Hydrogen-Bond Driven Loop-Closure Kinetics in Unfolded Polypeptide Chains
Daidone, Isabella; Neuweiler, Hannes; Doose, Sören; Sauer, Markus; Smith, Jeremy C.
2010-01-01
Characterization of the length dependence of end-to-end loop-closure kinetics in unfolded polypeptide chains provides an understanding of early steps in protein folding. Here, loop-closure in poly-glycine-serine peptides is investigated by combining single-molecule fluorescence spectroscopy with molecular dynamics simulation. For chains containing more than 10 peptide bonds loop-closing rate constants on the 20–100 nanosecond time range exhibit a power-law length dependence. However, this scaling breaks down for shorter peptides, which exhibit slower kinetics arising from a perturbation induced by the dye reporter system used in the experimental setup. The loop-closure kinetics in the longer peptides is found to be determined by the formation of intra-peptide hydrogen bonds and transient β-sheet structure, that accelerate the search for contacts among residues distant in sequence relative to the case of a polypeptide chain in which hydrogen bonds cannot form. Hydrogen-bond-driven polypeptide-chain collapse in unfolded peptides under physiological conditions found here is not only consistent with hierarchical models of protein folding, that highlights the importance of secondary structure formation early in the folding process, but is also shown to speed up the search for productive folding events. PMID:20098498
Beck, P H; Conklin, H B
1975-01-01
We analyzed the records of 77 cases of loop colostomy closure in Vietnam War Casualties. All records were complete from the date of injury to discharge following colostomy closure. Simple of the loop colostomy was performed in 44 patients and resection of the stoma and reanastomosis of bowel segments was performed in 33 patients. Average operating time for simple closure of the loop was 70 minutes compared to 115 minutes for resection and anastomosis. Nasogastric suction was used less frequently and for a shorter time with simple loop closure. The total postoperative complication rate was 9% with simple loop closure as compared to 24% for resection and anastomosis. Simple closure of the loop described in this report is technically easier and as safe as resection of the stoma and reanastomosis. Images Fig. 1. PMID:1094967
Shortening a loop can increase protein native state entropy.
Gavrilov, Yulian; Dagan, Shlomi; Levy, Yaakov
2015-12-01
Protein loops are essential structural elements that influence not only function but also protein stability and folding rates. It was recently reported that shortening a loop in the AcP protein may increase its native state conformational entropy. This effect on the entropy of the folded state can be much larger than the lower entropic penalty of ordering a shorter loop upon folding, and can therefore result in a more pronounced stabilization than predicted by polymer model for loop closure entropy. In this study, which aims at generalizing the effect of loop length shortening on native state dynamics, we use all-atom molecular dynamics simulations to study how gradual shortening a very long or solvent-exposed loop region in four different proteins can affect their stability. For two proteins, AcP and Ubc7, we show an increase in native state entropy in addition to the known effect of the loop length on the unfolded state entropy. However, for two permutants of SH3 domain, shortening a loop results only with the expected change in the entropy of the unfolded state, which nicely reproduces the observed experimental stabilization. Here, we show that an increase in the native state entropy following loop shortening is not unique to the AcP protein, yet nor is it a general rule that applies to all proteins following the truncation of any loop. This modification of the loop length on the folded state and on the unfolded state may result with a greater effect on protein stability. © 2015 Wiley Periodicals, Inc.
Space Station evolution study oxygen loop closure
NASA Technical Reports Server (NTRS)
Wood, M. G.; Delong, D.
1993-01-01
In the current Space Station Freedom (SSF) Permanently Manned Configuration (PMC), physical scars for closing the oxygen loop by the addition of oxygen generation and carbon dioxide reduction hardware are not included. During station restructuring, the capability for oxygen loop closure was deferred to the B-modules. As such, the ability to close the oxygen loop in the U.S. Laboratory module (LAB A) and the Habitation A module (HAB A) is contingent on the presence of the B modules. To base oxygen loop closure of SSF on the funding of the B-modules may not be desirable. Therefore, this study was requested to evaluate the necessary hooks and scars in the A-modules to facilitate closure of the oxygen loop at or subsequent to PMC. The study defines the scars for oxygen loop closure with impacts to cost, weight and volume and assesses the effects of byproduct venting. In addition, the recommended scenarios for closure with regard to topology and packaging are presented.
Conformational motions regulate phosphoryl transfer in related protein tyrosine phosphatases
Whittier, Sean K.; Hengge, Alvan C.; Loria, J. Patrick
2014-01-01
Many studies have implicated a role for conformational motions during the catalytic cycle, acting to optimize the binding pocket or facilitate product release, but a more intimate role in the chemical reaction has not been described. We address this by monitoring active-site loop motion in two protein tyrosine phosphatases (PTPs) using NMR spectroscopy. The PTPs, YopH and PTP1B, have very different catalytic rates, however we find in both that the active-site loop closes to its catalytically competent position at rates that mirror the phosphotyrosine cleavage kinetics. This loop contains the catalytic acid, suggesting that loop closure occurs concomitantly with the protonation of the leaving group tyrosine and explains the different kinetics of two otherwise chemically and mechanistically indistinguishable enzymes. PMID:23970698
Simultaneous Determination of Two Subdomain Folding Rates Using the "Transfer-Quench" Method.
Rahamim, Gil; Amir, Dan; Haas, Elisha
2017-05-09
The investigation of the mechanism of protein folding is complicated by the context dependence of the rates of intramolecular contact formation. Methods based on site-specific labeling and ultrafast spectroscopic detection of fluorescence signals were developed for monitoring the rates of individual subdomain folding transitions in situ, in the context of the whole molecule. However, each site-specific labeling modification might affect rates of folding of near-neighbor structural elements, and thus limit the ability to resolve fine differences in rates of folding of these elements. Therefore, it is highly desirable to be able to study the rates of folding of two or more neighboring subdomain structures using a single mutant to facilitate resolution of the order and interdependence of such steps. Here, we report the development of the "Transfer-Quench" method for measuring the rate of formation of two structural elements using a single triple-labeled mutant. This method is based on Förster resonance energy transfer combined with fluorescence quenching. We placed the donor and acceptor at the loop ends, and a quencher at an α-helical element involved in the node forming the loop. The folding of the triple-labeled mutant is monitored by the acceptor emission. The formation of nonlocal contact (loop closure) increases the time-dependent acceptor emission, while the closure of the labeled helix turn reduces this emission. The method was applied in a study of the folding mechanism of the common model protein, the B domain of staphylococcal protein A. Only natural amino acids were used as probes, and thus possible structural perturbations were minimized. Tyr and Trp residues served as donor and acceptor at the ends of a long loop between helices I and II, and a Cys residue as a quencher for the acceptor. We found that the closure of the loop (segment 14-33) occurs with the same rate constant as the nucleation of helix HII (segment 33-29), in line with the nucleation-condensation model. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Unbiased, scalable sampling of protein loop conformations from probabilistic priors.
Zhang, Yajia; Hauser, Kris
2013-01-01
Protein loops are flexible structures that are intimately tied to function, but understanding loop motion and generating loop conformation ensembles remain significant computational challenges. Discrete search techniques scale poorly to large loops, optimization and molecular dynamics techniques are prone to local minima, and inverse kinematics techniques can only incorporate structural preferences in adhoc fashion. This paper presents Sub-Loop Inverse Kinematics Monte Carlo (SLIKMC), a new Markov chain Monte Carlo algorithm for generating conformations of closed loops according to experimentally available, heterogeneous structural preferences. Our simulation experiments demonstrate that the method computes high-scoring conformations of large loops (>10 residues) orders of magnitude faster than standard Monte Carlo and discrete search techniques. Two new developments contribute to the scalability of the new method. First, structural preferences are specified via a probabilistic graphical model (PGM) that links conformation variables, spatial variables (e.g., atom positions), constraints and prior information in a unified framework. The method uses a sparse PGM that exploits locality of interactions between atoms and residues. Second, a novel method for sampling sub-loops is developed to generate statistically unbiased samples of probability densities restricted by loop-closure constraints. Numerical experiments confirm that SLIKMC generates conformation ensembles that are statistically consistent with specified structural preferences. Protein conformations with 100+ residues are sampled on standard PC hardware in seconds. Application to proteins involved in ion-binding demonstrate its potential as a tool for loop ensemble generation and missing structure completion.
Unbiased, scalable sampling of protein loop conformations from probabilistic priors
2013-01-01
Background Protein loops are flexible structures that are intimately tied to function, but understanding loop motion and generating loop conformation ensembles remain significant computational challenges. Discrete search techniques scale poorly to large loops, optimization and molecular dynamics techniques are prone to local minima, and inverse kinematics techniques can only incorporate structural preferences in adhoc fashion. This paper presents Sub-Loop Inverse Kinematics Monte Carlo (SLIKMC), a new Markov chain Monte Carlo algorithm for generating conformations of closed loops according to experimentally available, heterogeneous structural preferences. Results Our simulation experiments demonstrate that the method computes high-scoring conformations of large loops (>10 residues) orders of magnitude faster than standard Monte Carlo and discrete search techniques. Two new developments contribute to the scalability of the new method. First, structural preferences are specified via a probabilistic graphical model (PGM) that links conformation variables, spatial variables (e.g., atom positions), constraints and prior information in a unified framework. The method uses a sparse PGM that exploits locality of interactions between atoms and residues. Second, a novel method for sampling sub-loops is developed to generate statistically unbiased samples of probability densities restricted by loop-closure constraints. Conclusion Numerical experiments confirm that SLIKMC generates conformation ensembles that are statistically consistent with specified structural preferences. Protein conformations with 100+ residues are sampled on standard PC hardware in seconds. Application to proteins involved in ion-binding demonstrate its potential as a tool for loop ensemble generation and missing structure completion. PMID:24565175
Looping and clustering model for the organization of protein-DNA complexes on the bacterial genome
NASA Astrophysics Data System (ADS)
Walter, Jean-Charles; Walliser, Nils-Ole; David, Gabriel; Dorignac, Jérôme; Geniet, Frédéric; Palmeri, John; Parmeggiani, Andrea; Wingreen, Ned S.; Broedersz, Chase P.
2018-03-01
The bacterial genome is organized by a variety of associated proteins inside a structure called the nucleoid. These proteins can form complexes on DNA that play a central role in various biological processes, including chromosome segregation. A prominent example is the large ParB-DNA complex, which forms an essential component of the segregation machinery in many bacteria. ChIP-Seq experiments show that ParB proteins localize around centromere-like parS sites on the DNA to which ParB binds specifically, and spreads from there over large sections of the chromosome. Recent theoretical and experimental studies suggest that DNA-bound ParB proteins can interact with each other to condense into a coherent 3D complex on the DNA. However, the structural organization of this protein-DNA complex remains unclear, and a predictive quantitative theory for the distribution of ParB proteins on DNA is lacking. Here, we propose the looping and clustering model, which employs a statistical physics approach to describe protein-DNA complexes. The looping and clustering model accounts for the extrusion of DNA loops from a cluster of interacting DNA-bound proteins that is organized around a single high-affinity binding site. Conceptually, the structure of the protein-DNA complex is determined by a competition between attractive protein interactions and loop closure entropy of this protein-DNA cluster on the one hand, and the positional entropy for placing loops within the cluster on the other. Indeed, we show that the protein interaction strength determines the ‘tightness’ of the loopy protein-DNA complex. Thus, our model provides a theoretical framework for quantitatively computing the binding profiles of ParB-like proteins around a cognate (parS) binding site.
Assessment of a simple, novel endoluminal method for gastrotomy closure in NOTES.
Lee, Sang Soo; Oelschlager, Brant K; Wright, Andrew S; Soares, Renato V; Sinan, Huseyin; Montenovo, Martin I; Hwang, Joo Ha
2011-10-01
A reliable method for gastrotomy closure in NOTES will be essential for NOTES to become viable clinically. However, methods using existing and widely available endoscopic accessories have been ineffective. The objective of this study was to evaluate the feasibility and safety of a new simple method for gastric closure (retracted clip-assisted loop closure) that uses existing endoscopic accessories with minor modifications. The retracted clip-assisted loop closure technique involves deploying 3-4 Resolution(®) clips (modified by attaching a 90-cm length of suture to the end of each clip) along the margin of the gastrotomy with one jaw on the serosal surface and the other jaw on the mucosal surface. The suture strings are threaded through an endoloop. Traction is then applied to the strings causing the gastric wall to tent. The endoloop is secured below the tip of the clips, completing a full-thickness gastrotomy closure. The main outcome measures were feasibility, efficacy, and safety of the new retracted clip-assisted loop closure technique for NOTES gastrotomy closure. An air-tight seal was achieved in 100% (n = 9) of stomachs. The mean leak pressure was 116.3 (±19.4) mmHg. The retracted clip-assisted loop closure technique can be used to perform NOTES gastrotomy closure by using existing endoscopic accessories with minor modifications.
Geometrical criteria for characterizing open and closed states of WPD-loop in PTP1B
NASA Astrophysics Data System (ADS)
Shinde, Ranajit Nivrutti; Elizabeth Sobhia, M.
2012-06-01
Distinctive movement of WPD-loop occurs during the catalysis of phosphotyrosine by protein tyrosine phosphatase 1B (PTP1B). This loop is in the "open" state in apo-form whereas it is catalytically competent in the "closed" state. During the closure of this loop, unique hydrogen bond interactions are formed between different residues of the PTP1B. Present study examines such interactions from the available 118 crystal structures of PTP1B. It gives insights into the five novel hydrogen bonds essentially formed in the "closed" loop structures. Additionally, the study provides distance ranges between the atoms involved in the hydrogen bonds. This information can be used as a geometrical criterion in the characterization of conformational state of the WPD-loop especially in the molecular dynamics simulations.
2011-01-01
Background Colorectal cancer is the second most common tumor in developed countries, with a lifetime prevalence of 5%. About one third of these tumors are located in the rectum. Surgery in terms of low anterior resection with mesorectal excision is the central element in the treatment of rectal cancer being the only option for definite cure. Creating a protective diverting stoma prevents complications like anastomotic failure and meanwhile is the standard procedure. Bowel obstruction is one of the main and the clinically and economically most relevant complication following closure of loop ileostomy. The best surgical technique for closure of loop ileostomy has not been defined yet. Methods/Design A study protocol was developed on the basis of the only randomized controlled mono-center trial to solve clinical equipoise concerning the optimal surgical technique for closure of loop ileostomy after low anterior resection due to rectal cancer. The HASTA trial is a multi-center pragmatic randomized controlled surgical trial with two parallel groups to compare hand-suture versus stapling for closure of loop ileostomy. It will include 334 randomized patients undergoing closure of loop ileostomy after low anterior resection with protective ileostomy due to rectal cancer in approximately 20 centers consisting of German hospitals of all level of health care. The primary endpoint is the rate of bowel obstruction within 30 days after ileostomy closure. In addition, a set of surgical and general variables including quality of life will be analyzed with a follow-up of 12 months. An investigators meeting with a practical session will help to minimize performance bias and enforce protocol adherence. Centers are monitored centrally as well as on-site before and during recruitment phase to assure inclusion, treatment and follow up according to the protocol. Discussion Aim of the HASTA trial is to evaluate the efficacy of hand-suture versus stapling for closure of loop ileostomy in patients with rectal cancer. Trial registration German Clinical Trial Register Number: DRKS00000040 PMID:21303515
Won, Jonghun; Lee, Gyu Rie; Park, Hahnbeom; Seok, Chaok
2018-06-07
The second extracellular loops (ECL2s) of G-protein-coupled receptors (GPCRs) are often involved in GPCR functions, and their structures have important implications in drug discovery. However, structure prediction of ECL2 is difficult because of its long length and the structural diversity among different GPCRs. In this study, a new ECL2 conformational sampling method involving both template-based and ab initio sampling was developed. Inspired by the observation of similar ECL2 structures of closely related GPCRs, a template-based sampling method employing loop structure templates selected from the structure database was developed. A new metric for evaluating similarity of the target loop to templates was introduced for template selection. An ab initio loop sampling method was also developed to treat cases without highly similar templates. The ab initio method is based on the previously developed fragment assembly and loop closure method. A new sampling component that takes advantage of secondary structure prediction was added. In addition, a conserved disulfide bridge restraining ECL2 conformation was predicted and analytically incorporated into sampling, reducing the effective dimension of the conformational search space. The sampling method was combined with an existing energy function for comparison with previously reported loop structure prediction methods, and the benchmark test demonstrated outstanding performance.
Cyclic coordinate descent: A robotics algorithm for protein loop closure.
Canutescu, Adrian A; Dunbrack, Roland L
2003-05-01
In protein structure prediction, it is often the case that a protein segment must be adjusted to connect two fixed segments. This occurs during loop structure prediction in homology modeling as well as in ab initio structure prediction. Several algorithms for this purpose are based on the inverse Jacobian of the distance constraints with respect to dihedral angle degrees of freedom. These algorithms are sometimes unstable and fail to converge. We present an algorithm developed originally for inverse kinematics applications in robotics. In robotics, an end effector in the form of a robot hand must reach for an object in space by altering adjustable joint angles and arm lengths. In loop prediction, dihedral angles must be adjusted to move the C-terminal residue of a segment to superimpose on a fixed anchor residue in the protein structure. The algorithm, referred to as cyclic coordinate descent or CCD, involves adjusting one dihedral angle at a time to minimize the sum of the squared distances between three backbone atoms of the moving C-terminal anchor and the corresponding atoms in the fixed C-terminal anchor. The result is an equation in one variable for the proposed change in each dihedral. The algorithm proceeds iteratively through all of the adjustable dihedral angles from the N-terminal to the C-terminal end of the loop. CCD is suitable as a component of loop prediction methods that generate large numbers of trial structures. It succeeds in closing loops in a large test set 99.79% of the time, and fails occasionally only for short, highly extended loops. It is very fast, closing loops of length 8 in 0.037 sec on average.
Carstens, Heiko; Renner, Christian; Milbradt, Alexander G; Moroder, Luis; Tavan, Paul
2005-03-29
The affinity and selectivity of protein-protein interactions can be fine-tuned by varying the size, flexibility, and amino acid composition of involved surface loops. As a model for such surface loops, we study the conformational landscape of an octapeptide, whose flexibility is chemically steered by a covalent ring closure integrating an azobenzene dye into and by a disulfide bridge additionally constraining the peptide backbone. Because the covalently integrated azobenzene dyes can be switched by light between a bent cis state and an elongated trans state, six cyclic peptide models of strongly different flexibilities are obtained. The conformational states of these peptide models are sampled by NMR and by unconstrained molecular dynamics (MD) simulations. Prototypical conformations and the free-energy landscapes in the high-dimensional space spanned by the phi/psi angles at the peptide backbone are obtained by clustering techniques from the MD trajectories. Multiple open-loop conformations are shown to be predicted by MD particularly in the very flexible cases and are shown to comply with the NMR data despite the fact that such open-loop conformations are missing in the refined NMR structures.
The design of multirate digital control systems
NASA Technical Reports Server (NTRS)
Berg, M. C.
1986-01-01
The successive loop closures synthesis method is the only method for multirate (MR) synthesis in common use. A new method for MR synthesis is introduced which requires a gradient-search solution to a constrained optimization problem. Some advantages of this method are that the control laws for all control loops are synthesized simultaneously, taking full advantage of all cross-coupling effects, and that simple, low-order compensator structures are easily accomodated. The algorithm and associated computer program for solving the constrained optimization problem are described. The successive loop closures , optimal control, and constrained optimization synthesis methods are applied to two example design problems. A series of compensator pairs are synthesized for each example problem. The succesive loop closure, optimal control, and constrained optimization synthesis methods are compared, in the context of the two design problems.
A Foot-Mounted Inertial Measurement Unit (IMU) Positioning Algorithm Based on Magnetic Constraint
Zou, Jiaheng
2018-01-01
With the development of related applications, indoor positioning techniques have been more and more widely developed. Based on Wi-Fi, Bluetooth low energy (BLE) and geomagnetism, indoor positioning techniques often rely on the physical location of fingerprint information. The focus and difficulty of establishing the fingerprint database are in obtaining a relatively accurate physical location with as little given information as possible. This paper presents a foot-mounted inertial measurement unit (IMU) positioning algorithm under the loop closure constraint based on magnetic information. It can provide relatively reliable position information without maps and geomagnetic information and provides a relatively accurate coordinate for the collection of a fingerprint database. In the experiment, the features extracted by the multi-level Fourier transform method proposed in this paper are validated and the validity of loop closure matching is tested with a RANSAC-based method. Moreover, the loop closure detection results show that the cumulative error of the trajectory processed by the graph optimization algorithm is significantly suppressed, presenting a good accuracy. The average error of the trajectory under loop closure constraint is controlled below 2.15 m. PMID:29494542
A Foot-Mounted Inertial Measurement Unit (IMU) Positioning Algorithm Based on Magnetic Constraint.
Wang, Yan; Li, Xin; Zou, Jiaheng
2018-03-01
With the development of related applications, indoor positioning techniques have been more and more widely developed. Based on Wi-Fi, Bluetooth low energy (BLE) and geomagnetism, indoor positioning techniques often rely on the physical location of fingerprint information. The focus and difficulty of establishing the fingerprint database are in obtaining a relatively accurate physical location with as little given information as possible. This paper presents a foot-mounted inertial measurement unit (IMU) positioning algorithm under the loop closure constraint based on magnetic information. It can provide relatively reliable position information without maps and geomagnetic information and provides a relatively accurate coordinate for the collection of a fingerprint database. In the experiment, the features extracted by the multi-level Fourier transform method proposed in this paper are validated and the validity of loop closure matching is tested with a RANSAC-based method. Moreover, the loop closure detection results show that the cumulative error of the trajectory processed by the graph optimization algorithm is significantly suppressed, presenting a good accuracy. The average error of the trajectory under loop closure constraint is controlled below 2.15 m.
Romanelli, John R; Desilets, David J; Chapman, Christopher N; Surti, Vihar C; Lovewell, Carolanne; Earle, David B
2010-12-01
Transgastric NOTES(®) procedures remain without a simple method to close the gastrotomy. In four survival swine studies, we have tested a novel gastric closure device: the loop-anchor purse-string (LAPS) closure system. In four anesthetized pigs, an endoscopic gastrotomy was performed. Four loop anchors were arrayed in a 2-cm square pattern around the gastrotomy. The endoscope was passed into the abdominal cavity, and the gastrotomy was cinched closed. Procedure times ranged from 50-180 minutes. Three pigs survived 14 days. One animal was sacrificed early due to signs of sepsis. Another animal developed fevers and was treated with antibiotics. At necropsy, there were no abscesses, including in the septic animal. Histologic examination revealed evidence of healing in all animals. The LAPS system holds promise with early success in an animal model. Future human studies are needed to determine viability as a human visceral closure device.
Song, Ook; Kim, Kyung Hwan; Lee, Soo Young; Kim, Chang Hyun; Kim, Young Jin; Kim, Hyeong Rok
2018-04-01
The aim of this study was to identify the risk factors of stoma re-creation after closure of diverting ileostomy in patients with rectal cancer who underwent low anterior resection (LAR) or intersphincteric resection (ISR) with loop ileostomy. We retrospectively reviewed 520 consecutive patients with rectal cancer who underwent LAR or ISR with loop ileostomy from January 2005 to December 2014 at Chonnam National University Hwasun Hospital. Risk factors for stoma re-creation after ileostomy closure were evaluated. Among 520 patients with rectal cancer who underwent LAR or ISR with loop ileostomy, 458 patients underwent stoma closure. Among these patients, 45 (9.8%) underwent stoma re-creation. The median period between primary surgery and stoma closure was 5.5 months (range, 0.5-78.3 months), and the median period between closure and re-creation was 6.8 months (range, 0-71.5 months). Stoma re-creation was performed because of anastomosis-related complications (26, 57.8%), local recurrence (15, 33.3%), and anal sphincter dysfunction (3, 6.7%). Multivariate analysis showed that independent risk factors for stoma re-creation were anastomotic leakage (odds ratio [OR], 4.258; 95% confidence interval [CI], 1.814-9.993), postoperative radiotherapy (OR, 3.947; 95% CI, 1.624-9.594), and ISR (OR, 3.293; 95% CI, 1.462-7.417). Anastomotic leakage, postoperative radiotherapy, and ISR were independent risk factors for stoma re-creation after closure of ileostomy in patients with rectal cancer.
NASA Astrophysics Data System (ADS)
Mazur, Alexey K.
1999-07-01
Internal coordinate molecular dynamics (ICMD) is a recent efficient method for modeling polymer molecules which treats them as chains of rigid bodies rather than ensembles of point particles as in Cartesian MD. Unfortunately, it is readily applicable only to linear or tree topologies without closed flexible loops. Important examples violating this condition are sugar rings of nucleic acids, proline residues in proteins, and also disulfide bridges. This paper presents the first complete numerical solution of the chain closure problem within the context of ICMD. The method combines natural implicit fixation of bond lengths and bond angles by the choice of internal coordinates with explicit constraints similar to Cartesian dynamics used to maintain the chain closure. It is affordable for large molecules and makes possible 3-5 times faster dynamics simulations of molecular systems with flexible rings, including important biological objects like nucleic acids and disulfide-bonded proteins.
Zosel, Franziska; Haenni, Dominik; Soranno, Andrea; Nettels, Daniel; Schuler, Benjamin
2017-10-21
Intrinsically disordered proteins (IDPs) are increasingly recognized as a class of molecules that can exert essential biological functions even in the absence of a well-defined three-dimensional structure. Understanding the conformational distributions and dynamics of these highly flexible proteins is thus essential for explaining the molecular mechanisms underlying their function. Single-molecule fluorescence spectroscopy in combination with Förster resonance energy transfer (FRET) is a powerful tool for probing intramolecular distances and the rapid long-range distance dynamics in IDPs. To complement the information from FRET, we combine it with photoinduced electron transfer (PET) quenching to monitor local loop-closure kinetics at the same time and in the same molecule. Here we employed this combination to investigate the intrinsically disordered N-terminal domain of HIV-1 integrase. The results show that both long-range dynamics and loop closure kinetics on the sub-microsecond time scale can be obtained reliably from a single set of measurements by the analysis with a comprehensive model of the underlying photon statistics including both FRET and PET. A more detailed molecular interpretation of the results is enabled by direct comparison with a recent extensive atomistic molecular dynamics simulation of integrase. The simulations are in good agreement with experiment and can explain the deviation from simple models of chain dynamics by the formation of persistent local secondary structure. The results illustrate the power of a close combination of single-molecule spectroscopy and simulations for advancing our understanding of the dynamics and detailed mechanisms in unfolded and intrinsically disordered proteins.
NASA Astrophysics Data System (ADS)
Zosel, Franziska; Haenni, Dominik; Soranno, Andrea; Nettels, Daniel; Schuler, Benjamin
2017-10-01
Intrinsically disordered proteins (IDPs) are increasingly recognized as a class of molecules that can exert essential biological functions even in the absence of a well-defined three-dimensional structure. Understanding the conformational distributions and dynamics of these highly flexible proteins is thus essential for explaining the molecular mechanisms underlying their function. Single-molecule fluorescence spectroscopy in combination with Förster resonance energy transfer (FRET) is a powerful tool for probing intramolecular distances and the rapid long-range distance dynamics in IDPs. To complement the information from FRET, we combine it with photoinduced electron transfer (PET) quenching to monitor local loop-closure kinetics at the same time and in the same molecule. Here we employed this combination to investigate the intrinsically disordered N-terminal domain of HIV-1 integrase. The results show that both long-range dynamics and loop closure kinetics on the sub-microsecond time scale can be obtained reliably from a single set of measurements by the analysis with a comprehensive model of the underlying photon statistics including both FRET and PET. A more detailed molecular interpretation of the results is enabled by direct comparison with a recent extensive atomistic molecular dynamics simulation of integrase. The simulations are in good agreement with experiment and can explain the deviation from simple models of chain dynamics by the formation of persistent local secondary structure. The results illustrate the power of a close combination of single-molecule spectroscopy and simulations for advancing our understanding of the dynamics and detailed mechanisms in unfolded and intrinsically disordered proteins.
Communication strategies and timeliness of response to life critical telemetry alarms.
Bonzheim, Kimberly A; Gebara, Rani I; O'Hare, Bridget M; Ellis, R Darin; Brand, Monique A; Balar, Salil D; Stockman, Rita; Sciberras, Annette M; Haines, David E
2011-05-01
A centralized electrocardiogram telemetry monitoring system (TMS) facilitates early identification of critical arrhythmias and acute medical decompensation. Timely intervention can only be performed if abnormalities are communicated rapidly to the direct caregiver. The study objectives were to measure effectiveness of bi-directional voice communication badges versus one-way alphanumeric pagers for telemetry alarm response and communication loop closure. A sequential observational pilot study of nursing response to TMS alarms compared communication technologies on four nursing units in a 1,061 bed tertiary care hospital with 264 TMS channels of telemetry over a 2-year period. Subsequently, the communication technologies were compared in a randomized fashion on a 68-bed progressive cardiac care unit. Caregivers were blinded to the protocol. All alarm responses were recorded during two periods using either pagers or voice communication devices. Alarm response time and closure of the communication loop were analyzed in a blinded fashion. The direct communication functionality of the badge significantly shortened the time to first contact, time to completion, and rate of closure of the communication loop in both the pilot and study phases. Median time to first contact with the communication badge was 0.5 min, compared to 1.6 min with pager communication (p < 0.0003). Communication loop closure was achieved in 100% of clinical alarms using the badge versus 19% with the pager (p < 0.0001). Communication badge technology reduced alarm time to first contact and completion as well as facilitated communication loop closures. Immediate two-way communication significantly impacted practice, alarm management, and resulted in faster bedside care.
Moise, Gwendolyn; Gallup, Nathan M.; Alexandrova, Anastassia N.; Hengge, Alvan C.; Johnson, Sean J.
2016-01-01
Catalysis in protein tyrosine phosphatases (PTPs) involves movement of a protein loop called the WPD loop that brings a conserved aspartic acid into the active site to function as a general acid. Mutation of the tryptophan in the WPD loop of the PTP YopH to any other residue with a planar, aromatic side chain (phenylalanine, tyrosine, or histidine) disables general acid catalysis. Crystal structures reveal these conservative mutations leave this critical loop in a catalytically unproductive, quasi-open position. Although the loop positions in crystal structures are similar for all three conservative mutants, the reasons inhibiting normal loop closure differ for each mutant. In the W354F and W354Y mutants, steric clashes result from six-membered rings occupying the position of the five-membered ring of the native indole side chain. The histidine mutant dysfunction results from new hydrogen bonds stabilizing the unproductive position. The results demonstrate how even modest modifications can disrupt catalytically important protein dynamics. Crystallization of all the catalytically compromised mutants in the presence of vanadate gave rise to vanadate dimers at the active site. In W354Y and W354H, a divanadate ester with glycerol is observed. Such species have precedence in solution and are known from the small molecule crystal database. Such species have not been observed in the active site of a phosphatase, as a functional phosphatase would rapidly catalyze their decomposition. The compromised functionality of the mutants allows the trapping of species that undoubtedly form in solution and are capable of binding at the active sites of PTPs, and, presumably, other phosphatases. In addition to monomeric vanadate, such higher-order vanadium-based molecules are likely involved in the interaction of vanadate with PTPs in solution. PMID:26445170
Approximations for Quantitative Feedback Theory Designs
NASA Technical Reports Server (NTRS)
Henderson, D. K.; Hess, R. A.
1997-01-01
The computational requirements for obtaining the results summarized in the preceding section were very modest and were easily accomplished using computer-aided control system design software. Of special significance is the ability of the PDT to indicate a loop closure sequence for MIMO QFT designs that employ sequential loop closure. Although discussed as part of a 2 x 2 design, the PDT is obviously applicable to designs with a greater number of inputs and system responses.
RCD+: Fast loop modeling server.
López-Blanco, José Ramón; Canosa-Valls, Alejandro Jesús; Li, Yaohang; Chacón, Pablo
2016-07-08
Modeling loops is a critical and challenging step in protein modeling and prediction. We have developed a quick online service (http://rcd.chaconlab.org) for ab initio loop modeling combining a coarse-grained conformational search with a full-atom refinement. Our original Random Coordinate Descent (RCD) loop closure algorithm has been greatly improved to enrich the sampling distribution towards near-native conformations. These improvements include a new workflow optimization, MPI-parallelization and fast backbone angle sampling based on neighbor-dependent Ramachandran probability distributions. The server starts by efficiently searching the vast conformational space from only the loop sequence information and the environment atomic coordinates. The generated closed loop models are subsequently ranked using a fast distance-orientation dependent energy filter. Top ranked loops are refined with the Rosetta energy function to obtain accurate all-atom predictions that can be interactively inspected in an user-friendly web interface. Using standard benchmarks, the average root mean squared deviation (RMSD) is 0.8 and 1.4 Å for 8 and 12 residues loops, respectively, in the challenging modeling scenario in where the side chains of the loop environment are fully remodeled. These results are not only very competitive compared to those obtained with public state of the art methods, but also they are obtained ∼10-fold faster. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Mechanism of nucleotide sensing in group II chaperonins.
Pereira, Jose H; Ralston, Corie Y; Douglas, Nicholai R; Kumar, Ramya; Lopez, Tom; McAndrew, Ryan P; Knee, Kelly M; King, Jonathan A; Frydman, Judith; Adams, Paul D
2012-02-01
Group II chaperonins mediate protein folding in an ATP-dependent manner in eukaryotes and archaea. The binding of ATP and subsequent hydrolysis promotes the closure of the multi-subunit rings where protein folding occurs. The mechanism by which local changes in the nucleotide-binding site are communicated between individual subunits is unknown. The crystal structure of the archaeal chaperonin from Methanococcus maripaludis in several nucleotides bound states reveals the local conformational changes associated with ATP hydrolysis. Residue Lys-161, which is extremely conserved among group II chaperonins, forms interactions with the γ-phosphate of ATP but shows a different orientation in the presence of ADP. The loss of the ATP γ-phosphate interaction with Lys-161 in the ADP state promotes a significant rearrangement of a loop consisting of residues 160-169. We propose that Lys-161 functions as an ATP sensor and that 160-169 constitutes a nucleotide-sensing loop (NSL) that monitors the presence of the γ-phosphate. Functional analysis using NSL mutants shows a significant decrease in ATPase activity, suggesting that the NSL is involved in timing of the protein folding cycle.
Novel application of polyelectrolyte multilayers as nanoscopic closures with hermetic sealing.
Marcott, Stephanie A; Ada, Sena; Gibson, Phillip; Camesano, Terri A; Nagarajan, R
2012-03-01
Closure systems for personnel protection applications, such as protective clothing or respirator face seals, should provide effective permeation barrier to toxic gases. Currently available mechanical closure systems based on the hook and loop types (example, Velcro) do not provide adequate barrier to gas permeation. To achieve hermetic sealing, we propose a nonmechanical, nanoscopic molecular closure system based on complementary polyelectrolyte multilayers, one with a polycation outermost layer and the other with a polyanion outermost layer. The closure surfaces were prepared by depositing polyelectrolyte multilayers under a variety of deposition conditions, on conformable polymer substrates (thin films of polyethylene teraphthalate, PET or polyimide, PI). The hermetic sealing property of the closures was evaluated by measuring the air flow resistance using the dynamic moisture permeation cell (DMPC) at different humidity conditions. The DMPC measurements show that the polyelectrolyte multilayer closures provide significantly large resistance to air flow, approximately 20-800 times larger than that possible with conventional hook and loop type closure systems, at all humidity levels (from 5 to 95% relative humidity). Hence, from the point of view of providing a hermetic seal against toxic gas permeation, the polyelectrolyte multilayer closures are viable candidates for further engineering development. However, the adhesive strength of the multilayer closures measured by atomic force microscopy suggests that the magnitude of adhesion is much smaller than what is possible with mechanical closures. Therefore, we envisage the development of a composite closure system combining the mechanical closure to provide strong adhesion and the multilayer closure to provide hermetic sealing. © 2012 American Chemical Society
Space Station environmental control and life support system distribution and loop closure studies
NASA Technical Reports Server (NTRS)
Humphries, William R.; Reuter, James L.; Schunk, Richard G.
1986-01-01
The NASA Space Station's environmental control and life support system (ECLSS) encompasses functional elements concerned with temperature and humidity control, atmosphere control and supply, atmosphere revitalization, fire detection and suppression, water recovery and management, waste management, and EVA support. Attention is presently given to functional and physical module distributions of the ECLSS among these elements, with a view to resource requirements and safety implications. A strategy of physical distribution coupled with functional centralization is for the air revitalization and water reclamation systems. Also discussed is the degree of loop closure desirable in the initial operational capability status Space Station's oxygen and water reclamation loops.
Orthodontic Replacement of Lost Permanent Molar with Neighbor Molar: A Six-Year Follow-Up
Shintcovsk, Ricardo Lima; Knop, Luegya Amorim Henriques; Sampaio, Luana Paz
2017-01-01
Extraction is very frequent indication in orthodontic planning, especially when there are crowding, biprotrusion, and aesthetically unpleasant profiles. Next to extraction comes space closure, which represents a challenge for orthodontists because of extended treatment time, discomfort created for the patient, tissue tolerance, and stability concerns. When it comes to what mechanics to choose for space closure, loops present two major advantages in relation to sliding mechanics: absence of abrasion and possibility to reach pure dental translation. A case is presented where an adult female patient with early loss of the first lower permanent molars, minor lower crowding, and tooth biprotrusion was treated with upper first bicuspids extraction along with upper and lower space closure done with T-loops to promote best space closure control in order to correct the malocclusion and enhance facial aesthetics. PMID:29318054
Liver Resections Combined with Closure of Loop Ileostomies: A Retrospective Analysis
Lordan, Jeffrey T.; Riga, Angela T.; Karanjia, Nariman D.
2008-01-01
Background. The management of patients with colorectal liver metastases and loop ileostomies remains controversial. This study was performed to assess the outcome of combined liver resection and loop ileostomy closure. Methods. Analysis of prospectively collected perioperative data, including morbidity and mortality, of 283 consecutive hepatectomies for colorectal liver metastases was undertaken. Consecutive liver resections were performed from 1996 to 2006 in one centre by a single surgeon (NDK). Fourteen of these patients had combined liver resection and ileostomy closure. Case-matched analysis was undertaken. Results. Six (2.2%) patients died in the hepatectomy only group and none died in the combined group. There was no difference in operative blood loss between the two groups (0.09). Perioperative morbidity was 36% in the combined group and 23% in the hepatectomy alone group (P = 0.33). Mean hospital stay was 14 days in the combined group and 11 days in the hepatectomy only group (P = 0.046). Case-matched analysis showed a significant increase in hospital stay (P = 0.03) and complications (P = 0.049) in the combined group. Conclusion. In patients with CRLM, combined liver resection and closure of ileostomy may be associated with a higher operative morbidity and a prolonged hospital stay. PMID:19096524
A Simple Hierarchical Pooling Data Structure for Loop Closure
2016-10-16
ticated agglomerative schemes at a fraction of the effort. 1.1 Related work Loop closure is a key component in robotic mapping (SLAM) [37], autonomous...appearance-only slam-fab-map 2.0. In: Robotics : Science and Systems. vol. 5. Seattle, USA (2009) 7. Dong, J., Soatto, S.: Domain size pooling in local...detection with bags of binary words. In: Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ Intl. Conf. on. pp. 51–58. IEEE (2011) 9. Geiger, A
A new discrete dynamic model of ABA-induced stomatal closure predicts key feedback loops
Acharya, Biswa R.; Jeon, Byeong Wook; Zañudo, Jorge G. T.; Zhu, Mengmeng; Osman, Karim; Assmann, Sarah M.
2017-01-01
Stomata, microscopic pores in leaf surfaces through which water loss and carbon dioxide uptake occur, are closed in response to drought by the phytohormone abscisic acid (ABA). This process is vital for drought tolerance and has been the topic of extensive experimental investigation in the last decades. Although a core signaling chain has been elucidated consisting of ABA binding to receptors, which alleviates negative regulation by protein phosphatases 2C (PP2Cs) of the protein kinase OPEN STOMATA 1 (OST1) and ultimately results in activation of anion channels, osmotic water loss, and stomatal closure, over 70 additional components have been identified, yet their relationships with each other and the core components are poorly elucidated. We integrated and processed hundreds of disparate observations regarding ABA signal transduction responses underlying stomatal closure into a network of 84 nodes and 156 edges and, as a result, established those relationships, including identification of a 36-node, strongly connected (feedback-rich) component as well as its in- and out-components. The network’s domination by a feedback-rich component may reflect a general feature of rapid signaling events. We developed a discrete dynamic model of this network and elucidated the effects of ABA plus knockout or constitutive activity of 79 nodes on both the outcome of the system (closure) and the status of all internal nodes. The model, with more than 1024 system states, is far from fully determined by the available data, yet model results agree with existing experiments in 82 cases and disagree in only 17 cases, a validation rate of 75%. Our results reveal nodes that could be engineered to impact stomatal closure in a controlled fashion and also provide over 140 novel predictions for which experimental data are currently lacking. Noting the paucity of wet-bench data regarding combinatorial effects of ABA and internal node activation, we experimentally confirmed several predictions of the model with regard to reactive oxygen species, cytosolic Ca2+ (Ca2+c), and heterotrimeric G-protein signaling. We analyzed dynamics-determining positive and negative feedback loops, thereby elucidating the attractor (dynamic behavior) repertoire of the system and the groups of nodes that determine each attractor. Based on this analysis, we predict the likely presence of a previously unrecognized feedback mechanism dependent on Ca2+c. This mechanism would provide model agreement with 10 additional experimental observations, for a validation rate of 85%. Our research underscores the importance of feedback regulation in generating robust and adaptable biological responses. The high validation rate of our model illustrates the advantages of discrete dynamic modeling for complex, nonlinear systems common in biology. PMID:28937978
A totally diverting loop colostomy.
Merrett, N. D.; Gartell, P. C.
1993-01-01
A technique is described where the distal limb of a loop colostomy is tied with nylon or polydioxanone. This ensures total faecal diversion and dispenses with the supporting rod, enabling early application of stoma appliances. The technique does not interfere with the traditional transverse closure of a loop colostomy. PMID:8379632
Pekel, Nihat; Ercan, Ertuğrul; Özpelit, Mehmet Emre; Özyurtlu, Ferhat; Yılmaz, Akar; Topaloğlu, Caner; Saygı, Serkan; Yakan, Serkan; Tengiz, İstemihan
2017-01-01
Objective: The standard transcatheter ventricular septal defects (VSD) closure procedure is established with arteriovenous (AV) loop and is called as antegrade approach. The directly retrograde transarterial VSD closure without using AV loop might be better option as shortens the procedure time and decreases radiation exposure. Methods: Our series consist of twelve sequential adult cases with congenital VSDs (seven with perimembranous, four with muscular, one with postoperative residuel VSD). The mean age was 26.9 (Range 18–58), the mean height was 168.75 cm (Range 155–185cm), and the mean body mass index was 23.4 (Range 17.3–28.4). Maximum and minimum defect sizes were 10 and 5 mm and the mean defect size was 6.24 mm. The procedure was performed with left heart catheterization and advancing the delivery sheath over the stiff exchange wire then VSD occlusion from left side. Results: The defects were successfully closed with this technique in eleven patients. In sixth patient, the defect could not be cannulated by the delivery sheath, as the tip of the sheath did not reach the defect and VSD was closed with same sheath by standard transvenous approach using AV loop. We didn’t encounter any complication releated to semilunar or atrioventricular valves. Atrioventricular conduction system was not affected by the procedure in any patients. The median procedure and fluoroscopy times were 66 and 16.5 minutes respectively. Conclusion: Transarterial retrograde VSD closure without using AV loop simplifies the procedure, decreases the radiation exposure, and shortens the procedure time. The only limitation in adult patients is delivery sheath length. PMID:28315566
Leyla loop: a time-saving suture technique for robotic atrial closure
Kılıç, Leyla; Şenay, Şahin; Ümit Güllü, A.; Alhan, Cem
2013-01-01
The longer durations of cardiopulmonary bypass and aortic cross-clamp times remain the disadvantages of robotic or minimally invasive cardiac surgery. For this reason, every small contribution to speeding up these procedures is of the utmost importance. Here, we present a practical, easy and time-saving suture technique for atrial closure. It consists of a hand-made loop at one end of the suture and saves the time otherwise consumed by knotting. It may also be used during conventional or minimally invasive cardiac surgery. PMID:23760357
DOE Office of Scientific and Technical Information (OSTI.GOV)
D Critton; L Tautz; R Page
2011-12-31
Phosphotyrosine hydrolysis by protein tyrosine phosphatases (PTPs) involves substrate binding by the PTP loop and closure over the active site by the WPD loop. The E loop, located immediately adjacent to the PTP and WPD loops, is conserved among human PTPs in both sequence and structure, yet the role of this loop in substrate binding and catalysis is comparatively unexplored. Hematopoietic PTP (HePTP) is a member of the kinase interaction motif (KIM) PTP family. Compared to other PTPs, KIM-PTPs have E loops that are unique in both sequence and structure. In order to understand the role of the E loopmore » in the transition between the closed state and the open state of HePTP, we identified a novel crystal form of HePTP that allowed the closed-state-to-open-state transition to be observed within a single crystal form. These structures, which include the first structure of the HePTP open state, show that the WPD loop adopts an 'atypically open' conformation and, importantly, that ligands can be exchanged at the active site, which is critical for HePTP inhibitor development. These structures also show that tetrahedral oxyanions bind at a novel secondary site and function to coordinate the PTP, WPD, and E loops. Finally, using both structural and kinetic data, we reveal a novel role for E-loop residue Lys182 in enhancing HePTP catalytic activity through its interaction with Asp236 of the WPD loop, providing the first evidence for the coordinated dynamics of the WPD and E loops in the catalytic cycle, which, as we show, is relevant to multiple PTP families.« less
WADA, YUMA; MIYOSHI, NORIKATSU; OHUE, MASAYUKI; NOURA, SHINGO; FUJINO, SHIKI; SUGIMURA, KEIJIROU; AKITA, HIROFUMI; MOTOORI, MASAAKI; GOTOH, KUNIHITO; TAKAHASHI, HIDENORI; KOBAYASHI, SHOGO; OHMORI, TAKESHI; FUJIWARA, YOSHIYUKI; YANO, MASAHIKO
2015-01-01
The aim of this study was to compare the incidence of postoperative complications, including superficial incisional surgical site infection (SSI) following purse-string skin closure (PS) and conventional skin closure with a drainage tube (CD) following stoma closure. A total of 55 consecutive patients who underwent loop colostomy and loop ileostomy closures in our hospital between October, 2011 and September, 2014 were retrospectively assessed. The patients were divided into two groups, namely the PS group (26 patients) and the CD group (29 patients). There were no significant differences in the characteristics of the patients between the two groups. The baseline and operative characteristics also did not differ significantly between the two groups. However the incidence of superficial incisional SSI was lower in the PS group compared to that in the CD group (0 vs. 13.8%, respectively; P=0.049). The overall incidence of complications did not differ significantly between the two groups (P=0.313). The duration of postoperative hospital stay in the PS group was shorter compared to that in the CD group. In conclusion, the results of this study suggest that PS may an effective technique to reduce the incidence of superficial incisional SSI. This technique appears to be superior to the conventional technique, allowing for better cosmesis. PMID:26137277
Tensile strength of surgical knots in abdominal wound closure.
Fong, Eva D M; Bartlett, Adam S R; Malak, Sharif; Anderson, Iain A
2008-03-01
Abdominal wound dehiscence is a surgical catastrophe that can be attributed to patients or technical factors. The technical properties of the monofilament sutures and knots that are commonly used in abdominal closure are poorly understood. The aim of this study was to compare the tensile strength of monofilament sutures tied with conventional knots. To do this, the knot-holding capacity of four types of knots (square, surgeons', Aberdeen and loop) were tested using three types of gauge 1 monofilament suture, namely nylon, polyglyconate and polydioxanone, using a tensiometer. We found that the knot-holding capacity of the loop knot was between twofold and threefold greater than all the other knots examined. In comparing suture types, polyglyconate had the highest knot-holding capacity for all the knots that were examined and there was no difference in the tensile strength of nylon and polyglyconate tied in a square, surgeons' or Aberdeen knot (P < 0.05). In conclusion, our findings suggest that closure of an abdominal wound would be best commenced with a loop knot, using gauge 1 polyglyconate and finished with either an Aberdeen square or surgeons' knot would be appropriate.
An Actomyosin-Arf-GEF Negative Feedback Loop for Tissue Elongation under Stress.
West, Junior J; Zulueta-Coarasa, Teresa; Maier, Janna A; Lee, Donghoon M; Bruce, Ashley E E; Fernandez-Gonzalez, Rodrigo; Harris, Tony J C
2017-08-07
In response to a pulling force, a material can elongate, hold fast, or fracture. During animal development, multi-cellular contraction of one region often stretches neighboring tissue. Such local contraction occurs by induced actomyosin activity, but molecular mechanisms are unknown for regulating the physical properties of connected tissue for elongation under stress. We show that cytohesins, and their Arf small G protein guanine nucleotide exchange activity, are required for tissues to elongate under stress during both Drosophila dorsal closure (DC) and zebrafish epiboly. In Drosophila, protein localization, laser ablation, and genetic interaction studies indicate that the cytohesin Steppke reduces tissue tension by inhibiting actomyosin activity at adherens junctions. Without Steppke, embryogenesis fails, with epidermal distortions and tears resulting from myosin misregulation. Remarkably, actomyosin network assembly is necessary and sufficient for local Steppke accumulation, where live imaging shows Steppke recruitment within minutes. This rapid negative feedback loop provides a molecular mechanism for attenuating the main tension generator of animal tissues. Such attenuation relaxes tissues and allows orderly elongation under stress. Copyright © 2017 Elsevier Ltd. All rights reserved.
Outcome of loop versus divided colostomy in the management of anorectal malformations.
Almosallam, Osama Ibrahim; Aseeri, Ali; Shanafey, Saud Al
2016-01-01
Colostomy is a common part of the management of high anorectal malformation (ARM) in the pediatric population. To evaluate whether the type of colostomy (loop vs divided) has an impact on outcome in patients with ARM. A retrospective study. King Faisal Specialist Hospital and Research Center, a tertiary care center. All patients who were managed with colostomy for ARM and had definitive repair during the period of January 2000 to December 2014. Outcomes relative to the type of the colostomy were compared. Morbidities associated with each type of colostomy. There were 104 patients managed for ARM with colostomy as staged procedures, 63 males and 41 females. Patients had a colostomy at a median age of 6 days and were closed at a median of 11 months. Definitive repair was at a median age of 17 months. Type of fistula was 8 perineal, 21 rectovestibular, 35 rectourethral, 11 rectovesical and there were 16 without fistula and 13 cloaca anomalies. There were 55 loop and 49 divided colostomies. There were 91 descending/sigmoid and 13 transverse colostomies. Operative time for loop colostomy closure was shorter than with divided colo6stomy (76 minutes vs 94 minutes, P=.002). Three patients among the divided group had reversed orientation of the colostomy that had affected bowel preparations negatively prior to its repair. There was no differences in complications of creation and closure of loop and divided colostomies except in occurrence of skin excoriation. There was more skin excoriation with divided colostomy compared to loop colostomy (17 vs 10, P=.04). Loop colostomy has a shorter closure operative time and relatively fewer complications compared to the divided colostomy. Our data suggests that loop colostomy may be more favorable than divided colostomy for ARM patients. Retrospective nature of the study and some colostomies performed at other hospitals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joseph, George, E-mail: joseph59@gmail.com; Kunwar, Brajesh Kumar, E-mail: kunwar_brajesh@yahoo.com
A 46-year-old man presenting with massive hemoptysis was found to have a large pulmonary arteriovenous malformation (PAVM) in the right lung. Closure of the PAVM with an Amplatzer-type duct occluder was hampered by inability to advance the device delivery sheath into the PAVM due to vessel tortuosity and inadequate guidewire support. Atrial septal puncture was performed and a femorofemoral arteriovenous guidewire loop through the right pulmonary artery, PAVM, and left atrium was created. Traction on both ends of the guidewire loop allowed advancement of the device delivery sheath into the PAVM and successful completion of the procedure. Transseptal guidewire stabilizationmore » can be a valuable option during device closure of large PAVMs when advancement, stability, or kinking of the device delivery sheath is an issue.« less
Loop ileostomy closure: comparison of cost effectiveness between suture and stapler.
Horisberger, Karoline; Beldi, Guido; Candinas, Daniel
2010-12-01
Closure of loop ileostomy can be safely performed using sutures or staplers. The aim of the present study was to compare the cost effectiveness of three different techniques. A total of 128 consecutive patients who underwent closure of loop ileostomy between January 2002 and December 2008 were analyzed retrospectively. The primary outcome parameter was operative cost. Closure of ileostomy was performed in 66 patients with hand-sewn anastomosis, in 25 patients with stapler only, and in 37 patients with a combination of stapler and suture. There were no differences in terms of early and late postoperative complications. Operative time was significantly longer for "suture only" (101.4 ± 26 min) than for "stapler/suture" (-4.9 min) and "stapler only" (-17.8 min); the difference between the three groups is significant (p = 0.05). Duration of hospital stay was not different among the three groups. Operative costs with "stapler/suture" (1,755.9 ± 355.6 EUR) were significantly higher than with "suture only" (-254 EUR; p = 0.001) and "stapler only" (-236 EUR; p = 0.005). Operative time using the stapler only is significantly shorter than with hand-sewn anastomosis or combinations of stapler and suture. Operative costs are significantly higher for a procedure that includes suture and stapler.
Palkowski, Marek; Bielecki, Wlodzimierz
2017-06-02
RNA secondary structure prediction is a compute intensive task that lies at the core of several search algorithms in bioinformatics. Fortunately, the RNA folding approaches, such as the Nussinov base pair maximization, involve mathematical operations over affine control loops whose iteration space can be represented by the polyhedral model. Polyhedral compilation techniques have proven to be a powerful tool for optimization of dense array codes. However, classical affine loop nest transformations used with these techniques do not optimize effectively codes of dynamic programming of RNA structure predictions. The purpose of this paper is to present a novel approach allowing for generation of a parallel tiled Nussinov RNA loop nest exposing significantly higher performance than that of known related code. This effect is achieved due to improving code locality and calculation parallelization. In order to improve code locality, we apply our previously published technique of automatic loop nest tiling to all the three loops of the Nussinov loop nest. This approach first forms original rectangular 3D tiles and then corrects them to establish their validity by means of applying the transitive closure of a dependence graph. To produce parallel code, we apply the loop skewing technique to a tiled Nussinov loop nest. The technique is implemented as a part of the publicly available polyhedral source-to-source TRACO compiler. Generated code was run on modern Intel multi-core processors and coprocessors. We present the speed-up factor of generated Nussinov RNA parallel code and demonstrate that it is considerably faster than related codes in which only the two outer loops of the Nussinov loop nest are tiled.
Approaches to lunar base life support
NASA Technical Reports Server (NTRS)
Brown, M. F.; Edeen, M. A.
1990-01-01
Various approaches to reliable, low maintenance, low resupply regenerative long-term life support for lunar base application are discussed. The first approach utilizes Space Station Freedom physiochemical systems technology which has closed air and water loops with approximately 99 and 90 percent closure respectively, with minor subsystem changes to the SSF baseline improving the level of water resupply for the water loop. A second approach would be a physiochemical system, including a solid waste processing system and improved air and water loop closure, which would require only food and nitrogen for resupply. A hybrid biological/physiochemical life support system constitutes the third alternative, incorporating some level of food production via plant growth into the life support system. The approaches are described in terms of mass, power, and resupply requirements; and the potential evolution of a small, initial outpost to a large, self-sustaining base is discussed.
A dual-loop model of the human controller
NASA Technical Reports Server (NTRS)
Hess, R. A.
1977-01-01
A representative model of the human controller in single-axis compensatory tracking tasks that exhibits an internal feedback loop which is not evident in single-loop models now in common use is presented. This hypothetical inner-loop involves a neuromuscular command signal derived from the time rate of change of controlled element output which is due to control activity. It is not contended that the single-loop human controller models now in use are incorrect, but that they contain an implicit but important internal loop closure, which, if explicitly considered, can account for a good deal of the adaptive nature of the human controller in a systematic manner.
Zhang, Yu'e; Xu, Wenying; Li, Zhonghui; Deng, Xing Wang; Wu, Weihua; Xue, Yongbiao
2008-12-01
Guard cells, which form stoma in leaf epidermis, sense and integrate environmental signals to modulate stomatal aperture in response to diverse conditions. Under drought stress, plants synthesize abscisic acid (ABA), which in turn induces a rapid closing of stoma, to prevent water loss by transpiration. However, many aspects of the molecular mechanism for ABA-mediated stomatal closure are still not understood. Here, we report a novel negative regulator of guard cell ABA signaling, DOR, in Arabidopsis (Arabidopsis thaliana). The DOR gene encodes a putative F-box protein, a member of the S-locus F-box-like family related to AhSLF-S(2) and specifically interacting with ASK14 and CUL1. A null mutation in DOR resulted in a hypersensitive ABA response of stomatal closing and a substantial increase of drought tolerance; in contrast, the transgenic plants overexpressing DOR were more susceptible to the drought stress. DOR is strongly expressed in guard cells and suppressed by ABA treatment, suggesting a negative feedback loop of DOR in ABA responses. Double-mutant analyses of dor with ABA-insensitive mutant abi1-1 showed that abi1-1 is epistatic to dor, but no apparent change of phospholipase Dalpha1 was detected between the wild type and dor. Affymetrix GeneChip analysis showed that DOR likely regulates ABA biosynthesis under drought stress. Taken together, our results demonstrate that DOR acts independent of phospholipase Dalpha1 in an ABA signaling pathway to inhibit the ABA-induced stomatal closure under drought stress.
Mutational analysis of S12 protein and implications for the accuracy of decoding by the ribosome.
Sharma, Divya; Cukras, Anthony R; Rogers, Elizabeth J; Southworth, Daniel R; Green, Rachel
2007-12-07
The fidelity of aminoacyl-tRNA selection by the ribosome depends on a conformational switch in the decoding center of the small ribosomal subunit induced by cognate but not by near-cognate aminoacyl-tRNA. The aminoglycosides paromomycin and streptomycin bind to the decoding center and induce related structural rearrangements that explain their observed effects on miscoding. Structural and biochemical studies have identified ribosomal protein S12 (as well as specific nucleotides in 16S ribosomal RNA) as a critical molecular contributor in distinguishing between cognate and near-cognate tRNA species as well as in promoting more global rearrangements in the small subunit, referred to as "closure." Here we use a mutational approach to define contributions made by two highly conserved loops in S12 to the process of tRNA selection. Most S12 variant ribosomes tested display increased levels of fidelity (a "restrictive" phenotype). Interestingly, several variants, K42A and R53A, were substantially resistant to the miscoding effects of paromomycin. Further characterization of the compromised paromomycin response identified a probable second, fidelity-modulating binding site for paromomycin in the 16S ribosomal RNA that facilitates closure of the small subunit and compensates for defects associated with the S12 mutations.
Biomechanical performance of different cable and wire cerclage configurations.
Lenz, Mark; Perren, Stephan Marcel; Richards, Robert Geoff; Mückley, Thomas; Hofmann, Gunther Olaf; Gueorguiev, Boyko; Windolf, Markus
2013-01-01
Cerclage technology is regaining interest due to the increasing number of periprosthetic fractures. Different wiring techniques have been formerly proposed and have hibernated over years. Hereby, they are compared to current cerclage technology. Seven groups (n = 6) of different cable cerclage (Ø1.7 mm, crimp closure) configurations (one single cerclage looped once around the shells, one single cerclage looped twice, two cerclages each looped once) and solid wire cerclages (Ø1.5 mm, twist closure) (same configurations as cable cerclages, and two braided wires, twisted around each other looped once) fixed two cortical half shells of human femoral shaft mounted on a testing jig. Sinusoidal cyclic loading with constantly increasing force (0.1 N/cycle) was applied starting at 50 N peak load. Cerclage pretension (P), load leading to onset of plastic deformation (D) and load at total failure (T) were identified. Statistical differences between the groups were detected by univariate ANOVA. Double looped cables (P442N ± 129; D1334N ± 319; T2734N ± 330) performed significantly better (p < 0.05) than single looped cables (P292N ± 56; D646N ± 108; T1622N ± 171) and were comparable to two single cables (P392N ± 154; D1191N ± 334; T2675N ± 361). Double looped wires (P335N ± 49; D752N ± 119; T1359N ± 80) were significantly better (p < 0.05) than single looped wires (P181N ± 16; D343N ± 33; T606N ± 109) and performed similarly to single looped cables. Braided wires (P119N ± 26; D225N ± 55; T919N ± 197) exhibited early loss of pretension and plastic deformation. Double looped cerclages provided a better fixation stability compared to a single looped cerclage. Double looped wires were comparable to a single looped cable. The use of braided wires could not be recommended mechanically.
Layout Slam with Model Based Loop Closure for 3d Indoor Corridor Reconstruction
NASA Astrophysics Data System (ADS)
Baligh Jahromi, A.; Sohn, G.; Jung, J.; Shahbazi, M.; Kang, J.
2018-05-01
In this paper, we extend a recently proposed visual Simultaneous Localization and Mapping (SLAM) techniques, known as Layout SLAM, to make it robust against error accumulations, abrupt changes of camera orientation and miss-association of newly visited parts of the scene to the previously visited landmarks. To do so, we present a novel technique of loop closing based on layout model matching; i.e., both model information (topology and geometry of reconstructed models) and image information (photometric features) are used to address a loop-closure detection. The advantages of using the layout-related information in the proposed loop-closing technique are twofold. First, it imposes a metric constraint on the global map consistency and, thus, adjusts the mapping scale drifts. Second, it can reduce matching ambiguity in the context of indoor corridors, where the scene is homogenously textured and extracting sufficient amount of distinguishable point features is a challenging task. To test the impact of the proposed technique on the performance of Layout SLAM, we have performed the experiments on wide-angle videos captured by a handheld camera. This dataset was collected from the indoor corridors of a building at York University. The obtained results demonstrate that the proposed method successfully detects the instances of loops while producing very limited trajectory errors.
Gajda, Steven; Chen, Jie
2012-03-01
To experimentally quantify the effects of the loop design on three-dimensional orthodontic load systems of two types of commercial closing loop archwires: Teardrop and Keyhole. An orthodontic force tester and custom-made dentoform were used to measure the load systems produced on two teeth during simulated space closure. The system included three force components along and three moment components about three clinically defined axes on two target teeth: the left maxillary canine and the lateral incisor. The archwires were attached to the dentoform and were activated following a standard clinical procedure. The resulting six load components produced by the two archwires were reported and compared. The results were also compared with those of the T-loop archwire published previously. The three designs deliver similar loading patterns; however, the component magnitudes are dependent on the design. All of the designs result in lingual tipping of the teeth, canine lingual-mesial displacement, canine crown-mesial-in rotation, and incisor crown-distal-in rotation.
Fogolari, Federico; Moroni, Elisabetta; Wojciechowski, Marcin; Baginski, Maciej; Ragona, Laura; Molinari, Henriette
2005-04-01
The pH-driven opening and closure of beta-lactoglobulin EF loop, acting as a lid and closing the internal cavity of the protein, has been studied by molecular dynamics (MD) simulations and free energy calculations based on molecular mechanics/Poisson-Boltzmann (PB) solvent-accessible surface area (MM/PBSA) methodology. The forms above and below the transition pH differ presumably only in the protonation state of residue Glu89. MM/PBSA calculations are able to reproduce qualitatively the thermodynamics of the transition. The analysis of MD simulations using a combination of MM/PBSA methodology and the colony energy approach is able to highlight the driving forces implied in the transition. The analysis suggests that global rearrangements take place before the equilibrium local conformation is reached. This conclusion may bear general relevance to conformational transitions in all lipocalins and proteins in general. (c) 2005 Wiley-Liss, Inc.
Parametric Analysis of Life Support Systems for Future Space Exploration Missions
NASA Technical Reports Server (NTRS)
Swickrath, Michael J.; Anderson, Molly S.; Bagdigian, Bob M.
2011-01-01
The National Aeronautics and Space Administration is in a process of evaluating future targets for space exploration. In order to maintain the welfare of a crew during future missions, a suite of life support technology is responsible for oxygen and water generation, carbon dioxide control, the removal of trace concentrations of organic contaminants, processing and recovery of water, and the storage and reclamation of solid waste. For each particular life support subsystem, a variety competing technologies either exist or are under aggressive development efforts. Each individual technology has strengths and weaknesses with regard to launch mass, power and cooling requirements, volume of hardware and consumables, and crew time requirements for operation. However, from a system level perspective, the favorability of each life support architecture is better assessed when the sub-system technologies are analyzed in aggregate. In order to evaluate each specific life support system architecture, the measure of equivalent system mass (ESM) was employed to benchmark system favorability. Moreover, the results discussed herein will be from the context of loop-closure with respect to the air, water, and waste sub-systems. Specifically, closure relates to the amount of consumables mass that crosses the boundary of the vehicle over the lifetime of a mission. As will be demonstrated in this manuscript, the optimal level of loop closure is heavily dependent upon mission requirements such as duration and the level of extra-vehicular activity (EVA) performed. Sub-system level trades were also considered as a function of mission duration to assess when increased loop closure is practical. Although many additional factors will likely merit consideration in designing life support systems for future missions, the ESM results described herein provide a context for future architecture design decisions toward a flexible path program.
NASA Technical Reports Server (NTRS)
Hohwiesner, Bill; Claudinon, Bernard
1991-01-01
The European Space Agency (ESA) has been working to develop an autonomous rendezvous and docking capability since 1984 to enable Hermes to automatically dock with Columbus. As a result, ESA with Matra, MBB, and other space companies have developed technologies that are also directly supportive of the current NASA initiative for Automated Rendezvous and Capture. Fairchild and Matra would like to discuss the results of the applicable ESA/Matra rendezvous and capture developments, and suggest how these capabilities could be used, together with an existing NASA Explorer Platform satellite, to minimize new development and accomplish a cost effective automatic closure and capture demonstration program. Several RV sensors have been developed at breadboard level for the Hermes/Columbus program by Matra, MBB, and SAAB. Detailed algorithms for automatic rendezvous, closure, and capture have been developed by ESA and CNES for application with Hermes to Columbus rendezvous and docking, and they currently are being verified with closed-loop software simulation. The algorithms have multiple closed-loop control modes and phases starting at long range using GPS navigation. Differential navigation is used for coast/continuous thrust homing, holdpoint acquisition, V-bar hopping, and station point acquisition. The proximity operation sensor is used for final closure and capture. A subset of these algorithms, comprising the proximity operations algorithms, could easily be extracted and tailored to a limited objective closure and capture flight demonstration.
Kumar, Ritesh; Qi, Yifei; Matsumura, Hirotoshi; Lovell, Scott; Yao, Huili; Battaile, Kevin P.; Im, Wonpil; Moënne-Loccoz, Pierre; Rivera, Mario
2017-01-01
Previous characterization of hemophores from Serratia marcescens (HasAs), Pseudomonas aeruginosa (HasAp) and Yersinia pestis (HasAyp) showed that hemin binds between two loops, where it is axially coordinated by H32 and Y75. The Y75 loop is structurally conserved in all three hemophores and harbors conserved ligand Y75. The other loop contains H32 in HasAs and HasAp, but a noncoordinating Q32 in HasAyp. The H32 loop in apo-HasAs and apo-HasAp is in an open conformation, which places H32 about 30 Å from the hemin-binding site. Hence, hemin binding onto the Y75 loop of HasAs or HasAp triggers a large relocation of the H32 loop from an open- to a closed-loop conformation and enables coordination of the hemin-iron by H32. In comparison, the Q32 loop in apo-HasAyp is in the closed conformation and hemin binding occurs with minimal reorganization and without coordinative interactions with the Q32 loop. Studies in crystallo and in solution have established that the open H32 loop in apo-HasAp and apo-HasAs is well structured and minimally affected by conformational dynamics. In this study we address the intriguing issue of the stability of the H32 loop in apo-HasAp and how hemin binding triggers its relocation. We address this question with a combination of NMR spectroscopy, X-ray crystallography, and molecular dynamics simulations and find that R33 is critical to the stability of the open H32 loop. Replacing R33 with A causes the H32 loop in R33A apo-HasAp to adopt a conformation similar to that of holo-HasAp. Finally, stopped-flow absorption and resonance Raman analyses of hemin binding to apo-R33A HasAp indicates that the closed H32 loop slows down the insertion of the heme inside the binding pocket, presumably as it obstructs access to the hydrophobic platform on the Y75 loop, but accelerate the completion of the heme iron coordination. PMID:27074415
[Magnetic closure for ileostomy (author's transl)].
Loygue, J; Salmon, R; Bloch, P
1980-09-20
The Maclet magnetic stoma seal already used by the authors for colostomies was applied to the closure of permanent terminal ileostomies. A reservoir is constructed upstreams of the closure with the last loop of ileum, so that the faeces accumulate and can be evacuated by intermittence. Patients empty the reservoir by removing the cap which blocks the intestinal lumen and introducing a probe into it. The technique was used on 2 patients who had undergone total proctocolectomy for familial polyposis of the colon. One patient has now been followed up for 3 years and the other for 6 months. The perfect continence obtained by this method favourably compares with Kock's continent ileostomy.
Gajda, Steven; Chen, Jie
2014-01-01
Objective To experimentally quantify the effects of the loop design on three-dimensional orthodontic load systems of two types of commercial closing loop archwires: Teardrop and Keyhole. Materials and Methods An orthodontic force tester and custom-made dentoform were used to measure the load systems produced on two teeth during simulated space closure. The system included three force components along and three moment components about three clinically defined axes on two target teeth: the left maxillary canine and the lateral incisor. The archwires were attached to the dentoform and were activated following a standard clinical procedure. Results The resulting six load components produced by the two archwires were reported and compared. The results were also compared with those of the T-loop archwire published previously. Conclusions The three designs deliver similar loading patterns; however, the component magnitudes are dependent on the design. All of the designs result in lingual tipping of the teeth, canine lingual-mesial displacement, canine crown-mesial-in rotation, and incisor crown-distal-in rotation. PMID:21879793
Life Support System Technologies for NASA Exploration Missions
NASA Technical Reports Server (NTRS)
Ewert, Michael K.
2007-01-01
The Lunar Mars Life Support Test series successfully demonstrated integration and operation of advanced technologies for closed-loop life support systems, including physicochemical and biological subsystems. Increased closure was obtained when targeted technologies, such as brine dewatering subsystems, were added to further process life support system byproducts to recover resources. Physicochemical and biological systems can be integrated satisfactorily to achieve desired levels of closure. Imbalances between system components, such as differences in metabolic quotients between human crews and plants, must be addressed. Each subsystem or component that is added to increase closure will likely have added costs, ranging from initial launch mass, power, thermal, crew time, byproducts, etc., that must be factored into break even analysis. Achieving life support system closure while maintaining control of total mass and system complexity will be a challenge.
Integrated Research/Education University Aircraft Design Program Development
2017-04-06
iterations and loop shaping compared to MIMO control methods. Despite the drawbacks, loop closure and classical methods are the design methods most commonly...AFRL-AFOSR-VA-TR-2017-0077 Integrated Research/Education University Aircraft Design Program Development Eli Livne UNIVERSITY OF WASHINGTON 4333...SUBTITLE Integrated Research/Education University Aircraft Design Program Development 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-14-1-0027 5c. PROGRAM
Missing LINQ: extrusion of a new-generation implantable loop recorder in a child.
Chaouki, Ahmad S; Czosek, Richard J; Spar, David S
2016-10-01
Cardiac rhythm monitoring has been facilitated by the use of implantable loop recorders. New models of these devices are 87% smaller than before allowing for easier implantation and use in the paediatric population. Recommendations are for closure with adhesive. We report a device extrusion in a 6-year-old patient. Based on this, our practice has changed to include subcutaneous sutures this complication.
Understanding the basis of space closure in Orthodontics for a more efficient orthodontic treatment
Ribeiro, Gerson Luiz Ulema; Jacob, Helder B.
2016-01-01
ABSTRACT Introduction: Space closure is one of the most challenging processes in Orthodontics and requires a solid comprehension of biomechanics in order to avoid undesirable side effects. Understanding the biomechanical basis of space closure better enables clinicians to determine anchorage and treatment options. In spite of the variety of appliance designs, space closure can be performed by means of friction or frictionless mechanics, and each technique has its advantages and disadvantages. Friction mechanics or sliding mechanics is attractive because of its simplicity; the space site is closed by means of elastics or coil springs to provide force, and the brackets slide on the orthodontic archwire. On the other hand, frictionless mechanics uses loop bends to generate force to close the space site, allowing differential moments in the active and reactive units, leading to a less or more anchorage control, depending on the situation. Objective: This article will discuss various theoretical aspects and methods of space closure based on biomechanical concepts. PMID:27275623
Understanding the basis of space closure in Orthodontics for a more efficient orthodontic treatment.
Ribeiro, Gerson Luiz Ulema; Jacob, Helder B
2016-01-01
Space closure is one of the most challenging processes in Orthodontics and requires a solid comprehension of biomechanics in order to avoid undesirable side effects. Understanding the biomechanical basis of space closure better enables clinicians to determine anchorage and treatment options. In spite of the variety of appliance designs, space closure can be performed by means of friction or frictionless mechanics, and each technique has its advantages and disadvantages. Friction mechanics or sliding mechanics is attractive because of its simplicity; the space site is closed by means of elastics or coil springs to provide force, and the brackets slide on the orthodontic archwire. On the other hand, frictionless mechanics uses loop bends to generate force to close the space site, allowing differential moments in the active and reactive units, leading to a less or more anchorage control, depending on the situation. This article will discuss various theoretical aspects and methods of space closure based on biomechanical concepts.
Structural basis for profilin-mediated actin nucleotide exchange
Porta, Jason C.; Borgstahl, Gloria E.O.
2015-01-01
Actin is a ubiquitous eukaryotic protein that is responsible for cellular scaffolding, motility and division. The ability of actin to form a helical filament is the driving force behind these cellular activities. Formation of a filament is dependent the successful exchange of actin’s ADP for ATP. Mammalian profilin is a small actin binding protein that catalyzes the exchange of nucleotide and facilitates the addition of an actin monomer to a growing filament. Here, crystal structures of profilin:actin have been determined showing an actively exchanging ATP. The structural analysis shows how the binding of profilin to the barbed end of actin causes a rotation of the small domain relative to the large domain. This conformational change is propagated to the ATP site and causes a shift in the nucleotide loops which in turn causes a repositioning of Ca2+ to its canonical position as the cleft closes around ATP. Reversing the solvent exposure of Trp-356 is also involved in cleft closure. In addition, secondary calcium binding sites were identified. PMID:22366544
Real-Time Large-Scale Dense Mapping with Surfels
Fu, Xingyin; Zhu, Feng; Wu, Qingxiao; Sun, Yunlei; Lu, Rongrong; Yang, Ruigang
2018-01-01
Real-time dense mapping systems have been developed since the birth of consumer RGB-D cameras. Currently, there are two commonly used models in dense mapping systems: truncated signed distance function (TSDF) and surfel. The state-of-the-art dense mapping systems usually work fine with small-sized regions. The generated dense surface may be unsatisfactory around the loop closures when the system tracking drift grows large. In addition, the efficiency of the system with surfel model slows down when the number of the model points in the map becomes large. In this paper, we propose to use two maps in the dense mapping system. The RGB-D images are integrated into a local surfel map. The old surfels that reconstructed in former times and far away from the camera frustum are moved from the local map to the global map. The updated surfels in the local map when every frame arrives are kept bounded. Therefore, in our system, the scene that can be reconstructed is very large, and the frame rate of our system remains high. We detect loop closures and optimize the pose graph to distribute system tracking drift. The positions and normals of the surfels in the map are also corrected using an embedded deformation graph so that they are consistent with the updated poses. In order to deal with large surface deformations, we propose a new method for constructing constraints with system trajectories and loop closure keyframes. The proposed new method stabilizes large-scale surface deformation. Experimental results show that our novel system behaves better than the prior state-of-the-art dense mapping systems. PMID:29747450
Protein-mediated looping of DNA under tension requires supercoiling
Yan, Yan; Leng, Fenfei; Finzi, Laura; Dunlap, David
2018-01-01
Abstract Protein-mediated DNA looping is ubiquitous in chromatin organization and gene regulation, but to what extent supercoiling or nucleoid associated proteins promote looping is poorly understood. Using the lac repressor (LacI), a paradigmatic loop-mediating protein, we measured LacI-induced looping as a function of either supercoiling or the concentration of the HU protein, an abundant nucleoid protein in Escherichia coli. Negative supercoiling to physiological levels with magnetic tweezers easily drove the looping probability from 0 to 100% in single DNA molecules under slight tension that likely exists in vivo. In contrast, even saturating (micromolar) concentrations of HU could not raise the looping probability above 30% in similarly stretched DNA or 80% in DNA without tension. Negative supercoiling is required to induce significant looping of DNA under any appreciable tension. PMID:29365152
A proposal for a tailored approach to diverting ostomy for colorectal anastomosis.
Manzenreiter, Lisa; Spaun, Georg; Weitzendorfer, Michael; Luketina, Rosalia; Antoniou, Stavros A; Wundsam, Helwig; Koch, Oliver O; Emmanuel, Klaus
2018-02-01
The use of a protective stoma represents an important issue in colorectal surgery. Although evidence suggests that loop ileostomy may be superior, the optimal method for temporary decompression of colorectal anastomosis still remains controversial. Aim of this study was to make an evidence-based proposal for a tailored approach to the use of diverting colostomy or ileostomy. A retrospective analysis of all patients subjected to creation and closure of a diverting loop colostomy or loop ileostomy between May 2007 and November 2014 in our institution was performed. Early and late complications, mortality and morbidity, time between formation and closure of the stoma in respect to adjuvant chemotherapy and the length of hospital stay were assessed and compared between the two groups. Outcomes of 167 patients (m=95; f=72) undergoing a loop colostomy (N.=130) or ileostomy (N.=37) were analyzed. The most frequent diagnosis was malignancy (64.1%), followed by abdominal emergency operations (18.6%) and complicated diverticular disease (17.4%). There was no mortality. Adjuvant chemotherapy (26.3%) resulted in delayed stoma reversal (P<0.001). Complications following construction of the stoma such as electrolyte disorder (P<0.001), renal insufficiency (P=0.048), and skin irritation (P=0.003) occurred significantly more often within the ileostomy group. Within the colostomy group, the rate of stoma prolapse (P=0.074) tended to be higher. Both methods have advantages and disadvantages. Loop transverse colostomy could be the preferred technique for older patients to avoid electrolyte disorder and renal insufficiency. Further prospective trials with documentation of electrolyte metabolism and quality of life should follow.
Automatic NMR field-frequency lock-pulsed phase locked loop approach.
Kan, S; Gonord, P; Fan, M; Sauzade, M; Courtieu, J
1978-06-01
A self-contained deuterium frequency-field lock scheme for a high-resolution NMR spectrometer is described. It is based on phase locked loop techniques in which the free induction decay signal behaves as a voltage-controlled oscillator. By pulsing the spins at an offset frequency of a few hundred hertz and using a digital phase-frequency discriminator this method not only eliminates the usual phase, rf power, offset adjustments needed in conventional lock systems but also possesses the automatic pull-in characteristics that dispense with the use of field sweeps to locate the NMR line prior to closure of the lock loop.
Clearing the Air: New Approaches to Life Support in Outer Space
NASA Technical Reports Server (NTRS)
Knox, J.; Howard, D.
2008-01-01
This article reports on research into atmospheric revitalization systems for long-term space travel and the use ofCOMSOL Multiphysics to understand how structured sorbents can be used to improve the performance of adsorption processes via thermal management. We are developing the next generation of atmosphere revitalization systems, which will reach for new levels of resource conservation via a high percentage of loop closure. For example, a high percentage of carbon dioxide, exhaled by crew, can be converted via reaction to drinking water, closing the loop from human metabolic waste to supply. Adsorption processes play a lead role in these new/closed loop systems.
Finger-Circumference-Measuring Device
NASA Technical Reports Server (NTRS)
Le, Suy
1995-01-01
Easy-to-use device quickly measures circumference of finger (including thumb) on human hand. Includes polytetrafluoroethylene band 1/8 in. wide, bent into loop and attached to tab that slides on scale graduated in millimeters. Sliding tab preloaded with constant-force tension spring, which pulls tab toward closure of loop. Designed to facilitate measurements at various points along fingers to obtain data for studies of volumetric changes of fingers in microgravity. Also used in normal Earth gravity studies of growth and in assessment of diseases like arthritis.
