Tsukui, Shu; Kimura, Fumiko; Kusaka, Katsuhiro; Baba, Seiki; Mizuno, Nobuhiro; Kimura, Tsunehisa
2016-07-01
Protein microcrystals magnetically aligned in D2O hydrogels were subjected to neutron diffraction measurements, and reflections were observed for the first time to a resolution of 3.4 Å from lysozyme microcrystals (∼10 × 10 × 50 µm). This result demonstrated the possibility that magnetically oriented microcrystals consolidated in D2O gels may provide a promising means to obtain single-crystal neutron diffraction from proteins that do not crystallize at the sizes required for neutron diffraction structure determination. In addition, lysozyme microcrystals aligned in H2O hydrogels allowed structure determination at a resolution of 1.76 Å at room temperature by X-ray diffraction. The use of gels has advantages since the microcrystals are measured under hydrated conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, Thomas D.; Johns Hopkins University School of Medicine, Baltimore, MD 21205; Lyubimov, Artem Y.
A highly X-ray-transparent, silicon nitride-based device has been designed and fabricated to harvest protein microcrystals for high-resolution X-ray diffraction data collection using microfocus beamlines and XFELs. Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming themore » challenges intrinsic to microcrystal analysis is to pair so-called ‘fixed-target’ sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.« less
Serial femtosecond X-ray diffraction of enveloped virus microcrystals
Lawrence, Robert M.; Conrad, Chelsie E.; Zatsepin, Nadia A.; ...
2015-08-20
Serial femtosecond crystallography (SFX) using X-ray free-electron lasers has produced high-resolution, room temperature, time-resolved protein structures. We report preliminary SFX of Sindbis virus, an enveloped icosahedral RNA virus with ~700 Å diameter. Microcrystals delivered in viscous agarose medium diffracted to ~40 Å resolution. Small-angle diffuse X-ray scattering overlaid Bragg peaks and analysis suggests this results from molecular transforms of individual particles. Viral proteins undergo structural changes during entry and infection, which could, in principle, be studied with SFX. This is a pertinent step toward determining room temperature structures from virus microcrystals that may enable time-resolved studies of enveloped viruses.
The collection of MicroED data for macromolecular crystallography.
Shi, Dan; Nannenga, Brent L; de la Cruz, M Jason; Liu, Jinyang; Sawtelle, Steven; Calero, Guillermo; Reyes, Francis E; Hattne, Johan; Gonen, Tamir
2016-05-01
The formation of large, well-ordered crystals for crystallographic experiments remains a crucial bottleneck to the structural understanding of many important biological systems. To help alleviate this problem in crystallography, we have developed the MicroED method for the collection of electron diffraction data from 3D microcrystals and nanocrystals of radiation-sensitive biological material. In this approach, liquid solutions containing protein microcrystals are deposited on carbon-coated electron microscopy grids and are vitrified by plunging them into liquid ethane. MicroED data are collected for each selected crystal using cryo-electron microscopy, in which the crystal is diffracted using very few electrons as the stage is continuously rotated. This protocol gives advice on how to identify microcrystals by light microscopy or by negative-stain electron microscopy in samples obtained from standard protein crystallization experiments. The protocol also includes information about custom-designed equipment for controlling crystal rotation and software for recording experimental parameters in diffraction image metadata. Identifying microcrystals, preparing samples and setting up the microscope for diffraction data collection take approximately half an hour for each step. Screening microcrystals for quality diffraction takes roughly an hour, and the collection of a single data set is ∼10 min in duration. Complete data sets and resulting high-resolution structures can be obtained from a single crystal or by merging data from multiple crystals.
Cherezov, Vadim; Hanson, Michael A.; Griffith, Mark T.; Hilgart, Mark C.; Sanishvili, Ruslan; Nagarajan, Venugopalan; Stepanov, Sergey; Fischetti, Robert F.; Kuhn, Peter; Stevens, Raymond C.
2009-01-01
Crystallization of human membrane proteins in lipidic cubic phase often results in very small but highly ordered crystals. Advent of the sub-10 µm minibeam at the APS GM/CA CAT has enabled the collection of high quality diffraction data from such microcrystals. Herein we describe the challenges and solutions related to growing, manipulating and collecting data from optically invisible microcrystals embedded in an opaque frozen in meso material. Of critical importance is the use of the intense and small synchrotron beam to raster through and locate the crystal sample in an efficient and reliable manner. The resulting diffraction patterns have a significant reduction in background, with strong intensity and improvement in diffraction resolution compared with larger beam sizes. Three high-resolution structures of human G protein-coupled receptors serve as evidence of the utility of these techniques that will likely be useful for future structural determination efforts. We anticipate that further innovations of the technologies applied to microcrystallography will enable the solving of structures of ever more challenging targets. PMID:19535414
Capture and X-ray diffraction studies of protein microcrystals in a microfluidic trap array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyubimov, Artem Y.; Stanford University, Stanford, CA 94305; Stanford University, Stanford, CA 94305
A microfluidic platform has been developed for the capture and X-ray analysis of protein microcrystals, affording a means to improve the efficiency of XFEL and synchrotron experiments. X-ray free-electron lasers (XFELs) promise to enable the collection of interpretable diffraction data from samples that are refractory to data collection at synchrotron sources. At present, however, more efficient sample-delivery methods that minimize the consumption of microcrystalline material are needed to allow the application of XFEL sources to a wide range of challenging structural targets of biological importance. Here, a microfluidic chip is presented in which microcrystals can be captured at fixed, addressablemore » points in a trap array from a small volume (<10 µl) of a pre-existing slurry grown off-chip. The device can be mounted on a standard goniostat for conducting diffraction experiments at room temperature without the need for flash-cooling. Proof-of-principle tests with a model system (hen egg-white lysozyme) demonstrated the high efficiency of the microfluidic approach for crystal harvesting, permitting the collection of sufficient data from only 265 single-crystal still images to permit determination and refinement of the structure of the protein. This work shows that microfluidic capture devices can be readily used to facilitate data collection from protein microcrystals grown in traditional laboratory formats, enabling analysis when cryopreservation is problematic or when only small numbers of crystals are available. Such microfluidic capture devices may also be useful for data collection at synchrotron sources.« less
A microcrystal selection technique in protein crystallization
NASA Astrophysics Data System (ADS)
Han, Qing; Lin, Sheng-Xiang
1996-10-01
The goal of protein crystallization is to obtain high quality single crystals for X-ray diffraction analysis. A new and easy technique was employed to control the number and quality of crystals by eliminating poor microcrystals after the spontaneous nucleation. The process was carried out with two samples: human 17β-hydroxysteroid dehydrogenase (17β-HSD) and hen egg white lysozyme. The present study suggests a useful method for the successful crystal growth of biomacromolecules.
Coughlan, H D; Darmanin, C; Kirkwood, H J; Phillips, N W; Hoxley, D; Clark, J N; Vine, D J; Hofmann, F; Harder, R J; Maxey, E; Abbey, B
2017-01-01
The proliferation of extremely intense synchrotron sources has enabled ever higher-resolution structures to be obtained using data collected from smaller and often more imperfect biological crystals (Helliwell, 1984). Synchrotron beamlines now exist that are capable of measuring data from single crystals that are just a few micrometres in size. This provides renewed motivation to study and understand the radiation damage behaviour of small protein crystals. Reciprocal-space mapping and Bragg coherent diffractive imaging experiments have been performed on cryo-cooled microcrystals of hen egg-white lysozyme as they undergo radiation damage. Several well established metrics, such as intensity-loss and lattice expansion, are applied to the diffraction data and the results are compared with several new metrics that can be extracted from the coherent imaging experiments. Individually some of these metrics are inconclusive. However, combining metrics, the results suggest that radiation damage behaviour in protein micro-crystals differs from that of larger protein crystals and may allow them to continue to diffract for longer. A possible mechanism to account for these observations is proposed.
Bragg coherent diffraction imaging and metrics for radiation damage in protein micro-crystallography
Coughlan, H. D.; Darmanin, C.; Kirkwood, H. J.; ...
2017-01-01
The proliferation of extremely intense synchrotron sources has enabled ever higher-resolution structures to be obtained using data collected from smaller and often more imperfect biological crystals. Synchrotron beamlines now exist that are capable of measuring data from single crystals that are just a few micrometres in size. This provides renewed motivation to study and understand the radiation damage behaviour of small protein crystals. Reciprocal-space mapping and Bragg coherent diffractive imaging experiments have been performed on cryo-cooled microcrystals of hen egg-white lysozyme as they undergo radiation damage. Several well established metrics, such as intensity-loss and lattice expansion, are applied to themore » diffraction data and the results are compared with several new metrics that can be extracted from the coherent imaging experiments. Individually some of these metrics are inconclusive. However, combining metrics, the results suggest that radiation damage behaviour in protein micro-crystals differs from that of larger protein crystals and may allow them to continue to diffract for longer. As a result, a possible mechanism to account for these observations is proposed.« less
Bragg coherent diffraction imaging and metrics for radiation damage in protein micro-crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coughlan, H. D.; Darmanin, C.; Kirkwood, H. J.
The proliferation of extremely intense synchrotron sources has enabled ever higher-resolution structures to be obtained using data collected from smaller and often more imperfect biological crystals. Synchrotron beamlines now exist that are capable of measuring data from single crystals that are just a few micrometres in size. This provides renewed motivation to study and understand the radiation damage behaviour of small protein crystals. Reciprocal-space mapping and Bragg coherent diffractive imaging experiments have been performed on cryo-cooled microcrystals of hen egg-white lysozyme as they undergo radiation damage. Several well established metrics, such as intensity-loss and lattice expansion, are applied to themore » diffraction data and the results are compared with several new metrics that can be extracted from the coherent imaging experiments. Individually some of these metrics are inconclusive. However, combining metrics, the results suggest that radiation damage behaviour in protein micro-crystals differs from that of larger protein crystals and may allow them to continue to diffract for longer. As a result, a possible mechanism to account for these observations is proposed.« less
Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.; ...
2015-08-11
Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessarymore » to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. In addition, the features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.
Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessarymore » to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. In addition, the features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.
Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary tomore » fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15µm) loaded into the chips yielded a complete, high-resolution (<1.6Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.« less
Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.; Vo, Huy; Uervirojnangkoorn, Monarin; Brunger, Axel T.; Berger, James M.
2015-01-01
Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called ‘fixed-target’ sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs. PMID:26457423
Capture and X-ray diffraction studies of protein microcrystals in a microfluidic trap array
Lyubimov, Artem Y.; Murray, Thomas D.; Koehl, Antoine; ...
2015-03-27
X-ray free-electron lasers (XFELs) promise to enable the collection of interpretable diffraction data from samples that are refractory to data collection at synchrotron sources. At present, however, more efficient sample-delivery methods that minimize the consumption of microcrystalline material are needed to allow the application of XFEL sources to a wide range of challenging structural targets of biological importance. Here, a microfluidic chip is presented in which microcrystals can be captured at fixed, addressable points in a trap array from a small volume (<10 µl) of a pre-existing slurry grown off-chip. The device can be mounted on a standard goniostat formore » conducting diffraction experiments at room temperature without the need for flash-cooling. Proof-of-principle tests with a model system (hen egg-white lysozyme) demonstrated the high efficiency of the microfluidic approach for crystal harvesting, permitting the collection of sufficient data from only 265 single-crystal still images to permit determination and refinement of the structure of the protein. This work shows that microfluidic capture devices can be readily used to facilitate data collection from protein microcrystals grown in traditional laboratory formats, enabling analysis when cryopreservation is problematic or when only small numbers of crystals are available. Such microfluidic capture devices may also be useful for data collection at synchrotron sources.« less
Capture and X-ray diffraction studies of protein microcrystals in a microfluidic trap array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyubimov, Artem Y.; Murray, Thomas D.; Koehl, Antoine
X-ray free-electron lasers (XFELs) promise to enable the collection of interpretable diffraction data from samples that are refractory to data collection at synchrotron sources. At present, however, more efficient sample-delivery methods that minimize the consumption of microcrystalline material are needed to allow the application of XFEL sources to a wide range of challenging structural targets of biological importance. Here, a microfluidic chip is presented in which microcrystals can be captured at fixed, addressable points in a trap array from a small volume (<10 µl) of a pre-existing slurry grown off-chip. The device can be mounted on a standard goniostat formore » conducting diffraction experiments at room temperature without the need for flash-cooling. Proof-of-principle tests with a model system (hen egg-white lysozyme) demonstrated the high efficiency of the microfluidic approach for crystal harvesting, permitting the collection of sufficient data from only 265 single-crystal still images to permit determination and refinement of the structure of the protein. This work shows that microfluidic capture devices can be readily used to facilitate data collection from protein microcrystals grown in traditional laboratory formats, enabling analysis when cryopreservation is problematic or when only small numbers of crystals are available. Such microfluidic capture devices may also be useful for data collection at synchrotron sources.« less
Barnes, Christopher O; Kovaleva, Elena G; Fu, Xiaofeng; Stevenson, Hilary P; Brewster, Aaron S; DePonte, Daniel P; Baxter, Elizabeth L; Cohen, Aina E; Calero, Guillermo
2016-07-15
Serial femtosecond crystallography (SFX) employing high-intensity X-ray free-electron laser (XFEL) sources has enabled structural studies on microcrystalline protein samples at non-cryogenic temperatures. However, the identification and optimization of conditions that produce well diffracting microcrystals remains an experimental challenge. Here, we report parallel SFX and transmission electron microscopy (TEM) experiments using fragmented microcrystals of wild type (WT) homoprotocatechuate 2,3-dioxygenase (HPCD) and an active site variant (H200Q). Despite identical crystallization conditions and morphology, as well as similar crystal size and density, the indexing efficiency of the diffraction data collected using the H200Q variant sample was over 7-fold higher compared to the diffraction results obtained using the WT sample. TEM analysis revealed an abundance of protein aggregates, crystal conglomerates and a smaller population of highly ordered lattices in the WT sample as compared to the H200Q variant sample. While not reported herein, the 1.75 Å resolution structure of the H200Q variant was determined from ∼16 min of beam time, demonstrating the utility of TEM analysis in evaluating sample monodispersity and lattice quality, parameters critical to the efficiency of SFX experiments. Copyright © 2016 Elsevier Inc. All rights reserved.
Ishchenko, Andrii; Cherezov, Vadim; Liu, Wei
2016-09-20
Membrane proteins (MPs) are essential components of cellular membranes and primary drug targets. Rational drug design relies on precise structural information, typically obtained by crystallography; however MPs are difficult to crystallize. Recent progress in MP structural determination has benefited greatly from the development of lipidic cubic phase (LCP) crystallization methods, which typically yield well-diffracting, but often small crystals that suffer from radiation damage during traditional crystallographic data collection at synchrotron sources. The development of new-generation X-ray free-electron laser (XFEL) sources that produce extremely bright femtosecond pulses has enabled room temperature data collection from microcrystals with no or negligible radiation damage. Our recent efforts in combining LCP technology with serial femtosecond crystallography (LCP-SFX) have resulted in high-resolution structures of several human G protein-coupled receptors, which represent a notoriously difficult target for structure determination. In the LCP-SFX technique, LCP is recruited as a matrix for both growth and delivery of MP microcrystals to the intersection of the injector stream with an XFEL beam for crystallographic data collection. It has been demonstrated that LCP-SFX can substantially improve the diffraction resolution when only sub-10 µm crystals are available, or when the use of smaller crystals at room temperature can overcome various problems associated with larger cryocooled crystals, such as accumulation of defects, high mosaicity and cryocooling artifacts. Future advancements in X-ray sources and detector technologies should make serial crystallography highly attractive and practicable for implementation not only at XFELs, but also at more accessible synchrotron beamlines. Here we present detailed visual protocols for the preparation, characterization and delivery of microcrystals in LCP for serial crystallography experiments. These protocols include methods for conducting crystallization experiments in syringes, detecting and characterizing the crystal samples, optimizing crystal density, loading microcrystal laden LCP into the injector device and delivering the sample to the beam for data collection.
Towards protein-crystal centering using second-harmonic generation (SHG) microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kissick, David J.; Dettmar, Christopher M.; Becker, Michael
2013-05-01
The potential of second-harmonic generation (SHG) microscopy for automated crystal centering to guide synchrotron X-ray diffraction of protein crystals has been explored. The potential of second-harmonic generation (SHG) microscopy for automated crystal centering to guide synchrotron X-ray diffraction of protein crystals was explored. These studies included (i) comparison of microcrystal positions in cryoloops as determined by SHG imaging and by X-ray diffraction rastering and (ii) X-ray structure determinations of selected proteins to investigate the potential for laser-induced damage from SHG imaging. In studies using β{sub 2} adrenergic receptor membrane-protein crystals prepared in lipidic mesophase, the crystal locations identified by SHGmore » images obtained in transmission mode were found to correlate well with the crystal locations identified by raster scanning using an X-ray minibeam. SHG imaging was found to provide about 2 µm spatial resolution and shorter image-acquisition times. The general insensitivity of SHG images to optical scatter enabled the reliable identification of microcrystals within opaque cryocooled lipidic mesophases that were not identified by conventional bright-field imaging. The potential impact of extended exposure of protein crystals to five times a typical imaging dose from an ultrafast laser source was also assessed. Measurements of myoglobin and thaumatin crystals resulted in no statistically significant differences between structures obtained from diffraction data acquired from exposed and unexposed regions of single crystals. Practical constraints for integrating SHG imaging into an active beamline for routine automated crystal centering are discussed.« less
Micro-beam Laue alignment of multi-reflection Bragg coherent diffraction imaging measurements
Hofmann, Felix; Phillips, Nicholas W.; Harder, Ross J.; ...
2017-08-08
Multi-reflection Bragg coherent diffraction imaging has the potential to allow three-dimensional (3D) resolved measurements of the full lattice strain tensor in specific micro-crystals. Until now such measurements were hampered by the need for laborious, time-intensive alignment procedures. Here, in this paper, a different approach is demonstrated, using micro-beam Laue X-ray diffraction to first determine the lattice orientation of the micro-crystal. This information is then used to rapidly align coherent diffraction measurements of three or more reflections from the crystal. Based on these, 3D strain and stress fields in the crystal are successfully determined. This approach is demonstrated on a focusedmore » ion beam milled micro-crystal from which six reflections could be measured. Since information from more than three independent reflections is available, the reliability of the phases retrieved from the coherent diffraction data can be assessed. Lastly, our results show that rapid, reliable 3D coherent diffraction measurements of the full lattice strain tensor in specific micro-crystals are now feasible and can be successfully carried out even in heavily distorted samples.« less
Micro-beam Laue alignment of multi-reflection Bragg coherent diffraction imaging measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hofmann, Felix; Phillips, Nicholas W.; Harder, Ross J.
Multi-reflection Bragg coherent diffraction imaging has the potential to allow three-dimensional (3D) resolved measurements of the full lattice strain tensor in specific micro-crystals. Until now such measurements were hampered by the need for laborious, time-intensive alignment procedures. Here, in this paper, a different approach is demonstrated, using micro-beam Laue X-ray diffraction to first determine the lattice orientation of the micro-crystal. This information is then used to rapidly align coherent diffraction measurements of three or more reflections from the crystal. Based on these, 3D strain and stress fields in the crystal are successfully determined. This approach is demonstrated on a focusedmore » ion beam milled micro-crystal from which six reflections could be measured. Since information from more than three independent reflections is available, the reliability of the phases retrieved from the coherent diffraction data can be assessed. Lastly, our results show that rapid, reliable 3D coherent diffraction measurements of the full lattice strain tensor in specific micro-crystals are now feasible and can be successfully carried out even in heavily distorted samples.« less
Micro-beam Laue alignment of multi-reflection Bragg coherent diffraction imaging measurements.
Hofmann, Felix; Phillips, Nicholas W; Harder, Ross J; Liu, Wenjun; Clark, Jesse N; Robinson, Ian K; Abbey, Brian
2017-09-01
Multi-reflection Bragg coherent diffraction imaging has the potential to allow three-dimensional (3D) resolved measurements of the full lattice strain tensor in specific micro-crystals. Until now such measurements were hampered by the need for laborious, time-intensive alignment procedures. Here a different approach is demonstrated, using micro-beam Laue X-ray diffraction to first determine the lattice orientation of the micro-crystal. This information is then used to rapidly align coherent diffraction measurements of three or more reflections from the crystal. Based on these, 3D strain and stress fields in the crystal are successfully determined. This approach is demonstrated on a focused ion beam milled micro-crystal from which six reflections could be measured. Since information from more than three independent reflections is available, the reliability of the phases retrieved from the coherent diffraction data can be assessed. Our results show that rapid, reliable 3D coherent diffraction measurements of the full lattice strain tensor in specific micro-crystals are now feasible and can be successfully carried out even in heavily distorted samples.
