positive B cells in patients receiving heparin. Binding of PF4/heparin complexes to B cells is mediated through the interaction between complement and complement receptor 2 (CR2 [CD21]). To the best of our knowledge, these are the first studies to demonstrate complement activation by PF4/heparin complexes, opsonization of PF4/heparin to B cells via CD21, and the presence of complement activation fragments on circulating B cells in some patients receiving heparin. Given the critical contribution of complement to humoral immunity, our observations provide new mechanistic insights into the immunogenicity of PF4/heparin complexes. PMID:27412887
Malm, Sven; Jusko, Monika; Eick, Sigrun; Potempa, Jan; Riesbeck, Kristian; Blom, Anna M.
2012-01-01
Infection with the Gram-negative pathogen Prevotella intermedia gives rise to periodontitis and a growing number of studies implies an association of P. intermedia with rheumatoid arthritis. The serine protease Factor I (FI) is the central inhibitor of complement degrading complement components C3b and C4b in the presence of cofactors such as C4b-binding protein (C4BP) and Factor H (FH). Yet, the significance of complement inhibitor acquisition in P. intermedia infection and FI binding by Gram-negative pathogens has not been addressed. Here we show that P. intermedia isolates bound purified FI as well as FI directly from heat-inactivated human serum. FI bound to bacteria retained its serine protease activity as shown in degradation experiments with 125I-labeled C4b. Since FI requires cofactors for its activity we also investigated the binding of purified cofactors C4BP and FH and found acquisition of both proteins, which retained their activity in FI mediated degradation of C3b and C4b. We propose that FI binding by P. intermedia represents a new mechanism contributing to complement evasion by a Gram-negative bacterial pathogen associated with chronic diseases. PMID:22514678
Malm, Sven; Jusko, Monika; Eick, Sigrun; Potempa, Jan; Riesbeck, Kristian; Blom, Anna M
2012-01-01
Infection with the Gram-negative pathogen Prevotella intermedia gives rise to periodontitis and a growing number of studies implies an association of P. intermedia with rheumatoid arthritis. The serine protease Factor I (FI) is the central inhibitor of complement degrading complement components C3b and C4b in the presence of cofactors such as C4b-binding protein (C4BP) and Factor H (FH). Yet, the significance of complement inhibitor acquisition in P. intermedia infection and FI binding by Gram-negative pathogens has not been addressed. Here we show that P. intermedia isolates bound purified FI as well as FI directly from heat-inactivated human serum. FI bound to bacteria retained its serine protease activity as shown in degradation experiments with (125)I-labeled C4b. Since FI requires cofactors for its activity we also investigated the binding of purified cofactors C4BP and FH and found acquisition of both proteins, which retained their activity in FI mediated degradation of C3b and C4b. We propose that FI binding by P. intermedia represents a new mechanism contributing to complement evasion by a Gram-negative bacterial pathogen associated with chronic diseases.
Complement in Action: An Analysis of Patent Trends from 1976 Through 2011.
Yang, Kun; Deangelis, Robert A; Reed, Janet E; Ricklin, Daniel; Lambris, John D
2013-01-01
Complement is an essential part of the innate immune response. It interacts with diverse endogenous pathways and contributes to the maintenance of homeostasis, the modulation of adaptive immune responses, and the development of various pathologies. The potential usefulness, in both research and clinical settings, of compounds that detect or modulate complement activity has resulted in thousands of publications on complement-related innovations in fields such as drug discovery, disease diagnosis and treatment, and immunoassays, among others. This study highlights the distribution and publication trends of patents related to the complement system that were granted by the United States Patent and Trademark Office from 1976 to the present day. A comparison to complement-related documents published by the World Intellectual Property Organization is also included. Statistical analyses revealed increasing diversity in complement-related research interests over time. More than half of the patents were found to focus on the discovery of inhibitors; interest in various inhibitor classes exhibited a remarkable transformation from chemical compounds early on to proteins and antibodies in more recent years. Among clinical applications, complement proteins and their modulators have been extensively patented for the diagnosis and treatment of eye diseases (especially age-related macular degeneration), graft rejection, cancer, sepsis, and a variety of other inflammatory and immune diseases. All of the patents discussed in this chapter, as well as those from other databases, are available from our newly constructed complement patent database: www.innateimmunity.us/patent .
Complement in action: an analysis of patent trends from 1976 through 2011.
Yang, Kun; DeAngelis, Robert A; Reed, Janet E; Ricklin, Daniel; Lambris, John D
2013-01-01
Complement is an essential part of the innate immune response. It interacts with diverse endogenous pathways and contributes to the maintenance of homeostasis, the modulation of adaptive immune responses, and the development of various pathologies. The potential usefulness, in both research and clinical settings, of compounds that detect or modulate complement activity has resulted in thousands of publications on complement-related innovations in fields such as drug discovery, disease diagnosis and treatment, and immunoassays, among others. This study highlights the distribution and publication trends of patents related to the complement system that were granted by the United States Patent and Trademark Office from 1976 to the present day. A comparison to complement-related documents published by the World Intellectual Property Organization is also included. Statistical analyses revealed increasing diversity in complement-related research interests over time. More than half of the patents were found to focus on the discovery of inhibitors; interest in various inhibitor classes exhibited a remarkable transformation from chemical compounds early on to proteins and antibodies in more recent years. Among clinical applications, complement proteins and their modulators have been extensively patented for the diagnosis and treatment of eye diseases (especially age-related macular degeneration), graft rejection, cancer, sepsis, and a variety of other inflammatory and immune diseases. All of the patents discussed in this chapter, as well as those from other databases, are available from our newly constructed complement patent database: www.innateimmunity.us/patent.
Besserer, Arnaud; Burnotte, Emeline; Bienert, Gerd Patrick; Chevalier, Adrien S.; Errachid, Abdelmounaim; Grefen, Christopher; Blatt, Michael R.; Chaumont, François
2012-01-01
Plasma membrane intrinsic proteins (PIPs) are aquaporins facilitating the diffusion of water through the cell membrane. We previously showed that the traffic of the maize (Zea mays) PIP2;5 to the plasma membrane is dependent on the endoplasmic reticulum diacidic export motif. Here, we report that the post-Golgi traffic and water channel activity of PIP2;5 are regulated by the SNARE (for soluble N-ethylmaleimide-sensitive factor protein attachment protein receptor) SYP121, a plasma membrane resident syntaxin involved in vesicle traffic, signaling, and regulation of K+ channels. We demonstrate that the expression of the dominant-negative SYP121-Sp2 fragment in maize mesophyll protoplasts or epidermal cells leads to a decrease in the delivery of PIP2;5 to the plasma membrane. Protoplast and oocyte swelling assays showed that PIP2;5 water channel activity is negatively affected by SYP121-Sp2. A combination of in vitro (copurification assays) and in vivo (bimolecular fluorescence complementation, Förster resonance energy transfer, and yeast split-ubiquitin) approaches allowed us to demonstrate that SYP121 and PIP2;5 physically interact. Together with previous data demonstrating the role of SYP121 in regulating K+ channel trafficking and activity, these results suggest that SYP121 SNARE contributes to the regulation of the cell osmotic homeostasis. PMID:22942383
Besserer, Arnaud; Burnotte, Emeline; Bienert, Gerd Patrick; Chevalier, Adrien S; Errachid, Abdelmounaim; Grefen, Christopher; Blatt, Michael R; Chaumont, François
2012-08-01
Plasma membrane intrinsic proteins (PIPs) are aquaporins facilitating the diffusion of water through the cell membrane. We previously showed that the traffic of the maize (Zea mays) PIP2;5 to the plasma membrane is dependent on the endoplasmic reticulum diacidic export motif. Here, we report that the post-Golgi traffic and water channel activity of PIP2;5 are regulated by the SNARE (for soluble N-ethylmaleimide-sensitive factor protein attachment protein receptor) SYP121, a plasma membrane resident syntaxin involved in vesicle traffic, signaling, and regulation of K(+) channels. We demonstrate that the expression of the dominant-negative SYP121-Sp2 fragment in maize mesophyll protoplasts or epidermal cells leads to a decrease in the delivery of PIP2;5 to the plasma membrane. Protoplast and oocyte swelling assays showed that PIP2;5 water channel activity is negatively affected by SYP121-Sp2. A combination of in vitro (copurification assays) and in vivo (bimolecular fluorescence complementation, Förster resonance energy transfer, and yeast split-ubiquitin) approaches allowed us to demonstrate that SYP121 and PIP2;5 physically interact. Together with previous data demonstrating the role of SYP121 in regulating K(+) channel trafficking and activity, these results suggest that SYP121 SNARE contributes to the regulation of the cell osmotic homeostasis.