Chacko, Ajay; Tikku, Tripti; Khanna, Rohit; Maurya, Rana Pratap; Srivastava, Kamna
2018-05-28
Retraction in lingual orthodontics has biomechanical differences when compared to labial orthodontics, which is not yet established. Thus, we have intended to compare the biomechanical characteristics of closed helical loop and T-loop on 1 mm activation with 30° of compensatory curvatures during retraction in lingual orthodontics. STb lingual brackets were indirectly bonded to maxillary typhodont model that was scanned to obtain FEM model. Closed helical loop (2 × 7 mm) and T-loop (6 × 2 × 7 mm) of 0.016″ × 0.016″ TMA wire were modeled without preactivation bends. Preactivation bends at 30° were given in the software. Boundary conditions were set. The force (F) and moment (M) of both the loops were determined on 1 mm activation, using ANSYS software. M/F ratio was also calculated for both the loops. T-loop exerted less force, thus increased M/F ratio as compared to closed helical loop on 1 mm activation. When torque has to be preserved in the anterior segment during retraction in lingual orthodontics, T-loop can be preferred over closed helical loop.
Conformational Sampling in Template-Free Protein Loop Structure Modeling: An Overview
Li, Yaohang
2013-01-01
Accurately modeling protein loops is an important step to predict three-dimensional structures as well as to understand functions of many proteins. Because of their high flexibility, modeling the three-dimensional structures of loops is difficult and is usually treated as a “mini protein folding problem” under geometric constraints. In the past decade, there has been remarkable progress in template-free loop structure modeling due to advances of computational methods as well as stably increasing number of known structures available in PDB. This mini review provides an overview on the recent computational approaches for loop structure modeling. In particular, we focus on the approaches of sampling loop conformation space, which is a critical step to obtain high resolution models in template-free methods. We review the potential energy functions for loop modeling, loop buildup mechanisms to satisfy geometric constraints, and loop conformation sampling algorithms. The recent loop modeling results are also summarized. PMID:24688696
Conformational sampling in template-free protein loop structure modeling: an overview.
Li, Yaohang
2013-01-01
Accurately modeling protein loops is an important step to predict three-dimensional structures as well as to understand functions of many proteins. Because of their high flexibility, modeling the three-dimensional structures of loops is difficult and is usually treated as a "mini protein folding problem" under geometric constraints. In the past decade, there has been remarkable progress in template-free loop structure modeling due to advances of computational methods as well as stably increasing number of known structures available in PDB. This mini review provides an overview on the recent computational approaches for loop structure modeling. In particular, we focus on the approaches of sampling loop conformation space, which is a critical step to obtain high resolution models in template-free methods. We review the potential energy functions for loop modeling, loop buildup mechanisms to satisfy geometric constraints, and loop conformation sampling algorithms. The recent loop modeling results are also summarized.
Manual and automatic control of surface effect ships. [operator steering servomechanisms analysis
NASA Technical Reports Server (NTRS)
Clement, W. F.; Shanahan, J. J.; Allen, R. W.
1975-01-01
A recent investigation of crew performance in the motion environment of a large generic high speed surface effect ship by means of a motion base simulation addressed some of the helmsman's control task with an external forward visual field of the seascape and navigation and steering displays in the pilot house. In addition to the primary steering control task, a subcritical speed tracking task provided a secondary surrogate for trimming the water speed of the craft. The results of helsmen's steering describing function measurements are presented, and some suggestions for their interpretation are offered. The likely steering loop closures comprise heading and lateral displacement for the course keeping task investigated. Also discussed is the manner in which these loop closures were implemented for automatic steering of the surface effect ship. Regardless of the influence of workload, steering technique, water speed and sea state, the helmsmen apparently adopted a disturbance regulation bandwidth of about 0.2 rad/sec for lateral displacement.
Evaluation of Sorbents for Acetylene Separation in Atmosphere Revitalization Loop Closure
NASA Technical Reports Server (NTRS)
Abney, Morgan B.; Miller, Lee A.; Barton, Katherine
2012-01-01
State-of-the-art carbon dioxide reduction technology uses a Sabatier reactor to recover water from metabolic carbon dioxide. In order to maximize oxygen loop closure, a byproduct of the system, methane, must be reduced to recover hydrogen. NASA is currently exploring a microwave plasma methane pyrolysis system for this purpose. The resulting product stream of this technology includes unreacted methane, product hydrogen, and acetylene. The hydrogen and the small amount of unreacted methane resulting from the pyrolysis process can be returned to the Sabatier reactor thereby substantially improving the overall efficiency of the system. However, the acetylene is a waste product that must be removed from the pyrolysis product. Two materials have been identified as potential sorbents for acetylene removal: zeolite 4A, a commonly available commercial sorbent, and HKUST-1, a newly developed microporous metal. This paper provides an explanation of the rationale behind acetylene removal and the results of separation testing with both materials
Evaluation of Sorbents for Acetylene Separation in Atmosphere Revitalization Loop Closure
NASA Technical Reports Server (NTRS)
Abney, Morgan B.; Miller, Lee A.; Barton, Katherine
2011-01-01
State-of-the-art carbon dioxide reduction technology uses a Sabatier reactor to recover water from metabolic carbon dioxide. In order to maximize oxygen loop closure, a byproduct of the system, methane, must be reduced to recover hydrogen. NASA is currently exploring a microwave plasma methane pyrolysis system for this purpose. The resulting product stream of this technology includes unreacted methane, product hydrogen, and acetylene. The hydrogen and the small amount of unreacted methane resulting from the pyrolysis process can be returned to the Sabatier reactor thereby substantially improving the overall efficiency of the system. However, the acetylene is a waste product that must be removed from the pyrolysis product. Two materials have been identified as potential sorbents for acetylene removal: zeolite 4A, a commonly available commercial sorbent, and HKUST-1, a newly developed microporous metal. This paper provides an explanation of the rationale behind acetylene removal and the results of separation testing with both materials.
About problematic peculiarities of Fault Tolerance digital regulation organization
NASA Astrophysics Data System (ADS)
Rakov, V. I.; Zakharova, O. V.
2018-05-01
The solution of problems concerning estimation of working capacity of regulation chains and possibilities of preventing situations of its violation in three directions are offered. The first direction is working out (creating) the methods of representing the regulation loop (circuit) by means of uniting (combining) diffuse components and forming algorithmic tooling for building predicates of serviceability assessment separately for the components and the for regulation loops (circuits, contours) in general. The second direction is creating methods of Fault Tolerance redundancy in the process of complex assessment of current values of control actions, closure errors and their regulated parameters. The third direction is creating methods of comparing the processes of alteration (change) of control actions, errors of closure and regulating parameters with their standard models or their surroundings. This direction allows one to develop methods and algorithmic tool means, aimed at preventing loss of serviceability and effectiveness of not only a separate digital regulator, but also the whole complex of Fault Tolerance regulation.
Hookey, L C; Bielawska, B; Samis, A; Jalink, D; Ellis, R; Khokhotva, V; Hurlbut, D; Mercer, D
2009-06-01
The evolution of NOTES to clinical implementation has been hampered by lack of a reliable, safe, and easy-to-implement technique for closure of the opening created in accessing the peritoneum. The Queen's closure uses a combination of endoscopic clips and loop devices to seal such defects in the stomach wall. This study aimed to assess the Queen's closure in a porcine survival model. Five 30-kg pigs underwent endoscopic transgastric surgery with exploration of the peritoneum. The endoscope was then withdrawn back into the stomach and the closure performed. The animals were recovered, monitored closely, and underwent endoscopy 1 week after surgery. They were then euthanized at 2 (n = 2) and 3 (n = 3) weeks after surgery with subsequent necropsy. The mean procedure time (from intubation of the esophagus to withdrawal of the endoscope) was 79 minutes (range 45-105 minutes) with a mean time of exploration of the peritoneum of 14 minutes (range 8-25 minutes). All animals recovered well with no apparent pain, distress, or signs of infection. Endoscopic examination 1 week after surgery revealed all the closures to be intact and only identifiable by a small ulcer. At necropsy, the gastrotomy site was identifiable only by minor serosal adhesions. Histological study demonstrated full-thickness closure with minimal inflammation. The Queen's closure is a reliable and safe technique that provides full-thickness gastrotomy closure without any observed complications. The technique has proven to be transferable knowledge that holds promise for clinical implementation.
Rupture loop annex ion exchange RLAIX vault deactivation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ham, J.E.; Harris, D.L., Westinghouse Hanford
This engineering report documents the deactivation, stabilization and final conditions of the Rupture Loop Annex Ion Exchange (RLAIX) Vault located northwest of the 309 Building`s Plutonium Recycle Test Reactor (PRTR). Twelve ion exchange columns, piping debris, and column liquid were removed from the vault, packaged and shipped for disposal. The vault walls and floor were decontaminated, and portions of the vault were painted to fix loose contamination. Process piping and drains were plugged, and the cover blocks and rain cover were installed. Upon closure,the vault was empty, stabilized, isolated.
Mining protein loops using a structural alphabet and statistical exceptionality
2010-01-01
Background Protein loops encompass 50% of protein residues in available three-dimensional structures. These regions are often involved in protein functions, e.g. binding site, catalytic pocket... However, the description of protein loops with conventional tools is an uneasy task. Regular secondary structures, helices and strands, have been widely studied whereas loops, because they are highly variable in terms of sequence and structure, are difficult to analyze. Due to data sparsity, long loops have rarely been systematically studied. Results We developed a simple and accurate method that allows the description and analysis of the structures of short and long loops using structural motifs without restriction on loop length. This method is based on the structural alphabet HMM-SA. HMM-SA allows the simplification of a three-dimensional protein structure into a one-dimensional string of states, where each state is a four-residue prototype fragment, called structural letter. The difficult task of the structural grouping of huge data sets is thus easily accomplished by handling structural letter strings as in conventional protein sequence analysis. We systematically extracted all seven-residue fragments in a bank of 93000 protein loops and grouped them according to the structural-letter sequence, named structural word. This approach permits a systematic analysis of loops of all sizes since we consider the structural motifs of seven residues rather than complete loops. We focused the analysis on highly recurrent words of loops (observed more than 30 times). Our study reveals that 73% of loop-lengths are covered by only 3310 highly recurrent structural words out of 28274 observed words). These structural words have low structural variability (mean RMSd of 0.85 Å). As expected, half of these motifs display a flanking-region preference but interestingly, two thirds are shared by short (less than 12 residues) and long loops. Moreover, half of recurrent motifs exhibit a significant level of amino-acid conservation with at least four significant positions and 87% of long loops contain at least one such word. We complement our analysis with the detection of statistically over-represented patterns of structural letters as in conventional DNA sequence analysis. About 30% (930) of structural words are over-represented, and cover about 40% of loop lengths. Interestingly, these words exhibit lower structural variability and higher sequential specificity, suggesting structural or functional constraints. Conclusions We developed a method to systematically decompose and study protein loops using recurrent structural motifs. This method is based on the structural alphabet HMM-SA and not on structural alignment and geometrical parameters. We extracted meaningful structural motifs that are found in both short and long loops. To our knowledge, it is the first time that pattern mining helps to increase the signal-to-noise ratio in protein loops. This finding helps to better describe protein loops and might permit to decrease the complexity of long-loop analysis. Detailed results are available at http://www.mti.univ-paris-diderot.fr/publication/supplementary/2009/ACCLoop/. PMID:20132552
Mining protein loops using a structural alphabet and statistical exceptionality.
Regad, Leslie; Martin, Juliette; Nuel, Gregory; Camproux, Anne-Claude
2010-02-04
Protein loops encompass 50% of protein residues in available three-dimensional structures. These regions are often involved in protein functions, e.g. binding site, catalytic pocket... However, the description of protein loops with conventional tools is an uneasy task. Regular secondary structures, helices and strands, have been widely studied whereas loops, because they are highly variable in terms of sequence and structure, are difficult to analyze. Due to data sparsity, long loops have rarely been systematically studied. We developed a simple and accurate method that allows the description and analysis of the structures of short and long loops using structural motifs without restriction on loop length. This method is based on the structural alphabet HMM-SA. HMM-SA allows the simplification of a three-dimensional protein structure into a one-dimensional string of states, where each state is a four-residue prototype fragment, called structural letter. The difficult task of the structural grouping of huge data sets is thus easily accomplished by handling structural letter strings as in conventional protein sequence analysis. We systematically extracted all seven-residue fragments in a bank of 93000 protein loops and grouped them according to the structural-letter sequence, named structural word. This approach permits a systematic analysis of loops of all sizes since we consider the structural motifs of seven residues rather than complete loops. We focused the analysis on highly recurrent words of loops (observed more than 30 times). Our study reveals that 73% of loop-lengths are covered by only 3310 highly recurrent structural words out of 28274 observed words). These structural words have low structural variability (mean RMSd of 0.85 A). As expected, half of these motifs display a flanking-region preference but interestingly, two thirds are shared by short (less than 12 residues) and long loops. Moreover, half of recurrent motifs exhibit a significant level of amino-acid conservation with at least four significant positions and 87% of long loops contain at least one such word. We complement our analysis with the detection of statistically over-represented patterns of structural letters as in conventional DNA sequence analysis. About 30% (930) of structural words are over-represented, and cover about 40% of loop lengths. Interestingly, these words exhibit lower structural variability and higher sequential specificity, suggesting structural or functional constraints. We developed a method to systematically decompose and study protein loops using recurrent structural motifs. This method is based on the structural alphabet HMM-SA and not on structural alignment and geometrical parameters. We extracted meaningful structural motifs that are found in both short and long loops. To our knowledge, it is the first time that pattern mining helps to increase the signal-to-noise ratio in protein loops. This finding helps to better describe protein loops and might permit to decrease the complexity of long-loop analysis. Detailed results are available at http://www.mti.univ-paris-diderot.fr/publication/supplementary/2009/ACCLoop/.
Top3-Rmi1 dissolve Rad51-mediated D loops by a topoisomerase-based mechanism.
Fasching, Clare L; Cejka, Petr; Kowalczykowski, Stephen C; Heyer, Wolf-Dietrich
2015-02-19
The displacement loop (D loop) is a DNA strand invasion product formed during homologous recombination. Disruption of nascent D loops prevents recombination, and during synthesis-dependent strand annealing (SDSA), disruption of D loops extended by DNA polymerase ensures a non-crossover outcome. The proteins implicated in D loop disruption are DNA motor proteins/helicases that act by moving DNA junctions. Here we report that D loops can also be disrupted by DNA topoisomerase 3 (Top3), and this disruption depends on Top3's catalytic activity. Yeast Top3 specifically disrupts D loops mediated by yeast Rad51/Rad54; protein-free D loops or D loop mediated by bacterial RecA protein or human RAD51/RAD54 resist dissolution. Also, the human Topoisomerase IIIa-RMI1-RMI2 complex is capable of dissolving D loops. Consistent with genetic data, we suggest that the extreme growth defect and hyper-recombination phenotype of Top3-deficient yeast cells is partially a result of unprocessed D loops. Copyright © 2015 Elsevier Inc. All rights reserved.
Protein-mediated loops in supercoiled DNA create large topological domains
Yan, Yan; Ding, Yue; Leng, Fenfei; Dunlap, David; Finzi, Laura
2018-01-01
Abstract Supercoiling can alter the form and base pairing of the double helix and directly impact protein binding. More indirectly, changes in protein binding and the stress of supercoiling also influence the thermodynamic stability of regulatory, protein-mediated loops and shift the equilibria of fundamental DNA/chromatin transactions. For example, supercoiling affects the hierarchical organization and function of chromatin in topologically associating domains (TADs) in both eukaryotes and bacteria. On the other hand, a protein-mediated loop in DNA can constrain supercoiling within a plectonemic structure. To characterize the extent of constrained supercoiling, 400 bp, lac repressor-secured loops were formed in extensively over- or under-wound DNA under gentle tension in a magnetic tweezer. The protein-mediated loops constrained variable amounts of supercoiling that often exceeded the maximum writhe expected for a 400 bp plectoneme. Loops with such high levels of supercoiling appear to be entangled with flanking domains. Thus, loop-mediating proteins operating on supercoiled substrates can establish topological domains that may coordinate gene regulation and other DNA transactions across spans in the genome that are larger than the separation between the binding sites. PMID:29538766
NASA Astrophysics Data System (ADS)
Zhou, Huai-Bei
This dissertation examines the dynamic response of a magnetoplasma to an external time-dependent current source. To achieve this goal a new method which combines analytic and numerical techniques to study the dynamic response of a 3-D magnetoplasma to a time-dependent current source imposed across the magnetic field was developed. The set of the cold electron and/or ion plasma equations and Maxwell's equations are first solved analytically in (k, omega)^ace; inverse Laplace and 3 -D complex Fast Fourier Transform (FFT) techniques are subsequently used to numerically transform the radiation fields and plasma currents from the (k, omega) ^ace to the (r, t) space. The dynamic responses of the electron plasma and of the compensated two-component plasma to external current sources are studied separately. The results show that the electron plasma responds to a time -varying current source imposed across the magnetic field by exciting whistler/helicon waves and forming of an expanding local current loop, induced by field aligned plasma currents. The current loop consists of two anti-parallel field-aligned current channels concentrated at the ends of the imposed current and a cross-field current region connecting these channels. The latter is driven by an electron Hall drift. A compensated two-component plasma responds to the same current source as following: (a) For slow time scales tau > Omega_sp{i}{-1} , it generates Alfven waves and forms a non-local current loop in which the ion polarization currents dominate the cross-field current; (b) For fast time scales tau < Omega_sp{i}{-1} , the dynamic response of the compensated two-component plasma is the same as that of the electron plasma. The characteristics of the current closure region are determined by the background plasma density, the magnetic field and the time scale of the current source. This study has applications to a diverse range of space and solid state plasma problems. These problems include current closure in emf inducing tethered satellite systems (TSS), generation of ELF/VLF waves by ionospheric heating, current closure and quasineutrality in thin magnetopause transitions, and short electromagnetic pulse generation in solid state plasmas. The cross-field current in TSS builds up on a time scale corresponding to the whistler waves and results in local current closure. Amplitude modulated HF ionospheric heating generates ELF/VLF waves by forming a horizontal magnetic dipole. The dipole is formed by the current closure in the modified region. For thin transition the time-dependent cross-field polarization field at the magnetopause could be neutralized by the formation of field aligned current loops that close by a cross-field electron Hall current. A moving current source in a solid state plasma results in microwave emission if the speed of the source exceeds the local phase velocity of the helicon or Alfven waves. Detailed analysis of the above problems is presented in the thesis.
Top3-Rmi1 dissolve Rad51-mediated D-loops by a topoisomerase-based mechanism
Fasching, Clare L.; Cejka, Petr; Kowalczykowski, Stephen C.; Heyer, Wolf-Dietrich
2015-01-01
Summary The displacement loop (D-loop) is the DNA strand invasion product formed during homologous recombination. Disruption of nascent D-loops represents a mechanism of anti-recombination. During Synthesis-Dependent Strand Annealing D-loop disruption after extension of the invading strand is an integral step of the pathway and ensures a non-crossover outcome. The proteins implicated in D-loop disruption are DNA motor proteins/helicases acting by migrating DNA junctions. Here we report an unanticipated mechanism of D-loop dissolution mediated by DNA topoisomerase 3 (Top3) and dependent on its catalytic activity. D-loop dissolution catalyzed by yeast Top3 is highly specific for yeast Rad51/Rad54-mediated D-loops, whereas protein-free D-loops or D-loop mediated by bacterial RecA protein or human RAD51/RAD54 resist dissolution. Also the human Topoisomerase IIIα-RMI1–RMI2 complex is capable of dissolving D-loops. Consistent with genetic data, we suggest that the extreme growth defect and hyper-recombination phenotype of Top3-deficient yeast cells is in part a result of unprocessed D-loops. PMID:25699708
Comparison of closed loop model with flight test results
NASA Technical Reports Server (NTRS)
George, F. L.
1981-01-01
An analytic technique capable of predicting the landing characteristics of proposed aircraft configurations in the early stages of design was developed. In this analysis, a linear pilot-aircraft closed loop model was evaluated using experimental data generated with the NT-33 variable stability in-flight simulator. The pilot dynamics are modeled as inner and outer servo loop closures around aircraft pitch attitude, and altitude rate-of-change respectively. The landing flare maneuver is of particular interest as recent experience with military and other highly augmented vehicles shows this task to be relatively demanding, and potentially a critical design point. A unique feature of the pilot model is the incorporation of an internal model of the pilot's desired flight path for the flare maneuver.
Advanced physical-chemical life support systems research
NASA Technical Reports Server (NTRS)
Evanich, Peggy L.
1988-01-01
A proposed NASA space research and technology development program will provide adequate data for designing closed loop life support systems for long-duration manned space missions. This program, referred to as the Pathfinder Physical-Chemical Closed Loop Life Support Program, is to identify and develop critical chemical engineering technologies for the closure of air and water loops within the spacecraft, surface habitats or mobility devices. Computerized simulation can be used both as a research and management tool. Validated models will guide the selection of the best known applicable processes and in the development of new processes. For the integration of the habitat system, a biological subsystem would be introduced to provide food production and to enhance the physical-chemical life support functions on an ever-increasing basis.
Kadumuri, Rajashekar Varma; Vadrevu, Ramakrishna
2017-10-01
Due to their crucial role in function, folding, and stability, protein loops are being targeted for grafting/designing to create novel or alter existing functionality and improve stability and foldability. With a view to facilitate a thorough analysis and effectual search options for extracting and comparing loops for sequence and structural compatibility, we developed, LoopX a comprehensively compiled library of sequence and conformational features of ∼700,000 loops from protein structures. The database equipped with a graphical user interface is empowered with diverse query tools and search algorithms, with various rendering options to visualize the sequence- and structural-level information along with hydrogen bonding patterns, backbone φ, ψ dihedral angles of both the target and candidate loops. Two new features (i) conservation of the polar/nonpolar environment and (ii) conservation of sequence and conformation of specific residues within the loops have also been incorporated in the search and retrieval of compatible loops for a chosen target loop. Thus, the LoopX server not only serves as a database and visualization tool for sequence and structural analysis of protein loops but also aids in extracting and comparing candidate loops for a given target loop based on user-defined search options.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Light, Samuel H.; Minasov, George; Shuvalova, Ludmilla
2012-04-18
Dehydroquinate dehydratase (DHQD) catalyzes the third step in the biosynthetic shikimate pathway. We present three crystal structures of the Salmonella enterica type I DHQD that address the functionality of a surface loop that is observed to close over the active site following substrate binding. Two wild-type structures with differing loop conformations and kinetic and structural studies of a mutant provide evidence of both direct and indirect mechanisms of involvement of the loop in substrate binding. In addition to allowing amino acid side chains to establish a direct interaction with the substrate, closure of the loop necessitates a conformational change ofmore » a key active site arginine, which in turn positions the substrate productively. The absence of DHQD in humans and its essentiality in many pathogenic bacteria make the enzyme a target for the development of nontoxic antimicrobials. The structures and ligand binding insights presented here may inform the design of novel type I DHQD inhibiting molecules.« less
Functional Loop Dynamics of the Streptavidin-Biotin Complex
Song, Jianing; Li, Yongle; Ji, Changge; Zhang, John Z. H.
2015-01-01
Accelerated molecular dynamics (aMD) simulation is employed to study the functional dynamics of the flexible loop3-4 in the strong-binding streptavidin-biotin complex system. Conventional molecular (cMD) simulation is also performed for comparison. The present study reveals the following important properties of the loop dynamics: (1) The transition of loop3-4 from open to closed state is observed in 200 ns aMD simulation. (2) In the absence of biotin binding, the open-state streptavidin is more stable, which is consistent with experimental evidences. The free energy (ΔG) difference is about 5 kcal/mol between two states. But with biotin binding, the closed state is more stable due to electrostatic and hydrophobic interactions between the loop3-4 and biotin. (3) The closure of loop3-4 is concerted to the stable binding of biotin to streptavidin. When the loop3-4 is in its open-state, biotin moves out of the binding pocket, indicating that the interactions between the loop3-4 and biotin are essential in trapping biotin in the binding pocket. (4) In the tetrameric streptavidin system, the conformational change of the loop3-4 in each monomer is independent of each other. That is, there is no cooperative binding for biotin bound to the four subunits of the tetramer. PMID:25601277
Park, Hahnbeom; Lee, Gyu Rie; Heo, Lim; Seok, Chaok
2014-01-01
Protein loop modeling is a tool for predicting protein local structures of particular interest, providing opportunities for applications involving protein structure prediction and de novo protein design. Until recently, the majority of loop modeling methods have been developed and tested by reconstructing loops in frameworks of experimentally resolved structures. In many practical applications, however, the protein loops to be modeled are located in inaccurate structural environments. These include loops in model structures, low-resolution experimental structures, or experimental structures of different functional forms. Accordingly, discrepancies in the accuracy of the structural environment assumed in development of the method and that in practical applications present additional challenges to modern loop modeling methods. This study demonstrates a new strategy for employing a hybrid energy function combining physics-based and knowledge-based components to help tackle this challenge. The hybrid energy function is designed to combine the strengths of each energy component, simultaneously maintaining accurate loop structure prediction in a high-resolution framework structure and tolerating minor environmental errors in low-resolution structures. A loop modeling method based on global optimization of this new energy function is tested on loop targets situated in different levels of environmental errors, ranging from experimental structures to structures perturbed in backbone as well as side chains and template-based model structures. The new method performs comparably to force field-based approaches in loop reconstruction in crystal structures and better in loop prediction in inaccurate framework structures. This result suggests that higher-accuracy predictions would be possible for a broader range of applications. The web server for this method is available at http://galaxy.seoklab.org/loop with the PS2 option for the scoring function.
Coupling between Catalytic Loop Motions and Enzyme Global Dynamics
Kurkcuoglu, Zeynep; Bakan, Ahmet; Kocaman, Duygu; Bahar, Ivet; Doruker, Pemra
2012-01-01
Catalytic loop motions facilitate substrate recognition and binding in many enzymes. While these motions appear to be highly flexible, their functional significance suggests that structure-encoded preferences may play a role in selecting particular mechanisms of motions. We performed an extensive study on a set of enzymes to assess whether the collective/global dynamics, as predicted by elastic network models (ENMs), facilitates or even defines the local motions undergone by functional loops. Our dataset includes a total of 117 crystal structures for ten enzymes of different sizes and oligomerization states. Each enzyme contains a specific functional/catalytic loop (10–21 residues long) that closes over the active site during catalysis. Principal component analysis (PCA) of the available crystal structures (including apo and ligand-bound forms) for each enzyme revealed the dominant conformational changes taking place in these loops upon substrate binding. These experimentally observed loop reconfigurations are shown to be predominantly driven by energetically favored modes of motion intrinsically accessible to the enzyme in the absence of its substrate. The analysis suggests that robust global modes cooperatively defined by the overall enzyme architecture also entail local components that assist in suitable opening/closure of the catalytic loop over the active site. PMID:23028297
Characterization of a Novel Association between Two Trypanosome-Specific Proteins and 5S rRNA
Ciganda, Martin; Williams, Noreen
2012-01-01
P34 and P37 are two previously identified RNA binding proteins in the flagellate protozoan Trypanosoma brucei. RNA interference studies have determined that the proteins are essential and are involved in ribosome biogenesis. Here, we show that these proteins interact in vitro with the 5S rRNA with nearly identical binding characteristics in the absence of other cellular factors. The T. brucei 5S rRNA has a complex secondary structure and presents four accessible loops (A to D) for interactions with RNA-binding proteins. In other eukaryotes, loop C is bound by the L5 ribosomal protein and loop A mainly by TFIIIA. The binding of P34 and P37 to T. brucei 5S rRNA involves the LoopA region of the RNA, but these proteins also protect the L5 binding site located on LoopC. PMID:22253864
Inhibition of melanoma cell motility by the snake venom disintegrin eristostatin
Tian, Jing; Paquette-Straub, Carrie; Sage, E. Helene; Funk, Sarah E.; Patel, Vivek; Galileo, Deni; McLane, Mary Ann
2007-01-01
Eristostatin, an RGD-containing disintegrin isolated from the venom of Eristicophis macmahoni, inhibits lung or liver colonization of melanoma cells in a mouse model. In this study, transwell migration and in vitro wound closure assays were used to determine the effect of eristostatin on the migration of melanoma cells. Eristostatin significantly impaired the migration of 5 human melanoma cell lines. Furthermore, it specifically inhibited cell migration on fibronectin in a concentration-dependent manner, but not that on collagen IV or laminin. In contrast, eristostatin was found to have no effect on cell proliferation or angiogenesis. These results indicate that the interaction between eristostatin and melanoma cells may involve fibronectin-binding integrins that mediate cell migration. Mutations to alanine of seven residues within the RGD loop of eristostatin and four residues outside the RGD loop of eristostatin resulted in significantly less potency in both platelet aggregation and wound closure assays. For six of the mutations, however, decreased activity was found only in the latter assay. We conclude that a different mechanism and/or integrin is involved in these two cell activities. PMID:17316731
Thiesen, Guilherme; Shimizu, Roberto Hideo; do Valle, Caio Vinicius Martins; do Valle-Corotti, Karyna Martins; Pereira, Jefferson Ricardo; Conti, Paulo Cesar Rodrigues
2013-03-15
To determine the mechanical characteristics of teardrop loop with and without helix fabricated using different metal alloy compositions (stainless steel and beta-titanium), submitted to different intensities of bends preactivation (0° and 40°), and with different cross-sectional dimension of the wire used to build these loops (0.017 x 0.025-in and 0.019 x 0.025-in). Eighty loops used to close spaces were submitted to mechanical tests. The magnitudes of horizontal force, the moment/force ratio, and the load/deflection ratio produced by the specimens were quantified. Loops were submitted to a total activation of 5.0 mm and the values were registered for each 1.0 mm of activation. For statistic data analysis, a analysis of variance was performed and a Tukey's Multiple Comparison test was used as supplement, considering a 5% level of significance. In general, teardrop loops with helix produced lower magnitudes of horizontal force and load/deflection ratio, and higher moment/force ratio than teardrop loops without helix. Among all analyzed variables, metal alloy composition presented greater influence in the horizontal force and in the load/deflection ratio. The moment/force ratio showed to be more influenced by the preactivation of loops for space closure.
Guérin, T
2017-08-01
Estimating the probability that two monomers of the same polymer chain are close together is a key ingredient to characterize intramolecular reactions and polymer looping. In the case of stiff wormlike polymers (rigid fluctuating elastic rods), for which end-to-end encounters are rare events, we derive an explicit analytical formula for the probability η(r_{c}) that the distance between the chain extremities is smaller than some capture radius r_{c}. The formula is asymptotically exact in the limit of stiff chains, and it leads to the identification of two distinct scaling regimes for the closure factor, originating from a strong variation of the fluctuations of the chain orientation at closure. Our theory is compatible with existing analytical results from the literature that cover the cases of a vanishing capture radius and of nearly fully extended chains.
Fast de novo discovery of low-energy protein loop conformations.
Wong, Samuel W K; Liu, Jun S; Kou, S C
2017-08-01
In the prediction of protein structure from amino acid sequence, loops are challenging regions for computational methods. Since loops are often located on the protein surface, they can have significant roles in determining protein functions and binding properties. Loop prediction without the aid of a structural template requires extensive conformational sampling and energy minimization, which are computationally difficult. In this article we present a new de novo loop sampling method, the Parallely filtered Energy Targeted All-atom Loop Sampler (PETALS) to rapidly locate low energy conformations. PETALS explores both backbone and side-chain positions of the loop region simultaneously according to the energy function selected by the user, and constructs a nonredundant ensemble of low energy loop conformations using filtering criteria. The method is illustrated with the DFIRE potential and DiSGro energy function for loops, and shown to be highly effective at discovering conformations with near-native (or better) energy. Using the same energy function as the DiSGro algorithm, PETALS samples conformations with both lower RMSDs and lower energies. PETALS is also useful for assessing the accuracy of different energy functions. PETALS runs rapidly, requiring an average time cost of 10 minutes for a length 12 loop on a single 3.2 GHz processor core, comparable to the fastest existing de novo methods for generating an ensemble of conformations. Proteins 2017; 85:1402-1412. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Phytomelatonin receptor PMTR1-mediated signaling regulates stomatal closure in Arabidopsis thaliana.
Wei, Jian; Li, Dong-Xu; Zhang, Jia-Rong; Shan, Chi; Rengel, Zed; Song, Zhong-Bang; Chen, Qi
2018-04-27
Melatonin has been detected in plants in 1995; however, the function and signaling pathway of this putative phytohormone are largely undetermined due to a lack of knowledge about its receptor. Here, we discovered the first phytomelatonin receptor (CAND2/PMTR1) in Arabidopsis thaliana and found that melatonin governs the receptor-dependent stomatal closure. The application of melatonin induced stomatal closure through the heterotrimeric G protein α subunit-regulated H 2 O 2 and Ca 2+ signals. The Arabidopsis mutant lines lacking AtCand2 that encodes a candidate G protein-coupled receptor were insensitive to melatonin-induced stomatal closure. Accordingly, the melatonin-induced H 2 O 2 production and Ca 2+ influx were completely abolished in cand2. CAND2 is a membrane protein that interacts with GPA1 and the expression of AtCand2 was tightly regulated by melatonin in various organs and guard cells. CAND2 showed saturable and specific 125 I-melatonin binding, with apparent K d (dissociation constant) of 0.73 ± 0.10 nmol/L (r 2 = .99), demonstrating this protein is a phytomelatonin receptor (PMTR1). Our results suggest that the phytomelatonin regulation of stomatal closure is dependent on its receptor CAND2/PMTR1-mediated H 2 O 2 and Ca 2+ signaling transduction cascade. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
A tensegrity model for hydrogen bond networks in proteins.
Bywater, Robert P
2017-05-01
Hydrogen-bonding networks in proteins considered as structural tensile elements are in balance separately from any other stabilising interactions that may be in operation. The hydrogen bond arrangement in the network is reminiscent of tensegrity structures in architecture and sculpture. Tensegrity has been discussed before in cells and tissues and in proteins. In contrast to previous work only hydrogen bonds are studied here. The other interactions within proteins are either much stronger - covalent bonds connecting the atoms in the molecular skeleton or weaker forces like the so-called hydrophobic interactions. It has been demonstrated that the latter operate independently from hydrogen bonds. Each category of interaction must, if the protein is to have a stable structure, balance out. The hypothesis here is that the entire hydrogen bond network is in balance without any compensating contributions from other types of interaction. For sidechain-sidechain, sidechain-backbone and backbone-backbone hydrogen bonds in proteins, tensegrity balance ("closure") is required over the entire length of the polypeptide chain that defines individually folding units in globular proteins ("domains") as well as within the repeating elements in fibrous proteins that consist of extended chain structures. There is no closure to be found in extended structures that do not have repeating elements. This suggests an explanation as to why globular domains, as well as the repeat units in fibrous proteins, have to have a defined number of residues. Apart from networks of sidechain-sidechain hydrogen bonds there are certain key points at which this closure is achieved in the sidechain-backbone hydrogen bonds and these are associated with demarcation points at the start or end of stretches of secondary structure. Together, these three categories of hydrogen bond achieve the closure that is necessary for the stability of globular protein domains as well as repeating elements in fibrous proteins.
Structural Basis for Activation of Fatty Acid-binding Protein 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillilan,R.; Ayers, S.; Noy, N.
2007-01-01
Fatty acid-binding protein 4 (FABP4) delivers ligands from the cytosol to the nuclear receptor PPAR{gamma} in the nucleus, thereby enhancing the transcriptional activity of the receptor. Notably, FABP4 binds multiple ligands with a similar affinity but its nuclear translocation is activated only by specific compounds. To gain insight into the structural features that underlie the ligand-specificity in activation of the nuclear import of FABP4, we solved the crystal structures of the protein complexed with two compounds that induce its nuclear translocation, and compared these to the apo-protein and to FABP4 structures bound to non-activating ligands. Examination of these structures indicatesmore » that activation coincides with closure of a portal loop phenylalanine side-chain, contraction of the binding pocket, a subtle shift in a helical domain containing the nuclear localization signal of the protein, and a resultant change in oligomeric state that exposes the nuclear localization signal to the solution. Comparisons of backbone displacements induced by activating ligands with a measure of mobility derived from translation, libration, screw (TLS) refinement, and with a composite of slowest normal modes of the apo state suggest that the helical motion associated with the activation of the protein is part of the repertoire of the equilibrium motions of the apo-protein, i.e. that ligand binding does not induce the activated configuration but serves to stabilize it. Nuclear import of FABP4 can thus be understood in terms of the pre-existing equilibrium hypothesis of ligand binding.« less
Molecular principles underlying dual RNA specificity in the Drosophila SNF protein.
Weber, Gert; DeKoster, Gregory T; Holton, Nicole; Hall, Kathleen B; Wahl, Markus C
2018-06-07
The first RNA recognition motif of the Drosophila SNF protein is an example of an RNA binding protein with multi-specificity. It binds different RNA hairpin loops in spliceosomal U1 or U2 small nuclear RNAs, and only in the latter case requires the auxiliary U2A' protein. Here we investigate its functions by crystal structures of SNF alone and bound to U1 stem-loop II, U2A' or U2 stem-loop IV and U2A', SNF dynamics from NMR spectroscopy, and structure-guided mutagenesis in binding studies. We find that different loop-closing base pairs and a nucleotide exchange at the tips of the loops contribute to differential SNF affinity for the RNAs. U2A' immobilizes SNF and RNA residues to restore U2 stem-loop IV binding affinity, while U1 stem-loop II binding does not require such adjustments. Our findings show how U2A' can modulate RNA specificity of SNF without changing SNF conformation or relying on direct RNA contacts.
Immunogenicity of therapeutic proteins. Part 2: impact of container closures.
Sharma, Basant
2007-01-01
Immunogenicity as a potential consequence of therapeutic protein administration is increasingly being scrutinized in the biopharmaceuticals industry, particularly with the imminent introduction of biosimilar products. Immunogenicity is an important safety aspect requiring rigorous investigation to fully appreciate its impact. Factors involved in product handling, such as storage temperature, light exposure, and shaking, have been implicated in immunogenicity, while container closure systems are no less important. Intended to provide a stable environment for the dosage form, container closures may also interact with a product, affecting performance and potentially enhancing immunogenicity. Glass surfaces, air-liquid interfaces, and lubricants can mediate protein denaturation, while phthalates in plastics and latex rubber are sources of extractables and leachates that may contaminate a product, causing allergic reactions and increasing immunogenicity. The manufacture of therapeutic proteins therefore requires rigorous safety evaluations not just in the context of the product, but also product containment.
ERIC Educational Resources Information Center
Tucker, Beatrice; Jones, Sue; Straker, Leon
2008-01-01
This paper reports the use of an online student evaluation system, Course Experience on the Web (CEW), in a physiotherapy program to improve their Course Experience Questionnaire (CEQ) results. CEW comprises a course survey instrument modeled on the CEQ and a tailored unit survey instrument. Closure of the feedback loop is integral in the CEW…
Yamashita, Takahiro; Tose, Koji; Shichida, Yoshinori
2008-01-01
G protein-coupled receptors (GPCRs) are classified into several families based on their amino acid sequences. In family 1, GPCRs such as rhodopsin and adrenergic receptor, the structure-function relationship has been extensively investigated to demonstrate that exposure of the third cytoplasmic loop is essential for selective G protein activation. In contrast, much less is known about other families. Here we prepared chimeric mutants between Gt-coupled rhodopsin and Gi/Go- and Gs-coupled glucagon-like peptide-1 (GLP-1) receptor of family 2 and tried to identify the loop region that functions at the third cytoplasmic loop position of rhodopsin. We succeeded in expressing a mutant having the first cytoplasmic loop of GLP-1 receptor and found that this mutant activated Gi and Go efficiently but did not activate Gt. Moreover, the rhodopsin mutant having the first loop of Gs-coupled secretin receptor of family 2 decreased the Gi and Go activation efficiencies. Therefore, the first loop of GLP-1 receptor would share a similar role to the third loop of rhodopsin in G protein activation. This result strongly suggested that different families of GPCRs have maintained molecular architectures of their ancestral types to generate a common mechanism, namely exposure of the cytoplasmic loop, to activate peripheral G protein.
Rysavy, Steven J; Beck, David A C; Daggett, Valerie
2014-11-01
Protein function is intimately linked to protein structure and dynamics yet experimentally determined structures frequently omit regions within a protein due to indeterminate data, which is often due protein dynamics. We propose that atomistic molecular dynamics simulations provide a diverse sampling of biologically relevant structures for these missing segments (and beyond) to improve structural modeling and structure prediction. Here we make use of the Dynameomics data warehouse, which contains simulations of representatives of essentially all known protein folds. We developed novel computational methods to efficiently identify, rank and retrieve small peptide structures, or fragments, from this database. We also created a novel data model to analyze and compare large repositories of structural data, such as contained within the Protein Data Bank and the Dynameomics data warehouse. Our evaluation compares these structural repositories for improving loop predictions and analyzes the utility of our methods and models. Using a standard set of loop structures, containing 510 loops, 30 for each loop length from 4 to 20 residues, we find that the inclusion of Dynameomics structures in fragment-based methods improves the quality of the loop predictions without being dependent on sequence homology. Depending on loop length, ∼ 25-75% of the best predictions came from the Dynameomics set, resulting in lower main chain root-mean-square deviations for all fragment lengths using the combined fragment library. We also provide specific cases where Dynameomics fragments provide better predictions for NMR loop structures than fragments from crystal structures. Online access to these fragment libraries is available at http://www.dynameomics.org/fragments. © 2014 The Protein Society.
Dual-loop model of the human controller
NASA Technical Reports Server (NTRS)
Hess, R. A.
1978-01-01
A dual-loop model of the human controller in single-axis compensatory tracking tasks is introduced. This model possesses an inner-loop closure that involves feeding back that portion of controlled element output rate that is due to control activity. A novel feature of the model is the explicit appearance of the human's internal representation of the manipulator-controlled element dynamics in the inner loop. The sensor inputs to the human controller are assumed to be system error and control force. The former can be sensed via visual, aural, or tactile displays, whereas the latter is assumed to be sensed in kinesthetic fashion. A set of general adaptive characteristics for the model is hypothesized, including a method for selecting simplified internal models of the manipulator-controlled element dynamics. It is demonstrated that the model can produce controller describing functions that closely approximate those measured in four laboratory tracking tasks in which the controlled element dynamics vary considerably in terms of ease of control. An empirically derived expression for the normalized injected error remnant spectrum is introduced.
Transverse loop colostomy and colonic motility.
Pucciani, F; Ringressi, M N; Maltinti, G; Bechi, P
2014-11-01
The motility of the defunctionalized colon, distal to transverse loop colostomy, has never been studied "in vivo." The aim of our study was to evaluate the influence of transverse loop colostomy on colonic motility. Thirteen patients were examined before stoma closure by means of clinical evaluation and colonic manometry; we studied both the right and distal colon in both fasting and fed patients in order to detect motor activity. Quantitative and qualitative manometric analyses showed that the diverted colon had motor activity even if no regular colonic motor pattern was observed. The spreading of aboral propagated contractions (PCs) was sometimes recorded from the right colon to the distal colon. The response of the proximal and distal colon to a standard meal, when compared to fasting values, increased more than 40 and 35 %, respectively. Stool and gas ejections from the colostomy were never related to a particular type of colonic motility: Motor quiescence such as PCs was chaotically related to stool escape. In conclusion, motility of the defunctionalized colon is preserved in patients with transverse loop colostomy.
Tabassum, Nargis; Ma, Qianyun; Wu, Guanzhao; Jiang, Tao; Yu, Rilei
2017-09-01
Nicotinic acetylcholine receptors (nAChRs) belong to the Cys-loop receptor family and are important drug targets for the treatment of neurological diseases. However, the precise determinants of the binding efficacies of ligands for these receptors are unclear. Therefore, in this study, the binding energy profiles of various ligands (full agonists, partial agonists, and antagonists) were quantified by docking those ligands with structural ensembles of the α7 nAChR exhibiting different degrees of C-loop closure. This approximate treatment of interactions suggested that full agonists, partial agonists, and antagonists of the α7 nAChR possess distinctive binding energy profiles. Results from docking revealed that ligand binding efficacy may be related to the capacity of the ligand to stabilize conformational states with a closed C loop.
Soliton concepts and protein structure
NASA Astrophysics Data System (ADS)
Krokhotin, Andrei; Niemi, Antti J.; Peng, Xubiao
2012-03-01
Structural classification shows that the number of different protein folds is surprisingly small. It also appears that proteins are built in a modular fashion from a relatively small number of components. Here we propose that the modular building blocks are made of the dark soliton solution of a generalized discrete nonlinear Schrödinger equation. We find that practically all protein loops can be obtained simply by scaling the size and by joining together a number of copies of the soliton, one after another. The soliton has only two loop-specific parameters, and we compute their statistical distribution in the Protein Data Bank (PDB). We explicitly construct a collection of 200 sets of parameters, each determining a soliton profile that describes a different short loop. The ensuing profiles cover practically all those proteins in PDB that have a resolution which is better than 2.0 Å, with a precision such that the average root-mean-square distance between the loop and its soliton is less than the experimental B-factor fluctuation distance. We also present two examples that describe how the loop library can be employed both to model and to analyze folded proteins.
Chimeric Proton-Pumping Rhodopsins Containing the Cytoplasmic Loop of Bovine Rhodopsin
Sasaki, Kengo; Yamashita, Takahiro; Yoshida, Kazuho; Inoue, Keiichi; Shichida, Yoshinori; Kandori, Hideki
2014-01-01
G-protein-coupled receptors (GPCRs) transmit stimuli to intracellular signaling systems. Rhodopsin (Rh), which is a prototypical GPCR, possesses an 11-cis retinal. Photoisomerization of 11-cis to all-trans leads to structural changes in the protein of cytoplasmic loops, activating G-protein. Microbial rhodopsins are similar heptahelical membrane proteins that function as bacterial sensors, light-driven ion-pumps, or light-gated channels. They possess an all-trans retinal, and photoisomerization to 13-cis triggers structural changes in protein. Despite these similarities, there is no sequence homology between visual and microbial rhodopsins, and microbial rhodopsins do not activate G-proteins. In this study, new chimeric proton-pumping rhodopsins, proteorhodopsin (PR) and Gloeobacter rhodopsin (GR) were designed by replacing cytoplasmic loops with bovine Rh loops. Although G-protein was not activated by the PR chimeras, all 12 GR chimeras activated G-protein. The GR chimera containing the second cytoplasmic loop of bovine Rh did not activate G-protein. However, the chimera with a second and third double-loop further enhanced G-protein activation. Introduction of an E132Q mutation slowed the photocycle 30-fold and enhanced activation. The highest catalytic activity of the GR chimera was still 3,200 times lower than bovine Rh but only 64 times lower than amphioxus Go-rhodopsin. This GR chimera showed a strong absorption change of the amide-I band on a light-minus-dark difference FTIR spectrum which could represent a larger helical opening, important for G-protein activation. The light-dependent catalytic activity of this GR chimera makes it a potential optogenetic tool for enzymatic activation by light. PMID:24621599
Tran, Tran T; Kulis, Christina; Long, Steven M; Bryant, Darryn; Adams, Peter; Smythe, Mark L
2010-11-01
Medicinal chemists synthesize arrays of molecules by attaching functional groups to scaffolds. There is evidence suggesting that some scaffolds yield biologically active molecules more than others, these are termed privileged substructures. One role of the scaffold is to present its side-chains for molecular recognition, and biologically relevant scaffolds may present side-chains in biologically relevant geometries or shapes. Since drug discovery is primarily focused on the discovery of compounds that bind to proteinaceous targets, we have been deciphering the scaffold shapes that are used for binding proteins as they reflect biologically relevant shapes. To decipher the scaffold architecture that is important for binding protein surfaces, we have analyzed the scaffold architecture of protein loops, which are defined in this context as continuous four residue segments of a protein chain that are not part of an α-helix or β-strand secondary structure. Loops are an important molecular recognition motif of proteins. We have found that 39 clusters reflect the scaffold architecture of 89% of the 23,331 loops in the dataset, with average intra-cluster and inter-cluster RMSD of 0.47 and 1.91, respectively. These protein loop scaffolds all have distinct shapes. We have used these 39 clusters that reflect the scaffold architecture of protein loops as biological descriptors. This involved generation of a small dataset of scaffold-based peptidomimetics. We found that peptidomimetic scaffolds with reported biological activities matched loop scaffold geometries and those peptidomimetic scaffolds with no reported biologically activities did not. This preliminary evidence suggests that organic scaffolds with tight matches to the preferred loop scaffolds of proteins, implies the likelihood of the scaffold to be biologically relevant.
NASA Astrophysics Data System (ADS)
Tran, Tran T.; Kulis, Christina; Long, Steven M.; Bryant, Darryn; Adams, Peter; Smythe, Mark L.
2010-11-01
Medicinal chemists synthesize arrays of molecules by attaching functional groups to scaffolds. There is evidence suggesting that some scaffolds yield biologically active molecules more than others, these are termed privileged substructures. One role of the scaffold is to present its side-chains for molecular recognition, and biologically relevant scaffolds may present side-chains in biologically relevant geometries or shapes. Since drug discovery is primarily focused on the discovery of compounds that bind to proteinaceous targets, we have been deciphering the scaffold shapes that are used for binding proteins as they reflect biologically relevant shapes. To decipher the scaffold architecture that is important for binding protein surfaces, we have analyzed the scaffold architecture of protein loops, which are defined in this context as continuous four residue segments of a protein chain that are not part of an α-helix or β-strand secondary structure. Loops are an important molecular recognition motif of proteins. We have found that 39 clusters reflect the scaffold architecture of 89% of the 23,331 loops in the dataset, with average intra-cluster and inter-cluster RMSD of 0.47 and 1.91, respectively. These protein loop scaffolds all have distinct shapes. We have used these 39 clusters that reflect the scaffold architecture of protein loops as biological descriptors. This involved generation of a small dataset of scaffold-based peptidomimetics. We found that peptidomimetic scaffolds with reported biological activities matched loop scaffold geometries and those peptidomimetic scaffolds with no reported biologically activities did not. This preliminary evidence suggests that organic scaffolds with tight matches to the preferred loop scaffolds of proteins, implies the likelihood of the scaffold to be biologically relevant.
Steady-state evoked potentials possibilities for mental-state estimation
NASA Technical Reports Server (NTRS)
Junker, Andrew M.; Schnurer, John H.; Ingle, David F.; Downey, Craig W.
1988-01-01
The use of the human steady-state evoked potential (SSEP) as a possible measure of mental-state estimation is explored. A method for evoking a visual response to a sum-of-ten sine waves is presented. This approach provides simultaneous multiple frequency measurements of the human EEG to the evoking stimulus in terms of describing functions (gain and phase) and remnant spectra. Ways in which these quantities vary with the addition of performance tasks (manual tracking, grammatical reasoning, and decision making) are presented. Models of the describing function measures can be formulated using systems engineering technology. Relationships between model parameters and performance scores during manual tracking are discussed. Problems of unresponsiveness and lack of repeatability of subject responses are addressed in terms of a need for loop closure of the SSEP. A technique to achieve loop closure using a lock-in amplifier approach is presented. Results of a study designed to test the effectiveness of using feedback to consciously connect humans to their evoked response are presented. Findings indicate that conscious control of EEG is possible. Implications of these results in terms of secondary tasks for mental-state estimation and brain actuated control are addressed.
Full Scale Alternative Catalyst Testing for Bosch Reactor Optimization
NASA Technical Reports Server (NTRS)
Barton, Katherine; Abney, Morgan B.
2011-01-01
Current air revitalization technology onboard the International Space Station (ISS) cannot provide complete closure of the oxygen and hydrogen loops. This makes re-supply necessary, which is possible for missions in low Earth orbit (LEO) like the ISS, but unviable for long term space missions outside LEO. In comparison, Bosch technology reduces carbon dioxide with hydrogen, traditionally over a steel wool catalyst, to create water and solid carbon. The Bosch product water can then be fed to the oxygen generation assembly to produce oxygen for crew members and hydrogen necessary to reduce more carbon dioxide. Bosch technology can achieve complete oxygen loop closure, but has many undesirable factors that result in a high energy, mass, and volume system. Finding a different catalyst with an equal reaction rate at lower temperatures with less catalyst mass and longer lifespan would make a Bosch flight system more feasible. Developmental testing of alternative catalysts for the Bosch has been performed using the Horizontal Bosch Test Stand. Nickel foam, nickel shavings, and cobalt shavings were tested at 500 C and compared to the original catalyst, steel wool. This paper presents data and analysis on the performance of each catalyst tested at comparable temperatures and recycle flow rates.
Selection of a platinum-binding sequence in a loop of a four-helix bundle protein.
Yagi, Sota; Akanuma, Satoshi; Kaji, Asumi; Niiro, Hiroya; Akiyama, Hayato; Uchida, Tatsuya; Yamagishi, Akihiko
2018-02-01
Protein-metal hybrids are functional materials with various industrial applications. For example, a redox enzyme immobilized on a platinum electrode is a key component of some biofuel cells and biosensors. To create these hybrid materials, protein molecules are bound to metal surfaces. Here, we report the selection of a novel platinum-binding sequence in a loop of a four-helix bundle protein, the Lac repressor four-helix protein (LARFH), an artificial protein in which four identical α-helices are connected via three identical loops. We created a genetic library in which the Ser-Gly-Gln-Gly-Gly-Ser sequence within the first inter-helical loop of LARFH was semi-randomly mutated. The library was then subjected to selection for platinum-binding affinity by using the T7 phage display method. The majority of the selected variants contained the Tyr-Lys-Arg-Gly-Tyr-Lys (YKRGYK) sequence in their randomized segment. We characterized the platinum-binding properties of mutant LARFH by using quartz crystal microbalance analysis. Mutant LARFH seemed to interact with platinum through its loop containing the YKRGYK sequence, as judged by the estimated exclusive area occupied by a single molecule. Furthermore, a 10-residue peptide containing the YKRGYK sequence bound to platinum with reasonably high affinity and basic side chains in the peptide were crucial in mediating this interaction. In conclusion, we have identified an amino acid sequence, YKRGYK, in the loop of a helix-loop-helix motif that shows high platinum-binding affinity. This sequence could be grafted into loops of other polypeptides as an approach to immobilize proteins on platinum electrodes for use as biosensors among other applications. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Rysavy, Steven J; Beck, David AC; Daggett, Valerie
2014-01-01
Protein function is intimately linked to protein structure and dynamics yet experimentally determined structures frequently omit regions within a protein due to indeterminate data, which is often due protein dynamics. We propose that atomistic molecular dynamics simulations provide a diverse sampling of biologically relevant structures for these missing segments (and beyond) to improve structural modeling and structure prediction. Here we make use of the Dynameomics data warehouse, which contains simulations of representatives of essentially all known protein folds. We developed novel computational methods to efficiently identify, rank and retrieve small peptide structures, or fragments, from this database. We also created a novel data model to analyze and compare large repositories of structural data, such as contained within the Protein Data Bank and the Dynameomics data warehouse. Our evaluation compares these structural repositories for improving loop predictions and analyzes the utility of our methods and models. Using a standard set of loop structures, containing 510 loops, 30 for each loop length from 4 to 20 residues, we find that the inclusion of Dynameomics structures in fragment-based methods improves the quality of the loop predictions without being dependent on sequence homology. Depending on loop length, ∼25–75% of the best predictions came from the Dynameomics set, resulting in lower main chain root-mean-square deviations for all fragment lengths using the combined fragment library. We also provide specific cases where Dynameomics fragments provide better predictions for NMR loop structures than fragments from crystal structures. Online access to these fragment libraries is available at http://www.dynameomics.org/fragments. PMID:25142412
Tsai, Ying-Nan; Wang, Hsiu-Po; Huang, Chih-Kun; Chang, Po-Chin; Lin, I-Chang; Tai, Chi-Ming
2018-01-01
Postoperative leak is a serious complication of bariatric surgery and often results in significant morbidity and mortality. Stent placement is a less invasive alternative to surgery for the treatment of bariatric surgical leak. We evaluated the efficacy and complications of covered self-expandable metal stents (SEMS) in the treatment of post-bariatric surgical leak. We retrospectively reviewed patients who underwent stent placement for leak after bariatric surgery. Leak was diagnosed by upper gastrointestinal series or was visualized during the endoscopy. We examined the timing of stent placement, size of the leak, stent migration and its complications, total stent treatment duration, and treatment outcome. Between January 2011 and April 2015, seven patients underwent covered SEMS placement for leak after bariatric surgery, including laparoscopic sleeve gastrectomy (LSG) (n = 5) and laparoscopic loop duodenojejunal bypass with sleeve gastrectomy (LDJB-SG) (n = 2). A stent was placed in one patient for infection control and bridging to revisional surgery. Among the other six patients, one patient who received stent placement one year after leak diagnosis failed to achieve leak closure, and five patients with early stent placement achieved leak closure. Three patients with small leak achieved leak closure more quickly. Stent migration was found in six patients, and associated ulcers occurred in five patients. We conclude that stenting is effective in the management of staple-line leaks following LSG and LDJB-SG. Stent migration and associated ulcers are common after stent placement. Early stent removal can be achieved in patients with small leaks. Copyright © 2017. Published by Elsevier Taiwan.
Koczyk, Grzegorz; Berezovsky, Igor N.
2008-01-01
Domain hierarchy and closed loops (DHcL) (http://sitron.bccs.uib.no/dhcl/) is a web server that delineates energy hierarchy of protein domain structure and detects domains at different levels of this hierarchy. The server also identifies closed loops and van der Waals locks, which constitute a structural basis for the protein domain hierarchy. The DHcL can be a useful tool for an express analysis of protein structures and their alternative domain decompositions. The user submits a PDB identifier(s) or uploads a 3D protein structure in a PDB format. The results of the analysis are the location of domains at different levels of hierarchy, closed loops, van der Waals locks and their interactive visualization. The server maintains a regularly updated database of domains, closed loop and van der Waals locks for all X-ray structures in PDB. DHcL server is available at: http://sitron.bccs.uib.no/dhcl. PMID:18502776
Defining the Nature of Thermal Intermediate in 3 State Folding Proteins: Apoflavodoxin, a Study Case
García-Fandiño, Rebeca; Bernadó, Pau; Ayuso-Tejedor, Sara; Sancho, Javier; Orozco, Modesto
2012-01-01
The early stages of the thermal unfolding of apoflavodoxin have been determined by using atomistic multi microsecond-scale molecular dynamics (MD) simulations complemented with a variety of experimental techniques. Results strongly suggest that the intermediate is reached very early in the thermal unfolding process and that it has the properties of an “activated” form of the native state, where thermal fluctuations in the loops break loop-loop contacts. The unrestrained loops gain then kinetic energy corrupting short secondary structure elements without corrupting the core of the protein. The MD-derived ensembles agree with experimental observables and draw a picture of the intermediate state inconsistent with a well-defined structure and characteristic of a typical partially disordered protein. Our results allow us to speculate that proteins with a well packed core connected by long loops might behave as partially disordered proteins under native conditions, or alternatively behave as three state folders. Small details in the sequence, easily tunable by evolution, can yield to one or the other type of proteins. PMID:22927805
Crystal structure of human glycine receptor-α3 bound to antagonist strychnine.
Huang, Xin; Chen, Hao; Michelsen, Klaus; Schneider, Stephen; Shaffer, Paul L
2015-10-08
Neurotransmitter-gated ion channels of the Cys-loop receptor family are essential mediators of fast neurotransmission throughout the nervous system and are implicated in many neurological disorders. Available X-ray structures of prokaryotic and eukaryotic Cys-loop receptors provide tremendous insights into the binding of agonists, the subsequent opening of the ion channel, and the mechanism of channel activation. Yet the mechanism of inactivation by antagonists remains unknown. Here we present a 3.0 Å X-ray structure of the human glycine receptor-α3 homopentamer in complex with a high affinity, high-specificity antagonist, strychnine. Our structure allows us to explore in detail the molecular recognition of antagonists. Comparisons with previous structures reveal a mechanism for antagonist-induced inactivation of Cys-loop receptors, involving an expansion of the orthosteric binding site in the extracellular domain that is coupled to closure of the ion pore in the transmembrane domain.
Soliton concepts and protein structure.
Krokhotin, Andrei; Niemi, Antti J; Peng, Xubiao
2012-03-01
Structural classification shows that the number of different protein folds is surprisingly small. It also appears that proteins are built in a modular fashion from a relatively small number of components. Here we propose that the modular building blocks are made of the dark soliton solution of a generalized discrete nonlinear Schrödinger equation. We find that practically all protein loops can be obtained simply by scaling the size and by joining together a number of copies of the soliton, one after another. The soliton has only two loop-specific parameters, and we compute their statistical distribution in the Protein Data Bank (PDB). We explicitly construct a collection of 200 sets of parameters, each determining a soliton profile that describes a different short loop. The ensuing profiles cover practically all those proteins in PDB that have a resolution which is better than 2.0 Å, with a precision such that the average root-mean-square distance between the loop and its soliton is less than the experimental B-factor fluctuation distance. We also present two examples that describe how the loop library can be employed both to model and to analyze folded proteins.
Zwagerman, Nathan T; Geltzeiler, Mathew N; Wang, Eric W; Fernandez-Miranda, Juan C; Snyderman, Carl H; Gardner, Paul A
2018-05-30
We present a case of cerebrospinal fluid (CSF) leak after endoscopic endonasal resection of a large clival chordoma in an obese patient. The leak was at the lower reconstruction at the craniocervical junction and had failed repositioning. Using the V-Loc™ wound closure device (Covidien, New Haven, Connecticut) to suture the nasoseptal flap to the nasopharyngeal fascia, a water-tight seal was created and, along with a lumbar drain, the patient healed successfully.CSF leak after an endoscopic endonasal approach (EEA) to intradural pathologies remains one of the more common complications.1-4 Various closure techniques have been developed5-8 with success in mitigating this risk, but all have their limitations and rely on multiple layers including vascularized flaps like the nasoseptal flap.9-11 Endonasal suturing of graft materials offers the advantage of creating a water-tight seal. We present the use of the V-Loc™ wound closure device (Covidien) to successfully seal a postoperative CSF leak. The absorbable V-Loc™ wound closure device does not require the surgeon to tie knots, which is the most challenging step in a deep, 2-dimensional corridor. The suture is barbed and is anchored by threading the needle through a prefabricated loop at the end of the suture which locks in place. Each throw of the suture through tissue maintains the suture line as the barbs catch the tissue and prevent retraction. After successful closure, the needle can simply be cut off.The V-Loc™ wound closure device (Covidien) is a safe and effective adjunct to reconstruction after endoscopic endonasal skull base surgery as it provides an option for graft/flap suturing.A written release from the patient whose name or likeness is submitted as part of this Work is on file.
MacDonald, James T.; Kabasakal, Burak V.; Godding, David; Kraatz, Sebastian; Henderson, Louie; Barber, James; Freemont, Paul S.; Murray, James W.
2016-01-01
The ability to design and construct structures with atomic level precision is one of the key goals of nanotechnology. Proteins offer an attractive target for atomic design because they can be synthesized chemically or biologically and can self-assemble. However, the generalized protein folding and design problem is unsolved. One approach to simplifying the problem is to use a repetitive protein as a scaffold. Repeat proteins are intrinsically modular, and their folding and structures are better understood than large globular domains. Here, we have developed a class of synthetic repeat proteins based on the pentapeptide repeat family of beta-solenoid proteins. We have constructed length variants of the basic scaffold and computationally designed de novo loops projecting from the scaffold core. The experimentally solved 3.56-Å resolution crystal structure of one designed loop matches closely the designed hairpin structure, showing the computational design of a backbone extension onto a synthetic protein core without the use of backbone fragments from known structures. Two other loop designs were not clearly resolved in the crystal structures, and one loop appeared to be in an incorrect conformation. We have also shown that the repeat unit can accommodate whole-domain insertions by inserting a domain into one of the designed loops. PMID:27573845
NASA Astrophysics Data System (ADS)
Agarwal, Sonya; Döring, Kristina; Gierusz, Leszek A.; Iyer, Pooja; Lane, Fiona M.; Graham, James F.; Goldmann, Wilfred; Pinheiro, Teresa J. T.; Gill, Andrew C.
2015-10-01
The β2-α2 loop of PrPC is a key modulator of disease-associated prion protein misfolding. Amino acids that differentiate mouse (Ser169, Asn173) and deer (Asn169, Thr173) PrPC appear to confer dramatically different structural properties in this region and it has been suggested that amino acid sequences associated with structural rigidity of the loop also confer susceptibility to prion disease. Using mouse recombinant PrP, we show that mutating residue 173 from Asn to Thr alters protein stability and misfolding only subtly, whilst changing Ser to Asn at codon 169 causes instability in the protein, promotes oligomer formation and dramatically potentiates fibril formation. The doubly mutated protein exhibits more complex folding and misfolding behaviour than either single mutant, suggestive of differential effects of the β2-α2 loop sequence on both protein stability and on specific misfolding pathways. Molecular dynamics simulation of protein structure suggests a key role for the solvent accessibility of Tyr168 in promoting molecular interactions that may lead to prion protein misfolding. Thus, we conclude that ‘rigidity’ in the β2-α2 loop region of the normal conformer of PrP has less effect on misfolding than other sequence-related effects in this region.
Acquiring Semantically Meaningful Models for Robotic Localization, Mapping and Target Recognition
2014-12-21
information, including suggesstions for reducing this burden, to Washington Headquarters Services , Directorate for Information Operations and Reports, 1215...Representations • Point features tracking • Recovery of relative motion, visual odometry • Loop closure • Environment models, sparse clouds of points...that co- occur with the object of interest Chair-Background Table-Background Object Level Segmentation Jaccard Index Silber .[5] 15.12 RenFox[4
Monitoring and control of atmosphere in a closed environment
NASA Technical Reports Server (NTRS)
Humphries, R.; Perry, J.
1991-01-01
Applications requiring new technologies for atmosphere monitoring and control in the closed environment and their principal functions aboard the Space Station Freedom are described. Oxygen loop closure, involving the conversion of carbon dioxide to oxygen; carbon dioxide reduction and removal; and monitoring of atmospheric contamination are discussed. The Trace Contaminant Monitor, the Major Constituent Analyzer, the Carbon Dioxide Monitor, and the Particulate Counter Monitor are discussed.
Functions of Replication Protein A as a Sensor of R Loops and a Regulator of RNaseH1
Nguyen, Hai Dang; Yadav, Tribhuwan; Giri, Sumanprava; Saez, Borja; Graubert, Timothy A.; Zou, Lee
2017-01-01
R loop, a transcription intermediate containing RNA:DNA hybrids and displaced single-stranded DNA (ssDNA), has emerged as a major source of genomic instability. RNaseH1, which cleaves the RNA in RNA:DNA hybrids, plays an important role in R loop suppression. Here, we show that replication protein A (RPA), a ssDNA-binding protein, interacts with RNaseH1 and colocalizes with both RNaseH1 and R loops in cells. In vitro, purified RPA directly enhances the association of RNaseH1 with RNA:DNA hybrids and stimulates the activity of RNaseH1 on R loops. An RPA binding-defective RNaseH1 mutant is not efficiently stimulated by RPA in vitro, fails to accumulate at R loops in cells, and loses the ability to suppress R loops and associated genomic instability. Thus, in addition to sensing DNA damage and replication stress, RPA is a sensor of R loops and a regulator of RNaseH1, extending the versatile role of RPA in suppression of genomic instability. PMID:28257700
NASA Technical Reports Server (NTRS)
Abney, Morgan B.; Mansell, J. Matthew
2010-01-01
Bosch-based reactors have been in development at NASA since the 1960's. Traditional operation involves the reduction of carbon dioxide with hydrogen over a steel wool catalyst to produce water and solid carbon. While the system is capable of completely closing the loop on oxygen and hydrogen for Atmosphere Revitalization, steel wool requires a reaction temperature of 650C or higher for optimum performance. The single pass efficiency of the reaction over steel wool has been shown to be less than 10% resulting in a high recycle stream. Finally, the formation of solid carbon on steel wool ultimately fouls the catalyst necessitating catalyst resupply. These factors result in high mass, volume and power demands for a Bosch system. Interplanetary transportation and surface exploration missions of the moon, Mars, and near-earth objects will require higher levels of loop closure than current technology cannot provide. A Bosch system can provide the level of loop closure necessary for these long-term missions if mass, volume, and power can be kept low. The keys to improving the Bosch system lie in reactor and catalyst development. In 2009, the National Aeronautics and Space Administration refurbished a circa 1980's developmental Bosch reactor and built a sub-scale Bosch Catalyst Test Stand for the purpose of reactor and catalyst development. This paper describes the baseline performance of two commercially available steel wool catalysts as compared to performance reported in the 1960's and 80's. Additionally, the results of sub-scale testing of alternative Bosch catalysts, including nickel- and cobalt-based catalysts, are discussed.
Alonso, A; Cujec, T P; Peterlin, B M
1994-01-01
Rates of transcriptions of the human immunodeficiency virus are greatly increased by the viral trans activator Tat. In vitro, Tat binds to the 5' bulge of the trans-activation response (TAR) RNA stem-loop, which is present in all viral transcripts. In human cells, the central loop in TAR and its cellular RNA-binding proteins are also critical for the function of Tat. Previously, we demonstrated that in rodent cells (CHO cells), but not in those which contain the human chromosome 12 (CHO12 cells), Tat-TAR interactions are compromised. In this study, we examined the roles of the bulge and loop in TAR in Tat trans activation in these cells. Whereas low levels of trans activation depended solely on interactions between Tat and the bulge in CHO cells, high levels of trans activation depended also on interactions between Tat and the loop in CHO12 cells. Since the TAR loop binding proteins in these two cell lines were identical and different from their human counterpart, the human chromosome 12 does not encode TAR loop binding proteins. In vivo binding competition studies with TAR decoys confirmed that the binding of Tat to TAR is more efficient in CHO12 cells. Thus, the protein(s) encoded on human chromosome 12 helps to tether Tat to TAR via its loop, which results in high levels of trans activation. Images PMID:8083988
Coordinated gripping of substrate by subunits of a AAA+ proteolytic machine
Iosefson, Ohad; Nager, Andrew R.; Baker, Tania A.; Sauer, Robert T.
2014-01-01
Hexameric AAA+ unfoldases of ATP-dependent proteases and protein-remodeling machines use conserved loops that line the axial pore to apply force to substrates during the mechanical processes of protein unfolding and translocation. Whether loops from multiple subunits act independently or coordinately in these processes is a critical aspect of mechanism but is currently unknown for any AAA+ machine. By studying covalently linked hexamers of the E. coli ClpX unfoldase bearing different numbers and configurations of wild-type and mutant pore loops, we show that loops function synergistically, with the number of wild-type loops required for efficient degradation depending upon the stability of the protein substrate. Our results support a mechanism in which a power stroke initiated in one subunit of the ClpX hexamer results in the concurrent movement of all six pore loops, which coordinately grip and apply force to the substrate. PMID:25599533
Protein Loop Structure Prediction Using Conformational Space Annealing.
Heo, Seungryong; Lee, Juyong; Joo, Keehyoung; Shin, Hang-Cheol; Lee, Jooyoung
2017-05-22
We have developed a protein loop structure prediction method by combining a new energy function, which we call E PLM (energy for protein loop modeling), with the conformational space annealing (CSA) global optimization algorithm. The energy function includes stereochemistry, dynamic fragment assembly, distance-scaled finite ideal gas reference (DFIRE), and generalized orientation- and distance-dependent terms. For the conformational search of loop structures, we used the CSA algorithm, which has been quite successful in dealing with various hard global optimization problems. We assessed the performance of E PLM with two widely used loop-decoy sets, Jacobson and RAPPER, and compared the results against the DFIRE potential. The accuracy of model selection from a pool of loop decoys as well as de novo loop modeling starting from randomly generated structures was examined separately. For the selection of a nativelike structure from a decoy set, E PLM was more accurate than DFIRE in the case of the Jacobson set and had similar accuracy in the case of the RAPPER set. In terms of sampling more nativelike loop structures, E PLM outperformed E DFIRE for both decoy sets. This new approach equipped with E PLM and CSA can serve as the state-of-the-art de novo loop modeling method.
Abe-Yoshizumi, Rei; Kobayashi, Shiori; Gohara, Mizuki; Hayashi, Kokoro; Kojima, Chojiro; Kojima, Seiji; Sudo, Yuki; Asami, Yasuo; Homma, Michio
2013-01-01
Flagellar motors embedded in bacterial membranes are molecular machines powered by specific ion flows. Each motor is composed of a stator and a rotor and the interactions of those components are believed to generate the torque. Na+ influx through the PomA/PomB stator complex of Vibrio alginolyticus is coupled to torque generation and is speculated to trigger structural changes in the cytoplasmic domain of PomA that interacts with a rotor protein in the C-ring, FliG, to drive the rotation. In this study, we tried to overproduce the cytoplasmic loop of PomA (PomA-Loop), but it was insoluble. Thus, we made a fusion protein with a small soluble tag (GB1) which allowed us to express and characterize the recombinant protein. The structure of the PomA-Loop seems to be very elongated or has a loose tertiary structure. When the PomA-Loop protein was produced in E. coli, a slight dominant effect was observed on motility. We conclude that the cytoplasmic loop alone retains a certain function. PMID:27493537
SA-Mot: a web server for the identification of motifs of interest extracted from protein loops
Regad, Leslie; Saladin, Adrien; Maupetit, Julien; Geneix, Colette; Camproux, Anne-Claude
2011-01-01
The detection of functional motifs is an important step for the determination of protein functions. We present here a new web server SA-Mot (Structural Alphabet Motif) for the extraction and location of structural motifs of interest from protein loops. Contrary to other methods, SA-Mot does not focus only on functional motifs, but it extracts recurrent and conserved structural motifs involved in structural redundancy of loops. SA-Mot uses the structural word notion to extract all structural motifs from uni-dimensional sequences corresponding to loop structures. Then, SA-Mot provides a description of these structural motifs using statistics computed in the loop data set and in SCOP superfamily, sequence and structural parameters. SA-Mot results correspond to an interactive table listing all structural motifs extracted from a target structure and their associated descriptors. Using this information, the users can easily locate loop regions that are important for the protein folding and function. The SA-Mot web server is available at http://sa-mot.mti.univ-paris-diderot.fr. PMID:21665924
SA-Mot: a web server for the identification of motifs of interest extracted from protein loops.
Regad, Leslie; Saladin, Adrien; Maupetit, Julien; Geneix, Colette; Camproux, Anne-Claude
2011-07-01
The detection of functional motifs is an important step for the determination of protein functions. We present here a new web server SA-Mot (Structural Alphabet Motif) for the extraction and location of structural motifs of interest from protein loops. Contrary to other methods, SA-Mot does not focus only on functional motifs, but it extracts recurrent and conserved structural motifs involved in structural redundancy of loops. SA-Mot uses the structural word notion to extract all structural motifs from uni-dimensional sequences corresponding to loop structures. Then, SA-Mot provides a description of these structural motifs using statistics computed in the loop data set and in SCOP superfamily, sequence and structural parameters. SA-Mot results correspond to an interactive table listing all structural motifs extracted from a target structure and their associated descriptors. Using this information, the users can easily locate loop regions that are important for the protein folding and function. The SA-Mot web server is available at http://sa-mot.mti.univ-paris-diderot.fr.
Proteins mediating DNA loops effectively block transcription.
Vörös, Zsuzsanna; Yan, Yan; Kovari, Daniel T; Finzi, Laura; Dunlap, David
2017-07-01
Loops are ubiquitous topological elements formed when proteins simultaneously bind to two noncontiguous DNA sites. While a loop-mediating protein may regulate initiation at a promoter, the presence of the protein at the other site may be an obstacle for RNA polymerases (RNAP) transcribing a different gene. To test whether a DNA loop alters the extent to which a protein blocks transcription, the lac repressor (LacI) was used. The outcome of in vitro transcription along templates containing two LacI operators separated by 400 bp in the presence of LacI concentrations that produced both looped and unlooped molecules was visualized with scanning force microscopy (SFM). An analysis of transcription elongation complexes, moving for 60 s at an average of 10 nt/s on unlooped DNA templates, revealed that they more often surpassed LacI bound to the lower affinity O2 operator than to the highest affinity Os operator. However, this difference was abrogated in looped DNA molecules where LacI became a strong roadblock independently of the affinity of the operator. Recordings of transcription elongation complexes, using magnetic tweezers, confirmed that they halted for several minutes upon encountering a LacI bound to a single operator. The average pause lifetime is compatible with RNAP waiting for LacI dissociation, however, the LacI open conformation visualized in the SFM images also suggests that LacI could straddle RNAP to let it pass. Independently of the mechanism by which RNAP bypasses the LacI roadblock, the data indicate that an obstacle with looped topology more effectively interferes with transcription. © 2017 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.
Interplay of protein and DNA structure revealed in simulations of the lac operon.
Czapla, Luke; Grosner, Michael A; Swigon, David; Olson, Wilma K
2013-01-01
The E. coli Lac repressor is the classic textbook example of a protein that attaches to widely spaced sites along a genome and forces the intervening DNA into a loop. The short loops implicated in the regulation of the lac operon suggest the involvement of factors other than DNA and repressor in gene control. The molecular simulations presented here examine two likely structural contributions to the in-vivo looping of bacterial DNA: the distortions of the double helix introduced upon association of the highly abundant, nonspecific nucleoid protein HU and the large-scale deformations of the repressor detected in low-resolution experiments. The computations take account of the three-dimensional arrangements of nucleotides and amino acids found in crystal structures of DNA with the two proteins, the natural rest state and deformational properties of protein-free DNA, and the constraints on looping imposed by the conformation of the repressor and the orientation of bound DNA. The predicted looping propensities capture the complex, chain-length-dependent variation in repression efficacy extracted from gene expression studies and in vitro experiments and reveal unexpected chain-length-dependent variations in the uptake of HU, the deformation of repressor, and the folding of DNA. Both the opening of repressor and the presence of HU, at levels approximating those found in vivo, enhance the probability of loop formation. HU affects the global organization of the repressor and the opening of repressor influences the levels of HU binding to DNA. The length of the loop determines whether the DNA adopts antiparallel or parallel orientations on the repressor, whether the repressor is opened or closed, and how many HU molecules bind to the loop. The collective behavior of proteins and DNA is greater than the sum of the parts and hints of ways in which multiple proteins may coordinate the packaging and processing of genetic information.
Lee, Hasup; Baek, Minkyung; Lee, Gyu Rie; Park, Sangwoo; Seok, Chaok
2017-03-01
Many proteins function as homo- or hetero-oligomers; therefore, attempts to understand and regulate protein functions require knowledge of protein oligomer structures. The number of available experimental protein structures is increasing, and oligomer structures can be predicted using the experimental structures of related proteins as templates. However, template-based models may have errors due to sequence differences between the target and template proteins, which can lead to functional differences. Such structural differences may be predicted by loop modeling of local regions or refinement of the overall structure. In CAPRI (Critical Assessment of PRotein Interactions) round 30, we used recently developed features of the GALAXY protein modeling package, including template-based structure prediction, loop modeling, model refinement, and protein-protein docking to predict protein complex structures from amino acid sequences. Out of the 25 CAPRI targets, medium and acceptable quality models were obtained for 14 and 1 target(s), respectively, for which proper oligomer or monomer templates could be detected. Symmetric interface loop modeling on oligomer model structures successfully improved model quality, while loop modeling on monomer model structures failed. Overall refinement of the predicted oligomer structures consistently improved the model quality, in particular in interface contacts. Proteins 2017; 85:399-407. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Structural consequences of cutting a binding loop: two circularly permuted variants of streptavidin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Trong, Isolde; University of Washington, Box 357742, Seattle, WA 98195-7742; Chu, Vano
2013-06-01
The crystal structures of two circularly permuted streptavidins probe the role of a flexible loop in the tight binding of biotin. Molecular-dynamics calculations for one of the mutants suggests that increased fluctuations in a hydrogen bond between the protein and biotin are associated with cleavage of the binding loop. Circular permutation of streptavidin was carried out in order to investigate the role of a main-chain amide in stabilizing the high-affinity complex of the protein and biotin. Mutant proteins CP49/48 and CP50/49 were constructed to place new N-termini at residues 49 and 50 in a flexible loop involved in stabilizing themore » biotin complex. Crystal structures of the two mutants show that half of each loop closes over the binding site, as observed in wild-type streptavidin, while the other half adopts the open conformation found in the unliganded state. The structures are consistent with kinetic and thermodynamic data and indicate that the loop plays a role in enthalpic stabilization of the bound state via the Asn49 amide–biotin hydrogen bond. In wild-type streptavidin, the entropic penalties of immobilizing a flexible portion of the protein to enhance binding are kept to a manageable level by using a contiguous loop of medium length (six residues) which is already constrained by its anchorage to strands of the β-barrel protein. A molecular-dynamics simulation for CP50/49 shows that cleavage of the binding loop results in increased structural fluctuations for Ser45 and that these fluctuations destabilize the streptavidin–biotin complex.« less
Negi, Sanjana; Tak, Himanshu; Ganapathi, T R
2018-03-01
MusaSNAC1 function in H 2 O 2 mediated stomatal closure and promote drought tolerance by directly binding to CGT[A/G] motif in regulatory region of multiple stress-related genes. Drought is a abiotic stress-condition, causing reduced plant growth and diminished crop yield. Guard cells of the stomata control photosynthesis and transpiration by regulating CO 2 exchange and water loss, thus affecting growth and crop yield. Roles of NAC (NAM, ATAF1/2 and CUC2) protein in regulation of stress-conditions has been well documented however, their control over stomatal aperture is largely unknown. In this study we report a banana NAC protein, MusaSNAC1 which induced stomatal closure by elevating H 2 O 2 content in guard cells during drought stress. Overexpression of MusaSNAC1 in banana resulted in higher number of stomata closure causing reduced water loss and thus elevated drought-tolerance. During drought, expression of GUS (β-glucuronidase) under P MusaSNAC1 was remarkably elevated in guard cells of stomata which correlated with its function as a transcription factor regulating stomatal aperture closing. MusaSNAC1 is a transcriptional activator belonging to SNAC subgroup and its 5'-upstream region contain multiple Dof1 elements as well as stress-associated cis-elements. Moreover, MusaSNAC1 also regulate multiple stress-related genes by binding to core site of NAC-proteins CGT[A/G] in their 5'-upstream region. Results indicated an interesting mechanism of drought tolerance through stomatal closure by H 2 O 2 generation in guard cells, regulated by a NAC-protein in banana.