Micro-beam Laue Alignment of Multi-Reflection Bragg Coherent Diffraction Imaging Measurements
Hofmann, Felix; Phillips, Nicholas W.; Harder, Ross J.; Liu, Wenjun; Clark, Jesse N.; Robinson, Ian K.; Abbey, Brian
2017-01-01
Multi-reflection Bragg coherent diffraction imaging has the potential to allow 3D resolved measurements of the full lattice strain tensor in specific micro-crystals. Until now such measurements were hampered by the need for laborious, time-intensive alignment procedures. Here we demonstrate a different approach, using micro-beam Laue X-ray diffraction to first determine the lattice orientation of the micro-crystal. This information is then used to rapidly align coherent diffraction measurements of three or more reflections from the crystal. Based on these, 3D strain and stress fields in the crystal are successfully determined. This approach is demonstrated on a focussed ion beam milled micro-crystal from which six reflections could be measured. Since information from more than three independent reflections is available, the reliability of the phases retrieved from the coherent diffraction data can be assessed. Our results show that rapid, reliable 3D coherent diffraction measurements of the full lattice strain tensor in specific micro-crystals are now feasible and can be successfully carried out even in heavily distorted samples. PMID:28862628
Asymmetry in serial femtosecond crystallography data.
Sharma, Amit; Johansson, Linda; Dunevall, Elin; Wahlgren, Weixiao Y; Neutze, Richard; Katona, Gergely
2017-03-01
Serial crystallography is an increasingly important approach to protein crystallography that exploits both X-ray free-electron laser (XFEL) and synchrotron radiation. Serial crystallography recovers complete X-ray diffraction data by processing and merging diffraction images from thousands of randomly oriented non-uniform microcrystals, of which all observations are partial Bragg reflections. Random fluctuations in the XFEL pulse energy spectrum, variations in the size and shape of microcrystals, integrating over millions of weak partial observations and instabilities in the XFEL beam position lead to new types of experimental errors. The quality of Bragg intensity estimates deriving from serial crystallography is therefore contingent upon assumptions made while modeling these data. Here it is observed that serial femtosecond crystallography (SFX) Bragg reflections do not follow a unimodal Gaussian distribution and it is recommended that an idealized assumption of single Gaussian peak profiles be relaxed to incorporate apparent asymmetries when processing SFX data. The phenomenon is illustrated by re-analyzing data collected from microcrystals of the Blastochloris viridis photosynthetic reaction center and comparing these intensity observations with conventional synchrotron data. The results show that skewness in the SFX observations captures the essence of the Wilson plot and an empirical treatment is suggested that can help to separate the diffraction Bragg intensity from the background.
A novel inert crystal delivery medium for serial femtosecond crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conrad, Chelsie E.; Basu, Shibom; James, Daniel
Serial femtosecond crystallography (SFX) has opened a new era in crystallography by permitting nearly damage-free, room-temperature structure determination of challenging proteins such as membrane proteins. In SFX, femtosecond X-ray free-electron laser pulses produce diffraction snapshots from nanocrystals and microcrystals delivered in a liquid jet, which leads to high protein consumption. A slow-moving stream of agarose has been developed as a new crystal delivery medium for SFX. It has low background scattering, is compatible with both soluble and membrane proteins, and can deliver the protein crystals at a wide range of temperatures down to 4°C. Using this crystal-laden agarose stream, themore » structure of a multi-subunit complex, phycocyanin, was solved to 2.5 Å resolution using 300 µg of microcrystals embedded into the agarose medium post-crystallization. The agarose delivery method reduces protein consumption by at least 100-fold and has the potential to be used for a diverse population of proteins, including membrane protein complexes.« less
A novel inert crystal delivery medium for serial femtosecond crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conrad, Chelsie E.; Basu, Shibom; James, Daniel
Serial femtosecond crystallography (SFX) has opened a new era in crystallography by permitting nearly damage-free, room-temperature structure determination of challenging proteins such as membrane proteins. In SFX, femtosecond X-ray free-electron laser pulses produce diffraction snapshots from nanocrystals and microcrystals delivered in a liquid jet, which leads to high protein consumption. A slow-moving stream of agarose has been developed as a new crystal delivery medium for SFX. It has low background scattering, is compatible with both soluble and membrane proteins, and can deliver the protein crystals at a wide range of temperatures down to 4°C. Using this crystal-laden agarose stream, themore » structure of a multi-subunit complex, phycocyanin, was solved to 2.5Å resolution using 300µg of microcrystals embedded into the agarose medium post-crystallization. The agarose delivery method reduces protein consumption by at least 100-fold and has the potential to be used for a diverse population of proteins, including membrane protein complexes.« less
A novel inert crystal delivery medium for serial femtosecond crystallography
Conrad, Chelsie E.; Basu, Shibom; James, Daniel; ...
2015-06-30
Serial femtosecond crystallography (SFX) has opened a new era in crystallography by permitting nearly damage-free, room-temperature structure determination of challenging proteins such as membrane proteins. In SFX, femtosecond X-ray free-electron laser pulses produce diffraction snapshots from nanocrystals and microcrystals delivered in a liquid jet, which leads to high protein consumption. A slow-moving stream of agarose has been developed as a new crystal delivery medium for SFX. It has low background scattering, is compatible with both soluble and membrane proteins, and can deliver the protein crystals at a wide range of temperatures down to 4°C. Using this crystal-laden agarose stream, themore » structure of a multi-subunit complex, phycocyanin, was solved to 2.5 Å resolution using 300 µg of microcrystals embedded into the agarose medium post-crystallization. The agarose delivery method reduces protein consumption by at least 100-fold and has the potential to be used for a diverse population of proteins, including membrane protein complexes.« less
Single-drop optimization of protein crystallization.
Meyer, Arne; Dierks, Karsten; Hilterhaus, Dierk; Klupsch, Thomas; Mühlig, Peter; Kleesiek, Jens; Schöpflin, Robert; Einspahr, Howard; Hilgenfeld, Rolf; Betzel, Christian
2012-08-01
A completely new crystal-growth device has been developed that permits charting a course across the phase diagram to produce crystalline samples optimized for diffraction experiments. The utility of the device is demonstrated for the production of crystals for the traditional X-ray diffraction data-collection experiment, of microcrystals optimal for data-collection experiments at a modern microbeam insertion-device synchrotron beamline and of nanocrystals required for data collection on an X-ray laser beamline.
Lifetimes and spatio-temporal response of protein crystals in intense X-ray microbeams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warkentin, Matthew A.; Atakisi, Hakan; Hopkins, Jesse B.
Serial synchrotron-based crystallography using intense microfocused X-ray beams, fast-framing detectors and protein microcrystals held at 300 K promises to expand the range of accessible structural targets and to increase overall structure-pipeline throughputs. To explore the nature and consequences of X-ray radiation damage under microbeam illumination, the time-, dose- and temperature-dependent evolution of crystal diffraction have been measured with maximum dose rates of 50 MGy s −1 . At all temperatures and dose rates, the integrated diffraction intensity for a fixed crystal orientation shows non-exponential decays with dose. Non-exponential decays are a consequence of non-uniform illumination and the resulting spatial evolution of diffracted intensitymore » within the illuminated crystal volume. To quantify radiation-damage lifetimes and the damage state of diffracting crystal regions, a revised diffraction-weighted dose (DWD) is defined and it is shown that for Gaussian beams the DWD becomes nearly independent of actual dose at large doses. An apparent delayed onset of radiation damage seen in some intensity–dose curves is in fact a consequence of damage. Intensity fluctuations at high dose rates may arise from the impulsive release of gaseous damage products. Accounting for these effects, data collection at the highest dose rates increases crystal radiation lifetimes near 300 K (but not at 100 K) by a factor of ∼1.5–2 compared with those observed at conventional dose rates. Improved quantification and modeling of the complex spatio-temporal evolution of protein microcrystal diffraction in intense microbeams will enable more efficient data collection, and will be essential in improving the accuracy of structure factors and structural models.« less
Lifetimes and spatio-temporal response of protein crystals in intense X-ray microbeams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warkentin, Matthew A.; Atakisi, Hakan; Hopkins, Jesse B.
Serial synchrotron-based crystallography using intense microfocused X-ray beams, fast-framing detectors and protein microcrystals held at 300 K promises to expand the range of accessible structural targets and to increase overall structure-pipeline throughputs. To explore the nature and consequences of X-ray radiation damage under microbeam illumination, the time-, dose- and temperature-dependent evolution of crystal diffraction have been measured with maximum dose rates of 50 MGy s –1. At all temperatures and dose rates, the integrated diffraction intensity for a fixed crystal orientation shows non-exponential decays with dose. Non-exponential decays are a consequence of non-uniform illumination and the resulting spatial evolution ofmore » diffracted intensity within the illuminated crystal volume. To quantify radiation-damage lifetimes and the damage state of diffracting crystal regions, a revised diffraction-weighted dose (DWD) is defined and it is shown that for Gaussian beams the DWD becomes nearly independent of actual dose at large doses. An apparent delayed onset of radiation damage seen in some intensity–dose curves is in fact a consequence of damage. Intensity fluctuations at high dose rates may arise from the impulsive release of gaseous damage products. Accounting for these effects, data collection at the highest dose rates increases crystal radiation lifetimes near 300 K (but not at 100 K) by a factor of ~1.5–2 compared with those observed at conventional dose rates. As a result, improved quantification and modeling of the complex spatio-temporal evolution of protein microcrystal diffraction in intense microbeams will enable more efficient data collection, and will be essential in improving the accuracy of structure factors and structural models.« less
Lifetimes and spatio-temporal response of protein crystals in intense X-ray microbeams
Warkentin, Matthew A.; Atakisi, Hakan; Hopkins, Jesse B.; ...
2017-10-13
Serial synchrotron-based crystallography using intense microfocused X-ray beams, fast-framing detectors and protein microcrystals held at 300 K promises to expand the range of accessible structural targets and to increase overall structure-pipeline throughputs. To explore the nature and consequences of X-ray radiation damage under microbeam illumination, the time-, dose- and temperature-dependent evolution of crystal diffraction have been measured with maximum dose rates of 50 MGy s –1. At all temperatures and dose rates, the integrated diffraction intensity for a fixed crystal orientation shows non-exponential decays with dose. Non-exponential decays are a consequence of non-uniform illumination and the resulting spatial evolution ofmore » diffracted intensity within the illuminated crystal volume. To quantify radiation-damage lifetimes and the damage state of diffracting crystal regions, a revised diffraction-weighted dose (DWD) is defined and it is shown that for Gaussian beams the DWD becomes nearly independent of actual dose at large doses. An apparent delayed onset of radiation damage seen in some intensity–dose curves is in fact a consequence of damage. Intensity fluctuations at high dose rates may arise from the impulsive release of gaseous damage products. Accounting for these effects, data collection at the highest dose rates increases crystal radiation lifetimes near 300 K (but not at 100 K) by a factor of ~1.5–2 compared with those observed at conventional dose rates. As a result, improved quantification and modeling of the complex spatio-temporal evolution of protein microcrystal diffraction in intense microbeams will enable more efficient data collection, and will be essential in improving the accuracy of structure factors and structural models.« less
Lifetimes and spatio-temporal response of protein crystals in intense X-ray microbeams
Warkentin, Matthew A.; Atakisi, Hakan; Hopkins, Jesse B.; ...
2017-10-13
Serial synchrotron-based crystallography using intense microfocused X-ray beams, fast-framing detectors and protein microcrystals held at 300 K promises to expand the range of accessible structural targets and to increase overall structure-pipeline throughputs. To explore the nature and consequences of X-ray radiation damage under microbeam illumination, the time-, dose- and temperature-dependent evolution of crystal diffraction have been measured with maximum dose rates of 50 MGy s −1 . At all temperatures and dose rates, the integrated diffraction intensity for a fixed crystal orientation shows non-exponential decays with dose. Non-exponential decays are a consequence of non-uniform illumination and the resulting spatial evolution of diffracted intensitymore » within the illuminated crystal volume. To quantify radiation-damage lifetimes and the damage state of diffracting crystal regions, a revised diffraction-weighted dose (DWD) is defined and it is shown that for Gaussian beams the DWD becomes nearly independent of actual dose at large doses. An apparent delayed onset of radiation damage seen in some intensity–dose curves is in fact a consequence of damage. Intensity fluctuations at high dose rates may arise from the impulsive release of gaseous damage products. Accounting for these effects, data collection at the highest dose rates increases crystal radiation lifetimes near 300 K (but not at 100 K) by a factor of ∼1.5–2 compared with those observed at conventional dose rates. Improved quantification and modeling of the complex spatio-temporal evolution of protein microcrystal diffraction in intense microbeams will enable more efficient data collection, and will be essential in improving the accuracy of structure factors and structural models.« less
Batch crystallization of rhodopsin for structural dynamics using an X-ray free-electron laser
Wu, Wenting; Nogly, Przemyslaw; Rheinberger, Jan; ...
2015-06-27
Rhodopsin is a membrane protein from the G protein-coupled receptor family. Together with its ligand retinal, it forms the visual pigment responsible for night vision. In order to perform ultrafast dynamics studies, a time-resolved serial femtosecond crystallography method is required owing to the nonreversible activation of rhodopsin. In such an approach, microcrystals in suspension are delivered into the X-ray pulses of an X-ray free-electron laser (XFEL) after a precise photoactivation delay. Here in this study, a millilitre batch production of high-density microcrystals was developed by four methodical conversion steps starting from known vapour-diffusion crystallization protocols: (i) screening the low-salt crystallizationmore » conditions preferred for serial crystallography by vapour diffusion, (ii) optimization of batch crystallization, (iii) testing the crystal size and quality using second-harmonic generation (SHG) imaging and X-ray powder diffraction and (iv) production of millilitres of rhodopsin crystal suspension in batches for serial crystallography tests; these crystals diffracted at an XFEL at the Linac Coherent Light Source using a liquid-jet setup.« less
Nonlinear Optical Characterization of Membrane Protein Microcrystals and Nanocrystals.
Newman, Justin A; Simpson, Garth J
2016-01-01
Nonlinear optical methods such as second harmonic generation (SHG) and two-photon excited UV fluorescence (TPE-UVF) imaging are promising approaches to address bottlenecks in the membrane protein structure determination pipeline. The general principles of SHG and TPE-UVF are discussed here along with instrument design considerations. Comparisons to conventional methods in high throughput crystallization condition screening and crystal quality assessment prior to X-ray diffraction are also discussed.
Acoustically Mounted Microcrystals Yield High Resolution X-ray Structures†,‡
Soares, Alexei S.; Engel, Matthew A.; Stearns, Richard; Datwani, Sammy; Olechno, Joe; Ellson, Richard; Skinner, John M.; Allaire, Marc; Orville, Allen M.
2011-01-01
We demonstrate a general strategy to determine structures from showers of microcrystals. It uses acoustic droplet ejection (ADE) to transfer 2.5 nanoliter droplets from the surface of microcrystal slurries, through the air, and onto mounting micromesh pins. Individual microcrystals are located by raster-scanning a several micron X-ray beam across the cryocooled micromeshes. X-ray diffraction datasets merged from several micron-sized crystals are used to solve 1.8 Å resolution crystal structures. PMID:21542590
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soares, Alexei S.; Engel, Matthew A.; Stearns, Richard
We demonstrate a general strategy for determining structures from showers of microcrystals. It uses acoustic droplet ejection to transfer 2.5 nL droplets from the surface of microcrystal slurries, through the air, onto mounting micromesh pins. Individual microcrystals are located by raster-scanning a several-micrometer X-ray beam across the cryocooled micromeshes. X-ray diffraction data sets merged from several micrometer-sized crystals are used to determine 1.8 {angstrom} resolution crystal structures.
Coherent diffractive imaging of solid state reactions in zinc oxide crystals
NASA Astrophysics Data System (ADS)
Leake, Steven J.; Harder, Ross; Robinson, Ian K.
2011-11-01
We investigated the doping of zinc oxide (ZnO) microcrystals with iron and nickel via in situ coherent x-ray diffractive imaging (CXDI) in vacuum. Evaporated thin metal films were deposited onto the ZnO microcrystals. A single crystal was selected and tracked through annealing cycles. A solid state reaction was observed in both iron and nickel experiments using CXDI. A combination of the shrink wrap and guided hybrid-input-output phasing methods were applied to retrieve the electron density. The resolution was 33 nm (half order) determined via the phase retrieval transfer function. The resulting images are nevertheless sensitive to sub-angstrom displacements. The exterior of the microcrystal was found to degrade dramatically. The annealing of ZnO microcrystals coated with metal thin films proved an unsuitable doping method. In addition the observed defect structure of one crystal was attributed to the presence of an array of defects and was found to change upon annealing.
Fixed-target protein serial microcrystallography with an x-ray free electron laser
Hunter, Mark S.; Segelke, Brent; Messerschmidt, Marc; Williams, Garth J.; Zatsepin, Nadia A.; Barty, Anton; Benner, W. Henry; Carlson, David B.; Coleman, Matthew; Graf, Alexander; Hau-Riege, Stefan P.; Pardini, Tommaso; Seibert, M. Marvin; Evans, James; Boutet, Sébastien; Frank, Matthias
2014-01-01
We present results from experiments at the Linac Coherent Light Source (LCLS) demonstrating that serial femtosecond crystallography (SFX) can be performed to high resolution (~2.5 Å) using protein microcrystals deposited on an ultra-thin silicon nitride membrane and embedded in a preservation medium at room temperature. Data can be acquired at a high acquisition rate using x-ray free electron laser sources to overcome radiation damage, while sample consumption is dramatically reduced compared to flowing jet methods. We achieved a peak data acquisition rate of 10 Hz with a hit rate of ~38%, indicating that a complete data set could be acquired in about one 12-hour LCLS shift using the setup described here, or in even less time using hardware optimized for fixed target SFX. This demonstration opens the door to ultra low sample consumption SFX using the technique of diffraction-before-destruction on proteins that exist in only small quantities and/or do not produce the copious quantities of microcrystals required for flowing jet methods. PMID:25113598
High-Resolution Protein Structure Determination by Serial Femtosecond Crystallography
Boutet, Sébastien; Lomb, Lukas; Williams, Garth J.; Barends, Thomas R. M.; Aquila, Andrew; Doak, R. Bruce; Weierstall, Uwe; DePonte, Daniel P.; Steinbrener, Jan; Shoeman, Robert L.; Messerschmidt, Marc; Barty, Anton; White, Thomas A.; Kassemeyer, Stephan; Kirian, Richard A.; Seibert, M. Marvin; Montanez, Paul A.; Kenney, Chris; Herbst, Ryan; Hart, Philip; Pines, Jack; Haller, Gunther; Gruner, Sol M.; Philipp, Hugh T.; Tate, Mark W.; Hromalik, Marianne; Koerner, Lucas J.; van Bakel, Niels; Morse, John; Ghonsalves, Wilfred; Arnlund, David; Bogan, Michael J.; Caleman, Carl; Fromme, Raimund; Hampton, Christina Y.; Hunter, Mark S.; Johansson, Linda C.; Katona, Gergely; Kupitz, Christopher; Liang, Mengning; Martin, Andrew V.; Nass, Karol; Redecke, Lars; Stellato, Francesco; Timneanu, Nicusor; Wang, Dingjie; Zatsepin, Nadia A.; Schafer, Donald; Defever, James; Neutze, Richard; Fromme, Petra; Spence, John C. H.; Chapman, Henry N.; Schlichting, Ilme
2013-01-01
Structure determination of proteins and other macromolecules has historically required the growth of high-quality crystals sufficiently large to diffract x-rays efficiently while withstanding radiation damage. We applied serial femtosecond crystallography (SFX) using an x-ray free-electron laser (XFEL) to obtain high-resolution structural information from microcrystals (less than 1 micrometer by 1 micrometer by 3 micrometers) of the well-characterized model protein lysozyme. The agreement with synchrotron data demonstrates the immediate relevance of SFX for analyzing the structure of the large group of difficult-to-crystallize molecules. PMID:22653729
The Protein Micro-Crystallography Beamlines for Targeted Protein Research Program
NASA Astrophysics Data System (ADS)
Hirata, Kunio; Yamamoto, Masaki; Matsugaki, Naohiro; Wakatsuki, Soichi
In order to collect proper diffraction data from outstanding micro-crystals, a brand-new data collection system should be designed to provide high signal-to noise ratio in diffraction images. SPring-8 and KEK-PF are currently developing two micro-beam beamlines for Targeted Proteins Research Program by MEXT of Japan. The program aims to reveal the structure and function of proteins that are difficult to solve but have great importance in both academic research and industrial application. At SPring-8, a new 1-micron beam beamline for protein micro-crystallography, RIKEN Targeted Proteins Beamline (BL32XU), is developed. At KEK-PF a new low energy micro-beam beamline, BL-1A, is dedicated for SAD micro-crystallography. The two beamlines will start operation in the end of 2010. The present status of the research and development for protein micro-crystallography will be presented.