Liu, Tzu-Yin; Chou, Wen-Chun; Chen, Wei-Yuan; Chu, Ching-Yi; Dai, Chen-Yi; Wu, Pei-Yu
2018-05-01
Despite the great interest in identifying protein-protein interactions (PPIs) in biological systems, only a few attempts have been made at large-scale PPI screening in planta. Unlike biochemical assays, bimolecular fluorescence complementation allows visualization of transient and weak PPIs in vivo at subcellular resolution. However, when the non-fluorescent fragments are highly expressed, spontaneous and irreversible self-assembly of the split halves can easily generate false positives. The recently developed tripartite split-GFP system was shown to be a reliable PPI reporter in mammalian and yeast cells. In this study, we adapted this methodology, in combination with the β-estradiol-inducible expression cassette, for the detection of membrane PPIs in planta. Using a transient expression assay by agroinfiltration of Nicotiana benthamiana leaves, we demonstrate the utility of the tripartite split-GFP association in plant cells and affirm that the tripartite split-GFP system yields no spurious background signal even with abundant fusion proteins readily accessible to the compartments of interaction. By validating a few of the Arabidopsis PPIs, including the membrane PPIs implicated in phosphate homeostasis, we proved the fidelity of this assay for detection of PPIs in various cellular compartments in planta. Moreover, the technique combining the tripartite split-GFP association and dual-intein-mediated cleavage of polyprotein precursor is feasible in stably transformed Arabidopsis plants. Our results provide a proof-of-concept implementation of the tripartite split-GFP system as a potential tool for membrane PPI screens in planta. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.
van der Maten, Erika; van den Broek, Bryan; de Jonge, Marien I; Rensen, Kim J W; Eleveld, Marc J; Zomer, Aldert L; Cremers, Amelieke J H; Ferwerda, Gerben; de Groot, Ronald; Langereis, Jeroen D; van der Flier, Michiel
2018-04-01
The pneumococcal capsular serotype is an important determinant of complement resistance and invasive disease potential, but other virulence factors have also been found to contribute. Pneumococcal surface protein C (PspC), a highly variable virulence protein that binds complement factor H to evade C3 opsonization, is divided into two subgroups: choline-bound subgroup I and LPxTG-anchored subgroup II. The prevalence of different PspC subgroups in invasive pneumococcal disease (IPD) and functional differences in complement evasion are unknown. The prevalence of PspC subgroups in IPD isolates was determined in a collection of 349 sequenced strains of Streptococcus pneumoniae isolated from adult patients. pspC deletion mutants and isogenic pspC switch mutants were constructed to study differences in factor H binding and complement evasion in relation to capsule thickness. Subgroup I pspC was far more prevalent in IPD isolates than subgroup II pspC The presence of capsule was associated with a greater ability of bound factor H to reduce complement opsonization. Pneumococcal subgroup I PspC bound significantly more factor H and showed more effective complement evasion than subgroup II PspC in isogenic encapsulated pneumococci. We conclude that variation in the PspC subgroups, independent of capsule serotypes, affects pneumococcal factor H binding and its ability to evade complement deposition. Copyright © 2018 American Society for Microbiology.
Application of Tandem Two-Dimensional Mass Spectrometry for Top-Down Deep Sequencing of Calmodulin
NASA Astrophysics Data System (ADS)
Floris, Federico; Chiron, Lionel; Lynch, Alice M.; Barrow, Mark P.; Delsuc, Marc-André; O'Connor, Peter B.
2018-06-01
Two-dimensional mass spectrometry (2DMS) involves simultaneous acquisition of the fragmentation patterns of all the analytes in a mixture by correlating their precursor and fragment ions by modulating precursor ions systematically through a fragmentation zone. Tandem two-dimensional mass spectrometry (MS/2DMS) unites the ultra-high accuracy of Fourier transform ion cyclotron resonance (FT-ICR) MS/MS and the simultaneous data-independent fragmentation of 2DMS to achieve extensive inter-residue fragmentation of entire proteins. 2DMS was recently developed for top-down proteomics (TDP), and applied to the analysis of calmodulin (CaM), reporting a cleavage coverage of about 23% using infrared multiphoton dissociation (IRMPD) as fragmentation technique. The goal of this work is to expand the utility of top-down protein analysis using MS/2DMS in order to extend the cleavage coverage in top-down proteomics further into the interior regions of the protein. In this case, using MS/2DMS, the cleavage coverage of CaM increased from 23% to 42%.
Bioisosteric Replacements Extracted from High-Quality Structures in the Protein Databank.
Seddon, Matthew P; Cosgrove, David A; Gillet, Valerie J
2018-03-20
Bioisosterism is an important concept in the lead optimisation phase of drug discovery where the aim is to make modifications to parts of a molecule in order to improve some properties while maintaining others. We present an analysis of bioisosteric fragments extracted from the ligands in an established data set consisting of 121 protein targets. A pairwise analysis is carried out of all ligands for a given target. The ligands are fragmented using the BRICS fragmentation scheme and a pair of fragments is deemed to be bioisosteric if they occupy a similar volume of the protein binding site. We consider two levels of generality, one which does not consider the number of attachment points in the fragments and a more restricted case in which both fragments are required to have the same number of attachments. We investigate the extent to which the bioisosteric pairs that are found are common across different target. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Xingyu; Stony Brook University, NY 11794-5215; Nanjing University, Nanjing, Jiangsu
A method is presented for screening fragment libraries using acoustic droplet ejection to co-crystallize proteins and chemicals directly on micromeshes with as little as 2.5 nl of each component. This method was used to identify previously unreported fragments that bind to lysozyme, thermolysin, and trypsin. Acoustic droplet ejection (ADE) is a powerful technology that supports crystallographic applications such as growing, improving and manipulating protein crystals. A fragment-screening strategy is described that uses ADE to co-crystallize proteins with fragment libraries directly on MiTeGen MicroMeshes. Co-crystallization trials can be prepared rapidly and economically. The high speed of specimen preparation and the lowmore » consumption of fragment and protein allow the use of individual rather than pooled fragments. The Echo 550 liquid-handling instrument (Labcyte Inc., Sunnyvale, California, USA) generates droplets with accurate trajectories, which allows multiple co-crystallization experiments to be discretely positioned on a single data-collection micromesh. This accuracy also allows all components to be transferred through small apertures. Consequently, the crystallization tray is in equilibrium with the reservoir before, during and after the transfer of protein, precipitant and fragment to the micromesh on which crystallization will occur. This strict control of the specimen environment means that the crystallography experiments remain identical as the working volumes are decreased from the few microlitres level to the few nanolitres level. Using this system, lysozyme, thermolysin, trypsin and stachydrine demethylase crystals were co-crystallized with a small 33-compound mini-library to search for fragment hits. This technology pushes towards a much faster, more automated and more flexible strategy for structure-based drug discovery using as little as 2.5 nl of each major component.« less
Proteome-wide covalent ligand discovery in native biological systems
Backus, Keriann M.; Correia, Bruno E.; Lum, Kenneth M.; Forli, Stefano; Horning, Benjamin D.; González-Páez, Gonzalo E.; Chatterjee, Sandip; Lanning, Bryan R.; Teijaro, John R.; Olson, Arthur J.; Wolan, Dennis W.; Cravatt, Benjamin F.
2016-01-01
Small molecules are powerful tools for investigating protein function and can serve as leads for new therapeutics. Most human proteins, however, lack small-molecule ligands, and entire protein classes are considered “undruggable” 1,2. Fragment-based ligand discovery (FBLD) can identify small-molecule probes for proteins that have proven difficult to target using high-throughput screening of complex compound libraries 1,3. Although reversibly binding ligands are commonly pursued, covalent fragments provide an alternative route to small-molecule probes 4–10, including those that can access regions of proteins that are difficult to access through binding affinity alone 5,10,11. In this manuscript, we report a quantitative analysis of cysteine-reactive small-molecule fragments screened against thousands of proteins. Covalent ligands were identified for >700 cysteines found in both druggable proteins and proteins deficient in chemical probes, including transcription factors, adaptor/scaffolding proteins, and uncharacterized proteins. Among the atypical ligand-protein interactions discovered were compounds that react preferentially with pro- (inactive) caspases. We used these ligands to distinguish extrinsic apoptosis pathways in human cell lines versus primary human T-cells, showing that the former is largely mediated by caspase-8 while the latter depends on both caspase-8 and −10. Fragment-based covalent ligand discovery provides a greatly expanded portrait of the ligandable proteome and furnishes compounds that can illuminate protein functions in native biological systems. PMID:27309814
Ratelade, Julien; Verkman, A S
2014-11-01
Neuromyelitis optica (NMO) is an inflammatory demyelinating disease of the central nervous system in which anti-aquaporin-4 (AQP4) autoantibodies (AQP4-IgG) cause damage to astrocytes by complement-dependent cytotoxicity (CDC). Various approaches have been attempted to produce NMO lesions in rodents, some involving genetically modified mice with altered immune cell function. Here, we found that mouse serum strongly inhibits complement from multiple species, preventing AQP4-IgG-dependent CDC. Effects of mouse serum on complement activation were tested in CDC assays in which AQP4-expressing cells were incubated with AQP4-IgG and complement from different species. Biochemical assays and mass spectrometry were used to characterize complement inhibitor(s) in mouse serum. Sera from different strains of mice produced almost no AQP4-IgG-dependent CDC compared with human, rat and guinea pig sera. Remarkably, addition of mouse serum prevented AQP4-IgG-dependent CDC caused by human, rat or guinea pig serum, with 50% inhibition at <5% mouse serum. Hemolysis assays indicated that the inhibitor(s) in mouse serum target the classical and not the alternative complement pathway. We found that the complement inhibitor(s) in mouse serum were contained in a serum fraction purified with protein-A resin; however, the inhibitor was not IgG as determined using serum from IgG-deficient mice. Mass spectrometry on the protein A-purified fraction produced several inhibitor candidates. The low intrinsic complement activity of mouse serum and the presence of complement inhibitor(s) limit the utility of mouse models to study disorders, such as NMO, involving the classical complement pathway. Copyright © 2014 Elsevier Ltd. All rights reserved.