Kuvshinoff, B W; Brodish, R J; McFadden, D W; Fischer, J E
1993-01-01
OBJECTIVE: This study determined whether there are any laboratory or other features that will enable prediction of spontaneous closure in patients with gastrointestinal cutaneous fistulas. SUMMARY BACKGROUND DATA: Although the anatomic criteria for spontaneous closure of gastrointestinal cutaneous fistulas have been presented by several authors, less than 50% of such fistulas tend to close, even in the most recent series. METHODS: A group of patients with gastrointestinal cutaneous fistulas with anatomical features favorable to study were investigated with respect to a series of parameters including the usual demographic parameters, plus fistula output, number of blood transfusions, presence of sepsis, as well as metabolic parameters including serum transferrin, retinol-binding protein, thyroxin-binding prealbumin, and serum albumin. RESULTS: Of 79 patients with 116 fistulas, 16 (20.3%) died. Causes of death were uncontrolled sepsis in eight patients and cancer in five patients. Postoperative fistulas constituted 80% of the group. The presence of local sepsis, systemic sepsis, remote sepsis (such as pneumonia or line sepsis), the number of fistulas, fistula output, and the number of blood transfusions were not predictive of spontaneous closure, whereas serum transferrin was predictive of spontaneous closure. Serum transferrin, retinol-binding protein, and thyroxin-binding prealbumin were predictive of mortality. CONCLUSIONS: Serum transferrin does not appear to be an entirely independent variable, but seems to identify those patients with significant remote sepsis, systemic sepsis, and neoplasia in whom these processes are clinically significant. The results, if confirmed, and provided that nutritional needs are met, suggest that short-turnover proteins, particularly serum transferrin, might be useful in predicting which patients with gastrointestinal cutaneous fistulas should undergo surgery despite anatomic criteria favorable for spontaneous closure. PMID:8507110
Chen, Ya-Bin; Xiao, Wei; Li, Ming; Zhang, Yan; Yang, Yang; Hu, Jian-Sheng; Luo, Kai-Jun
2016-05-01
The hemichannel and gap junction channel are major portals for the release of factors responsible for the effects of apoptotic cells on the spread of apoptosis to neighboring cells and apoptotic corpse clearance, typically by phagocytes. The N-terminal cytoplasmic domain in the connexins, gap junction proteins in vertebrate, has been implicated in regulating channel closure. However, little is known about how the hemichannel close responds to apoptotic signaling transduction leading to the reduction of neighboring cellular apoptosis in an invertebrate. An insect Bac-to-Bac expression system, pFastBac(TM) HT A, allows us to construct an N-terminally elongated SpliInx2 (Nte-Inx2) and SpliInx3 (Nte-Inx3). Here, we demonstrated that recombinant baculovirus Bac-Nte-Inx2 (reBac-Net-Inx2) and Bac-Nte-Inx3 (reBac-Nte-Inx3) closed the endogenous hemichannel on the Sf9 cell surface. Importantly, primary baculovirus infections significantly caused early apoptosis, and this apoptosis was reduced by hemichannel-closed Sf9 cells at 24-h post-infection (PI). Although N-terminal-elongated residue led to the increase in the phosphorylated sites in both Nte-Inx2 and Nte-Inx3 and an additional transmembrane domain in Nte-Inx3, both the proteins localized on the cell surface, suggesting Nte-Inxs proteins could mediate hemichannel closure. Further supporting evidence showed that hemichannel closure was dependent on N-Inxs expressed by baculovirus polyhedrin promoter, which began to express at 18-24 h PI. These results identify an unconventional function of N-terminal-elongated innexins that could act as a plug to manipulate hemichannel closure and provide a mechanism connecting the effect of hemichannel closure directly to apoptotic signaling transduction from intracellular to extracellular compartment. © 2016 Wiley Periodicals, Inc.
Colorectal injury by compressed air--a report of 2 cases.
Suh, H. H.; Kim, Y. J.; Kim, S. K.
1996-01-01
We report two colorectal trauma patients whose rectosigmoid region was ruptured due to a jet of compressed air directed to their anus while they were playing practical jokes with their colleagues in their place of work. It was difficult to diagnose in one patient due to vague symptoms and signs and due to being stunned by a stroke of the compressed air. Both patients suffered from abdominal pain and distension, tension pneumoperitoneum and mild respiratory alkalosis. One patient was treated with primary two layer closure, and the other with primary two layer closure and sigmoid loop colostomy. Anorectal manometry and transanal ultrasonography checked 4 weeks after surgery, revealed normal anorectal function and anatomy. The postoperative courses were favorable without any wound infection or intraabdominal sepsis. PMID:8835767
Job Language Performance Requirements for MOS 13B, Cannon Crewman. Volume I & II.
1982-10-01
COMPOUND :. Two or more sentences joined by: -1. Coordinating conjunction Explain the task and ask the trainees if they understand the task, end the...protective equipment belt loops boots closures )utton boot socks gas flap button )uttornhole fastened impregnated socks -lothing fastener knitted cuffs...liner t~seiuble it over performing. .. .duties protective ovtrboots )loves primary duties protective socks hours protective clothing shirt liner .nside
Algorithms and Array Design Criteria for Robust Imaging in Interferometry
2016-04-01
Chapter 1 Fundamentals of Optical Interferometry 1.1 Chapter Overview In this chapter, we introduce the physics -based principles of optical...particular physical structure (i.e. the existence of a certain type of loop in the interferometric graph), and provide a simple algorithm for... physical condition on aperture placement is more intuitive when considering the raw phase measurements as opposed to their closures. For this reason
Have I Been Here Before? A Method for Detecting Loop Closure With LiDAR
2015-01-01
mobile robot system, which has the unfortunate task of exploring a system of austere underground tunnels with only a laser scanner as a guide. 15...INTENTIONALLY LEFT BLANK. 1 1. Introduction Techniques for using mobile robots to generate detailed maps of different environments...durations. This is especially true for applications involving small mobile robots where sensor drift and inaccuracies can cause significant mistakes
Validation of Digital Systems in Avionics and Flight Control Applications Handbook. Volume 1.
1983-07-01
will also be available to Airways Facilities, Systems Research and Development Service, Air Traffic Control Service, and Flight Standards elements...2114, March 12-14, 1979. 3. Validation Methods Research for Fault-Tolerant Avionics and Control Systems-- *r Working Group Meeting II, NASA...command generation with the multiple methods becoming avail- able for closure of the outer control loop necessitates research on alternative integration
Axiomatic Design of Space Life Support Systems
NASA Technical Reports Server (NTRS)
Jones, Harry W.
2017-01-01
Systems engineering is an organized way to design and develop systems, but the initial system design concepts are usually seen as the products of unexplained but highly creative intuition. Axiomatic design is a mathematical approach to produce and compare system architectures. The two axioms are:- Maintain the independence of the functional requirements.- Minimize the information content (or complexity) of the design. The first axiom generates good system design structures and the second axiom ranks them. The closed system human life support architecture now implemented in the International Space Station has been essentially unchanged for fifty years. In contrast, brief missions such as Apollo and Shuttle have used open loop life support. As mission length increases, greater system closure and increased recycling become more cost-effective.Closure can be gradually increased, first recycling humidity condensate, then hygiene wastewater, urine, carbon dioxide, and water recovery brine. A long term space station or planetary base could implement nearly full closure, including food production. Dynamic systems theory supports the axioms by showing that fewer requirements, fewer subsystems, and fewer interconnections all increase system stability. If systems are too complex and interconnected, reliability is reduced and operations and maintenance become more difficult. Using axiomatic design shows how the mission duration and other requirements determine the best life support system design including the degree of closure.
SLAMM: Visual monocular SLAM with continuous mapping using multiple maps
Md. Sabri, Aznul Qalid; Loo, Chu Kiong; Mansoor, Ali Mohammed
2018-01-01
This paper presents the concept of Simultaneous Localization and Multi-Mapping (SLAMM). It is a system that ensures continuous mapping and information preservation despite failures in tracking due to corrupted frames or sensor’s malfunction; making it suitable for real-world applications. It works with single or multiple robots. In a single robot scenario the algorithm generates a new map at the time of tracking failure, and later it merges maps at the event of loop closure. Similarly, maps generated from multiple robots are merged without prior knowledge of their relative poses; which makes this algorithm flexible. The system works in real time at frame-rate speed. The proposed approach was tested on the KITTI and TUM RGB-D public datasets and it showed superior results compared to the state-of-the-arts in calibrated visual monocular keyframe-based SLAM. The mean tracking time is around 22 milliseconds. The initialization is twice as fast as it is in ORB-SLAM, and the retrieved map can reach up to 90 percent more in terms of information preservation depending on tracking loss and loop closure events. For the benefit of the community, the source code along with a framework to be run with Bebop drone are made available at https://github.com/hdaoud/ORBSLAMM. PMID:29702697
Wolken, Dana M. Alessi; McInnes, Joseph; Pon, Liza A.
2014-01-01
Whereas actomyosin and septin ring organization and function in cytokinesis are thoroughly described, little is known regarding the mechanisms by which the actomyosin ring interacts with septins and associated proteins to coordinate cell division. Here we show that the protein product of YPL158C, Aim44p, undergoes septin-dependent recruitment to the site of cell division. Aim44p colocalizes with Myo1p, the type II myosin of the contractile ring, throughout most of the cell cycle. The Aim44p ring does not contract when the actomyosin ring closes. Instead, it forms a double ring that associates with septin rings on mother and daughter cells after cell separation. Deletion of AIM44 results in defects in contractile ring closure. Aim44p coimmunoprecipitates with Hof1p, a conserved F-BAR protein that binds both septins and type II myosins and promotes contractile ring closure. Deletion of AIM44 results in a delay in Hof1p phosphorylation and altered Hof1p localization. Finally, overexpression of Dbf2p, a kinase that phosphorylates Hof1p and is required for relocalization of Hof1p from septin rings to the contractile ring and for Hof1p-triggered contractile ring closure, rescues the cytokinesis defect observed in aim44∆ cells. Our studies reveal a novel role for Aim44p in regulating contractile ring closure through effects on Hof1p. PMID:24451263
Wustman, Brandon A; Santos, Rudolpho; Zhang, Bo; Evans, John Spencer
2002-12-05
Fracture resistance in biomineralized structures has been linked to the presence of proteins, some of which possess sequences that are associated with elastic behavior. One such protein superfamily, the Pro,Gly-rich sea urchin intracrystalline spicule matrix proteins, form protein-protein supramolecular assemblies that modify the microstructure and fracture-resistant properties of the calcium carbonate mineral phase within embryonic sea urchin spicules and adult sea urchin spines. In this report, we detail the identification of a repetitive keratin-like "glycine-loop"- or coil-like structure within the 34-AA (AA: amino acid) N-terminal domain, (PGMG)(8)PG, of the spicule matrix protein, PM27. The identification of this repetitive structural motif was accomplished using two capped model peptides: a 9-AA sequence, GPGMGPGMG, and a 34-AA peptide representing the entire motif. Using CD, NMR spectrometry, and molecular dynamics simulated annealing/minimization simulations, we have determined that the 9-AA model peptide adopts a loop-like structure at pH 7.4. The structure of the 34-AA polypeptide resembles a coil structure consisting of repeating loop motifs that do not exhibit long-range ordering. Given that loop structures have been associated with protein elastic behavior and protein motion, it is plausible that the 34-AA Pro,Gly,Met repeat sequence motif in PM27 represents a putative elastic or mobile domain. Copyright 2002 Wiley Periodicals, Inc.
Brewer, John M; Glover, Claiborne V C; Holland, Michael J; Lebioda, Lukasz
2003-05-01
The hypothesis that His159 in yeast enolase moves on a polypeptide loop to protonate the phosphoryl of 2-phosphoglycerate to initiate its conversion to phosphoenolpyruvate was tested by preparing H159N, H159A, and H159F enolases. These have 0.07%-0.25% of the native activity under standard assay conditions and the pH dependence of maximum velocities of H159A and H159N mutants is markedly altered. Activation by Mg2+ is biphasic, with the smaller Mg2+ activation constant closer to that of the "catalytic" Mg2+ binding site of native enolase and the larger in the mM range in which native enolase is inhibited. A third Mg2+ may bind to the phosphoryl, functionally replacing proton donation by His159. N207A enolase lacks an intersubunit interaction that stabilizes the closed loop(s) conformation when 2-phosphoglycerate binds. It has 21% of the native activity, also exhibits biphasic Mg2+ activation, and its reaction with the aldehyde analogue of the substrate is more strongly inhibited than is its normal enzymatic reaction. Polypeptide loop(s) closure may keep a proton from His159 interacting with the substrate phosphoryl oxygen long enough to stabilize a carbanion intermediate.
Toczyski, D P; Steitz, J A
1993-01-01
EAP (EBER-associated protein) is an abundant, 15-kDa cellular RNA-binding protein which associates with certain herpesvirus small RNAs. We have raised polyclonal anti-EAP antibodies against a glutathione S-transferase-EAP fusion protein. Analysis of the RNA precipitated by these antibodies from Epstein-Barr virus (EBV)- or herpesvirus papio (HVP)-infected cells shows that > 95% of EBER 1 (EBV-encoded RNA 1) and the majority of HVP 1 (an HVP small RNA homologous to EBER 1) are associated with EAP. RNase protection experiments performed on native EBER 1 particles with affinity-purified anti-EAP antibodies demonstrate that EAP binds a stem-loop structure (stem-loop 3) of EBER 1. Since bacterially expressed glutathione S-transferase-EAP fusion protein binds EBER 1, we conclude that EAP binding is independent of any other cellular or viral protein. Detailed mutational analyses of stem-loop 3 suggest that EAP recognizes the majority of the nucleotides in this hairpin, interacting with both single-stranded and double-stranded regions in a sequence-specific manner. Binding studies utilizing EBER 1 deletion mutants suggest that there may also be a second, weaker EAP-binding site on stem-loop 4 of EBER 1. These data and the fact that stem-loop 3 represents the most highly conserved region between EBER 1 and HVP 1 suggest that EAP binding is a critical aspect of EBER 1 and HVP 1 function. Images PMID:8380232
Antczak, Nicole M; Packer, Morgan R; Lu, Xueguang; Zhang, Ke; Beuning, Penny J
2017-11-20
DNA damage is a constant threat and can be bypassed in a process called translesion synthesis, which is typically carried out by Y-family DNA polymerases. Y-family DNA polymerases are conserved in all domains of life and tend to have specificity for certain types of DNA damage. Escherichia coli DinB and its human ortholog pol κ can bypass specific minor groove deoxyguanine adducts efficiently and are inhibited by major groove adducts, as Y-family DNA polymerases make contacts with the minor groove side of the DNA substrate and lack contacts with the major groove at the nascent base pair. DinB is inhibited by major groove adducts more than pol κ, and they each have active site loops of different lengths, with four additional amino acids in the DinB loop. We previously showed that the R35A active site loop mutation in DinB allows for bypass of the major groove adduct N 6 -furfuryl-dA. These observations led us to investigate the different active site loops by creating loop swap chimeras of DinB with a pol κ loop and vice versa by changing the loop residues in a stepwise fashion. We then determined their activity with undamaged DNA or DNA containing N 2 -furfuryl-dG or N 6 -furfuryl-dA. The DinB proteins with the pol kappa loop have low activity on all templates but have decreased misincorporation compared to either wild-type protein. The kappa proteins with the DinB loop retain activity on all templates and have decreased misincorporation compared to either wild-type protein. We assessed the thermal stability of the proteins and observed an increase in stability in the presence of all DNA templates and additional increases generally only in the presence of the undamaged and N 2 -furfuryl-dG adduct and dCTP, which correlates with activity. Overall we find that pol κ is more tolerant to changes in the active site loop than DinB.
Garcia, J A; Harrich, D; Soultanakis, E; Wu, F; Mitsuyasu, R; Gaynor, R B
1989-01-01
The human immunodeficiency virus (HIV) type 1 LTR is regulated at the transcriptional level by both cellular and viral proteins. Using HeLa cell extracts, multiple regions of the HIV LTR were found to serve as binding sites for cellular proteins. An untranslated region binding protein UBP-1 has been purified and fractions containing this protein bind to both the TAR and TATA regions. To investigate the role of cellular proteins binding to both the TATA and TAR regions and their potential interaction with other HIV DNA binding proteins, oligonucleotide-directed mutagenesis of both these regions was performed followed by DNase I footprinting and transient expression assays. In the TATA region, two direct repeats TC/AAGC/AT/AGCTGC surround the TATA sequence. Mutagenesis of both of these direct repeats or of the TATA sequence interrupted binding over the TATA region on the coding strand, but only a mutation of the TATA sequence affected in vivo assays for tat-activation. In addition to TAR serving as the site of binding of cellular proteins, RNA transcribed from TAR is capable of forming a stable stem-loop structure. To determine the relative importance of DNA binding proteins as compared to secondary structure, oligonucleotide-directed mutations in the TAR region were studied. Local mutations that disrupted either the stem or loop structure were defective in gene expression. However, compensatory mutations which restored base pairing in the stem resulted in complete tat-activation. This indicated a significant role for the stem-loop structure in HIV gene expression. To determine the role of TAR binding proteins, mutations were constructed which extensively changed the primary structure of the TAR region, yet left stem base pairing, stem energy and the loop sequence intact. These mutations resulted in decreased protein binding to TAR DNA and defects in tat-activation, and revealed factor binding specifically to the loop DNA sequence. Further mutagenesis which inverted this stem and loop mutation relative to the HIV LTR mRNA start site resulted in even larger decreases in tat-activation. This suggests that multiple determinants, including protein binding, the loop sequence, and RNA or DNA secondary structure, are important in tat-activation and suggests that tat may interact with cellular proteins binding to DNA to increase HIV gene expression. Images PMID:2721501
Cheng, Ryan R.; Uzawa, Takanori; Plaxco, Kevin W.; Makarov, Dmitrii E.
2010-01-01
The problem of determining the rate of end-to-end collisions for polymer chains has attracted the attention of theorists and experimentalists for more than three decades. The typical theoretical approach to this problem has focused on the case where a collision is defined as any instantaneous fluctuation that brings the chain ends to within a specific capture distance. In this paper, we study the more experimentally relevant case, where the end-to-end collision dynamics are probed by measuring the excited state lifetime of a fluorophore (or other lumiphore) attached to one chain end and quenched by a quencher group attached to the other end. Under this regime, a “contact” is defined not by the chain ends approach to within some sharp cutoff but, instead, typically by an exponentially distance-dependent process. Previous theoretical models predict that, if quenching is sufficiently rapid, a diffusion-controlled limit is attained, where such measurements report on the probe-independent, intrinsic end-to-end collision rate. In contrast, our theoretical considerations, simulations, and an analysis of experimental measurements of loop closure rates in single-stranded DNA molecules all indicate that no such limit exists, and that the measured effective collision rate has a nontrivial, fractional power-law dependence on both the intrinsic quenching rate of the fluorophore and the solvent viscosity. We propose a simple scaling formula describing the effective loop closure rate and its dependence on the viscosity, chain length, and properties of the probes. Previous theoretical results are limiting cases of this more general formula. PMID:19780594
Bindewald, Eckart; Grunewald, Calvin; Boyle, Brett; O'Connor, Mary; Shapiro, Bruce A
2008-10-01
One approach to designing RNA nanoscale structures is to use known RNA structural motifs such as junctions, kissing loops or bulges and to construct a molecular model by connecting these building blocks with helical struts. We previously developed an algorithm for detecting internal loops, junctions and kissing loops in RNA structures. Here we present algorithms for automating or assisting many of the steps that are involved in creating RNA structures from building blocks: (1) assembling building blocks into nanostructures using either a combinatorial search or constraint satisfaction; (2) optimizing RNA 3D ring structures to improve ring closure; (3) sequence optimisation; (4) creating a unique non-degenerate RNA topology descriptor. This effectively creates a computational pipeline for generating molecular models of RNA nanostructures and more specifically RNA ring structures with optimized sequences from RNA building blocks. We show several examples of how the algorithms can be utilized to generate RNA tecto-shapes.
Bindewald, Eckart; Grunewald, Calvin; Boyle, Brett; O’Connor, Mary; Shapiro, Bruce A.
2013-01-01
One approach to designing RNA nanoscale structures is to use known RNA structural motifs such as junctions, kissing loops or bulges and to construct a molecular model by connecting these building blocks with helical struts. We previously developed an algorithm for detecting internal loops, junctions and kissing loops in RNA structures. Here we present algorithms for automating or assisting many of the steps that are involved in creating RNA structures from building blocks: (1) assembling building blocks into nanostructures using either a combinatorial search or constraint satisfaction; (2) optimizing RNA 3D ring structures to improve ring closure; (3) sequence optimisation; (4) creating a unique non-degenerate RNA topology descriptor. This effectively creates a computational pipeline for generating molecular models of RNA nanostructures and more specifically RNA ring structures with optimized sequences from RNA building blocks. We show several examples of how the algorithms can be utilized to generate RNA tecto-shapes. PMID:18838281
A dual-loop model of the human controller in single-axis tracking tasks
NASA Technical Reports Server (NTRS)
Hess, R. A.
1977-01-01
A dual loop model of the human controller in single axis compensatory tracking tasks is introduced. This model possesses an inner-loop closure which involves feeding back that portion of the controlled element output rate which is due to control activity. The sensory inputs to the human controller are assumed to be system error and control force. The former is assumed to be sensed via visual, aural, or tactile displays while the latter is assumed to be sensed in kinesthetic fashion. A nonlinear form of the model is briefly discussed. This model is then linearized and parameterized. A set of general adaptive characteristics for the parameterized model is hypothesized. These characteristics describe the manner in which the parameters in the linearized model will vary with such things as display quality. It is demonstrated that the parameterized model can produce controller describing functions which closely approximate those measured in laboratory tracking tasks for a wide variety of controlled elements.
A method and the results of loop colostomy.
Browning, G G; Parks, A G
1983-04-01
A technique of loop colostomy which avoids a sutured skin wound, employs a deep tension suture with retained polythene sleeve as a bridge, and permits routine use of standard terminal colostomy appliances is described. The clinical results in 51 patients are reported and the advantages of this method of construction discussed. All patients were able to use standard, terminal colostomy appliances routinely from the time of construction. There were no immediate postoperative complications. Delayed complications occurred in 5 (10 per cent) patients. Intraperitoneal closure was performed in 43 patients and was complicated by 1 (2.3 per cent) transient fecal leak and 4 (9.3 per cent) would infections. The absence of a sutured skin wound, the small bridge size, and the circular shape of the stoma facilitate use of accurately fitting, standard terminal colostomy appliances rather than the usual loop colostomy apparatus. This results in an improved skin seal, reduced fecal leakage, easier nursing and stoma care, and better patient morale.
Minimum Free Energy Path of Ligand-Induced Transition in Adenylate Kinase
Matsunaga, Yasuhiro; Fujisaki, Hiroshi; Terada, Tohru; Furuta, Tadaomi; Moritsugu, Kei; Kidera, Akinori
2012-01-01
Large-scale conformational changes in proteins involve barrier-crossing transitions on the complex free energy surfaces of high-dimensional space. Such rare events cannot be efficiently captured by conventional molecular dynamics simulations. Here we show that, by combining the on-the-fly string method and the multi-state Bennett acceptance ratio (MBAR) method, the free energy profile of a conformational transition pathway in Escherichia coli adenylate kinase can be characterized in a high-dimensional space. The minimum free energy paths of the conformational transitions in adenylate kinase were explored by the on-the-fly string method in 20-dimensional space spanned by the 20 largest-amplitude principal modes, and the free energy and various kinds of average physical quantities along the pathways were successfully evaluated by the MBAR method. The influence of ligand binding on the pathways was characterized in terms of rigid-body motions of the lid-shaped ATP-binding domain (LID) and the AMP-binding (AMPbd) domains. It was found that the LID domain was able to partially close without the ligand, while the closure of the AMPbd domain required the ligand binding. The transition state ensemble of the ligand bound form was identified as those structures characterized by highly specific binding of the ligand to the AMPbd domain, and was validated by unrestrained MD simulations. It was also found that complete closure of the LID domain required the dehydration of solvents around the P-loop. These findings suggest that the interplay of the two different types of domain motion is an essential feature in the conformational transition of the enzyme. PMID:22685395
Le Blanc, Alexander; Mahrhold, Stefan; Piesker, Janett; Luppa, Peter B.
2018-01-01
The exceptional toxicity of botulinum neurotoxins (BoNTs) is mediated by high avidity binding to complex polysialogangliosides and intraluminal segments of synaptic vesicle proteins embedded in the presynaptic membrane. One peculiarity is an exposed hydrophobic loop in the toxin’s cell binding domain HC, which is located between the ganglioside- and protein receptor-binding sites, and that is particularly pronounced in the serotypes BoNT/B, DC, and G sharing synaptotagmin as protein receptor. Here, we provide evidence that this HC loop is a critical component of their tripartite receptor recognition complex. Binding to nanodisc-embedded receptors and toxicity were virtually abolished in BoNT mutants lacking residues at the tip of the HC loop. Surface plasmon resonance experiments revealed that only insertion of the HC loop into the lipid-bilayer compensates for the entropic penalty inflicted by the dual-receptor binding. Our results represent a new paradigm of how BoNT/B, DC, and G employ ternary interactions with a protein, ganglioside, and lipids to mediate their extraordinary neurotoxicity. PMID:29718991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shetty, Nishant D.; Reddy, Manchi C.M.; Palaninathan, Satheesh K.
2010-10-11
PII constitutes a family of signal transduction proteins that act as nitrogen sensors in microorganisms and plants. Mycobacterium tuberculosis (Mtb) has a single homologue of PII whose precise role has as yet not been explored. We have solved the crystal structures of the Mtb PII protein in its apo and ATP bound forms to 1.4 and 2.4 {angstrom} resolutions, respectively. The protein forms a trimeric assembly in the crystal lattice and folds similarly to the other PII family proteins. The Mtb PII:ATP binary complex structure reveals three ATP molecules per trimer, each bound between the base of the T-loop ofmore » one subunit and the C-loop of the neighboring subunit. In contrast to the apo structure, at least one subunit of the binary complex structure contains a completely ordered T-loop indicating that ATP binding plays a role in orienting this loop region towards target proteins like the ammonium transporter, AmtB. Arg38 of the T-loop makes direct contact with the {gamma}-phosphate of the ATP molecule replacing the Mg{sup 2+} position seen in the Methanococcus jannaschii GlnK1 structure. The C-loop of a neighboring subunit encloses the other side of the ATP molecule, placing the GlnK specific C-terminal 3{sub 10} helix in the vicinity. Homology modeling studies with the E. coli GlnK:AmtB complex reveal that Mtb PII could form a complex similar to the complex in E. coli. The structural conservation and operon organization suggests that the Mtb PII gene encodes for a GlnK protein and might play a key role in the nitrogen regulatory pathway.« less
Engineering Encodable Lanthanide-Binding Tags (LBTs) into Loop Regions of Proteins
Barthelmes, Katja; Reynolds, Anne M.; Peisach, Ezra; Jonker, Hendrik R. A.; DeNunzio, Nicholas J.; Allen, Karen N.; Imperiali, Barbara; Schwalbe, Harald
2011-01-01
Lanthanide-binding-tags (LBTs) are valuable tools for investigation of protein structure, function, and dynamics by NMR spectroscopy, X-ray crystallography and luminescence studies. We have inserted LBTs into three different loop positions (denoted L, R, and S) of the model protein interleukin-1β and varied the length of the spacer between the LBT and the protein (denoted 1-3). Luminescence studies demonstrate that all nine constructs bind Tb3+ tightly in the low nanomolar range. No significant change in the fusion protein occurs from insertion of the LBT, as shown by two X-ray crystallographic structures of the IL1β-S1 and IL1β-L3 constructs and for the remaining constructs by comparing 1H-15N-HSQC NMR spectra with wild-type IL1β. Additionally, binding of LBT-loop IL1β proteins to their native binding partner in vitro remains unaltered. X-ray crystallographic phasing was successful using only the signal from the bound lanthanide. Large residual dipolar couplings (RDCs) could be determined by NMR spectroscopy for all LBT-loop-constructs and revealed that the LBT-2 series were rigidly incorporated into the interleukin-1β structure. The paramagnetic NMR spectra of loop-LBT mutant IL1β-R2 were assigned and the Δχ tensor components were calculated based on RDCs and pseudocontact shifts (PCSs). A structural model of the IL1β-R2 construct was calculated using the paramagnetic restraints. The current data provide support that encodable LBTs serve as versatile biophysical tags when inserted into loop regions of proteins of known structure or predicted via homology modelling. PMID:21182275
Formation of chromosomal domains in interphase by loop extrusion
NASA Astrophysics Data System (ADS)
Fudenberg, Geoffrey
While genomes are often considered as one-dimensional sequences, interphase chromosomes are organized in three dimensions with an essential role for regulating gene expression. Recent studies have shown that Topologically Associating Domains (TADs) are fundamental structural and functional building blocks of human interphase chromosomes. Despite observations that architectural proteins, including CTCF, demarcate and maintain the borders of TADs, the mechanisms underlying TAD formation remain unknown. Here we propose that loop extrusion underlies the formation TADs. In this process, cis-acting loop-extruding factors, likely cohesins, form progressively larger loops, but stall at TAD boundaries due to interactions with boundary proteins, including CTCF. This process dynamically forms loops of various sizes within but not between TADs. Using polymer simulations, we find that loop extrusion can produce TADs as determined by our analyses of the highest-resolution experimental data. Moreover, we find that loop extrusion can explain many diverse experimental observations, including: the preferential orientation of CTCF motifs and enrichments of architectural proteins at TAD boundaries; TAD boundary deletion experiments; and experiments with knockdown or depletion of CTCF, cohesin, and cohesin-loading factors. Together, the emerging picture from our work is that TADs are formed by rapidly associating, growing, and dissociating loops, presenting a clear framework for understanding interphase chromosomal organization.
Sarcopenia and frailty in geriatric patients: implications for training and prevention.
Mühlberg, W; Sieber, C
2004-02-01
Sarcopenia, the loss of muscle mass and strength, is a constant phenomenon in aging. Physiologic age-dependent changes (drop in growth hormone (GH), IGF-1, menopause/andropause) explain the impaired protein synthesis, the decline of muscle mass, strength, and bone density. Harmful consequences of sarcopenia in old age are loss of muscle strength, inducing itself loss of mobility, neuromuscular impairment, and homeostatic balance failure syndrome with gait and balance disorders. All these sarcopenia-induced disabilities are important factors for an increased rate of falls and fractures in old age. Both falls and fractures cause hospitalisation and immobilisation which again induces sarcopenia. Once the physiological age-dependent decline of protein synthesis has started, some connected "vicious loops" occur in frail elderly patients, forming a typical pattern in geriatric medicine. There is a vicious loop between sarcopenia and immobilisation: sarcopenia --> neuromuscular impairment --> falls and fractures --> immobilisation --> sarcopenia. Another loop is the "nutritional" vicious loop between sarcopenia and malnutrition: sarcopenia --> immobilisation --> decline of nutrition skills ("empty refrigerator") --> malnutrition --> impaired protein synthesis --> sarcopenia. There is also a third "metabolic" vicious loop between sarcopenia and the decline of the protein reserve of the body: sarcopenia --> decline of the protein reserve of the body --> diminished capacity to meet the extra demand of protein synthesis associated with disease and injury --> sarcopenia. Frailty, a term not precisely defined, results from these different "vicious loops" including sarcopenia, neuromuscular impairment, falls and fractures, immobilisation, malnutrition, impaired protein synthesis, and decreased protein reserve of the body. Implications for training: main possibilities for training and prevention (of sarcopenia and frailty) are: a) continuous neuromuscular training (including training of balance) b) mobilisation c) prevention of falls d) training of nutrition skills and improvement of nutrition e) improvement of the impaired protein synthesis (with hormones etc.), and f) avoidance of dangerous drugs (drugs which cause neuromuscular impairment).
Proteins with Novel Structure, Function and Dynamics
NASA Technical Reports Server (NTRS)
Pohorille, Andrew
2014-01-01
Recently, a small enzyme that ligates two RNA fragments with the rate of 10(exp 6) above background was evolved in vitro (Seelig and Szostak, Nature 448:828-831, 2007). This enzyme does not resemble any contemporary protein (Chao et al., Nature Chem. Biol. 9:81-83, 2013). It consists of a dynamic, catalytic loop, a small, rigid core containing two zinc ions coordinated by neighboring amino acids, and two highly flexible tails that might be unimportant for protein function. In contrast to other proteins, this enzyme does not contain ordered secondary structure elements, such as alpha-helix or beta-sheet. The loop is kept together by just two interactions of a charged residue and a histidine with a zinc ion, which they coordinate on the opposite side of the loop. Such structure appears to be very fragile. Surprisingly, computer simulations indicate otherwise. As the coordinating, charged residue is mutated to alanine, another, nearby charged residue takes its place, thus keeping the structure nearly intact. If this residue is also substituted by alanine a salt bridge involving two other, charged residues on the opposite sides of the loop keeps the loop in place. These adjustments are facilitated by high flexibility of the protein. Computational predictions have been confirmed experimentally, as both mutants retain full activity and overall structure. These results challenge our notions about what is required for protein activity and about the relationship between protein dynamics, stability and robustness. We hypothesize that small, highly dynamic proteins could be both active and fault tolerant in ways that many other proteins are not, i.e. they can adjust to retain their structure and activity even if subjected to mutations in structurally critical regions. This opens the doors for designing proteins with novel functions, structures and dynamics that have not been yet considered.
Wardhan, Vijay; Pandey, Aarti; Chakraborty, Subhra; Chakraborty, Niranjan
2016-01-01
Tubby and Tubby-like proteins (TLPs), in mammals, play critical roles in neural development, while its function in plants is largely unknown. We previously demonstrated that the chickpea TLP, CaTLP1, participates in osmotic stress response and might be associated with ABA-dependent network. However, how CaTLP1 is connected to ABA signaling remains unclear. The CaTLP1 was found to be engaged in ABA-mediated gene expression and stomatal closure. Complementation of the yeast yap1 mutant with CaTLP1 revealed its role in ROS scavenging. Furthermore, complementation of Arabidopsis attlp2 mutant displayed enhanced stress tolerance, indicating the functional conservation of TLPs across the species. The presence of ABA-responsive element along with other motifs in the proximal promoter regions of TLPs firmly established their involvement in stress signalling pathways. The CaTLP1 promoter driven GUS expression was restricted to the vegetative organs, especially stem and rosette leaves. Global protein expression profiling of wild-type, attlp2 and complemented Arabidopsis plants revealed 95 differentially expressed proteins, presumably involved in maintaining physiological and biological processes under dehydration. Immunoprecipitation assay revealed that protein kinases are most likely to interact with CaTLP1. This study provides the first demonstration that the TLPs act as module for ABA-mediated stomatal closure possibly via interaction with protein kinase. PMID:27934866
Pan, Qunxing; He, Kongwang; Wang, Yongshan; Wang, Xiaoli; Ouyang, Wei
2013-06-01
An antigen-delivery system based on hybrid virus-like particles (VLPs) formed by the self-assembly of the capsid VP2 protein of porcine parvovirus (PPV) and expressing foreign peptides offers an alternative method for vaccination. In this study, the three-dimensional structure of the PPV capsid protein and surface loops deletion mutants were analyzed to define essential domains in PPV VP2 for the assembly of VLPs. Electron microscopic analysis and SDS-PAGE analysis confirmed the presence of abundant VLPs in a loop2 deletion mutant of expected size and appropriate morphology. Loop4 and loop2-loop4 deletion mutants, however, resulted in a lower number of particles and the morphology of the particles was not well preserved. Furthermore, the green fluorescent protein (gfp) gene was used as a model. GFP was observed at the same level in displacements mutants. However, GFP displacement mutants in loop2 construct allowed better adaptation for the fusion GFP to be further displayed on the surface of the capsid-like structure. Immunogenicity study showed that there is no obvious difference in mice inoculated with rAd-VP2(Δloop2), rAd-VP2(Δloop4), rAd-VP2(Δloop2-Δloop4), and PPV inactivated vaccine. The results suggested the possibility of inserting simultaneously B and T cell epitopes in the surface loop2 and the N-terminus. The combination of different types of epitopes (B, CD4+, and CD8+) in different positions of the PPV particles opens the way to the development of highly efficient vaccines, able to stimulate at the same time the different branches of the immune system.
Coagulation parameters and platelet function analysis in patients with acromegaly.
Colak, A; Yılmaz, H; Temel, Y; Demirpence, M; Simsek, N; Karademirci, İ; Bozkurt, U; Yasar, E
2016-01-01
Acromegaly is associated with increased cardiovascular morbidity and mortality. The data about the evaluation of coagulation and fibrinolysis in acromegalic patients are very limited and to our knowledge, platelet function analysis has never been investigated. So, we aimed to investigate the levels of protein C, protein S, fibrinogen, antithrombin 3 and platelet function analysis in patients with acromegaly. Thirty-nine patients with active acromegaly and 35 healthy subjects were included in the study. Plasma glucose and lipid profile, fibrinogen levels, GH and IGF-1 levels and protein C, protein S and antithrombin III activities were measured in all study subjects. Also, platelet function analysis was evaluated with collagen/ADP and collagen-epinephrine-closure times. Demographic characteristics of the patient and the control were similar. As expected, fasting blood glucose levels and serum GH and IGF-1 levels were significantly higher in the patient group compared with the control group (pglc: 0.002, pGH: 0.006, pIGF-1: 0.001, respectively). But lipid parameters were similar between the two groups. While serum fibrinogen and antithrombin III levels were found to be significantly higher in acromegaly group (p fibrinogen: 0.005 and pantithrombin III: 0.001), protein S and protein C activity values were significantly lower in the patient group (p protein S: 0.001, p protein C: 0.001). Also significantly enhanced platelet function (measured by collagen/ADP- and collagen/epinephrine-closure times) was demonstrated in acromegaly (p col-ADP: 0.002, p col-epinephrine: 0.002). The results did not change, when we excluded six patients with type 2 diabetes in the acromegaly group. There was a negative correlation between serum GH levels and protein S (r: -0.25, p: 0.04)) and protein C (r: -0.26, p: 0.04) values. Likewise, there was a negative correlation between IGF-1 levels and protein C values (r: -0.39, p: 0.002), protein S values (r: -0.39, p: 0.001), collagen/ADP-closure times (r: -0.28, p: 0.02) and collagen/epinephrine-closure times (r:-0.26, p: 0.04). Also, we observed a positive correlation between IGF-1 levels and fibrinogen levels (r: 0.31, p: 0.01). Acromegaly was found to be associated with increased tendency to coagulation and enhanced platelet activity. This hypercoagulable state might increase the risk for cardiovascular and cerebrovascular events in acromegaly.
Effect of supercoiling on formation of protein-mediated DNA loops
NASA Astrophysics Data System (ADS)
Purohit, P. K.; Nelson, P. C.
2006-12-01
DNA loop formation is one of several mechanisms used by organisms to regulate genes. The free energy of forming a loop is an important factor in determining whether the associated gene is switched on or off. In this paper we use an elastic rod model of DNA to determine the free energy of forming short (50-100 basepair), protein mediated DNA loops. Superhelical stress in the DNA of living cells is a critical factor determining the energetics of loop formation, and we explicitly account for it in our calculations. The repressor protein itself is regarded as a rigid coupler; its geometry enters the problem through the boundary conditions it applies on the DNA. We show that a theory with these ingredients is sufficient to explain certain features observed in modulation of in vivo gene activity as a function of the distance between operator sites for the lac repressor. We also use our theory to make quantitative predictions for the dependence of looping on superhelical stress, which may be testable both in vivo and in single-molecule experiments such as the tethered particle assay and the magnetic bead assay.
The manufacture of blood plasma products in Scotland: a brief history.
Foster, Peter R
2016-02-01
A number of essential clinical products are derived from human blood plasma, including immunoglobulin products for the treatment of infections and disorders of immunity; albumin for protein and fluid replacement and coagulation factors for the treatment of haemophilia and other disorders of haemostasis. For many years, these protein pharmaceuticals were manufactured by the Scottish National Blood Transfusion Service (SNBTS) at its Scottish Protein Fractionation Centre (PFC) in Edinburgh, a contribution which ended with the closure of the PFC in 2008. The origins and development of plasma fractionation in Scotland are summarised in this article, as well as issues which contributed to the closure of the PFC. © The Author(s) 2015.
Methane Post-Processing for Oxygen Loop Closure
NASA Technical Reports Server (NTRS)
Greenwood, Zachary W.; Abney, Morgan B.; Miller, Lee
2016-01-01
State-of-the-art United States Atmospheric Revitalization carbon dioxide (CO2) reduction is based on the Sabatier reaction process, which recovers approximately 50% of the oxygen (O2) from crew metabolic CO2. Oxygen recovery from carbon dioxide is constrained by the limited availability of reactant hydrogen. Post-processing of methane to recover hydrogen with the Umpqua Research Company Plasma Pyrolysis Assembly (PPA) has the potential to further close the Atmospheric Revitalization oxygen loop. The PPA decomposes methane into hydrogen and hydrocarbons, predominantly acetylene, and a small amount of solid carbon. The hydrogen must then be purified before it can be recycled for additional oxygen recovery. Long duration testing and evaluation of a four crew-member sized PPA and a discussion of hydrogen recycling system architectures are presented.
Innexin 3, a New Gene Required for Dorsal Closure in Drosophila Embryo
Giuliani, Fabrizio; Giuliani, Giuliano; Bauer, Reinhard; Rabouille, Catherine
2013-01-01
Background Dorsal closure is a morphogenetic event that occurs during mid-embryogenesis in many insects including Drosophila, during which the ectoderm migrates on the extraembryonic amnioserosa to seal the embryo dorsally. The contribution of the ectoderm in this event has been known for a long time. However, amnioserosa tension and contractibility have recently been shown also to be instrumental to the closure. A critical pre-requisite for dorsal closure is integrity of these tissues that in part is mediated by cell-cell junctions and cell adhesion. In this regard, mutations impairing junction formation and/or adhesion lead to dorsal closure. However, no role for the gap junction proteins Innexins has so far been described. Results and Discussion Here, we show that Innexin 1, 2 and 3, are present in the ectoderm but also in the amnioserosa in plaques consistent with gap junctions. However, only the loss of Inx3 leads to dorsal closure defects that are completely rescued by overexpression of inx3::GFP in the whole embryo. Loss of Inx3 leads to the destabilisation of Inx1, Inx2 and DE-cadherin at the plasma membrane, suggesting that these four proteins form a complex. Accordingly, in addition to the known interaction of Inx2 with DE-cadherin, we show that Inx3 can bind to DE-cadherin. Furthermore, Inx3-GFP overexpression recruits DE-cadherin from its wildtype plasma membrane domain to typical Innexin plaques, strengthening the notion that they form a complex. Finally, we show that Inx3 stability is directly dependent on tissue tension. Taken together, we propose that Inx3 is a critical factor for dorsal closure and that it mediates the stability of Inx1, 2 and DE-cadherin by forming a complex. PMID:23894431
Kyle, Leah M.; John, Theodore R.; Schätzl, Hermann M.; Lewis, Randolph V.
2013-01-01
Prion diseases are fatal neurodegenerative disorders characterized by misfolding of the cellular prion protein (PrPc) into the disease-associated isoform (PrPSc) that has increased β-sheet content and partial resistance to proteolytic digestion. Prion diseases from different mammalian species have varying propensities for transmission upon exposure of an uninfected host to the infectious agent. Chronic Wasting Disease (CWD) is a highly transmissible prion disease that affects free ranging and farmed populations of cervids including deer, elk and moose, as well as other mammals in experimental settings. The molecular mechanisms allowing CWD to maintain comparatively high transmission rates have not been determined. Previous work has identified a unique structural feature in cervid PrP, a rigid loop between β-sheet 2 and α-helix 2 on the surface of the protein. This study was designed to test the hypothesis that the rigid loop has a direct influence on the misfolding process. The rigid loop was introduced into murine PrP as the result of two amino acid substitutions: S170N and N174T. Wild-type and rigid loop murine PrP were expressed in E. coli and purified. Misfolding propensity was compared for the two proteins using biochemical techniques and cell free misfolding and conversion systems. Murine PrP with a rigid loop misfolded in cell free systems with greater propensity than wild type murine PrP. In a lipid-based conversion assay, rigid loop PrP converted to a PK resistant, aggregated isoform at lower concentrations than wild-type PrP. Using both proteins as substrates in real time quaking-induced conversion, rigid loop PrP adopted a misfolded isoform more readily than wild type PrP. Taken together, these findings may help explain the high transmission rates observed for CWD within cervids. PMID:23825561
Brown, Jacob D; Dutta, Sunit; Bharti, Kapil; Bonner, Robert F; Munson, Peter J; Dawid, Igor B; Akhtar, Amana L; Onojafe, Ighovie F; Alur, Ramakrishna P; Gross, Jeffrey M; Hejtmancik, J Fielding; Jiao, Xiaodong; Chan, Wai-Yee; Brooks, Brian P
2009-02-03
The gene networks underlying closure of the optic fissure during vertebrate eye development are poorly understood. Here, we profile global gene expression during optic fissure closure using laser capture microdissected (LCM) tissue from the margins of the fissure. From these data, we identify a unique role for the C(2)H(2) zinc finger proteins Nlz1 and Nlz2 in normal fissure closure. Gene knockdown of nlz1 and/or nlz2 in zebrafish leads to a failure of the optic fissure to close, a phenotype which closely resembles that seen in human uveal coloboma. We also identify misregulation of pax2 in the developing eye of morphant fish, suggesting that Nlz1 and Nlz2 act upstream of the Pax2 pathway in directing proper closure of the optic fissure.
Kinetics of Internal-Loop Formation in Polypeptide Chains: A Simulation Study
Doucet, Dana; Roitberg, Adrian; Hagen, Stephen J.
2007-01-01
The speed of simple diffusional motions, such as the formation of loops in the polypeptide chain, places one physical limit on the speed of protein folding. Many experimental studies have explored the kinetics of formation of end-to-end loops in polypeptide chains; however, protein folding more often requires the formation of contacts between interior points on the chain. One expects that, for loops of fixed contour length, interior loops will form more slowly than end-to-end loops, owing to the additional excluded volume associated with the “tails”. We estimate the magnitude of this effect by generating ensembles of randomly coiled, freely jointed chains, and then using the theory of Szabo, Schulten, and Schulten to calculate the corresponding contact formation rates for these ensembles. Adding just a few residues, to convert an end-to-end loop to an internal loop, sharply decreases the contact rate. Surprisingly, the relative change in rate increases for a longer loop; sufficiently long tails, however, actually reverse the effect and accelerate loop formation slightly. Our results show that excluded volume effects in real, full-length polypeptides may cause the rates of loop formation during folding to depart significantly from the values derived from recent loop-formation experiments on short peptides. PMID:17208979
Baccei, Steven J; Chinai, Sneha A; Reznek, Martin; Henderson, Scott; Reynolds, Kevin; Brush, D Eric
2018-04-01
The appropriate communication and management of incidental findings on emergency department (ED) radiology studies is an important component of patient safety. Guidelines have been issued by the ACR and other medical associations that best define incidental findings across various modalities and imaging studies. However, there are few examples of health care facilities designing ways to manage incidental findings. Our institution aimed to improve communication and follow-up of incidental radiology findings in ED patients through the collaborative development and implementation of system-level process changes including a standardized loop-closure method. We assembled a multidisciplinary team to address the nature of these incidental findings and designed new workflows and operational pathways for both radiology and ED staff to properly communicate incidental findings. Our results are based on all incidental findings received and acknowledged between November 1, 2016, and May 30, 2017. The total number of incidental findings discovered was 1,409. Our systematic compliance fluctuated between 45% and 95% initially after implementation. However, after overcoming various challenges through optimization, our system reached a compliance rate of 93% to 95%. Through the implementation of our new, standardized communication system, a high degree of compliance with loop closure for ED incidental radiology findings was achieved at our institution. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Lau, Eugene C T; Fung, Adrian C H; Wong, Kenneth K Y; Tam, Paul K H
2016-12-01
Necrotizing enterocolitis in premature neonates often results in bowel resection and stoma formation. One way to promote bowel adaptation before stoma closure is to introduce proximal loop effluents into the mucous fistula. In this study, we reviewed our experience with distal loop refeeding with respect to control group. All patients with necrotizing enterocolitis between 2000 and 2014 necessitating initial diverting enterostomies and subsequent stoma closure in a tertiary referral center were included. Medical records were retrospectively reviewed. Demographic data, surgical procedures, and postoperative outcomes were analyzed. 92 patients were identified, with 77 patients receiving mucous fistula refeeding. The refeeding group showed less bowel ends size discrepancy (25 vs 53%, p=0.034) and less postoperative anastomotic leakage (3 vs 20%, p=0.029). Fewer refeeding group patients developed parenteral nutrition related cholestasis (42 vs 73%, p=0.045) and required shorter parenteral nutrition support (47 vs 135days, p=0.002). The mean peak bilirubin level was higher in the non-refeeding group (155 vs 275μmol/L, p<0.001). No major complication was associated with refeeding. Mucous fistula refeeding is safe and can decrease risk of anastomotic complication and parental nutrition related cholestasis. It provides both diagnostic and therapeutic value preoperatively and its use should be advocated. Level III Treatment Study in a Case Control Manner. Copyright © 2016 Elsevier Inc. All rights reserved.
Impaired wound healing in mice deficient in a matricellular protein SPARC (osteonectin, BM-40)
Basu, Amitabha; Kligman, Lorraine H; Samulewicz, Stefan J; Howe, Chin C
2001-01-01
Background SPARC is a matricellular protein involved in cell-matrix interactions. From expression patterns at the wound site and in vitro studies, SPARC has been implicated in the control of wound healing. Here we examined the function of SPARC in cutaneous wound healing using SPARC-null mice and dermal fibroblasts derived from them. Results In large (25 mm) wounds, SPARC-null mice showed a significant delay in healing as compared to wild-type mice (31 days versus 24 days). Granulation tissue formation and extracellular matrix protein production were delayed in small 6 mm SPARC-null wounds initially but were resolved by day 6. In in vitro wound-healing assays, while wild-type primary dermal fibroblasts showed essentially complete wound closure at 11 hours, wound closure of SPARC-null cells was incomplete even at 31 hours. Addition of purified SPARC restored the normal time course of wound closure. Treatment of SPARC-null cells with mitomycin C to analyze cell migration without cell proliferation showed that wound repair remained incomplete after 31 hours. Cell proliferation as measured by 3H-thymidine incorporation and collagen gel contraction by SPARC-null cells were not compromised. Conclusions A significant delay in healing large excisional wounds and setback in granulation tissue formation and extracellular matrix protein production in small wounds establish that SPARC is required for granulation tissue formation during normal repair of skin wounds in mice. A defect in wound closure in vitro indicates that SPARC regulates cell migration. We conclude that SPARC plays a role in wound repair by promoting fibroblast migration and thus granulation tissue formation. PMID:11532190
NASA Astrophysics Data System (ADS)
Knight, Jonathan D.; Li, Rong; Botchan, Michael
1991-04-01
The E2 transactivator protein of bovine papillomavirus binds its specific DNA target sequence as a dimer. We have found that E2 dimers, performed in solution independent of DNA, exhibit substantial cooperativity of DNA binding as detected by both nitrocellulose filter retention and footprint analysis techniques. If the binding sites are widely spaced, E2 forms stable DNA loops visible by electron microscopy. When three widely separated binding sites reside on te DNA, E2 condenses the molecule into a bow-tie structure. This implies that each E2 dimer has at least two independent surfaces for multimerization. Two naturally occurring shorter forms of the protein, E2C and D8/E2, which function in vivo as repressors of transcription, do not form such loops. Thus, the looping function of E2 maps to the 161-amino acid activation domain. These results support the looping model of transcription activation by enhancers.
Preliminary results of laser tissue welding in extravesical reimplantation of the ureters.
Kirsch, A J; Dean, G E; Oz, M C; Libutti, S K; Treat, M R; Nowygrod, R; Hensle, T W
1994-02-01
One exciting potential use of laparoscopic technology is the extravesical reimplantation of the ureters. We have assessed the efficacy of laser-activated fibrinogen solder to close vesical muscle flaps over submucosal ureters (Lich-Gregoir technique) in a canine model. Four dogs were subjected to unilateral flap closures via a protein solder (indocyanine green and fibrinogen) applied to the bladder serosa and exposed to 808 nm. continuous wave diode laser energy. Contralateral reimplantation was performed using 4-zero vicryl muscle flap closures (controls). At 7, 14 and 28 days postoperatively, intravenous pyelograms confirmed bilateral ureteral patency. At intravesical pressures above 100 cm. H2O, there was no evidence of wound disruption in either group. Nondisrupted wound closures were sectioned and strained until ultimate breakage to determine tensile strength. At each study interval the laser-welded closures withstood greater stress than the controls. Although these data represent single tissue samples and are not amenable to statistical analysis, laser-welded closures appeared to be stronger at each study interval. In conclusion, laser-welded vesical wound closures appear at least as strong as suture closures in the canine model.
Okuda, Ken-ichi; Yanagihara, Sae; Sugayama, Tomomichi; Zendo, Takeshi; Nakayama, Jiro; Sonomoto, Kenji
2010-06-01
Lantibiotics are peptide-derived antibacterial substances produced by some Gram-positive bacteria and characterized by the presence of unusual amino acids, like lanthionines and dehydrated amino acids. Because lantibiotic producers may be attacked by self-produced lantibiotics, they express immunity proteins on the cytoplasmic membrane. An ATP-binding cassette (ABC) transport system mediated by the LanFEG protein complex is a major system in lantibiotic immunity. Multiple-sequence alignment analysis revealed that LanF proteins contain the E loop, a variant of the Q loop, which is a well-conserved motif in the nucleotide-binding domains (NBDs) of general ABC transporters. To elucidate E loop function, we introduced a mutation in the NukF protein, which is involved in the nukacin-ISK-1 immunity system. Amino acid replacement of glutamic acid in the E loop with glutamine (E85Q) resulted in slight decreases in the immunity level and transport activity. Additionally, the E85A mutation severely impaired the immunity level and transport activity. On the other hand, ATPase activities of purified E85Q and E85A mutants were almost similar to that of the wild type. These results suggested that the E loop found in ABC transporters involved in lantibiotic immunity plays a significant role in the function of these transporters, especially in the structural change of transmembrane domains.
Purification of bacteriophage lambda repressor
Gao, Ning; Shearwin, Keith; Mack, John; Finzi, Laura; Dunlap, David
2013-01-01
Bacteriophage lambda repressor controls the lysogeny/lytic growth switch after infection of E. coli by lambda phage. In order to study in detail the looping of DNA mediated by the protein, tag-free repressor and a loss-of-cooperativity mutant were expressed in E.coli and purified by (1) ammonium sulfate fractionation, (2) anion-exchange chromatography and (3) heparin affinity chromatography. This method employs more recently developed and readily available chromatography resins to produce highly pure protein in good yield. In tethered particle motion looping assays and atomic force microscopy “footprinting” assays, both the wild-type protein and a C-terminal His-tagged variant, purified using immobilized metal affinity chromatography, bound specifically to high affinity sites to mediate loop formation. In contrast the G147D loss-of-cooperativity mutant bound specifically but did not secure loops. PMID:23831434
Lee, Sung Chul; Lim, Chae Woo; Lan, Wenzhi; He, Kai; Luan, Sheng
2013-03-01
Plant hormone abscisic acid (ABA) serves as an integrator of environmental stresses such as drought to trigger stomatal closure by regulating specific ion channels in guard cells. We previously reported that SLAC1, an outward anion channel required for stomatal closure, was regulated via reversible protein phosphorylation events involving ABA signaling components, including protein phosphatase 2C members and a SnRK2-type kinase (OST1). In this study, we reconstituted the ABA signaling pathway as a protein-protein interaction relay from the PYL/RCAR-type receptors, to the PP2C-SnRK2 phosphatase-kinase pairs, to the ion channel SLAC1. The ABA receptors interacted with and inhibited PP2C phosphatase activity against the SnRK2-type kinase, releasing active SnRK2 kinase to phosphorylate, and activate the SLAC1 channel, leading to reduced guard cell turgor and stomatal closure. Both yeast two-hybrid and bimolecular fluorescence complementation assays were used to verify the interactions among the components in the pathway. These biochemical assays demonstrated activity modifications of phosphatases and kinases by their interaction partners. The SLAC1 channel activity was used as an endpoint readout for the strength of the signaling pathway, depending on the presence of different combinations of signaling components. Further study using transgenic plants overexpressing one of the ABA receptors demonstrated that changing the relative level of interacting partners would change ABA sensitivity.
Chimeric microbial rhodopsins for optical activation of Gs-proteins
Yoshida, Kazuho; Yamashita, Takahiro; Sasaki, Kengo; Inoue, Keiichi; Shichida, Yoshinori; Kandori, Hideki
2017-01-01
We previously showed that the chimeric proteins of microbial rhodopsins, such as light-driven proton pump bacteriorhodopsin (BR) and Gloeobacter rhodopsin (GR) that contain cytoplasmic loops of bovine rhodopsin, are able to activate Gt protein upon light absorption. These facts suggest similar protein structural changes in both the light-driven proton pump and animal rhodopsin. Here we report two trials to engineer chimeric rhodopsins, one for the inserted loop, and another for the microbial rhodopsin template. For the former, we successfully activated Gs protein by light through the incorporation of the cytoplasmic loop of β2-adrenergic receptor (β2AR). For the latter, we did not observe any G-protein activation for the light-driven sodium pump from Indibacter alkaliphilus (IndiR2) or a light-driven chloride pump halorhodopsin from Natronomonas pharaonis (NpHR), whereas the light-driven proton pump GR showed light-dependent G-protein activation. This fact suggests that a helix opening motion is common to G protein coupled receptor (GPCR) and GR, but not to IndiR2 and NpHR. Light-induced difference FTIR spectroscopy revealed similar structural changes between WT and the third loop chimera for each light-driven pump. A helical structural perturbation, which was largest for GR, was further enhanced in the chimera. We conclude that similar structural dynamics that occur on the cytoplasmic side of GPCR are needed to design chimeric microbial rhodopsins. PMID:29362703
Cristini, Agnese; Groh, Matthias; Kristiansen, Maiken S; Gromak, Natalia
2018-05-08
R-loops comprise an RNA/DNA hybrid and displaced single-stranded DNA. They play important biological roles and are implicated in pathology. Even so, proteins recognizing these structures are largely undefined. Using affinity purification with the S9.6 antibody coupled to mass spectrometry, we defined the RNA/DNA hybrid interactome in HeLa cells. This consists of known R-loop-associated factors SRSF1, FACT, and Top1, and yet uncharacterized interactors, including helicases, RNA processing, DNA repair, and chromatin factors. We validate specific examples of these interactors and characterize their involvement in R-loop biology. A top candidate DHX9 helicase promotes R-loop suppression and transcriptional termination. DHX9 interacts with PARP1, and both proteins prevent R-loop-associated DNA damage. DHX9 and other interactome helicases are overexpressed in cancer, linking R-loop-mediated DNA damage and disease. Our RNA/DNA hybrid interactome provides a powerful resource to study R-loop biology in health and disease. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Miller, Edward B.; Murrett, Colleen S.; Zhu, Kai; Zhao, Suwen; Goldfeld, Dahlia A.; Bylund, Joseph H.; Friesner, Richard A.
2013-01-01
Robust homology modeling to atomic-level accuracy requires in the general case successful prediction of protein loops containing small segments of secondary structure. Further, as loop prediction advances to success with larger loops, the exclusion of loops containing secondary structure becomes awkward. Here, we extend the applicability of the Protein Local Optimization Program (PLOP) to loops up to 17 residues in length that contain either helical or hairpin segments. In general, PLOP hierarchically samples conformational space and ranks candidate loops with a high-quality molecular mechanics force field. For loops identified to possess α-helical segments, we employ an alternative dihedral library composed of (ϕ,ψ) angles commonly found in helices. The alternative library is searched over a user-specified range of residues that define the helical bounds. The source of these helical bounds can be from popular secondary structure prediction software or from analysis of past loop predictions where a propensity to form a helix is observed. Due to the maturity of our energy model, the lowest energy loop across all experiments can be selected with an accuracy of sub-Ångström RMSD in 80% of cases, 1.0 to 1.5 Å RMSD in 14% of cases, and poorer than 1.5 Å RMSD in 6% of cases. The effectiveness of our current methods in predicting hairpin-containing loops is explored with hairpins up to 13 residues in length and again reaching an accuracy of sub-Ångström RMSD in 83% of cases, 1.0 to 1.5 Å RMSD in 10% of cases, and poorer than 1.5 Å RMSD in 7% of cases. Finally, we explore the effect of an imprecise surrounding environment, in which side chains, but not the backbone, are initially in perturbed geometries. In these cases, loops perturbed to 3Å RMSD from the native environment were restored to their native conformation with sub-Ångström RMSD. PMID:23814507
Language Support for Parallel Computation
1990-04-01
strings on ..8. also belongs to the regular set. Therefore, their interleaving belongs to alpha-closure of the regular set. Case 2: L(.4)CL(U) Consider any...disallow the case when the machine does not terminate on the given input by going through a loop of internal actions. Since in real life, we would not like...common process and therefore some of them will be aborted. In the limiting case , (that is if we were allowed to have just one global master), there
DNA looping by FokI: the impact of twisting and bending rigidity on protein-induced looping dynamics
Laurens, Niels; Rusling, David A.; Pernstich, Christian; Brouwer, Ineke; Halford, Stephen E.; Wuite, Gijs J. L.
2012-01-01
Protein-induced DNA looping is crucial for many genetic processes such as transcription, gene regulation and DNA replication. Here, we use tethered-particle motion to examine the impact of DNA bending and twisting rigidity on loop capture and release, using the restriction endonuclease FokI as a test system. To cleave DNA efficiently, FokI bridges two copies of an asymmetric sequence, invariably aligning the sites in parallel. On account of the fixed alignment, the topology of the DNA loop is set by the orientation of the sites along the DNA. We show that both the separation of the FokI sites and their orientation, altering, respectively, the twisting and the bending of the DNA needed to juxtapose the sites, have profound effects on the dynamics of the looping interaction. Surprisingly, the presence of a nick within the loop does not affect the observed rigidity of the DNA. In contrast, the introduction of a 4-nt gap fully relaxes all of the torque present in the system but does not necessarily enhance loop stability. FokI therefore employs torque to stabilise its DNA-looping interaction by acting as a ‘torsional’ catch bond. PMID:22373924
Bonatto, Ana C; Souza, Emanuel M; Pedrosa, Fábio O; Yates, M Geoffrey; Benelli, Elaine M
2005-01-01
Proteins of the PII family are found in species of all kingdoms. Although these proteins usually share high identity, their functions are specific to the different organisms. Comparison of structural data from Escherichia coli GlnB and GlnK and Herbaspirillum seropedicae GlnB showed that the T-loop and C-terminus were variable regions. To evaluate the role of these regions in signal transduction by the H. seropedicae GlnB protein, four mutants were constructed: Y51F, G108A/P109a, G108W and Q3R/T5A. The activities of the native and mutated proteins were assayed in an E. coli background constitutively expressing the Klebsiella pneumoniae nifLA operon. The results suggested that the T-loop and C-terminus regions of H. seropedicae GlnB are involved in nitrogen signal transduction.
Influences of Reduced Expression of Maternal Bone Morphogenetic Protein 2 on Embryonic Development
Singh, Ajeet P.; Castranio, Trisha; Scott, Greg; Guo, Dayong; Harris, Marie A.; Ray, Manas; Harris, Stephan E.; Mishina, Yuji
2009-01-01
Bone morphogenetic protein 2 (BMP2) was originally found by its osteoinductive ability, and recent genetic analyses have revealed that it plays critical roles during early embryogenesis, cardiogenesis, decidualization as well as skeletogenesis. During a course of evaluation of the conditional allele for Bmp2, we found that the presence of a neo cassette, a selection marker needed for gene targeting events in embryonic stem cells, in the 3’ untranslated region of exon 3 of Bmp2, reduced the expression levels of Bmp2 both in embryonic and maternal tissues. Some of the embryos that were genotyped as transheterozygous for the floxed allele with the neo cassette over the conventional null allele (fn/−) showed a lethal phenotype including defects in cephalic neural tube closure and ventral abdominal wall closure. Embryos exhibiting these abnormalities were increased when genotypes of the pregnant females were different; when expression levels of Bmp2 in maternal tissues were lower, a larger proportion of fn/− embryos exhibit these abnormalities. These results suggest that the expression levels of Bmp2 together in both in embryonic and maternal tissues influence the normal neural tube closure and body wall closure with different thresholds. PMID:18769073
Intein-modified enzymes, their production and industrial applications
Apgar, James; Lessard, Philip; Raab, Michael R.; Shen, Binzhang; Lazar, Gabor; de la Vega, Humberto
2016-10-11
A method of predicting an intein insertion site in a protein that will lead to a switching phenotype is provided. The method includes identifying a plurality of C/T/S sites within the protein; selecting from the plurality of C/T/S/ sites those that are ranked 0.75 or higher by a support vector machine, within ten angstroms of the active site of the protein, and at or near a loop-.beta.-sheet junction or a loop-.alpha.-helix junction. A method of controlling protein activity and hosts including proteins with controlled activity are also provided. Also, intein modified proteins and plants containing intein modified proteins are provided.
Li, Jinjie; Li, Yang; Yin, Zhigang; Jiang, Jihong; Zhang, Minghui; Guo, Xiao; Ye, Zhujia; Zhao, Yan; Xiong, Haiyan; Zhang, Zhanying; Shao, Yujie; Jiang, Conghui; Zhang, Hongliang; An, Gynheung; Paek, Nam-Chon; Ali, Jauhar; Li, Zichao
2017-02-01
Drought is one of the major abiotic stresses that directly implicate plant growth and crop productivity. Although many genes in response to drought stress have been identified, genetic improvement to drought resistance especially in food crops is showing relatively slow progress worldwide. Here, we reported the isolation of abscisic acid, stress and ripening (ASR) genes from upland rice variety, IRAT109 (Oryza sativa L. ssp. japonica), and demonstrated that overexpression of OsASR5 enhanced osmotic tolerance in Escherichia coli and drought tolerance in Arabidopsis and rice by regulating leaf water status under drought stress conditions. Moreover, overexpression of OsASR5 in rice increased endogenous ABA level and showed hypersensitive to exogenous ABA treatment at both germination and postgermination stages. The production of H 2 O 2 , a second messenger for the induction of stomatal closure in response to ABA, was activated in overexpression plants under drought stress conditions, consequently, increased stomatal closure and decreased stomatal conductance. In contrast, the loss-of-function mutant, osasr5, showed sensitivity to drought stress with lower relative water content under drought stress conditions. Further studies demonstrated that OsASR5 functioned as chaperone-like protein and interacted with stress-related HSP40 and 2OG-Fe (II) oxygenase domain containing proteins in yeast and plants. Taken together, we suggest that OsASR5 plays multiple roles in response to drought stress by regulating ABA biosynthesis, promoting stomatal closure, as well as acting as chaperone-like protein that possibly prevents drought stress-related proteins from inactivation. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Cortes-Hernandez, Paulina
2017-01-01
Periplasmic Binding Proteins (PBPs) trap nutrients for their internalization into bacteria by ABC transporters. Ligand binding triggers PBP closure by bringing its two domains together like a Venus flytrap. The atomic determinants that control PBP opening and closure for nutrient capture and release are not known, although it is proposed that opening and ligand release occur while in contact with the ABC transporter for concurrent substrate translocation. In this paper we evaluated the effect of the isomerization of a conserved proline, located near the binding site, on the propensity of PBPs to open and close. ArgT/LAO from Salmonella typhimurium and HisJ from Escherichia coli were studied through molecular mechanics at two different temperatures: 300 and 323 K. Eight microseconds were simulated per protein to analyze protein opening and closure in the absence of the ABC transporter. We show that when the studied proline is in trans, closed empty LAO and HisJ can open. In contrast, with the proline in cis, opening transitions were much less frequent and characterized by smaller changes. The proline in trans also renders the open trap prone to close over a ligand. Our data suggest that the isomerization of this conserved proline modulates the PBP mechanism: the proline in trans allows the exploration of conformational space to produce trap opening and closure, while in cis it restricts PBP movement and could limit ligand release until in productive contact with the ABC transporter. This is the first time that a proline isomerization has been related to the control of a large conformational change like the PBP flytrap mechanism. PMID:29190818
Electronic Maxwell demon in the coherent strong-coupling regime
NASA Astrophysics Data System (ADS)
Schaller, Gernot; Cerrillo, Javier; Engelhardt, Georg; Strasberg, Philipp
2018-05-01
We consider an external feedback control loop implementing the action of a Maxwell demon. Applying control actions that are conditioned on measurement outcomes, the demon may transport electrons against a bias voltage and thereby effectively converts information into electric power. While the underlying model—a feedback-controlled quantum dot that is coupled to two electronic leads—is well explored in the limit of small tunnel couplings, we can address the strong-coupling regime with a fermionic reaction-coordinate mapping. This exact mapping transforms the setup into a serial triple quantum dot coupled to two leads. We find that a continuous projective measurement of the central dot occupation would lead to a complete suppression of electronic transport due to the quantum Zeno effect. In contrast, by using a microscopic detector model we can implement a weak measurement, which allows for closure of the control loop without transport blockade. Then, in the weak-coupling regime, the energy flows associated with the feedback loop are negligible, and dominantly the information gained in the measurement induces a bound for the generated electric power. In the strong coupling limit, the protocol may require more energy for operating the control loop than electric power produced, such that the whole device is no longer information dominated and can thus not be interpreted as a Maxwell demon.
Rosselli-Murai, Luciana K; Sforça, Maurício L; Sassonia, Rogério C; Azzoni, Adriano R; Murai, Marcelo J; de Souza, Anete P; Zeri, Ana C
2012-10-01
The nucleoid-associated protein H-NS is a major component of the bacterial nucleoid involved in DNA compaction and transcription regulation. The NMR solution structure of the Xylella fastidiosa H-NS C-terminal domain (residues 56-134) is presented here and consists of two beta-strands and two alpha helices, with one loop connecting the two beta-strands and a second loop connecting the second beta strand and the first helix. The amide (1)H and (15)N chemical shift signals for a sample of XfH-NS(56-134) were monitored in the course of a titration series with a 14-bp DNA duplex. Most of the residues involved in contacts to DNA are located around the first and second loops and in the first helix at a positively charged side of the protein surface. The overall structure of the Xylella H-NS C-terminal domain differ significantly from Escherichia coli and Salmonella enterica H-NS proteins, even though the DNA binding motif in loop 2 adopt similar conformation, as well as β-strand 2 and loop 1. Interestingly, we have also found that the DNA binding site is expanded to include helix 1, which is not seen in the other structures. Copyright © 2012 Elsevier Inc. All rights reserved.
Gaynor, R; Soultanakis, E; Kuwabara, M; Garcia, J; Sigman, D S
1989-01-01
The transactivator protein, tat, encoded by the human immunodeficiency virus is a key regulator of viral transcription. Activation by the tat protein requires sequences downstream of the transcription initiation site called the transactivating region (TAR). RNA derived from the TAR is capable of forming a stable stem-loop structure and the maintenance of both the stem structure and the loop sequences located between +19 and +44 is required for complete in vivo activation by tat. Gel retardation assays with RNA from both wild-type and mutant TAR constructs generated in vitro with SP6 polymerase indicated specific binding of HeLa nuclear proteins to the TAR. To characterize this RNA-protein interaction, a method of chemical "imprinting" has been developed using photoactivated uranyl acetate as the nucleolytic agent. This reagent nicks RNA under physiological conditions at all four nucleotides in a reaction that is independent of sequence and secondary structure. Specific interaction of cellular proteins with TAR RNA could be detected by enhanced cleavages or imprints surrounding the loop region. Mutations that either disrupted stem base-pairing or extensively changed the primary sequence resulted in alterations in the cleavage pattern of the TAR RNA. Structural features of the TAR RNA stem-loop essential for tat activation are also required for specific binding of the HeLa cell nuclear protein. Images PMID:2544877
Validating a Coarse-Grained Potential Energy Function through Protein Loop Modelling
MacDonald, James T.; Kelley, Lawrence A.; Freemont, Paul S.
2013-01-01
Coarse-grained (CG) methods for sampling protein conformational space have the potential to increase computational efficiency by reducing the degrees of freedom. The gain in computational efficiency of CG methods often comes at the expense of non-protein like local conformational features. This could cause problems when transitioning to full atom models in a hierarchical framework. Here, a CG potential energy function was validated by applying it to the problem of loop prediction. A novel method to sample the conformational space of backbone atoms was benchmarked using a standard test set consisting of 351 distinct loops. This method used a sequence-independent CG potential energy function representing the protein using -carbon positions only and sampling conformations with a Monte Carlo simulated annealing based protocol. Backbone atoms were added using a method previously described and then gradient minimised in the Rosetta force field. Despite the CG potential energy function being sequence-independent, the method performed similarly to methods that explicitly use either fragments of known protein backbones with similar sequences or residue-specific /-maps to restrict the search space. The method was also able to predict with sub-Angstrom accuracy two out of seven loops from recently solved crystal structures of proteins with low sequence and structure similarity to previously deposited structures in the PDB. The ability to sample realistic loop conformations directly from a potential energy function enables the incorporation of additional geometric restraints and the use of more advanced sampling methods in a way that is not possible to do easily with fragment replacement methods and also enable multi-scale simulations for protein design and protein structure prediction. These restraints could be derived from experimental data or could be design restraints in the case of computational protein design. C++ source code is available for download from http://www.sbg.bio.ic.ac.uk/phyre2/PD2/. PMID:23824634
Sun, Hong; De Hoyos, Cheryl L.; Bailey, Jeffrey K.; Liang, Xue-hai; Crooke, Stanley T.
2017-01-01
Abstract An R-loop is a DNA:RNA hybrid formed during transcription when a DNA duplex is invaded by a nascent RNA transcript. R-loops accumulate in nucleoli during RNA polymerase I (RNAP I) transcription. Here, we report that mammalian RNase H1 enriches in nucleoli and co-localizes with R-loops in cultured human cells. Co-migration of RNase H1 and R-loops from nucleoli to perinucleolar ring structures was observed upon inhibition of RNAP I transcription. Treatment with camptothecin which transiently stabilized nucleolar R-loops recruited RNase H1 to the nucleoli. It has been reported that the absence of Topoisomerase and RNase H activity in Escherichia coli or Saccharomyces cerevisiae caused R-loop accumulation along rDNA. We found that the distribution of RNase H1 and Top1 along rDNA coincided at sites where R-loops accumulated in mammalian cells. Loss of either RNase H1 or Top1 caused R-loop accumulation, and the accumulation of R-loops was exacerbated when both proteins were depleted. Importantly, we observed that protein levels of Top1 were negatively correlated with the abundance of RNase H1. We conclude that Top1 and RNase H1 are partially functionally redundant in mammalian cells to suppress RNAP I transcription-associate R-loops. PMID:28977560
Improving predicted protein loop structure ranking using a Pareto-optimality consensus method.
Li, Yaohang; Rata, Ionel; Chiu, See-wing; Jakobsson, Eric
2010-07-20
Accurate protein loop structure models are important to understand functions of many proteins. Identifying the native or near-native models by distinguishing them from the misfolded ones is a critical step in protein loop structure prediction. We have developed a Pareto Optimal Consensus (POC) method, which is a consensus model ranking approach to integrate multiple knowledge- or physics-based scoring functions. The procedure of identifying the models of best quality in a model set includes: 1) identifying the models at the Pareto optimal front with respect to a set of scoring functions, and 2) ranking them based on the fuzzy dominance relationship to the rest of the models. We apply the POC method to a large number of decoy sets for loops of 4- to 12-residue in length using a functional space composed of several carefully-selected scoring functions: Rosetta, DOPE, DDFIRE, OPLS-AA, and a triplet backbone dihedral potential developed in our lab. Our computational results show that the sets of Pareto-optimal decoys, which are typically composed of approximately 20% or less of the overall decoys in a set, have a good coverage of the best or near-best decoys in more than 99% of the loop targets. Compared to the individual scoring function yielding best selection accuracy in the decoy sets, the POC method yields 23%, 37%, and 64% less false positives in distinguishing the native conformation, indentifying a near-native model (RMSD < 0.5A from the native) as top-ranked, and selecting at least one near-native model in the top-5-ranked models, respectively. Similar effectiveness of the POC method is also found in the decoy sets from membrane protein loops. Furthermore, the POC method outperforms the other popularly-used consensus strategies in model ranking, such as rank-by-number, rank-by-rank, rank-by-vote, and regression-based methods. By integrating multiple knowledge- and physics-based scoring functions based on Pareto optimality and fuzzy dominance, the POC method is effective in distinguishing the best loop models from the other ones within a loop model set.
Improving predicted protein loop structure ranking using a Pareto-optimality consensus method
2010-01-01
Background Accurate protein loop structure models are important to understand functions of many proteins. Identifying the native or near-native models by distinguishing them from the misfolded ones is a critical step in protein loop structure prediction. Results We have developed a Pareto Optimal Consensus (POC) method, which is a consensus model ranking approach to integrate multiple knowledge- or physics-based scoring functions. The procedure of identifying the models of best quality in a model set includes: 1) identifying the models at the Pareto optimal front with respect to a set of scoring functions, and 2) ranking them based on the fuzzy dominance relationship to the rest of the models. We apply the POC method to a large number of decoy sets for loops of 4- to 12-residue in length using a functional space composed of several carefully-selected scoring functions: Rosetta, DOPE, DDFIRE, OPLS-AA, and a triplet backbone dihedral potential developed in our lab. Our computational results show that the sets of Pareto-optimal decoys, which are typically composed of ~20% or less of the overall decoys in a set, have a good coverage of the best or near-best decoys in more than 99% of the loop targets. Compared to the individual scoring function yielding best selection accuracy in the decoy sets, the POC method yields 23%, 37%, and 64% less false positives in distinguishing the native conformation, indentifying a near-native model (RMSD < 0.5A from the native) as top-ranked, and selecting at least one near-native model in the top-5-ranked models, respectively. Similar effectiveness of the POC method is also found in the decoy sets from membrane protein loops. Furthermore, the POC method outperforms the other popularly-used consensus strategies in model ranking, such as rank-by-number, rank-by-rank, rank-by-vote, and regression-based methods. Conclusions By integrating multiple knowledge- and physics-based scoring functions based on Pareto optimality and fuzzy dominance, the POC method is effective in distinguishing the best loop models from the other ones within a loop model set. PMID:20642859
Galzitskaya, Oxana; Deryusheva, Eugenia; Machulin, Andrey; Nemashkalova, Ekaterina; Glyakina, Anna
2018-06-21
High prediction accuracy of flexible loops in different protein families is a challenge because of the crucial functions associated with these regions. Results of the currently available programs for prediction of loops vary from protein to protein. For prediction of flexible regions in the G-domain for 23 representatives of G-proteins with the known 3D structure we have used eight programs. The results of predictions demonstrate that the FoldUnfold program predicts better loop positions than the PONDR, RОNN, DisEMBL, IUPred, GlobPlot 2, FoldIndex, and MobiDB programs. When classifying the predicted loops (rigid/flexible) according to the Debye-Waller fluctuation factors, our data reveal the existing weak correlation between the B-factors and the average number of closed residues according to the FoldUnfold program; the percentage of overlapping characteristics (residue fold/unfold status) of the protein residues from the two methods is about 60-70%. According to the FoldUnfold program, for G-proteins with the posttranslational modifications, the surrounding binding site residues by disordered-promoting glycine and alanine residues conduces to a more flexible position of the binding sites for fatty acid, while methionine, cysteine and isoleucine residues provide more rigid binding sites. Thus, our research demonstrates additional possibilities of the FoldUnfold program for prediction of flexible regions and characteristics of individual residues in a different protein family. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Mahdavi, Jafar; Oldfield, Neil J.; Wheldon, Lee M.; Wooldridge, Karl G.; Ala'Aldeen, Dlawer A. A.