Ibrahim, Mohamed; Chatterjee, Ruchira; Hellmich, Julia; ...
2015-07-01
In photosynthesis, photosystem II (PSII) is the multi-subunit membrane protein complex that catalyzes photo-oxidation of water into dioxygen through the oxygen evolving complex (OEC). To understand the water oxidation reaction, it is important to get structural information about the transient and intermediate states of the OEC in the dimeric PSII core complex (dPSIIcc). In recent times, femtosecond X-ray pulses from the free electron laser (XFEL) are being used to obtain X-ray diffraction (XRD) data of dPSIIcc microcrystals at room temperature that are free of radiation damage. In our experiments at the XFEL, we used an electrospun liquid microjet setup thatmore » requires microcrystals less than 40 μm in size. In this study, we explored various microseeding techniques to get a high yield of monodisperse uniform-sized microcrystals. Monodisperse microcrystals of dPSIIcc of uniform size were a key to improve the stability of the jet and the quality of XRD data obtained at the XFEL. This was evident by an improvement of the quality of the datasets obtained, from 6.5 Å, using crystals grown without the micro seeding approach, to 4.5 Å using crystals generated with the new method.« less
Mukherjee, Joyeeta; Gupta, Munishwar N
2017-01-01
Protein-coated microcrystals (PCMC) are a high-activity preparation of enzymes for use in low-water media. The protocols for the preparation of PCMCs of Subtilisin Carlsberg and Candida antarctica lipase B (CAL B) are described. The combi-PCMC concept is useful both for cascade and non-cascade reactions. It can also be beneficial to combine two different specificities of a lipase when the substrate requires it. Combi-PCMC of CALB and Palatase used for the conversion of coffee oil present in spent coffee grounds to biodiesel is described. Cross-linked protein-coated microcrystals (CL-PCMC) in some cases can give better results than PCMC. Protocols for the CLPCMC of Subtilisin Carlsberg and Candida antarctica lipase B (CAL B) are described. A discussion of their applications is also provided.
Protein crystal structure from non-oriented, single-axis sparse X-ray data
Wierman, Jennifer L.; Lan, Ti-Yen; Tate, Mark W.; ...
2016-01-01
X-ray free-electron lasers (XFELs) have inspired the development of serial femtosecond crystallography (SFX) as a method to solve the structure of proteins. SFX datasets are collected from a sequence of protein microcrystals injected across ultrashort X-ray pulses. The idea behind SFX is that diffraction from the intense, ultrashort X-ray pulses leaves the crystal before the crystal is obliterated by the effects of the X-ray pulse. The success of SFX at XFELs has catalyzed interest in analogous experiments at synchrotron-radiation (SR) sources, where data are collected from many small crystals and the ultrashort pulses are replaced by exposure times that aremore » kept short enough to avoid significant crystal damage. The diffraction signal from each short exposure is so `sparse' in recorded photons that the process of recording the crystal intensity is itself a reconstruction problem. Using theEMCalgorithm, a successful reconstruction is demonstrated here in a sparsity regime where there are no Bragg peaks that conventionally would serve to determine the orientation of the crystal in each exposure. In this proof-of-principle experiment, a hen egg-white lysozyme (HEWL) crystal rotating about a single axis was illuminated by an X-ray beam from an X-ray generator to simulate the diffraction patterns of microcrystals from synchrotron radiation. Millions of these sparse frames, typically containing only ~200 photons per frame, were recorded using a fast-framing detector. It is shown that reconstruction of three-dimensional diffraction intensity is possible using theEMCalgorithm, even with these extremely sparse frames and without knowledge of the rotation angle. Further, the reconstructed intensity can be phased and refined to solve the protein structure using traditional crystallographic software. In conclusion, this suggests that synchrotron-based serial crystallography of micrometre-sized crystals can be practical with the aid of theEMCalgorithm even in cases where the data are sparse.« less
Protein crystal structure from non-oriented, single-axis sparse X-ray data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wierman, Jennifer L.; Lan, Ti-Yen; Tate, Mark W.
X-ray free-electron lasers (XFELs) have inspired the development of serial femtosecond crystallography (SFX) as a method to solve the structure of proteins. SFX datasets are collected from a sequence of protein microcrystals injected across ultrashort X-ray pulses. The idea behind SFX is that diffraction from the intense, ultrashort X-ray pulses leaves the crystal before the crystal is obliterated by the effects of the X-ray pulse. The success of SFX at XFELs has catalyzed interest in analogous experiments at synchrotron-radiation (SR) sources, where data are collected from many small crystals and the ultrashort pulses are replaced by exposure times that aremore » kept short enough to avoid significant crystal damage. The diffraction signal from each short exposure is so `sparse' in recorded photons that the process of recording the crystal intensity is itself a reconstruction problem. Using theEMCalgorithm, a successful reconstruction is demonstrated here in a sparsity regime where there are no Bragg peaks that conventionally would serve to determine the orientation of the crystal in each exposure. In this proof-of-principle experiment, a hen egg-white lysozyme (HEWL) crystal rotating about a single axis was illuminated by an X-ray beam from an X-ray generator to simulate the diffraction patterns of microcrystals from synchrotron radiation. Millions of these sparse frames, typically containing only ~200 photons per frame, were recorded using a fast-framing detector. It is shown that reconstruction of three-dimensional diffraction intensity is possible using theEMCalgorithm, even with these extremely sparse frames and without knowledge of the rotation angle. Further, the reconstructed intensity can be phased and refined to solve the protein structure using traditional crystallographic software. In conclusion, this suggests that synchrotron-based serial crystallography of micrometre-sized crystals can be practical with the aid of theEMCalgorithm even in cases where the data are sparse.« less
X-ray laser diffraction for structure determination of the rhodopsin-arrestin complex
NASA Astrophysics Data System (ADS)
Zhou, X. Edward; Gao, Xiang; Barty, Anton; Kang, Yanyong; He, Yuanzheng; Liu, Wei; Ishchenko, Andrii; White, Thomas A.; Yefanov, Oleksandr; Han, Gye Won; Xu, Qingping; de Waal, Parker W.; Suino-Powell, Kelly M.; Boutet, Sébastien; Williams, Garth J.; Wang, Meitian; Li, Dianfan; Caffrey, Martin; Chapman, Henry N.; Spence, John C. H.; Fromme, Petra; Weierstall, Uwe; Stevens, Raymond C.; Cherezov, Vadim; Melcher, Karsten; Xu, H. Eric
2016-04-01
Serial femtosecond X-ray crystallography (SFX) using an X-ray free electron laser (XFEL) is a recent advancement in structural biology for solving crystal structures of challenging membrane proteins, including G-protein coupled receptors (GPCRs), which often only produce microcrystals. An XFEL delivers highly intense X-ray pulses of femtosecond duration short enough to enable the collection of single diffraction images before significant radiation damage to crystals sets in. Here we report the deposition of the XFEL data and provide further details on crystallization, XFEL data collection and analysis, structure determination, and the validation of the structural model. The rhodopsin-arrestin crystal structure solved with SFX represents the first near-atomic resolution structure of a GPCR-arrestin complex, provides structural insights into understanding of arrestin-mediated GPCR signaling, and demonstrates the great potential of this SFX-XFEL technology for accelerating crystal structure determination of challenging proteins and protein complexes.
X-ray laser diffraction for structure determination of the rhodopsin-arrestin complex.
Zhou, X Edward; Gao, Xiang; Barty, Anton; Kang, Yanyong; He, Yuanzheng; Liu, Wei; Ishchenko, Andrii; White, Thomas A; Yefanov, Oleksandr; Han, Gye Won; Xu, Qingping; de Waal, Parker W; Suino-Powell, Kelly M; Boutet, Sébastien; Williams, Garth J; Wang, Meitian; Li, Dianfan; Caffrey, Martin; Chapman, Henry N; Spence, John C H; Fromme, Petra; Weierstall, Uwe; Stevens, Raymond C; Cherezov, Vadim; Melcher, Karsten; Xu, H Eric
2016-04-12
Serial femtosecond X-ray crystallography (SFX) using an X-ray free electron laser (XFEL) is a recent advancement in structural biology for solving crystal structures of challenging membrane proteins, including G-protein coupled receptors (GPCRs), which often only produce microcrystals. An XFEL delivers highly intense X-ray pulses of femtosecond duration short enough to enable the collection of single diffraction images before significant radiation damage to crystals sets in. Here we report the deposition of the XFEL data and provide further details on crystallization, XFEL data collection and analysis, structure determination, and the validation of the structural model. The rhodopsin-arrestin crystal structure solved with SFX represents the first near-atomic resolution structure of a GPCR-arrestin complex, provides structural insights into understanding of arrestin-mediated GPCR signaling, and demonstrates the great potential of this SFX-XFEL technology for accelerating crystal structure determination of challenging proteins and protein complexes.
X-ray laser diffraction for structure determination of the rhodopsin-arrestin complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, X. Edward; Gao, Xiang; Barty, Anton
Here, serial femtosecond X-ray crystallography (SFX) using an X-ray free electron laser (XFEL) is a recent advancement in structural biology for solving crystal structures of challenging membrane proteins, including G-protein coupled receptors (GPCRs), which often only produce microcrystals. An XFEL delivers highly intense X-ray pulses of femtosecond duration short enough to enable the collection of single diffraction images before significant radiation damage to crystals sets in. Here we report the deposition of the XFEL data and provide further details on crystallization, XFEL data collection and analysis, structure determination, and the validation of the structural model. The rhodopsin-arrestin crystal structure solvedmore » with SFX represents the first near-atomic resolution structure of a GPCR-arrestin complex, provides structural insights into understanding of arrestin-mediated GPCR signaling, and demonstrates the great potential of this SFX-XFEL technology for accelerating crystal structure determination of challenging proteins and protein complexes.« less
X-ray laser diffraction for structure determination of the rhodopsin-arrestin complex
Zhou, X. Edward; Gao, Xiang; Barty, Anton; Kang, Yanyong; He, Yuanzheng; Liu, Wei; Ishchenko, Andrii; White, Thomas A.; Yefanov, Oleksandr; Han, Gye Won; Xu, Qingping; de Waal, Parker W.; Suino-Powell, Kelly M.; Boutet, Sébastien; Williams, Garth J.; Wang, Meitian; Li, Dianfan; Caffrey, Martin; Chapman, Henry N.; Spence, John C.H.; Fromme, Petra; Weierstall, Uwe; Stevens, Raymond C.; Cherezov, Vadim; Melcher, Karsten; Xu, H. Eric
2016-01-01
Serial femtosecond X-ray crystallography (SFX) using an X-ray free electron laser (XFEL) is a recent advancement in structural biology for solving crystal structures of challenging membrane proteins, including G-protein coupled receptors (GPCRs), which often only produce microcrystals. An XFEL delivers highly intense X-ray pulses of femtosecond duration short enough to enable the collection of single diffraction images before significant radiation damage to crystals sets in. Here we report the deposition of the XFEL data and provide further details on crystallization, XFEL data collection and analysis, structure determination, and the validation of the structural model. The rhodopsin-arrestin crystal structure solved with SFX represents the first near-atomic resolution structure of a GPCR-arrestin complex, provides structural insights into understanding of arrestin-mediated GPCR signaling, and demonstrates the great potential of this SFX-XFEL technology for accelerating crystal structure determination of challenging proteins and protein complexes. PMID:27070998
X-ray laser diffraction for structure determination of the rhodopsin-arrestin complex
Zhou, X. Edward; Gao, Xiang; Barty, Anton; ...
2016-04-12
Here, serial femtosecond X-ray crystallography (SFX) using an X-ray free electron laser (XFEL) is a recent advancement in structural biology for solving crystal structures of challenging membrane proteins, including G-protein coupled receptors (GPCRs), which often only produce microcrystals. An XFEL delivers highly intense X-ray pulses of femtosecond duration short enough to enable the collection of single diffraction images before significant radiation damage to crystals sets in. Here we report the deposition of the XFEL data and provide further details on crystallization, XFEL data collection and analysis, structure determination, and the validation of the structural model. The rhodopsin-arrestin crystal structure solvedmore » with SFX represents the first near-atomic resolution structure of a GPCR-arrestin complex, provides structural insights into understanding of arrestin-mediated GPCR signaling, and demonstrates the great potential of this SFX-XFEL technology for accelerating crystal structure determination of challenging proteins and protein complexes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coughlan, H. D.; Darmanin, C.; Kirkwood, H. J.
2016-03-14
Three-dimensional imaging of protein crystals during X-ray diffraction experiments opens up a range of possibilities for optimising crystal quality and gaining new insights into the fundamental processes that drive radiation damage. Obtaining this information at the appropriate lengthscales however is extremely challenging. One approach that has been recently demonstrated as a promising avenue for charactering the size and shape of protein crystals at nanometre lengthscales is Bragg Coherent Diffractive Imaging (BCDI). BCDI is a recently developed technique that is able to recover the phase of the continuous diffraction intensity signal around individual Bragg peaks. When data is collected at multiplemore » points on a rocking curve a Reciprocal Space Map (RSM) can be assembled and then inverted using BCDI to obtain a three-dimensional image of the crystal. The first demonstration of two-dimensional BCDI of protein crystals was reported by Boutet at al., recently this work was extended to the study of radiation damage of micron-sized crystals. Here we present the first three-dimensional reconstructions of a Lysozyme protein crystal using BDI. The results are validated against RSM and TEM data and have implications for both radiation damage studies and for developing new approaches to structure retrieval from micron-sized protein crystals.« less
Maruyama, Yuusuke; Ebihara, Tatsuhiko; Nishiyama, Hidetoshi; Konyuba, Yuji; Senda, Miki; Numaga-Tomita, Takuro; Senda, Toshiya; Suga, Mitsuo; Sato, Chikara
2012-01-01
X-ray crystallography requires high quality crystals above a given size. This requirement not only limits the proteins to be analyzed, but also reduces the speed of the structure determination. Indeed, the tertiary structures of many physiologically important proteins remain elusive because of the so-called “crystallization bottleneck”. Once microcrystals have been obtained, crystallization conditions can be optimized to produce bigger and better crystals. However, the identification of microcrystals can be difficult due to the resolution limit of optical microscopy. Electron microscopy has sometimes been utilized instead, with the disadvantage that the microcrystals usually must be observed in vacuum, which precludes the usage for crystal screening. The atmospheric scanning electron microscope (ASEM) allows samples to be observed in solution. Here, we report the use of this instrument in combination with a special thin-membrane dish with a crystallization well. It was possible to observe protein crystals of lysozyme, lipase B and a histone chaperone TAF-Iβ in crystallization buffers, without the use of staining procedures. The smallest crystals observed with ASEM were a few μm in width, and ASEM can be used with non-transparent solutions. Furthermore, the growth of salt crystals could be monitored in the ASEM, and the difference in contrast between salt and protein crystals made it easy to distinguish between these two types of microcrystals. These results indicate that the ASEM could be an important new tool for the screening of protein microcrystals. PMID:22949879
Maruyama, Yuusuke; Ebihara, Tatsuhiko; Nishiyama, Hidetoshi; Konyuba, Yuji; Senda, Miki; Numaga-Tomita, Takuro; Senda, Toshiya; Suga, Mitsuo; Sato, Chikara
2012-01-01
X-ray crystallography requires high quality crystals above a given size. This requirement not only limits the proteins to be analyzed, but also reduces the speed of the structure determination. Indeed, the tertiary structures of many physiologically important proteins remain elusive because of the so-called "crystallization bottleneck". Once microcrystals have been obtained, crystallization conditions can be optimized to produce bigger and better crystals. However, the identification of microcrystals can be difficult due to the resolution limit of optical microscopy. Electron microscopy has sometimes been utilized instead, with the disadvantage that the microcrystals usually must be observed in vacuum, which precludes the usage for crystal screening. The atmospheric scanning electron microscope (ASEM) allows samples to be observed in solution. Here, we report the use of this instrument in combination with a special thin-membrane dish with a crystallization well. It was possible to observe protein crystals of lysozyme, lipase B and a histone chaperone TAF-Iβ in crystallization buffers, without the use of staining procedures. The smallest crystals observed with ASEM were a few μm in width, and ASEM can be used with non-transparent solutions. Furthermore, the growth of salt crystals could be monitored in the ASEM, and the difference in contrast between salt and protein crystals made it easy to distinguish between these two types of microcrystals. These results indicate that the ASEM could be an important new tool for the screening of protein microcrystals.
Insulin microcrystal suspension as a long-acting formulation for pulmonary delivery.
Kwon, Jai-Hyun; Lee, Byung-Ha; Lee, Jae-Jeong; Kim, Chan-Wha
2004-06-01
Pulmonary delivery provides the most promising non-parenteral route of insulin administration. Insulin was used as a model protein to demonstrate the feasibility of using protein crystals for the pulmonary delivery of a sustained-release protein drug formulation. Insulin microcrystals with a mean diameter of 3 microm were prepared using a seed zone method. The yield of crystallization was very high (95.8 +/- 0.97%), and the microcrystals were recovered with high efficiency (>98%) by centrifugation. Morphological examination using scanning electron microphotography showed the microcrystals to be of a homogeneous rhombohedral shape, with some rhombus forms, without aggregates. After the administration of 32 U/kg of the microcrystal suspension to STZ-induced diabetic SD rats by intratracheal instillation, the blood glucose levels were reduced and hypoglycemia was prolonged over 13 h, as compared to the insulin solution. The percent minimum reductions of the blood glucose concentration (% MRBG) produced by the microcrystal suspension and insulin solution reached 36.5 and 37.2%, respectively, of the initial level, and the percent total reductions in blood glucose (% TRBG(13 h)) were 34.4 and 25.0%, respectively. In the case of inhalation using a sieve-type ultrasonic nebulizer, the % MRBG produced by the microcrystal suspension and insulin solution were 21.7 and 26.3%, respectively, of the initial level, and the % TRBG(13 h) were 66.7 and 58.4%, respectively. However, the hypoglycemic effects of the microcrystal suspension were prolonged over 7 h, which compares favorably with the insulin solution (P<0.5 by unpaired t-test). These results could be attributed to the sustained-release of insulin from the microcrystals, which were deposited widely throughout the entire lung.
Visualization of membrane protein crystals in lipid cubic phase using X-ray imaging
Warren, Anna J.; Armour, Wes; Axford, Danny; Basham, Mark; Connolley, Thomas; Hall, David R.; Horrell, Sam; McAuley, Katherine E.; Mykhaylyk, Vitaliy; Wagner, Armin; Evans, Gwyndaf
2013-01-01
The focus in macromolecular crystallography is moving towards even more challenging target proteins that often crystallize on much smaller scales and are frequently mounted in opaque or highly refractive materials. It is therefore essential that X-ray beamline technology develops in parallel to accommodate such difficult samples. In this paper, the use of X-ray microradiography and microtomography is reported as a tool for crystal visualization, location and characterization on the macromolecular crystallography beamlines at the Diamond Light Source. The technique is particularly useful for microcrystals and for crystals mounted in opaque materials such as lipid cubic phase. X-ray diffraction raster scanning can be used in combination with radiography to allow informed decision-making at the beamline prior to diffraction data collection. It is demonstrated that the X-ray dose required for a full tomography measurement is similar to that for a diffraction grid-scan, but for sample location and shape estimation alone just a few radiographic projections may be required. PMID:23793151
Visualization of membrane protein crystals in lipid cubic phase using X-ray imaging.