Holokinetic centromeres and efficient telomere healing enable rapid karyotype evolution.
Jankowska, Maja; Fuchs, Jörg; Klocke, Evelyn; Fojtová, Miloslava; Polanská, Pavla; Fajkus, Jiří; Schubert, Veit; Houben, Andreas
2015-12-01
Species with holocentric chromosomes are often characterized by a rapid karyotype evolution. In contrast to species with monocentric chromosomes where acentric fragments are lost during cell division, breakage of holocentric chromosomes creates fragments with normal centromere activity. To decipher the mechanism that allows holocentric species an accelerated karyotype evolution via chromosome breakage, we analyzed the chromosome complements of irradiated Luzula elegans plants. The resulting chromosomal fragments and rearranged chromosomes revealed holocentromere-typical CENH3 and histone H2AThr120ph signals as well as the same mitotic mobility like unfragmented chromosomes. Newly synthesized telomeres at break points become detectable 3 weeks after irradiation. The presence of active telomerase suggests a telomerase-based mechanism of chromosome healing. A successful transmission of holocentric chromosome fragments across different generations was found for most offspring of irradiated plants. Hence, a combination of holokinetic centromere activity and the fast formation of new telomeres at break points enables holocentric species a rapid karyotype evolution involving chromosome fissions and rearrangements.
Bilbao, Aivett; Zhang, Ying; Varesio, Emmanuel; Luban, Jeremy; Strambio-De-Castillia, Caterina; Lisacek, Frédérique; Hopfgartner, Gérard
2016-01-01
Data-independent acquisition LC-MS/MS techniques complement supervised methods for peptide quantification. However, due to the wide precursor isolation windows, these techniques are prone to interference at the fragment ion level, which in turn is detrimental for accurate quantification. The “non-outlier fragment ion” (NOFI) ranking algorithm has been developed to assign low priority to fragment ions affected by interference. By using the optimal subset of high priority fragment ions these interfered fragment ions are effectively excluded from quantification. NOFI represents each fragment ion as a vector of four dimensions related to chromatographic and MS fragmentation attributes and applies multivariate outlier detection techniques. Benchmarking conducted on a well-defined quantitative dataset (i.e. the SWATH Gold Standard), indicates that NOFI on average is able to accurately quantify 11-25% more peptides than the commonly used Top-N library intensity ranking method. The sum of the area of the Top3-5 NOFIs produces similar coefficients of variation as compared to the library intensity method but with more accurate quantification results. On a biologically relevant human dendritic cell digest dataset, NOFI properly assigns low priority ranks to 85% of annotated interferences, resulting in sensitivity values between 0.92 and 0.80 against 0.76 for the Spectronaut interference detection algorithm. PMID:26412574
Bythell, Benjamin J; Csonka, István P; Suhai, Sándor; Barofsky, Douglas F; Paizs, Béla
2010-11-25
The gas-phase structures and fragmentation pathways of the singly protonated peptide arginylglycylaspartic acid (RGD) are investigated by means of collision-induced-dissociation (CID) and detailed molecular mechanics and density functional theory (DFT) calculations. It is demonstrated that despite the ionizing proton being strongly sequestered at the guanidine group, protonated RGD can easily be fragmented on charge directed fragmentation pathways. This is due to facile mobilization of the C-terminal or aspartic acid COOH protons thereby generating salt-bridge (SB) stabilized structures. These SB intermediates can directly fragment to generate b(2) ions or facilely rearrange to form anhydrides from which both b(2) and b(2)+H(2)O fragments can be formed. The salt-bridge stabilized and anhydride transition structures (TSs) necessary to form b(2) and b(2)+H(2)O are much lower in energy than their traditional charge solvated counterparts. These mechanisms provide compelling evidence of the role of SB and anhydride structures in protonated peptide fragmentation which complements and supports our recent findings for tryptic systems (Bythell, B. J.; Suhai, S.; Somogyi, A.; Paizs, B. J. Am. Chem. Soc. 2009, 131, 14057-14065.). In addition to these findings we also report on the mechanisms for the formation of the b(1) ion, neutral loss (H(2)O, NH(3), guanidine) fragment ions, and the d(3) ion.
Common Amino Acid Subsequences in a Universal Proteome—Relevance for Food Science
Minkiewicz, Piotr; Darewicz, Małgorzata; Iwaniak, Anna; Sokołowska, Jolanta; Starowicz, Piotr; Bucholska, Justyna; Hrynkiewicz, Monika
2015-01-01
A common subsequence is a fragment of the amino acid chain that occurs in more than one protein. Common subsequences may be an object of interest for food scientists as biologically active peptides, epitopes, and/or protein markers that are used in comparative proteomics. An individual bioactive fragment, in particular the shortest fragment containing two or three amino acid residues, may occur in many protein sequences. An individual linear epitope may also be present in multiple sequences of precursor proteins. Although recent recommendations for prediction of allergenicity and cross-reactivity include not only sequence identity, but also similarities in secondary and tertiary structures surrounding the common fragment, local sequence identity may be used to screen protein sequence databases for potential allergens in silico. The main weakness of the screening process is that it overlooks allergens and cross-reactivity cases without identical fragments corresponding to linear epitopes. A single peptide may also serve as a marker of a group of allergens that belong to the same family and, possibly, reveal cross-reactivity. This review article discusses the benefits for food scientists that follow from the common subsequences concept. PMID:26340620
Complementation for an essential ancillary nonstructural protein function across parvovirus genera
Mihaylov, Ivailo S.; Cotmore, Susan F.; Tattersall, Peter
2014-01-01
Parvoviruses encode a small number of ancillary proteins that differ substantially between genera. Within the genus Protoparvovirus, minute virus of mice (MVM) encodes three isoforms of its ancillary protein NS2, while human bocavirus 1 (HBoV1), in the genus Bocaparvovirus, encodes an NP1 protein that is unrelated in primary sequence to MVM NS2. To search for functional overlap between NS2 and NP1, we generated murine A9 cell populations that inducibly express HBoV1 NP1. These were used to test whether NP1 expression could complement specific defects resulting from depletion of MVM NS2 isoforms. NP1 induction had little impact on cell viability or cell cycle progression in uninfected cells, and was unable to complement late defects in MVM virion production associated with low NS2 levels. However, NP1 did relocate to MVM replication centers, and supports both the normal expansion of these foci and overcomes the early paralysis of DNA replication in NS2-null infections. PMID:25194919
NASA Astrophysics Data System (ADS)
Clarke, David J.; Murray, Euan; Hupp, Ted; Mackay, C. Logan; Langridge-Smith, Pat R. R.
2011-08-01
Noncovalent protein-ligand and protein-protein complexes are readily detected using electrospray ionization mass spectrometry (ESI MS). Furthermore, recent reports have demonstrated that careful use of electron capture dissociation (ECD) fragmentation allows covalent backbone bonds of protein complexes to be dissociated without disruption of noncovalent protein-ligand interactions. In this way the site of protein-ligand interfaces can be identified. To date, protein-ligand complexes, which have proven tractable to this technique, have been mediated by ionic electrostatic interactions, i.e., ion pair interactions or salt bridging. Here we extend this methodology by applying ECD to study a protein-peptide complex that contains no electrostatics interactions. We analyzed the complex between the 21 kDa p53-inhibitor protein anterior gradient-2 and its hexapeptide binding ligand (PTTIYY). ECD fragmentation of the 1:1 complex occurs with retention of protein-peptide binding and analysis of the resulting fragments allows the binding interface to be localized to a C-terminal region between residues 109 and 175. These finding are supported by a solution-phase competition assay, which implicates the region between residues 108 and 122 within AGR2 as the PTTIYY binding interface. Our study expands previous findings by demonstrating that top-down ECD mass spectrometry can be used to determine directly the sites of peptide-protein interfaces. This highlights the growing potential of using ECD and related top-down fragmentation techniques for interrogation of protein-protein interfaces.
Phenotypic characterization of ten methanol oxidation (Mox) mutant classes in methylobacterium AM1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nunn, D.N.; Lidstrom, M.E.