2012-01-01
Neisseria meningitidis, Haemophilus influenzae and Streptococcus pneumoniae are major bacterial agents of meningitis. They each bind the 37/67-kDa laminin receptor (LamR) via the surface protein adhesins: meningococcal PilQ and PorA, H. influenzae OmpP2 and pneumococcal CbpA. We have previously reported that a surface-exposed loop of the R2 domain of CbpA mediates LamR-binding. Here we have identified the LamR-binding regions of PorA and OmpP2. Using truncated recombinant proteins we show that binding is dependent on amino acids 171–240 and 91–99 of PorA and OmpP2, respectively, which are predicted to localize to the fourth and second surface-exposed loops, respectively, of these proteins. Synthetic peptides corresponding to the loops bound LamR and could block LamR-binding to bacterial ligands in a dose dependant manner. Meningococci expressing PorA lacking the apex of loop 4 and H. influenzae expressing OmpP2 lacking the apex of loop 2 showed significantly reduced LamR binding. Since both loops are hyper-variable, our data may suggest a molecular basis for the range of LamR-binding capabilities previously reported among different meningococcal and H. influenzae strains. PMID:23049988
Abouseada, Noha M; Assafi, Mahde Saleh A; Mahdavi, Jafar; Oldfield, Neil J; Wheldon, Lee M; Wooldridge, Karl G; Ala'Aldeen, Dlawer A A
2012-01-01
Neisseria meningitidis, Haemophilus influenzae and Streptococcus pneumoniae are major bacterial agents of meningitis. They each bind the 37/67-kDa laminin receptor (LamR) via the surface protein adhesins: meningococcal PilQ and PorA, H. influenzae OmpP2 and pneumococcal CbpA. We have previously reported that a surface-exposed loop of the R2 domain of CbpA mediates LamR-binding. Here we have identified the LamR-binding regions of PorA and OmpP2. Using truncated recombinant proteins we show that binding is dependent on amino acids 171-240 and 91-99 of PorA and OmpP2, respectively, which are predicted to localize to the fourth and second surface-exposed loops, respectively, of these proteins. Synthetic peptides corresponding to the loops bound LamR and could block LamR-binding to bacterial ligands in a dose dependant manner. Meningococci expressing PorA lacking the apex of loop 4 and H. influenzae expressing OmpP2 lacking the apex of loop 2 showed significantly reduced LamR binding. Since both loops are hyper-variable, our data may suggest a molecular basis for the range of LamR-binding capabilities previously reported among different meningococcal and H. influenzae strains.
The AAA+ ATPase TRIP13 remodels HORMA domains through N-terminal engagement and unfolding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Qiaozhen; Kim, Dong Hyun; Dereli, Ihsan
Proteins of the conserved HORMA domain family, including the spindle assembly checkpoint protein MAD2 and the meiotic HORMADs, assemble into signaling complexes by binding short peptides termed “closure motifs”. The AAA+ ATPase TRIP13 regulates both MAD2 and meiotic HORMADs by disassembling these HORMA domain–closure motif complexes, but its mechanisms of substrate recognition and remodeling are unknown. Here, we combine X-ray crystallography and crosslinking mass spectrometry to outline how TRIP13 recognizes MAD2 with the help of the adapter protein p31comet. We show that p31comet binding to the TRIP13 N-terminal domain positions the disordered MAD2 N-terminus for engagement by the TRIP13 “poremore » loops”, which then unfold MAD2 in the presence of ATP. N-terminal truncation of MAD2 renders it refractory to TRIP13 action in vitro, and in cells causes spindle assembly checkpoint defects consistent with loss of TRIP13 function. Similar truncation of HORMAD1 in mouse spermatocytes compromises its TRIP13-mediated removal from meiotic chromosomes, highlighting a conserved mechanism for recognition and disassembly of HORMA domain–closure motif complexes by TRIP13.« less
Hurt, E E; Adams, M C; Barbano, D M
2015-04-01
The objective of our study was to determine if the limiting flux and serum protein (SP) removal were different at 8, 9, or 10% true protein (TP) in the microfiltration (MF) retentate recirculation loop using 0.1-µm ceramic graded permeability membranes with 4-mm-channel diameters operated at 50 °C using a diluted milk protein concentrate with 85% protein on a total solids basis (MPC85) as the MF feed. The limiting flux for the MF of diluted MPC85 was determined at 3 TP concentrations in the recirculation loop (8, 9, and 10%). The experiment was replicated 3 times for a total of 9 runs. On the morning of each run, MPC85 was diluted with reverse osmosis water to an MF feed TP concentration of 5.4%. In all runs, the starting flux was 55 kg/m(2) per hour, the flux was increased in steps until the limiting flux was reached. The minimum flux increase was 10 kg/m(2) per hour. The limiting flux decreased as TP concentration in the recirculation loop increased. The limiting flux was 154 ± 0.3, 133 ± 0.7, and 117 ± 3.3 kg/m(2) per hour at recirculation loop TP concentrations of 8.2 ± 0.07, 9.2 ± 0.04, and 10.2 ± 0.09%, respectively. No effect of recirculation loop TP concentration on the SP removal factor was detected. However, the SP removal factor decreased from 0.80 ± 0.02 to 0.75 ± 0.02 as flux was increased from the starting flux of 55 kg/m(2) per hour to the limiting flux, with a similar decrease seen at all recirculation loop TP concentrations. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Su, Y C; Maurel-Zaffran, C; Treisman, J E; Skolnik, E Y
2000-07-01
We have previously shown that the Ste20 kinase encoded by misshapen (msn) functions upstream of the c-Jun N-terminal kinase (JNK) mitogen-activated protein kinase module in Drosophila. msn is required to activate the Drosophila JNK, Basket (Bsk), to promote dorsal closure of the embryo. A mammalian homolog of Msn, Nck interacting kinase, interacts with the SH3 domains of the SH2-SH3 adapter protein Nck. We now show that Msn likewise interacts with Dreadlocks (Dock), the Drosophila homolog of Nck. dock is required for the correct targeting of photoreceptor axons. We have performed a structure-function analysis of Msn in vivo in Drosophila in order to elucidate the mechanism whereby Msn regulates JNK and to determine whether msn, like dock, is required for the correct targeting of photoreceptor axons. We show that Msn requires both a functional kinase and a C-terminal regulatory domain to activate JNK in vivo in Drosophila. A mutation in a PXXP motif on Msn that prevents it from binding to the SH3 domains of Dock does not affect its ability to rescue the dorsal closure defect in msn embryos, suggesting that Dock is not an upstream regulator of msn in dorsal closure. Larvae with only this mutated form of Msn show a marked disruption in photoreceptor axon targeting, implicating an SH3 domain protein in this process; however, an activated form of Msn is not sufficient to rescue the dock mutant phenotype. Mosaic analysis reveals that msn expression is required in photoreceptors in order for their axons to project correctly. The data presented here genetically link msn to two distinct biological events, dorsal closure and photoreceptor axon pathfinding, and thus provide the first evidence that Ste20 kinases of the germinal center kinase family play a role in axonal pathfinding. The ability of Msn to interact with distinct classes of adapter molecules in dorsal closure and photoreceptor axon pathfinding may provide the flexibility that allows it to link to distinct upstream signaling systems.
Su, Yi-Chi; Maurel-Zaffran, Corinne; Treisman, Jessica E.; Skolnik, Edward Y.
2000-01-01
We have previously shown that the Ste20 kinase encoded by misshapen (msn) functions upstream of the c-Jun N-terminal kinase (JNK) mitogen-activated protein kinase module in Drosophila. msn is required to activate the Drosophila JNK, Basket (Bsk), to promote dorsal closure of the embryo. A mammalian homolog of Msn, Nck interacting kinase, interacts with the SH3 domains of the SH2-SH3 adapter protein Nck. We now show that Msn likewise interacts with Dreadlocks (Dock), the Drosophila homolog of Nck. dock is required for the correct targeting of photoreceptor axons. We have performed a structure-function analysis of Msn in vivo in Drosophila in order to elucidate the mechanism whereby Msn regulates JNK and to determine whether msn, like dock, is required for the correct targeting of photoreceptor axons. We show that Msn requires both a functional kinase and a C-terminal regulatory domain to activate JNK in vivo in Drosophila. A mutation in a PXXP motif on Msn that prevents it from binding to the SH3 domains of Dock does not affect its ability to rescue the dorsal closure defect in msn embryos, suggesting that Dock is not an upstream regulator of msn in dorsal closure. Larvae with only this mutated form of Msn show a marked disruption in photoreceptor axon targeting, implicating an SH3 domain protein in this process; however, an activated form of Msn is not sufficient to rescue the dock mutant phenotype. Mosaic analysis reveals that msn expression is required in photoreceptors in order for their axons to project correctly. The data presented here genetically link msn to two distinct biological events, dorsal closure and photoreceptor axon pathfinding, and thus provide the first evidence that Ste20 kinases of the germinal center kinase family play a role in axonal pathfinding. The ability of Msn to interact with distinct classes of adapter molecules in dorsal closure and photoreceptor axon pathfinding may provide the flexibility that allows it to link to distinct upstream signaling systems. PMID:10848599
Closure of regenerative life support systems: results of the Lunar-Mars Life Support Test Project
NASA Astrophysics Data System (ADS)
Barta, D.; Henninger, D.; Edeen, M.; Lewis, J.; Smith, F.; Verostko, C.
Future long duration human exploration missions away from Earth will require closed-loop regenerative life support systems to reduce launch mass reduce dependency on resupply and increase the level of mission self sufficiency Such systems may be based on the integration of biological and physiocochemical processes to produce potable water breathable atmosphere and nutritious food from metabolic and other mission wastes Over the period 1995 to 1998 a series of ground-based tests were conducted at the National Aeronautics and Space Administration Johnson Space Center to evaluate the performance of advanced closed-loop life support technologies with real human metabolic and hygiene loads Named the Lunar-Mars Life Support Test Project LMLSTP four integrated human tests were conducted with increasing duration complexity and closure The first test LMLSTP Phase I was designed to demonstrate the ability of higher plants to revitalize cabin atmosphere A single crew member spent 15 days within an atmospherically closed chamber containing 11 2 square meters of actively growing wheat Atmospheric carbon dioxide and oxygen levels were maintained by control of the rate of photosynthesis through manipulation of light intensity or the availability of carbon dioxide and included integrated physicochemical systems During the second and third tests LMLSTP Phases II IIa four crew members spent 30 days and 60 days respectively in a larger sealed chamber Advanced physicochemical life support hardware was used to regenerate the atmosphere and produce potable water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gutzeit, Jennifer L.; Kennedy, Ellen P.; Bjornstad, Bruce N.
2011-02-02
The U.S. Department of Energy Richland Operations Office is proposing to close the Nonradioactive Dangerous Waste Landfill (NRDWL) and Solid Waste Landfill (SWL) located in the 600 Area of the Hanford Site. The closure of the NRDWL/SWL entails the construction of an evapotranspiration cover over the landfill. This cover would consist of a 3-foot (1-meter) engineered layer of fine-grained soil, modified with 15 percent by weight pea gravel to form an erosion-resistant topsoil that will sustain native vegetation. The area targeted for silt-loam borrow soil sits in Area C, located in the northern central portion of the Fitzner/Eberhardt Arid Landsmore » Ecology (ALE) Reserve Unit. The pea gravel used for the mixture will be obtained from both off-site commercial sources and an active gravel pit (Pit #6) located just west of the 300 Area of the Hanford Site. Materials for the cover will be transported along Army Loop Road, which runs from Beloit Avenue (near the Rattlesnake Barricade) east-northeast to the NRDWL/SWL, ending at State Route 4. Upgrades to Army Loop Road are necessary to facilitate safe bidirectional hauling traffic. This report documents a cultural resources review of the proposed activity, conducted according to Section 106 of the National Historic Preservation Act of 1966.« less
NASA Astrophysics Data System (ADS)
Chow, J. C. K.
2017-09-01
In the absence of external reference position information (e.g. surveyed targets or Global Navigation Satellite Systems) Simultaneous Localization and Mapping (SLAM) has proven to be an effective method for indoor navigation. The positioning drift can be reduced with regular loop-closures and global relaxation as the backend, thus achieving a good balance between exploration and exploitation. Although vision-based systems like laser scanners are typically deployed for SLAM, these sensors are heavy, energy inefficient, and expensive, making them unattractive for wearables or smartphone applications. However, the concept of SLAM can be extended to non-optical systems such as magnetometers. Instead of matching features such as walls and furniture using some variation of the Iterative Closest Point algorithm, the local magnetic field can be matched to provide loop-closure and global trajectory updates in a Gaussian Process (GP) SLAM framework. With a MEMS-based inertial measurement unit providing a continuous trajectory, and the matching of locally distinct magnetic field maps, experimental results in this paper show that a drift-free navigation solution in an indoor environment with millimetre-level accuracy can be achieved. The GP-SLAM approach presented can be formulated as a maximum a posteriori estimation problem and it can naturally perform loop-detection, feature-to-feature distance minimization, global trajectory optimization, and magnetic field map estimation simultaneously. Spatially continuous features (i.e. smooth magnetic field signatures) are used instead of discrete feature correspondences (e.g. point-to-point) as in conventional vision-based SLAM. These position updates from the ambient magnetic field also provide enough information for calibrating the accelerometer bias and gyroscope bias in-use. The only restriction for this method is the need for magnetic disturbances (which is typically not an issue for indoor environments); however, no assumptions are required for the general motion of the sensor (e.g. static periods).
Relative stability of the open and closed conformations of the active site loop of streptavidin
NASA Astrophysics Data System (ADS)
Ignacio J., General; Meirovitch, Hagai
2011-01-01
The eight-residue surface loop, 45-52 (Ser, Ala, Val, Gly, Asn, Ala, Glu, Ser), of the homotetrameric protein streptavidin has a "closed" conformation in the streptavidin-biotin complex, where the corresponding binding affinity is one of the strongest found in nature (ΔG ˜ -18 kcal/mol). However, in most of the crystal structures of apo (unbound) streptavidin, the loop conformation is "open" and typically exhibits partial disorder and high B-factors. Thus, it is plausible to assume that the loop structure is changed from open to closed upon binding of biotin, and the corresponding difference in free energy, ΔF = Fopen - Fclosed in the unbound protein, should therefore be considered in the total absolute free energy of binding. ΔF (which has generally been neglected) is calculated here using our "hypothetical scanning molecular-dynamics" (HSMD) method. We use a protein model in which only the atoms closest to the loop are considered (the "template") and they are fixed in the x-ray coordinates of the free protein; the x-ray conformation of the closed loop is attached to the same (unbound) template and both systems are capped with the same sphere of TIP3P water. Using the force field of the assisted model building with energy refinement (AMBER), we carry out two separate MD simulations (at temperature T = 300 K), starting from the open and closed conformations, where only the atoms of the loop and water are allowed to move (the template-water and template-loop interactions are considered). The absolute Fopen and Fclosed (of loop + water) are calculated from these trajectories, where the loop and water contributions are obtained by HSMD and a thermodynamic integration (TI) process, respectively. The combined HSMD-TI procedure leads to total (loop + water) ΔF = -27.1 ± 2.0 kcal/mol, where the entropy TΔS constitutes 34% of ΔF, meaning that the effect of S is significant and should not be ignored. Also, ΔS is positive, in accord with the high flexibility of the open loop observed in crystal structures, while the energy ΔE is unexpectedly negative, thus also adding to the stability of the open loop. The loop and the 250 capped water molecules are the largest system studied thus far, which constitutes a test for the efficiency of HSMD-TI; this efficiency and technical issues related to the implementation of the method are also discussed. Finally, the result for ΔF is a prediction that will be considered in the calculation of the absolute free energy of binding of biotin to streptavidin, which constitutes our next project.
A Looping-Based Model for Quenching Repression
Pollak, Yaroslav; Goldberg, Sarah; Amit, Roee
2017-01-01
We model the regulatory role of proteins bound to looped DNA using a simulation in which dsDNA is represented as a self-avoiding chain, and proteins as spherical protrusions. We simulate long self-avoiding chains using a sequential importance sampling Monte-Carlo algorithm, and compute the probabilities for chain looping with and without a protrusion. We find that a protrusion near one of the chain’s termini reduces the probability of looping, even for chains much longer than the protrusion–chain-terminus distance. This effect increases with protrusion size, and decreases with protrusion-terminus distance. The reduced probability of looping can be explained via an eclipse-like model, which provides a novel inhibitory mechanism. We test the eclipse model on two possible transcription-factor occupancy states of the D. melanogaster eve 3/7 enhancer, and show that it provides a possible explanation for the experimentally-observed eve stripe 3 and 7 expression patterns. PMID:28085884
Low order H∞ optimal control for ACFA blended wing body aircraft
NASA Astrophysics Data System (ADS)
Haniš, T.; Kucera, V.; Hromčík, M.
2013-12-01
Advanced nonconvex nonsmooth optimization techniques for fixed-order H∞ robust control are proposed in this paper for design of flight control systems (FCS) with prescribed structure. Compared to classical techniques - tuning of and successive closures of particular single-input single-output (SISO) loops like dampers, attitude stabilizers, etc. - all loops are designed simultaneously by means of quite intuitive weighting filters selection. In contrast to standard optimization techniques, though (H2, H∞ optimization), the resulting controller respects the prescribed structure in terms of engaged channels and orders (e. g., proportional (P), proportional-integral (PI), and proportional-integralderivative (PID) controllers). In addition, robustness with regard to multimodel uncertainty is also addressed which is of most importance for aerospace applications as well. Such a way, robust controllers for various Mach numbers, altitudes, or mass cases can be obtained directly, based only on particular mathematical models for respective combinations of the §ight parameters.
Closed Loop Requirements and Analysis Management
NASA Technical Reports Server (NTRS)
Lamoreaux, Michael; Verhoef, Brett
2015-01-01
Effective systems engineering involves the use of analysis in the derivation of requirements and verification of designs against those requirements. The initial development of requirements often depends on analysis for the technical definition of specific aspects of a product. Following the allocation of system-level requirements to a product's components, the closure of those requirements often involves analytical approaches to verify that the requirement criteria have been satisfied. Meanwhile, changes that occur in between these two processes need to be managed in order to achieve a closed-loop requirement derivation/verification process. Herein are presented concepts for employing emerging Team center capabilities to jointly manage requirements and analysis data such that analytical techniques are utilized to effectively derive and allocate requirements, analyses are consulted and updated during the change evaluation processes, and analyses are leveraged during the design verification process. Recommendations on concept validation case studies are also discussed.
Wang, Xiaochen; Ward, Robert E.
2010-01-01
During dorsal closure in Drosophila, signaling events in the dorsalmost row of epidermal cells (DME cells) direct the migration of lateral epidermal sheets towards the dorsal midline where they fuse to enclose the embryo. A Jun amino-terminal kinase (JNK) cascade in the DME cells induces the expression of Decapentaplegic (Dpp). Dpp signaling then regulates the cytoskeleton in the DME cells and amnioserosa to affect the cell shape changes necessary to complete dorsal closure. We identified a mutation in Sec61α that specifically perturbs dorsal closure. Sec61α encodes the main subunit of the translocon complex for co-translational import of proteins into the ER. JNK signaling is normal in Sec61α mutant embryos, but Dpp signaling is attenuated and the DME cells fail to maintain an actinomyosin cable as epithelial migration fails. Consistent with this model, dorsal closure is rescued in Sec61α mutant embryos by an activated form of the Dpp receptor Thick veins. PMID:20112345
Olson, Mark A; Feig, Michael; Brooks, Charles L
2008-04-15
This article examines ab initio methods for the prediction of protein loops by a computational strategy of multiscale conformational sampling and physical energy scoring functions. Our approach consists of initial sampling of loop conformations from lattice-based low-resolution models followed by refinement using all-atom simulations. To allow enhanced conformational sampling, the replica exchange method was implemented. Physical energy functions based on CHARMM19 and CHARMM22 parameterizations with generalized Born (GB) solvent models were applied in scoring loop conformations extracted from the lattice simulations and, in the case of all-atom simulations, the ensemble of conformations were generated and scored with these models. Predictions are reported for 25 loop segments, each eight residues long and taken from a diverse set of 22 protein structures. We find that the simulations generally sampled conformations with low global root-mean-square-deviation (RMSD) for loop backbone coordinates from the known structures, whereas clustering conformations in RMSD space and scoring detected less favorable loop structures. Specifically, the lattice simulations sampled basins that exhibited an average global RMSD of 2.21 +/- 1.42 A, whereas clustering and scoring the loop conformations determined an RMSD of 3.72 +/- 1.91 A. Using CHARMM19/GB to refine the lattice conformations improved the sampling RMSD to 1.57 +/- 0.98 A and detection to 2.58 +/- 1.48 A. We found that further improvement could be gained from extending the upper temperature in the all-atom refinement from 400 to 800 K, where the results typically yield a reduction of approximately 1 A or greater in the RMSD of the detected loop. Overall, CHARMM19 with a simple pairwise GB solvent model is more efficient at sampling low-RMSD loop basins than CHARMM22 with a higher-resolution modified analytical GB model; however, the latter simulation method provides a more accurate description of the all-atom energy surface, yet demands a much greater computational cost. (c) 2007 Wiley Periodicals, Inc.
Papp, Diána; Lenti, Katalin; Módos, Dezső; Fazekas, Dávid; Dúl, Zoltán; Türei, Dénes; Földvári-Nagy, László; Nussinov, Ruth; Csermely, Péter; Korcsmáros, Tamás
2012-06-21
NRF2 is a well-known, master transcription factor (TF) of oxidative and xenobiotic stress responses. Recent studies uncovered an even wider regulatory role of NRF2 influencing carcinogenesis, inflammation and neurodegeneration. Prompted by these advances here we present a systems-level resource for NRF2 interactome and regulome that includes 289 protein-protein, 7469 TF-DNA and 85 miRNA interactions. As systems-level examples of NRF2-related signaling we identified regulatory loops of NRF2 interacting proteins (e.g., JNK1 and CBP) and a fine-tuned regulatory system, where 35 TFs regulated by NRF2 influence 63 miRNAs that down-regulate NRF2. The presented network and the uncovered regulatory loops may facilitate the development of efficient, NRF2-based therapeutic agents. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Krieger, Florian; Möglich, Andreas; Kiefhaber, Thomas
2005-03-16
Glycine and proline residues are frequently found in turn and loop structures of proteins and are believed to play an important role during chain compaction early in folding. We investigated their effect on the dynamics of intrachain loop formation in various unstructured polypeptide chains. Loop formation is significantly slower around trans prolyl peptide bonds and faster around glycine residues compared to any other amino acid. However, short loops are formed fastest around cis prolyl bonds with a time constant of 6 ns for end-to-end contact formation in a four-residue loop. Formation of short loops encounters activation energies in the range of 15 to 30 kJ/mol. The altered dynamics around glycine and trans prolyl bonds can be mainly ascribed to their effects on the activation energy. The fast dynamics around cis prolyl bonds, in contrast, originate in a higher Arrhenius pre-exponential factor, which compensates for an increased activation energy for loop formation compared to trans isomers. All-atom simulations of proline-containing peptides indicate that the conformational space for cis prolyl isomers is largely restricted compared to trans isomers. This leads to decreased average end-to-end distances and to a smaller loss in conformational entropy upon loop formation in cis isomers. The results further show that glycine and proline residues only influence formation of short loops containing between 2 and 10 residues, which is the typical loop size in native proteins. Formation of larger loops is not affected by the presence of a single glycine or proline residue.
RosettaRemodel: A Generalized Framework for Flexible Backbone Protein Design
Huang, Po-Ssu; Ban, Yih-En Andrew; Richter, Florian; Andre, Ingemar; Vernon, Robert; Schief, William R.; Baker, David
2011-01-01
We describe RosettaRemodel, a generalized framework for flexible protein design that provides a versatile and convenient interface to the Rosetta modeling suite. RosettaRemodel employs a unified interface, called a blueprint, which allows detailed control over many aspects of flexible backbone protein design calculations. RosettaRemodel allows the construction and elaboration of customized protocols for a wide range of design problems ranging from loop insertion and deletion, disulfide engineering, domain assembly, loop remodeling, motif grafting, symmetrical units, to de novo structure modeling. PMID:21909381
Meeting the Challenge: A 1986 History of the Naval Surface Weapons Center
1987-05-29
8217GClK JACK lMUITRIUXER DIG Iot I ---, , SUpFt S COMPUTER ’ HEL DE Osi cOeiTROLPRiOCESSO HIGM SPEED ATA BUS OM SWR AU VAGKTtC BIBS11 Closed-Loop...appear. HVAC designers think it can determine if closures need to be installed on ventilation inlets to prevent the ingress of exhaust gases from...and fuze timing errors. If the fuze could be caused to actuate based on target position rather than a predicted time of flight, these errors could be
Penrad-Mobayed, May; Perrin, Caroline; Lepesant, Jean-Antoine
2012-12-01
Subterminal lampbrush loops of one of the 12 bivalents of the oocyte karyotype of Pleurodeles waltl (Amphibian, Urodele) underwent prominent morphological changes upon in vitro culture. These loops exhibited a fine ribonucleoprotein (RNP) granular matrix, which evolved during culture into huge structures that we have named 'chaussons' (slippers). This phenomenon involved progressive accumulation of proteins in the RNP matrix without protein neosynthesis. One of these proteins, which translocated into the nucleus during the culture, was identified as a homolog of the human Ro52 E3 ubiquitin ligase. RNA polymerase III was also found to accumulate on the same loops. These results suggest that the subterminal loops of bivalent XII act as a storage site for the components of a nuclear machinery involved in the quality control of RNA synthesis and maturation in response to cellular stress. They also emphasise the considerable value of the lampbrush chromosome system for a direct visualisation of modifications in gene expression and open the question of a nuclear accumulation of Ro52 in human or animal oocytes cultured in vitro for assisted reproductive technologies (ART).
Structures of apo IRF-3 and IRF-7 DNA binding domains: effect of loop L1 on DNA binding
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Ioannes, Pablo; Escalante, Carlos R.; Aggarwal, Aneel K.
2013-11-20
Interferon regulatory factors IRF-3 and IRF-7 are transcription factors essential in the activation of interferon-{beta} (IFN-{beta}) gene in response to viral infections. Although, both proteins recognize the same consensus IRF binding site AANNGAAA, they have distinct DNA binding preferences for sites in vivo. The X-ray structures of IRF-3 and IRF-7 DNA binding domains (DBDs) bound to IFN-{beta} promoter elements revealed flexibility in the loops (L1-L3) and the residues that make contacts with the target sequence. To characterize the conformational changes that occur on DNA binding and how they differ between IRF family members, we have solved the X-ray structures ofmore » IRF-3 and IRF-7 DBDs in the absence of DNA. We found that loop L1, carrying the conserved histidine that interacts with the DNA minor groove, is disordered in apo IRF-3 but is ordered in apo IRF-7. This is reflected in differences in DNA binding affinities when the conserved histidine in loop L1 is mutated to alanine in the two proteins. The stability of loop L1 in IRF-7 derives from a unique combination of hydrophobic residues that pack against the protein core. Together, our data show that differences in flexibility of loop L1 are an important determinant of differential IRF-DNA binding.« less
Identification and characterization of the sodium-binding site of activated protein C.
He, X; Rezaie, A R
1999-02-19
Activated protein C (APC) requires both Ca2+ and Na+ for its optimal catalytic function. In contrast to the Ca2+-binding sites, the Na+-binding site(s) of APC has not been identified. Based on a recent study with thrombin, the 221-225 loop is predicted to be a potential Na+-binding site in APC. The sequence of this loop is not conserved in trypsin. We engineered a Gla domainless form of protein C (GDPC) in which the 221-225 loop was replaced with the corresponding loop of trypsin. We found that activated GDPC (aGDPC) required Na+ (or other alkali cations) for its amidolytic activity with dissociation constant (Kd(app)) = 44.1 +/- 8.6 mM. In the presence of Ca2+, however, the requirement for Na+ by aGDPC was eliminated, and Na+ stimulated the cleavage rate 5-6-fold with Kd(app) = 2.3 +/- 0.3 mM. Both cations were required for efficient factor Va inactivation by aGDPC. In the presence of Ca2+, the catalytic function of the mutant was independent of Na+. Unlike aGDPC, the mutant did not discriminate among monovalent cations. We conclude that the 221-225 loop is a Na+-binding site in APC and that an allosteric link between the Na+ and Ca2+ binding loops modulates the structure and function of this anticoagulant enzyme.
Comitani, Federico; Limongelli, Vittorio; Molteni, Carla
2016-07-12
Pentameric ligand-gated ion channels (pLGICs) of the Cys-loop superfamily are important neuroreceptors that mediate fast synaptic transmission. They are activated by the binding of a neurotransmitter, but the details of this process are still not fully understood. As a prototypical pLGIC, here we choose the insect resistance to dieldrin (RDL) receptor involved in resistance to insecticides and investigate the binding of the neurotransmitter GABA to its extracellular domain at the atomistic level. We achieve this by means of μ-sec funnel-metadynamics simulations, which efficiently enhance the sampling of bound and unbound states by using a funnel-shaped restraining potential to limit the exploration in the solvent. We reveal the sequence of events in the binding process from the capture of GABA from the solvent to its pinning between the charged residues Arg111 and Glu204 in the binding pocket. We characterize the associated free energy landscapes in the wild-type RDL receptor and in two mutant forms, where the key residues Arg111 and Glu204 are mutated to Ala. Experimentally these mutations produce nonfunctional channels, which is reflected in the reduced ligand binding affinities due to the loss of essential interactions. We also analyze the dynamical behavior of the crucial loop C, whose opening allows the access of GABA to the binding site and closure locks the ligand into the protein. The RDL receptor shares structural and functional features with other pLGICs; hence, our work outlines a valuable protocol to study the binding of ligands to pLGICs beyond conventional docking and molecular dynamics techniques.
Eberini, Ivano; Guerini Rocco, Alessandro; Ientile, Anna Rita; Baptista, António M; Gianazza, Elisabetta; Tomaselli, Simona; Molinari, Henriette; Ragona, Laura
2008-06-01
The correlation between protein motions and function is a central problem in protein science. Several studies have demonstrated that ligand binding and protein dynamics are strongly correlated in intracellular lipid binding proteins (iLBPs), in which the high degree of flexibility, principally occurring at the level of helix-II, CD, and EF loops (the so-called portal area), is significantly reduced upon ligand binding. We have recently investigated by NMR the dynamic properties of a member of the iLBP family, chicken liver bile acid binding protein (cL-BABP), in its apo and holo form, as a complex with two bile salts molecules. Binding was found to be regulated by a dynamic process and a conformational rearrangement was associated with this event. We report here the results of molecular dynamics (MD) simulations performed on apo and holo cL-BABP with the aim of further characterizing the protein regions involved in motion propagation and of evaluating the main molecular interactions stabilizing bound ligands. Upon binding, the root mean square fluctuation values substantially decrease for CD and EF loops while increase for the helix-loop-helix region, thus indicating that the portal area is the region mostly affected by complex formation. These results nicely correlate with backbone dynamics data derived from NMR experiments. Essential dynamics analysis of the MD trajectories indicates that the major concerted motions involve the three contiguous structural elements of the portal area, which however are dynamically coupled in different ways whether in the presence or in the absence of the ligands. Motions of the EF loop and of the helical region are part of the essential space of both apo and holo-BABP and sample a much wider conformational space in the apo form. Together with NMR results, these data support the view that, in the apo protein, the flexible EF loop visits many conformational states including those typical of the holo state and that the ligand acts stabilizing one of these pre-existing conformations. The present results, in agreement with data reported for other iLBPs, sharpen our knowledge on the binding mechanism for this protein family. (c) 2008 Wiley-Liss, Inc.
Walzer, Gil; Rosenberg, Eugene; Ron, Eliora Z
2009-01-01
Microbial bioemulsifiers are secreted by many bacteria and are important for bacterial interactions with hydrophobic substrates or nutrients and for a variety of biotechnological applications. We have recently shown that the OmpA protein in several members of the Acinetobacter family has emulsifying properties. These properties of OmpA depend on the amino acid composition of four putative extra-membrane loops, which in various strains of Acinetobacter, but not in E. coli, are highly hydrophobic. As many Acinetobacter strains can utilize hydrophobic carbon sources, such as oil, the emulsifying activity of their OmpA may be important for the utilization and uptake of hydrocarbons. We assumed that if outer membrane proteins with emulsifying activity are physiologically important, they may exist in additional oil degrading bacteria. In order to identify such proteins, it was necessary to obtain bioinformatics-based predictions for hydrophobic extra-membrane loops. Here we describe a method for using protein sequence data for predicting the hydrophobic properties of the extra-membrane loops of outer membrane proteins. The feasibility of this method is demonstrated by its use to identify a new microbial bioemulsifier - OprG - an outer membrane protein of the oil degrading Pseudomonas putida KT2440.
Critical evaluation of mechanistic two-phase flow pipeline and well simulation models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhulesia, H.; Lopez, D.
1996-12-31
Mechanistic steady state simulation models, rather than empirical correlations, are used for a design of multiphase production system including well, pipeline and downstream installations. Among the available models, PEPITE, WELLSIM, OLGA, TACITE and TUFFP are widely used for this purpose and consequently, a critical evaluation of these models is needed. An extensive validation methodology is proposed which consists of two distinct steps: first to validate the hydrodynamic point model using the test loop data and, then to validate the over-all simulation model using the real pipelines and wells data. The test loop databank used in this analysis contains about 5952more » data sets originated from four different test loops and a majority of these data are obtained at high pressures (up to 90 bars) with real hydrocarbon fluids. Before performing the model evaluation, physical analysis of the test loops data is required to eliminate non-coherent data. The evaluation of these point models demonstrates that the TACITE and OLGA models can be applied to any configuration of pipes. The TACITE model performs better than the OLGA model because it uses the most appropriate closure laws from the literature validated on a large number of data. The comparison of predicted and measured pressure drop for various real pipelines and wells demonstrates that the TACITE model is a reliable tool.« less
Andersen, Ole Juul; Grouleff, Julie; Needham, Perri; Walker, Ross C; Jensen, Frank
2015-11-19
Current enhanced sampling molecular dynamics methods for studying large conformational changes in proteins suffer from certain limitations. These include, among others, the need for user defined collective variables, the prerequisite of both start and end point structures of the conformational change, and the need for a priori knowledge of the amount by which to boost specific parts of the potential. In this paper, a framework is proposed for a molecular dynamics method for studying ligand-induced conformational changes, in which the nonbonded interactions between the ligand and the protein are used to calculate a biasing force. The method requires only a single input structure, and does not entail the use of collective variables. We provide a proof-of-concept for accelerating conformational changes in three simple test molecules, as well as promising results for two proteins known to undergo domain closure upon ligand binding. For the ribose-binding protein, backbone root-mean-square deviations as low as 0.75 Å compared to the crystal structure of the closed conformation are obtained within 50 ns simulations, whereas no domain closures are observed in unbiased simulations. A skewed closed structure is obtained for the glutamine-binding protein at high bias values, indicating that specific protein-ligand interactions might suppress important protein-protein interactions.
Wang, Tian; Chen, Jeannie
2014-10-17
Phototransduction is a G-protein signal transduction cascade that converts photon absorption to a change in current at the plasma membrane. Certain genetic mutations affecting the proteins in the phototransduction cascade cause blinding disorders in humans. Some of these mutations serve as a genetic source of "equivalent light" that activates the cascade, whereas other mutations lead to amplification of the light response. How constitutive phototransduction causes photoreceptor cell death is poorly understood. We showed that persistent G-protein signaling, which occurs in rod arrestin and rhodopsin kinase knock-out mice, caused a rapid and specific induction of the PERK pathway of the unfolded protein response. These changes were not observed in the cGMP-gated channel knock-out rods, an equivalent light condition that mimics light-stimulated channel closure. Thus transducin signaling, but not channel closure, triggers rapid cell death in light damage caused by constitutive phototransduction. Additionally, we show that in the albino light damage model cell death was not associated with increase in global protein ubiquitination or unfolded protein response induction. Taken together, these observations provide novel mechanistic insights into the cell death pathway caused by constitutive phototransduction and identify the unfolded protein response as a potential target for therapeutic intervention. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Suebsuwong, Chalada; Pinkas, Daniel M; Ray, Soumya S; Bufton, Joshua C; Dai, Bing; Bullock, Alex N; Degterev, Alexei; Cuny, Gregory D
2018-02-15
Development of selective kinase inhibitors remains a challenge due to considerable amino acid sequence similarity among family members particularly in the ATP binding site. Targeting the activation loop might offer improved inhibitor selectivity since this region of kinases is less conserved. However, the strategy presents difficulties due to activation loop flexibility. Herein, we report the design of receptor-interacting protein kinase 2 (RIPK2) inhibitors based on pan-kinase inhibitor regorafenib that aim to engage basic activation loop residues Lys169 or Arg171. We report development of CSR35 that displayed >10-fold selective inhibition of RIPK2 versus VEGFR2, the target of regorafenib. A co-crystal structure of CSR35 with RIPK2 revealed a resolved activation loop with an ionic interaction between the carboxylic acid installed in the inhibitor and the side-chain of Lys169. Our data provides principle feasibility of developing activation loop targeting type II inhibitors as a complementary strategy for achieving improved selectivity. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Collective Dynamics of Periplasmic Glutamine Binding Protein upon Domain Closure
Loeffler, Hannes H.; Kitao, Akio
2009-01-01
The glutamine binding protein is a vital component of the associated ATP binding cassette transport systems responsible for the uptake of glutamine into the cell. We have investigated the global movements of this protein by molecular dynamics simulations and principal component analysis (PCA). We confirm that the most dominant mode corresponds to the biological function of the protein, i.e., a hinge-type motion upon ligand binding. The closure itself was directly observed from two independent trajectories whereby PCA was used to elucidate the nature of this closing reaction. Two intermediary states are identified and described in detail. The ligand binding induces the structural change of the hinge regions from a discontinuous β-sheet to a continuous one, which also enhances softness of the hinge and modifies the direction of hinge motion to enable closing. We also investigated the convergence behavior of PCA modes, which were found to converge rather quickly when the associated magnitudes of the eigenvalues are well separated. PMID:19883597
Ileostomy rod--is it a bridge too far?
Speirs, M; Leung, E; Hughes, D; Robertson, I; Donnelly, L; Mackenzie, I; Macdonald, A
2006-07-01
Defunctioning loop ileostomies are used commonly to protect low colorectal anastomoses and thereby reducing the serious complications of leakage. However, they are associated with specific complications such as retraction. Traditionally, a supporting rod is placed as a bridge to support both limbs of the stoma in the hope of reducing the incidence of stomal retraction. There is little evidence in the published literature to support this practice. The aim of this study was to determine whether using an ileostomy rod would reduce the incidence of stomal retraction. A prospective, randomised controlled trial was performed in 60 consecutive patients who required a defunctioning loop ileostomy. Patients were allocated to either a 'bridge' or 'bridge-less' protocol. All the patients were assessed by dedicated stoma nurses for at least 3 months and until their stomas were closed. Their postoperative symptoms, including stoma activity and retraction rate, were recorded. Between May 2001 and June 2004, 57 patients completed the study (28 bridge; 29 bridge-less). There were no significant differences in the retraction rate between the groups. No clinical anastomotic leakage was recorded and none of the patients required early closure. If a loop ileostomy is constructed properly, stomal retraction is uncommon and routine use of a bridge is unnecessary.
Kumar, Sandeep; Sharma, Deepak; Kumar, Rajesh
2014-03-01
The effect of denaturants on the structural fluctuation of M80-containing Ω-loop of ferrocytochrome c was determined by measuring the rate coefficient of CO-association with ferrocytochrome c under varying concentrations of urea and alkylureas (methylurea (MU), N,N'-dimethylurea (DMU), ethylurea (EU), tetramethylurea (TMU)) at pH7.0, 25°C. As denaturant concentration is increased within the subdenaturing limit, the CO-association reaction is decelerated indicating that subdenaturing concentrations of denaturant reduce the structural fluctuation of the Ω-loop. Structural fluctuation of the Ω-loop is reduced more for urea and least for TMU. Intermolecular docking between horse cytochrome c and denaturant molecule (urea, MU, DMU, EU and TMU) reveals that polyfunctional interactions between the denaturant and different groups of Ω-loop and other part of protein decrease with an increase of alkyl group on urea molecule, which suggests that the decrease in the extent of restricted dynamics of Ω-loop with a corresponding increase of alkyl groups on urea molecule is due to the decrease of denaturant-mediated cross-linking interactions. These denaturant-mediated interactions are expected to reduce the conformational entropy of protein. Analysis of rate-temperature data shows a progressive decrease in conformational entropy of protein in the native to subdenaturing region. Thermodynamic analysis of denaturant (urea, MU, DMU, EU, TMU) effects on the thermal unfolding of ferrocytochrome c reveals that (i) thermodynamic stability of protein decreases with increasing concentration of denaturant or hydrophobicity of urea derivatives, (ii) water activity plays an important role in stabilization of ferrocytochrome c, and (iii) destabilization of ferrocytochrome c by denaturant occurs through the disturbance of hydrophobic interactions and hydrogen-bonding. Copyright © 2014 Elsevier B.V. All rights reserved.
Gamalinda, Michael; Woolford, John L
2014-11-01
Numerous ribosomal proteins have a striking bipartite architecture: a globular body positioned on the ribosomal exterior and an internal loop buried deep into the rRNA core. In eukaryotes, a significant number of conserved r-proteins have evolved extra amino- or carboxy-terminal tail sequences, which thread across the solvent-exposed surface. The biological importance of these extended domains remains to be established. In this study, we have investigated the universally conserved internal loop and the eukaryote-specific extensions of yeast L4. We show that in contrast to findings with bacterial L4, deleting the internal loop of yeast L4 causes severely impaired growth and reduced levels of large ribosomal subunits. We further report that while depleting the entire L4 protein blocks early assembly steps in yeast, deletion of only its extended internal loop affects later steps in assembly, revealing a second role for L4 during ribosome biogenesis. Surprisingly, deletion of the entire eukaryote-specific carboxy-terminal tail of L4 has no effect on viability, production of 60S subunits, or translation. These unexpected observations provide impetus to further investigate the functions of ribosomal protein extensions, especially eukaryote-specific examples, in ribosome assembly and function. © 2014 Gamalinda and Woolford; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Top-level dynamics and the regulated gene response of feed-forward loop transcriptional motifs.
Mayo, Michael; Abdelzaher, Ahmed; Perkins, Edward J; Ghosh, Preetam
2014-09-01
Feed-forward loops are hierarchical three-node transcriptional subnetworks, wherein a top-level protein regulates the activity of a target gene via two paths: a direct-regulatory path, and an indirect route, whereby the top-level proteins act implicitly through an intermediate transcription factor. Using a transcriptional network of the model bacterium Escherichia coli, we confirmed that nearly all types of feed-forward loop were significantly overrepresented in the bacterial network. We then used mathematical modeling to study their dynamics by manipulating the rise times of the top-level protein concentration, termed the induction time, through alteration of the protein destruction rates. Rise times of the regulated proteins exhibited two qualitatively different regimes, depending on whether top-level inductions were "fast" or "slow." In the fast regime, rise times were nearly independent of rapid top-level inductions, indicative of biological robustness, and occurred when RNA production rate-limits the protein yield. Alternatively, the protein rise times were dependent upon slower top-level inductions, greater than approximately one bacterial cell cycle. An equation is given for this crossover, which depends upon three parameters of the direct-regulatory path: transcriptional cooperation at the DNA-binding site, a protein-DNA dissociation constant, and the relative magnitude of the top-level protien concentration.
Geng, Hong Zhi; Nasier, Dilidan; Liu, Bing; Gao, Hua; Xu, Yi Ke
2015-01-01
Introduction Defunctioning loop ileostomy (LI) and loop colostomy (LC) are used widely to protect/treat anastomotic leakage after colorectal surgery. However, it is not known which surgical approach has a lower prevalence of surgical complications after low anterior resection for rectal carcinoma (LARRC). Methods We conducted a literature search of PubMed, MEDLINE, Ovid, Embase and Cochrane databases to identify studies published between 1966 and 2013 focusing on elective surgical complications related to defunctioning LI and LC undertaken to protect a distal rectal anastomosis after LARRC. Results Five studies (two randomized controlled trials, one prospective non-randomized trial, and two retrospective trials) satisfied the inclusion criteria. Outcomes of 1,025 patients (652 LI and 373 LC) were analyzed. After the construction of a LI or LC, there was a significantly lower prevalence of sepsis (p=0.04), prolapse (p=0.03), and parastomal hernia (p=0.02) in LI patients than in LC patients. Also, the prevalence of overall complications was significantly lower in those who received LIs compared with those who received LCs (p<0.0001). After closure of defunctioning loops, there were significantly fewer wound infections (p=0.006) and incisional hernias (p=0.007) in LI patients than in LC patients, but there was no significant difference between the two groups in terms of overall complications. Conclusions The results of this meta-analysis show that a defunctioning LI may be superior to LC with respect to a lower prevalence of surgical complications after LARRC. PMID:26274752
Geng, Hong Zhi; Nasier, Dilidan; Liu, Bing; Gao, Hua; Xu, Yi Ke
2015-10-01
Introduction Defunctioning loop ileostomy (LI) and loop colostomy (LC) are used widely to protect/treat anastomotic leakage after colorectal surgery. However, it is not known which surgical approach has a lower prevalence of surgical complications after low anterior resection for rectal carcinoma (LARRC). Methods We conducted a literature search of PubMed, MEDLINE, Ovid, Embase and Cochrane databases to identify studies published between 1966 and 2013 focusing on elective surgical complications related to defunctioning LI and LC undertaken to protect a distal rectal anastomosis after LARRC. Results Five studies (two randomized controlled trials, one prospective non-randomized trial, and two retrospective trials) satisfied the inclusion criteria. Outcomes of 1,025 patients (652 LI and 373 LC) were analyzed. After the construction of a LI or LC, there was a significantly lower prevalence of sepsis (p=0.04), prolapse (p=0.03), and parastomal hernia (p=0.02) in LI patients than in LC patients. Also, the prevalence of overall complications was significantly lower in those who received LIs compared with those who received LCs (p<0.0001). After closure of defunctioning loops, there were significantly fewer wound infections (p=0.006) and incisional hernias (p=0.007) in LI patients than in LC patients, but there was no significant difference between the two groups in terms of overall complications. Conclusions The results of this meta-analysis show that a defunctioning LI may be superior to LC with respect to a lower prevalence of surgical complications after LARRC.
Evolutionary Conservation of ABA Signaling for Stomatal Closure1[OPEN
Huang, Yuqing; Dai, Fei; Franks, Peter J.; Nevo, Eviatar; Soltis, Douglas E.; Soltis, Pamela S.; Xue, Dawei; Zhang, Guoping; Pogson, Barry J.
2017-01-01
Abscisic acid (ABA)-driven stomatal regulation reportedly evolved after the divergence of ferns, during the early evolution of seed plants approximately 360 million years ago. This hypothesis is based on the observation that the stomata of certain fern species are unresponsive to ABA, but exhibit passive hydraulic control. However, ABA-induced stomatal closure was detected in some mosses and lycophytes. Here, we observed that a number of ABA signaling and membrane transporter protein families diversified over the evolutionary history of land plants. The aquatic ferns Azolla filiculoides and Salvinia cucullata have representatives of 23 families of proteins orthologous to those of Arabidopsis (Arabidopsis thaliana) and all other land plant species studied. Phylogenetic analysis of the key ABA signaling proteins indicates an evolutionarily conserved stomatal response to ABA. Moreover, comparative transcriptomic analysis has identified a suite of ABA-responsive genes that differentially expressed in a terrestrial fern species, Polystichum proliferum. These genes encode proteins associated with ABA biosynthesis, transport, reception, transcription, signaling, and ion and sugar transport, which fit the general ABA signaling pathway constructed from Arabidopsis and Hordeum vulgare. The retention of these key ABA-responsive genes could have had a profound effect on the adaptation of ferns to dry conditions. Furthermore, stomatal assays have shown the primary evidence for ABA-induced closure of stomata in two terrestrial fern species P. proliferum and Nephrolepis exaltata. In summary, we report, to our knowledge, new molecular and physiological evidence for the presence of active stomatal control in ferns. PMID:28232585
Mun, Gyeong In; Park, Soojin; Kremerskothen, Joachim; Boo, Yong Chool
2014-03-18
We examined the hypothesis that certain actin binding proteins might be upregulated by laminar shear stress (LSS) and could contribute to endothelial wound healing. Analysis of mRNA expression profiles of human umbilical vein endothelial cells under static and LSS-exposed conditions provided a list of LSS-induced actin binding proteins including synaptopodin (SYNPO) whose endothelial expression has not been previously reported. Additional studies demonstrated that SYNPO is a key mediator of endothelial wound healing because small interfering RNA-mediated suppression of SYNPO attenuated wound closure under LSS whereas overexpression of exogenous SYNPO enhanced endothelial wound closure in the absence of LSS. This study suggests that LSS-induced actin binding proteins including SYNPO may play a critical role in the endothelial wound healing stimulated by LSS. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Ley, Kamron; Christofferson, Andrew; Penna, Matthew; Winkler, Dave; Maclaughlin, Shane; Yarovsky, Irene
2015-01-01
The class I hydrophobin EAS is part of a family of small, amphiphilic fungal proteins best known for their ability to self-assemble into stable monolayers that modify the hydrophobicity of a surface to facilitate further microbial growth. These proteins have attracted increasing attention for industrial and biomedical applications, with the aim of designing surfaces that have the potential to maintain their clean state by resisting non-specific protein binding. To gain a better understanding of this process, we have employed all-atom molecular dynamics to study initial stages of the spontaneous adsorption of monomeric EAS hydrophobin on fully hydroxylated silica, a commonly used industrial and biomedical substrate. Particular interest has been paid to the Cys3-Cys4 loop, which has been shown to exhibit disruptive behavior in solution, and the Cys7-Cys8 loop, which is believed to be involved in the aggregation of EAS hydrophobin at interfaces. Specific and water mediated interactions with the surface were also analyzed. We have identified two possible binding motifs, one which allows unfolding of the Cys7-Cys8 loop due to the surfactant-like behavior of the Cys3-Cys4 loop, and another which has limited unfolding due to the Cys3-Cys4 loop remaining disordered in solution. We have also identified intermittent interactions with water which mediate the protein adsorption to the surface, as well as longer lasting interactions which control the diffusion of water around the adsorption site. These results have shown that EAS behaves in a similar way at the air-water and surface-water interfaces, and have also highlighted the need for hydrophilic ligand functionalization of the silica surface in order to prevent the adsorption of EAS hydrophobin. PMID:26636091
Ley, Kamron; Christofferson, Andrew; Penna, Matthew; Winkler, Dave; Maclaughlin, Shane; Yarovsky, Irene
2015-01-01
The class I hydrophobin EAS is part of a family of small, amphiphilic fungal proteins best known for their ability to self-assemble into stable monolayers that modify the hydrophobicity of a surface to facilitate further microbial growth. These proteins have attracted increasing attention for industrial and biomedical applications, with the aim of designing surfaces that have the potential to maintain their clean state by resisting non-specific protein binding. To gain a better understanding of this process, we have employed all-atom molecular dynamics to study initial stages of the spontaneous adsorption of monomeric EAS hydrophobin on fully hydroxylated silica, a commonly used industrial and biomedical substrate. Particular interest has been paid to the Cys3-Cys4 loop, which has been shown to exhibit disruptive behavior in solution, and the Cys7-Cys8 loop, which is believed to be involved in the aggregation of EAS hydrophobin at interfaces. Specific and water mediated interactions with the surface were also analyzed. We have identified two possible binding motifs, one which allows unfolding of the Cys7-Cys8 loop due to the surfactant-like behavior of the Cys3-Cys4 loop, and another which has limited unfolding due to the Cys3-Cys4 loop remaining disordered in solution. We have also identified intermittent interactions with water which mediate the protein adsorption to the surface, as well as longer lasting interactions which control the diffusion of water around the adsorption site. These results have shown that EAS behaves in a similar way at the air-water and surface-water interfaces, and have also highlighted the need for hydrophilic ligand functionalization of the silica surface in order to prevent the adsorption of EAS hydrophobin.
NASA Astrophysics Data System (ADS)
Dodani, Sheel C.; Kiss, Gert; Cahn, Jackson K. B.; Su, Ye; Pande, Vijay S.; Arnold, Frances H.
2016-05-01
The dynamic motions of protein structural elements, particularly flexible loops, are intimately linked with diverse aspects of enzyme catalysis. Engineering of these loop regions can alter protein stability, substrate binding and even dramatically impact enzyme function. When these flexible regions are unresolvable structurally, computational reconstruction in combination with large-scale molecular dynamics simulations can be used to guide the engineering strategy. Here we present a collaborative approach that consists of both experiment and computation and led to the discovery of a single mutation in the F/G loop of the nitrating cytochrome P450 TxtE that simultaneously controls loop dynamics and completely shifts the enzyme's regioselectivity from the C4 to the C5 position of L-tryptophan. Furthermore, we find that this loop mutation is naturally present in a subset of homologous nitrating P450s and confirm that these uncharacterized enzymes exclusively produce 5-nitro-L-tryptophan, a previously unknown biosynthetic intermediate.
Visualization of chromatin domains created by the gypsy insulator of Drosophila.
Byrd, Keith; Corces, Victor G
2003-08-18
Insulators might regulate gene expression by establishing and maintaining the organization of the chromatin fiber within the nucleus. Biochemical fractionation and in situ high salt extraction of lysed cells show that two known protein components of the gypsy insulator are present in the nuclear matrix. Using FISH with DNA probes located between two endogenous Su(Hw) binding sites, we show that the intervening DNA is arranged in a loop, with the two insulators located at the base. Mutations in insulator proteins, subjecting the cells to a brief heat shock, or destruction of the nuclear matrix lead to disruption of the loop. Insertion of an additional gypsy insulator in the center of the loop results in the formation of paired loops through the attachment of the inserted sequences to the nuclear matrix. These results suggest that the gypsy insulator might establish higher-order domains of chromatin structure and regulate nuclear organization by tethering the DNA to the nuclear matrix and creating chromatin loops.
Lamontanara, Allan Joaquim; Georgeon, Sandrine; Tria, Giancarlo; Svergun, Dmitri I; Hantschel, Oliver
2014-11-17
The activity of protein kinases is regulated by multiple molecular mechanisms, and their disruption is a common driver of oncogenesis. A central and almost universal control element of protein kinase activity is the activation loop that utilizes both conformation and phosphorylation status to determine substrate access. In this study, we use recombinant Abl tyrosine kinases and conformation-specific kinase inhibitors to quantitatively analyse structural changes that occur after Abl activation. Allosteric SH2-kinase domain interactions were previously shown to be essential for the leukemogenesis caused by the Bcr-Abl oncoprotein. We find that these allosteric interactions switch the Abl activation loop from a closed to a fully open conformation. This enables the trans-autophosphorylation of the activation loop and requires prior phosphorylation of the SH2-kinase linker. Disruption of the SH2-kinase interaction abolishes activation loop phosphorylation. Our analysis provides a molecular mechanism for the SH2 domain-dependent activation of Abl that may also regulate other tyrosine kinases.
NASA Astrophysics Data System (ADS)
Lamontanara, Allan Joaquim; Georgeon, Sandrine; Tria, Giancarlo; Svergun, Dmitri I.; Hantschel, Oliver
2014-11-01
The activity of protein kinases is regulated by multiple molecular mechanisms, and their disruption is a common driver of oncogenesis. A central and almost universal control element of protein kinase activity is the activation loop that utilizes both conformation and phosphorylation status to determine substrate access. In this study, we use recombinant Abl tyrosine kinases and conformation-specific kinase inhibitors to quantitatively analyse structural changes that occur after Abl activation. Allosteric SH2-kinase domain interactions were previously shown to be essential for the leukemogenesis caused by the Bcr-Abl oncoprotein. We find that these allosteric interactions switch the Abl activation loop from a closed to a fully open conformation. This enables the trans-autophosphorylation of the activation loop and requires prior phosphorylation of the SH2-kinase linker. Disruption of the SH2-kinase interaction abolishes activation loop phosphorylation. Our analysis provides a molecular mechanism for the SH2 domain-dependent activation of Abl that may also regulate other tyrosine kinases.
Ala42S100A8 Ameliorates Psychological-Stress Impaired Cutaneous Wound Healing
Sroussi, Herve Y.; Williams, Richard L.; Zhang, Qing. L.; Villines, Dana.; Marucha, Phillip. T.
2009-01-01
Although wound healing is generally a successful, carefully orchestrated and evolutionary sound process, it can be disregulated by extrinsic factors such as psychological stress. In the SKH-1 restraint stress model of cutaneous wound healing, the rate of wound closure is approximately 30% slower in stressed mice. Delay in healing is associated with exaggerated acute inflammation and deficient bacterial clearance at the wound site. It has been suggested that wound hypoxia may contribute to the mechanisms of impaired cutaneous wound healing in the mouse SKH-1 model. Optimal healing of a cutaneous wound is a stepwise repair program. In its early phase, an inflammatory oxidative burst generated by neutrophils is observed. 40% of neutrophils cytosolic protein weight is comprised of two calcium binding proteins S100A8 and S100A9. Our previous work has shown that S100A8 act as an oxidation sensitive repellent of human neutrophils in-vitro. Ala42S100A8, a site-directed mutant protein is resistant to oxidative inhibition and inhibits neutrophil recruitment in-vivo. Accordingly, we tested the hypothesis that S100A8 may ameliorate wound healing in this model. We examined the effect of wild type and ala42S100A8 for their ability to ameliorate wound closure rates. The data indicated that a single local application of ala42S100A8 ameliorated the decreased rate of wound closure resulting from stress. This occurred without significantly affecting wound bacterial clearance. Wild type S100A8 only had a partial beneficial effect on the rate of wound closure. Those findings support further translational studies of S100 based intervention to ameliorate impaired wound healing. PMID:19336252
Ala42S100A8 ameliorates psychological-stress impaired cutaneous wound healing.
Sroussi, Herve Y; Williams, Richard L; Zhang, Qing L; Villines, Dana; Marucha, Phillip T
2009-08-01
Although wound healing is generally a successful, carefully orchestrated and evolutionary sound process, it can be disregulated by extrinsic factors such as psychological-stress. In the SKH-1 restraint stress model of cutaneous wound healing, the rate of wound closure is approximately 30% slower in stressed mice. Delay in healing is associated with exaggerated acute inflammation and deficient bacterial clearance at the wound site. It has been suggested that wound hypoxia may contribute to the mechanisms of impaired cutaneous wound healing in the mouse SKH-1 model. Optimal healing of a cutaneous wound is a stepwise repair program. In its early phase, an inflammatory oxidative burst generated by neutrophils is observed. About 40% of neutrophils cytosolic protein weight is comprised of two calcium binding proteins S100A8 and S100A9. Our previous work has shown that S100A8 act as an oxidation-sensitive repellent of human neutrophils in-vitro. Ala(42)S100A8, a site-directed mutant protein is resistant to oxidative inhibition and inhibits neutrophil recruitment in-vivo. Accordingly, we tested the hypothesis that S100A8 may ameliorate wound healing in this model. We examined the effect of wild-type and ala(42)S100A8 for their ability to ameliorate wound closure rates. The data indicated that a single local application of ala(42)S100A8 ameliorated the decreased rate of wound closure resulting from stress. This occurred without significantly affecting wound bacterial clearance. Wild-type S100A8 only had a partial beneficial effect on the rate of wound closure. Those findings support further translational studies of S100 based intervention to ameliorate impaired wound healing.
tRNA wobble modifications and protein homeostasis
Ranjan, Namit; Rodnina, Marina V.
2016-01-01
Abstract tRNA is a central component of the protein synthesis machinery in the cell. In living cells, tRNAs undergo numerous post-transcriptional modifications. In particular, modifications at the anticodon loop play an important role in ensuring efficient protein synthesis, maintaining protein homeostasis, and helping cell adaptation and survival. Hypo-modification of the wobble position of the tRNA anticodon loop is of particular relevance for translation regulation and is implicated in various human diseases. In this review we summarize recent evidence of how methyl and thiol modifications in eukaryotic tRNA at position 34 affect cellular fitness and modulate regulatory circuits at normal conditions and under stress. PMID:27335723
The Role of Protein Loops and Linkers in Conformational Dynamics and Allostery.
Papaleo, Elena; Saladino, Giorgio; Lambrughi, Matteo; Lindorff-Larsen, Kresten; Gervasio, Francesco Luigi; Nussinov, Ruth
2016-06-08
Proteins are dynamic entities that undergo a plethora of conformational changes that may take place on a wide range of time scales. These changes can be as small as the rotation of one or a few side-chain dihedral angles or involve concerted motions in larger portions of the three-dimensional structure; both kinds of motions can be important for biological function and allostery. It is becoming increasingly evident that "connector regions" are important components of the dynamic personality of protein structures. These regions may be either disordered loops, i.e., poorly structured regions connecting secondary structural elements, or linkers that connect entire protein domains. Experimental and computational studies have, however, revealed that these regions are not mere connectors, and their role in allostery and conformational changes has been emerging in the last few decades. Here we provide a detailed overview of the structural properties and classification of loops and linkers, as well as a discussion of the main computational methods employed to investigate their function and dynamical properties. We also describe their importance for protein dynamics and allostery using as examples key proteins in cellular biology and human diseases such as kinases, ubiquitinating enzymes, and transcription factors.
Constraint Embedding Technique for Multibody System Dynamics
NASA Technical Reports Server (NTRS)
Woo, Simon S.; Cheng, Michael K.
2011-01-01
Multibody dynamics play a critical role in simulation testbeds for space missions. There has been a considerable interest in the development of efficient computational algorithms for solving the dynamics of multibody systems. Mass matrix factorization and inversion techniques and the O(N) class of forward dynamics algorithms developed using a spatial operator algebra stand out as important breakthrough on this front. Techniques such as these provide the efficient algorithms and methods for the application and implementation of such multibody dynamics models. However, these methods are limited only to tree-topology multibody systems. Closed-chain topology systems require different techniques that are not as efficient or as broad as those for tree-topology systems. The closed-chain forward dynamics approach consists of treating the closed-chain topology as a tree-topology system subject to additional closure constraints. The resulting forward dynamics solution consists of: (a) ignoring the closure constraints and using the O(N) algorithm to solve for the free unconstrained accelerations for the system; (b) using the tree-topology solution to compute a correction force to enforce the closure constraints; and (c) correcting the unconstrained accelerations with correction accelerations resulting from the correction forces. This constraint-embedding technique shows how to use direct embedding to eliminate local closure-loops in the system and effectively convert the system back to a tree-topology system. At this point, standard tree-topology techniques can be brought to bear on the problem. The approach uses a spatial operator algebra approach to formulating the equations of motion. The operators are block-partitioned around the local body subgroups to convert them into aggregate bodies. Mass matrix operator factorization and inversion techniques are applied to the reformulated tree-topology system. Thus in essence, the new technique allows conversion of a system with closure-constraints into an equivalent tree-topology system, and thus allows one to take advantage of the host of techniques available to the latter class of systems. This technology is highly suitable for the class of multibody systems where the closure-constraints are local, i.e., where they are confined to small groupings of bodies within the system. Important examples of such local closure-constraints are constraints associated with four-bar linkages, geared motors, differential suspensions, etc. One can eliminate these closure-constraints and convert the system into a tree-topology system by embedding the constraints directly into the system dynamics and effectively replacing the body groupings with virtual aggregate bodies. Once eliminated, one can apply the well-known results and algorithms for tree-topology systems to solve the dynamics of such closed-chain system.
Sgraja, Tanja; Ulschmid, Julia; Becker, Katja; Schneuwly, Stephan; Klebe, Gerhard; Reuter, Klaus; Heine, Andreas
2004-10-01
In vivo studies with the fruit-fly Drosophila melanogaster have shown that the Sniffer protein prevents age-dependent and oxidative stress-induced neurodegenerative processes. Sniffer is a NADPH-dependent carbonyl reductase belonging to the enzyme family of short-chain dehydrogenases/reductases (SDRs). The crystal structure of the homodimeric Sniffer protein from Drosophila melanogaster in complex with NADP+ has been determined by multiple-wavelength anomalous dispersion and refined to a resolution of 1.75 A. The observed fold represents a typical dinucleotide-binding domain as detected for other SDRs. With respect to the cofactor-binding site and the region referred to as substrate-binding loop, the Sniffer protein shows a striking similarity to the porcine carbonyl reductase (PTCR). This loop, in both Sniffer and PTCR, is substantially shortened compared to other SDRs. In most enzymes of the SDR family this loop adopts a well-defined conformation only after substrate binding and remains disordered in the absence of any bound ligands or even if only the dinucleotide cofactor is bound. In the structure of the Sniffer protein, however, the conformation of this loop is well defined, although no substrate is present. Molecular modeling studies provide an idea of how binding of substrate molecules to Sniffer could possibly occur.
Jia, Lixia; Chisari, Mariangela; Maktabi, Mohammad H; Sobieski, Courtney; Zhou, Hao; Konopko, Aaron M; Martin, Brent R; Mennerick, Steven J; Blumer, Kendall J
2014-02-28
Reversible attachment and removal of palmitate or other long-chain fatty acids on proteins has been hypothesized, like phosphorylation, to control diverse biological processes. Indeed, palmitate turnover regulates Ras trafficking and signaling. Beyond this example, however, the functions of palmitate turnover on specific proteins remain poorly understood. Here, we show that a mechanism regulating G protein-coupled receptor signaling in neuronal cells requires palmitate turnover. We used hexadecyl fluorophosphonate or palmostatin B to inhibit enzymes in the serine hydrolase family that depalmitoylate proteins, and we studied R7 regulator of G protein signaling (RGS)-binding protein (R7BP), a palmitoylated allosteric modulator of R7 RGS proteins that accelerate deactivation of Gi/o class G proteins. Depalmitoylation inhibition caused R7BP to redistribute from the plasma membrane to endomembrane compartments, dissociated R7BP-bound R7 RGS complexes from Gi/o-gated G protein-regulated inwardly rectifying K(+) (GIRK) channels and delayed GIRK channel closure. In contrast, targeting R7BP to the plasma membrane with a polybasic domain and an irreversibly attached lipid instead of palmitate rendered GIRK channel closure insensitive to depalmitoylation inhibitors. Palmitate turnover therefore is required for localizing R7BP to the plasma membrane and facilitating Gi/o deactivation by R7 RGS proteins on GIRK channels. Our findings broaden the scope of biological processes regulated by palmitate turnover on specific target proteins. Inhibiting R7BP depalmitoylation may provide a means of enhancing GIRK activity in neurological disorders.
Mittal, Rahul; Krishnan, Subramanian; Gonzalez-Gomez, Ignacio; Prasadarao, Nemani V
2011-01-21
Outer membrane protein A (OmpA) has been implicated as an important virulence factor in several gram-negative bacterial infections such as Escherichia coli K1, a leading cause of neonatal meningitis associated with significant mortality and morbidity. In this study, we generated E. coli K1 mutants that express OmpA in which three or four amino acids from various extracellular loops were changed to alanines, and we examined their ability to survive in several immune cells. We observed that loop regions 1 and 2 play an important role in the survival of E. coli K1 inside neutrophils and dendritic cells, and loop regions 1 and 3 are needed for survival in macrophages. Concomitantly, E. coli K1 mutants expressing loop 1 and 2 mutations were unable to cause meningitis in a newborn mouse model. Of note, mutations in loop 4 of OmpA enhance the severity of the pathogenesis by allowing the pathogen to survive better in circulation and to produce high bacteremia levels. These results demonstrate, for the first time, the roles played by different regions of extracellular loops of OmpA of E. coli K1 in the pathogenesis of meningitis and may help in designing effective preventive strategies against this deadly disease.
NMR Studies of the Dynamics of Nitrophorin 2 Bound to Nitric Oxide†
Muthu, Dhanasekaran; Berry, Robert E.; Zhang, Hongjun; Walker, F. Ann
2013-01-01
The Rhodnius nitrophorins are β-barrel proteins of the lipocalin fold with a heme protruding from the open end of the barrel. They are found in the saliva of the blood-sucking insect Rhodnius prolixus, which synthesizes and stores nitric oxide (NO) in the salivary glands, where NO is bound to iron. NO is released by dilution and pH rise when the insect spits its saliva into the tissues of a victim, to aid in obtaining a blood meal. In the adult insect there are four nitrophorins, NP1, NP2, NP3 and NP4. At pH 7.3, NP4 releases NO 17 times faster than does NP2, as measured by stopped-flow kinetics. A number of crystal structures of the least abundant protein, NP4, are available. These structures have been used to propose that two loops between adjacent β-strands at the front opening of the protein, the A-B and G-H loops, determine the rate of NO release. In order to learn how the protein loops contribute to release of NO for each of the nitrophorins, the dynamics of these proteins are being studied in our laboratory. In this work, the NP2-NO complex has been investigated by NMR relaxation measurements to probe the pico- to nanosecond and micro- to millisecond time scale motions at three pH values, 5.0, 6.5, and 7.3. It is found that at pH 5.0 and 6.5, NP2-NO is rigid and only a few residues in the loop regions show dynamics, while at pH 7.3 somewhat more dynamics, particularly of the A-B loop, are observed. Comparison to other lipocalins shows that all are relatively rigid, and that the dynamics of lipocalins in general are much more subtle than those of mainly α-helical proteins. PMID:24116947
Kristensen, Tatjana P; Maria Cherian, Reeja; Gray, Fiona C; MacNeill, Stuart A
2014-01-01
The hexameric MCM complex is the catalytic core of the replicative helicase in eukaryotic and archaeal cells. Here we describe the first in vivo analysis of archaeal MCM protein structure and function relationships using the genetically tractable haloarchaeon Haloferax volcanii as a model system. Hfx. volcanii encodes a single MCM protein that is part of the previously identified core group of haloarchaeal MCM proteins. Three structural features of the N-terminal domain of the Hfx. volcanii MCM protein were targeted for mutagenesis: the β7-β8 and β9-β10 β-hairpin loops and putative zinc binding domain. Five strains carrying single point mutations in the β7-β8 β-hairpin loop were constructed, none of which displayed impaired cell growth under normal conditions or when treated with the DNA damaging agent mitomycin C. However, short sequence deletions within the β7-β8 β-hairpin were not tolerated and neither was replacement of the highly conserved residue glutamate 187 with alanine. Six strains carrying paired alanine substitutions within the β9-β10 β-hairpin loop were constructed, leading to the conclusion that no individual amino acid within that hairpin loop is absolutely required for MCM function, although one of the mutant strains displays greatly enhanced sensitivity to mitomycin C. Deletions of two or four amino acids from the β9-β10 β-hairpin were tolerated but mutants carrying larger deletions were inviable. Similarly, it was not possible to construct mutants in which any of the conserved zinc binding cysteines was replaced with alanine, underlining the likely importance of zinc binding for MCM function. The results of these studies demonstrate the feasibility of using Hfx. volcanii as a model system for reverse genetic analysis of archaeal MCM protein function and provide important confirmation of the in vivo importance of conserved structural features identified by previous bioinformatic, biochemical and structural studies.
Fu, Yan-Lei; Zhang, Guo-Bin; Lv, Xin-Fang; Guan, Yuan; Yi, Hong-Ying; Gong, Ji-Ming
2013-01-01
Elevations in extracellular calcium ([Ca2+]o) are known to stimulate cytosolic calcium ([Ca2+]cyt) oscillations to close stomata. However, the underlying mechanisms regulating this process remain largely to be determined. Here, through the functional characterization of the calcium underaccumulation mutant cau1, we report that the epigenetic regulation of CAS, a putative Ca2+ binding protein proposed to be an external Ca2+ sensor, is involved in this process. cau1 mutant plants display increased drought tolerance and stomatal closure. A mutation in CAU1 significantly increased the expression level of the calcium signaling gene CAS, and functional disruption of CAS abolished the enhanced drought tolerance and stomatal [Ca2+]o signaling in cau1. Map-based cloning revealed that CAU1 encodes the H4R3sme2 (for histone H4 Arg 3 with symmetric dimethylation)-type histone methylase protein arginine methytransferase5/Shk1 binding protein1. Chromatin immunoprecipitation assays showed that CAU1 binds to the CAS promoter and modulates the H4R3sme2-type histone methylation of the CAS chromatin. When exposed to elevated [Ca2+]o, the protein levels of CAU1 decreased and less CAU1 bound to the CAS promoter. In addition, the methylation level of H4R3sme2 decreased in the CAS chromatin. Together, these data suggest that in response to increases in [Ca2+]o, fewer CAU1 protein molecules bind to the CAS promoter, leading to decreased H4R3sme2 methylation and consequent derepression of the expression of CAS to mediate stomatal closure and drought tolerance. PMID:23943859
Induction of motor neuron differentiation by transduction of Olig2 protein.
Mie, Masayasu; Kaneko, Mami; Henmi, Fumiaki; Kobatake, Eiry
2012-10-26
Olig2 protein, a member of the basic helix-loop-helix transcription factor family, was introduced into the mouse embryonic carcinoma cell line P19 for induction of motor neuron differentiation. We show that Olig2 protein has the ability to permeate the cell membrane without the addition of a protein transduction domain (PTD), similar to other basic helix-loop-helix transcription factors such as MyoD and NeuroD2. Motor neuron differentiation was evaluated for the elongation of neurites and the expression of choline acetyltransferase (ChAT) mRNA, a differentiation marker of motor neurons. By addition of Olig2 protein, motor neuron differentiation was induced in P19 cells. Copyright © 2012 Elsevier Inc. All rights reserved.
SGS Dynamics and Modeling near a Rough Wall.
NASA Astrophysics Data System (ADS)
Juneja, Anurag; Brasseur, James G.
1998-11-01
Large-eddy simulation (LES) of the atmospheric boundary layer (ABL) using classical subgrid-scale (SGS) models is known to poorly predict mean shear at the first few grid cells near the rough surface, creating error which can propogate vertically to infect the entire ABL. Our goal was to determine the first-order errors in predicted SGS terms that arise as a consequence of necessary under-resolution of integral scales and anisotropy which exist at the first few grid levels in LES of rough wall turbulence. Analyzing the terms predicted from eddy-viscosity and similarity closures with DNS anisotropic datasets of buoyancy- and shear-driven turbulence, we uncover three important issues which should be addressed in the design of SGS closures for rough walls and we provide a priori tests for the SGS model. Firstly, we identify a strong spurious coupling between the anisotropic structure of the resolved velocity field and predicted SGS dynamics which can create a feedback loop to incorrectly enhance certain components of the predicted resolved velocity. Secondly, we find that eddy viscosity and similarity SGS models do not contain enough degrees of freedom to capture, at a sufficient level of accuracy, both RS-SGS energy flux and SGS-RS dynamics. Thirdly, to correctly capture pressure transport near a wall, closures must be made more flexible to accommodate proper partitioning between SGS stress divergence and SGS pressure gradient.
Superresolution imaging of transcription units on newt lampbrush chromosomes
Kaufmann, Rainer; Cremer, Christoph; Gall, Joseph G.
2013-01-01
We have examined transcription loops on lampbrush chromosomes of the newt Notophthalmus by superresolution microscopy. Because of the favorable, essentially two-dimensional morphology of these loops, an average optical resolution in the x-y plane of about 50 nm was achieved. We analyzed the distribution of the multifunctional RNA-binding protein CELF1 on specific loops. CELF1 distribution is consistent with a model in which individual transcripts are tightly folded and hence closely packed against the loop axis. PMID:22892678
NASA Astrophysics Data System (ADS)
Vilar, Jose M. G.; Saiz, Leonor
2006-06-01
DNA looping plays a fundamental role in a wide variety of biological processes, providing the backbone for long range interactions on DNA. Here we develop the first model for DNA looping by an arbitrarily large number of proteins and solve it analytically in the case of identical binding. We uncover a switchlike transition between looped and unlooped phases and identify the key parameters that control this transition. Our results establish the basis for the quantitative understanding of fundamental cellular processes like DNA recombination, gene silencing, and telomere maintenance.
Lamping, Erwin; Niimi, Masakazu; Cannon, Richard D
2013-07-29
A large range of genetic tools has been developed for the optimal design and regulation of complex metabolic pathways in bacteria. However, fewer tools exist in yeast that can precisely tune the expression of individual enzymes in novel metabolic pathways suitable for industrial-scale production of non-natural compounds. Tuning expression levels is critical for reducing the metabolic burden of over-expressed proteins, the accumulation of toxic intermediates, and for redirecting metabolic flux from native pathways involving essential enzymes without negatively affecting the viability of the host. We have developed a yeast membrane protein hyper-expression system with critical advantages over conventional, plasmid-based, expression systems. However, expression levels are sometimes so high that they adversely affect protein targeting/folding or the growth and/or phenotype of the host. Here we describe the use of small synthetic mRNA control modules that allowed us to predictably tune protein expression levels to any desired level. Down-regulation of expression was achieved by engineering small GC-rich mRNA stem-loops into the 5' UTR that inhibited translation initiation of the yeast ribosomal 43S preinitiation complex (PIC). Exploiting the fact that the yeast 43S PIC has great difficulty scanning through GC-rich mRNA stem-loops, we created yeast strains containing 17 different RNA stem-loop modules in the 5' UTR that expressed varying amounts of the fungal multidrug efflux pump reporter Cdr1p from Candida albicans. Increasing the length of mRNA stem-loops (that contained only GC-pairs) near the AUG start-codon led to a surprisingly large decrease in Cdr1p expression; ~2.7-fold for every additional GC-pair added to the stem, while the mRNA levels remained largely unaffected. An mRNA stem-loop of seven GC-pairs (∆G = -15.8 kcal/mol) reduced Cdr1p expression levels by >99%, and even the smallest possible stem-loop of only three GC-pairs (∆G = -4.4 kcal/mol) inhibited Cdr1p expression by ~50%. We have developed a simple cloning strategy to fine-tune protein expression levels in yeast that has many potential applications in metabolic engineering and the optimization of protein expression in yeast. This study also highlights the importance of considering the use of multiple cloning-sites carefully to preclude unwanted effects on gene expression.
2013-01-01
Background A large range of genetic tools has been developed for the optimal design and regulation of complex metabolic pathways in bacteria. However, fewer tools exist in yeast that can precisely tune the expression of individual enzymes in novel metabolic pathways suitable for industrial-scale production of non-natural compounds. Tuning expression levels is critical for reducing the metabolic burden of over-expressed proteins, the accumulation of toxic intermediates, and for redirecting metabolic flux from native pathways involving essential enzymes without negatively affecting the viability of the host. We have developed a yeast membrane protein hyper-expression system with critical advantages over conventional, plasmid-based, expression systems. However, expression levels are sometimes so high that they adversely affect protein targeting/folding or the growth and/or phenotype of the host. Here we describe the use of small synthetic mRNA control modules that allowed us to predictably tune protein expression levels to any desired level. Down-regulation of expression was achieved by engineering small GC-rich mRNA stem-loops into the 5′ UTR that inhibited translation initiation of the yeast ribosomal 43S preinitiation complex (PIC). Results Exploiting the fact that the yeast 43S PIC has great difficulty scanning through GC-rich mRNA stem-loops, we created yeast strains containing 17 different RNA stem-loop modules in the 5′ UTR that expressed varying amounts of the fungal multidrug efflux pump reporter Cdr1p from Candida albicans. Increasing the length of mRNA stem-loops (that contained only GC-pairs) near the AUG start-codon led to a surprisingly large decrease in Cdr1p expression; ~2.7-fold for every additional GC-pair added to the stem, while the mRNA levels remained largely unaffected. An mRNA stem-loop of seven GC-pairs (∆G = −15.8 kcal/mol) reduced Cdr1p expression levels by >99%, and even the smallest possible stem-loop of only three GC-pairs (∆G = −4.4 kcal/mol) inhibited Cdr1p expression by ~50%. Conclusion We have developed a simple cloning strategy to fine-tune protein expression levels in yeast that has many potential applications in metabolic engineering and the optimization of protein expression in yeast. This study also highlights the importance of considering the use of multiple cloning-sites carefully to preclude unwanted effects on gene expression. PMID:23895661
Mandic, Robert; Fackler, Oliver T.; Geyer, Matthias; Linnemann, Thomas; Zheng, Yong-Hui; Peterlin, B. Matija
2001-01-01
The accessory protein negative factor (Nef) from human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) is required for optimal viral infectivity and the progression to acquired immunodeficiency syndrome (AIDS). Nef interacts with the endocytic machinery, resulting in the down-regulation of cluster of differentiation antigen 4 (CD4) and major histocompatibility complex class I (MHCI) molecules on the surface of infected cells. Mutations in the C-terminal flexible loop of Nef result in a lower rate of internalization by this viral protein. However, no loop-dependent binding of Nef to adaptor protein-2 (AP-2), which is the adaptor protein complex that is required for the internalization of proteins from the plasma membrane, could be demonstrated. In this study we investigated the relevance of different motifs in Nef from SIVmac239 for its internalization, CD4 down-regulation, binding to components of the trafficking machinery, and viral infectivity. Our data suggest that the binding of Nef to the catalytic subunit H of the vacuolar membrane ATPase (V-ATPase) facilitates its internalization. This binding depends on the integrity of the whole flexible loop. Subsequent studies on Nef mutant viruses revealed that the flexible loop is essential for optimal viral infectivity. Therefore, our data demonstrate how Nef contacts the endocytic machinery in the absence of its direct binding to AP-2 and suggest an important role for subunit H of the V-ATPase in viral infectivity. PMID:11179428
CASP10-BCL::Fold efficiently samples topologies of large proteins.