Warren, Anna J; Armour, Wes; Axford, Danny; Basham, Mark; Connolley, Thomas; Hall, David R; Horrell, Sam; McAuley, Katherine E; Mykhaylyk, Vitaliy; Wagner, Armin; Evans, Gwyndaf
2013-07-01
The focus in macromolecular crystallography is moving towards even more challenging target proteins that often crystallize on much smaller scales and are frequently mounted in opaque or highly refractive materials. It is therefore essential that X-ray beamline technology develops in parallel to accommodate such difficult samples. In this paper, the use of X-ray microradiography and microtomography is reported as a tool for crystal visualization, location and characterization on the macromolecular crystallography beamlines at the Diamond Light Source. The technique is particularly useful for microcrystals and for crystals mounted in opaque materials such as lipid cubic phase. X-ray diffraction raster scanning can be used in combination with radiography to allow informed decision-making at the beamline prior to diffraction data collection. It is demonstrated that the X-ray dose required for a full tomography measurement is similar to that for a diffraction grid-scan, but for sample location and shape estimation alone just a few radiographic projections may be required.
Balbirnie, Melinda; Grothe, Robert; Eisenberg, David S.
2001-01-01
X-ray diffraction and other biophysical tools reveal features of the atomic structure of an amyloid-like crystal. Sup35, a prion-like protein in yeast, forms fibrillar amyloid assemblies intrinsic to its prion function. We have identified a polar peptide from the N-terminal prion-determining domain of Sup35 that exhibits the amyloid properties of full-length Sup35, including cooperative kinetics of aggregation, fibril formation, binding of the dye Congo red, and the characteristic cross-β x-ray diffraction pattern. Microcrystals of this peptide also share the principal properties of the fibrillar amyloid, including a highly stable, β-sheet-rich structure and the binding of Congo red. The x-ray powder pattern of the microcrystals, extending to 0.9-Å resolution, yields the unit cell dimensions of the well-ordered structure. These dimensions restrict possible atomic models of this amyloid-like structure and demonstrate that it forms packed, parallel-stranded β-sheets. The unusually high density of the crystals shows that the packed β-sheets are dehydrated, despite the polar character of the side chains. These results suggest that amyloid is a highly intermolecularly bonded, dehydrated array of densely packed β-sheets. This dry β-sheet could form as Sup35 partially unfolds to expose the peptide, permitting it to hydrogen-bond to the same peptide of other Sup35 molecules. The implication is that amyloid-forming units may be short segments of proteins, exposed for interactions by partial unfolding. PMID:11226247
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sierra, Raymond G.; Gati, Cornelius; Laksmono, Hartawan
We describe a concentric-flow electrokinetic injector for efficiently delivering microcrystals for serial femtosecond X-ray crystallography analysis that enables studies of challenging biological systems in their unadulterated mother liquor. We used the injector to analyze microcrystals of Geobacillus stearothermophilus thermolysin (2.2-Å structure), Thermosynechococcus elongatus photosystem II (<3-Å diffraction) and Thermus thermophilus small ribosomal subunit bound to the antibiotic paromomycin at ambient temperature (3.4-Å structure).
Sierra, Raymond G; Gati, Cornelius; Laksmono, Hartawan; Dao, E Han; Gul, Sheraz; Fuller, Franklin; Kern, Jan; Chatterjee, Ruchira; Ibrahim, Mohamed; Brewster, Aaron S; Young, Iris D; Michels-Clark, Tara; Aquila, Andrew; Liang, Mengning; Hunter, Mark S; Koglin, Jason E; Boutet, Sébastien; Junco, Elia A; Hayes, Brandon; Bogan, Michael J; Hampton, Christina Y; Puglisi, Elisabetta V; Sauter, Nicholas K; Stan, Claudiu A; Zouni, Athina; Yano, Junko; Yachandra, Vittal K; Soltis, S Michael; Puglisi, Joseph D; DeMirci, Hasan
2016-01-01
We describe a concentric-flow electrokinetic injector for efficiently delivering microcrystals for serial femtosecond X-ray crystallography analysis that enables studies of challenging biological systems in their unadulterated mother liquor. We used the injector to analyze microcrystals of Geobacillus stearothermophilus thermolysin (2.2-Å structure), Thermosynechococcus elongatus photosystem II (<3-Å diffraction) and Thermus thermophilus small ribosomal subunit bound to the antibiotic paromomycin at ambient temperature (3.4-Å structure).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sierra, Raymond G.; Gati, Cornelius; Laksmono, Hartawan
In this paper, we describe a concentric-flow electrokinetic injector for efficiently delivering microcrystals for serial femtosecond X-ray crystallography analysis that enables studies of challenging biological systems in their unadulterated mother liquor. Finally, we used the injector to analyze microcrystals of Geobacillus stearothermophilus thermolysin (2.2-Å structure), Thermosynechococcus elongatus photosystem II (<3-Å diffraction) and Thermus thermophilus small ribosomal subunit bound to the antibiotic paromomycin at ambient temperature (3.4-Å structure).
Sierra, Raymond G.; Gati, Cornelius; Laksmono, Hartawan; ...
2015-11-30
In this paper, we describe a concentric-flow electrokinetic injector for efficiently delivering microcrystals for serial femtosecond X-ray crystallography analysis that enables studies of challenging biological systems in their unadulterated mother liquor. Finally, we used the injector to analyze microcrystals of Geobacillus stearothermophilus thermolysin (2.2-Å structure), Thermosynechococcus elongatus photosystem II (<3-Å diffraction) and Thermus thermophilus small ribosomal subunit bound to the antibiotic paromomycin at ambient temperature (3.4-Å structure).
Naitow, Hisashi; Matsuura, Yoshinori; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Yabashi, Makina; Tanaka, Rie; Tanaka, Tomoyuki; Sugahara, Michihiro; Kobayashi, Jun; Nango, Eriko; Iwata, So; Kunishima, Naoki
2017-08-01
Serial femtosecond crystallography (SFX) with an X-ray free-electron laser is used for the structural determination of proteins from a large number of microcrystals at room temperature. To examine the feasibility of pharmaceutical applications of SFX, a ligand-soaking experiment using thermolysin microcrystals has been performed using SFX. The results were compared with those from a conventional experiment with synchrotron radiation (SR) at 100 K. A protein-ligand complex structure was successfully obtained from an SFX experiment using microcrystals soaked with a small-molecule ligand; both oil-based and water-based crystal carriers gave essentially the same results. In a comparison of the SFX and SR structures, clear differences were observed in the unit-cell parameters, in the alternate conformation of side chains, in the degree of water coordination and in the ligand-binding mode.
Preparation of microcrystals in lipidic cubic phase for serial femtosecond crystallography.
Liu, Wei; Ishchenko, Andrii; Cherezov, Vadim
2014-09-01
We have recently established a procedure for serial femtosecond crystallography (SFX) in lipidic cubic phase (LCP) for protein structure determination at X-ray free-electron lasers (XFELs). LCP-SFX uses the gel-like LCP as a matrix for growth and delivery of membrane protein microcrystals for crystallographic data collection. LCP is a liquid-crystalline mesophase composed of lipids and water. It provides a membrane-mimicking environment that stabilizes membrane proteins and supports their crystallization. Here we describe detailed procedures for the preparation and characterization of microcrystals for LCP-SFX applications. The advantages of LCP-SFX over traditional crystallographic methods include the capability of collecting room-temperature high-resolution data with minimal effects of radiation damage from sub-10-μm crystals of membrane and soluble proteins that are difficult to crystallize, while eliminating the need for crystal harvesting and cryo-cooling. Compared with SFX methods for microcrystals in solution using liquid injectors, LCP-SFX reduces protein consumption by 2-3 orders of magnitude for data collection at currently available XFELs. The whole procedure typically takes 3-5 d, including the time required for the crystals to grow.
Wojdyla, Justyna Aleksandra; Panepucci, Ezequiel; Martiel, Isabelle; Ebner, Simon; Huang, Chia-Ying; Caffrey, Martin; Bunk, Oliver; Wang, Meitian
2016-01-01
A fast continuous grid scan protocol has been incorporated into the Swiss Light Source (SLS) data acquisition and analysis software suite on the macromolecular crystallography (MX) beamlines. Its combination with fast readout single-photon counting hybrid pixel array detectors (PILATUS and EIGER) allows for diffraction-based identification of crystal diffraction hotspots and the location and centering of membrane protein microcrystals in the lipid cubic phase (LCP) in in meso in situ serial crystallography plates and silicon nitride supports. Diffraction-based continuous grid scans with both still and oscillation images are supported. Examples that include a grid scan of a large (50 nl) LCP bolus and analysis of the resulting diffraction images are presented. Scanning transmission X-ray microscopy (STXM) complements and benefits from fast grid scanning. STXM has been demonstrated at the SLS beamline X06SA for near-zero-dose detection of protein crystals mounted on different types of sample supports at room and cryogenic temperatures. Flash-cooled crystals in nylon loops were successfully identified in differential and integrated phase images. Crystals of just 10 µm thickness were visible in integrated phase images using data collected with the EIGER detector. STXM offers a truly low-dose method for locating crystals on solid supports prior to diffraction data collection at both synchrotron microfocusing and free-electron laser X-ray facilities. PMID:27275141
Serial femtosecond crystallography of soluble proteins in lipidic cubic phase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fromme, Raimund; Ishchenko, Andrii; Metz, Markus
Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) enables high-resolution protein structure determination using micrometre-sized crystals at room temperature with minimal effects from radiation damage. SFX requires a steady supply of microcrystals intersecting the XFEL beam at random orientations. An LCP–SFX method has recently been introduced in which microcrystals of membrane proteins are grown and delivered for SFX data collection inside a gel-like membrane-mimetic matrix, known as lipidic cubic phase (LCP), using a special LCP microextrusion injector. Here, it is demonstrated that LCP can also be used as a suitable carrier medium for microcrystals of soluble proteins, enabling amore » dramatic reduction in the amount of crystallized protein required for data collection compared with crystals delivered by liquid injectors. High-quality LCP–SFX data sets were collected for two soluble proteins, lysozyme and phycocyanin, using less than 0.1 mg of each protein.« less
Three-dimensional periodic supramolecular organic framework ion sponge in water and microcrystals
Tian, Jia; Zhou, Tian-You; Zhang, Shao-Chen; ...
2014-12-02
Self-assembly has emerged as a powerful approach to generating complex supramolecular architectures. Despite there being many crystalline frameworks reported in the solid state, the construction of highly soluble periodic supramolecular networks in a three-dimensional space is still a challenge. In this paper we demonstrate that the encapsulation motif, which involves the dimerization of two aromatic units within cucurbit[8]uril, can be used to direct the co-assembly of a tetratopic molecular block and cucurbit[8]uril into a periodic three-dimensional supramolecular organic framework in water. The periodicity of the supramolecular organic framework is supported by solution-phase small-angle X-ray-scattering and diffraction experiments. Upon evaporating themore » solvent, the periodicity of the framework is maintained in porous microcrystals. Lastly, as a supramolecular 'ion sponge', the framework can absorb different kinds of anionic guests, including drugs, in both water and microcrystals, and drugs absorbed in microcrystals can be released to water with selectivity.« less
Preparation of Microcrystals in Lipidic Cubic Phase for Serial Femtosecond Crystallography
Liu, Wei; Ishchenko, Andrii; Cherezov, Vadim
2014-01-01
We have recently established a procedure for serial femtosecond crystallography in lipidic cubic phase (LCP-SFX) for protein structure determination at X-ray free electron lasers (XFELs). LCP-SFX uses the gel-like lipidic cubic phase (LCP) as a matrix for growth and delivery of membrane protein microcrystals for crystallographic data collection. LCP is a liquid-crystalline mesophase, composed of lipids and water. It provides a membrane-mimicking environment that stabilizes membrane proteins and supports their crystallization. Here we describe detailed procedures for the preparation and characterization of microcrystals for LCP-SFX applications. The advantages of LCP-SFX over traditional crystallographic methods include the capability of collecting room temperature high-resolution data with minimal effects of radiation damage from sub-10 µm crystals of membrane and soluble proteins that are difficult to crystallize, while eliminating the need for crystal harvesting and cryo-cooling. Compared to SFX methods for microcrystals in solution using liquid injectors, LCP-SFX reduces protein consumption by 2–3 orders of magnitude for data collection at currently available XFELs. The whole procedure typically takes 3–5 days, including the time required for crystals to grow. PMID:25122522
Ginn, Helen M.; Messerschmidt, Marc; Ji, Xiaoyun; ...
2015-03-09
The X-ray free-electron laser (XFEL) allows the analysis of small weakly diffracting protein crystals, but has required very many crystals to obtain good data. Here we use an XFEL to determine the room temperature atomic structure for the smallest cytoplasmic polyhedrosis virus polyhedra yet characterized, which we failed to solve at a synchrotron. These protein microcrystals, roughly a micron across, accrue within infected cells. We use a new physical model for XFEL diffraction, which better estimates the experimental signal, delivering a high-resolution XFEL structure (1.75 Å), using fewer crystals than previously required for this resolution. The crystal lattice and proteinmore » core are conserved compared with a polyhedrin with less than 10% sequence identity. We explain how the conserved biological phenotype, the crystal lattice, is maintained in the face of extreme environmental challenge and massive evolutionary divergence. Our improved methods should open up more challenging biological samples to XFEL analysis.« less
From Macrocrystals to Microcrystals: A Strategy for Membrane Protein Serial Crystallography.
Dods, Robert; Båth, Petra; Arnlund, David; Beyerlein, Kenneth R; Nelson, Garrett; Liang, Mengling; Harimoorthy, Rajiv; Berntsen, Peter; Malmerberg, Erik; Johansson, Linda; Andersson, Rebecka; Bosman, Robert; Carbajo, Sergio; Claesson, Elin; Conrad, Chelsie E; Dahl, Peter; Hammarin, Greger; Hunter, Mark S; Li, Chufeng; Lisova, Stella; Milathianaki, Despina; Robinson, Joseph; Safari, Cecilia; Sharma, Amit; Williams, Garth; Wickstrand, Cecilia; Yefanov, Oleksandr; Davidsson, Jan; DePonte, Daniel P; Barty, Anton; Brändén, Gisela; Neutze, Richard
2017-09-05
Serial protein crystallography was developed at X-ray free-electron lasers (XFELs) and is now also being applied at storage ring facilities. Robust strategies for the growth and optimization of microcrystals are needed to advance the field. Here we illustrate a generic strategy for recovering high-density homogeneous samples of microcrystals starting from conditions known to yield large (macro) crystals of the photosynthetic reaction center of Blastochloris viridis (RC vir ). We first crushed these crystals prior to multiple rounds of microseeding. Each cycle of microseeding facilitated improvements in the RC vir serial femtosecond crystallography (SFX) structure from 3.3-Å to 2.4-Å resolution. This approach may allow known crystallization conditions for other proteins to be adapted to exploit novel scientific opportunities created by serial crystallography. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ji-Min; School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005; Liu, Qing
2014-10-15
Co(II)-doped MOF-5 nano/microcrystals with controllable morphology and size were successfully obtained by solvothermal method. The products were characterized by powder X-ray diffraction (PXRD), energy dispersive spectrometry (EDS), field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), inductively coupled plasma optical emission spectrometer (ICP-OES), elemental analysis, UV–vis and infrared (IR) spectroscopy. The factors influencing the crystal morphology and size were investigated. The gas sorption measurements reveal that highly crystalline particles have large Langmuir surface area. It was found that the Co(II)-doped MOF-5 shows enhanced hydrostability and the sorption profiles of the Co(II)-doped MOF-5 nano/microcrystals are dependent on the morphology and sizemore » of the particles. Porous Co(II)-doped MOF-5 is stable upon the removal of guest molecules and exhibits different colour with accommodating different solvent molecule, which means that it can act as solvatochromic sensing materials for recognition of solvent molecules. - Graphical abstract: Co(II)-doped MOF-5 nano/microcrystals with different shapes and sizes were synthesized by a facile hydrothermal method, which not only enhance gas sorption properties and structural stability of MOFs towards moisture, but also act as new sensing materials for sensing small molecules. - Highlights: • Co(II)-doped MOF-5 nano/microcrystals with controllable morphology and size were obtained. • Co(II)-doped MOF-5 nano/microcrystals enhance the structural stability towards moisture. • Co(II)-doped MOF-5 can act as new sensing material for sensing small molecules.« less
Simultaneous Femtosecond X-ray Spectroscopy and Diffraction of Photosystem II at Room Temperature
Kern, Jan; Alonso-Mori, Roberto; Tran, Rosalie; Hattne, Johan; Gildea, Richard J.; Echols, Nathaniel; Glöckner, Carina; Hellmich, Julia; Laksmono, Hartawan; Sierra, Raymond G.; Lassalle-Kaiser, Benedikt; Koroidov, Sergey; Lampe, Alyssa; Han, Guangye; Gul, Sheraz; DiFiore, Dörte; Milathianaki, Despina; Fry, Alan R.; Miahnahri, Alan; Schafer, Donald W.; Messerschmidt, Marc; Seibert, M. Marvin; Koglin, Jason E.; Sokaras, Dimosthenis; Weng, Tsu-Chien; Sellberg, Jonas; Latimer, Matthew J.; Grosse-Kunstleve, Ralf W.; Zwart, Petrus H.; White, William E.; Glatzel, Pieter; Adams, Paul D.; Bogan, Michael J.; Williams, Garth J.; Boutet, Sébastien; Messinger, Johannes; Zouni, Athina; Sauter, Nicholas K.; Yachandra, Vittal K.; Bergmann, Uwe; Yano, Junko
2013-01-01
Intense femtosecond X-ray pulses produced at the Linac Coherent Light Source (LCLS) were used for simultaneous X-ray diffraction (XRD) and X-ray emission spectroscopy (XES) of microcrystals of Photosystem II (PS II) at room temperature. This method probes the overall protein structure and the electronic structure of the Mn4CaO5 cluster in the oxygen-evolving complex of PS II. XRD data are presented from both the dark state (S1) and the first illuminated state (S2) of PS II. Our simultaneous XRD/XES study shows that the PS II crystals are intact during our measurements at the LCLS, not only with respect to the structure of PS II, but also with regard to the electronic structure of the highly radiation sensitive Mn4CaO5 cluster, opening new directions for future dynamics studies. PMID:23413188
Native phasing of x-ray free-electron laser data for a G protein-coupled receptor.
Batyuk, Alexander; Galli, Lorenzo; Ishchenko, Andrii; Han, Gye Won; Gati, Cornelius; Popov, Petr A; Lee, Ming-Yue; Stauch, Benjamin; White, Thomas A; Barty, Anton; Aquila, Andrew; Hunter, Mark S; Liang, Mengning; Boutet, Sébastien; Pu, Mengchen; Liu, Zhi-Jie; Nelson, Garrett; James, Daniel; Li, Chufeng; Zhao, Yun; Spence, John C H; Liu, Wei; Fromme, Petra; Katritch, Vsevolod; Weierstall, Uwe; Stevens, Raymond C; Cherezov, Vadim
2016-09-01
Serial femtosecond crystallography (SFX) takes advantage of extremely bright and ultrashort pulses produced by x-ray free-electron lasers (XFELs), allowing for the collection of high-resolution diffraction intensities from micrometer-sized crystals at room temperature with minimal radiation damage, using the principle of "diffraction-before-destruction." However, de novo structure factor phase determination using XFELs has been difficult so far. We demonstrate the ability to solve the crystallographic phase problem for SFX data collected with an XFEL using the anomalous signal from native sulfur atoms, leading to a bias-free room temperature structure of the human A 2A adenosine receptor at 1.9 Å resolution. The advancement was made possible by recent improvements in SFX data analysis and the design of injectors and delivery media for streaming hydrated microcrystals. This general method should accelerate structural studies of novel difficult-to-crystallize macromolecules and their complexes.
Simultaneous femtosecond X-ray spectroscopy and diffraction of photosystem II at room temperature.