Twenty-five methanol oxidation mutants of the facultative methylotroph Methylobacterium strain AM1 have been characterized by complementation analysis and assigned to ten complementation groups, Mox A1,A2,A3 and B-H. We have characterized each of the mutants belonging to the ten Mox complementation groups by PMS-DCPIP dye linked methanol dehydrogenase activity, by methanol-dependent whole cell oxygen consumption, by the presence or absence of methanol dehydrogenase protein by SDS-polyacrylamide gels and Western blotting, by the absorption spectra of purified mutant methanol dehydrogenase proteins and by the presence or absence of the soluble cytochrome c proteins of Methylobacterium AM1. We propose functions for each ofmore » the genes deficient in the mutants of the ten Mox complementation groups. These functions include two linked genes that encode the methanol dehydrogenase structural protein and the soluble cytochrome c/sub L/, a gene encoding a secretion function essential for the synthesis and export of methanol dehydrogenase and cytochrome c/sub L/, three gene functions responsible for the proper association of the PQQ prosthetic group with the methanol dehydrogenase apoprotein and four positive regulatory gene functions controlling the expression of the ability to oxidize methanol. 24 refs., 5 figs., 2 tabs.« less
Proteomic profile of dry-cured ham relative to PRKAG3 or CAST genotype, level of salt and pastiness.
Skrlep, Martin; Candek-Potokar, Marjeta; Mandelc, Stanislav; Javornik, Branka; Gou, Pere; Chambon, Christophe; Santé-Lhoutellier, Véronique
2011-08-01
Two-dimensional electrophoresis was used to compare dry-cured biceps femoris insoluble protein fraction according to genotype (PRKAG3Ile199Val and CASTLys249Arg/Ser638Arg) as well as salt and pastiness level. The PRKAG3 affected mainly muscle metabolic enzymes, indicating its possible influence on muscle metabolism with heterozygotes Ile/Val appearing different from both homozygous genotypes. The effect of CAST was smaller, affecting the quantity of one actin fragment. Dry-cured ham salt and pastiness level affected a wide variety of protein spots including metabolic enzymes, plasma proteins, chaperones and myofibrillar proteins, including protein fragments, indicating the connection with proteolysis. Pastiness was associated with salt content, reflected also by the fact that many spots were affected by both factors. Despite the absence of extreme pastiness (or low salt samples), some protein spots (actin, MHC fragment, desmin fragment) exhibited important differences in intensity according to pastiness (and salt level) suggesting they could be used as potential quality markers. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morand, Patrice; Laboratoire de Virologie Moléculaire et Structurale, EA 2939, Université Joseph Fourier, Grenoble; Budayova-Spano, Monika
A C-terminal fragment of the Epstein–Barr virus lytic switch protein ZEBRA has been crystallized in complex with DNA. A C-terminal fragment of the Epstein–Barr virus immediate-early transcription factor ZEBRA has been expressed as a recombinant protein in Escherichia coli and purified to homogeneity. The fragment behaves as a dimer in solution, consistent with the presence of a basic region leucine-zipper (bZIP) domain. Crystals of the fragment in complex with a DNA duplex were grown by the hanging-drop vapour-diffusion technique using polyethylene glycol 4000 and magnesium acetate as crystallization agents. Crystals diffract to better than 2.5 Å resolution using synchrotron radiationmore » (λ = 0.976 Å). Crystals belong to space group C2, with unit-cell parameters a = 94.2, b = 26.5, c = 98.1 Å, β = 103.9°.« less
Fragment screening of cyclin G-associated kinase by weak affinity chromatography.
Meiby, Elinor; Knapp, Stefan; Elkins, Jonathan M; Ohlson, Sten
2012-11-01
Fragment-based drug discovery (FBDD) has become a new strategy for drug discovery where lead compounds are evolved from small molecules. These fragments form low affinity interactions (dissociation constant (K(D)) = mM - μM) with protein targets, which require fragment screening methods of sufficient sensitivity. Weak affinity chromatography (WAC) is a promising new technology for fragment screening based on selective retention of fragments by a drug target. Kinases are a major pharmaceutical target, and FBDD has been successfully applied to several of these targets. In this work, we have demonstrated the potential to use WAC in combination with mass spectrometry (MS) detection for fragment screening of a kinase target-cyclin G-associated kinase (GAK). One hundred seventy fragments were selected for WAC screening by virtual screening of a commercial fragment library against the ATP-binding site of five different proteins. GAK protein was immobilized on a capillary HPLC column, and compound binding was characterized by frontal affinity chromatography. Compounds were screened in sets of 13 or 14, in combination with MS detection for enhanced throughput. Seventy-eight fragments (46 %) with K(D) < 200 μM were detected, including a few highly efficient GAK binders (K(D) of 2 μM; ligand efficiency = 0.51). Of special interest is that chiral screening by WAC may be possible, as two stereoisomeric fragments, which both contained one chiral center, demonstrated twin peaks. This ability, in combination with the robustness, sensitivity, and simplicity of WAC makes it a new method for fragment screening of considerable potential.
In silico local structure approach: a case study on outer membrane proteins.
Martin, Juliette; de Brevern, Alexandre G; Camproux, Anne-Claude
2008-04-01
The detection of Outer Membrane Proteins (OMP) in whole genomes is an actual question, their sequence characteristics have thus been intensively studied. This class of protein displays a common beta-barrel architecture, formed by adjacent antiparallel strands. However, due to the lack of available structures, few structural studies have been made on this class of proteins. Here we propose a novel OMP local structure investigation, based on a structural alphabet approach, i.e., the decomposition of 3D structures using a library of four-residue protein fragments. The optimal decomposition of structures using hidden Markov model results in a specific structural alphabet of 20 fragments, six of them dedicated to the decomposition of beta-strands. This optimal alphabet, called SA20-OMP, is analyzed in details, in terms of local structures and transitions between fragments. It highlights a particular and strong organization of beta-strands as series of regular canonical structural fragments. The comparison with alphabets learned on globular structures indicates that the internal organization of OMP structures is more constrained than in globular structures. The analysis of OMP structures using SA20-OMP reveals some recurrent structural patterns. The preferred location of fragments in the distinct regions of the membrane is investigated. The study of pairwise specificity of fragments reveals that some contacts between structural fragments in beta-sheets are clearly favored whereas others are avoided. This contact specificity is stronger in OMP than in globular structures. Moreover, SA20-OMP also captured sequential information. This can be integrated in a scoring function for structural model ranking with very promising results. (c) 2007 Wiley-Liss, Inc.
Lynch, Anne M.; Murphy, James R.; Byers, Tim; Gibbs, Ronald S.; Neville, Margaret C.; Giclas, Patricia C.; Salmon, Jane E.; Holers, V. Michael
2008-01-01
OBJECTIVE Preeclampsia is a multisystem disease classically defined on the basis of hypertension and proteinuria. As shown in animal studies, complement activation is associated with inflammation in the placenta and adverse pregnancy outcomes. The association between complement activation in humans and adverse pregnancy outcomes is unclear. The purpose of this study was to determine whether elevated levels of the activation fragment Bb in early pregnancy are predictive of preeclampsia. STUDY DESIGN This prospective study of 701 women was conducted in Denver, CO. A single plasma sample was obtained from each woman before 20 weeks’ gestation. The cohort was followed up throughout pregnancy for the development of preeclampsia. Analysis included multivariate logistic regression to adjust for established risk factors for preeclampsia. RESULTS Preeclampsia developed in 4.6% of the cohort. Women with elevated Bb (90th or greater percentile) were substantially more likely to develop preeclampsia than women who had levels less than the 90th percentile (unadjusted relative risk [RR], 3.3, 95% confidence interval [CI] 1.6 to 7, P = .0009). Other significant risk factors for preeclampsia included nulliparity (RR, 2.1, 95% CI, 1–4), a high body mass index (P = .006 for trend), and maternal medical (preexisting maternal hypertension, type 1 diabetes, systemic lupus erythematosus) disease (RR, 4.4, 95% CI, 2–10). Significant risk factors among multiparous women included a history of hypertension in a previous pregnancy (RR, 5, 95% CI, 1.6 to 16) and a change of paternity (RR, 5.1, 95% CI, 1.6 to 15). Adjustment for risk factors did not attenuate the association between an elevated Bb and preeclampsia (adjusted odds ratio [OR], 3.8, 95% CI, 1.6 to 9, P = .002) in the cohort. After removing women with plasma obtained before 10 weeks, the adjusted OR of Bb in the top decile for preeclampsia was 6.1 (95% CI 2.2, 17, P = .0005). CONCLUSION The complement activation product Bb in early pregnancy is a biomarker for elevated risk of preeclampsia. This observation suggests that events linked to activation of complement in early pregnancy are associated with the pathogenesis of preeclampsia. PMID:18221926
Flechas, Ivonne D; Cuellar, Adriana; Cucunubá, Zulma M; Rosas, Fernando; Velasco, Víctor; Steindel, Mario; Thomas, María del Carmen; López, Manuel Carlos; González, John Mario; Puerta, Concepción Judith
2009-11-25
Antigen specificity and IgG subclass could be significant in the natural history of Chagas' disease. The relationship between the different stages of human Chagas' disease and the profiles of total IgG and its subclasses were thus analysed here; they were directed against a crude T. cruzi extract and three recombinant antigens: the T. cruzi kinetoplastid membrane protein-11 (rKMP-11), an internal fragment of the T. cruzi HSP-70 protein 192-433, and the entire Trypanosoma rangeli HSP-70 protein. Seventeen Brazilian acute chagasic patients, 50 Colombian chronic chagasic patients (21 indeterminate and 29 cardiopathic patients) and 30 healthy individuals were included. Total IgG and its subtypes directed against the above-mentioned recombinant antigens were determined by ELISA tests. The T. cruzi KMP-11 and T. rangeli HSP-70 recombinant proteins were able to distinguish both acute from chronic chagasic patients and infected people from healthy individuals. Specific antibodies to T. cruzi crude antigen in acute patients came from IgG3 and IgG4 subclasses whereas IgG1 and IgG3 were the prevalent isotypes in indeterminate and chronic chagasic patients. By contrast, the specific prominent antibodies in all disease stages against T. cruzi KMP-11 and T. rangeli HSP-70 recombinant antigens were the IgG1 subclass. T. cruzi KMP-11 and the T. rangeli HSP-70 recombinant proteins may be explored together in the immunodiagnosis of Chagas' disease. Polarising the IgG1 subclass of the IgG response to T. cruzi KMP-11 and T. rangeli HSP-70 recombinant proteins could have important biological effects, taking into account that this is a complement fixing antibody.