Heinze, Sten; Putnam, Daniel K; Fischer, Axel W; Kohlmann, Tim; Weiner, Brian E; Meiler, Jens
2015-03-01
During CASP10 in summer 2012, we tested BCL::Fold for prediction of free modeling (FM) and template-based modeling (TBM) targets. BCL::Fold assembles the tertiary structure of a protein from predicted secondary structure elements (SSEs) omitting more flexible loop regions early on. This approach enables the sampling of conformational space for larger proteins with more complex topologies. In preparation of CASP11, we analyzed the quality of CASP10 models throughout the prediction pipeline to understand BCL::Fold's ability to sample the native topology, identify native-like models by scoring and/or clustering approaches, and our ability to add loop regions and side chains to initial SSE-only models. The standout observation is that BCL::Fold sampled topologies with a GDT_TS score > 33% for 12 of 18 and with a topology score > 0.8 for 11 of 18 test cases de novo. Despite the sampling success of BCL::Fold, significant challenges still exist in clustering and loop generation stages of the pipeline. The clustering approach employed for model selection often failed to identify the most native-like assembly of SSEs for further refinement and submission. It was also observed that for some β-strand proteins model refinement failed as β-strands were not properly aligned to form hydrogen bonds removing otherwise accurate models from the pool. Further, BCL::Fold samples frequently non-natural topologies that require loop regions to pass through the center of the protein. © 2015 Wiley Periodicals, Inc.
Quasithermodynamic Contributions to the Fluctuations of a Protein Nanopore
2015-01-01
Proteins undergo thermally activated conformational fluctuations among two or more substates, but a quantitative inquiry on their kinetics is persistently challenged by numerous factors, including the complexity and dynamics of various interactions, along with the inability to detect functional substates within a resolvable time scale. Here, we analyzed in detail the current fluctuations of a monomeric β-barrel protein nanopore of known high-resolution X-ray crystal structure. We demonstrated that targeted perturbations of the protein nanopore system, in the form of loop-deletion mutagenesis, accompanying alterations of electrostatic interactions between long extracellular loops, produced modest changes of the differential activation free energies calculated at 25 °C, ΔΔG⧧, in the range near the thermal energy but substantial and correlated modifications of the differential activation enthalpies, ΔΔH⧧, and entropies, ΔΔS⧧. This finding indicates that the local conformational reorganizations of the packing and flexibility of the fluctuating loops lining the central constriction of this protein nanopore were supplemented by changes in the single-channel kinetics. These changes were reflected in the enthalpy–entropy reconversions of the interactions between the loop partners with a compensating temperature, TC, of ∼300 K, and an activation free energy constant of ∼41 kJ/mol. We also determined that temperature has a much greater effect on the energetics of the equilibrium gating fluctuations of a protein nanopore than other environmental parameters, such as the ionic strength of the aqueous phase as well as the applied transmembrane potential, likely due to ample changes in the solvation activation enthalpies. There is no fundamental limitation for applying this approach to other complex, multistate membrane protein systems. Therefore, this methodology has major implications in the area of membrane protein design and dynamics, primarily by revealing a better quantitative assessment on the equilibrium transitions among multiple well-defined and functionally distinct substates of protein channels and pores. PMID:25479108
Plotting performance improvement progress through the development of a trauma dashboard.
Hochstuhl, Diane C; Elwell, Sean
2014-01-01
Performance improvement processes are the core of a pediatric trauma program. The ability to identify, resolve, and trend specific indicators related to patient care and to show effective loop closure can be especially challenging. Using the hospital's overall quality process as a template, the trauma program built its own electronic dashboard. Our maturing trauma PI program now guides the overall trauma care. All departments own at least one performance indicator and must provide action plans for improvement. Utilization of an electronic dashboard for trauma performance improvement has provided a highly visible scorecard, which highlights successes and tracks areas needing improvement.
Wang, Wei; Lu, Joann J.; Gu, Congying; Zhou, Lei; Liu, Shaorong
2013-01-01
In this technical note, we design and fabricate a novel rotary valve and demonstrate its feasibility for performing isoelectric focusing and simultaneous fractionation of proteins, followed by sodium dodecyl – polyacrylamide gel electrophoresis. The valve has two positions. In one position, the valve routes a series of capillary loops together into a single capillary tube where capillary isoelectric focusing (CIEF) is performed. By switching the valve to another position, the CIEF-resolved proteins in all capillary loops are isolated simultaneously, and samples in the loops are removed and collected in vials. After the collected samples are briefly processed, they are separated via sodium dodecyl – polyacrylamide gel electrophoresis (SDS-PAGE, the 2nd-D separation) on either a capillary gel electrophoresis instrument or a slab-gel system. The detailed valve configuration is illustrated, and the experimental conditions and operation protocols are discussed. PMID:23819755
Truan, Daphné; Bjelić, Saša; Li, Xiao-Dan; Winkler, Fritz K
2014-07-29
The trimeric PII signal transduction proteins regulate the function of a variety of target proteins predominantly involved in nitrogen metabolism. ATP, ADP and 2-oxoglutarate (2-OG) are key effector molecules influencing PII binding to targets. Studies of PII proteins have established that the 20-residue T-loop plays a central role in effector sensing and target binding. However, the specific effects of effector binding on T-loop conformation have remained poorly documented. We present eight crystal structures of the Azospirillum brasilense PII protein GlnZ, six of which are cocrystallized and liganded with ADP or ATP. We find that interaction with the diphosphate moiety of bound ADP constrains the N-terminal part of the T-loop in a characteristic way that is maintained in ADP-promoted complexes with target proteins. In contrast, the interactions with the triphosphate moiety in ATP complexes are much more variable and no single predominant interaction mode is apparent except for the ternary MgATP/2-OG complex. These conclusions can be extended to most investigated PII proteins of the GlnB/GlnK subfamily. Unlike reported for other PII proteins, microcalorimetry reveals no cooperativity between the three binding sites of GlnZ trimers for any of the three effectors under carefully controlled experimental conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Structural basis for the facilitative diffusion mechanism by SemiSWEET transporter
NASA Astrophysics Data System (ADS)
Lee, Yongchan; Nishizawa, Tomohiro; Yamashita, Keitaro; Ishitani, Ryuichiro; Nureki, Osamu
2015-01-01
SWEET family proteins mediate sugar transport across biological membranes and play crucial roles in plants and animals. The SWEETs and their bacterial homologues, the SemiSWEETs, are related to the PQ-loop family, which is characterized by highly conserved proline and glutamine residues (PQ-loop motif). Although the structures of the bacterial SemiSWEETs were recently reported, the conformational transition and the significance of the conserved motif in the transport cycle have remained elusive. Here we report crystal structures of SemiSWEET from Escherichia coli, in the both inward-open and outward-open states. A structural comparison revealed that SemiSWEET undergoes an intramolecular conformational change in each protomer. The conserved PQ-loop motif serves as a molecular hinge that enables the ‘binder clip-like’ motion of SemiSWEET. The present work provides the framework for understanding the overall transport cycles of SWEET and PQ-loop family proteins.
THE SOURCE STRUCTURE OF 0642+449 DETECTED FROM THE CONT14 OBSERVATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Ming H.; Wang, Guang L.; Heinkelmann, Robert
2016-11-01
The CONT14 campaign with state-of-the-art very long baseline interferometry (VLBI) data has observed the source 0642+449 with about 1000 observables each day during a continuous observing period of 15 days, providing tens of thousands of closure delays—the sum of the delays around a closed loop of baselines. The closure delay is independent of the instrumental and propagation delays and provides valuable additional information about the source structure. We demonstrate the use of this new “observable” for the determination of the structure in the radio source 0642+449. This source, as one of the defining sources in the second realization of themore » International Celestial Reference Frame, is found to have two point-like components with a relative position offset of −426 microarcseconds ( μ as) in R.A. and −66 μ as in decl. The two components are almost equally bright, with a flux-density ratio of 0.92. The standard deviation of closure delays for source 0642+449 was reduced from 139 to 90 ps by using this two-component model. Closure delays larger than 1 ns are found to be related to the source structure, demonstrating that structure effects for a source with this simple structure could be up to tens of nanoseconds. The method described in this paper does not rely on a priori source structure information, such as knowledge of source structure determined from direct (Fourier) imaging of the same observations or observations at other epochs. We anticipate our study to be a starting point for more effective determination of the structure effect in VLBI observations.« less
Bao, Yongmei; Yang, Ziyuan; Yu, Huiyun; Li, Yun; Wang, Shu; Zou, Baohong; Xu, Dachao; Ma, Zhiqi
2017-01-01
Calcium signaling is essential for environmental responses including immune responses. Here, we provide evidence that the evolutionarily conserved protein BONZAI1 (BON1) functions together with autoinhibited calcium ATPase10 (ACA10) and ACA8 to regulate calcium signals in Arabidopsis. BON1 is a plasma membrane localized protein that negatively regulates the expression of immune receptor genes and positively regulates stomatal closure. We found that BON1 interacts with the autoinhibitory domains of ACA10 and ACA8, and the aca10 loss-of-function (LOF) mutants have an autoimmune phenotype similar to that of the bon1 LOF mutants. Genetic evidences indicate that BON1 positively regulates the activities of ACA10 and ACA8. Consistent with this idea, the steady level of calcium concentration is increased in both aca10 and bon1 mutants. Most strikingly, cytosolic calcium oscillation imposed by external calcium treatment was altered in aca10, aca8, and bon1 mutants in guard cells. In addition, calcium- and pathogen-induced stomatal closure was compromised in the aca10 and bon1 mutants. Taken together, this study indicates that ACA10/8 and BON1 physically interact on plasma membrane and function in the generation of cytosol calcium signatures that are critical for stomatal movement and impact plant immunity. PMID:28701352
LC3/GABARAP family proteins: autophagy-(un)related functions.
Schaaf, Marco B E; Keulers, Tom G; Vooijs, Marc A; Rouschop, Kasper M A
2016-12-01
From yeast to mammals, autophagy is an important mechanism for sustaining cellular homeostasis through facilitating the degradation and recycling of aged and cytotoxic components. During autophagy, cargo is captured in double-membraned vesicles, the autophagosomes, and degraded through lysosomal fusion. In yeast, autophagy initiation, cargo recognition, cargo engulfment, and vesicle closure is Atg8 dependent. In higher eukaryotes, Atg8 has evolved into the LC3/GABARAP protein family, consisting of 7 family proteins [LC3A (2 splice variants), LC3B, LC3C, GABARAP, GABARAPL1, and GABARAPL2]. LC3B, the most studied family protein, is associated with autophagosome development and maturation and is used to monitor autophagic activity. Given the high homology, the other LC3/GABARAP family proteins are often presumed to fulfill similar functions. Nevertheless, substantial evidence shows that the LC3/GABARAP family proteins are unique in function and important in autophagy-independent mechanisms. In this review, we discuss the current knowledge and functions of the LC3/GABARAP family proteins. We focus on processing of the individual family proteins and their role in autophagy initiation, cargo recognition, vesicle closure, and trafficking, a complex and tightly regulated process that requires selective presentation and recruitment of these family proteins. In addition, functions unrelated to autophagy of the LC3/GABARAP protein family members are discussed.-Schaaf, M. B. E., Keulers, T. G, Vooijs, M. A., Rouschop, K. M. A. LC3/GABARAP family proteins: autophagy-(un)related functions. © FASEB.
A generalized analysis of hydrophobic and loop clusters within globular protein sequences
Eudes, Richard; Le Tuan, Khanh; Delettré, Jean; Mornon, Jean-Paul; Callebaut, Isabelle
2007-01-01
Background Hydrophobic Cluster Analysis (HCA) is an efficient way to compare highly divergent sequences through the implicit secondary structure information directly derived from hydrophobic clusters. However, its efficiency and application are currently limited by the need of user expertise. In order to help the analysis of HCA plots, we report here the structural preferences of hydrophobic cluster species, which are frequently encountered in globular domains of proteins. These species are characterized only by their hydrophobic/non-hydrophobic dichotomy. This analysis has been extended to loop-forming clusters, using an appropriate loop alphabet. Results The structural behavior of hydrophobic cluster species, which are typical of protein globular domains, was investigated within banks of experimental structures, considered at different levels of sequence redundancy. The 294 more frequent hydrophobic cluster species were analyzed with regard to their association with the different secondary structures (frequencies of association with secondary structures and secondary structure propensities). Hydrophobic cluster species are predominantly associated with regular secondary structures, and a large part (60 %) reveals preferences for α-helices or β-strands. Moreover, the analysis of the hydrophobic cluster amino acid composition generally allows for finer prediction of the regular secondary structure associated with the considered cluster within a cluster species. We also investigated the behavior of loop forming clusters, using a "PGDNS" alphabet. These loop clusters do not overlap with hydrophobic clusters and are highly associated with coils. Finally, the structural information contained in the hydrophobic structural words, as deduced from experimental structures, was compared to the PSI-PRED predictions, revealing that β-strands and especially α-helices are generally over-predicted within the limits of typical β and α hydrophobic clusters. Conclusion The dictionary of hydrophobic clusters described here can help the HCA user to interpret and compare the HCA plots of globular protein sequences, as well as provides an original fundamental insight into the structural bricks of protein folds. Moreover, the novel loop cluster analysis brings additional information for secondary structure prediction on the whole sequence through a generalized cluster analysis (GCA), and not only on regular secondary structures. Such information lays the foundations for developing a new and original tool for secondary structure prediction. PMID:17210072
Peering down the barrel of a bacteriophage portal: the genome packaging and release valve in p22.
Tang, Jinghua; Lander, Gabriel C; Olia, Adam S; Olia, Adam; Li, Rui; Casjens, Sherwood; Prevelige, Peter; Cingolani, Gino; Baker, Timothy S; Johnson, John E
2011-04-13
The encapsidated genome in all double-strand DNA bacteriophages is packaged to liquid crystalline density through a unique vertex in the procapsid assembly intermediate, which has a portal protein dodecamer in place of five coat protein subunits. The portal orchestrates DNA packaging and exit, through a series of varying interactions with the scaffolding, terminase, and closure proteins. Here, we report an asymmetric cryoEM reconstruction of the entire P22 virion at 7.8 Å resolution. X-ray crystal structure models of the full-length portal and of the portal lacking 123 residues at the C terminus in complex with gene product 4 (Δ123portal-gp4) obtained by Olia et al. (2011) were fitted into this reconstruction. The interpreted density map revealed that the 150 Å, coiled-coil, barrel portion of the portal entraps the last DNA to be packaged and suggests a mechanism for head-full DNA signaling and transient stabilization of the genome during addition of closure proteins. Copyright © 2011 Elsevier Ltd. All rights reserved.
Heme Oxygenase-1 Promotes Delayed Wound Healing in Diabetic Rats
Chen, Qing-Ying; Wang, Guo-Guang; Li, Wei; Jiang, Yu-Xin; Lu, Xiao-Hua; Zhou, Ping-Ping
2016-01-01
Diabetic ulcers are one of the most serious and costly chronic complications for diabetic patients. Hyperglycemia-induced oxidative stress may play an important role in diabetes and its complications. The aim of the study was to explore the effect of heme oxygenase-1 on wound closure in diabetic rats. Diabetic wound model was prepared by making an incision with full thickness in STZ-induced diabetic rats. Wounds from diabetic rats were treated with 10% hemin ointment for 21 days. Increase of HO-1 protein expression enhanced anti-inflammation and antioxidant in diabetic rats. Furthermore, HO-1 increased the levels of VEGF and ICAM-1 and expressions of CBS and CSE protein. In summary, HO-1 promoted the wound closure by augmenting anti-inflammation, antioxidant, and angiogenesis in diabetic rats. PMID:26798657
Jiménez-Cardoso, E; Eligio-García, L; Jiménez-Cardoso, J M; Angeles-Anguiano, E; Tobilla-Mercado, J M; Castañeda, G
2001-01-01
It is know that a protein from Giardia intestinalis works as a substrate for V. cholerae and Escherichia coli. The toxic activity of both activates protein G form intestinal mucosa with a pathogenic activity results. In the present study, the pathogenic activity of subunit A of Vibrio cholerae toxin (ADP-ribosyltranferase) using isolated fragments from: Giardia intestinalis and a synthetic peptide were used as modulators in vivo. Adult Neo Zealand males rabbits with ileal loop were prepared and different mixtures of heat labile enterotoxin obtained from Escherichia coli H10407 and ARF protein isolated by electrofocusing from Giardia intestinalis Portland I were inoculated in the loops. The toxin activity was evaluated by luminal liquid secretion and cyclic AMP concentration in tissues (each loop). ADP ribosyltranferase activity was modulated, due to a decreased of luminal secretion and cAMP in tissues. Such results were seen when synthetic peptide and subunit A from Vibrio cholerae were used. The ADP ribosyltranferase activity of heat labile Escherichia coli and Vibrio cholerae toxins were modified by in vitro and in vivo interaction with ARF protein, which modified pathogenic effect over rabbits intestinal epithelium.
Nuttall, S D; Krishnan, U V; Hattarki, M; De Gori, R; Irving, R A; Hudson, P J
2001-08-01
The new antigen receptor (NAR) from nurse sharks consists of an immunoglobulin variable domain attached to five constant domains, and is hypothesised to function as an antigen-binding antibody-like molecule. To determine whether the NAR is present in other species we have isolated a number of new antigen receptor variable domains from the spotted wobbegong shark (Orectolobus maculatus) and compared their structure to that of the nurse shark protein. To determine whether these wNARs can function as antigen-binding proteins, we have used them as scaffolds for the construction of protein libraries in which the CDR3 loop was randomised, and displayed the resulting recombinant domains on the surface of fd bacteriophages. On selection against several protein antigens, the highest affinity wNAR proteins were generated against the Gingipain K protease from Porphyromonas gingivalis. One wNAR protein bound Gingipain K specifically by ELISA and BIAcore analysis and, when expressed in E. coli and purified by affinity chromatography, eluted from an FPLC column as a single peak consistent with folding into a monomeric protein. Naturally occurring nurse shark and wobbegong NAR variable domains exhibit conserved cysteine residues within the CDR1 and CDR3 loops which potentially form disulphide linkages and enhance protein stability; proteins isolated from the in vitro NAR wobbegong library showed similar selection for such paired cysteine residues. Thus, the New Antigen Receptor represents a protein scaffold with possible stability advantages over conventional antibodies when used in in vitro molecular libraries.
NASA Astrophysics Data System (ADS)
Katz, Aline; Saenz-Méndez, Patricia; Cousido-Siah, Alexandra; Podjarny, Alberto D.; Ventura, Oscar N.
2012-11-01
Protein tyrosine phosphorylation is a post-translational modification mechanism, crucial for the regulation of nearly all aspects of cell life. This dynamic, reversible process is regulated by the balanced opposing activity of protein tyrosine kinases and protein tyrosine phosphatases. In particular, the protein tyrosine phosphatase 1B (PTP1B) is implicated in the regulation of the insulin-receptor activity, leptin-stimulated signal transduction pathways and other clinically relevant metabolic routes, and it has been found overexpressed or overregulated in human breasts, colon and ovary cancers. The WPD loop of the enzyme presents an inherent flexibility, and it plays a fundamental role in the enzymatic catalysis, turning it into a potential target in the design of new efficient PTP1B inhibitors. In order to determine the interactions that control the spatial conformation adopted by the WPD loop, complexes between the enzyme and halide ions (Br- and I- in particular) were crystallized and their crystallographic structure determined, and the collective movements of the aforementioned complexes were studied through Molecular Dynamics (MD) simulations. Both studies yielded concordant results, indicating the existence of a relationship between the identity of the ion present in the complex and the strength of the interactions it establishes with the surrounding protein residues.
Brocato, Jason; Fang, Lei; Chervona, Yana; Chen, Danqi; Kiok, Kathrin; Sun, Hong; Tseng, Hsiang-Chi; Xu, Dazhong; Shamy, Magdy; Jin, Chunyuan; Costa, Max
2014-01-01
The replication-dependent histone genes are the only metazoan genes whose messenger RNA (mRNA) does not terminate with a poly(A) tail at the 3′-end. Instead, the histone mRNAs display a stem-loop structure at their 3′-end. Stem-loop-binding protein (SLBP) binds the stem-loop and regulates canonical histone mRNA metabolism. Here we report that exposure to arsenic, a carcinogenic metal, decreased cellular levels of SLBP by inducing its proteasomal degradation and inhibiting SLBP transcription via epigenetic mechanisms. Notably, arsenic exposure dramatically increased polyadenylation of canonical histone H3.1 mRNA possibly through down-regulation of SLBP expression. The polyadenylated H3.1 mRNA induced by arsenic was not susceptible to normal degradation that occurs at the end of S phase, resulting in continued presence into mitosis, increased total H3.1 mRNA, and increased H3 protein levels. Excess expression of canonical histones have been shown to increase sensitivity to DNA damage as well as increase the frequency of missing chromosomes and induce genomic instability. Thus, polyadenylation of canonical histone mRNA following arsenic exposure may contribute to arsenic-induced carcinogenesis. PMID:25266719
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedarovich, Alena; Nicholas, Robert A.; Davies, Christopher
Penicillin-binding protein A (PBPA) is a class B penicillin-binding protein that is important for cell division in Mycobacterium tuberculosis. We have determined a second crystal structure of PBPA in apo form and compared it with an earlier structure of apoenzyme. Significant structural differences in the active site region are apparent, including increased ordering of a β-hairpin loop and a shift of the SxN active site motif such that it now occupies a position that appears catalytically competent. Using two assays, including one that uses the intrinsic fluorescence of a tryptophan residue, we have also measured the second-order acylation rate constantsmore » for the antibiotics imipenem, penicillin G, and ceftriaxone. Of these, imipenem, which has demonstrable anti-tubercular activity, shows the highest acylation efficiency. Crystal structures of PBPA in complex with the same antibiotics were also determined, and all show conformational differences in the β5–α11 loop near the active site, but these differ for each β-lactam and also for each of the two molecules in the crystallographic asymmetric unit. Overall, these data reveal the β5–α11 loop of PBPA as a flexible region that appears important for acylation and provide further evidence that penicillin-binding proteins in apo form can occupy different conformational states.« less
Method-Unifying View of Loop-Formation Kinetics in Peptide and Protein Folding.
Jacob, Maik H; D'Souza, Roy N; Schwarzlose, Thomas; Wang, Xiaojuan; Huang, Fang; Haas, Elisha; Nau, Werner M
2018-04-26
Protein folding can be described as a probabilistic succession of events in which the peptide chain forms loops closed by specific amino acid residue contacts, herein referred to as loop nodes. To measure loop rates, several photophysical methods have been introduced where a pair of optically active probes is incorporated at selected chain positions and the excited probe undergoes contact quenching (CQ) upon collision with the second probe. The quenching mechanisms involved triplet-triplet energy transfer, photoinduced electron transfer, and collision-induced fluorescence quenching, where the fluorescence of Dbo, an asparagine residue conjugated to 2,3-diazabicyclo[2.2.2]octane, is quenched by tryptophan. The discrepancy between the loop rates afforded from these three CQ techniques has, however, remained unresolved. In analyzing this discrepancy, we now report two short-distance FRET methods where Dbo acts as an energy acceptor in combination with tryptophan and naphtylalanine, two donors with largely different fluorescence lifetimes of 1.3 and 33 ns, respectively. Despite the different quenching mechanisms, the rates from FRET and CQ methods were, surprisingly, of comparable magnitude. This combination of FRET and CQ data led to a unifying physical model and to the conclusion that the rate of loop formation in folding reactions varies not only with the kind and number of residues that constitute the chain but also in particular with the size and properties of the residues that constitute the loop node.
The diversity of H3 loops determines the antigen-binding tendencies of antibody CDR loops.
Tsuchiya, Yuko; Mizuguchi, Kenji
2016-04-01
Of the complementarity-determining regions (CDRs) of antibodies, H3 loops, with varying amino acid sequences and loop lengths, adopt particularly diverse loop conformations. The diversity of H3 conformations produces an array of antigen recognition patterns involving all the CDRs, in which the residue positions actually in contact with the antigen vary considerably. Therefore, for a deeper understanding of antigen recognition, it is necessary to relate the sequence and structural properties of each residue position in each CDR loop to its ability to bind antigens. In this study, we proposed a new method for characterizing the structural features of the CDR loops and obtained the antigen-binding ability of each residue position in each CDR loop. This analysis led to a simple set of rules for identifying probable antigen-binding residues. We also found that the diversity of H3 loop lengths and conformations affects the antigen-binding tendencies of all the CDR loops. © 2016 The Protein Society.
Dynamic Non-Rigid Objects Reconstruction with a Single RGB-D Sensor
Zuo, Xinxin; Du, Chao; Wang, Runxiao; Zheng, Jiangbin; Yang, Ruigang
2018-01-01
This paper deals with the 3D reconstruction problem for dynamic non-rigid objects with a single RGB-D sensor. It is a challenging task as we consider the almost inevitable accumulation error issue in some previous sequential fusion methods and also the possible failure of surface tracking in a long sequence. Therefore, we propose a global non-rigid registration framework and tackle the drifting problem via an explicit loop closure. Our novel scheme starts with a fusion step to get multiple partial scans from the input sequence, followed by a pairwise non-rigid registration and loop detection step to obtain correspondences between neighboring partial pieces and those pieces that form a loop. Then, we perform a global registration procedure to align all those pieces together into a consistent canonical space as guided by those matches that we have established. Finally, our proposed model-update step helps fixing potential misalignments that still exist after the global registration. Both geometric and appearance constraints are enforced during our alignment; therefore, we are able to get the recovered model with accurate geometry as well as high fidelity color maps for the mesh. Experiments on both synthetic and various real datasets have demonstrated the capability of our approach to reconstruct complete and watertight deformable objects. PMID:29547562
Chabierski, Stefan; Barzon, Luisa; Papa, Anna; Niedrig, Matthias; Bramson, Jonathan L; Richner, Justin M; Palù, Giorgio; Diamond, Michael S; Ulbert, Sebastian
2014-05-09
West Nile Virus (WNV) is an emerging mosquito-transmitted flavivirus that continues to spread and cause disease throughout several parts of the world, including Europe and the Americas. Specific diagnosis of WNV infections using current serological testing is complicated by the high degree of cross-reactivity between antibodies against other clinically relevant flaviviruses, including dengue, tick-borne encephalitis (TBEV), Japanese encephalitis (JEV), and yellow fever (YFV) viruses. Cross-reactivity is particularly problematic in areas where different flaviviruses co-circulate or in populations that have been immunized with vaccines against TBEV, JEV, or YFV. The majority of cross-reactive antibodies against the immunodominant flavivirus envelope (E) protein target a conserved epitope in the fusion loop at the distal end of domain II. We tested a loss-of-function bacterially expressed recombinant WNV E protein containing mutations in the fusion loop and an adjacent loop domain as a possible diagnostic reagent. By comparing the binding of sera from humans infected with WNV or other flaviviruses to the wild type and the mutant E proteins, we analyzed the potential of this technology to specifically detect WNV antibodies. Using this system, we could reliably determine WNV infections. Antibodies from WNV-infected individuals bound equally well to the wild type and the mutant protein. In contrast, sera from persons infected with other flaviviruses showed significantly decreased binding to the mutant protein. By calculating the mean differences between antibody signals detected using the wild type and the mutant proteins, a value could be assigned for each of the flaviviruses, which distinguished their pattern of reactivity. Recombinant mutant E proteins can be used to discriminate infections with WNV from those with other flaviviruses. The data have important implications for the development of improved, specific serological assays for the detection of WNV antibodies in regions where other flaviviruses co-circulate or in populations that are immunized with other flavivirus vaccines.
Gao, Yong; Wu, Meiqin; Zhang, Menjiao; Jiang, Wei; Liang, Enxing; Zhang, Dongping; Zhang, Changquan; Xiao, Ning; Chen, Jianmin
2018-06-05
ZmPIF3 plays an important role in ABA-mediated regulation of stomatal closure in the control of water loss, and can improve both drought tolerance and did not affect the grain yield in the transgenic rice. Phytochrome-interacting factors (PIFs) are a subfamily of basic helix-loop-helix (bHLH) transcription factors and play important roles in regulating plant growth and development. In our previous study, overexpression of a maize PIFs family gene, ZmPIF3, improved drought tolerance in transgenic rice. In this study, measurement of water loss rate, transpiration rate, stomatal conductance, guard cell aperture, density and length of ZmPIF3 transgenic plants showed that ZmPIF3 can enhance water-saving and drought-resistance by decreasing stomatal aperture and reducing transpiration in both transgenic rice and transgenic Arabidopsis. Scrutiny of sensitivity to ABA showed that ZmPIF3 transgenic rice was hypersensitive to ABA, while the endogenous ABA level was not significantly changed. These results indicate that ZmPIF3 plays a major role in the ABA signaling pathway. In addition, DGE results further suggest that ZmPIF3 participates in the ABA signaling pathway and regulates stomatal aperture in rice. Comparison analysis of the phenotype, physiology, and transcriptome of ZmPIF3 transgenic rice compared to control plants further suggests that ZmPIF3 is a positive regulator of ABA signaling and enhances water-saving and drought-resistance traits by reducing stomatal openings to control water loss. Moreover, investigation of the agronomic traits of ZmPIF3 transgenic rice from four cultivating seasons showed that ZmPIF3 expression increased the tiller and panicle number and did not affect the grain yield in the transgenic rice. These results demonstrate that ZmPIF3 is a promising candidate gene in the transgenic breeding of water-saving and drought-resistant rice plants and crop improvement.
Matsuda, Shuichi; Takano, Sho; Sato, Moeko; Furukawa, Kaoru; Nagasawa, Hidetaka; Yoshikawa, Shoko; Kasuga, Jun; Tokuji, Yoshihiko; Yazaki, Kazufumi; Nakazono, Mikio; Takamure, Itsuro; Kato, Kiyoaki
2016-03-07
Water stress is one of the major environmental stresses that affect agricultural production worldwide. Water loss from plants occurs primarily through stomatal pores. Here, we report that an Oryza sativa half-size ATP-binding cassette (ABC) subfamily G protein, RCN1/OsABCG5, is involved in stomatal closure mediated by phytohormone abscisic acid (ABA) accumulation in guard cells. We found that the GFP-RCN1/OsABCG5-fusion protein was localized at the plasma membrane in guard cells. The percentage of guard cell pairs containing both ABA and GFP-RCN1/OsABCG5 increased after exogenous ABA treatment, whereas they were co-localized in guard cell pairs regardless of whether exogenous ABA was applied. ABA application resulted in a smaller increase in the percentage of guard cell pairs containing ABA in rcn1 mutant (A684P) and RCN1-RNAi than in wild-type plants. Furthermore, polyethylene glycol (drought stress)-inducible ABA accumulation in guard cells did not occur in rcn1 mutants. Stomata closure mediated by exogenous ABA application was strongly reduced in rcn1 mutants. Finally, rcn1 mutant plants had more rapid water loss from detached leaves than the wild-type plants. These results indicate that in response to drought stress, RCN1/OsABCG5 is involved in accumulation of ABA in guard cells, which is indispensable for stomatal closure. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.
Function of ABA in Stomatal Defense against Biotic and Drought Stresses
Lim, Chae Woo; Baek, Woonhee; Jung, Jangho; Kim, Jung-Hyun; Lee, Sung Chul
2015-01-01
The plant hormone abscisic acid (ABA) regulates many key processes involved in plant development and adaptation to biotic and abiotic stresses. Under stress conditions, plants synthesize ABA in various organs and initiate defense mechanisms, such as the regulation of stomatal aperture and expression of defense-related genes conferring resistance to environmental stresses. The regulation of stomatal opening and closure is important to pathogen defense and control of transpirational water loss. Recent studies using a combination of approaches, including genetics, physiology, and molecular biology, have contributed considerably to our understanding of ABA signal transduction. A number of proteins associated with ABA signaling and responses—especially ABA receptors—have been identified. ABA signal transduction initiates signal perception by ABA receptors and transfer via downstream proteins, including protein kinases and phosphatases. In the present review, we focus on the function of ABA in stomatal defense against biotic and abiotic stresses, through analysis of each ABA signal component and the relationships of these components in the complex network of interactions. In particular, two ABA signal pathway models in response to biotic and abiotic stress were proposed, from stress signaling to stomatal closure, involving the pyrabactin resistance (PYR)/PYR-like (PYL) or regulatory component of ABA receptor (RCAR) family proteins, 2C-type protein phosphatases, and SnRK2-type protein kinases. PMID:26154766
Evoli, Stefania; Guzzi, Rita; Rizzuti, Bruno
2013-10-01
The spectroscopic, thermal, and functional properties of blue copper proteins can be modulated by mutations in the metal binding loop. Molecular dynamics simulation was used to compare the conformational properties of azurin and two chimeric variants, which were obtained by inserting into the azurin scaffold the copper binding loop of amicyanin and plastocyanin, respectively. Simulations at room temperature show that the proteins retain their overall structure and exhibit concerted motions among specific inner regions, as revealed by principal component analysis. Molecular dynamics at high temperature indicates that the first events in the unfolding pathway are structurally similar in the three proteins and unfolding starts from the region of the α-helix that is far from the metal binding loop. The results provide details of the denaturation process that are consistent with experimental data and in close agreement with other computational approaches, suggesting a distinct mechanism of unfolding of azurin and its chimeric variants. Moreover, differences observed in the dynamics of specific regions in the three proteins correlate with their thermal behavior, contributing to the determination of the basic factors that influence the stability.
Kettunen, R; Tyystjärvi, E; Aro, E M
1996-08-01
Photoinhibition-induced degradation of the D1 protein of the photosystem II reaction center was studied in intact pumpkin (Cucurbita pepo L.) leaves. Photoinhibition was observed to cause the cleavage of the D1 protein at two distinct sites. The main cleavage generated an 18-kD N-terminal and a 20-kD C-terminal degradation fragment of the D1 protein. this cleavage site was mapped to be located clearly N terminally of the DE loop. The other, less-frequent cleavage occurred at the DE loop and produced the well-documented 23-kD, N-terminal D1 degradation product. Furthermore, the 23-kD, N-terminal D1 fragment appears to be phosphorylated and can be detected only under severe photoinhibition in vivo. Comparison of the D1 degradation pattern after in vivo photoinhibition to that after in vitro acceptor-side and donor-side photoinhibition, performed with isolated photosystem II core particles, gives indirect evidence in support of donor-side photoinhibition in intact leaves.
A Positive Autoregulatory BDNF Feedback Loop via C/EBPβ Mediates Hippocampal Memory Consolidation
Bambah-Mukku, Dhananjay; Travaglia, Alessio; Chen, Dillon Y.; Pollonini, Gabriella
2014-01-01
Little is known about the temporal progression and regulation of the mechanisms underlying memory consolidation. Brain-derived-neurotrophic-factor (BDNF) has been shown to mediate the maintenance of memory consolidation, but the mechanisms of this regulation remain unclear. Using inhibitory avoidance (IA) in rats, here we show that a hippocampal BDNF-positive autoregulatory feedback loop via CCAAT-enhancer binding protein β (C/EBPβ) is necessary to mediate memory consolidation. At training, a very rapid, learning-induced requirement of BDNF accompanied by rapid de novo translation controls the induction of a persistent activation of cAMP-response element binding-protein (CREB) and C/EBPβ expression. The latter, in turn, controls an increase in expression of bdnf exon IV transcripts and BDNF protein, both of which are necessary and, together with the initial BDNF requirement, mediate memory consolidation. The autoregulatory loop terminates by 48 h after training with decreased C/EBPβ and pCREB and increased methyl-CpG binding protein-2, histone-deacetylase-2, and switch-independent-3a binding at the bdnf exon IV promoter. PMID:25209292
Fahie, Monifa; Chisholm, Christina; Chen, Min
2015-02-24
Oligomeric protein nanopores with rigid structures have been engineered for the purpose of sensing a wide range of analytes including small molecules and biological species such as proteins and DNA. We chose a monomeric β-barrel porin, OmpG, as the platform from which to derive the nanopore sensor. OmpG is decorated with seven flexible loops that move dynamically to create a distinct gating pattern when ionic current passes through the pore. Biotin was chemically tethered to the most flexible one of these loops. The gating characteristic of the loop's movement in and out of the porin was substantially altered by analyte protein binding. The gating characteristics of the pore with bound targets were remarkably sensitive to molecular identity, even providing the ability to distinguish between homologues within an antibody mixture. A total of five gating parameters were analyzed for each analyte to create a unique fingerprint for each biotin-binding protein. Our exploitation of gating noise as a molecular identifier may allow more sophisticated sensor design, while OmpG's monomeric structure greatly simplifies nanopore production.
Lensink, M F; Haapalainen, A M; Hiltunen, J K; Glumoff, T; Juffer, A H
2002-10-11
In the study of the structure and function relationship of human MFE-2, we have investigated the dynamics of human MFE-2SCP-2L (hSCP-2L) and its response to ligand removal. A comparison was made with homologous rabbit SCP-2. Breathing and a closing motion are found, identifiable with an adjustment in size and a closing off of the binding pocket. Crucial residues for structural integrity have been identified. Particularly mobile areas of the protein are loop 1 that is connecting helices A and C in space, and helix D, next to the entrance of the pocket. In hSCP-2L, the binding pocket gets occupied by Phe93, which is making a tight hydrophobic contact with Trp36. In addition, it is found that the C-terminal peroxisomal targeting signal (PTS1) that is solvent exposed in the complexed structure becomes buried when no ligand is present. Moreover, an anti-correlation exists between burial of PTS1 and the size of the binding pocket. The results are in accordance with plant nsLTPs, where a similar accommodation of binding pocket size was found after ligand binding/removal. Furthermore, the calculations support the suggestion of a ligand-assisted targeting mechanism.
Niescierowicz, Katarzyna; Caro, Lydia; Cherezov, Vadim; Vivaudou, Michel; Moreau, Christophe J
2014-01-07
Structural studies of G protein-coupled receptors (GPCRs) extensively use the insertion of globular soluble protein domains to facilitate their crystallization. However, when inserted in the third intracellular loop (i3 loop), the soluble protein domain disrupts their coupling to G proteins and impedes the GPCRs functional characterization by standard G protein-based assays. Therefore, activity tests of crystallization-optimized GPCRs are essentially limited to their ligand binding properties using radioligand binding assays. Functional characterization of additional thermostabilizing mutations requires the insertion of similar mutations in the wild-type receptor to allow G protein-activation tests. We demonstrate that ion channel-coupled receptor technology is a complementary approach for a comprehensive functional characterization of crystallization-optimized GPCRs and potentially of any engineered GPCR. Ligand-induced conformational changes of the GPCRs are translated into electrical signal and detected by simple current recordings, even though binding of G proteins is sterically blocked by the added soluble protein domain. Copyright © 2014 Elsevier Ltd. All rights reserved.
a Weighted Closed-Form Solution for Rgb-D Data Registration
NASA Astrophysics Data System (ADS)
Vestena, K. M.; Dos Santos, D. R.; Oilveira, E. M., Jr.; Pavan, N. L.; Khoshelham, K.
2016-06-01
Existing 3D indoor mapping of RGB-D data are prominently point-based and feature-based methods. In most cases iterative closest point (ICP) and its variants are generally used for pairwise registration process. Considering that the ICP algorithm requires an relatively accurate initial transformation and high overlap a weighted closed-form solution for RGB-D data registration is proposed. In this solution, we weighted and normalized the 3D points based on the theoretical random errors and the dual-number quaternions are used to represent the 3D rigid body motion. Basically, dual-number quaternions provide a closed-form solution by minimizing a cost function. The most important advantage of the closed-form solution is that it provides the optimal transformation in one-step, it does not need to calculate good initial estimates and expressively decreases the demand for computer resources in contrast to the iterative method. Basically, first our method exploits RGB information. We employed a scale invariant feature transformation (SIFT) for extracting, detecting, and matching features. It is able to detect and describe local features that are invariant to scaling and rotation. To detect and filter outliers, we used random sample consensus (RANSAC) algorithm, jointly with an statistical dispersion called interquartile range (IQR). After, a new RGB-D loop-closure solution is implemented based on the volumetric information between pair of point clouds and the dispersion of the random errors. The loop-closure consists to recognize when the sensor revisits some region. Finally, a globally consistent map is created to minimize the registration errors via a graph-based optimization. The effectiveness of the proposed method is demonstrated with a Kinect dataset. The experimental results show that the proposed method can properly map the indoor environment with an absolute accuracy around 1.5% of the travel of a trajectory.
Almarakbi, Waleed A; Kaki, Abdullah M
2014-07-01
The main function of an endotracheal tube (ETT) cuff is to prevent aspiration. High cuff pressure is usually associated with postoperative complications. We tried to compare cuff inflation guided by pressure volume loop closure (PV-L) with those by just to seal technique (JS) and assess the postoperative incidence of sore throat, cough and hoarseness. In a prospective, randomized clinical trial, 100 patients' tracheas were intubated. In the first group (n = 50), ETT cuff inflation was guided by PV-L, while in the second group (n. = 50) the ETT cuff was inflated using the JS technique. Intracuff pressures and volumes were measured. The incidence of postoperative cuff-related complications was reported. Demographic data and durations of intubation were comparable between the groups. The use of PV-L was associated with a lesser amount of intracuff air [4.05 (3.7-4.5) vs 5 (4.8-5.5), P < 0.001] and lower cuff pressure than those in the JS group [18.25 (18-19) vs 33 (32-35), P ≤ 0.001]. The incidence of postextubation cuff-related complications was significantly less frequent among the PV-L group patients as compared with the JS group patients (P ≤ 0.009), except for hoarseness of voice, which was less frequent among the PV-L group, but not statistically significant (P ≤ 0.065). Multiple regression models for prediction of intra-cuff pressure after intubation and before extubation revealed a statistically significant association with the technique used for cuff inflation (P < 0.0001). The study confirms that PV-L-guided ETT cuff inflation is an effective way to seal the airway and associates with a lower ETT cuff pressure and lower incidence of cuff-related complications.
Nakashima, T; Yao, M; Kawamura, S; Iwasaki, K; Kimura, M; Tanaka, I
2001-05-01
Ribosomal protein L5 is a 5S rRNA binding protein in the large subunit and plays an essential role in the promotion of a particular conformation of 5S rRNA. The crystal structure of the ribosomal protein L5 from Bacillus stearothermophilus has been determined at 1.8 A resolution. The molecule consists of a five-stranded antiparallel beta-sheet and four alpha-helices, which fold in a way that is topologically similar to the ribonucleoprotein (RNP) domain. The molecular shape and electrostatic representation suggest that the concave surface and loop regions are involved in 5S rRNA binding. To identify amino acid residues responsible for 5S rRNA binding, we made use of Ala-scanning mutagenesis of evolutionarily conserved amino acids occurring in the beta-strands and loop regions. The mutations of Asn37 at the beta1-strand and Gln63 at the loop between helix 2 and beta3-strand as well as that of Phe77 at the tip of the loop structure between the beta2- and beta3-strands caused a significant reduction in 5S rRNA binding. In addition, the mutations of Thr90 on the beta3-strand and Ile141 and Asp144 at the loop between beta4- and beta5-strands moderately reduced the 5S rRNA-binding affinity. Comparison of these results with the more recently analyzed structure of the 50S subunit from Haloarcula marismortui suggests that there are significant differences in the structure at N- and C-terminal regions and probably in the 5S rRNA binding.
Nakashima, T; Yao, M; Kawamura, S; Iwasaki, K; Kimura, M; Tanaka, I
2001-01-01
Ribosomal protein L5 is a 5S rRNA binding protein in the large subunit and plays an essential role in the promotion of a particular conformation of 5S rRNA. The crystal structure of the ribosomal protein L5 from Bacillus stearothermophilus has been determined at 1.8 A resolution. The molecule consists of a five-stranded antiparallel beta-sheet and four alpha-helices, which fold in a way that is topologically similar to the ribonucleoprotein (RNP) domain. The molecular shape and electrostatic representation suggest that the concave surface and loop regions are involved in 5S rRNA binding. To identify amino acid residues responsible for 5S rRNA binding, we made use of Ala-scanning mutagenesis of evolutionarily conserved amino acids occurring in the beta-strands and loop regions. The mutations of Asn37 at the beta1-strand and Gln63 at the loop between helix 2 and beta3-strand as well as that of Phe77 at the tip of the loop structure between the beta2- and beta3-strands caused a significant reduction in 5S rRNA binding. In addition, the mutations of Thr90 on the beta3-strand and Ile141 and Asp144 at the loop between beta4- and beta5-strands moderately reduced the 5S rRNA-binding affinity. Comparison of these results with the more recently analyzed structure of the 50S subunit from Haloarcula marismortui suggests that there are significant differences in the structure at N- and C-terminal regions and probably in the 5S rRNA binding. PMID:11350033
Role of the Iron Axial Ligands of Heme Carrier HasA in Heme Uptake and Release*
Caillet-Saguy, Célia; Piccioli, Mario; Turano, Paola; Lukat-Rodgers, Gudrun; Wolff, Nicolas; Rodgers, Kenton R.; Izadi-Pruneyre, Nadia; Delepierre, Muriel; Lecroisey, Anne
2012-01-01
The hemophore protein HasA from Serratia marcescens cycles between two states as follows: the heme-bound holoprotein, which functions as a carrier of the metal cofactor toward the membrane receptor HasR, and the heme-free apoprotein fishing for new porphyrin to be taken up after the heme has been delivered to HasR. Holo- and apo-forms differ for the conformation of the two loops L1 and L2, which provide the axial ligands of the iron through His32 and Tyr75, respectively. In the apo-form, loop L1 protrudes toward the solvent far away from loop L2; in the holoprotein, closing of the loops on the heme occurs upon establishment of the two axial coordination bonds. We have established that the two variants obtained via single point mutations of either axial ligand (namely H32A and Y75A) are both in the closed conformation. The presence of the heme and one out of two axial ligands is sufficient to establish a link between L1 and L2, thanks to the presence of coordinating solvent molecules. The latter are stabilized in the iron coordination environment by H-bond interactions with surrounding protein residues. The presence of such a water molecule in both variants is revealed here through a set of different spectroscopic techniques. Previous studies had shown that heme release and uptake processes occur via intermediate states characterized by a Tyr75-iron-bound form with open conformation of loop L1. Here, we demonstrate that these states do not naturally occur in the free protein but can only be driven by the interaction with the partner proteins. PMID:22700962
Sung, Nuri; Lee, Jungsoon; Kim, Ji-Hyun; Chang, Changsoo; Joachimiak, Andrzej; Lee, Sukyeong; Tsai, Francis T. F.
2016-01-01
Heat-shock protein of 90 kDa (Hsp90) is an essential molecular chaperone that adopts different 3D structures associated with distinct nucleotide states: a wide-open, V-shaped dimer in the apo state and a twisted, N-terminally closed dimer with ATP. Although the N domain is known to mediate ATP binding, how Hsp90 senses the bound nucleotide and facilitates dimer closure remains unclear. Here we present atomic structures of human mitochondrial Hsp90N (TRAP1N) and a composite model of intact TRAP1 revealing a previously unobserved coiled-coil dimer conformation that may precede dimer closure and is conserved in intact TRAP1 in solution. Our structure suggests that TRAP1 normally exists in an autoinhibited state with the ATP lid bound to the nucleotide-binding pocket. ATP binding displaces the ATP lid that signals the cis-bound ATP status to the neighboring subunit in a highly cooperative manner compatible with the coiled-coil intermediate state. We propose that TRAP1 is a ligand-activated molecular chaperone, which couples ATP binding to dramatic changes in local structure required for protein folding. PMID:26929380
Mohanta, Tapan Kumar; Mohanta, Nibedita; Parida, Pratap; Panda, Sujogya Kumar; Ponpandian, Lakshmi Narayanan; Bae, Hanhong
2016-01-01
The mitogen-activated protein kinase (MAPK) is characterized by the presence of the T-E-Y, T-D-Y, and T-G-Y motifs in its activation loop region and plays a significant role in regulating diverse cellular responses in eukaryotic organisms. Availability of large-scale genome data in the fungal kingdom encouraged us to identify and analyse the fungal MAPK gene family consisting of 173 fungal species. The analysis of the MAPK gene family resulted in the discovery of several novel activation loop motifs (T-T-Y, T-I-Y, T-N-Y, T-H-Y, T-S-Y, K-G-Y, T-Q-Y, S-E-Y and S-D-Y) in fungal MAPKs. The phylogenetic analysis suggests that fungal MAPKs are non-polymorphic, had evolved from their common ancestors around 1500 million years ago, and are distantly related to plant MAPKs. We are the first to report the presence of nine novel activation loop motifs in fungal MAPKs. The specificity of the activation loop motif plays a significant role in controlling different growth and stress related pathways in fungi. Hence, the presences of these nine novel activation loop motifs in fungi are of special interest. PMID:26918378
Sphinx: merging knowledge-based and ab initio approaches to improve protein loop prediction
Marks, Claire; Nowak, Jaroslaw; Klostermann, Stefan; Georges, Guy; Dunbar, James; Shi, Jiye; Kelm, Sebastian
2017-01-01
Abstract Motivation: Loops are often vital for protein function, however, their irregular structures make them difficult to model accurately. Current loop modelling algorithms can mostly be divided into two categories: knowledge-based, where databases of fragments are searched to find suitable conformations and ab initio, where conformations are generated computationally. Existing knowledge-based methods only use fragments that are the same length as the target, even though loops of slightly different lengths may adopt similar conformations. Here, we present a novel method, Sphinx, which combines ab initio techniques with the potential extra structural information contained within loops of a different length to improve structure prediction. Results: We show that Sphinx is able to generate high-accuracy predictions and decoy sets enriched with near-native loop conformations, performing better than the ab initio algorithm on which it is based. In addition, it is able to provide predictions for every target, unlike some knowledge-based methods. Sphinx can be used successfully for the difficult problem of antibody H3 prediction, outperforming RosettaAntibody, one of the leading H3-specific ab initio methods, both in accuracy and speed. Availability and Implementation: Sphinx is available at http://opig.stats.ox.ac.uk/webapps/sphinx. Contact: deane@stats.ox.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28453681
Sphinx: merging knowledge-based and ab initio approaches to improve protein loop prediction.
Marks, Claire; Nowak, Jaroslaw; Klostermann, Stefan; Georges, Guy; Dunbar, James; Shi, Jiye; Kelm, Sebastian; Deane, Charlotte M
2017-05-01
Loops are often vital for protein function, however, their irregular structures make them difficult to model accurately. Current loop modelling algorithms can mostly be divided into two categories: knowledge-based, where databases of fragments are searched to find suitable conformations and ab initio, where conformations are generated computationally. Existing knowledge-based methods only use fragments that are the same length as the target, even though loops of slightly different lengths may adopt similar conformations. Here, we present a novel method, Sphinx, which combines ab initio techniques with the potential extra structural information contained within loops of a different length to improve structure prediction. We show that Sphinx is able to generate high-accuracy predictions and decoy sets enriched with near-native loop conformations, performing better than the ab initio algorithm on which it is based. In addition, it is able to provide predictions for every target, unlike some knowledge-based methods. Sphinx can be used successfully for the difficult problem of antibody H3 prediction, outperforming RosettaAntibody, one of the leading H3-specific ab initio methods, both in accuracy and speed. Sphinx is available at http://opig.stats.ox.ac.uk/webapps/sphinx. deane@stats.ox.ac.uk. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.
Functional and structural analysis of the sialic acid-binding domain of rotaviruses.
Isa, P; López, S; Segovia, L; Arias, C F
1997-01-01
The infectivity of most animal rotaviruses is dependent on the interaction of the virus spike protein VP4 with a sialic acid (SA)-containing cell receptor, and the SA-binding domain of this protein has been mapped between amino acids 93 and 208 of its trypsin cleavage fragment VP8. To identify which residues in this region are essential for the SA-binding activity, we performed alanine mutagenesis of the rotavirus RRV VP8 expressed in bacteria as a fusion polypeptide with glutathione S-transferase. Tyrosines were primarily targeted since tyrosine has been involved in the interaction of other viral hemagglutinins with SA. Of the 15 substitutions carried out, 10 abolished the SA-dependent hemagglutination activity of the protein, as well as its ability to bind to glycophorin A in a solid-phase assay. However, only alanine substitutions for tyrosines 155 and 188 and for serine 190 did not affect the overall conformation of the protein, as judged by their interaction with a panel of conformationally sensitive neutralizing VP8 monoclonal antibodies (MAbs). These findings suggest that these three amino acids play an essential role in the SA-binding activity of the protein, presumably by interacting directly with the SA molecule. The predicted secondary structure of VP8 suggests that it is organized as 11 beta-strands separated by loops; in this model, Tyr-155 maps to loop 7 while Tyr-188 and Ser-190 map to loop 9. The close proximity of these two loops is also supported by previous results from competition experiments with neutralizing MAbs directed at RRV VP8. PMID:9261399
Motivated Proteins: A web application for studying small three-dimensional protein motifs
Leader, David P; Milner-White, E James
2009-01-01
Background Small loop-shaped motifs are common constituents of the three-dimensional structure of proteins. Typically they comprise between three and seven amino acid residues, and are defined by a combination of dihedral angles and hydrogen bonding partners. The most abundant of these are αβ-motifs, asx-motifs, asx-turns, β-bulges, β-bulge loops, β-turns, nests, niches, Schellmann loops, ST-motifs, ST-staples and ST-turns. We have constructed a database of such motifs from a range of high-quality protein structures and built a web application as a visual interface to this. Description The web application, Motivated Proteins, provides access to these 12 motifs (with 48 sub-categories) in a database of over 400 representative proteins. Queries can be made for specific categories or sub-categories of motif, motifs in the vicinity of ligands, motifs which include part of an enzyme active site, overlapping motifs, or motifs which include a particular amino acid sequence. Individual proteins can be specified, or, where appropriate, motifs for all proteins listed. The results of queries are presented in textual form as an (X)HTML table, and may be saved as parsable plain text or XML. Motifs can be viewed and manipulated either individually or in the context of the protein in the Jmol applet structural viewer. Cartoons of the motifs imposed on a linear representation of protein secondary structure are also provided. Summary information for the motifs is available, as are histograms of amino acid distribution, and graphs of dihedral angles at individual positions in the motifs. Conclusion Motivated Proteins is a publicly and freely accessible web application that enables protein scientists to study small three-dimensional motifs without requiring knowledge of either Structured Query Language or the underlying database schema. PMID:19210785
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wemmer, D.E.; Kumar, N.V.; Metrione, R.M.
Toxin II from Radianthus paumotensis (Rp/sub II/) has been investigated by high-resolution NMR and chemical sequencing methods. Resonance assignments have been obtained for this protein by the sequential approach. NMR assignments could not be made consistent with the previously reported primary sequence for this protein, and chemical methods have been used to determine a sequence with which the NMR data are consistent. Analysis of the 2D NOE spectra shows that the protein secondary structure is comprised of two sequences of ..beta..-sheet, probably joined into a distorted continuous sheet, connected by turns and extended loops, without any regular ..cap alpha..-helical segments.more » The residues previously implicated in activity in this class of proteins, D8 and R13, occur in a loop region.« less
Yunus, Muhammad Amir; Lin, Xiaoyan; Bailey, Dalan; Karakasiliotis, Ioannis; Chaudhry, Yasmin; Vashist, Surender; Zhang, Guo; Thorne, Lucy; Kao, C. Cheng
2014-01-01
ABSTRACT All members of the Caliciviridae family of viruses produce a subgenomic RNA during infection. The subgenomic RNA typically encodes only the major and minor capsid proteins, but in murine norovirus (MNV), the subgenomic RNA also encodes the VF1 protein, which functions to suppress host innate immune responses. To date, the mechanism of norovirus subgenomic RNA synthesis has not been characterized. We have previously described the presence of an evolutionarily conserved RNA stem-loop structure on the negative-sense RNA, the complementary sequence of which codes for the viral RNA-dependent RNA polymerase (NS7). The conserved stem-loop is positioned 6 nucleotides 3′ of the start site of the subgenomic RNA in all caliciviruses. We demonstrate that the conserved stem-loop is essential for MNV viability. Mutant MNV RNAs with substitutions in the stem-loop replicated poorly until they accumulated mutations that revert to restore the stem-loop sequence and/or structure. The stem-loop sequence functions in a noncoding context, as it was possible to restore the replication of an MNV mutant by introducing an additional copy of the stem-loop between the NS7- and VP1-coding regions. Finally, in vitro biochemical data suggest that the stem-loop sequence is sufficient for the initiation of viral RNA synthesis by the recombinant MNV RNA-dependent RNA polymerase, confirming that the stem-loop forms the core of the norovirus subgenomic promoter. IMPORTANCE Noroviruses are a significant cause of viral gastroenteritis, and it is important to understand the mechanism of norovirus RNA synthesis. Here we describe the identification of an RNA stem-loop structure that functions as the core of the norovirus subgenomic RNA promoter in cells and in vitro. This work provides new insights into the molecular mechanisms of norovirus RNA synthesis and the sequences that determine the recognition of viral RNA by the RNA-dependent RNA polymerase. PMID:25392209
Yunus, Muhammad Amir; Lin, Xiaoyan; Bailey, Dalan; Karakasiliotis, Ioannis; Chaudhry, Yasmin; Vashist, Surender; Zhang, Guo; Thorne, Lucy; Kao, C Cheng; Goodfellow, Ian
2015-01-15
All members of the Caliciviridae family of viruses produce a subgenomic RNA during infection. The subgenomic RNA typically encodes only the major and minor capsid proteins, but in murine norovirus (MNV), the subgenomic RNA also encodes the VF1 protein, which functions to suppress host innate immune responses. To date, the mechanism of norovirus subgenomic RNA synthesis has not been characterized. We have previously described the presence of an evolutionarily conserved RNA stem-loop structure on the negative-sense RNA, the complementary sequence of which codes for the viral RNA-dependent RNA polymerase (NS7). The conserved stem-loop is positioned 6 nucleotides 3' of the start site of the subgenomic RNA in all caliciviruses. We demonstrate that the conserved stem-loop is essential for MNV viability. Mutant MNV RNAs with substitutions in the stem-loop replicated poorly until they accumulated mutations that revert to restore the stem-loop sequence and/or structure. The stem-loop sequence functions in a noncoding context, as it was possible to restore the replication of an MNV mutant by introducing an additional copy of the stem-loop between the NS7- and VP1-coding regions. Finally, in vitro biochemical data suggest that the stem-loop sequence is sufficient for the initiation of viral RNA synthesis by the recombinant MNV RNA-dependent RNA polymerase, confirming that the stem-loop forms the core of the norovirus subgenomic promoter. Noroviruses are a significant cause of viral gastroenteritis, and it is important to understand the mechanism of norovirus RNA synthesis. Here we describe the identification of an RNA stem-loop structure that functions as the core of the norovirus subgenomic RNA promoter in cells and in vitro. This work provides new insights into the molecular mechanisms of norovirus RNA synthesis and the sequences that determine the recognition of viral RNA by the RNA-dependent RNA polymerase. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Cui, Yanfang; Tae, Han-Shen; Norris, Nicole C; Karunasekara, Yamuna; Pouliquin, Pierre; Board, Philip G; Dulhunty, Angela F; Casarotto, Marco G
2009-03-01
The II-III loop of the dihydropyridine receptor (DHPR) alpha(1s) subunit is a modulator of the ryanodine receptor (RyR1) Ca(2+) release channel in vitro and is essential for skeletal muscle contraction in vivo. Despite its importance, the structure of this loop has not been reported. We have investigated its structure using a suite of NMR techniques which revealed that the DHPR II-III loop is an intrinsically unstructured protein (IUP) and as such belongs to a burgeoning structural class of functionally important proteins. The loop does not possess a stable tertiary fold: it is highly flexible, with a strong N-terminal helix followed by nascent helical/turn elements and unstructured segments. Its residual structure is loosely globular with the N and C termini in close proximity. The unstructured nature of the II-III loop may allow it to easily modify its interaction with RyR1 following a surface action potential and thus initiate rapid Ca(2+) release and contraction. The in vitro binding partner for the II-III was investigated. The II-III loop interacts with the second of three structurally distinct SPRY domains in RyR1, whose function is unknown. This interaction occurs through two preformed N-terminal alpha-helical regions and a C-terminal hydrophobic element. The A peptide corresponding to the helical N-terminal region is a common probe of RyR function and binds to the same SPRY domain as the full II-III loop. Thus the second SPRY domain is an in vitro binding site for the II-III loop. The possible in vivo role of this region is discussed.
Kristensen, Tatjana P.; Maria Cherian, Reeja; Gray, Fiona C.; MacNeill, Stuart A.
2014-01-01
The hexameric MCM complex is the catalytic core of the replicative helicase in eukaryotic and archaeal cells. Here we describe the first in vivo analysis of archaeal MCM protein structure and function relationships using the genetically tractable haloarchaeon Haloferax volcanii as a model system. Hfx. volcanii encodes a single MCM protein that is part of the previously identified core group of haloarchaeal MCM proteins. Three structural features of the N-terminal domain of the Hfx. volcanii MCM protein were targeted for mutagenesis: the β7-β8 and β9-β10 β-hairpin loops and putative zinc binding domain. Five strains carrying single point mutations in the β7-β8 β-hairpin loop were constructed, none of which displayed impaired cell growth under normal conditions or when treated with the DNA damaging agent mitomycin C. However, short sequence deletions within the β7-β8 β-hairpin were not tolerated and neither was replacement of the highly conserved residue glutamate 187 with alanine. Six strains carrying paired alanine substitutions within the β9-β10 β-hairpin loop were constructed, leading to the conclusion that no individual amino acid within that hairpin loop is absolutely required for MCM function, although one of the mutant strains displays greatly enhanced sensitivity to mitomycin C. Deletions of two or four amino acids from the β9-β10 β-hairpin were tolerated but mutants carrying larger deletions were inviable. Similarly, it was not possible to construct mutants in which any of the conserved zinc binding cysteines was replaced with alanine, underlining the likely importance of zinc binding for MCM function. The results of these studies demonstrate the feasibility of using Hfx. volcanii as a model system for reverse genetic analysis of archaeal MCM protein function and provide important confirmation of the in vivo importance of conserved structural features identified by previous bioinformatic, biochemical and structural studies. PMID:24723920
Campagne, F; Weinstein, H
1999-01-01
An algorithmic method for drawing residue-based schematic diagrams of proteins on a 2D page is presented and illustrated. The method allows the creation of rendering engines dedicated to a given family of sequences, or fold. The initial implementation provides an engine that can produce a 2D diagram representing secondary structure for any transmembrane protein sequence. We present the details of the strategy for automating the drawing of these diagrams. The most important part of this strategy is the development of an algorithm for laying out residues of a loop that connects to arbitrary points of a 2D plane. As implemented, this algorithm is suitable for real-time modification of the loop layout. This work is of interest for the representation and analysis of data from (1) protein databases, (2) mutagenesis results, or (3) various kinds of protein context-dependent annotations or data.
The role of RNA structure in the interaction of U1A protein with U1 hairpin II RNA
Law, Michael J.; Rice, Andrew J.; Lin, Patti; Laird-Offringa, Ite A.
2006-01-01
The N-terminal RNA Recognition Motif (RRM1) of the spliceosomal protein U1A interacting with its target U1 hairpin II (U1hpII) has been used as a paradigm for RRM-containing proteins interacting with their RNA targets. U1A binds to U1hpII via direct interactions with a 7-nucleotide (nt) consensus binding sequence at the 5′ end of a 10-nt loop, and via hydrogen bonds with the closing C–G base pair at the top of the RNA stem. Using surface plasmon resonance (Biacore), we have examined the role of structural features of U1hpII in binding to U1A RRM1. Mutational analysis of the closing base pair suggests it plays a minor role in binding and mainly prevents “breathing” of the loop. Lengthening the stem and nontarget part of the loop suggests that the increased negative charge of the RNA might slightly aid association. However, this is offset by an increase in dissociation, which may be caused by attraction of the RRM to nontarget parts of the RNA. Studies of a single stranded target and RNAs with untethered loops indicate that structure is not very relevant for association but is important for complex stability. In particular, breaking the link between the stem and the 5′ side of the loop greatly increases complex dissociation, presumably by hindering simultaneous contacts between the RRM and stem and loop nucleotides. While binding of U1A to a single stranded target is much weaker than to U1hpII, it occurs with nanomolar affinity, supporting recent evidence that binding of unstructured RNA by U1A has physiological significance. PMID:16738410
The role of RNA structure in the interaction of U1A protein with U1 hairpin II RNA.
Law, Michael J; Rice, Andrew J; Lin, Patti; Laird-Offringa, Ite A
2006-07-01
The N-terminal RNA Recognition Motif (RRM1) of the spliceosomal protein U1A interacting with its target U1 hairpin II (U1hpII) has been used as a paradigm for RRM-containing proteins interacting with their RNA targets. U1A binds to U1hpII via direct interactions with a 7-nucleotide (nt) consensus binding sequence at the 5' end of a 10-nt loop, and via hydrogen bonds with the closing C-G base pair at the top of the RNA stem. Using surface plasmon resonance (Biacore), we have examined the role of structural features of U1hpII in binding to U1A RRM1. Mutational analysis of the closing base pair suggests it plays a minor role in binding and mainly prevents "breathing" of the loop. Lengthening the stem and nontarget part of the loop suggests that the increased negative charge of the RNA might slightly aid association. However, this is offset by an increase in dissociation, which may be caused by attraction of the RRM to nontarget parts of the RNA. Studies of a single stranded target and RNAs with untethered loops indicate that structure is not very relevant for association but is important for complex stability. In particular, breaking the link between the stem and the 5' side of the loop greatly increases complex dissociation, presumably by hindering simultaneous contacts between the RRM and stem and loop nucleotides. While binding of U1A to a single stranded target is much weaker than to U1hpII, it occurs with nanomolar affinity, supporting recent evidence that binding of unstructured RNA by U1A has physiological significance.
Split green fluorescent protein as a modular binding partner for protein crystallization.
Nguyen, Hau B; Hung, Li-Wei; Yeates, Todd O; Terwilliger, Thomas C; Waldo, Geoffrey S
2013-12-01
A modular strategy for protein crystallization using split green fluorescent protein (GFP) as a crystallization partner is demonstrated. Insertion of a hairpin containing GFP β-strands 10 and 11 into a surface loop of a target protein provides two chain crossings between the target and the reconstituted GFP compared with the single connection afforded by terminal GFP fusions. This strategy was tested by inserting this hairpin into a loop of another fluorescent protein, sfCherry. The crystal structure of the sfCherry-GFP(10-11) hairpin in complex with GFP(1-9) was determined at a resolution of 2.6 Å. Analysis of the complex shows that the reconstituted GFP is attached to the target protein (sfCherry) in a structurally ordered way. This work opens the way to rapidly creating crystallization variants by reconstituting a target protein bearing the GFP(10-11) hairpin with a variety of GFP(1-9) mutants engineered for favorable crystallization.
Structural dynamics of the lac repressor-DNA complex revealed by a multiscale simulation.
Villa, Elizabeth; Balaeff, Alexander; Schulten, Klaus
2005-05-10
A multiscale simulation of a complex between the lac repressor protein (LacI) and a 107-bp-long DNA segment is reported. The complex between the repressor and two operator DNA segments is described by all-atom molecular dynamics; the size of the simulated system comprises either 226,000 or 314,000 atoms. The DNA loop connecting the operators is modeled as a continuous elastic ribbon, described mathematically by the nonlinear Kirchhoff differential equations with boundary conditions obtained from the coordinates of the terminal base pairs of each operator. The forces stemming from the looped DNA are included in the molecular dynamics simulations; the loop structure and the forces are continuously recomputed because the protein motions during the simulations shift the operators and the presumed termini of the loop. The simulations reveal the structural dynamics of the LacI-DNA complex in unprecedented detail. The multiple domains of LacI exhibit remarkable structural stability during the simulation, moving much like rigid bodies. LacI is shown to absorb the strain from the looped DNA mainly through its mobile DNA-binding head groups. Even with large fluctuating forces applied, the head groups tilt strongly and keep their grip on the operator DNA, while the remainder of the protein retains its V-shaped structure. A simulated opening of the cleft of LacI by 500-pN forces revealed the interactions responsible for locking LacI in the V-conformation.
Madhurantakam, Chaithanya; Rajakumara, Eerappa; Mazumdar, Pooja Anjali; Saha, Baisakhee; Mitra, Devrani; Wiker, Harald G; Sankaranarayanan, Rajan; Das, Amit Kumar
2005-03-01
The low-molecular-weight protein tyrosine phosphatase (LMWPTPase) belongs to a distinctive class of phosphotyrosine phosphatases widely distributed among prokaryotes and eukaryotes. We report here the crystal structure of LMWPTPase of microbial origin, the first of its kind from Mycobacterium tuberculosis. The structure was determined to be two crystal forms at 1.9- and 2.5-A resolutions. These structural forms are compared with those of the LMWPTPases of eukaryotes. Though the overall structure resembles that of the eukaryotic LMWPTPases, there are significant changes around the active site and the protein tyrosine phosphatase (PTP) loop. The variable loop forming the wall of the crevice leading to the active site is conformationally unchanged from that of mammalian LMWPTPase; however, differences are observed in the residues involved, suggesting that they have a role in influencing different substrate specificities. The single amino acid substitution (Leu12Thr [underlined below]) in the consensus sequence of the PTP loop, CTGNICRS, has a major role in the stabilization of the PTP loop, unlike what occurs in mammalian LMWPTPases. A chloride ion and a glycerol molecule were modeled in the active site where the chloride ion interacts in a manner similar to that of phosphate with the main chain nitrogens of the PTP loop. This structural study, in addition to identifying specific mycobacterial features, may also form the basis for exploring the mechanism of the substrate specificities of bacterial LMWPTPases.
Jaremko, Matt J; Lee, D John; Patel, Ashay; Winslow, Victoria; Opella, Stanley J; McCammon, J Andrew; Burkart, Michael D
2017-10-10
In an effort to elucidate and engineer interactions in type II nonribosomal peptide synthetases, we analyzed biomolecular recognition between the essential peptidyl carrier proteins and adenylation domains using nuclear magnetic resonance (NMR) spectroscopy, molecular dynamics, and mutational studies. Three peptidyl carrier proteins, PigG, PltL, and RedO, in addition to their cognate adenylation domains, PigI, PltF, and RedM, were investigated for their cross-species activity. Of the three peptidyl carrier proteins, only PigG showed substantial cross-pathway activity. Characterization of the novel NMR solution structure of holo-PigG and molecular dynamics simulations of holo-PltL and holo-PigG revealed differences in structures and dynamics of these carrier proteins. NMR titration experiments revealed perturbations of the chemical shifts of the loop 1 residues of these peptidyl carrier proteins upon their interaction with the adenylation domain. These experiments revealed a key region for the protein-protein interaction. Mutational studies supported the role of loop 1 in molecular recognition, as mutations to this region of the peptidyl carrier proteins significantly modulated their activities.
2014-01-01
Background Necrotizing fasciitis (NF) is a rapid progressive infection of the subcutaneous tissue or fascia and may result in large open wounds. The surgical options to cover these wounds are often limited by the patient condition and result in suboptimal functional and cosmetic wound coverage. Dermatotraction can restore the function and appearance of the fasciotomy wound and is less invasive in patients with comorbidities. However, dermatotraction for scarred, stiff NF fasciotomy wounds is often ineffective, resulting in skin necrosis. The authors use extended negative pressure wound therapy (NPWT) as an assist in dermatotraction to close open NF fasciotomy wounds. The authors present the clinical results, followed by a discussion of the clinical basis of extended NPWT-assisted dermatotraction. Methods A retrospective case series of eight patients with NF who underwent open fasciotomy was approved for the study. After serial wound preparation, dermatotraction was applied in a shoelace manner using elastic vessel loops. Next, the extended NPWT was applied over the wound. The sponge was three times wider than the wound width, and the transparent covering drape almost encircled the anatomical wound area. The negative pressure of the NPWT was set at a continuous 100 mmHg by suction barometer. The clinical outcome was assessed based on wound area reduction after treatment and by the achievement of direct wound closure. Results After the first set of extended NPWT-assisted dermatotraction procedures, the mean wound area was significantly decreased (658.12 cm2 to 29.37 cm2; p = 0.002), as five out of eight patients achieved direct wound closure. One patient with a chest wall defect underwent latissimus dorsi musculocutaneous flap coverage, with primary closure of the donor site. Two Fournier’s gangrene patients underwent multiple sets of treatment and finally achieved secondary wound closure with skin grafts. The patients were followed up for 18.3 months on average and showed satisfactory results without wound recurrence. Conclusions Extended NPWT-assisted dermatotraction advances scarred, stiff fasciotomy wound margins synergistically in NF and allows direct closure of the wound without complications. This method can be another good treatment option for the NF patient with large open wounds whose general condition is unsuitable for extensive reconstructive surgery. PMID:24731449
Li, Cheng-Wei; Chen, Bor-Sen
2010-01-01
Cellular responses to sudden environmental stresses or physiological changes provide living organisms with the opportunity for final survival and further development. Therefore, it is an important topic to understand protective mechanisms against environmental stresses from the viewpoint of gene and protein networks. We propose two coupled nonlinear stochastic dynamic models to reconstruct stress-activated gene and protein regulatory networks via microarray data in response to environmental stresses. According to the reconstructed gene/protein networks, some possible mutual interactions, feedforward and feedback loops are found for accelerating response and filtering noises in these signaling pathways. A bow-tie core network is also identified to coordinate mutual interactions and feedforward loops, feedback inhibitions, feedback activations, and cross talks to cope efficiently with a broader range of environmental stresses with limited proteins and pathways. PMID:20454442
Protein detection through different platforms of immuno-loop-mediated isothermal amplification
NASA Astrophysics Data System (ADS)
Pourhassan-Moghaddam, Mohammad; Rahmati-Yamchi, Mohammad; Akbarzadeh, Abolfazl; Daraee, Hadis; Nejati-Koshki, Kazem; Hanifehpour, Younes; Joo, Sang Woo
2013-11-01
Different immunoassay-based methods have been devised to detect protein targets. These methods have some challenges that make them inefficient for assaying ultra-low-amounted proteins. ELISA, iPCR, iRCA, and iNASBA are the common immunoassay-based methods of protein detection, each of which has specific and common technical challenges making it necessary to introduce a novel method in order to avoid their problems for detection of target proteins. Here we propose a new method nominated as `immuno-loop-mediated isothermal amplification' or `iLAMP'. This new method is free from the problems of the previous methods and has significant advantages over them. In this paper we also offer various configurations in order to improve the applicability of this method in real-world sample analyses. Important potential applications of this method are stated as well.
The effect of amino acid deletions and substitutions in the longest loop of GFP
Flores-Ramírez, Gabriela; Rivera, Manuel; Morales-Pablos, Alfredo; Osuna, Joel; Soberón, Xavier; Gaytán, Paul
2007-01-01
Background The effect of single and multiple amino acid substitutions in the green fluorescent protein (GFP) from Aequorea victoria has been extensively explored, yielding several proteins of diverse spectral properties. However, the role of amino acid deletions in this protein -as with most proteins- is still unknown, due to the technical difficulties involved in generating combinatorial in-phase amino acid deletions on a target region. Results In this study, the region I129-L142 of superglo GFP (sgGFP), corresponding to the longest loop of the protein and located far away from the central chromophore, was subjected to a random amino acid deletion approach, employing an in-house recently developed mutagenesis method termed Codon-Based Random Deletion (COBARDE). Only two mutants out of 16384 possible variant proteins retained fluorescence: sgGFP-Δ I129 and sgGFP-Δ D130. Interestingly, both mutants were thermosensitive and at 30°C sgGFP-Δ D130 was more fluorescent than the parent protein. In contrast with deletions, substitutions of single amino acids from residues F131 to L142 were well tolerated. The substitution analysis revealed a particular importance of residues F131, G135, I137, L138, H140 and L142 for the stability of the protein. Conclusion The behavior of GFP variants with both amino acid deletions and substitutions demonstrate that this loop is playing an important structural role in GFP folding. Some of the amino acids which tolerated any substitution but no deletion are simply acting as "spacers" to localize important residues in the protein structure. PMID:17594481
Bohon, Jen; Jennings, Laura D.; Phillips, Christine M.; Licht, Stuart; Chance, Mark R.
2010-01-01
SUMMARY Synchrotron x-ray protein footprinting is used to study structural changes upon formation of the ClpA hexamer. Comparative solvent accessibilities between ClpA monomer and ClpA hexamer samples are in agreement throughout most of the sequence with calculations based on two previously proposed hexameric models. The data differ substantially from the proposed models in two parts of the structure: the D1 sensor 1 domain and the D2 loop region. The results suggest that these two regions can access alternate conformations in which their solvent protection is greater than in the structural models based on crystallographic data. In combination with previously reported structural data, the footprinting data provide support for a revised model in which the D2 loop contacts the D1 sensor 1 domain in the ATP-bound form of the complex. These data provide the first direct experimental support for the nucleotide-dependent D2 loop conformational change previously proposed to mediate substrate translocation. PMID:18682217
A mitosis-specific and R loop-driven ATR pathway promotes faithful chromosome segregation.
Kabeche, Lilian; Nguyen, Hai Dang; Buisson, Rémi; Zou, Lee
2018-01-05
The ataxia telangiectasia mutated and Rad3-related (ATR) kinase is crucial for DNA damage and replication stress responses. Here, we describe an unexpected role of ATR in mitosis. Acute inhibition or degradation of ATR in mitosis induces whole-chromosome missegregation. The effect of ATR ablation is not due to altered cyclin-dependent kinase 1 (CDK1) activity, DNA damage responses, or unscheduled DNA synthesis but to loss of an ATR function at centromeres. In mitosis, ATR localizes to centromeres through Aurora A-regulated association with centromere protein F (CENP-F), allowing ATR to engage replication protein A (RPA)-coated centromeric R loops. As ATR is activated at centromeres, it stimulates Aurora B through Chk1, preventing formation of lagging chromosomes. Thus, a mitosis-specific and R loop-driven ATR pathway acts at centromeres to promote faithful chromosome segregation, revealing functions of R loops and ATR in suppressing chromosome instability. Copyright © 2018, American Association for the Advancement of Science.
Sundar, Shankar; Baker, Tania A; Sauer, Robert T
2012-01-01
In the AAA+ HslUV protease, substrates are bound and unfolded by a ring hexamer of HslU, before translocation through an axial pore and into the HslV degradation chamber. Here, we show that the N-terminal residues of an Arc substrate initially bind in the HslU axial pore, with key contacts mediated by a pore loop that is highly conserved in all AAA+ unfoldases. Disordered loops from the six intermediate domains of the HslU hexamer project into a funnel-shaped cavity above the pore and are positioned to contact protein substrates. Mutations in these I-domain loops increase KM and decrease Vmax for degradation, increase the mobility of bound substrates, and prevent substrate stimulation of ATP hydrolysis. HslU-ΔI has negligible ATPase activity. Thus, the I domain plays an active role in coordinating substrate binding, ATP hydrolysis, and protein degradation by the HslUV proteolytic machine. PMID:22102327
Structure Prediction of the Second Extracellular Loop in G-Protein-Coupled Receptors
Kmiecik, Sebastian; Jamroz, Michal; Kolinski, Michal
2014-01-01
G-protein-coupled receptors (GPCRs) play key roles in living organisms. Therefore, it is important to determine their functional structures. The second extracellular loop (ECL2) is a functionally important region of GPCRs, which poses significant challenge for computational structure prediction methods. In this work, we evaluated CABS, a well-established protein modeling tool for predicting ECL2 structure in 13 GPCRs. The ECL2s (with between 13 and 34 residues) are predicted in an environment of other extracellular loops being fully flexible and the transmembrane domain fixed in its x-ray conformation. The modeling procedure used theoretical predictions of ECL2 secondary structure and experimental constraints on disulfide bridges. Our approach yielded ensembles of low-energy conformers and the most populated conformers that contained models close to the available x-ray structures. The level of similarity between the predicted models and x-ray structures is comparable to that of other state-of-the-art computational methods. Our results extend other studies by including newly crystallized GPCRs. PMID:24896119
Osmotic mechanism of the loop extrusion process
NASA Astrophysics Data System (ADS)
Yamamoto, Tetsuya; Schiessel, Helmut
2017-09-01
The loop extrusion theory assumes that protein factors, such as cohesin rings, act as molecular motors that extrude chromatin loops. However, recent single molecule experiments have shown that cohesin does not show motor activity. To predict the physical mechanism involved in loop extrusion, we here theoretically analyze the dynamics of cohesin rings on a loop, where a cohesin loader is in the middle and unloaders at the ends. Cohesin monomers bind to the loader rather frequently and cohesin dimers bind to this site only occasionally. Our theory predicts that a cohesin dimer extrudes loops by the osmotic pressure of cohesin monomers on the chromatin fiber between the two connected rings. With this mechanism, the frequency of the interactions between chromatin segments depends on the loading and unloading rates of dimers at the corresponding sites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guan, Jian; Bywaters, Stephanie M.; Brendle, Sarah A.