Kern, Jan; Alonso-Mori, Roberto; Tran, Rosalie; Hattne, Johan; Gildea, Richard J; Echols, Nathaniel; Glöckner, Carina; Hellmich, Julia; Laksmono, Hartawan; Sierra, Raymond G; Lassalle-Kaiser, Benedikt; Koroidov, Sergey; Lampe, Alyssa; Han, Guangye; Gul, Sheraz; Difiore, Dörte; Milathianaki, Despina; Fry, Alan R; Miahnahri, Alan; Schafer, Donald W; Messerschmidt, Marc; Seibert, M Marvin; Koglin, Jason E; Sokaras, Dimosthenis; Weng, Tsu-Chien; Sellberg, Jonas; Latimer, Matthew J; Grosse-Kunstleve, Ralf W; Zwart, Petrus H; White, William E; Glatzel, Pieter; Adams, Paul D; Bogan, Michael J; Williams, Garth J; Boutet, Sébastien; Messinger, Johannes; Zouni, Athina; Sauter, Nicholas K; Yachandra, Vittal K; Bergmann, Uwe; Yano, Junko
2013-04-26
Intense femtosecond x-ray pulses produced at the Linac Coherent Light Source (LCLS) were used for simultaneous x-ray diffraction (XRD) and x-ray emission spectroscopy (XES) of microcrystals of photosystem II (PS II) at room temperature. This method probes the overall protein structure and the electronic structure of the Mn4CaO5 cluster in the oxygen-evolving complex of PS II. XRD data are presented from both the dark state (S1) and the first illuminated state (S2) of PS II. Our simultaneous XRD-XES study shows that the PS II crystals are intact during our measurements at the LCLS, not only with respect to the structure of PS II, but also with regard to the electronic structure of the highly radiation-sensitive Mn4CaO5 cluster, opening new directions for future dynamics studies.
Graphene-based microfluidics for serial crystallography.
Sui, Shuo; Wang, Yuxi; Kolewe, Kristopher W; Srajer, Vukica; Henning, Robert; Schiffman, Jessica D; Dimitrakopoulos, Christos; Perry, Sarah L
2016-08-02
Microfluidic strategies to enable the growth and subsequent serial crystallographic analysis of micro-crystals have the potential to facilitate both structural characterization and dynamic structural studies of protein targets that have been resistant to single-crystal strategies. However, adapting microfluidic crystallization platforms for micro-crystallography requires a dramatic decrease in the overall device thickness. We report a robust strategy for the straightforward incorporation of single-layer graphene into ultra-thin microfluidic devices. This architecture allows for a total material thickness of only ∼1 μm, facilitating on-chip X-ray diffraction analysis while creating a sample environment that is stable against significant water loss over several weeks. We demonstrate excellent signal-to-noise in our X-ray diffraction measurements using a 1.5 μs polychromatic X-ray exposure, and validate our approach via on-chip structure determination using hen egg white lysozyme (HEWL) as a model system. Although this work is focused on the use of graphene for protein crystallography, we anticipate that this technology should find utility in a wide range of both X-ray and other lab on a chip applications.
Serial femtosecond crystallography datasets from G protein-coupled receptors
White, Thomas A.; Barty, Anton; Liu, Wei; Ishchenko, Andrii; Zhang, Haitao; Gati, Cornelius; Zatsepin, Nadia A.; Basu, Shibom; Oberthür, Dominik; Metz, Markus; Beyerlein, Kenneth R.; Yoon, Chun Hong; Yefanov, Oleksandr M.; James, Daniel; Wang, Dingjie; Messerschmidt, Marc; Koglin, Jason E.; Boutet, Sébastien; Weierstall, Uwe; Cherezov, Vadim
2016-01-01
We describe the deposition of four datasets consisting of X-ray diffraction images acquired using serial femtosecond crystallography experiments on microcrystals of human G protein-coupled receptors, grown and delivered in lipidic cubic phase, at the Linac Coherent Light Source. The receptors are: the human serotonin receptor 2B in complex with an agonist ergotamine, the human δ-opioid receptor in complex with a bi-functional peptide ligand DIPP-NH2, the human smoothened receptor in complex with an antagonist cyclopamine, and finally the human angiotensin II type 1 receptor in complex with the selective antagonist ZD7155. All four datasets have been deposited, with minimal processing, in an HDF5-based file format, which can be used directly for crystallographic processing with CrystFEL or other software. We have provided processing scripts and supporting files for recent versions of CrystFEL, which can be used to validate the data. PMID:27479354
Serial femtosecond crystallography datasets from G protein-coupled receptors.
White, Thomas A; Barty, Anton; Liu, Wei; Ishchenko, Andrii; Zhang, Haitao; Gati, Cornelius; Zatsepin, Nadia A; Basu, Shibom; Oberthür, Dominik; Metz, Markus; Beyerlein, Kenneth R; Yoon, Chun Hong; Yefanov, Oleksandr M; James, Daniel; Wang, Dingjie; Messerschmidt, Marc; Koglin, Jason E; Boutet, Sébastien; Weierstall, Uwe; Cherezov, Vadim
2016-08-01
We describe the deposition of four datasets consisting of X-ray diffraction images acquired using serial femtosecond crystallography experiments on microcrystals of human G protein-coupled receptors, grown and delivered in lipidic cubic phase, at the Linac Coherent Light Source. The receptors are: the human serotonin receptor 2B in complex with an agonist ergotamine, the human δ-opioid receptor in complex with a bi-functional peptide ligand DIPP-NH2, the human smoothened receptor in complex with an antagonist cyclopamine, and finally the human angiotensin II type 1 receptor in complex with the selective antagonist ZD7155. All four datasets have been deposited, with minimal processing, in an HDF5-based file format, which can be used directly for crystallographic processing with CrystFEL or other software. We have provided processing scripts and supporting files for recent versions of CrystFEL, which can be used to validate the data.
A New Camera for Powder Diffraction of Macromolecular Crystallography at SPring-8
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miura, Keiko; Inoue, Katsuaki; Goto, Shunji
2004-05-12
A powder diffractometer of Guinier geometry was developed and tested on a beamline, BL40B2, at SPring-8. The long specimen-to-detector distance, 1,000 mm, is advantageous in recording diffraction from Bragg spacing of 20 nm or larger. The angular resolution, 0.012 degrees, was realized together with the focusing optics, the long specimen-to-detector distance and the small pixel size of Blue-type Imaging Plate detector. Such a high resolution makes the peak separation possible in the powder diffraction from microcrystals with large unit cell and low symmetry of biological macromolecules.
Serial femtosecond crystallography of soluble proteins in lipidic cubic phase
Fromme, Raimund; Ishchenko, Andrii; Metz, Markus; ...
2015-08-04
Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) enables high-resolution protein structure determination using micrometre-sized crystals at room temperature with minimal effects from radiation damage. SFX requires a steady supply of microcrystals intersecting the XFEL beam at random orientations. An LCP–SFX method has recently been introduced in which microcrystals of membrane proteins are grown and delivered for SFX data collection inside a gel-like membrane-mimetic matrix, known as lipidic cubic phase (LCP), using a special LCP microextrusion injector. Here, it is shown enabling a dramatic reduction in the amount of crystallized protein required for data collection compared with crystals deliveredmore » by liquid injectors. High-quality LCP–SFX data sets were collected for two soluble proteins, lysozyme and phycocyanin, using less than 0.1 mg of each protein.« less
Serial femtosecond crystallography of soluble proteins in lipidic cubic phase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fromme, Raimund; Ishchenko, Andrii; Metz, Markus
Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) enables high-resolution protein structure determination using micrometre-sized crystals at room temperature with minimal effects from radiation damage. SFX requires a steady supply of microcrystals intersecting the XFEL beam at random orientations. An LCP–SFX method has recently been introduced in which microcrystals of membrane proteins are grown and delivered for SFX data collection inside a gel-like membrane-mimetic matrix, known as lipidic cubic phase (LCP), using a special LCP microextrusion injector. Here, it is shown enabling a dramatic reduction in the amount of crystallized protein required for data collection compared with crystals deliveredmore » by liquid injectors. High-quality LCP–SFX data sets were collected for two soluble proteins, lysozyme and phycocyanin, using less than 0.1 mg of each protein.« less
Conrad, Chelsie E.; Nelson, Garrett; Stander, Natasha; Zatsepin, Nadia A.; Zook, James; Zhu, Lan; Geiger, James; Chun, Eugene; Kissick, David; Hilgart, Mark C.; Ogata, Craig; Ishchenko, Andrii; Nagaratnam, Nirupa; Roy-Chowdhury, Shatabdi; Coe, Jesse; Subramanian, Ganesh; Schaffer, Alexander; Ketwala, Gihan; Venugopalan, Nagarajan; Xu, Shenglan; Corcoran, Stephen; Ferguson, Dale; Weierstall, Uwe; Spence, John C. H.; Cherezov, Vadim; Fromme, Petra; Fischetti, Robert F.; Liu, Wei
2017-01-01
Crystal structure determination of biological macromolecules using the novel technique of serial femtosecond crystallography (SFX) is severely limited by the scarcity of X-ray free-electron laser (XFEL) sources. However, recent and future upgrades render microfocus beamlines at synchrotron-radiation sources suitable for room-temperature serial crystallography data collection also. Owing to the longer exposure times that are needed at synchrotrons, serial data collection is termed serial millisecond crystallography (SMX). As a result, the number of SMX experiments is growing rapidly, with a dozen experiments reported so far. Here, the first high-viscosity injector-based SMX experiments carried out at a US synchrotron source, the Advanced Photon Source (APS), are reported. Microcrystals (5–20 µm) of a wide variety of proteins, including lysozyme, thaumatin, phycocyanin, the human A2A adenosine receptor (A2AAR), the soluble fragment of the membrane lipoprotein Flpp3 and proteinase K, were screened. Crystals suspended in lipidic cubic phase (LCP) or a high-molecular-weight poly(ethylene oxide) (PEO; molecular weight 8 000 000) were delivered to the beam using a high-viscosity injector. In-house data-reduction (hit-finding) software developed at APS as well as the SFX data-reduction and analysis software suites Cheetah and CrystFEL enabled efficient on-site SMX data monitoring, reduction and processing. Complete data sets were collected for A2AAR, phycocyanin, Flpp3, proteinase K and lysozyme, and the structures of A2AAR, phycocyanin, proteinase K and lysozyme were determined at 3.2, 3.1, 2.65 and 2.05 Å resolution, respectively. The data demonstrate the feasibility of serial millisecond crystallography from 5–20 µm crystals using a high-viscosity injector at APS. The resolution of the crystal structures obtained in this study was dictated by the current flux density and crystal size, but upcoming developments in beamline optics and the planned APS-U upgrade will increase the intensity by two orders of magnitude. These developments will enable structure determination from smaller and/or weakly diffracting microcrystals. PMID:28875031
Martin-Garcia, Jose M; Conrad, Chelsie E; Nelson, Garrett; Stander, Natasha; Zatsepin, Nadia A; Zook, James; Zhu, Lan; Geiger, James; Chun, Eugene; Kissick, David; Hilgart, Mark C; Ogata, Craig; Ishchenko, Andrii; Nagaratnam, Nirupa; Roy-Chowdhury, Shatabdi; Coe, Jesse; Subramanian, Ganesh; Schaffer, Alexander; James, Daniel; Ketwala, Gihan; Venugopalan, Nagarajan; Xu, Shenglan; Corcoran, Stephen; Ferguson, Dale; Weierstall, Uwe; Spence, John C H; Cherezov, Vadim; Fromme, Petra; Fischetti, Robert F; Liu, Wei
2017-07-01
Crystal structure determination of biological macromolecules using the novel technique of serial femtosecond crystallography (SFX) is severely limited by the scarcity of X-ray free-electron laser (XFEL) sources. However, recent and future upgrades render microfocus beamlines at synchrotron-radiation sources suitable for room-temperature serial crystallography data collection also. Owing to the longer exposure times that are needed at synchrotrons, serial data collection is termed serial millisecond crystallography (SMX). As a result, the number of SMX experiments is growing rapidly, with a dozen experiments reported so far. Here, the first high-viscosity injector-based SMX experiments carried out at a US synchrotron source, the Advanced Photon Source (APS), are reported. Microcrystals (5-20 µm) of a wide variety of proteins, including lysozyme, thaumatin, phycocyanin, the human A 2A adenosine receptor (A 2A AR), the soluble fragment of the membrane lipoprotein Flpp3 and proteinase K, were screened. Crystals suspended in lipidic cubic phase (LCP) or a high-molecular-weight poly(ethylene oxide) (PEO; molecular weight 8 000 000) were delivered to the beam using a high-viscosity injector. In-house data-reduction (hit-finding) software developed at APS as well as the SFX data-reduction and analysis software suites Cheetah and CrystFEL enabled efficient on-site SMX data monitoring, reduction and processing. Complete data sets were collected for A 2A AR, phycocyanin, Flpp3, proteinase K and lysozyme, and the structures of A 2A AR, phycocyanin, proteinase K and lysozyme were determined at 3.2, 3.1, 2.65 and 2.05 Å resolution, respectively. The data demonstrate the feasibility of serial millisecond crystallography from 5-20 µm crystals using a high-viscosity injector at APS. The resolution of the crystal structures obtained in this study was dictated by the current flux density and crystal size, but upcoming developments in beamline optics and the planned APS-U upgrade will increase the intensity by two orders of magnitude. These developments will enable structure determination from smaller and/or weakly diffracting microcrystals.
Martin-Garcia, Jose M.; Conrad, Chelsie E.; Nelson, Garrett; ...
2017-05-24
Crystal structure determination of biological macromolecules using the novel technique of serial femtosecond crystallography (SFX) is severely limited by the scarcity of X-ray free-electron laser (XFEL) sources. However, recent and future upgrades render microfocus beamlines at synchrotron-radiation sources suitable for room-temperature serial crystallography data collection also. Owing to the longer exposure times that are needed at synchrotrons, serial data collection is termed serial millisecond crystallography (SMX). As a result, the number of SMX experiments is growing rapidly, with a dozen experiments reported so far. Here, the first high-viscosity injector-based SMX experiments carried out at a US synchrotron source, the Advancedmore » Photon Source (APS), are reported. Microcrystals (5–20 µm) of a wide variety of proteins, including lysozyme, thaumatin, phycocyanin, the human A 2A adenosine receptor (A 2AAR), the soluble fragment of the membrane lipoprotein Flpp3 and proteinase K, were screened. Crystals suspended in lipidic cubic phase (LCP) or a high-molecular-weight poly(ethylene oxide) (PEO; molecular weight 8 000 000) were delivered to the beam using a high-viscosity injector. In-house data-reduction (hit-finding) software developed at APS as well as the SFX data-reduction and analysis software suites Cheetah and CrystFEL enabled efficient on-site SMX data monitoring, reduction and processing. Complete data sets were collected for A 2AAR, phycocyanin, Flpp3, proteinase K and lysozyme, and the structures of A 2AAR, phycocyanin, proteinase K and lysozyme were determined at 3.2, 3.1, 2.65 and 2.05 Å resolution, respectively. The data demonstrate the feasibility of serial millisecond crystallography from 5–20 µm crystals using a high-viscosity injector at APS. The resolution of the crystal structures obtained in this study was dictated by the current flux density and crystal size, but upcoming developments in beamline optics and the planned APS-U upgrade will increase the intensity by two orders of magnitude. Furthermore, these developments will enable structure determination from smaller and/or weakly diffracting microcrystals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin-Garcia, Jose M.; Conrad, Chelsie E.; Nelson, Garrett
Crystal structure determination of biological macromolecules using the novel technique of serial femtosecond crystallography (SFX) is severely limited by the scarcity of X-ray free-electron laser (XFEL) sources. However, recent and future upgrades render microfocus beamlines at synchrotron-radiation sources suitable for room-temperature serial crystallography data collection also. Owing to the longer exposure times that are needed at synchrotrons, serial data collection is termed serial millisecond crystallography (SMX). As a result, the number of SMX experiments is growing rapidly, with a dozen experiments reported so far. Here, the first high-viscosity injector-based SMX experiments carried out at a US synchrotron source, the Advancedmore » Photon Source (APS), are reported. Microcrystals (5–20 µm) of a wide variety of proteins, including lysozyme, thaumatin, phycocyanin, the human A 2A adenosine receptor (A 2AAR), the soluble fragment of the membrane lipoprotein Flpp3 and proteinase K, were screened. Crystals suspended in lipidic cubic phase (LCP) or a high-molecular-weight poly(ethylene oxide) (PEO; molecular weight 8 000 000) were delivered to the beam using a high-viscosity injector. In-house data-reduction (hit-finding) software developed at APS as well as the SFX data-reduction and analysis software suites Cheetah and CrystFEL enabled efficient on-site SMX data monitoring, reduction and processing. Complete data sets were collected for A 2AAR, phycocyanin, Flpp3, proteinase K and lysozyme, and the structures of A 2AAR, phycocyanin, proteinase K and lysozyme were determined at 3.2, 3.1, 2.65 and 2.05 Å resolution, respectively. The data demonstrate the feasibility of serial millisecond crystallography from 5–20 µm crystals using a high-viscosity injector at APS. The resolution of the crystal structures obtained in this study was dictated by the current flux density and crystal size, but upcoming developments in beamline optics and the planned APS-U upgrade will increase the intensity by two orders of magnitude. Furthermore, these developments will enable structure determination from smaller and/or weakly diffracting microcrystals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fabbro, Maria T.; Department of Inorganic and Organic Chemistry, Universitat Jaume I, Campus del Riu Sec, E-12071 Castellón; Gracia, Lourdes
Ag{sub 2}CrO{sub 4} microcrystals were synthesized using the co-precipitation method. These microcrystals were characterized through X-ray diffraction (XRD) with Rietveld analysis, field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) with energy-dispersive spectroscopy (EDS), micro-Raman (MR). XRD patterns and Rietveld refinement data showed that the material exhibits an orthorhombic structure without any deleterious phases. FE-SEM and TEM micrographs revealed the morphology and the growth of Ag nanoparticles on Ag{sub 2}CrO{sub 4} microcrystals during electron beam irradiation. These events were directly monitored in real-time. Their optical properties were investigated using ultraviolet-visible (UV–vis) diffuse reflectance spectroscopy that allowed the calculation of themore » optical band gap energy. Theoretical analyses based on the density functional theory level indicate that the incorporation of electrons is responsible for structural modifications and formation of defects on the [AgO{sub 6}] and [AgO{sub 4}] clusters, generating ideal conditions for the growth of Ag nanoparticles. - Graphical abstract: Theoretical representation of the Ag{sub 2}CrO{sub 4} orthorhombic structure. Display Omitted - Highlights: • The Ag{sub 2}CrO{sub 4} microcrystals indicate an orthorhombic structure. • The formation of Ag{sup 0} promotes Ag-nanoparticle growth on the surface of the Ag{sub 2}CrO{sub 4}. • Electron irradiation of the material induces the formation of Ag vacancies.« less
Cheng, Yu-Chia; Lobo, Raul F; Sandler, Stanley I; Lenhoff, Abraham M
2006-05-05
The kinetics and thermodynamics of lysozyme precipitation in ammonium sulfate solutions at pH 4 and 8 and room temperature were studied. X-ray powder diffraction (XRD) was used to characterize the structure of lysozyme precipitates. It was found that, if sufficient time was allowed, microcrystals developed following an induction period after initial lysozyme precipitation, even up to ionic strengths of 8 m and at acidic pH, where lysozyme is refractory to crystallization in ammonium sulfate. The full set of precipitation and crystallization data allowed construction of a phase diagram of lysozyme, showing the ammonium sulfate dependence. It suggests that precipitation may reflect a frustrated metastable liquid-liquid phase separation, which would allow this process to be understood within the framework of the generic phase diagram for proteins. The results also demonstrate that XRD, more frequently used for characterizing inorganic and organic polycrystalline materials, is useful both in characterizing the presence of crystals in the dense phase and in verifying the crystal form of proteins.
Preparation and spectral properties of europium hydrogen squarate microcrystals
NASA Astrophysics Data System (ADS)
Kolev, T.; Danchova, N.; Shandurkov, D.; Gutzov, S.