Structural alphabets derived from attractors in conformational space
2010-01-01
Background The hierarchical and partially redundant nature of protein structures justifies the definition of frequently occurring conformations of short fragments as 'states'. Collections of selected representatives for these states define Structural Alphabets, describing the most typical local conformations within protein structures. These alphabets form a bridge between the string-oriented methods of sequence analysis and the coordinate-oriented methods of protein structure analysis. Results A Structural Alphabet has been derived by clustering all four-residue fragments of a high-resolution subset of the protein data bank and extracting the high-density states as representative conformational states. Each fragment is uniquely defined by a set of three independent angles corresponding to its degrees of freedom, capturing in simple and intuitive terms the properties of the conformational space. The fragments of the Structural Alphabet are equivalent to the conformational attractors and therefore yield a most informative encoding of proteins. Proteins can be reconstructed within the experimental uncertainty in structure determination and ensembles of structures can be encoded with accuracy and robustness. Conclusions The density-based Structural Alphabet provides a novel tool to describe local conformations and it is specifically suitable for application in studies of protein dynamics. PMID:20170534
Zhao, Peng; Tao, Dingyin; Liang, Zhen; Zhang, Lihua; Zhang, Yukui
2009-05-01
A novel protein equalizer was developed with single chain variable fragment (scFv) library displaying M13 phage covalently bonded on monolithic cryogel. Due to the great number and various kinds of displayed scFv fragments, as well as strong and specific binding capacity between scFv fragments and proteins, a new protein equalizer technology is preferable in the pretreatment of complex protein samples. After the sample dissolved in phosphate buffer solution (PBS), it was repeatedly loaded onto the equalizer for five times, the bound proteins were in sequence eluted by 2 mol/L NaCl and 50 mmol/L Gly-HC1 (pH 2.5) solution, followed by digestion with thrombin. All proteins or peptides collected from each fraction were further analyzed by high performance liquid chromatography-electrospray tandem mass spectrometry (RPLC-ESI-MS/MS) with a serially coupled long microcolumn. Compared with the untreated samples, the identified protein number was increased from 142 to 396. Furthermore, from sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis results, it was found that the protein concentration difference was reduced obviously in the eluant of direct sample loading, and most high abundance proteins were identified in the eluant of NaCl. All these results demonstrate that the novel protein equalizer with scFv display M13 phage library immobilized on cyrogel could effectively reduce the dynamic range of proteins in complex samples, enabling the identification of more low abundance proteins.
Microtubule antagonists activate programmed cell death (apoptosis) in cultured rat hepatocytes.
Tsukidate, K.; Yamamoto, K.; Snyder, J. W.; Farber, J. L.
1993-01-01
We investigated the mechanism of lethal injury following the disruption of microtubules in cultured hepatocytes treated with vinblastine (VBL) or colchicine (COL). These agents kill hepatocytes by a process readily distinguished from two well-known pathways that lead to a loss of viability, namely, oxidative stress and inhibition of mitochondrial electron transport. Cell killing with VBL and COL was accompanied by fragmentation of DNA. Both the loss of viability and the fragmentation of DNA were prevented by the inhibition of protein synthesis within 6 hours following exposure to VBL or COL. Cell death and the fragmentation of DNA were also prevented when Ca2+ was removed from the culture medium. By contrast, the inhibition of protein kinase C prevented cell killing by VBL or COL, but did not alter the extent of DNA fragmentation. The requirements here for protein synthesis, extracellular Ca2+, and protein kinase C activity define a model of apoptosis, or programmed cell death, that seems to involve mechanisms that can be dissociated from the fragmentation of DNA. Images Figure 2 PMID:8362985
Mäenpää, A.; Junnikkala, S.; Hakulinen, J.; Timonen, T.; Meri, S.
1996-01-01
Gliomas are malignant brain tumors, which, despite recent progress in surgical and radiological treatment, still have a poor prognosis. Since gliomas apparently resist immunological clearance mechanisms, we became interested in examining bow gliomas resist killing by the human complement system. The resistance of human cells to complement-mediated damage is, in large part, mediated by specific inhibitors of complement:membrane cofactor protein (CD46), decay-accelerating factor (CD55), and protectin (CD59). In the present study we examined the expression of complement regulators in 14 human glioma tumors and in 7 glioma cell lines (U251, U87, HS683, U373, U138, U118, and H2). Protectin was found to be strongly expressed by all glioma tumors and cell lines. Northern blotting analysis demonstrated the typical pattern of four to five protectin mRNAs in the glioma cells. Except for blood vessels, the expression of decay-accelerating factor was weak or absent in the tumors in situ, whereas in the cell lines its expression varied, ranging from negative to intermediate. Membrane cofactor protein was moderately expressed by all the cell lines but only weakly in the tumors. Cell-killing experiments demonstrated that the glioma cell lines were exceptionally resistant to C-mediated lysis. Five of the seven cell lines (U373, HS683, U118, U138, and H2) resisted complement lysis under conditions where most other cell lines were sensitive to killing. Neutralization experiments using specific monoclonal antibodies indicated that protectin was functionally the most important complement regulator in the glioma cells. The killing of the U87 and U251 cells could be significantly increased by a blocking anti-protectin monoclonal antibody, whereas for the other cell lines only moderate or no response was observed. The H2 cell line resisted killing by all antibodies and by complement. These results show that protectin is the most important complement regulator on human glioma cells. The exceptional complement resistance of some glioma cell lines suggests that they may utilize other, hitherto less well characterized, mechanisms to resist complement killing. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 6 Figure 7 PMID:8644856
Identifying Interactions that Determine Fragment Binding at Protein Hotspots.
Radoux, Chris J; Olsson, Tjelvar S G; Pitt, Will R; Groom, Colin R; Blundell, Tom L
2016-05-12
Locating a ligand-binding site is an important first step in structure-guided drug discovery, but current methods do little to suggest which interactions within a pocket are the most important for binding. Here we illustrate a method that samples atomic hotspots with simple molecular probes to produce fragment hotspot maps. These maps specifically highlight fragment-binding sites and their corresponding pharmacophores. For ligand-bound structures, they provide an intuitive visual guide within the binding site, directing medicinal chemists where to grow the molecule and alerting them to suboptimal interactions within the original hit. The fragment hotspot map calculation is validated using experimental binding positions of 21 fragments and subsequent lead molecules. The ligands are found in high scoring areas of the fragment hotspot maps, with fragment atoms having a median percentage rank of 97%. Protein kinase B and pantothenate synthetase are examined in detail. In each case, the fragment hotspot maps are able to rationalize a Free-Wilson analysis of SAR data from a fragment-based drug design project.
Construction of an agglutination tool: recombinant Fab fragments biotinylated in vitro.
Czerwinski, Marcin; Krop-Watorek, Anna; Wasniowska, Kazimiera; Smolarek, Dorota; Spitalnik, Steven L
2009-11-30
The pComb3H vector system is used for constructing and panning recombinant antibody libraries. It allows for expression of monovalent Fab fragments, either on the surface of M13 phage, or in the form of soluble proteins secreted into the periplasmic space of bacteria. We constructed a modified pComb3H vector containing cDNA encoding for a 23-amino acid fragment of the Escherichia coli biotin carboxy carrier protein (BCCP), which is an acceptor sequence for biotinylation. The vector was used to express the Fab fragment recognizing human glycophorin A. The purified Fab fragment containing this biotin acceptor sequence was effectively biotinylated in vitro using biotin ligase (BirA). The specificity and avidity of the biotinylated Fab fragments were similar to the previously produced, unmodified Fab fragments. An avidin-alkaline phosphatase conjugate was used to detect the recombinant Fab fragments, instead of secondary antibody. In addition, when biotinylated Fab fragments were mixed with avidin, red blood cells were directly agglutinated.