2015-09-15
Cryo-electron microscopy (cryo-EM) was used to solve the structures of human papillomavirus type 16 (HPV16) complexed with fragments of antibody (Fab) from three different neutralizing monoclonals (mAbs): H16.1A, H16.14J, and H263.A2. The structure-function analysis revealed predominantly monovalent binding of each Fab with capsid interactions that involved multiple loops from symmetry related copies of the major capsid protein. The residues identified in each Fab-virus interface map to a conformational groove on the surface of the capsomer. In addition to the known involvement of the FG and HI loops, the DE loop was also found to constitute the core of each epitope.more » Surprisingly, the epitope mapping also identified minor contributions by EF and BC loops. Complementary immunological assays included mAb and Fab neutralization. The specific binding characteristics of mAbs correlated with different neutralizing behaviors in pre- and post-attachment neutralization assays. - Highlights: • We present HPV16-Fab complexes from neutralizing mAbs: H16.1A, H16.14J, and H263.A2. • The structure-function analysis revealed predominantly monovalent binding of each mAb. • Capsid–Fab interactions involved multiple loops from symmetry related L1 proteins. • Besides the known FG and HI loops, epitope mapping also identified DE, EF, and BC loops. • Neutralizing assays complement the structures to show multiple neutralization mechanisms.« less
de Almeida, Marcio Rodrigues; Herrero, Francisco; Fattal, Amine; Davoody, Amirparviz R; Nanda, Ravindra; Uribe, Flavio
2013-11-01
To compare the efficiency in anchorage preservation of conventional and self-ligating brackets after the extraction of first maxillary premolars using differential moment mechanics. Thirty-eight patients requiring extraction of maxillary first premolars and maximum anchorage during space closure were evaluated based on bracket type. Group 1, comprising 23 patients, was bonded with preadjusted conventional brackets (CBs) with a slot of 0.022-inch × 0.030-inch. Group 2 comprised 15 patients who were bonded with 0.022 inch preadjusted self-ligating brackets (SLBs). Patients in both groups received a nickel titanium (NiTi) intrusion arch and a 150 g NiTi closing coil spring for separate canine retraction, followed by a continuous mushroom loop archwire to retract the incisors. Lateral cephalograms were available at the start of treatment (T1) and at the completion of space closure (T2). Statistical comparisons were performed with paired and unpaired Student's t-tests. No significant differences were found between the groups in maxillary molars anchorage loss (3.87 ± 1.35 mm and 3.65 ± 1.73 mm for the CB and SLB groups, respectively). Only the mean vertical movement of the tip of the incisor was significantly different between the groups (CB = -0.92 ± 1.46 mm; SLB = 0.56 ± 1.65 mm). There were no significant differences in the amount of anchorage loss of the maxillary first molars between SLB and CB systems during space closure using differential moments.
The architecture of metal coordination groups in proteins.
Harding, Marjorie M
2004-05-01
A set of tables is presented and a survey given of the architecture of metal coordination groups in a representative set of protein structures from the Protein Data Bank [Bernstein et al. (1977), J. Mol. Biol. 112, 535-542; Berman et al. (2000), Nucleic Acids Res. 28, 235-242]. The structures have been determined to a resolution of 2.5 A or better; the metals considered are Ca, Mg, Mn, Fe, Cu, Zn, Na and K, with particular emphasis on Ca and Zn and the exclusion of haem groups and Fe/S clusters; the proteins are a representative set in which none has more than 30% sequence identity with any other. In them the metal is coordinated by several donor groups from different amino-acid residues in the protein chain and often also by water or other small molecules. The tables, for approximately 600 metal coordination groups, include information on the conformations of the protein chain in the region around the metal and reliability indicators. They illustrate the wide variety of coordination numbers, chelate-loop sizes and other properties and the different characteristics of different metals. They show that glycine has a particular significance in the position adjacent to a donor residue, especially in Ca coordination groups. They also show that metal coordination does not appear to lead to significant distortions of the torsion angles phi, psi from their normally allowed values. Very few metal coordination groups occur more than once in the representative set and when they do they are usually related in fold and function; they have similar but not necessarily identical conformations. However, individual chelate loops, for example Zn(-C-X-X'-C-), in which both cysteines are coordinated to Zn through S, and X and X' are any amino acids, are repeated frequently in many different and unrelated proteins. Not all chelate loops with the same composition have the same conformation, but for smaller loops there are usually one or two strongly preferred and well defined conformations. Quite frequently more than one metal coordination group is associated with one protein chain; these proteins are identified.
The effect of vagotomy and drainage on the small bowel flora
Browning, G. G.; Buchan, K. A.; Mackay, C.
1974-01-01
The incidence of small intestinal colonization in unoperated duodenal ulcer patients was low and similar to that in the normal population. The majority of patients seven to 10 days following truncal vagotomy and drainage were colonized whereas none of a control group of patients following simple closure of a perforated duodenal ulcer was colonized. In patients with pyloroplasty, this high incidence fell to control levels on average 18 months postoperatively, but in patients with a gastro-jejunostomy, the incidence remained raised probably due to the presence of the afferent loop. Only two patients developed episodic diarrhoea and there was no obvious association with small bowel colonization. PMID:4820640
Kinks, loops, and protein folding, with protein A as an example
Krokhotin, Andrey; Liwo, Adam; Maisuradze, Gia G.; Niemi, Antti J.; Scheraga, Harold A.
2014-01-01
The dynamics and energetics of formation of loops in the 46-residue N-terminal fragment of the B-domain of staphylococcal protein A has been studied. Numerical simulations have been performed using coarse-grained molecular dynamics with the united-residue (UNRES) force field. The results have been analyzed in terms of a kink (heteroclinic standing wave solution) of a generalized discrete nonlinear Schrödinger (DNLS) equation. In the case of proteins, the DNLS equation arises from a Cα-trace-based energy function. Three individual kink profiles were identified in the experimental three-α-helix structure of protein A, in the range of the Glu16-Asn29, Leu20-Asn29, and Gln33-Asn44 residues, respectively; these correspond to two loops in the native structure. UNRES simulations were started from the full right-handed α-helix to obtain a clear picture of kink formation, which would otherwise be blurred by helix formation. All three kinks emerged during coarse-grained simulations. It was found that the formation of each is accompanied by a local free energy increase; this is expressed as the change of UNRES energy which has the physical sense of the potential of mean force of a polypeptide chain. The increase is about 7 kcal/mol. This value can thus be considered as the free energy barrier to kink formation in full α-helical segments of polypeptide chains. During the simulations, the kinks emerge, disappear, propagate, and annihilate each other many times. It was found that the formation of a kink is initiated by an abrupt change in the orientation of a pair of consecutive side chains in the loop region. This resembles the formation of a Bloch wall along a spin chain, where the Cα backbone corresponds to the chain, and the amino acid side chains are interpreted as the spin variables. This observation suggests that nearest-neighbor side chain–side chain interactions are responsible for initiation of loop formation. It was also found that the individual kinks are reflected as clear peaks in the principal modes of the analyzed trajectory of protein A, the shapes of which resemble the directional derivatives of the kinks along the chain. These observations suggest that the kinks of the DNLS equation determine the functionally important motions of proteins. PMID:24437917
Zhang, Xu; Diekwisch, Thomas G H; Luan, Xianghong
2011-12-01
The functional significance of extracellular matrix proteins in the life of vertebrates is underscored by a high level of sequence variability in tandem with a substantial degree of conservation in terms of cell-cell and cell-matrix adhesion interactions. Many extracellular matrix proteins feature multiple adhesion domains for successful attachment to substrates, such as integrin, CD63, and heparin. Here we have used homology and ab initio modeling algorithms to compare mouse ameloblastin (mAMBN) and human ameloblastin (hABMN) isoforms and to analyze their potential for cell adhesion and interaction with other matrix molecules as well as calcium binding. Sequence comparison between mAMBN and hAMBN revealed a 26-amino-acid deletion in mAMBN, corresponding to a helix-loop-helix frameshift. The human AMBN domain (174Q-201G), homologous to the mAMBN 157E-178I helix-loop-helix region, formed a helix-loop motif with an extended loop, suggesting a higher degree of flexibility of hAMBN compared with mAMBN, as confirmed by molecular dynamics simulation. Heparin-binding domains, CD63-interaction domains, and calcium-binding sites in both hAMBN and mAMBN support the concept of AMBN as an extracellular matrix protein. The high level of conservation between AMBN functional domains related to adhesion and differentiation was remarkable when compared with only 61% amino acid sequence homology. © 2011 Eur J Oral Sci.
Functional and Evolutionary Analysis of the CASPARIAN STRIP MEMBRANE DOMAIN PROTEIN Family1[C][W
Roppolo, Daniele; Boeckmann, Brigitte; Pfister, Alexandre; Boutet, Emmanuel; Rubio, Maria C.; Dénervaud-Tendon, Valérie; Vermeer, Joop E.M.; Gheyselinck, Jacqueline; Xenarios, Ioannis; Geldner, Niko
2014-01-01
CASPARIAN STRIP MEMBRANE DOMAIN PROTEINS (CASPs) are four-membrane-span proteins that mediate the deposition of Casparian strips in the endodermis by recruiting the lignin polymerization machinery. CASPs show high stability in their membrane domain, which presents all the hallmarks of a membrane scaffold. Here, we characterized the large family of CASP-like (CASPL) proteins. CASPLs were found in all major divisions of land plants as well as in green algae; homologs outside of the plant kingdom were identified as members of the MARVEL protein family. When ectopically expressed in the endodermis, most CASPLs were able to integrate the CASP membrane domain, which suggests that CASPLs share with CASPs the propensity to form transmembrane scaffolds. Extracellular loops are not necessary for generating the scaffold, since CASP1 was still able to localize correctly when either one of the extracellular loops was deleted. The CASP first extracellular loop was found conserved in euphyllophytes but absent in plants lacking Casparian strips, an observation that may contribute to the study of Casparian strip and root evolution. In Arabidopsis (Arabidopsis thaliana), CASPL showed specific expression in a variety of cell types, such as trichomes, abscission zone cells, peripheral root cap cells, and xylem pole pericycle cells. PMID:24920445
Functional and Evolutionary Analysis of the CASPARIAN STRIP MEMBRANE DOMAIN PROTEIN Family.
Roppolo, Daniele; Boeckmann, Brigitte; Pfister, Alexandre; Boutet, Emmanuel; Rubio, Maria C; Dénervaud-Tendon, Valérie; Vermeer, Joop E M; Gheyselinck, Jacqueline; Xenarios, Ioannis; Geldner, Niko
2014-08-01
CASPARIAN STRIP MEMBRANE DOMAIN PROTEINS (CASPs) are four-membrane-span proteins that mediate the deposition of Casparian strips in the endodermis by recruiting the lignin polymerization machinery. CASPs show high stability in their membrane domain, which presents all the hallmarks of a membrane scaffold. Here, we characterized the large family of CASP-like (CASPL) proteins. CASPLs were found in all major divisions of land plants as well as in green algae; homologs outside of the plant kingdom were identified as members of the MARVEL protein family. When ectopically expressed in the endodermis, most CASPLs were able to integrate the CASP membrane domain, which suggests that CASPLs share with CASPs the propensity to form transmembrane scaffolds. Extracellular loops are not necessary for generating the scaffold, since CASP1 was still able to localize correctly when either one of the extracellular loops was deleted. The CASP first extracellular loop was found conserved in euphyllophytes but absent in plants lacking Casparian strips, an observation that may contribute to the study of Casparian strip and root evolution. In Arabidopsis (Arabidopsis thaliana), CASPL showed specific expression in a variety of cell types, such as trichomes, abscission zone cells, peripheral root cap cells, and xylem pole pericycle cells. © 2014 American Society of Plant Biologists. All Rights Reserved.
Evidence for Ancient Origins of Bowman-Birk Inhibitors from Selaginella moellendorffii
James, Amy M.; Jayasena, Achala S.; Zhang, Jingjing; Secco, David; Knott, Gavin J.; Whelan, James
2017-01-01
Bowman-Birk Inhibitors (BBIs) are a well-known family of plant protease inhibitors first described 70 years ago. BBIs are known only in the legume (Fabaceae) and cereal (Poaceae) families, but peptides that mimic their trypsin-inhibitory loops exist in sunflowers (Helianthus annuus) and frogs. The disparate biosynthetic origins and distant phylogenetic distribution implies these loops evolved independently, but their structural similarity suggests a common ancestor. Targeted bioinformatic searches for the BBI inhibitory loop discovered highly divergent BBI-like sequences in the seedless, vascular spikemoss Selaginella moellendorffii. Using de novo transcriptomics, we confirmed expression of five transcripts in S. moellendorffii whose encoded proteins share homology with BBI inhibitory loops. The most highly expressed, BBI3, encodes a protein that inhibits trypsin. We needed to mutate two lysine residues to abolish trypsin inhibition, suggesting BBI3’s mechanism of double-headed inhibition is shared with BBIs from angiosperms. As Selaginella belongs to the lycopod plant lineage, which diverged ∼200 to 230 million years before the common ancestor of angiosperms, its BBI-like proteins imply there was a common ancestor for legume and cereal BBIs. Indeed, we discovered BBI sequences in six angiosperm families outside the Fabaceae and Poaceae. These findings provide the evolutionary missing links between the well-known legume and cereal BBI gene families. PMID:28298518
Sultana, Hameeda; Foellmer, Harald G; Neelakanta, Girish; Oliphant, Theodore; Engle, Michael; Ledizet, Michel; Krishnan, Manoj N; Bonafé, Nathalie; Anthony, Karen G; Marasco, Wayne A; Kaplan, Paul; Montgomery, Ruth R; Diamond, Michael S; Koski, Raymond A; Fikrig, Erol
2009-07-01
West Nile virus is an emerging pathogen that can cause fatal neurological disease. A recombinant human mAb, mAb11, has been described as a candidate for the prevention and treatment of West Nile disease. Using a yeast surface display epitope mapping assay and neutralization escape mutant, we show that mAb11 recognizes the fusion loop, at the distal end of domain II of the West Nile virus envelope protein. Ab mAb11 cross-reacts with all four dengue viruses and provides protection against dengue (serotypes 2 and 4) viruses. In contrast to the parental West Nile virus, a neutralization escape variant failed to cause lethal encephalitis (at higher infectious doses) or induce the inflammatory responses associated with blood-brain barrier permeability in mice, suggesting an important role for the fusion loop in viral pathogenesis. Our data demonstrate that an intact West Nile virus fusion loop is critical for virulence, and that human mAb11 targeting this region is efficacious against West Nile virus infection. These experiments define the molecular determinant on the envelope protein recognized by mAb11 and demonstrate the importance of this region in causing West Nile encephalitis.
Crystal Structure of the HEAT Domain from the Pre-mRNA Processing Factor Symplekin
Kennedy, Sarah A.; Frazier, Monica L.; Steiniger, Mindy; Mast, Ann M.; Marzluff, William F.; Redinbo, Matthew R.
2009-01-01
The majority of eukaryotic pre-mRNAs are processed by 3′-end cleavage and polyadenylation, although in metazoa the replication-dependant histone mRNAs are processed by 3′-end cleavage but not polyadenylation. The macromolecular complex responsible for processing both canonical and histone pre-mRNAs contains the ~1,160-residue protein Symplekin. Secondary structural prediction algorithms identified putative HEAT domains in the 300 N-terminal residues of all Symplekins of known sequence. The structure and dynamics of this domain were investigated to begin elucidating the role Symplekin plays in mRNA maturation. The crystal structure of the Drosophila melanogaster Symplekin HEAT domain was determined to 2.4 Å resolution using SAD phasing methods. The structure exhibits 5 canonical HEAT repeats along with an extended 31 amino acid loop (loop 8) between the fourth and fifth repeat that is conserved within closely related Symplekin sequences. Molecular dynamics simulations of this domain show that the presence of loop 8 dampens correlated and anticorrelated motion in the HEAT domain, therefore providing a neutral surface for potential protein-protein interactions. HEAT domains are often employed for such macromolecular contacts. The Symplekin HEAT region not only structurally aligns with several established scaffolding proteins, but also has been reported to contact proteins essential for regulating 3′-end processing. Taken together, these data support the conclusion that the Symplekin HEAT domain serves as a scaffold for protein-protein interactions essential to the mRNA maturation process. PMID:19576221
Regad, Leslie; Martin, Juliette; Camproux, Anne-Claude
2011-06-20
One of the strategies for protein function annotation is to search particular structural motifs that are known to be shared by proteins with a given function. Here, we present a systematic extraction of structural motifs of seven residues from protein loops and we explore their correspondence with functional sites. Our approach is based on the structural alphabet HMM-SA (Hidden Markov Model - Structural Alphabet), which allows simplification of protein structures into uni-dimensional sequences, and advanced pattern statistics adapted to short sequences. Structural motifs of interest are selected by looking for structural motifs significantly over-represented in SCOP superfamilies in protein loops. We discovered two types of structural motifs significantly over-represented in SCOP superfamilies: (i) ubiquitous motifs, shared by several superfamilies and (ii) superfamily-specific motifs, over-represented in few superfamilies. A comparison of ubiquitous words with known small structural motifs shows that they contain well-described motifs as turn, niche or nest motifs. A comparison between superfamily-specific motifs and biological annotations of Swiss-Prot reveals that some of them actually correspond to functional sites involved in the binding sites of small ligands, such as ATP/GTP, NAD(P) and SAH/SAM. Our findings show that statistical over-representation in SCOP superfamilies is linked to functional features. The detection of over-represented motifs within structures simplified by HMM-SA is therefore a promising approach for prediction of functional sites and annotation of uncharacterized proteins.
2011-01-01
Background One of the strategies for protein function annotation is to search particular structural motifs that are known to be shared by proteins with a given function. Results Here, we present a systematic extraction of structural motifs of seven residues from protein loops and we explore their correspondence with functional sites. Our approach is based on the structural alphabet HMM-SA (Hidden Markov Model - Structural Alphabet), which allows simplification of protein structures into uni-dimensional sequences, and advanced pattern statistics adapted to short sequences. Structural motifs of interest are selected by looking for structural motifs significantly over-represented in SCOP superfamilies in protein loops. We discovered two types of structural motifs significantly over-represented in SCOP superfamilies: (i) ubiquitous motifs, shared by several superfamilies and (ii) superfamily-specific motifs, over-represented in few superfamilies. A comparison of ubiquitous words with known small structural motifs shows that they contain well-described motifs as turn, niche or nest motifs. A comparison between superfamily-specific motifs and biological annotations of Swiss-Prot reveals that some of them actually correspond to functional sites involved in the binding sites of small ligands, such as ATP/GTP, NAD(P) and SAH/SAM. Conclusions Our findings show that statistical over-representation in SCOP superfamilies is linked to functional features. The detection of over-represented motifs within structures simplified by HMM-SA is therefore a promising approach for prediction of functional sites and annotation of uncharacterized proteins. PMID:21689388
Near-Native Protein Loop Sampling Using Nonparametric Density Estimation Accommodating Sparcity
Day, Ryan; Lennox, Kristin P.; Sukhanov, Paul; Dahl, David B.; Vannucci, Marina; Tsai, Jerry
2011-01-01
Unlike the core structural elements of a protein like regular secondary structure, template based modeling (TBM) has difficulty with loop regions due to their variability in sequence and structure as well as the sparse sampling from a limited number of homologous templates. We present a novel, knowledge-based method for loop sampling that leverages homologous torsion angle information to estimate a continuous joint backbone dihedral angle density at each loop position. The φ,ψ distributions are estimated via a Dirichlet process mixture of hidden Markov models (DPM-HMM). Models are quickly generated based on samples from these distributions and were enriched using an end-to-end distance filter. The performance of the DPM-HMM method was evaluated against a diverse test set in a leave-one-out approach. Candidates as low as 0.45 Å RMSD and with a worst case of 3.66 Å were produced. For the canonical loops like the immunoglobulin complementarity-determining regions (mean RMSD <2.0 Å), the DPM-HMM method performs as well or better than the best templates, demonstrating that our automated method recaptures these canonical loops without inclusion of any IgG specific terms or manual intervention. In cases with poor or few good templates (mean RMSD >7.0 Å), this sampling method produces a population of loop structures to around 3.66 Å for loops up to 17 residues. In a direct test of sampling to the Loopy algorithm, our method demonstrates the ability to sample nearer native structures for both the canonical CDRH1 and non-canonical CDRH3 loops. Lastly, in the realistic test conditions of the CASP9 experiment, successful application of DPM-HMM for 90 loops from 45 TBM targets shows the general applicability of our sampling method in loop modeling problem. These results demonstrate that our DPM-HMM produces an advantage by consistently sampling near native loop structure. The software used in this analysis is available for download at http://www.stat.tamu.edu/~dahl/software/cortorgles/. PMID:22028638
Mounir, Maha M.F.; Matar, Moustafa A.; Lei, Yaping; Snead, Malcolm L.
2015-01-01
Introduction Recombinant DNA produced amelogenin protein was compared to calcium hydroxide in a study of immature apex closure conducted in 24 young mongrel dogs. Methods Root canals of maxillary and mandibular right premolars (n = 240) were instrumented and left open for 14 days. Canals were cleansed, irrigated and split equally for treatment with recombinant mouse amelogenin (n = 120) or calcium hydroxide (n = 120). Results After 1, 3, and 6 months, the animals were sacrificed and the treated teeth recovered for histological assessment and immunodetection of protein markers associated with odontogenic cells. After 1 month, amelogenin-treated canals revealed calcified tissue formed at the apical foramen and a pulp chamber containing soft connective tissue and hard tissue; amelogenin-treated canals assessed after 3 and 6 month intervals further included apical tissue functionally attached to bone by a periodontal ligament. In contrast, calcified apical tissue was poorly formed in the calcium hydroxide group and soft connective tissue within the pulp chamber was not observed. Conclusions The findings from this experimental strategy suggest recombinant amelogenin protein can signal cells to enhance apex formation in non-vital immature teeth and promote soft connective tissue regeneration. PMID:26709200
Eye patches: Protein assembly of index-gradient squid lenses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, J.; Townsend, J. P.; Dodson, T. C.
A parabolic relationship between lens radius and refractive index allows spherical lenses to avoid spherical aberration. We show that in squid, patchy colloidal physics resulted from an evolutionary radiation of globular S-crystallin proteins. Small-angle x-ray scattering experiments on lens tissue show colloidal gels of S-crystallins at all radial positions. Sparse lens materials form via low-valence linkages between disordered loops protruding from the protein surface. The loops are polydisperse and bind via a set of hydrogen bonds between disordered side chains. Peripheral lens regions with low particle valence form stable, volume-spanning gels at low density, whereas central regions with higher averagemore » valence gel at higher densities. The proteins demonstrate an evolved set of linkers for self-assembly of nanoparticles into volumetric materials.« less
Fahie, Monifa A; Chen, Min
2015-08-13
The flexible loops decorating the entrance of OmpG nanopore move dynamically during ionic current recording. The gating caused by these flexible loops changes when a target protein is bound. The gating is characterized by parameters including frequency, duration, and open-pore current, and these features combine to reveal the identity of a specific analyte protein. Here, we show that OmpG nanopore equipped with a biotin ligand can distinguish glycosylated and deglycosylated isoforms of avidin by their differences in surface charge. Our studies demonstrate that the direct interaction between the nanopore and analyte surface, induced by the electrostatic attraction between the two molecules, is essential for protein isoform detection. Our technique is remarkably sensitive to the analyte surface, which may provide a useful tool for glycoprotein profiling.
Cyclic monoterpene mediated modulations of Arabidopsis thaliana phenotype
Kriegs, Bettina; Jansen, Marcus; Hahn, Katrin; Peisker, Helga; Šamajová, Olga; Beck, Martina; Braun, Silvia; Ulbrich, Andreas; Baluška, František
2010-01-01
Monoterpenes at high atmospheric concentrations are strong growth inhibitors in allelopathic interactions. Effects depend on dose, molecular structure of the monoterpene and on the species of the receiver plant. Stomata are among the first targets affected by camphor and menthol. Previously, it could be demonstrated that the compounds induce swelling of the protoplasts, prevent stomatal closure and enhance transpiration. In this study, we show that the block of stomatal closure is accompanied by changes to the cytoskeleton, which has a direct role in stomatal movements. Although MPK3 (MAP3 kinase) and ABF4 gene expressions are induced within six hours, stomatal closure is prevented. In contrast to ABF4, ABF2 (both transcription factors) is not induced. MPK3 and ABF4 both encode for proteins involved in the process of stomatal closure. The expression of PEPCase, an enzyme important for stomatal opening, is downregulated. The leaves develop stress symptoms, mirrored by transient changes in the expression profile of additional genes: lipoxygenase 2 (LOX2), CER5, CER6 (both important for wax production) and RD29B (an ABA inducible stress protein). Non-invasive methods showed a fast response of the plant to camphor fumigations both in a rapid decrease of the quantum yield and in the relative growth rate. Repeated exposures to the monoterpenes resulted finally in growth reduction and a stress related change in the phenotype. It is proposed that high concentrations or repeated exposure to monoterpenes led to irreversible damages, whereas low concentrations or short-term fumigations may have the potential to strengthen the plant fitness. PMID:20484979
Multivariate moment closure techniques for stochastic kinetic models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lakatos, Eszter, E-mail: e.lakatos13@imperial.ac.uk; Ale, Angelique; Kirk, Paul D. W.
2015-09-07
Stochastic effects dominate many chemical and biochemical processes. Their analysis, however, can be computationally prohibitively expensive and a range of approximation schemes have been proposed to lighten the computational burden. These, notably the increasingly popular linear noise approximation and the more general moment expansion methods, perform well for many dynamical regimes, especially linear systems. At higher levels of nonlinearity, it comes to an interplay between the nonlinearities and the stochastic dynamics, which is much harder to capture correctly by such approximations to the true stochastic processes. Moment-closure approaches promise to address this problem by capturing higher-order terms of the temporallymore » evolving probability distribution. Here, we develop a set of multivariate moment-closures that allows us to describe the stochastic dynamics of nonlinear systems. Multivariate closure captures the way that correlations between different molecular species, induced by the reaction dynamics, interact with stochastic effects. We use multivariate Gaussian, gamma, and lognormal closure and illustrate their use in the context of two models that have proved challenging to the previous attempts at approximating stochastic dynamics: oscillations in p53 and Hes1. In addition, we consider a larger system, Erk-mediated mitogen-activated protein kinases signalling, where conventional stochastic simulation approaches incur unacceptably high computational costs.« less
Geisler, Matt; Wilczynska, Malgorzata; Karpinski, Stanislaw; Kleczkowski, Leszek A
2004-11-01
UDP-glucose pyrophosphorylase (UGPase) is an important enzyme of synthesis of sucrose, cellulose, and several other polysaccharides in all plants. The protein is evolutionarily conserved among eukaryotes, but has little relation, aside from its catalytic reaction, to UGPases of prokaryotic origin. Using protein homology modeling strategy, 3D structures for barley, poplar, and Arabidopsis UGPases have been derived, based on recently published crystal structure of human UDP-N-acetylglucosamine pyrophosphorylase. The derived 3D structures correspond to a bowl-shaped protein with the active site at a central groove, and a C-terminal domain that includes a loop (I-loop) possibly involved in dimerization. Data on a plethora of earlier described UGPase mutants from a variety of eukaryotic organisms have been revisited, and we have, in most cases, verified the role of each mutation in enzyme catalysis/regulation/structural integrity. We have also found that one of two alternatively spliced forms of poplar UGPase has a very short I-loop, suggesting differences in oligomerization ability of the two isozymes. The derivation of the structural model for plant UGPase should serve as a useful blueprint for further function/structure studies on this protein.
Xu, Zhipeng; Chen, Jiamin; Shao, Liming; Ma, Wangqian; Xu, Dingting
2015-09-01
It has been shown that Yes-associated protein (YAP) acts as a transcriptional co-activator to regulate p73-dependent apoptosis in response to DNA damage in some cell types, and promyelocytic leukemia (PML) protein is involved in the regulation loop through stabilization of YAP through sumoylation. Although YAP has been shown to be significantly upregulated in gastric cancer, whether the YAP/PML/p73 regulation loop also functions in gastric cancer is unknown. Here, we show significantly higher levels of YAP and significantly lower levels of PML in the gastric cancer specimen. Overexpression of YAP in gastric cancer cells significantly increased cell growth, but did not affect apoptosis. However, overexpression of PML in gastric cancer cells significantly increased cell apoptosis, resulting in decreases in cell growth, which seemed to require the presence of YAP. The effect of PML on apoptosis appeared to be conducted through p73-mediated modulation of apoptosis-associated genes, Bcl-2, Bak, and caspase9. Thus, our study suggests the presence of a YAP/PML/p73 regulatory loop in gastric cancer, and highlights PML as a promising tumor suppressor in gastric cancer through YAP-coordinated cancer cell apoptosis.
Extended Impact of Pin1 Catalytic Loop Phosphorylation Revealed by S71E Phosphomimetic.
Mahoney, Brendan J; Zhang, Meiling; Zintsmaster, John S; Peng, Jeffrey W
2018-03-02
Pin1 is a two-domain human protein that catalyzes the cis-trans isomerization of phospho-Ser/Thr-Pro (pS/T-P) motifs in numerous cell-cycle regulatory proteins. These pS/T-P motifs bind to Pin1's peptidyl-prolyl isomerase (PPIase) domain in a catalytic pocket, between an extended catalytic loop and the PPIase domain core. Previous studies showed that post-translational phosphorylation of S71 in the catalytic loop decreases substrate binding affinity and isomerase activity. To define the origins for these effects, we investigated a phosphomimetic Pin1 mutant, S71E-Pin1, using solution NMR. We find that S71E perturbs not only its host loop but also the nearby PPIase core. The perturbations identify a local network of hydrogen bonds and salt bridges that is more extended than previously thought, and includes interactions between the catalytic loop and the α2/α3 turn in the PPIase core. Explicit-solvent molecular dynamics simulations and phylogenetic analysis suggest that these interactions act as conserved "latches" between the loop and PPIase core that enhance binding of phosphorylated substrates, as they are absent in PPIases lacking pS/T-P specificity. Our results suggest that S71 is a hub residue within an electrostatic network primed for phosphorylation, and may illustrate a common mechanism of phosphorylation-mediated allostery. Copyright © 2018 Elsevier Ltd. All rights reserved.
Mean field analysis of a spatial stochastic model of a gene regulatory network.
Sturrock, M; Murray, P J; Matzavinos, A; Chaplain, M A J
2015-10-01
A gene regulatory network may be defined as a collection of DNA segments which interact with each other indirectly through their RNA and protein products. Such a network is said to contain a negative feedback loop if its products inhibit gene transcription, and a positive feedback loop if a gene product promotes its own production. Negative feedback loops can create oscillations in mRNA and protein levels while positive feedback loops are primarily responsible for signal amplification. It is often the case in real biological systems that both negative and positive feedback loops operate in parameter regimes that result in low copy numbers of gene products. In this paper we investigate the spatio-temporal dynamics of a single feedback loop in a eukaryotic cell. We first develop a simplified spatial stochastic model of a canonical feedback system (either positive or negative). Using a Gillespie's algorithm, we compute sample trajectories and analyse their corresponding statistics. We then derive a system of equations that describe the spatio-temporal evolution of the stochastic means. Subsequently, we examine the spatially homogeneous case and compare the results of numerical simulations with the spatially explicit case. Finally, using a combination of steady-state analysis and data clustering techniques, we explore model behaviour across a subregion of the parameter space that is difficult to access experimentally and compare the parameter landscape of our spatio-temporal and spatially-homogeneous models.
Dimerization of the docking/adaptor protein HEF1 via a carboxy-terminal helix-loop-helix domain.
Law, S F; Zhang, Y Z; Fashena, S J; Toby, G; Estojak, J; Golemis, E A
1999-10-10
HEF1, p130(Cas), and Efs define a family of multidomain docking proteins which plays a central coordinating role for tyrosine-kinase-based signaling related to cell adhesion. HEF1 function has been specifically implicated in signaling pathways important for cell adhesion and differentiation in lymphoid and epithelial cells. While the SH3 domains and SH2-binding site domains (substrate domains) of HEF1 family proteins are well characterized and binding partners known, to date the highly conserved carboxy-terminal domains of the three proteins have lacked functional definition. In this study, we have determined that the carboxy-terminal domain of HEF1 contains a divergent helix-loop-helix (HLH) motif. This motif mediates HEF1 homodimerization and HEF1 heterodimerization with a recognition specificity similar to that of the transcriptional regulatory HLH proteins Id2, E12, and E47. We had previously demonstrated that the HEF1 carboxy-terminus expressed as a separate domain in yeast reprograms cell division patterns, inducing constitutive pseudohyphal growth. Here we show that pseudohyphal induction by HEF1 requires an intact HLH, further supporting the idea that this motif has an effector activity for HEF1, and implying that HEF1 pseudohyphal activity derives in part from interactions with yeast helix-loop-helix proteins. These combined results provide initial insight into the mode of function of the HEF1 carboxy-terminal domain and suggest that the HEF1 protein may interact with cellular proteins which control differentiation. Copyright 1999 Academic Press.
Azoitei, M.L.; Ban, Y.A.; Kalyuzhny, O.; Guenaga, J.; Schroeter, A.; Porter, J.; Wyatt, R.; Schief, W.R.
2015-01-01
Rational design of proteins with novel binding specificities and increased affinity is one of the major goals of computational protein design. Epitope-scaffolds are a new class of antigens engineered by transplanting viral epitopes of pre-defined structure to protein scaffolds, or by building protein scaffolds around such epitopes. Epitope-scaffolds are of interest as vaccine components to attempt to elicit neutralizing antibodies targeting the specified epitope. In this study we developed a new computational protocol, MultiGraft Interface, that transplants epitopes but also designs additional scaffold features outside the epitope to enhance antibody-binding specificity and potentially influence the specificity of elicited antibodies. We employed MultiGraft Interface to engineer novel epitope-scaffolds that display the known epitope of HIV-1 neutralizing antibody 2F5 and that also interact with the functionally important CDR H3 antibody loop. MultiGraft Interface generated an epitope-scaffold that bound 2F5 with sub-nanomolar affinity (KD = 400 pM) and that interacted with the antibody CDR H3 loop through computationally designed contacts. Substantial structural modifications were necessary to engineer this antigen, with the 2F5 epitope replacing a helix in the native scaffold and with 15% of the native scaffold sequence being modified in the design stage. This epitope-scaffold represents a successful example of rational protein backbone engineering and protein-protein interface design and could prove useful in the field of HIV vaccine design. MultiGraft Interface can be generally applied to engineer novel binding partners with altered specificity and optimized affinity. PMID:25043744
DNA denaturation bubbles: free-energy landscape and nucleation/closure rates.
Sicard, François; Destainville, Nicolas; Manghi, Manoel
2015-01-21
The issue of the nucleation and slow closure mechanisms of non-superhelical stress-induced denaturation bubbles in DNA is tackled using coarse-grained MetaDynamics and Brownian simulations. A minimal mesoscopic model is used where the double helix is made of two interacting bead-spring rotating strands with a prescribed torsional modulus in the duplex state. We demonstrate that timescales for the nucleation (respectively, closure) of an approximately 10 base-pair bubble, in agreement with experiments, are associated with the crossing of a free-energy barrier of 22 kBT (respectively, 13 kBT) at room temperature T. MetaDynamics allows us to reconstruct accurately the free-energy landscape, to show that the free-energy barriers come from the difference in torsional energy between the bubble and duplex states, and thus to highlight the limiting step, a collective twisting, that controls the nucleation/closure mechanism, and to access opening time scales on the millisecond range. Contrary to small breathing bubbles, those more than 4 base-pair bubbles are of biological relevance, for example, when a pre-existing state of denaturation is required by specific DNA-binding proteins.
Stabilization of a protein conferred by an increase in folded state entropy.
Dagan, Shlomi; Hagai, Tzachi; Gavrilov, Yulian; Kapon, Ruti; Levy, Yaakov; Reich, Ziv
2013-06-25
Entropic stabilization of native protein structures typically relies on strategies that serve to decrease the entropy of the unfolded state. Here we report, using a combination of experimental and computational approaches, on enhanced thermodynamic stability conferred by an increase in the configurational entropy of the folded state. The enhanced stability is observed upon modifications of a loop region in the enzyme acylphosphatase and is achieved despite significant enthalpy losses. The modifications that lead to increased stability, as well as those that result in destabilization, however, strongly compromise enzymatic activity, rationalizing the preservation of the native loop structure even though it does not provide the protein with maximal stability or kinetic foldability.
Anchoring protein crystals to mounting loops with hydrogel using inkjet technology.
Shinoda, Akira; Tanaka, Yoshikazu; Yao, Min; Tanaka, Isao
2014-11-01
X-ray crystallography is an important technique for structure-based drug discovery, mainly because it is the only technique that can reveal whether a ligand binds to the target protein as well as where and how it binds. However, ligand screening by X-ray crystallography involves a crystal-soaking experiment, which is usually performed manually. Thus, the throughput is not satisfactory for screening large numbers of candidate ligands. In this study, a technique to anchor protein crystals to mounting loops by using gel and inkjet technology has been developed; the method allows soaking of the mounted crystals in ligand-containing solution. This new technique may assist in the design of a fully automated drug-screening pipeline.
Narayana, N; Cox, S; Shaltiel, S; Taylor, S S; Xuong, N
1997-04-15
The crystal structure of the hexahistidine-tagged mouse recombinant catalytic subunit (H6-rC) of cAMP-dependent protein kinase (cAPK), complexed with a 20-residue peptide inhibitor from the heat-stable protein kinase inhibitor PKI(5-24) and adenosine, was determined at 2.2 A resolution. Novel crystallization conditions were required to grow the ternary complex crystals. The structure was refined to a final crystallographic R-factor of 18.2% with good stereochemical parameters. The "active" enzyme adopts a "closed" conformation as found in rC:PKI(5-24) [Knighton et al. (1991a,b) Science 253, 407-414, 414-420] and packs in a similar manner with the peptide providing a major contact surface. This structure clearly defines the subsites of the unique nucleotide binding site found in the protein kinase family. The adenosine occupies a mostly hydrophobic pocket at the base of the cleft between the two lobes and is completely buried. The missing triphosphate moiety of ATP is filled with a water molecule (Wtr 415) which replaces the gamma-phosphate of ATP. The glycine-rich loop between beta1 and beta2 helps to anchor the phosphates while the ribose ring is buried beneath beta-strand 2. Another ordered water molecule (Wtr 375) is pentacoordinated with polar atoms from adenosine, Leu 49 in beta-strand 1, Glu 127 in the linker strand between the two lobes, Tyr 330, and a third water molecule, Wtr 359. The conserved nucleotide fold can be defined as a lid comprised of beta-strand 1, the glycine-rich loop, and beta-strand 2. The adenine ring is buried beneath beta-strand 1 and the linker strand (120-127) that joins the small and large lobes. The C-terminal tail containing Tyr 330, a segment that lies outside the conserved core, covers this fold and anchors it in a closed conformation. The main-chain atoms of the flexible glycine-rich loop (residues 50-55) in the ATP binding domain have a mean B-factor of 41.4 A2. This loop is quite mobile, in striking contrast to the other conserved loops that converge at the active site cleft. The catalytic loop (residues 166-171) and the Mg2+ positioning loop (residues 184-186) are a stable part of the large lobe and have low B-factors in all structures solved to date. The stability of the glycine-rich loop is highly dependent on the ligands that occupy the active site cleft with maximum stability achieved in the ternary complex containing Mg x ATP and the peptide inhibitor. In this ternary complex the gamma-phosphate is secured between both lobes by hydrogen bonds to the backbone amide of Ser 53 in the glycine-rich loop and the amino group of Lys 168 in the catalytic loop. In the adenosine ternary complex the water molecule replacing the gamma-phosphate hydrogen bonds between Lys 168 and Asp 166 and makes no contact with the small lobe. This glycine-rich loop is thus the most mobile component of the active site cleft, with the tip of the loop being highly sensitive to what occupies the gamma-subsite.
The Dedicated Chaperone Acl4 Escorts Ribosomal Protein Rpl4 to Its Nuclear Pre-60S Assembly Site
Pillet, Benjamin; García-Gómez, Juan J.; Pausch, Patrick; Falquet, Laurent; Bange, Gert; de la Cruz, Jesús; Kressler, Dieter
2015-01-01
Ribosomes are the highly complex macromolecular assemblies dedicated to the synthesis of all cellular proteins from mRNA templates. The main principles underlying the making of ribosomes are conserved across eukaryotic organisms and this process has been studied in most detail in the yeast Saccharomyces cerevisiae. Yeast ribosomes are composed of four ribosomal RNAs (rRNAs) and 79 ribosomal proteins (r-proteins). Most r-proteins need to be transported from the cytoplasm to the nucleus where they get incorporated into the evolving pre-ribosomal particles. Due to the high abundance and difficult physicochemical properties of r-proteins, their correct folding and fail-safe targeting to the assembly site depends largely on general, as well as highly specialized, chaperone and transport systems. Many r-proteins contain universally conserved or eukaryote-specific internal loops and/or terminal extensions, which were shown to mediate their nuclear targeting and association with dedicated chaperones in a growing number of cases. The 60S r-protein Rpl4 is particularly interesting since it harbours a conserved long internal loop and a prominent C-terminal eukaryote-specific extension. Here we show that both the long internal loop and the C-terminal eukaryote-specific extension are strictly required for the functionality of Rpl4. While Rpl4 contains at least five distinct nuclear localization signals (NLS), the C-terminal part of the long internal loop associates with a specific binding partner, termed Acl4. Absence of Acl4 confers a severe slow-growth phenotype and a deficiency in the production of 60S subunits. Genetic and biochemical evidence indicates that Acl4 can be considered as a dedicated chaperone of Rpl4. Notably, Acl4 localizes to both the cytoplasm and nucleus and it has the capacity to capture nascent Rpl4 in a co-translational manner. Taken together, our findings indicate that the dedicated chaperone Acl4 accompanies Rpl4 from the cytoplasm to its pre-60S assembly site in the nucleus. PMID:26447800
Conformational Rearrangement Within the Soluble Domains of the CD4 Receptor is Ligand-Specific
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashish,F.; Juncadella, I.; Garg, R.
2008-01-01
Ligand binding induces shape changes within the four modular ectodomains (D1-D4) of the CD4 receptor, an important receptor in immune signaling. Small angle x-ray scattering (SAXS) on both a two-domain and a four-domain construct of the soluble CD4 (sCD4) is consistent with known crystal structures demonstrating a bilobal and a semi-extended tetralobal Z conformation in solution, respectively. Detection of conformational changes within sCD4 as a result of ligand binding was followed by SAXS on sCD4 bound to two different glycoprotein ligands: the tick saliva immunosuppressor Salp15 and the HIV-1 envelope protein gp120. Ab initio modeling of these data showed thatmore » both Salp15 and gp120 bind to the D1 domain of sCD4 and yet induce drastically different structural rearrangements. Upon binding, Salp15 primarily distorts the characteristic lobal architecture of the sCD4 without significantly altering the semi-extended shape of the sCD4 receptor. In sharp contrast, the interaction of gp120 with sCD4 induces a shape change within sCD4 that can be described as a Z-to-U bi-fold closure of the four domains across its flexible D2-D3 linker. Placement of known crystal structures within the boundaries of the SAXS-derived models suggests that the ligand-induced shape changes could be a result of conformational changes within this D2-D3 linker. Functionally, the observed shape changes in CD4 receptor causes dissociation of lymphocyte kinase from the cytoplasmic domain of Salp15-bound CD4 and facilitates an interaction between the exposed V3 loops of CD4-bound gp120 molecule to the extracellular loops of its co-receptor, a step essential for HIV-1 viral entry.« less
Jain, Kanishk; Warmack, Rebeccah A.; Stavropoulos, Peter
2016-01-01
In the family of protein arginine methyltransferases (PRMTs) that predominantly generate either asymmetric or symmetric dimethylarginine (SDMA), PRMT7 is unique in producing solely monomethylarginine (MMA) products. The type of methylation on histones and other proteins dictates changes in gene expression, and numerous studies have linked altered profiles of methyl marks with disease phenotypes. Given the importance of specific inhibitor development, it is crucial to understand the mechanisms by which PRMT product specificity is conferred. We have focused our attention on active-site residues of PRMT7 from the protozoan Trypanosoma brucei. We have designed 26 single and double mutations in the active site, including residues in the Glu-Xaa8-Glu (double E) loop and the Met-Gln-Trp sequence of the canonical Thr-His-Trp (THW) loop known to interact with the methyl-accepting substrate arginine. Analysis of the reaction products by high resolution cation exchange chromatography combined with the knowledge of PRMT crystal structures suggests a model where the size of two distinct subregions in the active site determines PRMT7 product specificity. A dual mutation of Glu-181 to Asp in the double E loop and Gln-329 to Ala in the canonical THW loop enables the enzyme to produce SDMA. Consistent with our model, the mutation of Cys-431 to His in the THW loop of human PRMT9 shifts its product specificity from SDMA toward MMA. Together with previous results, these findings provide a structural basis and a general model for product specificity in PRMTs, which will be useful for the rational design of specific PRMT inhibitors. PMID:27387499
NASA Astrophysics Data System (ADS)
Jennings, Patricia
Entanglement and knots are naturally occurring, where, in the microscopic world, knots in DNA and homopolymers are well characterized. The most complex knots are observed in proteins which are harder to investigate, as proteins are heteropolymers composed of a combination of 20 different amino acids with different individual biophysical properties. As new-knotted topologies and new proteins containing knots continue to be discovered and characterized, the investigation of knots in proteins has gained intense interest. Thus far, the principle focus has been on the evolutionary origin of tying a knot, with questions of how a protein chain `self-ties' into a knot, what the mechanism(s) are that contribute to threading, and the biological relevance and functional implication of a knotted topology in vivo gaining the most insight. Efforts to study the fully untied and unfolded chain indicate that the knot is highly stable, remaining intact in the unfolded state orders of magnitude longer than first anticipated. The persistence of ``stable'' knots in the unfolded state, together with the challenge of defining an unfolded and untied chain from an unfolded and knotted chain, complicates the study of fully untied protein in vitro. Our discovery of a new class of knotted proteins, the Pierced Lassos (PL) loop topology, simplifies the knotting approach. While PLs are not easily recognizable by the naked eye, they have now been identified in many proteins in the PDB through the use of computation tools. PL topologies are diverse proteins found in all kingdoms of life, performing a large variety of biological responses such as cell signaling, immune responses, transporters and inhibitors (http://lassoprot.cent.uw.edu.pl/). Many of these PL topologies are secreted proteins, extracellular proteins, as well as, redox sensors, enzymes and metal and co-factor binding proteins; all of which provide a favorable environment for the formation of the disulphide bridge. In the PL topologies, the threaded topology is formed by a covalent loop where part of the polypeptide chain is threaded through, forming what we term a PL. The advantage of a PL topology for fundamental studies, compared to other knotted proteins, is that the threaded topology can easily be manipulated to yield an unknotted state. Exploiting the oxidative state of the cysteines, the building blocks that form the disulphide bridge generating the covalent loop, through altering the chemical environment, and thereby controlling the formation of the covalent loop, easily generates unknotted protein. The biological advantage, we have found, is that the PL can exert allosteric control through this on/off mechanism in a target protein. Most significantly, as the disulphide bridge acts as an on/off switch in knotting, the biophysical investigation of PL topologies can provide a new tool to steer folding and function in proteins, as disulphide bridges are commonly used in protein engineering and therapeutics.
Exploration Life Support Critical Questions for Future Human Space Missions
NASA Technical Reports Server (NTRS)
Kwert, Michael K.; Barta, Daniel J.; McQuillan, Jeff
2010-01-01
Exploration Life Support (ELS) is a current project under NASA's Exploration Systems Mission Directorate. The ELS Project plans, coordinates and implements the development of advanced life support technologies for human exploration missions in space. Recent work has focused on closed loop atmosphere and water systems for long duration missions, including habitats and pressurized rovers. But, what are the critical questions facing life support system developers for these and other future human missions? This paper explores those questions and how progress in the development of ELS technologies can help answer them. The ELS Project includes the following Elements: Atmosphere Revitalization Systems, Water Recovery Systems, Waste Management Systems, Habitation Engineering, Systems Integration, Modeling and Analysis, and Validation and Testing, which includes the Sub-Elements Flight Experiments and Integrated Testing. Systems engineering analysis by ELS seeks to optimize overall mission architectures by considering all the internal and external interfaces of the life support system and the potential for reduction or reuse of commodities. In particular, various sources and sinks of water and oxygen are considered along with the implications on loop closure and the resulting launch mass requirements. Systems analysis will be validated through the data gathered from integrated testing, which will demonstrate the interfaces of a closed loop life support system. By applying a systematic process for defining, sorting and answering critical life support questions, the ELS project is preparing for a variety of future human space missions
Evaluation of Bosch-Based Systems Using Non-Traditional Catalysts at Reduced Temperatures
NASA Technical Reports Server (NTRS)
Abney, Morgan B.; Mansell, J. Matthew
2011-01-01
Oxygen and water resupply make open loop atmosphere revitalization (AR) systems unfavorable for long-term missions beyond low Earth orbit. Crucial to closing the AR loop are carbon dioxide reduction systems with low mass and volume, minimal power requirements, and minimal consumables. For this purpose, NASA is exploring using Bosch-based systems. The Bosch process is favorable over state-of-the-art Sabatier-based processes due to complete loop closure. However, traditional operation of the Bosch required high reaction temperatures, high recycle rates, and significant consumables in the form of catalyst resupply due to carbon fouling. A number of configurations have been proposed for next-generation Bosch systems. First, alternative catalysts (catalysts other than steel wool) can be used in a traditional single-stage Bosch reactor to improve reaction kinetics and increase carbon packing density. Second, the Bosch reactor may be split into separate stages wherein the first reactor stage is dedicated to carbon monoxide and water formation via the reverse water-gas shift reaction and the second reactor stage is dedicated to carbon formation. A series system will enable maximum efficiency of both steps of the Bosch reaction, resulting in optimized operation and maximum carbon formation rate. This paper details the results of testing of both single-stage and two-stage Bosch systems with alternative catalysts at reduced temperatures. These results are compared to a traditional Bosch system operated with a steel wool catalyst.
Burtscher, Laura; Hajdu, Dorottya; Muñoz, Alberto; Gáspári, Zoltán; Read, Nick D.; Batta, Gyula; Marx, Florentine
2017-01-01
The cysteine-rich, cationic, antifungal protein PAF is abundantly secreted into the culture supernatant of the filamentous Ascomycete Penicillium chrysogenum. The five β-strands of PAF form a compact β-barrel that is stabilized by three disulphide bonds. The folding of PAF allows the formation of four surface-exposed loops and distinct charged motifs on the protein surface that might regulate the interaction of PAF with the sensitive target fungus. The growth inhibitory activity of this highly stable protein against opportunistic fungal pathogens provides great potential in antifungal drug research. To understand its mode of action, we started to investigate the surface-exposed loops of PAF and replaced one aspartic acid at position 19 in loop 2 that is potentially involved in PAF active or binding site, with a serine (Asp19 to Ser19). We analysed the overall effects, such as unfolding, electrostatic changes, sporadic conformers and antifungal activity when substituting this specific amino acid to the fairly indifferent amino acid serine. Structural analyses revealed that the overall 3D solution structure is virtually identical with that of PAF. However, PAFD19S showed slightly increased dynamics and significant differences in the surface charge distribution. Thermal unfolding identified PAFD19S to be rather a two-state folder in contrast to the three-state folder PAF. Functional comparison of PAFD19S and PAF revealed that the exchange at residue 19 caused a dramatic loss of antifungal activity: the binding and internalization of PAFD19S by target cells was reduced and the protein failed to trigger an intracellular Ca2+ response, all of which are closely linked to the antifungal toxicity of PAF. We conclude that the negatively charged residue Asp19 in loop 2 is essential for full function of the cationic protein PAF. PMID:28072824
Trajectory-based visual localization in underwater surveying missions.
Burguera, Antoni; Bonin-Font, Francisco; Oliver, Gabriel
2015-01-14
We present a new vision-based localization system applied to an autonomous underwater vehicle (AUV) with limited sensing and computation capabilities. The traditional EKF-SLAM approaches are usually expensive in terms of execution time; the approach presented in this paper strengthens this method by adopting a trajectory-based schema that reduces the computational requirements. The pose of the vehicle is estimated using an extended Kalman filter (EKF), which predicts the vehicle motion by means of a visual odometer and corrects these predictions using the data associations (loop closures) between the current frame and the previous ones. One of the most important steps in this procedure is the image registration method, as it reinforces the data association and, thus, makes it possible to close loops reliably. Since the use of standard EKFs entail linearization errors that can distort the vehicle pose estimations, the approach has also been tested using an iterated Kalman filter (IEKF). Experiments have been conducted using a real underwater vehicle in controlled scenarios and in shallow sea waters, showing an excellent performance with very small errors, both in the vehicle pose and in the overall trajectory estimates.
Insights into substrate binding and catalysis in bacterial type I dehydroquinase.
Maneiro, María; Peón, Antonio; Lence, Emilio; Otero, José M; Van Raaij, Mark J; Thompson, Paul; Hawkins, Alastair R; González-Bello, Concepción
2014-09-15
Structural, biochemical and computational studies to study substrate binding and the role of the conserved residues of the DHQ1 (type I dehydroquinase) enzyme active site are reported in the present paper. The crystal structure of DHQ1 from Salmonella typhi in complex with (2R)-2-methyl-3-dehydroquinic acid, a substrate analogue, was solved at 1.5 Å. The present study reveals a previously unknown key role for conserved Glu46, Phe145 and Met205 and Gln236, Pro234 and Ala233 residues, with the latter three being located in the flexible substrate-covering loop. Gln236 was shown to be responsible for the folding of this loop and for the dramatic reduction of its flexibility, which triggers active site closure. Glu46 was found to be key in bringing the substrate close to the lysine/histidine catalytic pocket to initiate catalysis. The present study could be useful in the rational design of inhibitors of this challenging and recognized target for the development of novel herbicides and antimicrobial agents.
Exploration Life Support Critical Questions for Future Human Space Missions
NASA Technical Reports Server (NTRS)
Ewert, Michael K.; Barta, Daniel J.; McQuillan, Jeff
2009-01-01
Exploration Life Support (ELS) is a project under NASA s Exploration Technology Development Program. The ELS Project plans, coordinates and implements the development of advanced life support technologies for human exploration missions in space. Recent work has focused on closed loop atmosphere and water systems for a lunar outpost, including habitats and pressurized rovers. But, what are the critical questions facing life support system developers for these and other future human missions? This paper explores those questions and discusses how progress in the development of ELS technologies can help answer them. The ELS Project includes Atmosphere Revitalization Systems (ARS), Water Recovery Systems (WRS), Waste Management Systems (WMS), Habitation Engineering, Systems Integration, Modeling and Analysis (SIMA), and Validation and Testing, which includes the sub-elements Flight Experiments and Integrated Testing. Systems engineering analysis by ELS seeks to optimize the overall mission architecture by considering all the internal and external interfaces of the life support system and the potential for reduction or reuse of commodities. In particular, various sources and sinks of water and oxygen are considered along with the implications on loop closure and the resulting launch mass requirements.
Simulation of a main steam line break with steam generator tube rupture using trace
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallardo, S.; Querol, A.; Verdu, G.
A simulation of the OECD/NEA ROSA-2 Project Test 5 was made with the thermal-hydraulic code TRACE5. Test 5 performed in the Large Scale Test Facility (LSTF) reproduced a Main Steam Line Break (MSLB) with a Steam Generator Tube Rupture (SGTR) in a Pressurized Water Reactor (PWR). The result of these simultaneous breaks is a depressurization in the secondary and primary system in loop B because both systems are connected through the SGTR. Good approximation was obtained between TRACE5 results and experimental data. TRACE5 reproduces qualitatively the phenomena that occur in this transient: primary pressure falls after the break, stagnation ofmore » the pressure after the opening of the relief valve of the intact steam generator, the pressure falls after the two openings of the PORV and the recovery of the liquid level in the pressurizer after each closure of the PORV. Furthermore, a sensitivity analysis has been performed to know the effect of varying the High Pressure Injection (HPI) flow rate in both loops on the system pressures evolution. (authors)« less
Exploring the evolution of protein function in Archaea.
Goncearenco, Alexander; Berezovsky, Igor N
2012-05-30
Despite recent progress in studies of the evolution of protein function, the questions what were the first functional protein domains and what were their basic building blocks remain unresolved. Previously, we introduced the concept of elementary functional loops (EFLs), which are the functional units of enzymes that provide elementary reactions in biochemical transformations. They are presumably descendants of primordial catalytic peptides. We analyzed distant evolutionary connections between protein functions in Archaea based on the EFLs comprising them. We show examples of the involvement of EFLs in new functional domains, as well as reutilization of EFLs and functional domains in building multidomain structures and protein complexes. Our analysis of the archaeal superkingdom yields the dominating mechanisms in different periods of protein evolution, which resulted in several levels of the organization of biochemical function. First, functional domains emerged as combinations of prebiotic peptides with the very basic functions, such as nucleotide/phosphate and metal cofactor binding. Second, domain recombination brought to the evolutionary scene the multidomain proteins and complexes. Later, reutilization and de novo design of functional domains and elementary functional loops complemented evolution of protein function.
Ke, Y; Sierzputowska-Gracz, H; Gdaniec, Z; Theil, E C
2000-05-23
Iron-responsive elements (IREs), a natural group of mRNA-specific sequences, bind iron regulatory proteins (IRPs) differentially and fold into hairpins [with a hexaloop (HL) CAGUGX] with helical distortions: an internal loop/bulge (IL/B) (UGC/C) or C-bulge. C-bulge iso-IREs bind IRP2 more poorly, as oligomers (n = 28-30), and have a weaker signal response in vivo. Two trans-loop GC base pairs occur in the ferritin IRE (IL/B and HL) but only one in C-bulge iso-IREs (HL); metal ions and protons perturb the IL/B [Gdaniec et al. (1998) Biochemistry 37, 1505-1512]. IRE function (translation) and physical properties (T(m) and accessibility to nucleases) are now compared for IL/B and C-bulge IREs and for HL mutants. Conversion of the IL/B into a C-bulge by a single deletion in the IL/B or by substituting the HL CG base pair with UA both derepressed ferritin synthesis 4-fold in rabbit reticulocyte lysates (IRP1 + IRP2), confirming differences in IRP2 binding observed for the oligomers. Since the engineered C-bulge IRE was more helical near the IL/B [Cu(phen)(2) resistant] and more stable (T(m) increased) and the HL mutant was less helical near the IL/B (ribonuclease T1 sensitive) and less stable (T(m) decreased), both CG trans-loop base pairs contribute to maximum IRP2 binding and translational regulation. The (1)H NMR spectrum of the Mg-IRE complex revealed, in contrast to the localized IL/B effects of Co(III) hexaammine observed previously, perturbation of the IL/B plus HL and interloop helix. The lower stability and greater helix distortion in the ferritin IL/B-IRE compared to the C-bulge iso-IREs create a combinatorial set of RNA/protein interactions that control protein synthesis rates with a range of signal sensitivities.
D'Souza, V; Melamed, J; Habib, D; Pullen, K; Wallace, K; Summers, M F
2001-11-23
Murine leukemia virus (MLV) is currently the most widely used gene delivery system in gene therapy trials. The simple retrovirus packages two copies of its RNA genome by a mechanism that involves interactions between the nucleocapsid (NC) domain of a virally-encoded Gag polyprotein and a segment of the RNA genome located just upstream of the Gag initiation codon, known as the Psi-site. Previous studies indicated that the MLV Psi-site contains three stem loops (SLB-SLD), and that stem loops SLC and SLD play prominent roles in packaging. We have developed a method for the preparation and purification of large quantities of recombinant Moloney MLV NC protein, and have studied its interactions with a series of oligoribonucleotides that contain one or more of the Psi-RNA stem loops. At RNA concentrations above approximately 0.3 mM, isolated stem loop SLB forms a duplex and stem loops SL-C and SL-D form kissing complexes, as expected from previous studies. However, neither the monomeric nor the dimeric forms of these isolated stem loops binds NC with significant affinity. Longer constructs containing two stem loops (SL-BC and SL-CD) also exhibit low affinities for NC. However, NC binds with high affinity and stoichiometrically to both the monomeric and dimeric forms of an RNA construct that contains all three stem loops (SL-BCD; K(d)=132(+/-55) nM). Titration of SL-BCD with NC also shifts monomer-dimer equilibrium toward the dimer. Mutagenesis experiments demonstrate that the conserved GACG tetraloops of stem loops C and D do not influence the monomer-dimer equilibrium of SL-BCD, that the tetraloop of stem loop B does not participate directly in NC binding, and that the tetraloops of stem loops C and D probably also do not bind to NC. These surprising results differ considerably from those observed for HIV-1, where NC binds to individual stem loops with high affinity via interactions with exposed residues of the tetraloops. The present results indicate that MLV NC binds to a pocket or surface that only exists in the presence of all three stem loops. Copyright 2001 Academic Press.
Lubin, Johnathan W; Tucey, Timothy M; Lundblad, Victoria
2012-09-01
In the budding yeast Saccharomyces cerevisiae, the telomerase enzyme is composed of a 1.3-kb TLC1 RNA that forms a complex with Est2 (the catalytic subunit) and two regulatory proteins, Est1 and Est3. Previous work has identified a conserved 5-nt bulge, present in a long helical arm of TLC1, which mediates binding of Est1 to TLC1. However, increased expression of Est1 can bypass the consequences of removal of this RNA bulge, indicating that there are additional binding site(s) for Est1 on TLC1. We report here that a conserved single-stranded internal loop immediately adjacent to the bulge is also required for the Est1-RNA interaction; furthermore, a TLC1 variant that lacks this internal loop but retains the bulge cannot be suppressed by Est1 overexpression, arguing that the internal loop may be a more critical element for Est1 binding. An additional structural feature consisting of a single-stranded region at the base of the helix containing the bulge and internal loop also contributes to recognition of TLC1 by Est1, potentially by providing flexibility to this helical arm. Association of Est1 with each of these TLC1 motifs was assessed using a highly sensitive biochemical assay that simultaneously monitors the relative levels of the Est1 and Est2 proteins in the telomerase complex. The identification of three elements of TLC1 that are required for Est1 association provides a detailed view of this particular protein-RNA interaction.
Tie, Jian-Ke; Jin, Da-Yun; Stafford, Darrel W.
2014-01-01
Vitamin K epoxide reductase complex subunit 1 (VKORC1) reduces vitamin K epoxide in the vitamin K cycle for post-translational modification of proteins that are involved in a variety of biological functions. However, the physiological function of VKORC1-like 1 (VKORC1L1), a paralogous enzyme sharing about 50% protein identity with VKORC1, is unknown. Here we determined the structural and functional differences of these two enzymes using fluorescence protease protection (FPP) assay and an in vivo cell-based activity assay. We show that in vivo VKORC1L1 reduces vitamin K epoxide to support vitamin K-dependent carboxylation as efficiently as does VKORC1. However, FPP assays show that unlike VKORC1, VKORC1L1 is a four-transmembrane domain protein with both its termini located in the cytoplasm. Moreover, the conserved loop cysteines, which are not required for VKORC1 activity, are essential for VKORC1L1's active site regeneration. Results from domain exchanges between VKORC1L1 and VKORC1 suggest that it is VKORC1L1's overall structure that uniquely allows for active site regeneration by the conserved loop cysteines. Intermediate disulfide trapping results confirmed an intra-molecular electron transfer pathway for VKORC1L1's active site reduction. Our results allow us to propose a concerted action of the four conserved cysteines of VKORC1L1 for active site regeneration; the second loop cysteine, Cys-58, attacks the active site disulfide, forming an intermediate disulfide with Cys-139; the first loop cysteine, Cys-50, attacks the intermediate disulfide resulting in active site reduction. The different membrane topologies and reaction mechanisms between VKORC1L1 and VKORC1 suggest that these two proteins might have different physiological functions. PMID:24532791
Tie, Jian-Ke; Jin, Da-Yun; Stafford, Darrel W
2014-03-28
Vitamin K epoxide reductase complex subunit 1 (VKORC1) reduces vitamin K epoxide in the vitamin K cycle for post-translational modification of proteins that are involved in a variety of biological functions. However, the physiological function of VKORC1-like 1 (VKORC1L1), a paralogous enzyme sharing about 50% protein identity with VKORC1, is unknown. Here we determined the structural and functional differences of these two enzymes using fluorescence protease protection (FPP) assay and an in vivo cell-based activity assay. We show that in vivo VKORC1L1 reduces vitamin K epoxide to support vitamin K-dependent carboxylation as efficiently as does VKORC1. However, FPP assays show that unlike VKORC1, VKORC1L1 is a four-transmembrane domain protein with both its termini located in the cytoplasm. Moreover, the conserved loop cysteines, which are not required for VKORC1 activity, are essential for VKORC1L1's active site regeneration. Results from domain exchanges between VKORC1L1 and VKORC1 suggest that it is VKORC1L1's overall structure that uniquely allows for active site regeneration by the conserved loop cysteines. Intermediate disulfide trapping results confirmed an intra-molecular electron transfer pathway for VKORC1L1's active site reduction. Our results allow us to propose a concerted action of the four conserved cysteines of VKORC1L1 for active site regeneration; the second loop cysteine, Cys-58, attacks the active site disulfide, forming an intermediate disulfide with Cys-139; the first loop cysteine, Cys-50, attacks the intermediate disulfide resulting in active site reduction. The different membrane topologies and reaction mechanisms between VKORC1L1 and VKORC1 suggest that these two proteins might have different physiological functions.
A designed glycoprotein analogue of Gc-MAF exhibits native-like phagocytic activity.
Bogani, Federica; McConnell, Elizabeth; Joshi, Lokesh; Chang, Yung; Ghirlanda, Giovanna
2006-06-07
Rational protein design has been successfully used to create mimics of natural proteins that retain native activity. In the present work, de novo protein engineering is explored to develop a mini-protein analogue of Gc-MAF, a glycoprotein involved in the immune system activation that has shown anticancer activity in mice. Gc-MAF is derived in vivo from vitamin D binding protein (VDBP) via enzymatic processing of its glycosaccharide to leave a single GalNAc residue located on an exposed loop. We used molecular modeling tools in conjunction with structural analysis to splice the glycosylated loop onto a stable three-helix bundle (alpha3W, PDB entry 1LQ7). The resulting 69-residue model peptide, MM1, has been successfully synthesized by solid-phase synthesis both in the aglycosylated and the glycosylated (GalNAc-MM1) form. Circular dichroism spectroscopy confirmed the expected alpha-helical secondary structure. The thermodynamic stability as evaluated from chemical and thermal denaturation is comparable with that of the scaffold protein, alpha3W, indicating that the insertion of the exogenous loop of Gc-MAF did not significantly perturb the overall structure. GalNAc-MM1 retains the macrophage stimulation activity of natural Gc-MAF; in vitro tests show an identical enhancement of Fc-receptor-mediated phagocytosis in primary macrophages. GalNAc-MM1 provides a framework for the development of mutants with increased activity that could be used in place of Gc-MAF as an immunomodulatory agent in therapy.
Dissecting binding of a β-barrel membrane protein by phage display.
Meneghini, Luz M; Tripathi, Sarvind; Woodworth, Marcus A; Majumdar, Sudipta; Poulos, Thomas L; Weiss, Gregory A
2017-07-25
Membrane proteins (MPs) constitute a third of all proteomes, and contribute to a myriad of cellular functions including intercellular communication, nutrient transport and energy generation. For example, TonB-dependent transporters (TBDTs) in the outer membrane of Gram-negative bacteria play an essential role transporting iron and other nutrients into the bacterial cell. The inherently hydrophobic surfaces of MPs complicates protein expression, purification, and characterization. Thus, dissecting the functional contributions of individual amino acids or structural features through mutagenesis can be a challenging ordeal. Here, we apply a new approach for the expedited protein characterization of the TBDT ShuA from Shigella dysenteriae, and elucidate the protein's initial steps during heme-uptake. ShuA variants were displayed on the surface of an M13 bacteriophage as fusions to the P8 coat protein. Each ShuA variant was analyzed for its ability to display on the bacteriophage surface, and functionally bind to hemoglobin. This technique streamlines isolation of stable MP variants for rapid characterization of binding to various ligands. Site-directed mutagenesis studies targeting each extracellular loop region of ShuA demonstrate no specific extracellular loop is required for hemoglobin binding. Instead two residues, His420 and His86 mediate this interaction. The results identify a loop susceptible to antibody binding, and also a small molecule motif capable of disrupting ShuA from S. dysenteriae. The approach is generalizable to the dissection of other phage-displayed TBDTs and MPs.
Liu, Mingming; Huang, Rong; Weisman, Adam; Yu, Xiaoyang; Lee, Shih-Hui; Chen, Yalu; Huang, Chao; Hu, Senhua; Chen, Xiuhua; Tan, Wenfeng; Liu, Fan; Chen, Hao; Shea, Kenneth J
2018-05-24
We report a novel strategy for creating abiotic Bacillus thuringiensis ( Bt) protein affinity ligands by biomimicry of the recognition process that takes place between Bt Cry1Ab/Ac proteins and insect receptor cadherin-like Bt-R 1 proteins. Guided by this strategy, a library of synthetic polymer nanoparticles (NPs) was prepared and screened for binding to three epitopes 280 FRGSAQGIEGS 290 , 368 RRPFNIGINNQQ 379 and 436 FRSGFSNSSVSIIR 449 located in loop α8, loop 2 and loop 3 of domain II of Bt Cry1Ab/Ac proteins. A negatively charged and hydrophilic nanoparticle (NP12) was found to have high affinity to one of the epitopes, 368 RRPFNIGINNQQ 379 . This same NP also had specific binding ability to both Bt Cry1Ab and Bt Cry1Ac, proteins that share the same epitope, but very low affinity to Bt Cry2A, Bt Cry1C and Bt Cry1F closely related proteins that lack epitope homology. To locate possible NP- Bt Cry1Ab/Ac interaction sites, NP12 was used as a competitive inhibitor to block the binding of 865 NITIHITDTNNK 876 , a specific recognition site in insect receptor Bt-R 1 , to 368 RRPFNIGINNQQ 379 . The inhibition by NP12 reached as high as 84%, indicating that NP12 binds to Bt Cry1Ab/Ac proteins mainly via 368 RRPFNIGINNQQ 379 . This epitope region was then utilized as a "target" or "bait" for the separation and concentration of Bt Cry1Ac protein from the extract of transgenic Bt cotton leaves by NP12. This strategy, based on the antigen-receptor recognition mechanism, can be extended to other biotoxins and pathogen proteins when designing biomimic alternatives to natural protein affinity ligands.
Kalimeri, Maria; Girard, Eric; Madern, Dominique; Sterpone, Fabio
2014-01-01
In this work we investigate by computational means the behavior of two orthologous bacterial proteins, a mesophilic and a thermophilic tetrameric malate dehydrogenase (MalDH), at different temperatures. Namely, we quantify how protein mechanical rigidity at different length- and time-scales correlates to protein thermophilicity as commonly believed. In particular by using a clustering analysis strategy to explore the conformational space of the folded proteins, we show that at ambient conditions and at the molecular length-scale the thermophilic variant is indeed more rigid that the mesophilic one. This rigidification is the result of more efficient inter-domain interactions, the strength of which is further quantified via ad hoc free energy calculations. When considered isolated, the thermophilic domain is indeed more flexible than the respective mesophilic one. Upon oligomerization, the induced stiffening of the thermophilic protein propagates from the interface to the active site where the loop, controlling the access to the catalytic pocket, anchors down via an extended network of ion-pairs. On the contrary in the mesophilic tetramer the loop is highly mobile. Simulations at high temperature, could not re-activate the mobility of the loop in the thermophile. This finding opens questions on the similarities of the binding processes for these two homologues at their optimal working temperature and suggests for the thermophilic variant a possible cooperative role of cofactor/substrate. PMID:25437494
Kalimeri, Maria; Girard, Eric; Madern, Dominique; Sterpone, Fabio
2014-01-01
In this work we investigate by computational means the behavior of two orthologous bacterial proteins, a mesophilic and a thermophilic tetrameric malate dehydrogenase (MalDH), at different temperatures. Namely, we quantify how protein mechanical rigidity at different length- and time-scales correlates to protein thermophilicity as commonly believed. In particular by using a clustering analysis strategy to explore the conformational space of the folded proteins, we show that at ambient conditions and at the molecular length-scale the thermophilic variant is indeed more rigid that the mesophilic one. This rigidification is the result of more efficient inter-domain interactions, the strength of which is further quantified via ad hoc free energy calculations. When considered isolated, the thermophilic domain is indeed more flexible than the respective mesophilic one. Upon oligomerization, the induced stiffening of the thermophilic protein propagates from the interface to the active site where the loop, controlling the access to the catalytic pocket, anchors down via an extended network of ion-pairs. On the contrary in the mesophilic tetramer the loop is highly mobile. Simulations at high temperature, could not re-activate the mobility of the loop in the thermophile. This finding opens questions on the similarities of the binding processes for these two homologues at their optimal working temperature and suggests for the thermophilic variant a possible cooperative role of cofactor/substrate.
Existence of a regulatory loop between MCP-1 and TGF-beta in glomerular immune injury.
Wolf, Gunter; Jocks, Thomas; Zahner, Gunther; Panzer, Ulf; Stahl, Rolf A K
2002-11-01
Glomerular upregulation of monocyte chemotactic protein-1 (MCP-1), followed by an influx of monocytes resulting eventually in extracellular matrix deposition is a common sequel of many types of glomerulonephritis. However, it is not entirely clear how early expression of MCP-1 is linked to the later development of glomerulosclerosis. Because transforming growth factor-beta (TGF-beta) is a key regulator of extracellular matrix proteins, we hypothesized that there might be a regulatory loop between early glomerular MCP-1 induction and subsequent TGF-beta expression. To avoid interference with other cytokines that may be released from infiltrating monocytes, isolated rat kidneys were perfused with a polyclonal anti-thymocyte-1 antiserum (ATS) and rat serum (RS) as a complement source to induce glomerular injury. Renal TGF-beta protein and mRNA expressions were strongly stimulated after perfusion with ATS-RS. This effect was attenuated by coperfusion with a neutralizing anti-MCP-1 but was partly mimicked by perfusion with recombinant MCP-1 protein. On the other hand, renal MCP-1 expression and production were stimulated by administration of ATS-RS. Additional perfusion with an anti-TGF-beta antibody further aggravated this increase, whereas application of recombinant TGF-beta protein reduced MCP-1 formation. Our data demonstrate an intrinsic regulatory loop in which increased MCP-1 levels stimulate TGF-beta formation in resident glomerular cells in the absence of infiltrating immune competent cells.
Molecular basis of thermal stability in truncated (2/2) hemoglobins.
Bustamante, Juan P; Bonamore, Alessandra; Nadra, Alejandro D; Sciamanna, Natascia; Boffi, Alberto; Estrin, Darío A; Boechi, Leonardo
2014-07-01
Understanding the molecular mechanism through which proteins are functional at extreme high and low temperatures is one of the key issues in structural biology. To investigate this phenomenon, we have focused on two instructive truncated hemoglobins from Thermobifida fusca (Tf-trHbO) and Mycobacterium tuberculosis (Mt-trHbO); although the two proteins are structurally nearly identical, only the former is stable at high temperatures. We used molecular dynamics simulations at different temperatures as well as thermal melting profile measurements of both wild type proteins and two mutants designed to interchange the amino acid residue, either Pro or Gly, at E3 position. The results show that the presence of a Pro at the E3 position is able to increase (by 8°) or decrease (by 4°) the melting temperature of Mt-trHbO and Tf-trHbO, respectively. We observed that the ProE3 alters the structure of the CD loop, making it more flexible. This gain in flexibility allows the protein to concentrate its fluctuations in this single loop and avoid unfolding. The alternate conformations of the CD loop also favor the formation of more salt-bridge interactions, together augmenting the protein's thermostability. These results indicate a clear structural and dynamical role of a key residue for thermal stability in truncated hemoglobins. Copyright © 2014 Elsevier B.V. All rights reserved.
Probing the dynamics of restriction endonuclease NgoMIV-DNA interaction by single-molecule FRET.
Tutkus, Marijonas; Sasnauskas, Giedrius; Rutkauskas, Danielis
2017-12-01
Many type II restriction endonucleases require two copies of their recognition sequence for optimal activity. Concomitant binding of two DNA sites by such an enzyme produces a DNA loop. Here we exploit single-molecule Förster resonance energy transfer (smFRET) of surface-immobilized DNA fragments to study the dynamics of DNA looping induced by tetrameric endonuclease NgoMIV. We have employed a DNA fragment with two NgoMIV recognition sites and a FRET dye pair such that upon protein-induced DNA looping the dyes are brought to close proximity resulting in a FRET signal. The dynamics of DNA-NgoMIV interactions proved to be heterogeneous, with individual smFRET trajectories exhibiting broadly different average looped state durations. Distinct types of the dynamics were attributed to different types of DNA-protein complexes, mediated either by one NgoMIV tetramer simultaneously bound to two specific sites ("slow" trajectories) or by semi-specific interactions of two DNA-bound NgoMIV tetramers ("fast" trajectories), as well as to conformational heterogeneity of individual NgoMIV molecules. © 2017 Wiley Periodicals, Inc.
Gu, Linlin; Krendelchtchikova, Valentina; Krendelchtchikov, Alexandre; Farrow, Anitra L; Derdeyn, Cynthia A; Matthews, Qiana L
2016-01-01
Adenoviral (Ad) vectors in combination with the "Antigen Capsid-Incorporation" strategy have been applied in developing HIV-1 vaccines, due to the vectors׳ abilities in incorporating and inducing immunity of capsid-incorporated antigens. Variable loop 2 (V2)-specific antibodies were suggested in the RV144 trial to correlate with reduced HIV-1 acquisition, which highlights the importance of developing novel HIV-1 vaccines by targeting the V2 loop. Therefore, the V2 loop of HIV-1 has been incorporated into the Ad capsid protein. We generated adenovirus serotype 5 (Ad5) vectors displaying variable loop 2 (V2) of HIV-1 gp120, with the "Antigen Capsid-Incorporation" strategy. To assess the incorporation capabilities on hexon hypervariable region1 (HVR1) and protein IX (pIX), 20aa or full length (43aa) of V2 and V1V2 (67aa) were incorporated, respectively. Immunizations with the recombinant vectors significantly generated antibodies against both linear and discontinuous V2 epitopes. The immunizations generated durable humoral immunity against V2. This study will lead to more stringent development of various serotypes of adenovirus-vectored V2 vaccine candidates, based on breakthroughs regarding the immunogenicity of V2. Copyright © 2015. Published by Elsevier Inc.