2018-04-01
A simple scheme for preparation of europium hydrogen squarate octahydrate microcrystals, Eu(HSq)3·8H2O is demonstrated. The microcrystalline powders obtained have a potential application as non-centrosymmetric and UV radiation - protective hybrid optical material. The site-symmetry of the Eu - ion is C2V or lower, obtained from diffuse reflectance spectra. The formation of europium hydrogen squarate is supported by IR - spectroscopy, UV-vis spectroscopy, chemical analysis and X-ray diffraction. A detailed analysis of the UV-vis and IR spectra of the micropowders prepared is presented. The reaction between europium oxide and squaric acid leads to formation of microcrystalline plate-like crystals of europium hydrogen squarate Eu(HSq)3·8H2O, a non-centrosymmetric hybrid optical material with a potential application as UV radiation - protective coatings.
NASA Astrophysics Data System (ADS)
Yin, Yongkui; Li, Ying; Zhang, Haifeng; Ren, Fengyun; Zhang, Dawei; Feng, Wenxu; Shao, Lili; Li, Kaijun; Liu, Yang; Sun, Zhanpeng; Li, Miaojing; Song, Gaochen; Wang, Guan
2013-03-01
A facile strategy has been developed to synthesize BaMoO4 microcrystals with different morphologies, such as octopus-like, flower-like, and Chinese-cabbage-like, by using ethylenediaminetetraacetic acid as chelating and capping reagent at room temperature. X-ray diffraction, field emission scanning electron microscopy, and Fourier transformer infrared spectroscopy were introduced to characterize the composition, morphology, and chemical information of the as-obtained products. The effects of a series of experimental parameters, such as ethylenediaminetetraacetic acid quantity and the reagent concentrations, on the morphology and photoluminescence properties of the consequential BaMoO4 microcrystals were investigated in detail. The photoluminescence spectra of the obtained BaMoO4 microstructures exhibited different emission intensities. This method could be readily extended to synthesize BaWO4 microstructures with various morphologies.
Nass, Karol; Meinhart, Anton; Barends, Thomas R. M.; ...
2016-03-09
Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) offers unprecedented possibilities for macromolecular structure determination of systems that are prone to radiation damage. However, phasing XFEL data de novo is complicated by the inherent inaccuracy of SFX data, and only a few successful examples, mostly based on exceedingly strong anomalous or isomorphous difference signals, have been reported. Here, it is shown that SFX data from thaumatin microcrystals can be successfully phased using only the weak anomalous scattering from the endogenous S atoms. Furthermore, a step-by-step investigation is presented of the particular problems of SAD phasing of SFX data, analysingmore » data from a derivative with a strong anomalous signal as well as the weak signal from endogenous S atoms.« less
Origin of melting point depression for rare gas solids confined in carbon pores
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morishige, Kunimitsu, E-mail: morishi@chem.ous.ac.jp; Kataoka, Takaaki
To obtain insights into the mechanism of the melting-point depression of rare gas solids confined in crystalline carbon pores, we examined the freezing and melting behavior of Xe and Ar confined to the crystalline pores of ordered mesoporous carbons as well as compressed exfoliated graphite compared to the amorphous pores of ordered mesoporous silicas, by means of X-ray diffraction. For the Xe and Ar confined to the crystalline carbon pores, there was no appreciable thermal hysteresis between freezing and melting. Furthermore, the position of the main diffraction peak did not change appreciably on freezing and melting. This strongly suggests thatmore » the liquids confined in the carbon pores form a multilayered structure parallel to the smooth walls. For the Xe and Ar confined to the amorphous silica pores, on the other hand, the position of the main diffraction peak shifted into higher scattering angle on freezing suggested that the density of the confined solid is distinctly larger than for the confined liquid. Using compressed exfoliated graphite with carbon walls of higher crystallinity, we observed that three-dimensional (3D) microcrystals of Xe confined in the slit-shaped pores melted to leave the unmelted bilayers on the pore walls below the bulk triple point. The lattice spacing of the 3D microcrystals confined is larger by ∼0.7% than that of the bilayer next to the pore walls in the vicinity of the melting point.« less
Foadi, James; Aller, Pierre; Alguel, Yilmaz; Cameron, Alex; Axford, Danny; Owen, Robin L; Armour, Wes; Waterman, David G; Iwata, So; Evans, Gwyndaf
2013-08-01
The availability of intense microbeam macromolecular crystallography beamlines at third-generation synchrotron sources has enabled data collection and structure solution from microcrystals of <10 µm in size. The increased likelihood of severe radiation damage where microcrystals or particularly sensitive crystals are used forces crystallographers to acquire large numbers of data sets from many crystals of the same protein structure. The associated analysis and merging of multi-crystal data is currently a manual and time-consuming step. Here, a computer program, BLEND, that has been written to assist with and automate many of the steps in this process is described. It is demonstrated how BLEND has successfully been used in the solution of a novel membrane protein.
Foadi, James; Aller, Pierre; Alguel, Yilmaz; Cameron, Alex; Axford, Danny; Owen, Robin L.; Armour, Wes; Waterman, David G.; Iwata, So; Evans, Gwyndaf
2013-01-01
The availability of intense microbeam macromolecular crystallography beamlines at third-generation synchrotron sources has enabled data collection and structure solution from microcrystals of <10 µm in size. The increased likelihood of severe radiation damage where microcrystals or particularly sensitive crystals are used forces crystallographers to acquire large numbers of data sets from many crystals of the same protein structure. The associated analysis and merging of multi-crystal data is currently a manual and time-consuming step. Here, a computer program, BLEND, that has been written to assist with and automate many of the steps in this process is described. It is demonstrated how BLEND has successfully been used in the solution of a novel membrane protein. PMID:23897484
Natively Inhibited Trypanosoma brucei Cathepsin B Structure Determined by Using an X-ray Laser
DePonte, Daniel P.; White, Thomas A.; Rehders, Dirk; Barty, Anton; Stellato, Francesco; Liang, Mengning; Barends, Thomas R.M.; Boutet, Sébastien; Williams, Garth J.; Messerschmidt, Marc; Seibert, M. Marvin; Aquila, Andrew; Arnlund, David; Bajt, Sasa; Barth, Torsten; Bogan, Michael J.; Caleman, Carl; Chao, Tzu-Chiao; Doak, R. Bruce; Fleckenstein, Holger; Frank, Matthias; Fromme, Raimund; Galli, Lorenzo; Grotjohann, Ingo; Hunter, Mark S.; Johansson, Linda C.; Kassemeyer, Stephan; Katona, Gergely; Kirian, Richard A.; Koopmann, Rudolf; Kupitz, Chris; Lomb, Lukas; Martin, Andrew V.; Mogk, Stefan; Neutze, Richard; Shoeman, Robert L.; Steinbrener, Jan; Timneanu, Nicusor; Wang, Dingjie; Weierstall, Uwe; Zatsepin, Nadia A.; Spence, John C. H.; Fromme, Petra; Schlichting, Ilme; Duszenko, Michael; Betzel, Christian; Chapman, Henry N.
2013-01-01
The Trypanosoma brucei cysteine protease cathepsin B (TbCatB), which is involved in host protein degradation, is a promising target to develop new treatments against sleeping sickness, a fatal disease caused by this protozoan parasite. The structure of the mature, active form of TbCatB has so far not provided sufficient information for the design of a safe and specific drug against T. brucei. By combining two recent innovations, in vivo crystallization and serial femtosecond crystallography, we obtained the room-temperature 2.1 angstrom resolution structure of the fully glycosylated precursor complex of TbCatB. The structure reveals the mechanism of native TbCatB inhibition and demonstrates that new biomolecular information can be obtained by the “diffraction-before-destruction” approach of x-ray free-electron lasers from hundreds of thousands of individual microcrystals. PMID:23196907
Lee, Ho-Hsien; Cherni, Irene; Yu, HongQi; ...
2014-08-20
CTB-MPR is a fusion protein between the B subunit of cholera toxin (CTB) and the membrane-proximal region of gp41 (MPR), the transmembrane envelope protein of Human immunodeficiency virus 1 (HIV-1), and has previously been shown to induce the production of anti-HIV-1 antibodies with antiviral functions. To further improve the design of this candidate vaccine, X-ray crystallography experiments were performed to obtain structural information about this fusion protein. Several variants of CTB-MPR were designed, constructed and recombinantly expressed in Escherichia coli . The first variant contained a flexible GPGP linker between CTB and MPR, and yielded crystals that diffracted to amore » resolution of 2.3 Å, but only the CTB region was detected in the electron-density map. A second variant, in which the CTB was directly attached to MPR, was shown to destabilize pentamer formation. A third construct containing a polyalanine linker between CTB and MPR proved to stabilize the pentameric form of the protein during purification. The purification procedure was shown to produce a homogeneously pure and monodisperse sample for crystallization. Initial crystallization experiments led to pseudo-crystals which were ordered in only two dimensions and were disordered in the third dimension. Nanocrystals obtained using the same precipitant showed promising X-ray diffraction to 5 Å resolution in femtosecond nanocrystallography experiments at the Linac Coherent Light Source at the SLAC National Accelerator Laboratory. The results demonstrate the utility of femtosecond X-ray crystallography to enable structural analysis based on nano/microcrystals of a protein for which no macroscopic crystals ordered in three dimensions have been observed before.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ho-Hsien; Cherni, Irene; Yu, HongQi
CTB-MPR is a fusion protein between the B subunit of cholera toxin (CTB) and the membrane-proximal region of gp41 (MPR), the transmembrane envelope protein of Human immunodeficiency virus 1 (HIV-1), and has previously been shown to induce the production of anti-HIV-1 antibodies with antiviral functions. To further improve the design of this candidate vaccine, X-ray crystallography experiments were performed to obtain structural information about this fusion protein. Several variants of CTB-MPR were designed, constructed and recombinantly expressed in Escherichia coli . The first variant contained a flexible GPGP linker between CTB and MPR, and yielded crystals that diffracted to amore » resolution of 2.3 Å, but only the CTB region was detected in the electron-density map. A second variant, in which the CTB was directly attached to MPR, was shown to destabilize pentamer formation. A third construct containing a polyalanine linker between CTB and MPR proved to stabilize the pentameric form of the protein during purification. The purification procedure was shown to produce a homogeneously pure and monodisperse sample for crystallization. Initial crystallization experiments led to pseudo-crystals which were ordered in only two dimensions and were disordered in the third dimension. Nanocrystals obtained using the same precipitant showed promising X-ray diffraction to 5 Å resolution in femtosecond nanocrystallography experiments at the Linac Coherent Light Source at the SLAC National Accelerator Laboratory. The results demonstrate the utility of femtosecond X-ray crystallography to enable structural analysis based on nano/microcrystals of a protein for which no macroscopic crystals ordered in three dimensions have been observed before.« less
Gimenez, Gregory; Metcalf, Peter; Paterson, Neil G.; Sharpe, Miriam L.
2016-01-01
The Japanese firefly squid Hotaru-ika (Watasenia scintillans) produces intense blue light from photophores at the tips of two arms. These photophores are densely packed with protein microcrystals that catalyse the bioluminescent reaction using ATP and the substrate coelenterazine disulfate. The squid is the only organism known to produce light using protein crystals. We extracted microcrystals from arm tip photophores and identified the constituent proteins using mass spectrometry and transcriptome libraries prepared from arm tip tissue. The crystals contain three proteins, wsluc1–3, all members of the ANL superfamily of adenylating enzymes. They share 19 to 21% sequence identity with firefly luciferases, which produce light using ATP and the unrelated firefly luciferin substrate. We propose that wsluc1–3 form a complex that crystallises inside the squid photophores, and that in the crystal one or more of the proteins catalyses the production of light using coelenterazine disulfate and ATP. These results suggest that ANL superfamily enzymes have independently evolved in distant species to produce light using unrelated substrates. PMID:27279452
Feasibility of one-shot-per-crystal structure determination using Laue diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cornaby, Sterling; CHESS; Szebenyi, Doletha M. E.
Structure determination was successfully carried out using single Laue exposures from a group of lysozyme crystals. The Laue method may be a viable option for collection of one-shot-per-crystal data from microcrystals. Crystal size is an important factor in determining the number of diffraction patterns which may be obtained from a protein crystal before severe radiation damage sets in. As crystal dimensions decrease this number is reduced, eventually falling to one, at which point a complete data set must be assembled using data from multiple crystals. When only a single exposure is to be collected from each crystal, the polychromatic Lauemore » technique may be preferable to monochromatic methods owing to its simultaneous recording of a large number of fully recorded reflections per image. To assess the feasibility of solving structures using single Laue images from multiple crystals, data were collected using a ‘pink’ beam at the CHESS D1 station from groups of lysozyme crystals with dimensions of the order of 20–30 µm mounted on MicroMesh grids. Single-shot Laue data were used for structure determination by molecular replacement and correct solutions were obtained even when as few as five crystals were used.« less
Structural studies of P-type ATPase–ligand complexes using an X-ray free-electron laser
Bublitz, Maike; Nass, Karol; Drachmann, Nikolaj D.; ...
2015-06-11
Membrane proteins are key players in biological systems, mediating signalling events and the specific transport ofe.g.ions and metabolites. Consequently, membrane proteins are targeted by a large number of currently approved drugs. Understanding their functions and molecular mechanisms is greatly dependent on structural information, not least on complexes with functionally or medically important ligands. Structure determination, however, is hampered by the difficulty of obtaining well diffracting, macroscopic crystals. Here, the feasibility of X-ray free-electron-laser-based serial femtosecond crystallography (SFX) for the structure determination of membrane protein–ligand complexes using microcrystals of various native-source and recombinant P-type ATPase complexes is demonstrated. The data revealmore » the binding sites of a variety of ligands, including lipids and inhibitors such as the hallmark P-type ATPase inhibitor orthovanadate. By analyzing the resolution dependence of ligand densities and overall model qualities, SFX data quality metrics as well as suitable refinement procedures are discussed. Even at relatively low resolution and multiplicity, the identification of ligands can be demonstrated. This makes SFX a useful tool for ligand screening and thus for unravelling the molecular mechanisms of biologically active proteins.« less
Sample manipulation and data assembly for robust microcrystal synchrotron crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Gongrui; Fuchs, Martin R.; Shi, Wuxian
With the recent developments in microcrystal handling, synchrotron microdiffraction beamline instrumentation and data analysis, microcrystal crystallography with crystal sizes of less than 10 µm is appealing at synchrotrons. However, challenges remain in sample manipulation and data assembly for robust microcrystal synchrotron crystallography. Here, the development of micro-sized polyimide well-mounts for the manipulation of microcrystals of a few micrometres in size and the implementation of a robust data-analysis method for the assembly of rotational microdiffraction data sets from many microcrystals are described. Here, the method demonstrates that microcrystals may be routinely utilized for the acquisition and assembly of complete data setsmore » from synchrotron microdiffraction beamlines.« less
Sample manipulation and data assembly for robust microcrystal synchrotron crystallography
Guo, Gongrui; Fuchs, Martin R.; Shi, Wuxian; ...
2018-04-19
With the recent developments in microcrystal handling, synchrotron microdiffraction beamline instrumentation and data analysis, microcrystal crystallography with crystal sizes of less than 10 µm is appealing at synchrotrons. However, challenges remain in sample manipulation and data assembly for robust microcrystal synchrotron crystallography. Here, the development of micro-sized polyimide well-mounts for the manipulation of microcrystals of a few micrometres in size and the implementation of a robust data-analysis method for the assembly of rotational microdiffraction data sets from many microcrystals are described. Here, the method demonstrates that microcrystals may be routinely utilized for the acquisition and assembly of complete data setsmore » from synchrotron microdiffraction beamlines.« less
Sieve-based device for MALDI sample preparation. III. Its power for quantitative measurements.
Molin, Laura; Cristoni, Simone; Seraglia, Roberta; Traldi, Pietro
2011-02-01
The solid sample inhomogeneity is a weak point of traditional MALDI deposition techniques that reflects negatively on quantitative analysis. The recently developed sieve-based device (SBD) sample deposition method, based on the electrospraying of matrix/analyte solutions through a grounded sieve, allows the homogeneous deposition of microcrystals with dimensions smaller than that of the laser spot. In each microcrystal the matrix/analyte molar ratio can be considered constant. Then, by irradiating different portions of the microcrystal distribution an identical response is obtained. This result suggests the employment of SBD in the development of quantitative procedures. For this aim, mixtures of different proteins of known molarity were analyzed, showing a good relationship between molarity and intensity ratios. This behaviour was also observed in the case of proteins with quite different ionic yields. The power of the developed method for quantitative evaluation was also tested by the measurement of the abundance of IGPP[Oxi]GPP[Oxi]GLMGPP (m/z 1219) present in the collagen-α-5(IV) chain precursor, differently expressed in urines from healthy subjects and diabetic-nephropathic patients, confirming its overexpression in the presence of nephropathy. The data obtained indicate that SBD is a particularly effective method for quantitative analysis also in biological fluids of interest. Copyright © 2011 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Saito, Yasuyoshi; Takao, Hisaaki
2006-09-01
Platelike SrTiO3 particles with a cubic perovskite structure were synthesized by topochemical microcrystal conversion (TMC) from platelike precursor particles of layer-structured SrBi4Ti4O15 at 950 °C. SrTiO3 particles preserved the shape of precursor particles, and had a thickness of approximately 0.5 μm and a width of 5-10 μm. X-ray diffraction analysis revealed that in the TMC reaction, the crystallographic {001} plane of SrBi4Ti4O15 is converted into the {100} plane of SrTiO3. Using the platelike SrTiO3 particles as a template in templated grain growth method, dense {100} grain-oriented SrTiO3 ceramics having a {100} orientation degree (Lotgering’s factor) higher than 91% could be fabricated at sintering temperatures between 1350 and 1550 °C. The maximum orientation factor reached 99.3%.
Oil-free hyaluronic acid matrix for serial femtosecond crystallography
NASA Astrophysics Data System (ADS)
Sugahara, Michihiro; Song, Changyong; Suzuki, Mamoru; Masuda, Tetsuya; Inoue, Shigeyuki; Nakane, Takanori; Yumoto, Fumiaki; Nango, Eriko; Tanaka, Rie; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Yabashi, Makina; Nureki, Osamu; Numata, Keiji; Iwata, So
2016-04-01
The grease matrix was originally introduced as a microcrystal-carrier for serial femtosecond crystallography and has been expanded to applications for various types of proteins, including membrane proteins. However, the grease-based matrix has limited application for oil-sensitive proteins. Here we introduce a grease-free, water-based hyaluronic acid matrix. Applications for proteinase K and lysozyme proteins were able to produce electron density maps at 2.3-Å resolution.
Accurate macromolecular structures using minimal measurements from X-ray free-electron lasers
Hattne, Johan; Echols, Nathaniel; Tran, Rosalie; Kern, Jan; Gildea, Richard J.; Brewster, Aaron S.; Alonso-Mori, Roberto; Glöckner, Carina; Hellmich, Julia; Laksmono, Hartawan; Sierra, Raymond G.; Lassalle-Kaiser, Benedikt; Lampe, Alyssa; Han, Guangye; Gul, Sheraz; DiFiore, Dörte; Milathianaki, Despina; Fry, Alan R.; Miahnahri, Alan; White, William E.; Schafer, Donald W.; Seibert, M. Marvin; Koglin, Jason E.; Sokaras, Dimosthenis; Weng, Tsu-Chien; Sellberg, Jonas; Latimer, Matthew J.; Glatzel, Pieter; Zwart, Petrus H.; Grosse-Kunstleve, Ralf W.; Bogan, Michael J.; Messerschmidt, Marc; Williams, Garth J.; Boutet, Sébastien; Messinger, Johannes; Zouni, Athina; Yano, Junko; Bergmann, Uwe; Yachandra, Vittal K.; Adams, Paul D.; Sauter, Nicholas K.
2014-01-01
X-ray free-electron laser (XFEL) sources enable the use of crystallography to solve three-dimensional macromolecular structures under native conditions and free from radiation damage. Results to date, however, have been limited by the challenge of deriving accurate Bragg intensities from a heterogeneous population of microcrystals, while at the same time modeling the X-ray spectrum and detector geometry. Here we present a computational approach designed to extract statistically significant high-resolution signals from fewer diffraction measurements. PMID:24633409
Cell proliferation by silk gut incorporating FGF-2 protein microcrystals.