Qin, Chunlin; Brunn, Jan C; Cook, Richard G; Orkiszewski, Ralph S; Malone, James P; Veis, Arthur; Butler, William T
2003-09-05
Full-length cDNA coding for dentin matrix protein 1 (DMP1) has been cloned and sequenced, but the corresponding complete protein has not been isolated. In searching for naturally occurring DMP1, we recently discovered that the extracellular matrix of bone contains fragments originating from DMP1. Shortened forms of DMP1, termed 37K and 57K fragments, were treated with alkaline phosphatase and then digested with trypsin. The resultant peptides were purified by a two-dimensional method: size exclusion followed by reversed-phase high performance liquid chromatography. Purified peptides were sequenced by Edman degradation and mass spectrometry, and the sequences compared with the DMP1 sequence predicted from cDNA. Extensive sequencing of tryptic peptides revealed that the 37K fragments originated from the NH2-terminal region, and the 57K fragments were from the COOH-terminal part of DMP1. Phosphate analysis indicated that the 37K fragments contained 12 phosphates, and the 57K fragments had 41. From 37K fragments, two peptides lacked a COOH-terminal lysine or arginine; instead they ended at Phe173 and Ser180 and were thus COOH termini of 37K fragments. Two peptides were from the NH2 termini of 57K fragments, starting at Asp218 and Asp222. These findings indicated that DMP1 is proteolytically cleaved at four bonds, Phe173-Asp174, Ser180-Asp181, Ser217-Asp218, and Gln221-Asp222, forming eight fragments. The uniformity of cleavages at the NH2-terminal peptide bonds of aspartyl residues suggests that a single proteinase is involved. Based on its reported specificity, we hypothesize that these scissions are catalyzed by PHEX protein. We envision that the proteolytic processing of DMP1 plays a crucial role during osteogenesis and dentinogenesis.
Giuntini, Serena; Reason, Donald C; Granoff, Dan M
2011-09-01
Binding of the complement-downregulating protein factor H (fH) to the surface of the meningococcus is important for survival of the organism in human serum. The meningococcal vaccine candidate factor H binding protein (fHbp) is an important ligand for human fH. While some fHbp-specific monoclonal antibodies (MAbs) block binding of fH to fHbp, the stoichiometry of blocking in the presence of high serum concentrations of fH and its effect on complement-mediated bactericidal activity are unknown. To investigate this question, we constructed chimeric antibodies in which the human IgG1 constant region was paired with three murine fHbp-specific binding domains designated JAR 3, JAR 5, and MAb502. By surface plasmon resonance, the association rates for binding of all three MAbs to immobilized fHbp were >50-fold higher than that for binding of fH to fHbp, and the MAb dissociation rates were >500-fold lower than that for fH. While all three MAbs elicited similar C1q-dependent C4b deposition on live bacteria (classical complement pathway), only those antibodies that inhibited binding of fH to fHbp (JAR 3 and JAR 5) had bactericidal activity with human complement. MAb502, which did not inhibit fH binding, had complement-mediated bactericidal activity only when tested with fH-depleted human complement. When an IgG1 anti-fHbp MAb binds to sparsely exposed fHbp on the bacterial surface, there appears to be insufficient complement activation for bacteriolysis unless fH binding also is inhibited. The ability of fHbp vaccines to elicit protective antibodies, therefore, is likely to be enhanced if the antibody repertoire is of high avidity and includes fH-blocking activity.
Blom, Anna M; Magda, Michal; Kohl, Lisa; Shaughnessy, Jutamas; Lambris, John D; Ram, Sanjay; Ermert, David
2017-12-01
Bacteria can cause life-threatening infections, such as pneumonia, meningitis, or sepsis. Antibiotic therapy is a mainstay of treatment, although antimicrobial resistance has drastically increased over the years. Unfortunately, safe and effective vaccines against most pathogens have not yet been approved, and thus developing alternative treatments is important. We analyzed the efficiency of factor H (FH)6-7/Fc, a novel antibacterial immunotherapeutic protein against the Gram-positive bacterium Streptococcus pyogenes This protein is composed of two domains of complement inhibitor human FH (FH complement control protein modules 6 and 7) that bind to S. pyogenes , linked to the Fc region of IgG (FH6-7/Fc). FH6-7/Fc has previously been shown to enhance complement-dependent killing of, and facilitate bacterial clearance in, animal models of the Gram-negative pathogens Haemophilus influenzae and Neisseria meningitidis We hypothesized that activation of complement by FH6-7/Fc on the surface of Gram-positive bacteria such as S. pyogenes will enable professional phagocytes to eliminate the pathogen. We found that FH6-7/Fc alleviated S. pyogenes- induced sepsis in a transgenic mouse model expressing human FH ( S. pyogenes binds FH in a human-specific manner). Furthermore, FH6-7/Fc, which binds to protein H and selected M proteins, displaced FH from the bacterial surface, enhanced alternative pathway activation, and reduced bacterial blood burden by opsonophagocytosis in a C3-dependent manner in an ex vivo human whole-blood model. In conclusion, FH-Fc chimeric proteins could serve as adjunctive treatments against multidrug-resistant bacterial infections. Copyright © 2017 by The American Association of Immunologists, Inc.
De Craene, Johan-Owen; Courte, Fanny; Rinaldi, Bruno; Fitterer, Chantal; Herranz, Mari Carmen; Schmitt-Keichinger, Corinne; Ritzenthaler, Christophe; Friant, Sylvie
2014-01-01
The formation and budding of endoplasmic reticulum ER-derived vesicles depends on the COPII coat protein complex that was first identified in yeast Saccharomyces cerevisiae. The ER-associated Sec12 and the Sar1 GTPase initiate the COPII coat formation by recruiting the Sec23-Sec24 heterodimer following the subsequent recruitment of the Sec13-Sec31 heterotetramer. In yeast, there is usually one gene encoding each COPII protein and these proteins are essential for yeast viability, whereas the plant genome encodes multiple isoforms of all COPII subunits. Here, we used a systematic yeast complementation assay to assess the functionality of Arabidopsis thaliana COPII proteins. In this study, the different plant COPII subunits were expressed in their corresponding temperature-sensitive yeast mutant strain to complement their thermosensitivity and secretion phenotypes. Secretion was assessed using two different yeast cargos: the soluble α-factor pheromone and the membranous v-SNARE (vesicle-soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein receptor) Snc1 involved in the fusion of the secretory vesicles with the plasma membrane. This complementation study allowed the identification of functional A. thaliana COPII proteins for the Sec12, Sar1, Sec24 and Sec13 subunits that could represent an active COPII complex in plant cells. Moreover, we found that AtSec12 and AtSec23 were co-immunoprecipitated with AtSar1 in total cell extract of 15 day-old seedlings of A. thaliana. This demonstrates that AtSar1, AtSec12 and AtSec23 can form a protein complex that might represent an active COPII complex in plant cells.
Dengue virus induces increased activity of the complement alternative pathway in infected cells.
Cabezas, Sheila; Bracho, Gustavo; L Aloia, Amanda; Adamson, Penelope J; Bonder, Claudine S; Smith, Justine R; Gordon, David L; Carr, Jillian M
2018-05-09
Severe dengue virus (DENV) infection is associated with overactivity of the complement alternative pathway (AP) in patient studies. Here, the molecular changes in components of the AP during DENV infection in vitro are investigated. mRNA for factor H (FH) a major negative regulator of the AP, is significantly increased in DENV-infected endothelial cells (EC) and macrophages but in contrast production of extracellular FH protein is not. This discord is not seen for the AP activator, factor B (FB), with DENV induction of both FB mRNA and protein, nor with Toll-like receptor 3 or 4 stimulation of EC and macrophages, which induces both FH and FB mRNA and protein. Surface bound and intracellular FH protein is however induced by DENV, but only in DENV antigen-positive cells, while in two other DENV-susceptible immortalised cell lines (ARPE-19 and HREC) FH protein is induced both intracellularly and extracellularly by DENV infection. Regardless of the cell type, there is an imbalance in AP components and an increase in markers of complement AP activity associated with DENV-infected cells - with lower FH relative to FB protein, increased ability to promote AP-mediated lytic activity and increased deposition of complement component C3b on the surface of DENV-infected cells. For EC in particular, these changes are predicted to result in higher complement activity in the local cellular microenvironment, with the potential to induce functional changes that may result in increased vascular permeability, a hallmark of dengue disease. IMPORTANCE Dengue virus (DENV) is a significant human viral pathogen with global medical and economic impact. DENV may cause serious and life-threatening disease with increased vascular permeability and plasma leakage. The pathogenic mechanisms underlying these features remain unclear; however overactivity of the complement alternative pathway has been suggested to play a role. In this study we investigate the molecular events that may be responsible for this observed alternative pathway overactivity and provide novel findings of changes in the complement system in response to DENV infection in primary cell types that are a major target for DENV infection (macrophages) and pathogenesis (endothelial cells) in vivo Our results suggest a new dimension of cellular events that may influence endothelial cell barrier function during DENV infection that could expand strategies for developing therapeutics to prevent or control DENV-mediated vascular disease. Copyright © 2018 American Society for Microbiology.