Ionic liquid induced dehydration and domain closure in lysozyme: FCS and MD simulation
NASA Astrophysics Data System (ADS)
Ghosh, Shirsendu; Parui, Sridip; Jana, Biman; Bhattacharyya, Kankan
2015-09-01
Effect of a room temperature ionic liquid (RTIL, [pmim][Br]) on the structure and dynamics of the protein, lysozyme, is investigated by fluorescence correlation spectroscopy (FCS) and molecular dynamic (MD) simulation. The FCS data indicate that addition of the RTIL ([pmim][Br]) leads to reduction in size and faster conformational dynamics of the protein. The hydrodynamic radius (rH) of lysozyme decreases from 18 Å in 0 M [pmim][Br] to 11 Å in 1.5 M [pmim][Br] while the conformational relaxation time decreases from 65 μs to 5 μs. Molecular origin of the collapse (size reduction) of lysozyme in aqueous RTIL is analyzed by MD simulation. The radial distribution function of water, RTIL cation, and RTIL anion from protein clearly indicates that addition of RTIL causes replacement of interfacial water by RTIL cation ([pmim]+) from the first solvation layer of the protein providing a comparatively dehydrated environment. This preferential solvation of the protein by the RTIL cation extends up to ˜30 Å from the protein surface giving rise to a nanoscopic cage of overall radius 42 Å. In the nanoscopic cage of the RTIL (42 Å), volume fraction of the protein (radius 12 Å) is only about 2%. RTIL anion does not show any preferential solvation near protein surface. Comparison of effective radius obtained from simulation and from FCS data suggests that the "dry" protein (radius 12 Å) alone diffuses in a nanoscopic cage of RTIL (radius 42 Å). MD simulation further reveals a decrease in distance ("domain closure") between the two domains (alpha and beta) of the protein leading to a more compact structure compared to that in the native state.
Ionic liquid induced dehydration and domain closure in lysozyme: FCS and MD simulation.
Ghosh, Shirsendu; Parui, Sridip; Jana, Biman; Bhattacharyya, Kankan
2015-09-28
Effect of a room temperature ionic liquid (RTIL, [pmim][Br]) on the structure and dynamics of the protein, lysozyme, is investigated by fluorescence correlation spectroscopy (FCS) and molecular dynamic (MD) simulation. The FCS data indicate that addition of the RTIL ([pmim][Br]) leads to reduction in size and faster conformational dynamics of the protein. The hydrodynamic radius (rH) of lysozyme decreases from 18 Å in 0 M [pmim][Br] to 11 Å in 1.5 M [pmim][Br] while the conformational relaxation time decreases from 65 μs to 5 μs. Molecular origin of the collapse (size reduction) of lysozyme in aqueous RTIL is analyzed by MD simulation. The radial distribution function of water, RTIL cation, and RTIL anion from protein clearly indicates that addition of RTIL causes replacement of interfacial water by RTIL cation ([pmim](+)) from the first solvation layer of the protein providing a comparatively dehydrated environment. This preferential solvation of the protein by the RTIL cation extends up to ∼30 Å from the protein surface giving rise to a nanoscopic cage of overall radius 42 Å. In the nanoscopic cage of the RTIL (42 Å), volume fraction of the protein (radius 12 Å) is only about 2%. RTIL anion does not show any preferential solvation near protein surface. Comparison of effective radius obtained from simulation and from FCS data suggests that the "dry" protein (radius 12 Å) alone diffuses in a nanoscopic cage of RTIL (radius 42 Å). MD simulation further reveals a decrease in distance ("domain closure") between the two domains (alpha and beta) of the protein leading to a more compact structure compared to that in the native state.
Remenyi, Judit; Bajan, Sarah; Fuller-Pace, Frances V.; Arthur, J. Simon C.; Hutvagner, Gyorgy
2016-01-01
miRNAs are small RNAs that are key regulators of gene expression in eukaryotic organisms. The processing of miRNAs is regulated by structural characteristics of the RNA and is also tightly controlled by auxiliary protein factors. Among them, RNA binding proteins play crucial roles to facilitate or inhibit miRNA maturation and can be controlled in a cell, tissue and species-specific manners or in response to environmental stimuli. In this study we dissect the molecular mechanism that promotes the overexpression of miR-132 in mice over its related, co-transcribed and co-regulated miRNA, miR-212. We have shown that the loop structure of miR-132 is a key determinant for its efficient processing in cells. We have also identified a range of RNA binding proteins that recognize the loop of miR-132 and influence both miR-132 and miR-212 processing. The DEAD box helicase p72/DDX17 was identified as a factor that facilitates the specific processing of miR-132. PMID:26947125
Chan, Tung O; Zhang, Jin; Tiegs, Brian C; Blumhof, Brian; Yan, Linda; Keny, Nikhil; Penny, Morgan; Li, Xue; Pascal, John M; Armen, Roger S; Rodeck, Ulrich; Penn, Raymond B
2015-10-01
The Akt protein kinase, also known as protein kinase B, plays key roles in insulin receptor signalling and regulates cell growth, survival and metabolism. Recently, we described a mechanism to enhance Akt phosphorylation that restricts access of cellular phosphatases to the Akt activation loop (Thr(308) in Akt1 or protein kinase B isoform alpha) in an ATP-dependent manner. In the present paper, we describe a distinct mechanism to control Thr(308) dephosphorylation and thus Akt deactivation that depends on intramolecular interactions of Akt C-terminal sequences with its kinase domain. Modifications of amino acids surrounding the Akt1 C-terminal mTORC2 (mammalian target of rapamycin complex 2) phosphorylation site (Ser(473)) increased phosphatase resistance of the phosphorylated activation loop (pThr(308)) and amplified Akt phosphorylation. Furthermore, the phosphatase-resistant Akt was refractory to ceramide-dependent dephosphorylation and amplified insulin-dependent Thr(308) phosphorylation in a regulated fashion. Collectively, these results suggest that the Akt C-terminal hydrophobic groove is a target for the development of agents that enhance Akt phosphorylation by insulin. © 2015 Authors; published by Portland Press Limited.
Chan, Tung O.; Zhang, Jin; Tiegs, Brian C.; Blumhof, Brian; Yan, Linda; Keny, Nikhil; Penny, Morgan; Li, Xue; Pascal, John M.; Armen, Roger S.; Rodeck, Ulrich; Penn, Raymond B.
2015-01-01
The Akt protein kinase, also known as protein kinase B, plays key roles in insulin receptor signalling and regulates cell growth, survival and metabolism. Recently, we described a mechanism to enhance Akt phosphorylation that restricts access of cellular phosphatases to the Akt activation loop (Thr308 in Akt1 or protein kinase B isoform alpha) in an ATP-dependent manner. In the present paper, we describe a distinct mechanism to control Thr308 dephosphorylation and thus Akt deactivation that depends on intramolecular interactions of Akt C-terminal sequences with its kinase domain. Modifications of amino acids surrounding the Akt1 C-terminal mTORC2 (mammalian target of rapamycin complex 2) phosphorylation site (Ser473) increased phosphatase resistance of the phosphorylated activation loop (pThr308) and amplified Akt phosphorylation. Furthermore, the phosphatase-resistant Akt was refractory to ceramide-dependent dephosphorylation and amplified insulin-dependent Thr308 phosphorylation in a regulated fashion. Collectively, these results suggest that the Akt C-terminal hydrophobic groove is a target for the development of agents that enhance Akt phosphorylation by insulin. PMID:26201515
Structure prediction of the second extracellular loop in G-protein-coupled receptors.
Kmiecik, Sebastian; Jamroz, Michal; Kolinski, Michal
2014-06-03
G-protein-coupled receptors (GPCRs) play key roles in living organisms. Therefore, it is important to determine their functional structures. The second extracellular loop (ECL2) is a functionally important region of GPCRs, which poses significant challenge for computational structure prediction methods. In this work, we evaluated CABS, a well-established protein modeling tool for predicting ECL2 structure in 13 GPCRs. The ECL2s (with between 13 and 34 residues) are predicted in an environment of other extracellular loops being fully flexible and the transmembrane domain fixed in its x-ray conformation. The modeling procedure used theoretical predictions of ECL2 secondary structure and experimental constraints on disulfide bridges. Our approach yielded ensembles of low-energy conformers and the most populated conformers that contained models close to the available x-ray structures. The level of similarity between the predicted models and x-ray structures is comparable to that of other state-of-the-art computational methods. Our results extend other studies by including newly crystallized GPCRs. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Folding and Aggregation of Mucin Domains.
NASA Astrophysics Data System (ADS)
Urbanc, Brigita; Bansil, Rama; Turner, Bradley
2007-03-01
Mucin glycoproteins consist of tandem repeating glycosylated regions flanked by non-repetitive protein domains with little glycosylation. These non-repetitive domains are involved in polymerization of mucin via disulfide bonds and play an important role in the pH dependent gelation of gastric mucin, which is essential to protecting the stomach from autodigestion. We have examined the folding and aggregation of the non-repetitive sequence of von Willebrand factor vWF-C1 domain (67 amino acids) and PGM 2X (242 amino acids) using Discrete Molecular Dynamics (four-bead protein model with hydrogen bonding and amino acid-specific hydrophobic/hydrophilic and electrostatic interactions of side chains). Simulations of vWF C1 show 4-6 β-strands separated by turns/loops with more loops at lower pH. A simulation of several vWF C1 proteins at low pH shows aggregates still with a high content of β-strands and enhanced turn/loop regions. For the PGM 2X simulation the contact map shows several salt bridges enclosing hairpin turns. The implications of these simulations for describing the aggregation/gelation of PGM will be discussed.
Tappura, K
2001-08-15
An adjustable-barrier dihedral angle potential was added as an extension to a novel, previously presented soft-core potential to study its contribution to the efficacy of the search of the conformational space in molecular dynamics. As opposed to the conventional soft-core potential functions, the leading principle in the design of the new soft-core potential, as well as of its extension, the soft-core and adjustable-barrier dihedral angle (SCADA) potential (referred as the SCADA potential), was to maintain the main equilibrium properties of the original force field. This qualifies the methods for a variety of a priori modeling problems without need for additional restraints typically required with the conventional soft-core potentials. In the present study, the different potential energy functions are applied to the problem of predicting loop conformations in proteins. Comparison of the performance of the soft-core and SCADA potential showed that the main hurdles for the efficient sampling of the conformational space of (loops in) proteins are related to the high-energy barriers caused by the Lennard-Jones and Coulombic energy terms, and not to the rotational barriers, although the conformational search can be further enhanced by lowering the rotational barriers of the dihedral angles. Finally, different evaluation methods were studied and a few promising criteria found to distinguish the near-native loop conformations from the wrong ones.
Extender for securing a closure
Thomas, II, Patrick A.
2012-10-02
An apparatus for securing a closure such as door or a window that opens and closes by movement relative to a fixed structure such as a wall or a floor. Many embodiments provide a device for relocating a padlock from its normal location where it secures a fastener (such as a hasp) to a location for the padlock that is more accessible for locking and unlocking the padlock. Typically an extender is provided, where the extender has a hook at a first end that is disposed through the eye of the staple of the hasp, and at an opposing second end the extender has an annulus, such as a hole in the extender or a loop or ring affixed to the extender. The shackle of the padlock may be disposed through the annulus and may be disposed through the eye of a second staple to secure the door or window in a closed or open position. Some embodiments employ a rigid sheath to enclose at least a portion of the extender. Typically the rigid sheath has an open state where the hook is exposed outside the sheath and a closed state where the hook is disposed within the sheath.
A novel corrective approach to achieve satisfactory function of a ‘sunk’ colostomy
Siddique, K; Prud’Homme, G; Samuel, N; Avil-Griffiths, K; Offori, T
2016-01-01
Introduction Creation of gastrointestinal stomas is a common colorectal procedure associated with early or late complications, some of which demand advanced technical skills and expertise for optimal management. Case History A 63-year-old male underwent a defunctioning loop colostomy for locally advanced rectal cancer with liver metastasis. Three months later, he had developed a skinfold over his stoma that resulted in a horizontal skin crease traversing through the stoma, causing the stoma to ‘sink’ leading to obliteration of the stomal opening. This scenario led to ineffective attachment of a stoma appliance, resulting in painful peristomal ulcers. After excision of the anterior abdominal wall, assessment of colostomy opening was carried out, followed by closure of the subcutaneous tissues and drain fixation. An elevated colostomy with an adequate functional opening was seen after wound closure. The patient made an uneventful recovery and was discharged home. After 3 weeks, he had a fully opened, normally functioning colostomy and peristomal ulcers were almost healed. Conclusions This case highlights the challenges of stoma management, its related risks, avoidance of delay in chemotherapy, a patient wish for early return to work, and the novel approach we adopted to deal with these issues. PMID:27087345
A novel corrective approach to achieve satisfactory function of a 'sunk' colostomy.
Siddique, K; Prud'Homme, G; Samuel, N; Avil-Griffiths, K; Offori, T
2016-05-01
Creation of gastrointestinal stomas is a common colorectal procedure associated with early or late complications, some of which demand advanced technical skills and expertise for optimal management. A 63-year-old male underwent a defunctioning loop colostomy for locally advanced rectal cancer with liver metastasis. Three months later, he had developed a skinfold over his stoma that resulted in a horizontal skin crease traversing through the stoma, causing the stoma to 'sink' leading to obliteration of the stomal opening. This scenario led to ineffective attachment of a stoma appliance, resulting in painful peristomal ulcers. After excision of the anterior abdominal wall, assessment of colostomy opening was carried out, followed by closure of the subcutaneous tissues and drain fixation. An elevated colostomy with an adequate functional opening was seen after wound closure. The patient made an uneventful recovery and was discharged home. After 3 weeks, he had a fully opened, normally functioning colostomy and peristomal ulcers were almost healed. This case highlights the challenges of stoma management, its related risks, avoidance of delay in chemotherapy, a patient wish for early return to work, and the novel approach we adopted to deal with these issues.
The closing behavior of mechanical aortic heart valve prostheses.
Lu, Po-Chien; Liu, Jia-Shing; Huang, Ren-Hong; Lo, Chi-Wen; Lai, Ho-Cheng; Hwang, Ned H C
2004-01-01
Mechanical artificial heart valves rely on reverse flow to close their leaflets. This mechanism creates regurgitation and water hammer effects that may form cavitations, damage blood cells, and cause thromboembolism. This study analyzes closing mechanisms of monoleaflet (Medtronic Hall 27), bileaflet (Carbo-Medics 27; St. Jude Medical 27; Duromedics 29), and trileaflet valves in a circulatory mock loop, including an aortic root with three sinuses. Downstream flow field velocity was measured via digital particle image velocimetry (DPIV). A high speed camera (PIVCAM 10-30 CCD video camera) tracked leaflet movement at 1000 frames/s. All valves open in 40-50 msec, but monoleaflet and bileaflet valves close in much less time (< 35 msec) than the trileaflet valve (>75 msec). During acceleration phase of systole, the monoleaflet forms a major and minor flow, the bileaflet has three jet flows, and the trileaflet produces a single central flow like physiologic valves. In deceleration phase, the aortic sinus vortices hinder monoleaflet and bileaflet valve closure until reverse flows and high negative transvalvular pressure push the leaflets rapidly for a hard closure. Conversely, the vortices help close the trileaflet valve more softly, probably causing less damage, lessening back flow, and providing a washing effect that may prevent thrombosis formation.
Azoitei, M L; Ban, Y A; Kalyuzhny, O; Guenaga, J; Schroeter, A; Porter, J; Wyatt, R; Schief, William R
2014-10-01
Rational design of proteins with novel binding specificities and increased affinity is one of the major goals of computational protein design. Epitope-scaffolds are a new class of antigens engineered by transplanting viral epitopes of predefined structure to protein scaffolds, or by building protein scaffolds around such epitopes. Epitope-scaffolds are of interest as vaccine components to attempt to elicit neutralizing antibodies targeting the specified epitope. In this study we developed a new computational protocol, MultiGraft Interface, that transplants epitopes but also designs additional scaffold features outside the epitope to enhance antibody-binding specificity and potentially influence the specificity of elicited antibodies. We employed MultiGraft Interface to engineer novel epitope-scaffolds that display the known epitope of human immunodeficiency virus 1 (HIV-1) neutralizing antibody 2F5 and that also interact with the functionally important CDR H3 antibody loop. MultiGraft Interface generated an epitope-scaffold that bound 2F5 with subnanomolar affinity (K(D) = 400 pM) and that interacted with the antibody CDR H3 loop through computationally designed contacts. Substantial structural modifications were necessary to engineer this antigen, with the 2F5 epitope replacing a helix in the native scaffold and with 15% of the native scaffold sequence being modified in the design stage. This epitope-scaffold represents a successful example of rational protein backbone engineering and protein-protein interface design and could prove useful in the field of HIV vaccine design. MultiGraft Interface can be generally applied to engineer novel binding partners with altered specificity and optimized affinity. © 2014 Wiley Periodicals, Inc.
Nonequilibrium Chromosome Looping via Molecular Slip Links
NASA Astrophysics Data System (ADS)
Brackley, C. A.; Johnson, J.; Michieletto, D.; Morozov, A. N.; Nicodemi, M.; Cook, P. R.; Marenduzzo, D.
2017-09-01
We propose a model for the formation of chromatin loops based on the diffusive sliding of molecular slip links. These mimic the behavior of molecules like cohesin, which, along with the CTCF protein, stabilize loops which contribute to organizing the genome. By combining 3D Brownian dynamics simulations and 1D exactly solvable nonequilibrium models, we show that diffusive sliding is sufficient to account for the strong bias in favor of convergent CTCF-mediated chromosome loops observed experimentally. We also find that the diffusive motion of multiple slip links along chromatin is rectified by an intriguing ratchet effect that arises if slip links bind to the chromatin at a preferred "loading site." This emergent collective behavior favors the extrusion of loops which are much larger than the ones formed by single slip links.
Arab-Jaziri, Faten; Bissaro, Bastien; Barbe, Sophie; Saurel, Olivier; Débat, Hélène; Dumon, Claire; Gervais, Virginie; Milon, Alain; André, Isabelle; Fauré, Régis; O'Donohue, Michael J
2012-10-01
This study is focused on the elucidation of the functional role of the mobile β2α2 loop in the α-L-arabinofuranosidase from Thermobacillus xylanilyticus, and particularly on the roles of loop residues H98 and W99. Using site-directed mutagenesis, coupled to characterization methods including isothermal titration calorimetry (ITC) and saturation transfer difference nuclear magnetic resonance (STD-NMR) spectroscopy, and molecular dynamics simulations, it has been possible to provide a molecular level view of interactions and the consequences of mutations. Binding of para-nitrophenyl α-L-arabinofuranoside (pNP-α-l-Araf) to the wild-type arabinofuranosidase was characterized by K(d) values (0.32 and 0.16 mm, from ITC and STD-NMR respectively) that highly resembled that of the arabinoxylo-oligosaccharide XA(3)XX (0.21 mm), and determination of the thermodynamic parameters of enzyme : pNP-α-L-Araf binding revealed that this process is driven by favourable entropy, which is linked to the movement of the β2α2 loop. Loop closure relocates the solvent-exposed W99 into a buried location, allowing its involvement in substrate binding and in the formation of a functional active site. Similarly, the data underline the role of H98 in the ‘dynamic’ formation and definition of a catalytically operational active site, which may be a specific feature of a subset of GH51 arabinofuranosidases. Substitution of H98 and W99 by alanine or phenylalanine revealed that mutations affected K(M) and/or k(cat). Molecular dynamics performed on W99A implied that this mutation causes the loss of a hydrogen bond and leads to an alternative binding mode that is detrimental for catalysis. STD-NMR experiments revealed altered binding of the aglycon motif in the active site, combined with reduced STD intensities of the α-L-arabinofuranosyl moiety for W99 substitutions. © 2012 The Authors Journal compilation © 2012 FEBS.
Yan, D; Ren, J; Wang, G; Liu, S; Li, J
2014-08-01
Enterocutaneous fistula (ECF) is a serious complication of Crohn's disease (CD). Enteral nutrition (EN) is believed as one of therapeutic strategies of CD. This study is dedicated to identify predictors of response to EN in CD, which may lead to a better selection of fistula patients for this therapy. Forty-eight CD patients with ECF treated with short-peptide-based EN for 3 months were included in this study. All patients were followed up for at least 6 months. Logistic regression was performed to investigate the potential predictors of response to EN in these patients. In total, 30 out of 48 patients were confirmed with a successful closure of fistula after 3 months' EN therapy. The average closure time was 32.4±8.85 days. Inflammatory parameters (erythrocyte sedimentation rate, C-reactive protein (CRP) and platelet count) improved significantly after EN therapy in all enrolled patients. Specifically, the improvement of CRP after therapy in closed group was more important compared with that in unclosed group (P=0.035). Nutrition status (body weight, body mass index (BMI), hemoglobin, serum albumin (ALB), serum prealbumin and total protein (TP)) improved as well (P<0.05). Similarly, after treatment, the improvement of serum albumin (P=0.046) and prealbumin (P=0.006) in closed group was much more important than those in unclosed group. Logistic regression analysis discovered that a decreased CRP level and an elevated BMI level would be beneficial to the response to EN in CD patients with ECF. In CD patients with ECF, lower CRP and higher BMI are associated with higher possibility of closure after EN treatment. EN therapy can lead to a closure of ECF in a certain proportion of patients. EN therapy could also ameliorate inflammatory condition and improve nutrition status.
Grunseich, Christopher; Wang, Isabel X; Watts, Jason A; Burdick, Joshua T; Guber, Robert D; Zhu, Zhengwei; Bruzel, Alan; Lanman, Tyler; Chen, Kelian; Schindler, Alice B; Edwards, Nancy; Ray-Chaudhury, Abhik; Yao, Jianhua; Lehky, Tanya; Piszczek, Grzegorz; Crain, Barbara; Fischbeck, Kenneth H; Cheung, Vivian G
2018-02-01
R-loops are three-stranded nucleic acid structures found abundantly and yet often viewed as by-products of transcription. Studying cells from patients with a motor neuron disease (amyotrophic lateral sclerosis 4 [ALS4]) caused by a mutation in senataxin, we uncovered how R-loops promote transcription. In ALS4 patients, the senataxin mutation depletes R-loops with a consequent effect on gene expression. With fewer R-loops in ALS4 cells, the expression of BAMBI, a negative regulator of transforming growth factor β (TGF-β), is reduced; that then leads to the activation of the TGF-β pathway. We uncovered that genome-wide R-loops influence promoter methylation of over 1,200 human genes. DNA methyl-transferase 1 favors binding to double-stranded DNA over R-loops. Thus, in forming R-loops, nascent RNA blocks DNA methylation and promotes further transcription. Hence, our results show that nucleic acid structures, in addition to sequences, influence the binding and activity of regulatory proteins. Copyright © 2017 Elsevier Inc. All rights reserved.
RECQ-like helicases Sgs1 and BLM regulate R-loop-associated genome instability.
Chang, Emily Yun-Chia; Novoa, Carolina A; Aristizabal, Maria J; Coulombe, Yan; Segovia, Romulo; Chaturvedi, Richa; Shen, Yaoqing; Keong, Christelle; Tam, Annie S; Jones, Steven J M; Masson, Jean-Yves; Kobor, Michael S; Stirling, Peter C
2017-12-04
Sgs1, the orthologue of human Bloom's syndrome helicase BLM, is a yeast DNA helicase functioning in DNA replication and repair. We show that SGS1 loss increases R-loop accumulation and sensitizes cells to transcription-replication collisions. Yeast lacking SGS1 accumulate R-loops and γ-H2A at sites of Sgs1 binding, replication pausing regions, and long genes. The mutation signature of sgs1 Δ reveals copy number changes flanked by repetitive regions with high R-loop-forming potential. Analysis of BLM in Bloom's syndrome fibroblasts or by depletion of BLM from human cancer cells confirms a role for Sgs1/BLM in suppressing R-loop-associated genome instability across species. In support of a potential direct effect, BLM is found physically proximal to DNA:RNA hybrids in human cells, and can efficiently unwind R-loops in vitro. Together, our data describe a conserved role for Sgs1/BLM in R-loop suppression and support an increasingly broad view of DNA repair and replication fork stabilizing proteins as modulators of R-loop-mediated genome instability. © 2017 Chang et al.
Guo, Song; Wong, Sek-Man
2018-06-01
A predicted stem-loop structure of 25 nucleotides, located in the coat protein (CP) gene and 3'-UTR sequences of Tobacco mosaic virus (TMV), was validated previously (Guo et al., 2015). In this study, both disrupted stem-loop and nucleotide deletion mutants of TMV replicated more rapidly in Nicotiana benthamiana protoplasts. The TMV mutant with a complete mirrored stem-loop structure showed similar level of viral RNA accumulation as TMV. Recovering the stem-loop structure also resulted in a similar replication level as TMV. All these mutants induced necrosis in N. benthamiana and assembled into typical rigid rod-shaped virions. TMV mutant without the stem-loop structure induced more local lesions in Chenopodium quinoa. When the putative stem-loop structure in Tomato mosaic virus (ToMV) was disrupted, the mutant also showed an enhanced virus replication. This suggests that the stem-loop structure of TMV is a new cis-acting element with a role in virus replication. Copyright © 2018 Elsevier Inc. All rights reserved.
A movie of the RNA polymerase nucleotide addition cycle.
Brueckner, Florian; Ortiz, Julio; Cramer, Patrick
2009-06-01
During gene transcription, RNA polymerase (Pol) passes through repetitive cycles of adding a nucleotide to the growing mRNA chain. Here we obtained a movie of the nucleotide addition cycle by combining structural information on different functional states of the Pol II elongation complex (EC). The movie illustrates the two-step loading of the nucleoside triphosphate (NTP) substrate, closure of the active site for catalytic nucleotide incorporation, and the presumed two-step translocation of DNA and RNA, which is accompanied by coordinated conformational changes in the polymerase bridge helix and trigger loop. The movie facilitates teaching and a mechanistic analysis of transcription and can be downloaded from http://www.lmb.uni-muenchen.de/cramer/pr-materials.
Constraint Embedding for Multibody System Dynamics
NASA Technical Reports Server (NTRS)
Jain, Abhinandan
2009-01-01
This paper describes a constraint embedding approach for the handling of local closure constraints in multibody system dynamics. The approach uses spatial operator techniques to eliminate local-loop constraints from the system and effectively convert the system into tree-topology systems. This approach allows the direct derivation of recursive O(N) techniques for solving the system dynamics and avoiding the expensive steps that would otherwise be required for handling the closedchain dynamics. The approach is very effective for systems where the constraints are confined to small-subgraphs within the system topology. The paper provides background on the spatial operator O(N) algorithms, the extensions for handling embedded constraints, and concludes with some examples of such constraints.
RUSSO, JOHN M.; FLORIAN, PETER; SHEN, LE; GRAHAM, W. VALLEN; TRETIAKOVA, MARIA S.; GITTER, ALFRED H.; MRSNY, RANDALL J.; TURNER, JERROLD R.
2005-01-01
Background & Aims Small epithelial wounds heal by purse-string contraction of an actomyosin ring that is regulated by myosin light chain (MLC) kinase (MLCK) and rho kinase (ROCK). These studies aimed to define the roles of these kinases in purse-string wound closure. Methods Oligocellular and single-cell wounds were created in intestinal epithelial monolayers. Fluorescence imaging and electrophysiologic data were collected during wound closure. Human biopsies were studied immunohistochemically. Results Live-cell imaging of enhanced green fluorescent protein-β-actin defined rapid actin ring assembly within 2 minutes after wounding. This progressed to a circumferential ring within 8 minutes that subsequently contracted and closed the wound. We therefore divided this process into 2 phases: ring assembly and wound contraction. Activated rho and ROCK localized to the wound edge during ring assembly. Consistent with a primary role in the assembly phase, ROCK inhibition prevented actin ring assembly and wound closure. ROCK inhibition after ring assembly was complete had no effect. Recruitment and activation of MLCK occurred after ring assembly was complete and coincided with ring contraction. MLCK inhibition slowed and then stopped contraction but did not prevent ring assembly. MLCK inhibition also delayed barrier function recovery. Studies of human colonic biopsy specimens suggest that purse-string wound closure also occurs in vivo, because MLC phosphorylation was enhanced surrounding oligocellular wounds. Conclusions These results suggest complementary roles for these kinases in purse-string closure of experimental and in vivo oligocellular epithelial wounds; rho and ROCK are critical for actin ring assembly, while the activity of MLCK drives contraction. PMID:15825080
Structure of adenovirus bound to cellular receptor car
Freimuth, Paul I.
2007-01-02
Disclosed is a mutant CAR-DI-binding adenovirus which has a genome comprising one or more mutations in sequences which encode the fiber protein knob domain wherein the mutation causes the encoded viral particle to have a significantly weakened binding affinity for CAR-DI relative to wild-type adenovirus. Such mutations may be in sequences which encode either the AB loop, or the HI loop of the fiber protein knob domain. Specific residues and mutations are described. Also disclosed is a method for generating a mutant adenovirus which is characterized by a receptor binding affinity or specificity which differs substantially from wild type.
Baetz, Ulrike; Huck, Nicola V.; Zhang, Jingbo
2017-01-01
Stomatal pores are formed between a pair of guard cells and allow plant uptake of CO2 and water evaporation. Their aperture depends on changes in osmolyte concentration of guard cell vacuoles, specifically of K+ and Mal2−. Efflux of Mal2− from the vacuole is required for stomatal closure; however, it is not clear how the anion is released. Here, we report the identification of ALMT4 (ALUMINUM ACTIVATED MALATE TRANSPORTER4) as an Arabidopsis thaliana ion channel that can mediate Mal2− release from the vacuole and is required for stomatal closure in response to abscisic acid (ABA). Knockout mutants showed impaired stomatal closure in response to the drought stress hormone ABA and increased whole-plant wilting in response to drought and ABA. Electrophysiological data show that ALMT4 can mediate Mal2− efflux and that the channel activity is dependent on a phosphorylatable C-terminal serine. Dephosphomimetic mutants of ALMT4 S382 showed increased channel activity and Mal2− efflux. Reconstituting the active channel in almt4 mutants impaired growth and stomatal opening. Phosphomimetic mutants were electrically inactive and phenocopied the almt4 mutants. Surprisingly, S382 can be phosphorylated by mitogen-activated protein kinases in vitro. In brief, ALMT4 likely mediates Mal2− efflux during ABA-induced stomatal closure and its activity depends on phosphorylation. PMID:28874508
Sztuba-Solinska, Joanna; Diaz, Larissa; Kumar, Mia R.; Kolb, Gaëlle; Wiley, Michael R.; Jozwick, Lucas; Kuhn, Jens H.; Palacios, Gustavo; Radoshitzky, Sheli R.; J. Le Grice, Stuart F.; Johnson, Reed F.
2016-01-01
Ebola virus (EBOV) is a single-stranded negative-sense RNA virus belonging to the Filoviridae family. The leader and trailer non-coding regions of the EBOV genome likely regulate its transcription, replication, and progeny genome packaging. We investigated the cis-acting RNA signals involved in RNA–RNA and RNA–protein interactions that regulate replication of eGFP-encoding EBOV minigenomic RNA and identified heat shock cognate protein family A (HSC70) member 8 (HSPA8) as an EBOV trailer-interacting host protein. Mutational analysis of the trailer HSPA8 binding motif revealed that this interaction is essential for EBOV minigenome replication. Selective 2′-hydroxyl acylation analyzed by primer extension analysis of the secondary structure of the EBOV minigenomic RNA indicates formation of a small stem-loop composed of the HSPA8 motif, a 3′ stem-loop (nucleotides 1868–1890) that is similar to a previously identified structure in the replicative intermediate (RI) RNA and a panhandle domain involving a trailer-to-leader interaction. Results of minigenome assays and an EBOV reverse genetic system rescue support a role for both the panhandle domain and HSPA8 motif 1 in virus replication. PMID:27651462
Defining the loop structures in proteins based on composite β-turn mimics.
Dhar, Jesmita; Chakrabarti, Pinak
2015-06-01
Asx- and ω-turns are β-turn mimics, which replace the conventional main-chain hydrogen bonds seen in the latter by those involving the side chains, and both involve three residues. In this paper we analyzed the cases where these turns occur together--side by side, with or without any gap, overlapping and in any order. These composite turns (of length 3-15 residues), occurring at ∼1 per 100 residues, may constitute the full length of many loops, and when the residues in the two component turns overlap or are adjacent to each other, the composite may take well-defined shape. It is thus possible for non-regular regions in protein structure to form local structural motifs, akin to the regular geometrical features exhibited by secondary structures. Composites having the order ω-turns followed by Asx-turns can constitute N-terminal helix capping motif. Ternary composite turns (made up of ω-, Asx- and ST-turns), some with characteristic shape, have also been identified. Delineation of composite turns would help in characterizing loops in protein structures, which often have functional roles. Some sequence patterns seen in composites can be used for their incorporation in protein design. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Kanai, Akio; Oida, Hanako; Matsuura, Nana; Doi, Hirofumi
2003-01-01
We systematically screened a genomic DNA library to identify proteins of the hyperthermophilic archaeon Pyrococcus furiosus using an expression cloning method. One gene product, which we named FAU-1 (P. furiosus AU-binding), demonstrated the strongest binding activity of all the genomic library-derived proteins tested against an AU-rich RNA sequence. The protein was purified to near homogeneity as a 54 kDa single polypeptide, and the gene locus corresponding to this FAU-1 activity was also sequenced. The FAU-1 gene encoded a 472-amino-acid protein that was characterized by highly charged domains consisting of both acidic and basic amino acids. The N-terminal half of the gene had a degree of similarity (25%) with RNase E from Escherichia coli. Five rounds of RNA-binding-site selection and footprinting analysis showed that the FAU-1 protein binds specifically to the AU-rich sequence in a loop region of a possible RNA ligand. Moreover, we demonstrated that the FAU-1 protein acts as an oligomer, and mainly as a trimer. These results showed that the FAU-1 protein is a novel heat-stable protein with an RNA loop-binding characteristic. PMID:12614195
CD and NMR conformational studies of a peptide encompassing the Mid Loop interface of Ship2-Sam.
Mercurio, Flavia A; Scognamiglio, Pasqualina L; Di Natale, Concetta; Marasco, Daniela; Pellecchia, Maurizio; Leone, Marilisa
2014-11-01
The lipid phosphatase Ship2 is a protein that intervenes in several diseases such as diabetes, cancer, neurodegeneration, and atherosclerosis. It is made up of a catalytic domain and several protein docking modules such as a C-terminal Sam (Sterile alpha motif) domain. The Sam domain of Ship2 (Ship2-Sam) binds to the Sam domains of the EphA2 receptor (EphA2-Sam) and the PI3K effector protein Arap3 (Arap3-Sam). These heterotypic Sam-Sam interactions occur through formation of dimers presenting the canonical "Mid Loop/End Helix" binding mode. The central region of Ship2-Sam, spanning the C-terminal end of α2, the α3 and α4 helices together with the α2α3 and α3α4 interhelical loops, forms the Mid Loop surface that is needed to bind partners Sam domains. A peptide encompassing most of the Ship2-Sam Mid Loop interface (Shiptide) capable of binding to both EphA2-Sam and Arap3-Sam, was previously identified. Here we investigated the conformational features of this peptide, through solution CD and NMR studies in different conditions. These studies reveal that the peptide is highly flexible in aqueous buffer, while it adopts a helical conformation in presence of 2,2,2-trifluoroethanol. The discovered structural insights and in particular the identification of a helical motif, may lead to the design of more constrained and possibly cell permeable Shiptide analogs that could work as efficient antagonists of Ship2-Sam heterotypic interactions and embrace therapeutic applications. © 2014 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCormack, T.; Petrovich,; Mercier, K
2010-01-01
We identified a homologue of the molluscan acetylcholine-binding protein (AChBP) in the marine polychaete Capitella teleta, from the annelid phylum. The amino acid sequence of C. teleta AChBP (ct-AChBP) is 21-30% identical with those of known molluscan AChBPs. Sequence alignments indicate that ct-AChBP has a shortened Cys loop compared to other Cys loop receptors, and a variation on a conserved Cys loop triad, which is associated with ligand binding in other AChBPs and nicotinic ACh receptor (nAChR) {alpha} subunits. Within the D loop of ct-AChBP, a conserved aromatic residue (Tyr or Trp) in nAChRs and molluscan AChBPs, which has beenmore » implicated directly in ligand binding, is substituted with an isoleucine. Mass spectrometry results indicate that Asn122 and Asn216 of ct-AChBP are glycosylated when expressed using HEK293 cells. Small-angle X-ray scattering data suggest that the overall shape of ct-AChBP in the apo or unliganded state is similar to that of homologues with known pentameric crystal structures. NMR experiments show that acetylcholine, nicotine, and {alpha}-bungarotoxin bind to ct-AChBP with high affinity, with KD values of 28.7 {micro}M, 209 nM, and 110 nM, respectively. Choline bound with a lower affinity (K{sub D} = 163 {micro}M). Our finding of a functional AChBP in a marine annelid demonstrates that AChBPs may exhibit variations in hallmark motifs such as ligand-binding residues and Cys loop length and shows conclusively that this neurotransmitter binding protein is not limited to the phylum Mollusca.« less
Atak, Sinem; Langlhofer, Georg; Schaefer, Natascha; Kessler, Denise; Meiselbach, Heike; Delto, Carolyn; Schindelin, Hermann; Villmann, Carmen
2015-01-01
Ligand-binding of Cys-loop receptors is determined by N-terminal extracellular loop structures from the plus as well as from the minus side of two adjacent subunits in the pentameric receptor complex. An aromatic residue in loop B of the glycine receptor (GlyR) undergoes direct interaction with the incoming ligand via a cation-π interaction. Recently, we showed that mutated residues in loop B identified from human patients suffering from hyperekplexia disturb ligand-binding. Here, we exchanged the affected human residues by amino acids found in related members of the Cys-loop receptor family to determine the effects of side chain volume for ion channel properties. GlyR variants were characterized in vitro following transfection into cell lines in order to analyze protein expression, trafficking, degradation and ion channel function. GlyR α1 G160 mutations significantly decrease glycine potency arguing for a positional effect on neighboring aromatic residues and consequently glycine-binding within the ligand-binding pocket. Disturbed glycinergic inhibition due to T162 α1 mutations is an additive effect of affected biogenesis and structural changes within the ligand-binding site. Protein trafficking from the ER toward the ER-Golgi intermediate compartment, the secretory Golgi pathways and finally the cell surface is largely diminished, but still sufficient to deliver ion channels that are functional at least at high glycine concentrations. The majority of T162 mutant protein accumulates in the ER and is delivered to ER-associated proteasomal degradation. Hence, G160 is an important determinant during glycine binding. In contrast, T162 affects primarily receptor biogenesis whereas exchanges in functionality are secondary effects thereof. PMID:26733802
Wang, Aibing; Zhang, Lijie; Khayat, Reza
2016-01-01
Outbreaks of porcine circovirus (PCV) type 2 (PCV2)-associated diseases have caused substantial economic losses worldwide in the last 20 years. The PCV capsid protein (Cap) is the sole structural protein and main antigenic determinant of this virus. In this study, not only were phylogenetic trees reconstructed, but variations of surface structure of the PCV capsid were analysed in the course of evolution. Unique surface patterns of the icosahedral fivefold axes of the PCV2 capsid were identified and characterized, all of which were absent in PCV type 1 (PCV1). Icosahedral fivefold axes, decorated with Loops BC, HI and DE, were distinctly different between PCV2 and PCV1. Loops BC, determining the outermost surface around the fivefold axes of PCV capsids, had limited homology between Caps of PCV1 and PCV2. A conserved tyrosine phosphorylation motif in Loop HI that might be recognized by non-receptor tyrosine kinase(s) in vivo was present only in PCV2. Particularly, the concurrent presence of 60 pairs of the conserved tyrosine and a canonical PXXP motif on the PCV2 capsid surface could be a mechanism for PXXP motif binding to and activation of an SH3-domain-containing tyrosine kinase in host cells. Additionally, a conserved cysteine in Loop DE of the PCV2 Cap was substituted by an arginine in PCV1, indicating potentially distinct assembly mechanisms of the capsid in vitro between PCV1 and PCV2. Therefore, these unique patterns on the PCV2 capsid surface, absent in PCV1 isolates, might be related to cell entry, virus function and pathogenesis. PMID:27902320
Wang, Naidong; Zhan, Yang; Wang, Aibing; Zhang, Lijie; Khayat, Reza; Yang, Yi
2016-12-01
Outbreaks of porcine circovirus (PCV) type 2 (PCV2)-associated diseases have caused substantial economic losses worldwide in the last 20 years. The PCV capsid protein (Cap) is the sole structural protein and main antigenic determinant of this virus. In this study, not only were phylogenetic trees reconstructed, but variations of surface structure of the PCV capsid were analysed in the course of evolution. Unique surface patterns of the icosahedral fivefold axes of the PCV2 capsid were identified and characterized, all of which were absent in PCV type 1 (PCV1). Icosahedral fivefold axes, decorated with Loops BC, HI and DE, were distinctly different between PCV2 and PCV1. Loops BC, determining the outermost surface around the fivefold axes of PCV capsids, had limited homology between Caps of PCV1 and PCV2. A conserved tyrosine phosphorylation motif in Loop HI that might be recognized by non-receptor tyrosine kinase(s) in vivo was present only in PCV2. Particularly, the concurrent presence of 60 pairs of the conserved tyrosine and a canonical PXXP motif on the PCV2 capsid surface could be a mechanism for PXXP motif binding to and activation of an SH3-domain-containing tyrosine kinase in host cells. Additionally, a conserved cysteine in Loop DE of the PCV2 Cap was substituted by an arginine in PCV1, indicating potentially distinct assembly mechanisms of the capsid in vitro between PCV1 and PCV2. Therefore, these unique patterns on the PCV2 capsid surface, absent in PCV1 isolates, might be related to cell entry, virus function and pathogenesis.
Asymmetric processing of a substrate protein in sequential allosteric cycles of AAA+ nanomachines
NASA Astrophysics Data System (ADS)
Kravats, Andrea N.; Tonddast-Navaei, Sam; Bucher, Ryan J.; Stan, George
2013-09-01
Essential protein quality control includes mechanisms of substrate protein (SP) unfolding and translocation performed by powerful ring-shaped AAA+ (ATPases associated with various cellular activities) nanomachines. These SP remodeling actions are effected by mechanical forces imparted by AAA+ loops that protrude into the central channel. Sequential intra-ring allosteric motions, which underlie repetitive SP-loop interactions, have been proposed to comprise clockwise (CW), counterclockwise (CCW), or random (R) conformational transitions of individual AAA+ subunits. To probe the effect of these allosteric mechanisms on unfoldase and translocase functions, we perform Langevin dynamics simulations of a coarse-grained model of an all-alpha SP processed by the single-ring ClpY ATPase or by the double-ring p97 ATPase. We find that, in all three allosteric mechanisms, the SP undergoes conformational transitions along a common set of pathways, which reveals that the active work provided by the ClpY machine involves single loop-SP interactions. Nevertheless, the rates and yields of SP unfolding and translocation are controlled by mechanism-dependent loop-SP binding events, as illustrated by faster timescales of SP processing in CW allostery compared with CCW and R allostery. The distinct efficacy of allosteric mechanisms is due to the asymmetric collaboration of adjacent subunits, which involves CW-biased structural motions of AAA+ loops and results in CW-compatible torque applied onto the SP. Additional simulations of mutant ClpY rings, which render a subset of subunits catalytically-defective or reduce their SP binding affinity, reveal that subunit-based conformational transitions play the major role in SP remodeling. Based on these results we predict that the minimally functional AAA+ ring includes three active subunits, only two of which are adjacent.
Jain, Kanishk; Warmack, Rebeccah A; Debler, Erik W; Hadjikyriacou, Andrea; Stavropoulos, Peter; Clarke, Steven G
2016-08-26
In the family of protein arginine methyltransferases (PRMTs) that predominantly generate either asymmetric or symmetric dimethylarginine (SDMA), PRMT7 is unique in producing solely monomethylarginine (MMA) products. The type of methylation on histones and other proteins dictates changes in gene expression, and numerous studies have linked altered profiles of methyl marks with disease phenotypes. Given the importance of specific inhibitor development, it is crucial to understand the mechanisms by which PRMT product specificity is conferred. We have focused our attention on active-site residues of PRMT7 from the protozoan Trypanosoma brucei We have designed 26 single and double mutations in the active site, including residues in the Glu-Xaa8-Glu (double E) loop and the Met-Gln-Trp sequence of the canonical Thr-His-Trp (THW) loop known to interact with the methyl-accepting substrate arginine. Analysis of the reaction products by high resolution cation exchange chromatography combined with the knowledge of PRMT crystal structures suggests a model where the size of two distinct subregions in the active site determines PRMT7 product specificity. A dual mutation of Glu-181 to Asp in the double E loop and Gln-329 to Ala in the canonical THW loop enables the enzyme to produce SDMA. Consistent with our model, the mutation of Cys-431 to His in the THW loop of human PRMT9 shifts its product specificity from SDMA toward MMA. Together with previous results, these findings provide a structural basis and a general model for product specificity in PRMTs, which will be useful for the rational design of specific PRMT inhibitors. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
A dynamic mechanism for allosteric activation of Aurora kinase A by activation loop phosphorylation.
Ruff, Emily F; Muretta, Joseph M; Thompson, Andrew R; Lake, Eric W; Cyphers, Soreen; Albanese, Steven K; Hanson, Sonya M; Behr, Julie M; Thomas, David D; Chodera, John D; Levinson, Nicholas M
2018-02-21
Many eukaryotic protein kinases are activated by phosphorylation on a specific conserved residue in the regulatory activation loop, a post-translational modification thought to stabilize the active DFG-In state of the catalytic domain. Here we use a battery of spectroscopic methods that track different catalytic elements of the kinase domain to show that the ~100 fold activation of the mitotic kinase Aurora A (AurA) by phosphorylation occurs without a population shift from the DFG-Out to the DFG-In state, and that the activation loop of the activated kinase remains highly dynamic. Instead, molecular dynamics simulations and electron paramagnetic resonance experiments show that phosphorylation triggers a switch within the DFG-In subpopulation from an autoinhibited DFG-In substate to an active DFG-In substate, leading to catalytic activation. This mechanism raises new questions about the functional role of the DFG-Out state in protein kinases. © 2018, Ruff et al.
Cobbaut, Mathias; Derua, Rita; Parker, Peter J; Waelkens, Etienne; Janssens, Veerle; Van Lint, Johan
2018-06-22
The protein kinase D (PKD) family is regulated through multi-site phosphorylation, including autophosphorylation. For example, PKD displays in vivo autophosphorylation on Ser-742 (and Ser-738 in vitro) in the activation loop and Ser-910 in the C-tail (hPKD1 numbering). In this paper, we describe the surprising observation that PKD also displays in vitro autocatalytic activity towards a Tyr residue in the P+1 loop of the activation segment. We define the molecular determinants for this unusual activity and identify a Cys residue (C705 in PKD1) in the catalytic loop as of utmost importance. In cells, PKD Tyr autophosphorylation is suppressed through the association of an inhibitory factor. Our findings provide important novel insights into PKD (auto)regulation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Mounir, Maha M F; Matar, Moustafa A; Lei, Yaping; Snead, Malcolm L
2016-03-01
Recombinant DNA-produced amelogenin protein was compared with calcium hydroxide in a study of immature apex closure conducted in 24 young mongrel dogs. Root canals of maxillary and mandibular right premolars (n = 240) were instrumented and left open for 14 days. Canals were cleansed, irrigated, and split equally for treatment with recombinant mouse amelogenin (n = 120) or calcium hydroxide (n = 120). After 1, 3, and 6 months, the animals were sacrificed and the treated teeth recovered for histologic assessment and immunodetection of protein markers associated with odontogenic cells. After 1 month, amelogenin-treated canals revealed calcified tissue formed at the apical foramen and a pulp chamber containing soft connective tissue and hard tissue; amelogenin-treated canals assessed after 3- and 6-month intervals further included apical tissue functionally attached to bone by a periodontal ligament. In contrast, calcified apical tissue was poorly formed in the calcium hydroxide group, and soft connective tissue within the pulp chamber was not observed. The findings from this experimental strategy suggest recombinant amelogenin protein can signal cells to enhance apex formation in nonvital immature teeth and promote soft connective tissue regeneration. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Pelissero, Elisa; Giuggia, Marco; Todaro, Maria Chiara; Trapani, Giuseppe; Giordano, Benedetta; Senatore, Gaetano
2017-12-01
We evaluated long-term safety and efficacy of concomitant left atrial appendage (LAA) closure and atrial fibrillation (AF) ablation. From February 2013 to June 2017, all patients referred for AF ablation and LAA closure (group 1) were enrolled in the study and compared with a matched control group undergoing AF ablation only (group 2). Pulmonary vein isolation was achieved in all cases with radiofrequency or cryoballoon. LAA was occluded with Watchman or Amplatzer Cardiac Plug or Amulet (ACP) devices. All patients were treated with oral anticoagulation therapy for at least 3 months after the procedure ("blanking period"), and then switched to dual antiplatelet therapy with aspirin and clopidogrel for other 3 months, and then to single antiplatelet therapy with aspirin in case of LAA closure, while group 2 was treated with long-term oral anticoagulation therapy according to CHA2DS2-VASc score. Follow-up was performed with transesophageal echocardiography and clinical visit at 3, 6 and 12 months after the procedure. AF burden was evaluated by loop recorder or pacemaker interrogation in all patients. Overall, 42 patients were enrolled, 21 in each group. Mean age was 66.86 ± 10.35 years in group 1 vs 68.42 ± 10.61 in group 2 (p=NS); mean CHA2DS2-VASc score was 2.8 ± 1.22 in group 1 vs 2.01 ± 0.93 in group 2 (p=NS), mean HAS-BLED score was 3.2 ± 0.83 in group 1 vs 3.1 ± 0.95 in group 2 (p=NS). Persistent AF was present in 80% of patients in group 1 and in 85% in group 2. LAA closure was successful in all cases (14 Watchman, 7 ACP devices). Procedural and fluoroscopy times were shorter in group 2 (68 ± 17 vs 52 ± 15 min, p <0.05; 23 ± 5 vs 18 ± 3 min, p <0.05, respectively). No procedural complications were observed in group 2, while in group 1 one case of self-terminating pericardial effusion and one arteriovenous fistula were observed. At a mean follow-up of 14.93 ± 10.05 months, complete seal of LAA was documented in all patients, with neither dislocations nor thromboembolic events. Similarly, no long-term complications were observed in group 2. Maintenance of sinus rhythm was overlapping, with an AF relapse rate of 36% in group 1 vs 38% in group 2 (p=NS). Combined LAA percutaneous closure and AF ablation appears to be feasible in high-risk patients.
Dynamic Consequences of Mutation of Tryptophan 215 in Thrombin.
Peacock, Riley B; Davis, Jessie R; Markwick, Phineus R L; Komives, Elizabeth A
2018-05-08
Thrombin normally cleaves fibrinogen to promote coagulation; however, binding of thrombomodulin to thrombin switches the specificity of thrombin toward protein C, triggering the anticoagulation pathway. The W215A thrombin mutant was reported to have decreased activity toward fibrinogen without significant loss of activity toward protein C. To understand how mutation of Trp215 may alter thrombin specificity, hydrogen-deuterium exchange experiments (HDXMS), accelerated molecular dynamics (AMD) simulations, and activity assays were carried out to compare the dynamics of Trp215 mutants with those of wild type (WT) thrombin. Variation in NaCl concentration had no detectable effect on the sodium-binding (220s CT ) loop, but appeared to affect other surface loops. Trp215 mutants showed significant increases in amide exchange in the 170s CT loop consistent with a loss of H-bonding in this loop identified by the AMD simulations. The W215A thrombin showed increased amide exchange in the 220s CT loop and in the N-terminus of the heavy chain. The AMD simulations showed that a transient conformation of the W215A thrombin has a distorted catalytic triad. HDXMS experiments revealed that mutation of Phe227, which engages in a π-stacking interaction with Trp215, also caused significantly increased amide exchange in the 170s CT loop. Activity assays showed that only the F227V mutant had wild type catalytic activity, whereas all other mutants showed markedly lower activity. Taken together, the results explain the reduced pro-coagulant activity of the W215A mutant and demonstrate the allosteric connection between Trp215, the sodium-binding loop, and the active site.
Hotra, Adam; Suter, Manuel; Biuković, Goran; Ragunathan, Priya; Kundu, Subhashri; Dick, Thomas; Grüber, Gerhard
2016-05-01
The F1 FO -ATP synthase is one of the enzymes that is essential to meet the energy requirement of both the proliferating aerobic and hypoxic dormant stages of the life cycle of mycobacteria. Most F-ATP synthases consume ATP in the α3 :β3 headpiece to drive the γ subunit, which couples ATP cleavage with proton pumping in the c ring of FO via the bottom of the γ subunit. ATPase-driven H(+) pumping is latent in mycobacteria. The presence of a unique 14 amino acid residue loop of the mycobacterial γ subunit has been described and aligned in close vicinity to the c-ring loop Priya R et al. (2013) J Bioenerg Biomembr 45, 121-129 Here, we used inverted membrane vesicles (IMVs) of fast-growing Mycobacterium smegmatis and a variety of covalent and non-covalent inhibitors to characterize the ATP hydrolysis activity of the F-ATP synthase inside IMVs. These vesicles formed a platform to investigate the function of the unique mycobaterial γ loop by deleting the respective loop-encoding sequence (γ166-179 ) in the genome of M. smegmatis. ATP hydrolysis-driven H(+) pumping was observed in IMVs containing the Δγ166-179 mutant protein but not for IMVs containing the wild-type F-ATP synthase. In addition, when compared to the wild-type enzyme, IMVs containing the Δγ166-179 mutant protein showed increased ATP cleavage and lower levels of ATP synthesis, demonstrating that the loop affects ATPase activity, ATPase-driven H(+) pumping and ATP synthesis. These results further indicate that the loop may affect coupling of ATP hydrolysis and synthesis in a different mode. © 2016 Federation of European Biochemical Societies.
Dridi, Kaouthar; Amara, Sawsan; Bezzine, Sofiane; Rodriguez, Jorge A; Carrière, Frédéric; Gaussier, Hélène
2013-07-01
Structural studies on pancreatic lipase have revealed a complex architecture of surface loops surrounding the enzyme active site and potentially involved in interactions with lipids. Two of them, the lid and beta loop, expose a large hydrophobic surface and are considered as acyl chain binding sites based on their interaction with an alkyl phosphonate inhibitor. While the role of the lid in substrate recognition and selectivity has been extensively studied, the implication of beta9 loop in acyl chain stabilization remained hypothetical. The characterization of an enzyme with a natural deletion of the lid, guinea pig pancreatic lipase-related protein 2 (GPLRP2), suggests however an essential contribution of the beta9 loop in the stabilization of the acyl enzyme intermediate formed during the lipolysis reaction. A GPLRP2 mutant with a seven-residue deletion of beta9 loop (GPLRP2-deltabeta9) was produced and its enzyme activity was measured using various substrates (triglycerides, monoglycerides, galactolipids, phospholipids, vinyl esters) with short, medium and long acyl chains. Whatever the substrate tested, GPLRP2-deltabeta9 activity is drastically reduced compared to that of wild-type GPLRP2 and this effect is more pronounced as the length of substrate acyl chain increases. Changes in relative substrate selectivity and stereoselectivity remained however weak. The deletion within beta9 loop has also a negative effect on the rate of enzyme inhibition by alkyl phosphonates. All these findings indicate that the reduced enzyme turnover observed with GPLRP2-deltabeta9 results from a weaker stabilization of the acyl enzyme intermediate due to a loss of hydrophobic interactions.
USDA-ARS?s Scientific Manuscript database
A reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for the detection of Apple chlorotic leaf spot virus (ACLSV) was developed. In this method, a set of four primers was designed based on the conserved regions in the coat protein gene of ACLSV, and was synthesized for the ...
NASA Astrophysics Data System (ADS)
Coelho, Christian; Julien, Perrine; Nikolantonaki, Maria; Noret, Laurence; Magne, Mathilde; Ballester, Jordi; Gougeon, Régis D.
2018-04-01
Chardonnay wines from Burgundy, obtained from musts with three levels of clarification (Low, Medium and High) during two consecutive vintages (2009 and 2010) and for two kinds of closures (screw caps and synthetic coextruded closures) were analyzed chemically and sensorially. Three bottles per turbidity level were opened in 2015 in order to assess the intensity of the reductive and/or oxidative aromas (REDOX sensory scores) by a trained sensory panel. The chemical analyses consisted in polyphenols and colloids quantification, followed by a proteomic characterization. For the two vintages, the REDOX sensory scores appeared to be driven both by the type of closure and to a lesser extent by the level of must clarification. Vintages and must racking prefermentative operations were also distinguished by chemical analyses. All white wines from the lowest must turbidity had the lowest REDOX sensory scores. Such wines exhibited lower concentrations in tyrosol and grape reaction product and higher concentrations in colloids with relatively low molecular weights. Among these macromolecules, grape proteins were also quantified, two of them exhibiting concentrations in bottled wines, which were statistically correlated to oxidative evolution in white wines
Coelho, Christian; Julien, Perrine; Nikolantonaki, Maria; Noret, Laurence; Magne, Mathilde; Ballester, Jordi; Gougeon, Régis D.
2018-01-01
Chardonnay wines from Burgundy, obtained from musts with three levels of clarification (Low, Medium and High) during two consecutive vintages (2009 and 2010) and for two kinds of closures (screw caps and synthetic coextruded closures) were analyzed chemically and sensorially. Three bottles per turbidity level were opened in 2015 in order to assess the intensity of the reductive and/or oxidative aromas (REDOX sensory scores) by a trained sensory panel. The chemical analyses consisted in polyphenols and colloids quantification, followed by a proteomic characterization. For the two vintages, the REDOX sensory scores appeared to be driven both by the type of closure and to a lesser extent by the level of must clarification. Vintages and must racking prefermentative operations were also distinguished by chemical analyses. All white wines from the lowest must turbidity had the lowest REDOX sensory scores. Such wines exhibited lower concentrations in tyrosol and grape reaction product and higher concentrations in colloids with relatively low molecular weights. Among these macromolecules, grape proteins were also quantified, two of them exhibiting concentrations in bottled wines, which were statistically correlated to oxidative evolution in white wines. PMID:29682498
Toxin MqsR Cleaves Single-Stranded mRNA with Various 5 Ends
2016-08-24
either protein ORIGINAL RESEARCH Toxin MqsR cleaves single- stranded mRNA with various 5’ ends Nityananda Chowdhury1,*, Brian W. Kwan1,*, Louise C...in which a single 5′- GCU site was predicted to be single- stranded (ssRNA), double- stranded (dsRNA), in the loop of a stem - loop (slRNA), or in a...single- stranded 5′- GCU sites since cleavage was approximately 20- fold higher than cleavage seen with the 5′- GCU site in the stem - loop and
Split green fluorescent protein as a modular binding partner for protein crystallization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Hau B.; Hung, Li-Wei; Yeates, Todd O.
2013-12-01
A strategy using a new split green fluorescent protein (GFP) as a modular binding partner to form stable protein complexes with a target protein is presented. The modular split GFP may open the way to rapidly creating crystallization variants. A modular strategy for protein crystallization using split green fluorescent protein (GFP) as a crystallization partner is demonstrated. Insertion of a hairpin containing GFP β-strands 10 and 11 into a surface loop of a target protein provides two chain crossings between the target and the reconstituted GFP compared with the single connection afforded by terminal GFP fusions. This strategy was testedmore » by inserting this hairpin into a loop of another fluorescent protein, sfCherry. The crystal structure of the sfCherry-GFP(10–11) hairpin in complex with GFP(1–9) was determined at a resolution of 2.6 Å. Analysis of the complex shows that the reconstituted GFP is attached to the target protein (sfCherry) in a structurally ordered way. This work opens the way to rapidly creating crystallization variants by reconstituting a target protein bearing the GFP(10–11) hairpin with a variety of GFP(1–9) mutants engineered for favorable crystallization.« less
Tych, Katarzyna M; Batchelor, Matthew; Hoffmann, Toni; Wilson, Michael C; Hughes, Megan L; Paci, Emanuele; Brockwell, David J; Dougan, Lorna
2016-07-26
Proteins from organisms that have adapted to environmental extremes provide attractive systems to explore and determine the origins of protein stability. Improved hydrophobic core packing and decreased loop-length flexibility can increase the thermodynamic stability of proteins from hyperthermophilic organisms. However, their impact on protein mechanical stability is not known. Here, we use protein engineering, biophysical characterization, single-molecule force spectroscopy (SMFS), and molecular dynamics (MD) simulations to measure the effect of altering hydrophobic core packing on the stability of the cold shock protein TmCSP from the hyperthermophilic bacterium Thermotoga maritima. We make two variants of TmCSP in which a mutation is made to reduce the size of aliphatic groups from buried hydrophobic side chains. In the first, a mutation is introduced in a long loop (TmCSP L40A); in the other, the mutation is introduced on the C-terminal β-strand (TmCSP V62A). We use MD simulations to confirm that the mutant TmCSP L40A shows the most significant increase in loop flexibility, and mutant TmCSP V62A shows greater disruption to the core packing. We measure the thermodynamic stability (ΔGD-N) of the mutated proteins and show that there is a more significant reduction for TmCSP L40A (ΔΔG = 63%) than TmCSP V62A (ΔΔG = 47%), as might be expected on the basis of the relative reduction in the size of the side chain. By contrast, SMFS measures the mechanical stability (ΔG*) and shows a greater reduction for TmCSP V62A (ΔΔG* = 8.4%) than TmCSP L40A (ΔΔG* = 2.5%). While the impact on the mechanical stability is subtle, the results demonstrate the power of tuning noncovalent interactions to modulate both the thermodynamic and mechanical stability of a protein. Such understanding and control provide the opportunity to design proteins with optimized thermodynamic and mechanical properties.
2015-01-01
Various studies have implicated the concave surface of arrestin in the binding of the cytosolic surface of rhodopsin. However, specific sites of contact between the two proteins have not previously been defined in detail. Here, we report that arrestin shares part of the same binding site on rhodopsin as does the transducin Gα subunit C-terminal tail, suggesting binding of both proteins to rhodopsin may share some similar underlying mechanisms. We also identify two areas of contact between the proteins near this region. Both sites lie in the arrestin N-domain, one in the so-called “finger” loop (residues 67–79) and the other in the 160 loop (residues 155–165). We mapped these sites using a novel tryptophan-induced quenching method, in which we introduced Trp residues into arrestin and measured their ability to quench the fluorescence of bimane probes attached to cysteine residues on TM6 of rhodopsin (T242C and T243C). The involvement of finger loop binding to rhodopsin was expected, but the evidence of the arrestin 160 loop contacting rhodopsin was not. Remarkably, our data indicate one site on rhodopsin can interact with multiple structurally separate sites on arrestin that are almost 30 Å apart. Although this observation at first seems paradoxical, in fact, it provides strong support for recent hypotheses that structural plasticity and conformational changes are involved in the arrestin–rhodopsin binding interface and that the two proteins may be able to interact through multiple docking modes, with arrestin binding to both monomeric and dimeric rhodopsin. PMID:24724832
Emara, Mohamed M; Liu, Hsuan; Davis, William G; Brinton, Margo A
2008-11-01
Previous data showed that the cellular proteins TIA-1 and TIAR bound specifically to the West Nile virus 3' minus-strand stem-loop [WNV3'(-)SL] RNA (37) and colocalized with flavivirus replication complexes in WNV- and dengue virus-infected cells (21). In the present study, the sites on the WNV3'(-)SL RNA required for efficient in vitro T-cell intracellular antigen-related (TIAR) and T-cell intracellular antigen-1 (TIA-1) protein binding were mapped to short AU sequences (UAAUU) located in two internal loops of the WNV3'(-)SL RNA structure. Infectious clone RNAs with all or most of the binding site nucleotides in one of the 3' (-)SL loops deleted or substituted did not produce detectable virus after transfection or subsequent passage. With one exception, deletion/mutation of a single terminal nucleotide in one of the binding sequences had little effect on the efficiency of protein binding or virus production, but mutation of a nucleotide in the middle of a binding sequence reduced both the in vitro protein binding efficiency and virus production. Plaque size, intracellular genomic RNA levels, and virus production progressively decreased with decreasing in vitro TIAR/TIA-1 binding activity, but the translation efficiency of the various mutant RNAs was similar to that of the parental RNA. Several of the mutant RNAs that inefficiently interacted with TIAR/TIA-1 in vitro rapidly reverted in vivo, indicating that they could replicate at a low level and suggesting that an interaction between TIAR/TIA-1 and the viral 3'(-)SL RNA is not required for initial low-level symmetric RNA replication but instead facilitates the subsequent asymmetric amplification of genome RNA from the minus-strand template.
Sinha, Abhinav; Jones Brunette, Amber M; Fay, Jonathan F; Schafer, Christopher T; Farrens, David L
2014-05-27
Various studies have implicated the concave surface of arrestin in the binding of the cytosolic surface of rhodopsin. However, specific sites of contact between the two proteins have not previously been defined in detail. Here, we report that arrestin shares part of the same binding site on rhodopsin as does the transducin Gα subunit C-terminal tail, suggesting binding of both proteins to rhodopsin may share some similar underlying mechanisms. We also identify two areas of contact between the proteins near this region. Both sites lie in the arrestin N-domain, one in the so-called "finger" loop (residues 67-79) and the other in the 160 loop (residues 155-165). We mapped these sites using a novel tryptophan-induced quenching method, in which we introduced Trp residues into arrestin and measured their ability to quench the fluorescence of bimane probes attached to cysteine residues on TM6 of rhodopsin (T242C and T243C). The involvement of finger loop binding to rhodopsin was expected, but the evidence of the arrestin 160 loop contacting rhodopsin was not. Remarkably, our data indicate one site on rhodopsin can interact with multiple structurally separate sites on arrestin that are almost 30 Å apart. Although this observation at first seems paradoxical, in fact, it provides strong support for recent hypotheses that structural plasticity and conformational changes are involved in the arrestin-rhodopsin binding interface and that the two proteins may be able to interact through multiple docking modes, with arrestin binding to both monomeric and dimeric rhodopsin.
Neupane, Durga P; Avalos, Dante; Fullam, Stephanie; Roychowdhury, Hridindu; Yukl, Erik T
2017-10-20
Bacteria can acquire the essential metal zinc from extremely zinc-limited environments by using ATP-binding cassette (ABC) transporters. These transporters are critical virulence factors, relying on specific and high-affinity binding of zinc by a periplasmic solute-binding protein (SBP). As such, the mechanisms of zinc binding and release among bacterial SBPs are of considerable interest as antibacterial drug targets. Zinc SBPs are characterized by a flexible loop near the high-affinity zinc-binding site. The function of this structure is not always clear, and its flexibility has thus far prevented structural characterization by X-ray crystallography. Here, we present intact structures for the zinc-specific SBP AztC from the bacterium Paracoccus denitrificans in the zinc-bound and apo-states. A comparison of these structures revealed that zinc loss prompts significant structural rearrangements, mediated by the formation of a sodium-binding site in the apo-structure. We further show that the AztC flexible loop has no impact on zinc-binding affinity, stoichiometry, or protein structure, yet is essential for zinc transfer from the metallochaperone AztD. We also found that 3 His residues in the loop appear to temporarily coordinate zinc and then convey it to the high-affinity binding site. Thus, mutation of any of these residues to Ala abrogated zinc transfer from AztD. Our structural and mechanistic findings conclusively identify a role for the AztC flexible loop in zinc acquisition from the metallochaperone AztD, yielding critical insights into metal binding by AztC from both solution and AztD. These proteins are highly conserved in human pathogens, making this work potentially useful for the development of novel antibiotics. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Functional Human α7 Nicotinic Acetylcholine Receptor (nAChR) Generated from Escherichia coli.
Tillman, Tommy S; Alvarez, Frances J D; Reinert, Nathan J; Liu, Chuang; Wang, Dawei; Xu, Yan; Xiao, Kunhong; Zhang, Peijun; Tang, Pei
2016-08-26
Human Cys-loop receptors are important therapeutic targets. High-resolution structures are essential for rational drug design, but only a few are available due to difficulties in obtaining sufficient quantities of protein suitable for structural studies. Although expression of proteins in E. coli offers advantages of high yield, low cost, and fast turnover, this approach has not been thoroughly explored for full-length human Cys-loop receptors because of the conventional wisdom that E. coli lacks the specific chaperones and post-translational modifications potentially required for expression of human Cys-loop receptors. Here we report the successful production of full-length wild type human α7nAChR from E. coli Chemically induced chaperones promote high expression levels of well-folded proteins. The choice of detergents, lipids, and ligands during purification determines the final protein quality. The purified α7nAChR not only forms pentamers as imaged by negative-stain electron microscopy, but also retains pharmacological characteristics of native α7nAChR, including binding to bungarotoxin and positive allosteric modulators specific to α7nAChR. Moreover, the purified α7nAChR injected into Xenopus oocytes can be activated by acetylcholine, choline, and nicotine, inhibited by the channel blockers QX-222 and phencyclidine, and potentiated by the α7nAChR specific modulators PNU-120596 and TQS. The successful generation of functional human α7nAChR from E. coli opens a new avenue for producing mammalian Cys-loop receptors to facilitate structure-based rational drug design. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Lu, Xujin; Lloyd, David K; Klohr, Steven E
2016-01-01
A feasibility study was conducted for a sensitive and robust dye immersion method for the measurement of container closure integrity of unopened prefilled syringes using fluorescence spectrophotometry as the detection method. A Varian Cary Eclipse spectrofluorometer was used with a custom-made sample holder to position the intact syringe in the sample compartment for fluorescence measurements. Methylene blue solution was initially evaluated as the fluorophore in a syringe with excitation at 607 nm and emission at 682 nm, which generated a limit of detection of 0.05 μg/mL. Further studies were conducted using rhodamine 123, a dye with stronger fluorescence. Using 480 nm excitation and 525 nm emission, the dye in the syringe could be easily detected at levels as low as 0.001 μg/mL. The relative standard deviation for 10 measurements of a sample of 0.005 μg/mL (with repositioning of the syringe after each measurement) was less than 1.1%. A number of operational parameters were optimized, including the photomultiplier tube voltage, excitation, and emission slit widths. The specificity of the testing was challenged by using marketed drug products and a protein sample, which showed no interference to the rhodamine detection. Results obtained from this study demonstrated that using rhodamine 123 for container closure integrity testing with in-situ (in-syringe) fluorescence measurements significantly enhanced the sensitivity and robustness of the testing and effectively overcame limitations of the traditional methylene blue method with visual or UV-visible absorption detection. Ensuring container closure integrity of injectable pharmaceutical products is necessary to maintain quality throughout the shelf life of a sterile drug product. Container closure integrity testing has routinely been used to evaluate closure integrity during product development and production line qualification of prefilled syringes, vials, and devices. However, container closure integrity testing has recently gained industry attention due to increased regulatory agency scrutiny regarding the analytical rigor of container closure integrity testing methods and expectations to use container closure integrity testing in lieu of sterility tests in stability programs. Methylene blue dye is often used for dye ingress testing of container closure integrity, but we found it unsuitable for reliable detection of small breaches in prefilled syringes of drug product. This work describes the suitability and advantages of using a fluorescent dye and spectroscopic detection for a robust, sensitive, and quality control-friendly container closure integrity testing method for prefilled syringes. © PDA, Inc. 2016.
Nagata, Chisako; Miwa, Chika; Tanaka, Natsuki; Kato, Mariko; Suito, Momoe; Tsuchihira, Ayako; Sato, Yori; Segami, Shoji; Maeshima, Masayoshi
2016-05-01
The Ca(2+)-binding protein-1 (PCaP1) of Arabidopsis thaliana is a new type protein that binds to phosphatidylinositol phosphates and Ca(2+)-calmodulin complex as well as free Ca(2+). Although biochemical properties, such as binding to ligands and N-myristoylation, have been revealed, the intracellular localization, tissue and cell specificity, integrity of membrane association and physiological roles of PCaP1 are unknown. We investigated the tissue and intracellular distribution of PCaP1 by using transgenic lines expressing PCaP1 linked with a green fluorescence protein (GFP) at the carboxyl terminus of PCaP1. GFP fluorescence was obviously detected in most tissues including root, stem, leaf and flower. In these tissues, PCaP1-GFP signal was observed predominantly in the plasma membrane even under physiological stress conditions but not in other organelles. The fluorescence was detected in the cytosol when the 25-residue N-terminal sequence was deleted from PCaP1 indicating essential contribution of N-myristoylation to the plasma membrane anchoring. Fluorescence intensity of PCaP1-GFP in roots was slightly decreased in seedlings grown in medium supplemented with high concentrations of iron for 1 week and increased in those grown with copper. In stomatal guard cells, PCaP1-GFP was strictly, specifically localized to the plasma membrane at the epidermal-cell side but not at the pore side. A T-DNA insertion mutant line of PCaP1 did not show marked phenotype in a life cycle except for well growth under high CO2 conditions. However, stomata of the mutant line did not close entirely even in high osmolarity, which usually induces stomata closure. These results suggest that PCaP1 is involved in the stomatal movement, especially closure process, in leaves and response to excessive copper in root and leaf as a mineral nutrient as a physiological role.
Khadka, Bijendra; Gupta, Radhey S
2017-08-01
Homologs of the phosphatidylinositol-4-phosphate-5-kinase (PIP5K), which controls a multitude of essential cellular functions, contain a 8 aa insert in a conserved region that is specific for the Saccharomycetaceae family of fungi. Using structures of human PIP4K proteins as templates, structural models were generated of the Saccharomyces cerevisiae and human PIP5K proteins. In the modeled S. cerevisiae PIP5K, the 8 aa insert forms a surface exposed loop, present on the same face of the protein as the activation loop of the kinase domain. Electrostatic potential analysis indicates that the residues from 8 aa conserved loop form a highly positively charged surface patch, which through electrostatic interaction with the anionic portions of phospholipid head groups, is expected to play a role in the membrane interaction of the yeast PIP5K. To unravel this prediction, molecular dynamics (MD) simulations were carried out to examine the binding interaction of PIP5K, either containing or lacking the conserved signature insert, with two different membrane lipid bilayers. The results from MD studies provide insights concerning the mechanistic of interaction of PIP5K with lipid bilayer, and support the contention that the identified 8 aa conserved insert in fungal PIP5K plays an important role in the binding of this protein with membrane surface. Proteins 2017; 85:1454-1467. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Vital Roles of the Second DNA-binding Site of Rad52 Protein in Yeast Homologous Recombination*
Arai, Naoto; Kagawa, Wataru; Saito, Kengo; Shingu, Yoshinori; Mikawa, Tsutomu; Kurumizaka, Hitoshi; Shibata, Takehiko
2011-01-01
RecA/Rad51 proteins are essential in homologous DNA recombination and catalyze the ATP-dependent formation of D-loops from a single-stranded DNA and an internal homologous sequence in a double-stranded DNA. RecA and Rad51 require a “recombination mediator” to overcome the interference imposed by the prior binding of single-stranded binding protein/replication protein A to the single-stranded DNA. Rad52 is the prototype of recombination mediators, and the human Rad52 protein has two distinct DNA-binding sites: the first site binds to single-stranded DNA, and the second site binds to either double- or single-stranded DNA. We previously showed that yeast Rad52 extensively stimulates Rad51-catalyzed D-loop formation even in the absence of replication protein A, by forming a 2:1 stoichiometric complex with Rad51. However, the precise roles of Rad52 and Rad51 within the complex are unknown. In the present study, we constructed yeast Rad52 mutants in which the amino acid residues corresponding to the second DNA-binding site of the human Rad52 protein were replaced with either alanine or aspartic acid. We found that the second DNA-binding site is important for the yeast Rad52 function in vivo. Rad51-Rad52 complexes consisting of these Rad52 mutants were defective in promoting the formation of D-loops, and the ability of the complex to associate with double-stranded DNA was specifically impaired. Our studies suggest that Rad52 within the complex associates with double-stranded DNA to assist Rad51-mediated homologous pairing. PMID:21454474
Mimicking a p53-MDM2 interaction based on a stable immunoglobulin-like domain scaffold.
Jimenez-Sandoval, Pedro; Madrigal-Carrillo, Ezequiel A; Santamaría-Suárez, Hugo A; Maturana, Daniel; Rentería-González, Itzel; Benitez-Cardoza, Claudia G; Torres-Larios, Alfredo; Brieba, Luis G
2018-04-26
Antibodies recognize protein targets with great affinity and specificity. However, posttranslational modifications and the presence of intrinsic disulfide-bonds pose difficulties for their industrial use. The immunoglobulin fold is one of the most ubiquitous folds in nature and it is found in many proteins besides antibodies. An example of a protein family with an immunoglobulin-like fold is the Cysteine Protease Inhibitors (ICP) family I42 of the MEROPs database for protease and protease inhibitors. Members of this protein family are thermostable and do not present internal disulfide bonds. Crystal structures of several ICPs indicate that they resemble the Ig-like domain of the human T cell co-receptor CD8α As ICPs present 2 flexible recognition loops that vary accordingly to their targeted protease, we hypothesize that members of this protein family would be ideal to design peptide aptamers that mimic protein-protein interactions. Herein, we use an ICP variant from Entamoeba histolytica (EhICP1) to mimic the interaction between p53 and MDM2. We found that a 13 amino-acid peptide derived from p53 can be introduced in 2 variable loops (DE, FG) but not the third (BC). Chimeric EhICP1-p53 form a stable complex with MDM2 at a micromolar range. Crystal structure of the EhICP1-p53(FG)-loop variant in complex with MDM2 reveals a swapping subdomain between 2 chimeric molecules, however, the p53 peptide interacts with MDM2 as in previous crystal structures. The structural details of the EhICP1-p53(FG) interaction with MDM2 resemble the interaction between an antibody and MDM2. © 2018 Wiley Periodicals, Inc.
Allostery in the ferredoxin protein motif does not involve a conformational switch.
Nechushtai, Rachel; Lammert, Heiko; Michaeli, Dorit; Eisenberg-Domovich, Yael; Zuris, John A; Luca, Maria A; Capraro, Dominique T; Fish, Alex; Shimshon, Odelia; Roy, Melinda; Schug, Alexander; Whitford, Paul C; Livnah, Oded; Onuchic, José N; Jennings, Patricia A
2011-02-08
Regulation of protein function via cracking, or local unfolding and refolding of substructures, is becoming a widely recognized mechanism of functional control. Oftentimes, cracking events are localized to secondary and tertiary structure interactions between domains that control the optimal position for catalysis and/or the formation of protein complexes. Small changes in free energy associated with ligand binding, phosphorylation, etc., can tip the balance and provide a regulatory functional switch. However, understanding the factors controlling function in single-domain proteins is still a significant challenge to structural biologists. We investigated the functional landscape of a single-domain plant-type ferredoxin protein and the effect of a distal loop on the electron-transfer center. We find the global stability and structure are minimally perturbed with mutation, whereas the functional properties are altered. Specifically, truncating the L1,2 loop does not lead to large-scale changes in the structure, determined via X-ray crystallography. Further, the overall thermal stability of the protein is only marginally perturbed by the mutation. However, even though the mutation is distal to the iron-sulfur cluster (∼20 Å), it leads to a significant change in the redox potential of the iron-sulfur cluster (57 mV). Structure-based all-atom simulations indicate correlated dynamical changes between the surface-exposed loop and the iron-sulfur cluster-binding region. Our results suggest intrinsic communication channels within the ferredoxin fold, composed of many short-range interactions, lead to the propagation of long-range signals. Accordingly, protein interface interactions that involve L1,2 could potentially signal functional changes in distal regions, similar to what is observed in other allosteric systems.
Phage selection of peptide "microantibodies".
Fujiwara, Daisuke; Fujii, Ikuo
2013-01-01
A bioactive peptide capable of inhibiting protein-protein interactions has the potential to be a molecular tool for biological studies and a therapeutic by disrupting aberrant interactions involved in diseases. We have developed combinatorial libraries of peptides with helix-loop-helix structure, from which the isolated peptides have the constrained structure to reduce entropy costs in binding, resulting in high binding affinities for target molecules. Previously, we designed a de novo peptide of helix-loop-helix structure that we termed a "microantibody." Using the microantibody as a library scaffold, we have constructed a phage-display library to successfully isolate molecular-targeting peptides against a cytokine receptor (granulocyte colony-stimulating factor receptor), a protein kinase (Aurora-A), and a ganglioside (GM1). Protocols in this article describe a general procedure for the library construction and the library screening.
MacA is a second cytochrome c peroxidase of Geobacter sulfurreducens.
Seidel, Julian; Hoffmann, Maren; Ellis, Katie E; Seidel, Antonia; Spatzal, Thomas; Gerhardt, Stefan; Elliott, Sean J; Einsle, Oliver
2012-04-03
The metal-reducing δ-proteobacterium Geobacter sulfurreducens produces a large number of c-type cytochromes, many of which have been implicated in the transfer of electrons to insoluble metal oxides. Among these, the dihemic MacA was assigned a central role. Here we have produced G. sulfurreducens MacA by recombinant expression in Escherichia coli and have solved its three-dimensional structure in three different oxidation states. Sequence comparisons group MacA into the family of diheme cytochrome c peroxidases, and the protein indeed showed hydrogen peroxide reductase activity with ABTS(-2) as an electron donor. The observed K(M) was 38.5 ± 3.7 μM H(2)O(2) and v(max) was 0.78 ± 0.03 μmol of H(2)O(2)·min(-1)·mg(-1), resulting in a turnover number k(cat) = 0.46 · s(-1). In contrast, no Fe(III) reductase activity was observed. MacA was found to display electrochemical properties similar to other bacterial diheme peroxidases, in addition to the ability to electrochemically mediate electron transfer to the soluble cytochrome PpcA. Differences in activity between CcpA and MacA can be rationalized with structural variations in one of the three loop regions, loop 2, that undergoes conformational changes during reductive activation of the enzyme. This loop is adjacent to the active site heme and forms an open loop structure rather than a more rigid helix as in CcpA. For the activation of the protein, the loop has to displace the distal ligand to the active site heme, H93, in loop 1. A H93G variant showed an unexpected formation of a helix in loop 2 and disorder in loop 1, while a M297H variant that altered the properties of the electron transfer heme abolished reductive activation.