Kotani, Eiji; Yamamoto, Naoto; Kobayashi, Isao; Uchino, Keiro; Muto, Sayaka; Ijiri, Hiroshi; Shimabukuro, Junji; Tamura, Toshiki; Sezutsu, Hideki; Mori, Hajime
2015-06-08
Silk gut processed from the silk glands of the silkworm could be an ideal biodegradable carrier for cell growth factors. We previously demonstrated that polyhedra, microcrystals of Cypovirus 1 polyhedrin, can serve as versatile carrier proteins. Here, we report the generation of a transgenic silkworm that expresses polyhedrin together with human basic fibroblast growth factor (FGF-2) in its posterior silk glands to utilize silk gut as a proteinaceous carrier to protect and slowly release active cell growth factors. In the posterior silk glands, polyhedrin formed polyhedral microcrystals, and FGF-2 became encapsulated within the polyhedra due to a polyhedron-immobilization signal. Silk gut powder prepared from posterior silk glands containing polyhedron-encapsulated FGF-2 stimulated the phosphorylation of p44/p42 MAP kinase and induced the proliferation of serum-starved NIH3T3 cells by releasing bioactive FGF-2. Even after a one-week incubation at 25 °C, significantly higher biological activity of FGF-2 was observed for silk gut powder incorporating polyhedron-encapsulated FGF-2 relative to silk gut powder with non-encapsulated FGF-2. Our results demonstrate that posterior silk glands incorporating polyhedron-encapsulated FGF-2 are applicable to the preparation of biodegradable silk gut, which can protect and release FGF-2 that is produced in a virus- and serum-free expression system with significant application potential.
Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography.
Weierstall, Uwe; James, Daniel; Wang, Chong; White, Thomas A; Wang, Dingjie; Liu, Wei; Spence, John C H; Bruce Doak, R; Nelson, Garrett; Fromme, Petra; Fromme, Raimund; Grotjohann, Ingo; Kupitz, Christopher; Zatsepin, Nadia A; Liu, Haiguang; Basu, Shibom; Wacker, Daniel; Han, Gye Won; Katritch, Vsevolod; Boutet, Sébastien; Messerschmidt, Marc; Williams, Garth J; Koglin, Jason E; Marvin Seibert, M; Klinker, Markus; Gati, Cornelius; Shoeman, Robert L; Barty, Anton; Chapman, Henry N; Kirian, Richard A; Beyerlein, Kenneth R; Stevens, Raymond C; Li, Dianfan; Shah, Syed T A; Howe, Nicole; Caffrey, Martin; Cherezov, Vadim
2014-01-01
Lipidic cubic phase (LCP) crystallization has proven successful for high-resolution structure determination of challenging membrane proteins. Here we present a technique for extruding gel-like LCP with embedded membrane protein microcrystals, providing a continuously renewed source of material for serial femtosecond crystallography. Data collected from sub-10-μm-sized crystals produced with less than 0.5 mg of purified protein yield structural insights regarding cyclopamine binding to the Smoothened receptor.
Magnetically responsive calcium carbonate microcrystals.
Fakhrullin, Rawil F; Bikmullin, Aidar G; Nurgaliev, Danis K
2009-09-01
Here we report the fabrication of magnetically responsive calcium carbonate microcrystals produced by coprecipitation of calcium carbonate in the presence of citrate-stabilized iron oxide nanoparticles. We demonstrate that the calcite microcrystals obtained possess superparamagnetic properties due to incorporated magnetite nanoparticles and can be manipulated by an external magnetic field. The microcrystals doped with magnetic nanoparticles were utilized as templates for the fabrication of hollow polyelectrolyte microcapsules, which retain the magnetic properties of the sacrificial cores and might be spatially manipulated using a permanent magnet, thus providing the magnetic-field-facilitated delivery and separation of materials templated on magnetically responsive calcite microcrystals.
Bone regeneration by polyhedral microcrystals from silkworm virus
Matsumoto, Goichi; Ueda, Takayo; Shimoyama, Junko; Ijiri, Hiroshi; Omi, Yasushi; Yube, Hisato; Sugita, Yoshihiko; Kubo, Katsutoshi; Maeda, Hatsuhiko; Kinoshita, Yukihiko; Arias, Duverney Gaviria; Shimabukuro, Junji; Kotani, Eiji; Kawamata, Shin; Mori, Hajime
2012-01-01
Bombyx mori cypovirus is a major pathogen which causes significant losses in silkworm cocoon harvests because the virus particles are embedded in micrometer-sized protein crystals called polyhedra and can remain infectious in harsh environmental conditions for years. But the remarkable stability of polyhedra can be applied on slow-release carriers of cytokines for tissue engineering. Here we show the complete healing in critical-sized bone defects by bone morphogenetic protein-2 (BMP-2) encapsulated polyhedra. Although absorbable collagen sponge (ACS) safely and effectively delivers recombinant human BMP-2 (rhBMP-2) into healing tissue, the current therapeutic regimens release rhBMP-2 at an initially high rate after which the rate declines rapidly. ACS impregnated with BMP-2 polyhedra had enough osteogenic activity to promote complete healing in critical-sized bone defects, but ACS with a high dose of rhBMP-2 showed incomplete bone healing, indicating that polyhedral microcrystals containing BMP-2 promise to advance the state of the art of bone healing. PMID:23226833
Serial Femtosecond Crystallography Opens New Avenues for Structural Biology
Coe, Jesse; Fromme, Petra
2016-01-01
Free electron lasers (FELs) provide X-ray pulses in the femtosecond time domain with up to 1012 higher photon flux than synchrotrons and open new avenues for the determination of difficult to crystallize proteins, like large complexes and human membrane proteins. While the X-ray pulses are so strong that they destroy any solid material, the crystals diffract before they are destroyed. The most successful application of FELs for biology has been the method of serial femtosecond crystallography (SFX) where nano or microcrystals are delivered to the FEL beam in a stream of their mother liquid at room temperature, which ensures the replenishment of the sample before the next X-ray pulse arrives. New injector technology allows also for the delivery of crystal in lipidic cubic phases or agarose, which reduces the sample amounts for an SFX data set by two orders of magnitude. Time-resolved SFX also allows for analysis of the dynamics of biomolecules, the proof of principle being recently shown for light-induced reactions in photosystem II and photoactive yellow protein. An SFX data sets consist of thousands of single crystal snapshots in random orientations, which can be analyzed now “on the fly” by data analysis programs specifically developed for SFX, but de-novo phasing is still a challenge, that might be overcome by two-color experiments or phasing by shape transforms. PMID:26786767
Hofmann, Felix; Harder, Ross J.; Liu, Wenjun; ...
2018-05-11
Here, this study presents a detailed examination of the lattice distortions introduced by glancing incidence Focussed Ion Beam (FIB) milling. Using non-destructive multi-reflection Bragg coherent X-ray diffraction we probe damage formation in an initially pristine gold micro-crystal following several stages of FIB milling. These experiments allow access to the full lattice strain tensor in the micro-crystal with ~25 nm 3D spatial resolution, enabling a nano-scale analysis of residual lattice strains and defects formed. Our results show that 30 keV glancing incidence milling produces fewer large defects than normal incidence milling at the same energy. However the resulting residual lattice strainsmore » have similar magnitude and extend up to ~50 nm into the sample. At the edges of the milled surface, where the ion-beam tails impact the sample at near-normal incidence, large dislocation loops with a range of Burgers vectors are formed. Further glancing incidence FIB polishing with 5 keV ion energy removes these dislocation loops and reduces the lattice strains caused by higher energy FIB milling. However, even at the lower ion energy, damage-induced lattice strains are present within a ~20 nm thick surface layer. These results highlight the need for careful consideration and management of FIB damage. They also show that low-energy FIB-milling is an effective tool for removing FIB-milling induced lattice strains. This is important for the preparation of micro-mechanical test specimens and strain microscopy samples.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hofmann, Felix; Harder, Ross J.; Liu, Wenjun
Here, this study presents a detailed examination of the lattice distortions introduced by glancing incidence Focussed Ion Beam (FIB) milling. Using non-destructive multi-reflection Bragg coherent X-ray diffraction we probe damage formation in an initially pristine gold micro-crystal following several stages of FIB milling. These experiments allow access to the full lattice strain tensor in the micro-crystal with ~25 nm 3D spatial resolution, enabling a nano-scale analysis of residual lattice strains and defects formed. Our results show that 30 keV glancing incidence milling produces fewer large defects than normal incidence milling at the same energy. However the resulting residual lattice strainsmore » have similar magnitude and extend up to ~50 nm into the sample. At the edges of the milled surface, where the ion-beam tails impact the sample at near-normal incidence, large dislocation loops with a range of Burgers vectors are formed. Further glancing incidence FIB polishing with 5 keV ion energy removes these dislocation loops and reduces the lattice strains caused by higher energy FIB milling. However, even at the lower ion energy, damage-induced lattice strains are present within a ~20 nm thick surface layer. These results highlight the need for careful consideration and management of FIB damage. They also show that low-energy FIB-milling is an effective tool for removing FIB-milling induced lattice strains. This is important for the preparation of micro-mechanical test specimens and strain microscopy samples.« less
Wang, Jimin; Askerka, Mikhail; Brudvig, Gary W.; ...
2017-01-12
Understanding structure–function relations in photosystem II (PSII) is important for the development of biomimetic photocatalytic systems. X-ray crystallography, computational modeling, and spectroscopy have played central roles in elucidating the structure and function of PSII. Recent breakthroughs in femtosecond X-ray crystallography offer the possibility of collecting diffraction data from the X-ray free electron laser (XFEL) before radiation damage of the sample, thereby overcoming the main challenge of conventional X-ray diffraction methods. However, the interpretation of XFEL data from PSII intermediates is challenging because of the issues regarding data-processing, uncertainty on the precise positions of light oxygen atoms next to heavy metalmore » centers, and different kinetics of the S-state transition in microcrystals compared to solution. Lastly, we summarize recent advances and outstanding challenges in PSII structure–function determination with emphasis on the implementation of quantum mechanics/molecular mechanics techniques combined with isomorphous difference Fourier maps, direct methods, and high-resolution spectroscopy.« less
Wang, Jimin; Askerka, Mikhail; Brudvig, Gary W; Batista, Victor S
2017-02-10
Understanding structure-function relations in photosystem II (PSII) is important for the development of biomimetic photocatalytic systems. X-ray crystallography, computational modeling, and spectroscopy have played central roles in elucidating the structure and function of PSII. Recent breakthroughs in femtosecond X-ray crystallography offer the possibility of collecting diffraction data from the X-ray free electron laser (XFEL) before radiation damage of the sample, thereby overcoming the main challenge of conventional X-ray diffraction methods. However, the interpretation of XFEL data from PSII intermediates is challenging because of the issues regarding data-processing, uncertainty on the precise positions of light oxygen atoms next to heavy metal centers, and different kinetics of the S-state transition in microcrystals compared to solution. Here, we summarize recent advances and outstanding challenges in PSII structure-function determination with emphasis on the implementation of quantum mechanics/molecular mechanics techniques combined with isomorphous difference Fourier maps, direct methods, and high-resolution spectroscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jimin; Askerka, Mikhail; Brudvig, Gary W.
Understanding structure–function relations in photosystem II (PSII) is important for the development of biomimetic photocatalytic systems. X-ray crystallography, computational modeling, and spectroscopy have played central roles in elucidating the structure and function of PSII. Recent breakthroughs in femtosecond X-ray crystallography offer the possibility of collecting diffraction data from the X-ray free electron laser (XFEL) before radiation damage of the sample, thereby overcoming the main challenge of conventional X-ray diffraction methods. However, the interpretation of XFEL data from PSII intermediates is challenging because of the issues regarding data-processing, uncertainty on the precise positions of light oxygen atoms next to heavy metalmore » centers, and different kinetics of the S-state transition in microcrystals compared to solution. Lastly, we summarize recent advances and outstanding challenges in PSII structure–function determination with emphasis on the implementation of quantum mechanics/molecular mechanics techniques combined with isomorphous difference Fourier maps, direct methods, and high-resolution spectroscopy.« less
Silva, Anderson Clayton da; Santos, Priscila Dayane de Freitas; Palazzi, Nicole Campezato; Leimann, Fernanda Vitória; Fuchs, Renata Hernandez Barros; Bracht, Lívia; Gonçalves, Odinei Hess
2017-05-24
Nontoxic conserving agents are in demand by the food industry due to consumers concern about synthetic conservatives, especially in minimally processed food. The antimicrobial activity of curcumin, a natural phenolic compound, has been extensively investigated but hydrophobicity is an issue when applying curcumin to foodstuff. The objective of this work was to evaluate curcumin microcrystals as an antimicrobial agent in minimally processed carrots. The antimicrobial activity of curcumin microcrystals was evaluated in vitro against Gram-positive (Bacillus cereus and Staphylococcus aureus) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) microorganisms, showing a statistically significant (p < 0.05) decrease in the minimum inhibitory concentration compared to in natura, pristine curcumin. Curcumin microcrystals were effective in inhibiting psychrotrophic and mesophile microorganisms in minimally processed carrots. Sensory analyses were carried out showing no significant difference (p < 0.05) between curcumin microcrystal-treated carrots and non-treated carrots in triangular and tetrahedral discriminative tests. Sensory tests also showed that curcumin microcrystals could be added as a natural preservative in minimally processed carrots without causing noticeable differences that could be detected by the consumer. One may conclude that the analyses of the minimally processed carrots demonstrated that curcumin microcrystals are a suitable natural compound to inhibit the natural microbiota of carrots from a statistical point of view.
NASA Astrophysics Data System (ADS)
Zhang, Jin; Peng, Li-Li; Tang, Ying; Wu, Huijie
2017-06-01
Novel twin-Christmas tree-like PbWO4 microcrystals have been prepared via a convenient aqueous solution route at room temperature under the assistance of β-cyclodextrin (β-CD). The product was characterized by XRD, EDX, SEM, TEM, UV-vis and PL and BET techniques. It was found that β-CD plays an important role in the forming of twin-Christmas tree-like PbWO4 microcrystals. A five-step growth mechanism was proposed to explain the formation of such twin-Christmas tree-like structures. The photocatalytic performance of PbWO4 microcrystals was evaluated by measuring the decomposition rate of methylene blue (MB) and malachite green (MG) solution under the UV irradiation, and the photocatalytic results indicated that as-prepared PbWO4 microcrystals exhibit good and versatile photocatalytic activity as well as excellent recyclability.
Darville, Nicolas; Saarinen, Jukka; Isomäki, Antti; Khriachtchev, Leonid; Cleeren, Dirk; Sterkens, Patrick; van Heerden, Marjolein; Annaert, Pieter; Peltonen, Leena; Santos, Hélder A; Strachan, Clare J; Van den Mooter, Guy
2015-10-01
Drug nano-/microcrystals are being used for sustained parenteral drug release, but safety and efficacy concerns persist as the knowledge of the in vivo fate of long-living particulates is limited. There is a need for techniques enabling the visualization of drug nano-/microcrystals in biological matrices. The aim of this work was to explore the potential of coherent anti-Stokes Raman scattering (CARS) microscopy, supported by other non-linear optical methods, as an emerging tool for the investigation of cellular and tissue interactions of unlabeled and non-fluorescent nano-/microcrystals. Raman and CARS spectra of the prodrug paliperidone palmitate (PP), paliperidone (PAL) and several suspension stabilizers were recorded. PP nano-/microcrystals were incubated with RAW 264.7 macrophages in vitro and their cellular disposition was investigated using a fully-integrated multimodal non-linear optical imaging platform. Suitable anti-Stokes shifts (CH stretching) were identified for selective CARS imaging. CARS microscopy was successfully applied for the selective three-dimensional, non-perturbative and real-time imaging of unlabeled PP nano-/microcrystals having dimensions larger than the optical lateral resolution of approximately 400nm, in relation to the cellular framework in cell cultures and ex vivo in histological sections. In conclusion, CARS microscopy enables the non-invasive and label-free imaging of (sub)micron-sized (pro-)drug crystals in complex biological matrices and could provide vital information on poorly understood nano-/microcrystal-cell interactions in future. Copyright © 2015 Elsevier B.V. All rights reserved.
Controlling the Temperature and Speed of the Phase Transition of VO 2 Microcrystals
Yoon, Joonseok; Kim, Howon; Chen, Xian; ...
2015-12-29
Here, we investigated the control of two important parameters of vanadium dioxide (VO 2 ) microcrystals, the phase transition temperature and speed, by varying microcrystal width. By using the reflectivity change between insulating and metallic phases, phase transition temperature is measured by optical microscopy. As the width of square cylinder-shaped microcrystals decreases from ~70 to ~1 μm, the phase transition temperature (67 °C for bulk) varied as much as 26.1 °C (19.7 °C) during heating (cooling). In addition, the propagation speed of phase boundary in the microcrystal, i.e., phase transition speed, is monitored at the onset of phase transition bymore » using the high-speed resistance measurement. The phase transition speed increases from 4.6 × 10 2 to 1.7 × 10 4 μm/s as the width decreases from ~50 to ~2 μm. While the statistical description for a heterogeneous nucleation process explains the size dependence on phase transition temperature of VO 2 , the increase of effective thermal exchange process is responsible for the enhancement of phase transition speed of small VO 2 microcrystals. These findings not only enhance the understanding of VO 2 intrinsic properties but also contribute to the development of innovative electronic devices.« less
Controlling the Temperature and Speed of the Phase Transition of VO 2 Microcrystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Joonseok; Kim, Howon; Chen, Xian
Here, we investigated the control of two important parameters of vanadium dioxide (VO 2 ) microcrystals, the phase transition temperature and speed, by varying microcrystal width. By using the reflectivity change between insulating and metallic phases, phase transition temperature is measured by optical microscopy. As the width of square cylinder-shaped microcrystals decreases from ~70 to ~1 μm, the phase transition temperature (67 °C for bulk) varied as much as 26.1 °C (19.7 °C) during heating (cooling). In addition, the propagation speed of phase boundary in the microcrystal, i.e., phase transition speed, is monitored at the onset of phase transition bymore » using the high-speed resistance measurement. The phase transition speed increases from 4.6 × 10 2 to 1.7 × 10 4 μm/s as the width decreases from ~50 to ~2 μm. While the statistical description for a heterogeneous nucleation process explains the size dependence on phase transition temperature of VO 2 , the increase of effective thermal exchange process is responsible for the enhancement of phase transition speed of small VO 2 microcrystals. These findings not only enhance the understanding of VO 2 intrinsic properties but also contribute to the development of innovative electronic devices.« less
Pauling, L
1990-10-01
An analysis of electron micrographs of Al5Mn quasicrystals obtained by rapidly cooling a molten alloy with composition Al17Mn and removing the Al matrix by electrosolution, revealing aggregates of 20 microcrystals at the corners of a pentagonal dodecahedron, supports the proposal that these microcrystals are cubic crystals twinned about an icosahedral seed, with each cubic microcrystal sharing a threefold axis and three symmetry planes with the seed.
Acoustic Injectors for Drop-On-Demand Serial Femtosecond Crystallography.
Roessler, Christian G; Agarwal, Rakhi; Allaire, Marc; Alonso-Mori, Roberto; Andi, Babak; Bachega, José F R; Bommer, Martin; Brewster, Aaron S; Browne, Michael C; Chatterjee, Ruchira; Cho, Eunsun; Cohen, Aina E; Cowan, Matthew; Datwani, Sammy; Davidson, Victor L; Defever, Jim; Eaton, Brent; Ellson, Richard; Feng, Yiping; Ghislain, Lucien P; Glownia, James M; Han, Guangye; Hattne, Johan; Hellmich, Julia; Héroux, Annie; Ibrahim, Mohamed; Kern, Jan; Kuczewski, Anthony; Lemke, Henrik T; Liu, Pinghua; Majlof, Lars; McClintock, William M; Myers, Stuart; Nelsen, Silke; Olechno, Joe; Orville, Allen M; Sauter, Nicholas K; Soares, Alexei S; Soltis, S Michael; Song, Heng; Stearns, Richard G; Tran, Rosalie; Tsai, Yingssu; Uervirojnangkoorn, Monarin; Wilmot, Carrie M; Yachandra, Vittal; Yano, Junko; Yukl, Erik T; Zhu, Diling; Zouni, Athina
2016-04-05
X-ray free-electron lasers (XFELs) provide very intense X-ray pulses suitable for macromolecular crystallography. Each X-ray pulse typically lasts for tens of femtoseconds and the interval between pulses is many orders of magnitude longer. Here we describe two novel acoustic injection systems that use focused sound waves to eject picoliter to nanoliter crystal-containing droplets out of microplates and into the X-ray pulse from which diffraction data are collected. The on-demand droplet delivery is synchronized to the XFEL pulse scheme, resulting in X-ray pulses intersecting up to 88% of the droplets. We tested several types of samples in a range of crystallization conditions, wherein the overall crystal hit ratio (e.g., fraction of images with observable diffraction patterns) is a function of the microcrystal slurry concentration. We report crystal structures from lysozyme, thermolysin, and stachydrine demethylase (Stc2). Additional samples were screened to demonstrate that these methods can be applied to rare samples. Copyright © 2016 Elsevier Ltd. All rights reserved.