Xu, Dong; Zhang, Yang
2012-07-01
Ab initio protein folding is one of the major unsolved problems in computational biology owing to the difficulties in force field design and conformational search. We developed a novel program, QUARK, for template-free protein structure prediction. Query sequences are first broken into fragments of 1-20 residues where multiple fragment structures are retrieved at each position from unrelated experimental structures. Full-length structure models are then assembled from fragments using replica-exchange Monte Carlo simulations, which are guided by a composite knowledge-based force field. A number of novel energy terms and Monte Carlo movements are introduced and the particular contributions to enhancing the efficiency of both force field and search engine are analyzed in detail. QUARK prediction procedure is depicted and tested on the structure modeling of 145 nonhomologous proteins. Although no global templates are used and all fragments from experimental structures with template modeling score >0.5 are excluded, QUARK can successfully construct 3D models of correct folds in one-third cases of short proteins up to 100 residues. In the ninth community-wide Critical Assessment of protein Structure Prediction experiment, QUARK server outperformed the second and third best servers by 18 and 47% based on the cumulative Z-score of global distance test-total scores in the FM category. Although ab initio protein folding remains a significant challenge, these data demonstrate new progress toward the solution of the most important problem in the field. Copyright © 2012 Wiley Periodicals, Inc.
Equilibrium simulations of proteins using molecular fragment replacement and NMR chemical shifts.
Boomsma, Wouter; Tian, Pengfei; Frellsen, Jes; Ferkinghoff-Borg, Jesper; Hamelryck, Thomas; Lindorff-Larsen, Kresten; Vendruscolo, Michele
2014-09-23
Methods of protein structure determination based on NMR chemical shifts are becoming increasingly common. The most widely used approaches adopt the molecular fragment replacement strategy, in which structural fragments are repeatedly reassembled into different complete conformations in molecular simulations. Although these approaches are effective in generating individual structures consistent with the chemical shift data, they do not enable the sampling of the conformational space of proteins with correct statistical weights. Here, we present a method of molecular fragment replacement that makes it possible to perform equilibrium simulations of proteins, and hence to determine their free energy landscapes. This strategy is based on the encoding of the chemical shift information in a probabilistic model in Markov chain Monte Carlo simulations. First, we demonstrate that with this approach it is possible to fold proteins to their native states starting from extended structures. Second, we show that the method satisfies the detailed balance condition and hence it can be used to carry out an equilibrium sampling from the Boltzmann distribution corresponding to the force field used in the simulations. Third, by comparing the results of simulations carried out with and without chemical shift restraints we describe quantitatively the effects that these restraints have on the free energy landscapes of proteins. Taken together, these results demonstrate that the molecular fragment replacement strategy can be used in combination with chemical shift information to characterize not only the native structures of proteins but also their conformational fluctuations.
Isolation and characterization of target sequences of the chicken CdxA homeobox gene.
Margalit, Y; Yarus, S; Shapira, E; Gruenbaum, Y; Fainsod, A
1993-01-01
The DNA binding specificity of the chicken homeodomain protein CDXA was studied. Using a CDXA-glutathione-S-transferase fusion protein, DNA fragments containing the binding site for this protein were isolated. The sources of DNA were oligonucleotides with random sequence and chicken genomic DNA. The DNA fragments isolated were sequenced and tested in DNA binding assays. Sequencing revealed that most DNA fragments are AT rich which is a common feature of homeodomain binding sites. By electrophoretic mobility shift assays it was shown that the different target sequences isolated bind to the CDXA protein with different affinities. The specific sequences bound by the CDXA protein in the genomic fragments isolated, were determined by DNase I footprinting. From the footprinted sequences, the CDXA consensus binding site was determined. The CDXA protein binds the consensus sequence A, A/T, T, A/T, A, T, A/G. The CAUDAL binding site in the ftz promoter is also included in this consensus sequence. When tested, some of the genomic target sequences were capable of enhancing the transcriptional activity of reporter plasmids when introduced into CDXA expressing cells. This study determined the DNA sequence specificity of the CDXA protein and it also shows that this protein can further activate transcription in cells in culture. Images PMID:7909943
Fragment-Based Drug Discovery of Potent Protein Kinase C Iota Inhibitors.
Kwiatkowski, Jacek; Liu, Boping; Tee, Doris Hui Ying; Chen, Guoying; Ahmad, Nur Huda Binte; Wong, Yun Xuan; Poh, Zhi Ying; Ang, Shi Hua; Tan, Eldwin Sum Wai; Ong, Esther Hq; Nurul Dinie; Poulsen, Anders; Pendharkar, Vishal; Sangthongpitag, Kanda; Lee, May Ann; Sepramaniam, Sugunavathi; Ho, Soo Yei; Cherian, Joseph; Hill, Jeffrey; Keller, Thomas H; Hung, Alvin W
2018-05-24
Protein kinase C iota (PKC-ι) is an atypical kinase implicated in the promotion of different cancer types. A biochemical screen of a fragment library has identified several hits from which an azaindole-based scaffold was chosen for optimization. Driven by a structure-activity relationship and supported by molecular modeling, a weakly bound fragment was systematically grown into a potent and selective inhibitor against PKC-ι.
Seo, Ki-Weon; Kim, Dong-Heon; Kim, Ah Hyun; Yoo, Han-Sang; Lee, Kyung-Yeol; Jang, Yong-Suk
2011-01-01
Actinobacillus pleuropneumoniae is the causative agent of porcine pleuropneumonia. Among the virulence factors of the pathogen, ApxIIA, a bacterial exotoxin, is expressed by many serotypes and presents a plausible target for vaccine development. We characterized the region within ApxIIA that induces a protective immune response against bacterial infection using mouse challenge model. Recombinant proteins spanning the length of ApxIIA were produced and antiserum to the full-length ApxIIA was induced in mice. This antiserum recognized fragments #2, #3 and #5 with high binding specificity, but showed poor recognition for fragments #1 and #4. Of the antisera induced in mice by injection of each fragments, only the antiserum to fragment #4 failed to efficiently recognize the full-length antigen, although the individual antisera recognized their cognate antigens with almost equal efficiency. The protective potency of the immunogenic proteins against a challenge injection of bacteria in vivo correlated well with the antibody titer. Fragment #5 induced the highest level of protective activity, comparable to that by the full-length protein. These results support the use of fragment #5 to produce a vaccine against A. pleuropneumoniae challenge, since the small antigen peptide is easier to handle than is the full-length protein and can be expressed efficiently in heterologous expression systems.
Arese, Paolo; Gallo, Valentina; Pantaleo, Antonella; Turrini, Franco
2012-10-01
G6PD catalyzes the first, pace-making reaction of pentosephosphate cycle (PPC) which produces NADPH. NADPH maintains glutathione and thiol groups of proteins and enzymes in the reduced state which is essential for protection against oxidative stress. Individuals affected by G6PD deficiency are unable to regenerate reduced glutathione (GSH) and are undefended against oxidative stress. G6PD deficiency accelerates normal senescence and enhances the precocious removal of chronologically young, yet biologically old cells. The term hemolytic anemia is misleading because RBCs do not lyse but are removed by phagocytosis. Acute hemolysis by fava bean ingestion in G6PD deficient individuals (favism) is described being the best-studied natural model of oxidant damage. It bears strong analogies to hemolysis by oxidant drugs or chemicals. Membrane alterations observed in vivo during favism are superimposable to changes in senescent RBCs. In summary, RBC membranes isolated from favic patients contained elevated amounts of complexes between IgG and the complement fragment C3b/C3c and were prone to vesiculation. Anti-band 3 IgG reacted to aggregated band 3-complement complexes. In favism extensive clustering of band 3 and membrane deposition of hemichromes were also observed. Severely damaged RBCs isolated from early crises had extensive membrane cross-bonding and very low GSH levels and were phagocytosed 10-fold more intensely compared to normal RBCs.
Bacteria-Phagocyte Interactions: Emerging Tactics in an Ancient Rivalry
1990-01-01
afhitan. mechanisms by which microbes cvade the deposi- Mimicry of decay -accelerating factor aExample. T ’ruzi tion of immunogiobulin and complement on...their , Possible Isis of decay accelerating factor on host cell, surfaces have been well-studied (Table 2). For Example. Bacterial phospholipase example...activators of protein that mimics the action of decay accelerat- the alternate complement pathway 1171. ing factor (DAF) [261. This protein is part of a
UV damage-specific DNA-binding protein in xeroderma pigmentosum complementation group E
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kataoka, H.; Fujiwara, Y.