MacA is a Second Cytochrome c Peroxidase of Geobacter sulfurreducens
Seidel, Julian; Hoffmann, Maren; Ellis, Katie E.; Seidel, Antonia; Spatzal, Thomas; Gerhardt, Stefan; Elliott, Sean J.
2012-01-01
The metal-reducing δ-proteobacterium Geobacter sulfurreducens produces a large number of c-type cytochromes, many of which have been implicated in the transfer of electrons to insoluble metal oxides. Among these, the dihemic MacA was assigned a central role. Here we have produced G. sulfurreducens MacA by recombinant expression in Escherichia coli and have solved its three-dimensional structure in three different oxidation states. Sequence comparisons group MacA into the family of diheme cytochrome c peroxidases, and the protein indeed showed hydrogen peroxide reductase activity with ABTS2– as an electron donor. The observed KM was 38.5 ± 3.7 μM H2O2 and vmax was 0.78 ± 0.03 μmol H2O2·min–1·mg–1, resulting in a turnover number kcat = 0.46 · s–1. In contrast, no Fe(III) reductase activity was observed. MacA was found to display similar electrochemical properties to other bacterial diheme peroxidases, in additional to the ability to electrochemically mediate electron transfer to the soluble cytochrome PpcA. Differences in activity between CcpA and MacA can be rationalized with structural variations in one of the three loop regions, loop 2, that undergo conformational changes during reductive activation of the enzyme. This loop is adjacent to the active site heme and forms an open loop structure rather than a more rigid helix as in CcpA. For the activation of the protein the loop has to displace the distal ligand to the active site heme, H93, in loop 1. A H93G variant showed an unexpected formation of a helix in loop 2 and disorder in loop 1, while a M297H variant that altered the properties of the electron transfer heme abolished reductive activation. PMID:22417533
Oligomerization state of water channels and glycerol facilitators. Involvement of loop E.
Lagrée, V; Froger, A; Deschamps, S; Pellerin, I; Delamarche, C; Bonnec, G; Gouranton, J; Thomas, D; Hubert, J F
1998-12-18
The major intrinsic protein (MIP) family includes water channels aquaporins (AQPs) and facilitators for small solutes such as glycerol (GlpFs). Velocity sedimentation on sucrose gradients demonstrates that heterologous AQPcic expressed in yeast or Xenopus oocytes behaves as an homotetramer when extracted by n-octyl beta-D-glucopyranoside (OG) and as a monomer when extracted by SDS. We performed an analysis of GlpF solubilized from membranes of Escherichia coli or of mRNA-injected Xenopus oocytes. The GlpF protein extracted either by SDS or by nondenaturing detergents, OG and Triton X-100, exhibits sedimentation coefficients only compatible with a monomeric form of the protein in micelles. We then substituted in loop E of AQPcic two amino acids predicted to play a role in the functional/structural properties of the MIPs. In two expression systems, yeast and oocytes, the mutant AQPcic-S205D is monomeric in OG and in SDS. The A209K mutation does not modify the tetrameric form of the heterologous protein in OG. This study shows that the serine residue at position 205 is essential for AQPcic tetramerization. Because the serine in this position is highly conserved among aquaporins and systematically replaced by an acid aspartic in GlpFs, we postulate that glycerol facilitators are monomers whereas aquaporins are organized in tetramers. Our data suggest that the role of loop E in MIP properties partly occurs through its ability to allow oligomerization of the proteins.
The cell pole: the site of cross talk between the DNA uptake and genetic recombination machinery.
Kidane, Dawit; Ayora, Silvia; Sweasy, Joann B; Graumann, Peter L; Alonso, Juan C
2012-01-01
Natural transformation is a programmed mechanism characterized by binding of free double-stranded (ds) DNA from the environment to the cell pole in rod-shaped bacteria. In Bacillus subtilis some competence proteins, which process the dsDNA and translocate single-stranded (ss) DNA into the cytosol, recruit a set of recombination proteins mainly to one of the cell poles. A subset of single-stranded binding proteins, working as "guardians", protects ssDNA from degradation and limit the RecA recombinase loading. Then, the "mediators" overcome the inhibitory role of guardians, and recruit RecA onto ssDNA. A RecA·ssDNA filament searches for homology on the chromosome and, in a process that is controlled by "modulators", catalyzes strand invasion with the generation of a displacement loop (D-loop). A D-loop resolvase or "resolver" cleaves this intermediate, limited DNA replication restores missing information and a DNA ligase seals the DNA ends. However, if any step fails, the "rescuers" will repair the broken end to rescue chromosomal transformation. If the ssDNA does not share homology with resident DNA, but it contains information for autonomous replication, guardian and mediator proteins catalyze plasmid establishment after inhibition of RecA. DNA replication and ligation reconstitute the molecule (plasmid transformation). In this review, the interacting network that leads to a cross talk between proteins of the uptake and genetic recombination machinery will be placed into prospective.
The cell pole: The site of cross talk between the DNA uptake and genetic recombination machinery
Kidane, Dawit; Ayora, Silvia; Sweasy, Joann; Graumann, Peter L.; Alonso, Juan C.
2012-01-01
Natural transformation is a programmed mechanism characterized by binding of free double-stranded (ds) DNA from the environment to the cell pole in rod-shaped bacteria. In Bacillus subtilis some competence proteins, which process the dsDNA and translocate single-stranded (ss) DNA into the cytosol, recruit a set of recombination proteins mainly to one of the cell poles. A subset of single-stranded binding proteins, working as “guardians”, protect ssDNA from degradation and limit the RecA recombinase loading. Then, the “mediators” overcome the inhibitory role of guardians, and recruit RecA onto ssDNA. A RecA·ssDNA filament searches for homology on the chromosome and, in a process that is controlled by “modulators”, catalyzes strand invasion with the generation of a displacement loop (D-loop). A D-loop resolvase or “resolver” cleaves this intermediate, limited DNA replication restores missing information and a DNA ligase seals the DNA ends. However, if any step fails, the “rescuers” will repair the broken end to rescue chromosomal transformation. If the ssDNA does not share homology with resident DNA, but it contains information for autonomous replication, guardian and mediator proteins catalyze plasmid establishment after inhibition of RecA. DNA replication and ligation reconstitute the molecule (plasmid transformation). In this review, the interacting network that leads to a cross talk between proteins of the uptake and genetic recombination machinery will be placed into prospective. PMID:23046409
Blue light does not impair wound healing in vitro.
Masson-Meyers, Daniela Santos; Bumah, Violet Vakunseh; Enwemeka, Chukuka Samuel
2016-07-01
Irradiation with red or near infrared light promotes tissue repair, while treatment with blue light is known to be antimicrobial. Consequently, it is thought that infected wounds could benefit more from combined blue and red/infrared light therapy; but there is a concern that blue light may slow healing. We investigated the effect of blue 470nm light on wound healing, in terms of wound closure, total protein and collagen synthesis, growth factor and cytokines expression, in an in vitro scratch wound model. Human dermal fibroblasts were cultured for 48h until confluent. Then a linear scratch wound was created and irradiated with 3, 5, 10 or 55J/cm(2). Control plates were not irradiated. Following 24h of incubation, cells were fixed and stained for migration and fluorescence analyses and the supernatant collected for quantification of total protein, hydroxyproline, bFGF, IL-6 and IL-10. The results showed that wound closure was similar for groups treated with 3, 5 and 10J/cm(2), with a slight improvement with the 5J/cm(2) dose, and slower closure with 55J/cm(2) p<0.001). Total protein concentration increased after irradiation with 3, 5 and 10J/cm(2), reaching statistical significance at 5J/cm(2) compared to control (p<0.0001). However, hydroxyproline levels did not differ between groups. Similarly, bFGF and IL-10 concentrations did not differ between groups, but IL-6 concentration decreased progressively as fluence increased (p<0.0001). Fluorescence analysis showed viable cells regardless of irradiation fluence. We conclude that irradiation with blue light at low fluence does not impair in vitro wound healing. The significant decrease in IL-6 suggests that 470nm light is anti-inflammatory. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhang, Huajian; Zhao, Tongyao; Zhuang, Peitong; Song, Zhiqiang; Du, Hui; Tang, Zhaozhao; Gao, Zhimou
2016-12-01
SsCut, which functions as an elicitor, can induce plant immunity. In this study, we utilized Nicotiana benthamiana and virus-induced gene silencing to decrease the expression of > 2,500 genes individually. Using this forward genetics approach, several genes were identified that, when silenced, compromised SsCut-triggered cell death based on a cell death assay. A C 2 H 2 -type zinc finger gene was isolated from N. benthamiana Sequence analysis indicated that the gene encodes a 27 kDa protein with 253 amino acids containing two typical C 2 H 2 -type zinc finger domains; this gene was named NbCZF1 We found that SsCut-induced cell death could be inhibited by virus-induced gene silencing of NbCZF1 in N. benthamiana In addition, SsCut induces stomatal closure, accompanied by reactive oxygen species (ROS) production by NADPH oxidases and nitric oxide (NO) production. NbCZF1-silenced plants showed impaired SsCut-induced stomatal closure, decreased SsCut-induced production of ROS and NO in guard cells and reduced SsCut-induced resistance against Phytophthora nicotianae Taken together, these results demonstrate that the NbCZF1-ROS-NO pathway mediates multiple SsCut-triggered responses, including stomatal closure, hypersensitive responses and defense-related gene expression. This is the first report describing the function of a C 2 H 2 -type zinc finger protein in N. benthamiana. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Estimating loop length from CryoEM images at medium resolutions.
McKnight, Andrew; Si, Dong; Al Nasr, Kamal; Chernikov, Andrey; Chrisochoides, Nikos; He, Jing
2013-01-01
De novo protein modeling approaches utilize 3-dimensional (3D) images derived from electron cryomicroscopy (CryoEM) experiments. The skeleton connecting two secondary structures such as α-helices represent the loop in the 3D image. The accuracy of the skeleton and of the detected secondary structures are critical in De novo modeling. It is important to measure the length along the skeleton accurately since the length can be used as a constraint in modeling the protein. We have developed a novel computational geometric approach to derive a simplified curve in order to estimate the loop length along the skeleton. The method was tested using fifty simulated density images of helix-loop-helix segments of atomic structures and eighteen experimentally derived density data from Electron Microscopy Data Bank (EMDB). The test using simulated density maps shows that it is possible to estimate within 0.5 Å of the expected length for 48 of the 50 cases. The experiments, involving eighteen experimentally derived CryoEM images, show that twelve cases have error within 2 Å. The tests using both simulated and experimentally derived images show that it is possible for our proposed method to estimate the loop length along the skeleton if the secondary structure elements, such as α-helices, can be detected accurately, and there is a continuous skeleton linking the α-helices.
Transduction of NeuroD2 protein induced neural cell differentiation.
Noda, Tomohide; Kawamura, Ryuzo; Funabashi, Hisakage; Mie, Masayasu; Kobatake, Eiry
2006-11-01
NeuroD2, one of the neurospecific basic helix-loop-helix transcription factors, has the ability to induce neural differentiation in undifferentiated cells. In this paper, we show that transduction of NeuroD2 protein induced mouse neuroblastoma cell line N1E-115 into neural differentiation. NeuroD2 has two basic-rich domains, one is nuclear localization signal (NLS) and the other is basic region of basic helix-loop-helix (basic). We constructed some mutants of NeuroD2, ND2(Delta100-115) (lack of NLS), ND2(Delta123-134) (lack of basic) and ND2(Delta100-134) (lack of both NLS and basic) for transduction experiments. Using these proteins, we have shown that NLS region of NeuroD2 plays a role of protein transduction. Continuous addition of NeuroD2 protein resulted in N1E-115 cells adopting neural morphology after 4 days and Tau mRNA expression was increased. These results suggest that neural differentiation can be induced by direct addition of NeuroD2 protein.
Structural Dynamics in Ras and Related Proteins upon Nucleotide Switching.
Harrison, Rane A; Lu, Jia; Carrasco, Martin; Hunter, John; Manandhar, Anuj; Gondi, Sudershan; Westover, Kenneth D; Engen, John R
2016-11-20
Structural dynamics of Ras proteins contributes to their activity in signal transduction cascades. Directly targeting Ras proteins with small molecules may rely on the movement of a conserved structural motif, switch II. To understand Ras signaling and advance Ras-targeting strategies, experimental methods to measure Ras dynamics are required. Here, we demonstrate the utility of hydrogen-deuterium exchange (HDX) mass spectrometry (MS) to measure Ras dynamics by studying representatives from two branches of the Ras superfamily, Ras and Rho. A comparison of differential deuterium exchange between active (GMPPNP-bound) and inactive (GDP-bound) proteins revealed differences between the families, with the most notable differences occurring in the phosphate-binding loop and switch II. The P-loop exchange signature correlated with switch II dynamics observed in molecular dynamics simulations focused on measuring main-chain movement. HDX provides a means of evaluating Ras protein dynamics, which may be useful for understanding the mechanisms of Ras signaling, including activated signaling of pathologic mutants, and for targeting strategies that rely on protein dynamics. Copyright © 2016 Elsevier Ltd. All rights reserved.
Perederina, Anna; Nevskaya, Natalia; Nikonov, Oleg; Nikulin, Alexei; Dumas, Philippe; Yao, Min; Tanaka, Isao; Garber, Maria; Gongadze, George; Nikonov, Stanislav
2002-12-01
The crystal structure of ribosomal protein L5 from Thermus thermophilus complexed with a 34-nt fragment comprising helix III and loop C of Escherichia coli 5S rRNA has been determined at 2.5 A resolution. The protein specifically interacts with the bulged nucleotides at the top of loop C of 5S rRNA. The rRNA and protein contact surfaces are strongly stabilized by intramolecular interactions. Charged and polar atoms forming the network of conserved intermolecular hydrogen bonds are located in two narrow planar parallel layers belonging to the protein and rRNA, respectively. The regions, including these atoms conserved in Bacteria and Archaea, can be considered an RNA-protein recognition module. Comparison of the T. thermophilus L5 structure in the RNA-bound form with the isolated Bacillus stearothermophilus L5 structure shows that the RNA-recognition module on the protein surface does not undergo significant changes upon RNA binding. In the crystal of the complex, the protein interacts with another RNA molecule in the asymmetric unit through the beta-sheet concave surface. This protein/RNA interface simulates the interaction of L5 with 23S rRNA observed in the Haloarcula marismortui 50S ribosomal subunit.
Perederina, Anna; Nevskaya, Natalia; Nikonov, Oleg; Nikulin, Alexei; Dumas, Philippe; Yao, Min; Tanaka, Isao; Garber, Maria; Gongadze, George; Nikonov, Stanislav
2002-01-01
The crystal structure of ribosomal protein L5 from Thermus thermophilus complexed with a 34-nt fragment comprising helix III and loop C of Escherichia coli 5S rRNA has been determined at 2.5 A resolution. The protein specifically interacts with the bulged nucleotides at the top of loop C of 5S rRNA. The rRNA and protein contact surfaces are strongly stabilized by intramolecular interactions. Charged and polar atoms forming the network of conserved intermolecular hydrogen bonds are located in two narrow planar parallel layers belonging to the protein and rRNA, respectively. The regions, including these atoms conserved in Bacteria and Archaea, can be considered an RNA-protein recognition module. Comparison of the T. thermophilus L5 structure in the RNA-bound form with the isolated Bacillus stearothermophilus L5 structure shows that the RNA-recognition module on the protein surface does not undergo significant changes upon RNA binding. In the crystal of the complex, the protein interacts with another RNA molecule in the asymmetric unit through the beta-sheet concave surface. This protein/RNA interface simulates the interaction of L5 with 23S rRNA observed in the Haloarcula marismortui 50S ribosomal subunit. PMID:12515387
The icosahedral RNA virus as a grotto: organizing the genome into stalagmites and stalactites.
Harvey, Stephen C; Zeng, Yingying; Heitsch, Christine E
2013-03-01
There are two important problems in the assembly of small, icosahedral RNA viruses. First, how does the capsid protein select the viral RNA for packaging, when there are so many other candidate RNA molecules available? Second, what is the mechanism of assembly? With regard to the first question, there are a number of cases where a particular RNA sequence or structure--often one or more stem-loops--either promotes assembly or is required for assembly, but there are others where specific packaging signals are apparently not required. With regard to the assembly pathway, in those cases where stem-loops are involved, the first step is generally believed to be binding of the capsid proteins to these "fingers" of the RNA secondary structure. In the mature virus, the core of the RNA would then occupy the center of the viral particle, and the stem-loops would reach outward, towards the capsid, like stalagmites reaching up from the floor of a grotto towards the ceiling. Those viruses whose assembly does not depend on protein binding to stem-loops could have a different structure, with the core of the RNA lying just under the capsid, and the fingers reaching down into the interior of the virus, like stalactites. We review the literature on these alternative structures, focusing on RNA selectivity and the assembly mechanism, and we propose experiments aimed at determining, in a given virus, which of the two structures actually occurs.
Leipe, Detlef D; Koonin, Eugene V; Aravind, L
2004-10-08
Using sequence profile analysis and sequence-based structure predictions, we define a previously unrecognized, widespread class of P-loop NTPases. The signal transduction ATPases with numerous domains (STAND) class includes the AP-ATPases (animal apoptosis regulators CED4/Apaf-1, plant disease resistance proteins, and bacterial AfsR-like transcription regulators) and NACHT NTPases (e.g. NAIP, TLP1, Het-E-1) that have been studied extensively in the context of apoptosis, pathogen response in animals and plants, and transcriptional regulation in bacteria. We show that, in addition to these well-characterized protein families, the STAND class includes several other groups of (predicted) NTPase domains from diverse signaling and transcription regulatory proteins from bacteria and eukaryotes, and three Archaea-specific families. We identified the STAND domain in several biologically well-characterized proteins that have not been suspected to have NTPase activity, including soluble adenylyl cyclases, nephrocystin 3 (implicated in polycystic kidney disease), and Rolling pebble (a regulator of muscle development); these findings are expected to facilitate elucidation of the functions of these proteins. The STAND class belongs to the additional strand, catalytic E division of P-loop NTPases together with the AAA+ ATPases, RecA/helicase-related ATPases, ABC-ATPases, and VirD4/PilT-like ATPases. The STAND proteins are distinguished from other P-loop NTPases by the presence of unique sequence motifs associated with the N-terminal helix and the core strand-4, as well as a C-terminal helical bundle that is fused to the NTPase domain. This helical module contains a signature GxP motif in the loop between the two distal helices. With the exception of the archaeal families, almost all STAND NTPases are multidomain proteins containing three or more domains. In addition to the NTPase domain, these proteins typically contain DNA-binding or protein-binding domains, superstructure-forming repeats, such as WD40 and TPR, and enzymatic domains involved in signal transduction, including adenylate cyclases and kinases. By analogy to the AAA+ ATPases, it can be predicted that STAND NTPases use the C-terminal helical bundle as a "lever" to transmit the conformational changes brought about by NTP hydrolysis to effector domains. STAND NTPases represent a novel paradigm in signal transduction, whereby adaptor, regulatory switch, scaffolding, and, in some cases, signal-generating moieties are combined into a single polypeptide. The STAND class consists of 14 distinct families, and the evolutionary history of most of these families is riddled with dramatic instances of lineage-specific expansion and apparent horizontal gene transfer. The STAND NTPases are most abundant in developmentally and organizationally complex prokaryotes and eukaryotes. Transfer of genes for STAND NTPases from bacteria to eukaryotes on several occasions might have played a significant role in the evolution of eukaryotic signaling systems.
Constrained Combinatorial Libraries of Gp2 Proteins Enhance Discovery of PD-L1 Binders.
Kruziki, Max A; Sarma, Vidur; Hackel, Benjamin J
2018-06-05
Engineered protein ligands are used for molecular therapy, diagnostics, and industrial biotechnology. The Gp2 domain is a 45-amino acid scaffold that has been evolved for specific, high-affinity binding to multiple targets by diversification of two solvent-exposed loops. Inspired by sitewise enrichment of select amino acids, including cysteine pairs, in earlier Gp2 discovery campaigns, we hypothesized that the breadth and efficiency of de novo Gp2 discovery will be aided by sitewise amino acid constraint within combinatorial library design. We systematically constructed eight libraries and comparatively evaluated their efficacy for binder discovery via yeast display against a panel of targets. Conservation of a cysteine pair at the termini of the first diversified paratope loop increased binder discovery 16-fold ( p < 0.001). Yet two other libraries with conserved cysteine pairs, within the second loop or an interloop pair, did not aid discovery thereby indicating site-specific impact. Via a yeast display protease resistance assay, Gp2 variants from the loop one cysteine pair library were 3.3 ± 2.1-fold ( p = 0.005) more stable than nonconstrained variants. Sitewise constraint of noncysteine residues-guided by previously evolved binders, natural Gp2 homology, computed stability, and structural analysis-did not aid discovery. A panel of binders to programmed death ligand 1 (PD-L1), a key target in cancer immunotherapy, were discovered from the loop 1 cysteine constraint library. Affinity maturation via loop walking resulted in strong, specific cellular PD-L1 affinity ( K d = 6-9 nM).
Vitorino, Marta; Silva, Ana Cristina; Inácio, José Manuel; Ramalho, José Silva; Gur, Michal; Fainsod, Abraham; Steinbeisser, Herbert; Belo, José António
2015-01-01
Protein Kinase Domain Containing, Cytoplasmic (PKDCC) is a protein kinase which has been implicated in longitudinal bone growth through regulation of chondrocytes formation. Nevertheless, the mechanism by which this occurs remains unknown. Here, we identified two new members of the PKDCC family, Pkdcc1 and Pkdcc2 from Xenopus laevis. Interestingly, our knockdown experiments revealed that these two proteins are both involved on blastopore and neural tube closure during gastrula and neurula stages, respectively. In vertebrates, tissue polarity and cell movement observed during gastrulation and neural tube closure are controlled by Wnt/Planar Cell Polarity (PCP) molecular pathway. Our results showed that Pkdcc1 and Pkdcc2 promote the recruitment of Dvl to the plasma membrane. But surprisingly, they revealed different roles in the induction of a luciferase reporter under the control of Atf2 promoter. While Pkdcc1 induces Atf2 expression, Pkdcc2 does not, and furthermore inhibits its normal induction by Wnt11 and Wnt5a. Altogether our data show, for the first time, that members of the PKDCC family are involved in the regulation of JNK dependent Wnt/PCP signaling pathway. PMID:26270962
USDA-ARS?s Scientific Manuscript database
A reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed for detecting Sugarcane mosaic virus (SCMV) and Sorghum mosaic virus (SrMV) in sugarcane. Six sets of four primers corresponding to the conserved coat protein gene were designed for each virus and their succ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandao, T.; Robinson, H; Johnson, S
Catalysis by the Yersinia protein-tyrosine phosphatase YopH is significantly impaired by the mutation of the conserved Trp354 residue to Phe. Though not a catalytic residue, this Trp is a hinge residue in a conserved flexible loop (the WPD-loop) that must close during catalysis. To learn why this seemingly conservative mutation reduces catalysis by 2 orders of magnitude, we have solved high-resolution crystal structures for the W354F YopH in the absence and in the presence of tungstate and vanadate. Oxyanion binding to the P-loop in W354F is analogous to that observed in the native enzyme. However, the WPD-loop in the presencemore » of oxyanions assumes a half-closed conformation, in contrast to the fully closed state observed in structures of the native enzyme. This observation provides an explanation for the impaired general acid catalysis observed in kinetic experiments with Trp mutants. A 1.4 Angstroms structure of the W354F mutant obtained in the presence of vanadate reveals an unusual divanadate species with a cyclic [VO]2 core, which has precedent in small molecules but has not been previously reported in a protein crystal structure.« less
CD-loop Extension in Zika Virus Envelope Protein Key for Stability and Pathogenesis.
Gallichotte, Emily N; Dinnon, Kenneth H; Lim, Xin-Ni; Ng, Thiam-Seng; Lim, Elisa X Y; Menachery, Vineet D; Lok, Shee-Mei; Baric, Ralph S
2017-12-05
With severe disease manifestations including microcephaly, congenital malformation, and Guillain-Barré syndrome, Zika virus (ZIKV) remains a persistent global public health threat. Despite antigenic similarities with dengue viruses, structural studies have suggested the extended CD-loop and hydrogen-bonding interaction network within the ZIKV envelope protein contribute to stability differences between the viral families. This enhanced stability may lead to the augmented infection, disease manifestation, and persistence in body fluids seen following ZIKV infection. To examine the role of these motifs in infection, we generated a series of ZIKV recombinant viruses that disrupted the hydrogen-bonding network (350A, 351A, and 350A/351A) or the CD-loop extension (Δ346). Our results demonstrate a key role for the ZIKV extended CD-loop in cell-type-dependent replication, virion stability, and in vivo pathogenesis. Importantly, the Δ346 mutant maintains similar antigenicity to wild-type virus, opening the possibility for its use as a live-attenuated vaccine platform for ZIKV and other clinically relevant flaviviruses. © The Author(s) 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
Zhang, Gang; Kelstrup, Christian D; Hu, Xiao-Wen; Kaas Hansen, Mathilde J; Singleton, Martin R; Olsen, Jesper V; Nilsson, Jakob
2012-07-01
The Ndc80 complex establishes end-on attachment of kinetochores to microtubules, which is essential for chromosome segregation. The Ndc80 subunit is characterized by an N-terminal region that binds directly to microtubules, and a long coiled-coil region that interacts with Nuf2. A loop region in Ndc80 that generates a kink in the structure disrupts the long coiled-coil region but the exact function of this loop, has until now, not been clear. Here we show that this loop region is essential for end-on attachment of kinetochores to microtubules in human cells. Cells expressing loop mutants of Ndc80 are unable to align the chromosomes, and stable kinetochore fibers are absent. Through quantitative mass spectrometry and immunofluorescence we found that the binding of the spindle and kinetochore associated (Ska) complex depends on the loop region, explaining why end-on attachment is defective. This underscores the importance of the Ndc80 loop region in coordinating chromosome segregation through the recruitment of specific proteins to the kinetochore.
Paës, Gabriel; Cortés, Juan; Siméon, Thierry; O'Donohue, Michael J.; Tran, Vinh
2012-01-01
Dynamics is a key feature of enzyme catalysis. Unfortunately, current experimental and computational techniques do not yet provide a comprehensive understanding and description of functional macromolecular motions. In this work, we have extended a novel computational technique, which combines molecular modeling methods and robotics algorithms, to investigate functional motions of protein loops. This new approach has been applied to study the functional importance of the so-called thumb-loop in the glycoside hydrolase family 11 xylanase from Thermobacillus xylanilyticus (Tx-xyl). The results obtained provide new insight into the role of the loop in the glycosylation/deglycosylation catalytic cycle, and underline the key importance of the nature of the residue located at the tip of the thumb-loop. The effect of mutations predicted in silico has been validated by in vitro site-directed mutagenesis experiments. Overall, we propose a comprehensive model of Tx-xyl catalysis in terms of substrate and product dynamics by identifying the action of the thumb-loop motion during catalysis. PMID:24688637
Studying DNA looping by single-molecule FRET.
Le, Tung T; Kim, Harold D
2014-06-28
Bending of double-stranded DNA (dsDNA) is associated with many important biological processes such as DNA-protein recognition and DNA packaging into nucleosomes. Thermodynamics of dsDNA bending has been studied by a method called cyclization which relies on DNA ligase to covalently join short sticky ends of a dsDNA. However, ligation efficiency can be affected by many factors that are not related to dsDNA looping such as the DNA structure surrounding the joined sticky ends, and ligase can also affect the apparent looping rate through mechanisms such as nonspecific binding. Here, we show how to measure dsDNA looping kinetics without ligase by detecting transient DNA loop formation by FRET (Fluorescence Resonance Energy Transfer). dsDNA molecules are constructed using a simple PCR-based protocol with a FRET pair and a biotin linker. The looping probability density known as the J factor is extracted from the looping rate and the annealing rate between two disconnected sticky ends. By testing two dsDNAs with different intrinsic curvatures, we show that the J factor is sensitive to the intrinsic shape of the dsDNA.
Studying DNA Looping by Single-Molecule FRET
Le, Tung T.; Kim, Harold D.
2014-01-01
Bending of double-stranded DNA (dsDNA) is associated with many important biological processes such as DNA-protein recognition and DNA packaging into nucleosomes. Thermodynamics of dsDNA bending has been studied by a method called cyclization which relies on DNA ligase to covalently join short sticky ends of a dsDNA. However, ligation efficiency can be affected by many factors that are not related to dsDNA looping such as the DNA structure surrounding the joined sticky ends, and ligase can also affect the apparent looping rate through mechanisms such as nonspecific binding. Here, we show how to measure dsDNA looping kinetics without ligase by detecting transient DNA loop formation by FRET (Fluorescence Resonance Energy Transfer). dsDNA molecules are constructed using a simple PCR-based protocol with a FRET pair and a biotin linker. The looping probability density known as the J factor is extracted from the looping rate and the annealing rate between two disconnected sticky ends. By testing two dsDNAs with different intrinsic curvatures, we show that the J factor is sensitive to the intrinsic shape of the dsDNA. PMID:24998459
García-Benítez, Francisco; Gaillard, Hélène; Aguilera, Andrés
2017-10-10
During transcription, the mRNA may hybridize with DNA, forming an R loop, which can be physiological or pathological, constituting in this case a source of genomic instability. To understand the mechanism by which eukaryotic cells prevent harmful R loops, we used human activation-induced cytidine deaminase (AID) to identify genes preventing R loops. A screening of 400 Saccharomyces cerevisiae selected strains deleted in nuclear genes revealed that cells lacking the Mlp1/2 nuclear basket proteins show AID-dependent genomic instability and replication defects that were suppressed by RNase H1 overexpression. Importantly, DNA-RNA hybrids accumulated at transcribed genes in mlp1/2 mutants, indicating that Mlp1/2 prevents R loops. Consistent with the Mlp1/2 role in gene gating to nuclear pores, artificial tethering to the nuclear periphery of a transcribed locus suppressed R loops in mlp1 ∆ cells. The same occurred in THO-deficient hpr1 ∆ cells. We conclude that proximity of transcribed chromatin to the nuclear pore helps restrain pathological R loops.
Telomere biology of trypanosomatids: beginning to answer some questions.
Lira, Cristina B B; Giardini, Miriam A; Neto, Jair L Siqueira; Conte, Fábio F; Cano, Maria Isabel N
2007-08-01
Studies of telomere structure and maintenance in trypanosomatids have provided insights into the evolutionary origin and conservation of some telomeric components shared by trypanosomes and vertebrates. For example, trypanosomatid telomeres are maintained by telomerase and consist of the canonical TTAGGG repeats, which in Trypanosoma brucei can form telomeric loops (t-loops). However, the telomeric chromatin of trypanosomatids is composed of organism-specific proteins and other proteins that share little sequence similarity with their vertebrate counterparts. Because telomere maintenance mechanisms are essential for genome stability, we propose that the particular features shown by the trypanosome telomeric chromatin hold the key for the design of antiparasitic drugs.
Lee, Joon-Hwa; Jucker, Fiona; Pardi, Arthur
2008-01-01
The 2′-fluoro/2′-O-methyl modified RNA aptamer Macugen is a potent inhibitor of the angiogenic regulatory protein, VEGF165. Macugen binds with high affinity to the heparin-binding domain (HBD) of VEGF165. Hydrogen exchange rates of the imino protons were measured for free Macugen and Macugen bound to the HBD or full-length VEGF to better understand the mechanism for high affinity binding. The results here show that the internal loop and hairpin loop of Macugen are highly dynamic in the free state and are greatly stabilized and/or protected from solvent upon protein binding. PMID:18485899
NASA Technical Reports Server (NTRS)
Blumberg, Seth; Gajraj, Arivalagan; Pennington, Matthew W.; Meiners, Jens-Christian
2005-01-01
Tethered particle microscopy is a powerful tool to study the dynamics of DNA molecules and DNA-protein complexes in single-molecule experiments. We demonstrate that stroboscopic total internal reflection microscopy can be used to characterize the three-dimensional spatiotemporal motion of DNA-tethered particles. By calculating characteristic measures such as symmetry and time constants of the motion, well-formed tethers can be distinguished from defective ones for which the motion is dominated by aberrant surface effects. This improves the reliability of measurements on tether dynamics. For instance, in observations of protein-mediated DNA looping, loop formation is distinguished from adsorption and other nonspecific events.
Papenfort, Kai; Espinosa, Elena; Casadesús, Josep; Vogel, Jörg
2015-08-25
Horizontal gene transfer via plasmid conjugation is a major driving force in microbial evolution but constitutes a complex process that requires synchronization with the physiological state of the host bacteria. Although several host transcription factors are known to regulate plasmid-borne transfer genes, RNA-based regulatory circuits for host-plasmid communication remain unknown. We describe a posttranscriptional mechanism whereby the Hfq-dependent small RNA, RprA, inhibits transfer of pSLT, the virulence plasmid of Salmonella enterica. RprA employs two separate seed-pairing domains to activate the mRNAs of both the sigma-factor σ(S) and the RicI protein, a previously uncharacterized membrane protein here shown to inhibit conjugation. Transcription of ricI requires σ(S) and, together, RprA and σ(S) orchestrate a coherent feedforward loop with AND-gate logic to tightly control the activation of RicI synthesis. RicI interacts with the conjugation apparatus protein TraV and limits plasmid transfer under membrane-damaging conditions. To our knowledge, this study reports the first small RNA-controlled feedforward loop relying on posttranscriptional activation of two independent targets and an unexpected role of the conserved RprA small RNA in controlling extrachromosomal DNA transfer.
Francisco-Velilla, Rosario; Fernandez-Chamorro, Javier; Dotu, Ivan; Martinez-Salas, Encarnación
2018-05-16
Gemin5 is a predominantly cytoplasmic protein that downregulates translation, beyond controlling snRNPs assembly. The C-terminal region harbors a non-canonical RNA-binding site consisting of two domains, RBS1 and RBS2, which differ in RNA-binding capacity and the ability to modulate translation. Here, we show that these domains recognize distinct RNA targets in living cells. Interestingly, the most abundant and exclusive RNA target of the RBS1 domain was Gemin5 mRNA. Biochemical and functional characterization of this target demonstrated that RBS1 polypeptide physically interacts with a predicted thermodynamically stable stem-loop upregulating mRNA translation, thereby counteracting the negative effect of Gemin5 protein on global protein synthesis. In support of this result, destabilization of the stem-loop impairs the stimulatory effect on translation. Moreover, RBS1 stimulates translation of the endogenous Gemin5 mRNA. Hence, although the RBS1 domain downregulates global translation, it positively enhances translation of RNA targets carrying thermodynamically stable secondary structure motifs. This mechanism allows fine-tuning the availability of Gemin5 to play its multiple roles in gene expression control.
Topology of the membrane protein LamB by epitope tagging and a comparison with the X-ray model.
Newton, S M; Klebba, P E; Michel, V; Hofnung, M; Charbit, A
1996-06-01
We previously developed a genetic approach to study, with a single antibody, the topology of the outer membrane protein LamB, an Escherichia coli porin with specificity towards maltodextrins and a receptor for bacteriophage lambda. Our initial procedure consisted of inserting at random the same reporter epitope (the C3 neutralization epitope from poliovirus) into permissive sites of LamB (i.e., sites which tolerate insertions without deleterious effects on the protein activities or the cell). A specific monoclonal antibody was then used to examine the position of the inserted epitope with respect to the protein and the membrane. In the present work, we set up a site-directed procedure to insert the C3 epitope at new sites in order to distinguish between two-dimensional folding models. This allowed us to identify two new surface loops of LamB and to predict another periplasmic exposed region. The results obtained by random and directed epitope tagging are analyzed in light of the recently published X-ray structure of the LamB protein. Study of 23 hybrid LamB-C3 proteins led to the direct identification of five of the nine external loops (L4, L5, L6, L7, and L9) and led to the prediction of four periplasmic loops (I1, I4, I5, and I8) of LamB. Nine of the hybrid proteins did not lead to topological conclusions, and none led to the wrong predictions or conclusions. The comparison indicates that parts of models based on secondary structure predictions alone are not reliable and points to the importance of experimental data in the establishment of outer membrane protein topological models. The advantages and limitations of genetic foreign epitope insertion for the study of integral membrane proteins are discussed.
Fong, Keith S K; Hufnagel, Robert B; Khadka, Vedbar S; Corley, Michael J; Maunakea, Alika K; Fogelgren, Ben; Ahmed, Zubair M; Lozanoff, Scott
2016-05-01
Genetic variations affecting neural tube closure along the head result in malformations of the face and brain. Neural tube defects (NTDs) are among the most common birth defects in humans. We previously reported a mouse mutant called tuft that arose spontaneously in our wild-type 3H1 colony. Adult tuft mice present midline craniofacial malformations with or without an anterior cephalocele. In addition, affected embryos presented neural tube closure defects resulting in insufficient closure of the anterior neuropore or exencephaly. Here, through whole-genome sequencing, we identified a nonsense mutation in the Tet1 gene, which encodes a methylcytosine dioxygenase (TET1), co-segregating with the tuft phenotype. This mutation resulted in premature termination that disrupts the catalytic domain that is involved in the demethylation of cytosine. We detected a significant loss of TET enzyme activity in the heads of tuft embryos that were homozygous for the mutation and had NTDs. RNA-Seq transcriptome analysis indicated that multiple gene pathways associated with neural tube closure were dysregulated in tuft embryo heads. Among them, the expressions of Cecr2, Epha7 and Grhl2 were significantly reduced in some embryos presenting neural tube closure defects, whereas one or more components of the non-canonical WNT signaling pathway mediating planar cell polarity and convergent extension were affected in others. We further show that the recombinant mutant TET1 protein was capable of entering the nucleus and affected the expression of endogenous Grhl2 in IMCD-3 (inner medullary collecting duct) cells. These results indicate that TET1 is an epigenetic determinant for regulating genes that are crucial to closure of the anterior neural tube and its mutation has implications to craniofacial development, as presented by the tuft mouse. © 2016. Published by The Company of Biologists Ltd.
Cheng, Feng; Yang, Jianhua; Bocola, Marco; Schwaneberg, Ulrich; Zhu, Leilei
2018-05-05
Protein engineering of enzyme loop regions is an effective strategy to improve enzymatic properties. Previous studies that aimed to boost the activity of PpADI (an arginine deiminase from Pseudomonas plecoglossicida) under physiological conditions yielded several significantly improved variants that harbor substitutions predominantly located in active-site-decorating loops. A multi-site saturation mutagenesis at four positions in loop 1 (37, 38, 42, and 43) and three positions in loop 4 (402, 403, and 404) was performed to elucidate the importance of these loops in modulating the substrate affinity of PpADI. The identified "best" variant (M6-L1-4) showed a decreased S 0.5 ('K M ') of 0.48 mM compared with the parent M6 (0.81 mM). Subsequently, a rational design to recombine beneficial substitutions within loops 1 and 4 yielded variant L6 with a substantially decreased S 0.5 value (0.17 mM). A comprehensive simulation analysis resulted in a conclusion that high loop flexibility (especially the gating residue Arg400) is beneficial for substrate affinity due to less efficient blocking of the active site. Copyright © 2018 Elsevier Inc. All rights reserved.
Extrusion without a motor: a new take on the loop extrusion model of genome organization
Johnson, J.; Michieletto, D.; Morozov, A. N.; Nicodemi, M.; Cook, P. R.; Marenduzzo, D.
2018-01-01
ABSTRACT Chromatin loop extrusion is a popular model for the formation of CTCF loops and topological domains. Recent HiC data have revealed a strong bias in favour of a particular arrangement of the CTCF binding motifs that stabilize loops, and extrusion is the only model to date which can explain this. However, the model requires a motor to generate the loops, and although cohesin is a strong candidate for the extruding factor, a suitable motor protein (or a motor activity in cohesin itself) has yet to be found. Here we explore a new hypothesis: that there is no motor, and thermal motion within the nucleus drives extrusion. Using theoretical modelling and computer simulations we ask whether such diffusive extrusion could feasibly generate loops. Our simulations uncover an interesting ratchet effect (where an osmotic pressure promotes loop growth), and suggest, by comparison to recent in vitro and in vivo measurements, that diffusive extrusion can in principle generate loops of the size observed in the data. Extra View on : C. A. Brackley, J. Johnson, D. Michieletto, A. N. Morozov, M. Nicodemi, P. R. Cook, and D. Marenduzzo “Non-equilibrium chromosome looping via molecular slip-links”, Physical Review Letters 119 138101 (2017) PMID:29300120
He, Jingjing; Zhang, Ruo-Xi; Peng, Kai; Tagliavia, Cecilia; Li, Siwen; Xue, Shaowu; Liu, Amy; Hu, Honghong; Zhang, Jingbo; Hubbard, Katharine E; Held, Katrin; McAinsh, Martin R; Gray, Julie E; Kudla, Jörg; Schroeder, Julian I; Liang, Yun-Kuan; Hetherington, Alistair M
2018-04-01
We conducted an infrared thermal imaging-based genetic screen to identify Arabidopsis mutants displaying aberrant stomatal behavior in response to elevated concentrations of CO 2 . This approach resulted in the isolation of a novel allele of the Arabidopsis BIG locus (At3g02260) that we have called CO 2 insensitive 1 (cis1). BIG mutants are compromised in elevated CO 2 -induced stomatal closure and bicarbonate activation of S-type anion channel currents. In contrast with the wild-type, they fail to exhibit reductions in stomatal density and index when grown in elevated CO 2 . However, like the wild-type, BIG mutants display inhibition of stomatal opening when exposed to elevated CO 2 . BIG mutants also display wild-type stomatal aperture responses to the closure-inducing stimulus abscisic acid (ABA). Our results indicate that BIG is a signaling component involved in the elevated CO 2 -mediated control of stomatal development. In the control of stomatal aperture by CO 2 , BIG is only required in elevated CO 2 -induced closure and not in the inhibition of stomatal opening by this environmental signal. These data show that, at the molecular level, the CO 2 -mediated inhibition of opening and promotion of stomatal closure signaling pathways are separable and BIG represents a distinguishing element in these two CO 2 -mediated responses. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Casali, Monica; Banta, Scott; Zambonelli, Carlo; Megeed, Zaki; Yarmush, Martin L
2008-06-01
Environmentally responsive proteins and peptides are increasingly finding utility in various engineered systems due to their ability to respond to the presentation of external stimuli. A classic example of this behavior is the influenza hemagglutinin (HA) fusion protein. At neutral pH, HA exists in a non-fusogenic state, but upon exposure to low pH, the conformation of the structure changes to expose a fusogenic peptide. During this structural change, massive rearrangements occur in a subunit of HA (HA2). Crystallography data has shown that a loop of 28 amino acids (residues 54-81) undergoes a dramatic transition from a random coil to an alpha-helix. This segment connects to two flanking helical regions (short and long) to form a long, continuous helix. Here, we report the results of site-directed mutagenesis study on LOOP-36 to further understand the mechanism of this important stimulus-responsive peptide. The conformational transition of a bacterially expressed LOOP-36 was found to be less dramatic than has been previously reported. The systematic mutation of glutamate and histidine residues in the peptide to glutamines (glutamine scanning) did not impact the conformational behavior of the peptide, but the substitution of the glycine residue at position 22 with alanine resulted in significant pH-responsive behavior. Therefore this mutant stimulus-responsive peptide may be more valuable for future protein engineering and bionanotechnology efforts.
Cortines, Juliana R; Lima, Luís Mauricio T R; Mohana-Borges, Ronaldo; Millen, Thiago de A; Gaspar, Luciane Pinto; Lanman, Jason K; Prevelige, Peter E; Silva, Jerson L
2015-05-01
During infection, human immunodeficiency virus type 1 (HIV-1) interacts with the cellular host factor cyclophilin A (CypA) through residues 85-93 of the N-terminal domain of HIV-1's capsid protein (CA). The role of the CA:CypA interaction is still unclear. Previous studies showed that a CypA-binding loop mutant, Δ87-97, has increased ability to assemble in vitro. We used this mutant to infer whether the CypA-binding region has an overall effect on CA stability, as measured by pressure and chemical perturbation. We built a SAXS-based envelope model for the dimer of both WT and Δ87-97. A new conformational arrangement of the dimers is described, showing the structural plasticity that CA can adopt. In protein folding studies, the deletion of the loop drastically reduces CA stability, as assayed by high hydrostatic pressure and urea. We hypothesize that the deletion promotes a rearrangement of helix 4, which may enhance the heterotypic interaction between the N- and C-terminal domains of CA dimers. In addition, we propose that the cyclophilin-binding loop may modulate capsid assembly during infection, either in the cytoplasm or near the nucleus by binding to the nuclear protein Nup385. Copyright © 2014. Published by Elsevier B.V.
Sztuba-Solinska, Joanna; Diaz, Larissa; Kumar, Mia R; Kolb, Gaëlle; Wiley, Michael R; Jozwick, Lucas; Kuhn, Jens H; Palacios, Gustavo; Radoshitzky, Sheli R; J Le Grice, Stuart F; Johnson, Reed F
2016-11-16
Ebola virus (EBOV) is a single-stranded negative-sense RNA virus belonging to the Filoviridae family. The leader and trailer non-coding regions of the EBOV genome likely regulate its transcription, replication, and progeny genome packaging. We investigated the cis-acting RNA signals involved in RNA-RNA and RNA-protein interactions that regulate replication of eGFP-encoding EBOV minigenomic RNA and identified heat shock cognate protein family A (HSC70) member 8 (HSPA8) as an EBOV trailer-interacting host protein. Mutational analysis of the trailer HSPA8 binding motif revealed that this interaction is essential for EBOV minigenome replication. Selective 2'-hydroxyl acylation analyzed by primer extension analysis of the secondary structure of the EBOV minigenomic RNA indicates formation of a small stem-loop composed of the HSPA8 motif, a 3' stem-loop (nucleotides 1868-1890) that is similar to a previously identified structure in the replicative intermediate (RI) RNA and a panhandle domain involving a trailer-to-leader interaction. Results of minigenome assays and an EBOV reverse genetic system rescue support a role for both the panhandle domain and HSPA8 motif 1 in virus replication. Published by Oxford University Press on behalf of Nucleic Acids Research 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Patton, J R; Habets, W; van Venrooij, W J; Pederson, T
1989-01-01
The U1 small nuclear ribonucleoprotein particle (U1 snRNP), a cofactor in pre-mRNA splicing, contains three proteins, termed 70K, A, and C, that are not present in the other spliceosome-associated snRNPs. We studied the binding of the A and C proteins to U1 RNA, using a U1 snRNP reconstitution system and an antibody-induced nuclease protection technique. Antibodies that reacted with the A and C proteins induced nuclease protection of the first two stem-loops of U1 RNA in reconstituted U1 snRNP. Detailed analysis of the antibody-induced nuclease protection patterns indicated the existence of relatively long-range protein-protein interactions in the U1 snRNP, with the 5' end of U1 RNA and its associated specific proteins interacting with proteins bound to the Sm domain near the 3' end. UV cross-linking experiments in conjunction with an A-protein-specific antibody demonstrated that the A protein bound directly to the U1 RNA rather than assembling in the U1 snRNP exclusively via protein-protein interactions. This conclusion was supported by additional experiments revealing that the A protein could bind to U1 RNA in the absence of bound 70K and Sm core proteins. Images PMID:2529425
Neu, Ursula; Wang, Jianbo; Macejak, Dennis; Garcea, Robert L; Stehle, Thilo
2011-07-01
The Karolinska Institutet and Washington University polyomaviruses (KIPyV and WUPyV, respectively) are recently discovered human viruses that infect the respiratory tract. Although they have not yet been linked to disease, they are prevalent in populations worldwide, with initial infection occurring in early childhood. Polyomavirus capsids consist of 72 pentamers of the major capsid protein viral protein 1 (VP1), which determines antigenicity and receptor specificity. The WUPyV and KIPyV VP1 proteins are distant in evolution from VP1 proteins of known structure such as simian virus 40 or murine polyomavirus. We present here the crystal structures of unassembled recombinant WUPyV and KIPyV VP1 pentamers at resolutions of 2.9 and 2.55 Å, respectively. The WUPyV and KIPyV VP1 core structures fold into the same β-sandwich that is a hallmark of all polyomavirus VP1 proteins crystallized to date. However, differences in sequence translate into profoundly different surface loop structures in KIPyV and WUPyV VP1 proteins. Such loop structures have not been observed for other polyomaviruses, and they provide initial clues about the possible interactions of these viruses with cell surface receptors.
Li de La Sierra-Gallay, Ines; Collinet, Bruno; Graille, Marc; Quevillon-Cheruel, Sophie; Liger, Dominique; Minard, Philippe; Blondeau, Karine; Henckes, Gilles; Aufrère, Robert; Leulliot, Nicolas; Zhou, Cong-Zhao; Sorel, Isabelle; Ferrer, Jean-Luc; Poupon, Anne; Janin, Joël; van Tilbeurgh, Herman
2004-03-01
The protein product of the YGR205w gene of Saccharomyces cerevisiae was targeted as part of our yeast structural genomics project. YGR205w codes for a small (290 amino acids) protein with unknown structure and function. The only recognizable sequence feature is the presence of a Walker A motif (P loop) indicating a possible nucleotide binding/converting function. We determined the three-dimensional crystal structure of Se-methionine substituted protein using multiple anomalous diffraction. The structure revealed a well known mononucleotide fold and strong resemblance to the structure of small metabolite phosphorylating enzymes such as pantothenate and phosphoribulo kinase. Biochemical experiments show that YGR205w binds specifically ATP and, less tightly, ADP. The structure also revealed the presence of two bound sulphate ions, occupying opposite niches in a canyon that corresponds to the active site of the protein. One sulphate is bound to the P-loop in a position that corresponds to the position of beta-phosphate in mononucleotide protein ATP complex, suggesting the protein is indeed a kinase. The nature of the phosphate accepting substrate remains to be determined. Copyright 2004 Wiley-Liss, Inc.
Rizzo, Alessandro A.; Suhanovsky, Margaret M.; Baker, Matthew L.; Fraser, LaTasha C.R.; Jones, Lisa M.; Rempel, Don L.; Gross, Michael L.; Chiu, Wah; Alexandrescu, Andrei T.; Teschke, Carolyn M.
2014-01-01
SUMMARY Some capsid proteins built on the ubiquitous HK97-fold have accessory domains that impart specific functions. Bacteriophage P22 coat protein has a unique inserted I-domain. Two prior I-domain models from sub-nanometer cryoEM reconstructions differed substantially. Therefore, the NMR structure of the I-domain was determined, which also was used to improve cryoEM models of coat protein. The I-domain has an anti-parallel 6-stranded β-barrel fold, previously not observed in HK97-fold accessory domains. The D-loop, which is dynamic both in the isolated I-domain and intact monomeric coat protein, forms stabilizing salt bridges between adjacent capsomers in procapsids. A newly described S-loop is important for capsid size determination, likely through intra-subunit interactions. Ten of eighteen coat protein temperature-sensitive-folding substitutions are in the I-domain, indicating its importance in folding and stability. Several are found on a positively charged face of the β-barrel that anchors the I-domain to a negatively charged surface of the coat protein HK97-core. PMID:24836025
Rizzo, Alessandro A; Suhanovsky, Margaret M; Baker, Matthew L; Fraser, LaTasha C R; Jones, Lisa M; Rempel, Don L; Gross, Michael L; Chiu, Wah; Alexandrescu, Andrei T; Teschke, Carolyn M
2014-06-10
Some capsid proteins built on the ubiquitous HK97-fold have accessory domains imparting specific functions. Bacteriophage P22 coat protein has a unique insertion domain (I-domain). Two prior I-domain models from subnanometer cryoelectron microscopy (cryoEM) reconstructions differed substantially. Therefore, the I-domain's nuclear magnetic resonance structure was determined and also used to improve cryoEM models of coat protein. The I-domain has an antiparallel six-stranded β-barrel fold, not previously observed in HK97-fold accessory domains. The D-loop, which is dynamic in the isolated I-domain and intact monomeric coat protein, forms stabilizing salt bridges between adjacent capsomers in procapsids. The S-loop is important for capsid size determination, likely through intrasubunit interactions. Ten of 18 coat protein temperature-sensitive-folding substitutions are in the I-domain, indicating its importance in folding and stability. Several are found on a positively charged face of the β-barrel that anchors the I-domain to a negatively charged surface of the coat protein HK97-core. Copyright © 2014 Elsevier Ltd. All rights reserved.
Laplante, Caroline
2011-01-01
During Drosophila melanogaster dorsal closure, lateral sheets of embryonic epidermis assemble an actomyosin cable at their leading edge and migrate dorsally over the amnioserosa, converging at the dorsal midline. We show that disappearance of the homophilic cell adhesion molecule Echinoid (Ed) from the amnioserosa just before dorsal closure eliminates homophilic interactions with the adjacent dorsal-most epidermal (DME) cells, which comprise the leading edge. The resulting planar polarized distribution of Ed in the DME cells is essential for the localized accumulation of actin regulators and for actomyosin cable formation at the leading edge and for the polarized localization of the scaffolding protein Bazooka/PAR-3. DME cells with uniform Ed fail to assemble a cable and protrude dorsally, suggesting that the cable restricts dorsal migration. The planar polarized distribution of Ed in the DME cells thus provides a spatial cue that polarizes the DME cell actin cytoskeleton, defining the epidermal leading edge and establishing its contractile properties. PMID:21263031
Trabanino, Rene J.; Hall, Spencer E.; Vaidehi, Nagarajan; Floriano, Wely B.; Kam, Victor W. T.; Goddard, William A.
2004-01-01
G-protein-coupled receptors (GPCRs) are involved in cell communication processes and with mediating such senses as vision, smell, taste, and pain. They constitute a prominent superfamily of drug targets, but an atomic-level structure is available for only one GPCR, bovine rhodopsin, making it difficult to use structure-based methods to design receptor-specific drugs. We have developed the MembStruk first principles computational method for predicting the three-dimensional structure of GPCRs. In this article we validate the MembStruk procedure by comparing its predictions with the high-resolution crystal structure of bovine rhodopsin. The crystal structure of bovine rhodopsin has the second extracellular (EC-II) loop closed over the transmembrane regions by making a disulfide linkage between Cys-110 and Cys-187, but we speculate that opening this loop may play a role in the activation process of the receptor through the cysteine linkage with helix 3. Consequently we predicted two structures for bovine rhodopsin from the primary sequence (with no input from the crystal structure)—one with the EC-II loop closed as in the crystal structure, and the other with the EC-II loop open. The MembStruk-predicted structure of bovine rhodopsin with the closed EC-II loop deviates from the crystal by 2.84 Å coordinate root mean-square (CRMS) in the transmembrane region main-chain atoms. The predicted three-dimensional structures for other GPCRs can be validated only by predicting binding sites and energies for various ligands. For such predictions we developed the HierDock first principles computational method. We validate HierDock by predicting the binding site of 11-cis-retinal in the crystal structure of bovine rhodopsin. Scanning the whole protein without using any prior knowledge of the binding site, we find that the best scoring conformation in rhodopsin is 1.1 Å CRMS from the crystal structure for the ligand atoms. This predicted conformation has the carbonyl O only 2.82 Å from the N of Lys-296. Making this Schiff base bond and minimizing leads to a final conformation only 0.62 Å CRMS from the crystal structure. We also used HierDock to predict the binding site of 11-cis-retinal in the MembStruk-predicted structure of bovine rhodopsin (closed loop). Scanning the whole protein structure leads to a structure in which the carbonyl O is only 2.85 Å from the N of Lys-296. Making this Schiff base bond and minimizing leads to a final conformation only 2.92 Å CRMS from the crystal structure. The good agreement of the ab initio-predicted protein structures and ligand binding site with experiment validates the use of the MembStruk and HierDock first principles' methods. Since these methods are generic and applicable to any GPCR, they should be useful in predicting the structures of other GPCRs and the binding site of ligands to these proteins. PMID:15041637
Structure-function analysis of the auxilin J-domain reveals an extended Hsc70 interaction interface.
Jiang, Jianwen; Taylor, Alexander B; Prasad, Kondury; Ishikawa-Brush, Yumiko; Hart, P John; Lafer, Eileen M; Sousa, Rui
2003-05-20
J-domains are widespread protein interaction modules involved in recruiting and stimulating the activity of Hsp70 family chaperones. We have determined the crystal structure of the J-domain of auxilin, a protein which is involved in uncoating clathrin-coated vesicles. Comparison to the known structures of J-domains from four other proteins reveals that the auxilin J-domain is the most divergent of all J-domain structures described to date. In addition to the canonical J-domain features described previously, the auxilin J-domain contains an extra N-terminal helix and a long loop inserted between helices I and II. The latter loop extends the positively charged surface which forms the Hsc70 binding site, and is shown by directed mutagenesis and surface plasmon resonance to contain side chains important for binding to Hsc70.
Generic waste management requirements for a controlled ecological life support system /CELSS/
NASA Technical Reports Server (NTRS)
Hoshizaki, T.; Hansen, B. D., III
1981-01-01
Regenerative life support systems for future space missions will require closure of the waste-food loop. Each mission application will generate specific requirements for the waste management system. However, there are generic input and output requirements that can be identified when a probable scenario is chosen. This paper discusses the generic requirements when higher plants are chosen as the primary food source. Attention is focused on the quality and quantity of nutrients necessary for culturing higher plants. The types of wastes to be processed are also discussed. In addition, requirements generated by growing plants on three different substrates are presented. This work suggests that the mineral composition of waste materials may require minimal adjustment to satisfy the plant requirements.
Mechanism of Disruption of the Amt-GlnK Complex by PII-Mediated Sensing of 2-Oxoglutarate
Maier, Sarah; Schleberger, Paula; Lü, Wei; Wacker, Tobias; Pflüger, Tobias; Litz, Claudia; Andrade, Susana L. A.
2011-01-01
GlnK proteins regulate the active uptake of ammonium by Amt transport proteins by inserting their regulatory T-loops into the transport channels of the Amt trimer and physically blocking substrate passage. They sense the cellular nitrogen status through 2-oxoglutarate, and the energy level of the cell by binding both ATP and ADP with different affinities. The hyperthermophilic euryarchaeon Archaeoglobus fulgidus possesses three Amt proteins, each encoded in an operon with a GlnK ortholog. One of these proteins, GlnK2 was recently found to be incapable of binding 2-OG, and in order to understand the implications of this finding we conducted a detailed structural and functional analysis of a second GlnK protein from A. fulgidus, GlnK3. Contrary to Af-GlnK2 this protein was able to bind both ATP/2-OG and ADP to yield inactive and functional states, respectively. Due to the thermostable nature of the protein we could observe the exact positioning of the notoriously flexible T-loops and explain the binding behavior of GlnK proteins to their interaction partner, the Amt proteins. A thermodynamic analysis of these binding events using microcalorimetry evaluated by microstate modeling revealed significant differences in binding cooperativity compared to other characterized PII proteins, underlining the diversity and adaptability of this class of regulatory signaling proteins. PMID:22039461
Dutta, Saheb; Kundu, Soumya; Saha, Amrita; Nandi, Nilashis
2018-03-01
Aminoacylation reaction is the first step of protein biosynthesis. The catalytic reorganization at the active site of aminoacyl tRNA synthetases (aaRSs) is driven by the loop motions. There remain lacunae of understanding concerning the catalytic loop dynamics in aaRSs. We analyzed the functional loop dynamics in seryl tRNA synthetase from Methanopyrus kandleri ( mk SerRS) and histidyl tRNA synthetases from Thermus thermophilus ( tt HisRS), respectively, using molecular dynamics. Results confirm that the motif 2 loop and other active site loops are flexible spots within the catalytic domain. Catalytic residues of the loops form a network of interaction with the substrates to form a reactive state. The loops undergo transitions between closed state and open state and the relaxation of the constituent residues occurs in femtosecond to nanosecond time scale. Order parameters are higher for constituent catalytic residues which form a specific network of interaction with the substrates to form a reactive state compared to the Gly residues within the loop. The development of interaction is supported from mutation studies where the catalytic domain with mutated loop exhibits unfavorable binding energy with the substrates. During the open-close motion of the loops, the catalytic residues make relaxation by ultrafast librational motion as well as fast diffusive motion and subsequently relax rather slowly via slower diffusive motion. The Gly residues act as a hinge to facilitate the loop closing and opening by their faster relaxation behavior. The role of bound water is analyzed by comparing implicit solvent-based and explicit solvent-based simulations. Loops fail to form catalytically competent geometry in absence of water. The present result, for the first time reveals the nature of the active site loop dynamics in aaRS and their influence on catalysis.
Jakubczak, John L.; Rollence, Michele L.; Stewart, David A.; Jafari, Jonathon D.; Von Seggern, Dan J.; Nemerow, Glen R.; Stevenson, Susan C.; Hallenbeck, Paul L.
2001-01-01
A major limitation of adenovirus type 5 (Ad5)-based gene therapy, the inability to target therapeutic genes to selected cell types, is attributable to the natural tropism of the virus for the widely expressed coxsackievirus-adenovirus receptor (CAR) protein. Modifications of the Ad5 fiber knob domain have been shown to alter the tropism of the virus. We have developed a novel system to rapidly evaluate the function of modified fiber proteins in their most relevant context, the adenoviral capsid. This transient transfection/infection system combines transfection of cells with plasmids that express high levels of the modified fiber protein and infection with Ad5.βgal.ΔF, an E1-, E3-, and fiber-deleted adenoviral vector encoding β-galactosidase. We have used this system to test the adenoviral transduction efficiency mediated by a panel of fiber protein mutants that were proposed to influence CAR interaction. A series of amino acid modifications were incorporated via mutagenesis into the fiber expression plasmid, and the resulting fiber proteins were subsequently incorporated onto adenoviral particles. Mutations located in the fiber knob AB and CD loops demonstrated the greatest reduction in fiber-mediated gene transfer in HeLa cells. We also observed effects on transduction efficiency with mutations in the FG loop, indicating that the binding site may extend to the adjacent monomer in the fiber trimer and in the HI loop. These studies support the concept that modification of the fiber knob domain to diminish or ablate CAR interaction should result in a detargeted adenoviral vector that can be combined simultaneously with novel ligands for the development of a systemically administered, targeted adenoviral vector. PMID:11222722
Diestel, Uschi; Resch, Marcus; Meinhardt, Kathrin; Weiler, Sigrid; Hellmann, Tina V.; Mueller, Thomas D.; Nickel, Joachim; Eichler, Jutta; Muller, Yves A.
2013-01-01
The zona pellucida (ZP) domain is present in extracellular proteins such as the zona pellucida proteins and tectorins and participates in the formation of polymeric protein networks. However, the ZP domain also occurs in the cytokine signaling co-receptor transforming growth factor β (TGF-β) receptor type 3 (TGFR-3, also known as betaglycan) where it contributes to cytokine ligand recognition. Currently it is unclear how the ZP domain architecture enables this dual functionality. Here, we identify a novel major TGF-β-binding site in the FG loop of the C-terminal subdomain of the murine TGFR-3 ZP domain (ZP-C) using protein crystallography, limited proteolysis experiments, surface plasmon resonance measurements and synthetic peptides. In the murine 2.7 Å crystal structure that we are presenting here, the FG-loop is disordered, however, well-ordered in a recently reported homologous rat ZP-C structure. Surprisingly, the adjacent external hydrophobic patch (EHP) segment is registered differently in the rat and murine structures suggesting that this segment only loosely associates with the remaining ZP-C fold. Such a flexible and temporarily-modulated association of the EHP segment with the ZP domain has been proposed to control the polymerization of ZP domain-containing proteins. Our findings suggest that this flexibility also extends to the ZP domain of TGFR-3 and might facilitate co-receptor ligand interaction and presentation via the adjacent FG-loop. This hints that a similar C-terminal region of the ZP domain architecture possibly regulates both the polymerization of extracellular matrix proteins and cytokine ligand recognition of TGFR-3. PMID:23826237
Mahita, Jarjapu; Sowdhamini, Ramanathan
2018-04-01
The Toll-like receptors (TLRs) are critical components of the innate immune system due to their ability to detect conserved pathogen-associated molecular patterns, present in bacteria, viruses, and other microorganisms. Ligand detection by TLRs leads to a signaling cascade, mediated by interactions among TIR domains present in the receptors, the bridging adaptors and sorting adaptors. The BB loop is a highly conserved region present in the TIR domain and is crucial for mediating interactions among TIR domain-containing proteins. Mutations in the BB loop of the Toll-like receptors, such as the A795P mutation in TLR3 and the P712H mutation (Lps d mutation) in TLR4, have been reported to disrupt or alter downstream signaling. While the phenotypic effect of these mutations is known, the underlying effect of these mutations on the structure, dynamics and interactions with other TIR domain-containing proteins is not well understood. Here, we have attempted to investigate the effect of the BB loop mutations on the dimer form of TLRs, using TLR2 and TLR3 as case studies. Our results based on molecular dynamics simulations, protein-protein interaction analyses and protein structure network analyses highlight significant differences between the dimer interfaces of the wild-type and mutant forms and provide a logical reasoning for the effect of these mutations on adaptor binding to TLRs. Furthermore, it also leads us to propose a hypothesis for the differential requirement of signaling and bridging adaptors by TLRs. This could aid in further understanding of the mechanisms governing such signaling pathways. © 2018 Wiley Periodicals, Inc.
Benešová, Monika; Holá, Dana; Fischer, Lukáš; Jedelský, Petr L.; Hnilička, František; Wilhelmová, Naďa; Rothová, Olga; Kočová, Marie; Procházková, Dagmar; Honnerová, Jana; Fridrichová, Lenka; Hniličková, Helena
2012-01-01
Understanding the response of a crop to drought is the first step in the breeding of tolerant genotypes. In our study, two maize (Zea mays L.) genotypes with contrasting sensitivity to dehydration were subjected to moderate drought conditions. The subsequent analysis of their physiological parameters revealed a decreased stomatal conductance accompanied by a slighter decrease in the relative water content in the sensitive genotype. In contrast, the tolerant genotype maintained open stomata and active photosynthesis, even under dehydration conditions. Drought-induced changes in the leaf proteome were analyzed by two independent approaches, 2D gel electrophoresis and iTRAQ analysis, which provided compatible but only partially overlapping results. Drought caused the up-regulation of protective and stress-related proteins (mainly chaperones and dehydrins) in both genotypes. The differences in the levels of various detoxification proteins corresponded well with the observed changes in the activities of antioxidant enzymes. The number and levels of up-regulated protective proteins were generally lower in the sensitive genotype, implying a reduced level of proteosynthesis, which was also indicated by specific changes in the components of the translation machinery. Based on these results, we propose that the hypersensitive early stomatal closure in the sensitive genotype leads to the inhibition of photosynthesis and, subsequently, to a less efficient synthesis of the protective/detoxification proteins that are associated with drought tolerance. PMID:22719860
Benešová, Monika; Holá, Dana; Fischer, Lukáš; Jedelský, Petr L; Hnilička, František; Wilhelmová, Naďa; Rothová, Olga; Kočová, Marie; Procházková, Dagmar; Honnerová, Jana; Fridrichová, Lenka; Hniličková, Helena
2012-01-01
Understanding the response of a crop to drought is the first step in the breeding of tolerant genotypes. In our study, two maize (Zea mays L.) genotypes with contrasting sensitivity to dehydration were subjected to moderate drought conditions. The subsequent analysis of their physiological parameters revealed a decreased stomatal conductance accompanied by a slighter decrease in the relative water content in the sensitive genotype. In contrast, the tolerant genotype maintained open stomata and active photosynthesis, even under dehydration conditions. Drought-induced changes in the leaf proteome were analyzed by two independent approaches, 2D gel electrophoresis and iTRAQ analysis, which provided compatible but only partially overlapping results. Drought caused the up-regulation of protective and stress-related proteins (mainly chaperones and dehydrins) in both genotypes. The differences in the levels of various detoxification proteins corresponded well with the observed changes in the activities of antioxidant enzymes. The number and levels of up-regulated protective proteins were generally lower in the sensitive genotype, implying a reduced level of proteosynthesis, which was also indicated by specific changes in the components of the translation machinery. Based on these results, we propose that the hypersensitive early stomatal closure in the sensitive genotype leads to the inhibition of photosynthesis and, subsequently, to a less efficient synthesis of the protective/detoxification proteins that are associated with drought tolerance.
Key issues in the computational simulation of GPCR function: representation of loop domains
NASA Astrophysics Data System (ADS)
Mehler, E. L.; Periole, X.; Hassan, S. A.; Weinstein, H.
2002-11-01
Some key concerns raised by molecular modeling and computational simulation of functional mechanisms for membrane proteins are discussed and illustrated for members of the family of G protein coupled receptors (GPCRs). Of particular importance are issues related to the modeling and computational treatment of loop regions. These are demonstrated here with results from different levels of computational simulations applied to the structures of rhodopsin and a model of the 5-HT2A serotonin receptor, 5-HT2AR. First, comparative Molecular Dynamics (MD) simulations are reported for rhodopsin in vacuum and embedded in an explicit representation of the membrane and water environment. It is shown that in spite of a partial accounting of solvent screening effects by neutralization of charged side chains, vacuum MD simulations can lead to severe distortions of the loop structures. The primary source of the distortion appears to be formation of artifactual H-bonds, as has been repeatedly observed in vacuum simulations. To address such shortcomings, a recently proposed approach that has been developed for calculating the structure of segments that connect elements of secondary structure with known coordinates, is applied to 5-HT2AR to obtain an initial representation of the loops connecting the transmembrane (TM) helices. The approach consists of a simulated annealing combined with biased scaled collective variables Monte Carlo technique, and is applied to loops connecting the TM segments on both the extra-cellular and the cytoplasmic sides of the receptor. Although this initial calculation treats the loops as independent structural entities, the final structure exhibits a number of interloop interactions that may have functional significance. Finally, it is shown here that in the case where a given loop from two different GPCRs (here rhodopsin and 5-HT2AR) has approximately the same length and some degree of sequence identity, the fold adopted by the loops can be similar. Thus, in such special cases homology modeling might be used to obtain initial structures of these loops. Notably, however, all other loops in these two receptors appear to be very different in sequence and structure, so that their conformations can be found reliably only by ab initio, energy based methods and not by homology modeling.
Crystal structure of the coat protein from the GA bacteriophage: model of the unassembled dimer.
Ni, C. Z.; White, C. A.; Mitchell, R. S.; Wickersham, J.; Kodandapani, R.; Peabody, D. S.; Ely, K. R.
1996-01-01
There are four groups of RNA bacteriophages with distinct antigenic and physicochemical properties due to differences in surface residues of the viral coat proteins. Coat proteins also play a role as translational repressor during the viral life cycle, binding an RNA hairpin within the genome. In this study, the first crystal structure of the coat protein from a Group II phage GA is reported and compared to the Group I MS2 coat protein. The structure of the GA dimer was determined at 2.8 A resolution (R-factor = 0.20). The overall folding pattern of the coat protein is similar to the Group I MS2 coat protein in the intact virus (Golmohammadi R, Valegård K, Fridborg K, Liljas L. 1993, J Mol Biol 234:620-639) or as an unassembled dimer (Ni Cz, Syed R, Kodandapani R. Wickersham J, Peabody DS, Ely KR, 1995, Structure 3:255-263). The structures differ in the FG loops and in the first turn of the alpha A helix. GA and MS2 coat proteins differ in sequence at 49 of 129 amino acid residues. Sequence differences that contribute to distinct immunological and physical properties of the proteins are found at the surface of the intact virus in the AB and FG loops. There are six differences in potential RNA contact residues within the RNA-binding site located in an antiparallel beta-sheet across the dimer interface. Three differences involve residues in the center of this concave site: Lys/Arg 83, Ser/Asn 87, and Asp/Glu 89. Residue 87 was shown by molecular genetics to define RNA-binding specificity by GA or MS2 coat protein (Lim F. Spingola M, Peabody DS, 1994, J Biol Chem 269:9006-9010). This sequence difference reflects recognition of the nucleotide at position -5 in the unpaired loop of the translational operators bound by these coat proteins. In GA, the nucleotide at this position is a purine whereas in MS2, it is a pyrimidine. PMID:8976557
Crystal structure of the coat protein from the GA bacteriophage: model of the unassembled dimer.
Ni, C Z; White, C A; Mitchell, R S; Wickersham, J; Kodandapani, R; Peabody, D S; Ely, K R
1996-12-01
There are four groups of RNA bacteriophages with distinct antigenic and physicochemical properties due to differences in surface residues of the viral coat proteins. Coat proteins also play a role as translational repressor during the viral life cycle, binding an RNA hairpin within the genome. In this study, the first crystal structure of the coat protein from a Group II phage GA is reported and compared to the Group I MS2 coat protein. The structure of the GA dimer was determined at 2.8 A resolution (R-factor = 0.20). The overall folding pattern of the coat protein is similar to the Group I MS2 coat protein in the intact virus (Golmohammadi R, Valegård K, Fridborg K, Liljas L. 1993, J Mol Biol 234:620-639) or as an unassembled dimer (Ni Cz, Syed R, Kodandapani R. Wickersham J, Peabody DS, Ely KR, 1995, Structure 3:255-263). The structures differ in the FG loops and in the first turn of the alpha A helix. GA and MS2 coat proteins differ in sequence at 49 of 129 amino acid residues. Sequence differences that contribute to distinct immunological and physical properties of the proteins are found at the surface of the intact virus in the AB and FG loops. There are six differences in potential RNA contact residues within the RNA-binding site located in an antiparallel beta-sheet across the dimer interface. Three differences involve residues in the center of this concave site: Lys/Arg 83, Ser/Asn 87, and Asp/Glu 89. Residue 87 was shown by molecular genetics to define RNA-binding specificity by GA or MS2 coat protein (Lim F. Spingola M, Peabody DS, 1994, J Biol Chem 269:9006-9010). This sequence difference reflects recognition of the nucleotide at position -5 in the unpaired loop of the translational operators bound by these coat proteins. In GA, the nucleotide at this position is a purine whereas in MS2, it is a pyrimidine.
In situ structures of the genome and genome-delivery apparatus in a single-stranded RNA virus.
Dai, Xinghong; Li, Zhihai; Lai, Mason; Shu, Sara; Du, Yushen; Zhou, Z Hong; Sun, Ren
2017-01-05
Packaging of the genome into a protein capsid and its subsequent delivery into a host cell are two fundamental processes in the life cycle of a virus. Unlike double-stranded DNA viruses, which pump their genome into a preformed capsid, single-stranded RNA (ssRNA) viruses, such as bacteriophage MS2, co-assemble their capsid with the genome; however, the structural basis of this co-assembly is poorly understood. MS2 infects Escherichia coli via the host 'sex pilus' (F-pilus); it was the first fully sequenced organism and is a model system for studies of translational gene regulation, RNA-protein interactions, and RNA virus assembly. Its positive-sense ssRNA genome of 3,569 bases is enclosed in a capsid with one maturation protein monomer and 89 coat protein dimers arranged in a T = 3 icosahedral lattice. The maturation protein is responsible for attaching the virus to an F-pilus and delivering the viral genome into the host during infection, but how the genome is organized and delivered is not known. Here we describe the MS2 structure at 3.6 Å resolution, determined by electron-counting cryo-electron microscopy (cryoEM) and asymmetric reconstruction. We traced approximately 80% of the backbone of the viral genome, built atomic models for 16 RNA stem-loops, and identified three conserved motifs of RNA-coat protein interactions among 15 of these stem-loops with diverse sequences. The stem-loop at the 3' end of the genome interacts extensively with the maturation protein, which, with just a six-helix bundle and a six-stranded β-sheet, forms a genome-delivery apparatus and joins 89 coat protein dimers to form a capsid. This atomic description of genome-capsid interactions in a spherical ssRNA virus provides insight into genome delivery via the host sex pilus and mechanisms underlying ssRNA-capsid co-assembly, and inspires speculation about the links between nucleoprotein complexes and the origins of viruses.
Ahern, Chris A; Vallejo, Paola; Mortenson, Lindsay; Coronado, Roberto
2001-01-01
Background The L-type Ca2+ channel formed by the dihydropyridine receptor (DHPR) of skeletal muscle senses the membrane voltage and opens the ryanodine receptor (RyR1). This channel-to-channel coupling is essential for Ca2+ signaling but poorly understood. We characterized a single-base frame-shift mutant of α1S, the pore subunit of the DHPR, that has the unusual ability to function voltage sensor for excitation-contraction (EC) coupling by virtue of expressing two complementary hemi-Ca2+ channel fragments. Results Functional analysis of cDNA transfected dysgenic myotubes lacking α1S were carried out using voltage-clamp, confocal Ca2+ indicator fluoresence, epitope immunofluorescence and immunoblots of expressed proteins. The frame-shift mutant (fs-α1S) expressed the N-terminal half of α1S (M1 to L670) and the C-terminal half starting at M701 separately. The C-terminal fragment was generated by an unexpected restart of translation of the fs-α1S message at M701 and was eliminated by a M701I mutation. Protein-protein complementation between the two fragments produced recovery of skeletal-type EC coupling but not L-type Ca2+ current. Discussion A premature stop codon in the II-III loop may not necessarily cause a loss of DHPR function due to a restart of translation within the II-III loop, presumably by a mechanism involving leaky ribosomal scanning. In these cases, function is recovered by expression of complementary protein fragments from the same cDNA. DHPR-RyR1 interactions can be achieved via protein-protein complementation between hemi-Ca2+ channel proteins, hence an intact II-III loop is not essential for coupling the DHPR voltage sensor to the opening of RyR1 channel. PMID:11806762
Mohamad Yusoff, Mohamad Ariff; Abdul Hamid, Azzmer Azzar; Mohammad Bunori, Noraslinda; Abd Halim, Khairul Bariyyah
2018-06-01
Ebola virus is a lipid-enveloped filamentous virus that affects human and non-human primates and consists of several types of protein: nucleoprotein, VP30, VP35, L protein, VP40, VP24, and transmembrane glycoprotein. Among the Ebola virus proteins, its matrix protein VP40 is abundantly expressed during infection and plays a number of critical roles in oligomerization, budding and egress from the host cell. VP40 exists predominantly as a monomer at the inner leaflet of the plasma membrane, and has been suggested to interact with negatively charged lipids such as phosphatidylinositol 4,5-bisphosphate (PIP 2 ) and phosphatidylserine (PS) via its cationic patch. The hydrophobic loop at the C-terminal domain has also been shown to be important in the interaction between the VP40 and the membrane. However, details of the molecular mechanisms underpinning their interactions are not fully understood. This study aimed at investigating the effects of mutation in the cationic patch and hydrophobic loop on the interaction between the VP40 monomer and the plasma membrane using coarse-grained molecular dynamics simulation (CGMD). Our simulations revealed that the interaction between VP40 and the plasma membrane is mediated by the cationic patch residues. This led to the clustering of PIP 2 around the protein in the inner leaflet as a result of interactions between some cationic residues including R52, K127, K221, K224, K225, K256, K270, K274, K275 and K279 and PIP 2 lipids via electrostatic interactions. Mutation of the cationic patch or hydrophobic loop amino acids caused the protein to bind at the inner leaflet of the plasma membrane in a different orientation, where no significant clustering of PIP 2 was observed around the mutated protein. This study provides basic understanding of the interaction of the VP40 monomer and its mutants with the plasma membrane. Copyright © 2018 Elsevier Inc. All rights reserved.
Huang, Jianyun; Chen, Shuai; Zhang, J. Jillian; Huang, Xin-Yun
2013-01-01
G protein-coupled receptors (GPCRs) mediate transmembrane signaling. Before ligand binding, GPCRs exist in a basal state. Crystal structures of several GPCRs bound with antagonists or agonists have been solved. However, the crystal structure of the ligand-free basal state of a GPCR, the starting point of GPCR activation and function, has not been determined. Here we report the X-ray crystal structure of the first ligand-free basal state of a GPCR in a lipid membrane-like environment. Oligomeric turkey β1-adrenergic receptors display two alternating dimer interfaces. One interface involves the transmembrane domain (TM) 1, TM2, the C-terminal H8, and the extracellular loop 1. The other interface engages residues from TM4, TM5, the intracellular loop 2 and the extracellular loop 2. Structural comparisons show that this ligand-free state is in an inactive conformation. This provides the structural information regarding GPCR dimerization and oligomerization. PMID:23435379