1991-03-29
The gel mobility shift assay method revealed a specifically ultraviolet (UV) damage recognizing, DNA-binding protein in nuclear extracts of normal human cells. The resulted DNA/protein complexes caused the two retarded mobility shifts. Four xeroderma pigmentosum complementation group E (XPE) fibroblast strains derived from unrelated Japanese families were not deficient in such a DNA damage recognition/binding protein because of the normal complex formation and gel mobility shifts, although we confirmed the reported lack of the protein in the European XPE (XP2RO and XP3RO) cells. Thus, the absence of this binding protein is not always commonly observed in all the XPE strains,more » and the partially repair-deficient and intermediately UV-hypersensitive phenotype of XPE cells are much similar whether or not they lack the protein.« less
A probabilistic and continuous model of protein conformational space for template-free modeling.
Zhao, Feng; Peng, Jian; Debartolo, Joe; Freed, Karl F; Sosnick, Tobin R; Xu, Jinbo
2010-06-01
One of the major challenges with protein template-free modeling is an efficient sampling algorithm that can explore a huge conformation space quickly. The popular fragment assembly method constructs a conformation by stringing together short fragments extracted from the Protein Data Base (PDB). The discrete nature of this method may limit generated conformations to a subspace in which the native fold does not belong. Another worry is that a protein with really new fold may contain some fragments not in the PDB. This article presents a probabilistic model of protein conformational space to overcome the above two limitations. This probabilistic model employs directional statistics to model the distribution of backbone angles and 2(nd)-order Conditional Random Fields (CRFs) to describe sequence-angle relationship. Using this probabilistic model, we can sample protein conformations in a continuous space, as opposed to the widely used fragment assembly and lattice model methods that work in a discrete space. We show that when coupled with a simple energy function, this probabilistic method compares favorably with the fragment assembly method in the blind CASP8 evaluation, especially on alpha or small beta proteins. To our knowledge, this is the first probabilistic method that can search conformations in a continuous space and achieves favorable performance. Our method also generated three-dimensional (3D) models better than template-based methods for a couple of CASP8 hard targets. The method described in this article can also be applied to protein loop modeling, model refinement, and even RNA tertiary structure prediction.
Recombinant Kinase Production and Fragment Screening by NMR Spectroscopy.
Han, Byeonggu; Ahn, Hee-Chul
2016-01-01
During the past decade fragment-based drug discovery (FBDD) has rapidly evolved and several drugs or drug candidates developed by FBDD approach are clinically in use or in clinical trials. For example, vemurafenib, a V600E mutated BRAF inhibitor, was developed by utilizing FBDD approach and approved by FDA in 2011. In FBDD, screening of fragments is the starting step for identification of hits and lead generation. Fragment screening usually relies on biophysical techniques by which the protein-bound small molecules can be detected. NMR spectroscopy has been extensively used to study the molecular interaction between the protein and the ligand, and has many advantages in fragment screening over other biophysical techniques. This chapter describes the practical aspects of fragment screening by saturation transfer difference NMR.
Einfinger, Katrin; Badrnya, Sigrun; Furtmüller, Margareta; Handschuh, Daniela; Lindner, Herbert; Geiger, Margarethe
2015-01-01
Protein C inhibitor is a secreted, non-specific serine protease inhibitor with broad protease reactivity. It binds glycosaminoglycans and anionic phospholipids, which can modulate its activity. Anionic phospholipids, such as phosphatidylserine are normally localized to the inner leaflet of the plasma membrane, but are exposed on activated and apoptotic cells and on plasma membrane-derived microparticles. In this report we show by flow cytometry that microparticles derived from cultured cells and activated platelets incorporated protein C inhibitor during membrane blebbing. Moreover, protein C inhibitor is present in/on microparticles circulating in normal human plasma as judged from Western blots, ELISAs, flow cytometry, and mass spectrometry. These plasma microparticles are mainly derived from megakaryocytes. They seem to be saturated with protein C inhibitor, since they do not bind added fluorescence-labeled protein C inhibitor. Heparin partially removed microparticle-bound protein C inhibitor, supporting our assumption that protein C inhibitor is bound via phospholipids. To assess the biological role of microparticle-bound protein C inhibitor we performed protease inhibition assays and co-precipitated putative binding partners on microparticles with anti-protein C inhibitor IgG. As judged from amidolytic assays microparticle-bound protein C inhibitor did not inhibit activated protein C or thrombin, nor did microparticles modulate the activity of exogenous protein C inhibitor. Among the proteins co-precipitating with protein C inhibitor, complement factors, especially complement factor 3, were most striking. Taken together, our data do not support a major role of microparticle-associated protein C inhibitor in coagulation, but rather suggest an interaction with proteins of the complement system present on these phospholipid vesicles. PMID:26580551
Gao, Zhan; Li, Mengyang; Ma, Jie; Zhang, Shicui
2014-12-01
The origin of the classical complement pathway remains open during chordate evolution. A C1q-like member, BjC1q, was identified in the basal chordate amphioxus. It is predominantly expressed in the hepatic caecum, hindgut, and notochord, and is significantly upregulated following challenge with bacteria or lipoteichoic acid and LPS. Recombinant BjC1q and its globular head domain specifically interact with lipoteichoic acid and LPS, but BjC1q displays little lectin activity. Moreover, rBjC1q can assemble to form the high molecular weight oligomers necessary for binding to proteases C1r/C1s and for complement activation, and binds human C1r/C1s/mannan-binding lectin-associated serine protease-2 as well as amphioxus serine proteases involved in the cleavage of C4/C2, and C3 activation. Importantly, rBjC1q binds with human IgG as well as an amphioxus Ig domain containing protein, resulting in the activation of the classical complement pathway. This is the first report showing that a C1q-like protein in invertebrates is able to initiate classical pathway, raising the possibility that amphioxus possesses a C1q-mediated complement system. It also suggests a new scenario for the emergence of the classical complement pathway, in contrast to the proposal that the lectin pathway evolved into the classical pathway. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Osthoff, Michael; Brown, Karl D; Kong, David C M; Daniell, Mark; Eisen, Damon P
2014-01-01
Pseudomonas aeruginosa (P. aeruginosa) microbial keratitis (MK) is a sight-threatening disease. Previous animal studies have identified an important contribution of the complement system to the clearance of P. aeruginosa infection of the cornea. Mannose-binding lectin (MBL), a pattern recognition receptor of the lectin pathway of complement, has been implicated in the host defense against P. aeruginosa. However, studies addressing the role of the lectin pathway in P. aeruginosa MK are lacking. Hence, we sought to determine the activity of the lectin pathway in human MK caused by P. aeruginosa. Primary human corneal epithelial cells (HCECs) from cadaveric donors were exposed to two different P. aeruginosa strains. Gene expression of interleukin (IL)-6, IL-8, MBL, and other complement proteins was determined by reverse transcription-polymerase chain reaction (RT-PCR) and MBL synthesis by enzyme-linked immunosorbent assay and intracellular flow cytometry. MBL gene expression was not detected in unchallenged HCECs. Exposure of HCECs to P. aeruginosa resulted in rapid induction of the transcriptional expression of MBL, IL-6, and IL-8. In addition, expression of several complement proteins of the classical and lectin pathways, but not the alternative pathway, were upregulated after 5 h of challenge, including MBL-associated serine protease 1. However, MBL protein secretion was not detectable 18 h after challenge with P. aeruginosa. MK due to P. aeruginosa triggers activation of MBL and the lectin pathway of complement. However, the physiologic relevance of this finding is unclear, as corresponding MBL oligomer production was not observed.
Osthoff, Michael; Brown, Karl D.; Kong, David C.M.; Daniell, Mark
2014-01-01
Purpose Pseudomonas aeruginosa (P. aeruginosa) microbial keratitis (MK) is a sight-threatening disease. Previous animal studies have identified an important contribution of the complement system to the clearance of P. aeruginosa infection of the cornea. Mannose-binding lectin (MBL), a pattern recognition receptor of the lectin pathway of complement, has been implicated in the host defense against P. aeruginosa. However, studies addressing the role of the lectin pathway in P. aeruginosa MK are lacking. Hence, we sought to determine the activity of the lectin pathway in human MK caused by P. aeruginosa. Methods Primary human corneal epithelial cells (HCECs) from cadaveric donors were exposed to two different P. aeruginosa strains. Gene expression of interleukin (IL)-6, IL-8, MBL, and other complement proteins was determined by reverse transcription-polymerase chain reaction (RT–PCR) and MBL synthesis by enzyme-linked immunosorbent assay and intracellular flow cytometry. Results MBL gene expression was not detected in unchallenged HCECs. Exposure of HCECs to P. aeruginosa resulted in rapid induction of the transcriptional expression of MBL, IL-6, and IL-8. In addition, expression of several complement proteins of the classical and lectin pathways, but not the alternative pathway, were upregulated after 5 h of challenge, including MBL-associated serine protease 1. However, MBL protein secretion was not detectable 18 h after challenge with P. aeruginosa. Conclusions MK due to P. aeruginosa triggers activation of MBL and the lectin pathway of complement. However, the physiologic relevance of this finding is unclear, as corresponding MBL oligomer production was not observed. PMID:24426774