New methods for indexing multi-lattice diffraction data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gildea, Richard J.; Waterman, David G.; CCP4, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA
2014-10-01
A new indexing method is presented which is capable of indexing multiple crystal lattices from narrow wedges of data. The efficacy of this method is demonstrated with both semi-synthetic multi-lattice data and real multi-lattice data recorded from microcrystals of ∼1 µm in size. A new indexing method is presented which is capable of indexing multiple crystal lattices from narrow wedges of diffraction data. The method takes advantage of a simplification of Fourier transform-based methods that is applicable when the unit-cell dimensions are known a priori. The efficacy of this method is demonstrated with both semi-synthetic multi-lattice data and real multi-latticemore » data recorded from crystals of ∼1 µm in size, where it is shown that up to six lattices can be successfully indexed and subsequently integrated from a 1° wedge of data. Analysis is presented which shows that improvements in data-quality indicators can be obtained through accurate identification and rejection of overlapping reflections prior to scaling.« less
Acoustic Injectors for Drop-On-Demand Serial Femtosecond Crystallography
Roessler, Christian G.; Agarwal, Rakhi; Allaire, Marc; ...
2016-03-17
X-ray free-electron lasers (XFELs) provide very intense X-ray pulses suitable for macromolecular crystallography. Each X-ray pulse typically lasts for tens of femtoseconds and the interval between pulses is many orders of magnitude longer. Here we describe two novel acoustic injection systems that use focused sound waves to eject picoliter to nanoliter crystal-containing droplets out of microplates and into the X-ray pulse from which diffraction data are collected. The on-demand droplet delivery is synchronized to the XFEL pulse scheme, resulting in X-ray pulses intersecting up to 88% of the droplets. We tested several types of samples in a range of crystallizationmore » conditions, wherein the overall crystal hit ratio (e.g., fraction of images with observable diffraction patterns) is a function of the microcrystal slurry concentration. Lastly, we report crystal structures from lysozyme, thermolysin, and stachydrine demethylase (Stc2). In addition, samples were screened to demonstrate that these methods can be applied to rare samples« less
Acoustic Injectors for Drop-On-Demand Serial Femtosecond Crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roessler, Christian G.; Agarwal, Rakhi; Allaire, Marc
X-ray free-electron lasers (XFELs) provide very intense X-ray pulses suitable for macromolecular crystallography. Each X-ray pulse typically lasts for tens of femtoseconds and the interval between pulses is many orders of magnitude longer. Here we describe two novel acoustic injection systems that use focused sound waves to eject picoliter to nanoliter crystal-containing droplets out of microplates and into the X-ray pulse from which diffraction data are collected. The on-demand droplet delivery is synchronized to the XFEL pulse scheme, resulting in X-ray pulses intersecting up to 88% of the droplets. We tested several types of samples in a range of crystallizationmore » conditions, wherein the overall crystal hit ratio (e.g., fraction of images with observable diffraction patterns) is a function of the microcrystal slurry concentration. We report crystal structures from lysozyme, thermolysin, and stachydrine demethylase (Stc2). Additional samples were screened to demonstrate that these methods can be applied to rare samples.« less
Acoustic Injectors for Drop-On-Demand Serial Femtosecond Crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roessler, Christian G.; Agarwal, Rakhi; Allaire, Marc
X-ray free-electron lasers (XFELs) provide very intense X-ray pulses suitable for macromolecular crystallography. Each X-ray pulse typically lasts for tens of femtoseconds and the interval between pulses is many orders of magnitude longer. Here we describe two novel acoustic injection systems that use focused sound waves to eject picoliter to nanoliter crystal-containing droplets out of microplates and into the X-ray pulse from which diffraction data are collected. The on-demand droplet delivery is synchronized to the XFEL pulse scheme, resulting in X-ray pulses intersecting up to 88% of the droplets. We tested several types of samples in a range of crystallizationmore » conditions, wherein the overall crystal hit ratio (e.g., fraction of images with observable diffraction patterns) is a function of the microcrystal slurry concentration. Lastly, we report crystal structures from lysozyme, thermolysin, and stachydrine demethylase (Stc2). In addition, samples were screened to demonstrate that these methods can be applied to rare samples« less
Rosenbaum, J.G.
1993-01-01
Rock magnetic studies of tuffs are essential to the interpretation of paleomagnetic data derived from such rocks, provide a basis for interpretation of aeromagnetic data over volcanic terranes, and yield insights into the depositional and cooling histories of ash flow sheets. A rhyolitic ash flow sheet, the Miocene-aged Tiva Canyon Member of the Paintbrush Tuff, contains both titanomagnetite phenocrysts, present in the magma prior to eruption, and cubic Fe-oxide microcrystals that grew after emplacement. Systematic variations in the quantity and magnetic grain size of the microcrystals produce large variations in magnetic properties through a section of the ash flow sheet penetrated in a borehole on the Nevada Test Site. Microcrystals are important contributors to remanent magnetization and magnetic susceptibility in two 15-m-thick zones at the top and bottom. Within these zones the size of microcrystals decreases both toward the quenched margins and toward the interior of the sheet. The decrease in microcrystal size toward the interior of the sheet is interpreted to indicate the presence of a cooling break; possibly represented by a concentration of pumice. -from Author
NASA Astrophysics Data System (ADS)
Xiang-Hong, He; Zhao-Lian, Ye; Ming-Yun, Guan; Ning, Lian; Jian-Hua, Sun
2016-02-01
Pr3+-activated barium tungsto-molybdate solid solution phosphor Ba(Mo1-zWz)O4:Pr3+ is successfully fabricated via a facile molten-salt approach. The as-synthesized microcrystal is of truncated octahedron and exhibits deep-red-emitting upon blue light excitation. Powder x-ray diffraction and Raman spectroscopy techniques are utilized to investigate the formation of solid solution phosphor. The luminescence behaviors depend on the resulting composition of the microcrystals with fixed Pr3+-doping concentration, while the host lattices remain in a scheelite structure. The forming solid solution via the substitution of [WO4] for [MoO4] can significantly enhance its luminescence, which may be due to the fact that Ba(Mo1-zWz)O4:Pr3+ owns well-defined facets and uniform morphologies. Owing to its properties of high phase purity, well-defined facets, highly uniform morphologies, exceptional chemical and thermal stabilities, and stronger emission intensity, the resulting solid solution phosphor is expected to find potential applications in phosphor-converted white light-emitting diodes (LEDs). Project supported by the Construction Fund for Science and Technology Innovation Group from Jiangsu University of Technology, China, the Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, China (Grant No. KHK1409), the Priority Academic Program Development of Jiangsu Higher Education Institutions, China, and the National Natural Science Foundation of China (Grant No. 21373103).
Shi-Ying, Jin; Jin, Han; Shi-Xiao, Jin; Qing-Yuan, Lv; Jin-Xia, Bai; Chen, Hong-Ge; Rui-Sheng, Li; Wei, Wu; Hai-Long, Yuan
2014-01-01
To improve the absorption and bioavailability of baicalin using a nanocrystal (or nanosuspension) drug delivery system. A tandem, ultrasonic-homogenization-fluid bed drying technology was applied to prepare baicalin-nanocrystal dried powders, and the physicochemical properties of baicalin-nanocrystals were characterized by scanning electron microscopy, photon correlation spectroscopy, powder X-ray diffraction, physical stability, and solubility experiments. Furthermore, in situ intestine single-pass perfusion experiments and pharmacokinetics in rats were performed to make a comparison between the microcrystals of baicalin and pure baicalin in their absorption properties and bioavailability in vivo. The mean particle size of baicalin-nanocrystals was 236 nm, with a polydispersity index of 0.173, and a zeta potential value of -34.8 mV, which provided a guarantee for the stability of the reconstituted nanosuspension. X-Ray diffraction results indicated that the crystallinity of baicalin was decreased through the ultrasonic-homogenization process. Physical stability experiments showed that the prepared baicalin-nanocrystals were sufficiently stable. It was shown that the solubility of baicalin in the form of nanocrystals, at 495 μg·mL(-1), was much higher than the baicalin-microcrystals and the physical mixture (135 and 86.4 μg·mL(-1), respectively). In situ intestine perfusion experiments demonstrated a clear advantage in the dissolution and absorption characteristics for baicalin-nanocrystals compared to the other formulations. In addition, after oral administration to rats, the particle size decrease from the micron to nanometer range exhibited much higher in vivo bioavailability (with the AUC(0-t) value of 206.96 ± 21.23 and 127.95 ± 14.41 mg·L(-1)·h(-1), respectively). The nanocrystal drug delivery system using an ultrasonic-homogenization-fluid bed drying process is able to improve the absorption and in vivo bioavailability of baicalin, compared with pure baicalin coarse powder and micronized baicalin. Copyright © 2014 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ikeda, Noriaki; Koshioka, Masanori; Masuhara, Hiroshi; Yoshihara, Keitaro
1988-09-01
Absorption spectra and picosecond dynamics of the singlet exciton states of benzil and p-terphenyl in a microcrystal have been measured for the first time by analyzing the diffuse reflected spectra of the picosecond continuum.
Shieh, Fa-Kuen; Wang, Shao-Chun; Yen, Chia-I; Wu, Chang-Cheng; Dutta, Saikat; Chou, Lien-Yang; Morabito, Joseph V; Hu, Pan; Hsu, Ming-Hua; Wu, Kevin C-W; Tsung, Chia-Kuang
2015-04-08
We develop a new concept to impart new functions to biocatalysts by combining enzymes and metal-organic frameworks (MOFs). The proof-of-concept design is demonstrated by embedding catalase molecules into uniformly sized ZIF-90 crystals via a de novo approach. We have carried out electron microscopy, X-ray diffraction, nitrogen sorption, electrophoresis, thermogravimetric analysis, and confocal microscopy to confirm that the ~10 nm catalase molecules are embedded in 2 μm single-crystalline ZIF-90 crystals with ~5 wt % loading. Because catalase is immobilized and sheltered by the ZIF-90 crystals, the composites show activity in hydrogen peroxide degradation even in the presence of protease proteinase K.
New micro-beam beamline at SPring-8, targeting at protein micro-crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirata, Kunio; Ueno, Go; Nisawa, Atsushi
2010-06-23
A new protein micro-crystallography beamline BL32XU at SPring-8 is under construction and scheduled to start operation in 2010. The beamline is designed to provide the stabilized and brilliant micro-beam to collect high-quality data from micro-crystals. The beamline consists of a hybrid in-vacuum undulator, a liquid-nitrogen cooled double crystal monochromator, and K-B focusing mirrors with large magnification factor. Development of data acquisition system and end station consists of high-precision diffractometer, high-efficiency area detector, sample auto-changer etc. are also in progress.
Microcrystallography using single-bounce monocapillary optics
Gillilan, R. E.; Cook, M. J.; Cornaby, S. W.; Bilderback, D. H.
2010-01-01
X-ray microbeams have become increasingly valuable in protein crystallography. A number of synchrotron beamlines worldwide have adapted to handling smaller and more challenging samples by providing a combination of high-precision sample-positioning hardware, special visible-light optics for sample visualization, and small-diameter X-ray beams with low background scatter. Most commonly, X-ray microbeams with diameters ranging from 50 µm to 1 µm are produced by Kirkpatrick and Baez mirrors in combination with defining apertures and scatter guards. A simple alternative based on single-bounce glass monocapillary X-ray optics is presented. The basic capillary design considerations are discussed and a practical and robust implementation that capitalizes on existing beamline hardware is presented. A design for mounting the capillary is presented which eliminates parasitic scattering and reduces deformations of the optic to a degree suitable for use on next-generation X-ray sources. Comparison of diffraction data statistics for microcrystals using microbeam and conventional aperture-collimated beam shows that capillary-focused beam can deliver significant improvement. Statistics also confirm that the annular beam profile produced by the capillary optic does not impact data quality in an observable way. Examples are given of new structures recently solved using this technology. Single-bounce monocapillary optics can offer an attractive alternative for retrofitting existing beamlines for microcrystallography. PMID:20157276
NASA Astrophysics Data System (ADS)
Pathak, Shashank; Dharmadhikari, Jayashree A.; Thamizhavel, A.; Mathur, Deepak; Dharmadhikari, Aditya K.
2016-01-01
We report on growth of micro-crystals such as sodium chloride (NaCl), copper sulphate (CuSO4), potassium di-hydrogen phosphate (KDP) and glycine (NH2CH2COOH) in solution by in-situ heating using continuous wave Nd:YVO4 laser light. Crystals are grown by adding single walled carbon nanotubes (SWNT). The SWNTs absorb 1064 nm light and act as an in-situ heat source that vaporizes the solvent producing microcrystals. The temporal dynamics of micro-crystal growth is investigated by varying experimental parameters such as SWNT bundle size and incident laser power. We also report crystal growth without SWNT in an absorbing medium: copper sulphate in water. Even though the growth dynamics with SWNT and copper sulphate are significantly different, our results indicate that bubble formation is necessary for nucleation. Our simple method may open up new vistas for rapid growth of seed crystals especially for examining the crystallizability of inorganic and organic materials.
Alonso-Mori, Roberto; Kern, Jan; Gildea, Richard J.; ...
2012-11-05
The ultrabright femtosecond X-ray pulses provided by X-ray free-electron lasers open capabilities for studying the structure and dynamics of a wide variety of systems beyond what is possible with synchrotron sources. Recently, this “probe-before-destroy” approach has been demonstrated for atomic structure determination by serial X-ray diffraction of microcrystals. There has been the question whether a similar approach can be extended to probe the local electronic structure by X-ray spectroscopy. To address this, we have carried out femtosecond X-ray emission spectroscopy (XES) at the Linac Coherent Light Source using redox-active Mn complexes. XES probes the charge and spin states as wellmore » as the ligand environment, critical for understanding the functional role of redox-active metal sites. Kβ 1,3 XES spectra of Mn II and Mn 2 III,IV complexes at room temperature were collected using a wavelength dispersive spectrometer and femtosecond X-ray pulses with an individual dose of up to >100 MGy. The spectra were found in agreement with undamaged spectra collected at low dose using synchrotron radiation. Our results demonstrate that the intact electronic structure of redox active transition metal compounds in different oxidation states can be characterized with this shot-by-shot method. This opens the door for studying the chemical dynamics of metal catalytic sites by following reactions under functional conditions. Furthermore, the technique can be combined with X-ray diffraction to simultaneously obtain the geometric structure of the overall protein and the local chemistry of active metal sites and is expected to prove valuable for understanding the mechanism of important metalloproteins, such as photosystem II.« less
Alonso-Mori, Roberto; Kern, Jan; Gildea, Richard J.; Sokaras, Dimosthenis; Weng, Tsu-Chien; Lassalle-Kaiser, Benedikt; Tran, Rosalie; Hattne, Johan; Laksmono, Hartawan; Hellmich, Julia; Glöckner, Carina; Echols, Nathaniel; Sierra, Raymond G.; Schafer, Donald W.; Sellberg, Jonas; Kenney, Christopher; Herbst, Ryan; Pines, Jack; Hart, Philip; Herrmann, Sven; Grosse-Kunstleve, Ralf W.; Latimer, Matthew J.; Fry, Alan R.; Messerschmidt, Marc M.; Miahnahri, Alan; Seibert, M. Marvin; Zwart, Petrus H.; White, William E.; Adams, Paul D.; Bogan, Michael J.; Boutet, Sébastien; Williams, Garth J.; Zouni, Athina; Messinger, Johannes; Glatzel, Pieter; Sauter, Nicholas K.; Yachandra, Vittal K.; Yano, Junko; Bergmann, Uwe
2012-01-01
The ultrabright femtosecond X-ray pulses provided by X-ray free-electron lasers open capabilities for studying the structure and dynamics of a wide variety of systems beyond what is possible with synchrotron sources. Recently, this “probe-before-destroy” approach has been demonstrated for atomic structure determination by serial X-ray diffraction of microcrystals. There has been the question whether a similar approach can be extended to probe the local electronic structure by X-ray spectroscopy. To address this, we have carried out femtosecond X-ray emission spectroscopy (XES) at the Linac Coherent Light Source using redox-active Mn complexes. XES probes the charge and spin states as well as the ligand environment, critical for understanding the functional role of redox-active metal sites. Kβ1,3 XES spectra of MnII and Mn2III,IV complexes at room temperature were collected using a wavelength dispersive spectrometer and femtosecond X-ray pulses with an individual dose of up to >100 MGy. The spectra were found in agreement with undamaged spectra collected at low dose using synchrotron radiation. Our results demonstrate that the intact electronic structure of redox active transition metal compounds in different oxidation states can be characterized with this shot-by-shot method. This opens the door for studying the chemical dynamics of metal catalytic sites by following reactions under functional conditions. The technique can be combined with X-ray diffraction to simultaneously obtain the geometric structure of the overall protein and the local chemistry of active metal sites and is expected to prove valuable for understanding the mechanism of important metalloproteins, such as photosystem II. PMID:23129631
Gatemala, Harnchana; Ekgasit, Sanong; Wongravee, Kanet
2017-07-01
A simple, rapid, and environmentally friendly process using hydrogen peroxide, was developed for recovering high purity silver directly from industry and laboratory wastes. Silver ammine complex, [Ag(NH 3 ) 2 ] + Cl - , derived from AgCl were generated and then directly reduced using H 2 O 2 to reliably turn into high purity microcrystalline silver (99.99%) examined by EDS and XRD. Morphology of the recovered silver microcrystals could be selectively tuned by an addition of poly(vinyl pyrrolidone). The main parameters in the recovering process including pH, concentration of Ag + and the mole ratio of H 2 O 2 :Ag + were carefully optimized though the central composite design (CCD). The optimized condition was employed for a trial recovery of 50 L silver ammine complex prepared from a collection of silver-wastes during 3-year research on industrial nanoparticle production. The recovered silver microcrystals >700 g could be recovered with 91.27%. The remaining solution after filtering of the recovered silver microcrystals can be used repeatedly (at least 8 cycles) without losing recovery efficiency. Matrix interferences including Pb 2+ and Cl - play a minimal role in our silver recovery process. Furthermore, the direct usage of the recovered silver microcrystals was demonstrated by using as a raw material of silver clay for creating a set of wearable silver jewelries. Copyright © 2017 Elsevier Ltd. All rights reserved.
Xia, Zhiguo; Jin, Shuai; Sun, Jiayue; Du, Haiyan; Du, Peng; Liao, Libing
2011-11-01
This work focuses on the synthesis of morphology-controlled BaMoO4:Eu3+ micro-crystals such as microparticles and micro-rods using a facile molten salt method, and their morphology, structural characterization, and luminescent properties were comparatively investigated by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and fluorescence spectra. The molten salt method synthesized products from a reaction of BaMoO4 precursor obtained by a co-precipitation method of BaCl2 and Na2MoO4 with an eutectic salt mixture of NaCl-KCl at 700 degrees C. Detailed studies revealed that the formation of the different morphologies of the micro-crystals was strongly dependent on the weight ratio of the salt (NaCl-KCl) to the BaMoO4 precursor, and the formation mechanism of the products in the present molten salt system was also investigated. Based on the investigations of the photoluminescence properties, the samples with different morphologies prepared by the molten salt method had the strongest red emission at 615 nm, corresponding to the Eu3+ 5D0-7F2 transition in the BaMoO4 host lattice, and the emission intensity of BaMoO4:Eu3+ microparticles was stronger than that of BaMoO4:Eu3+ micro-rods.
KAMO: towards automated data processing for microcrystals.
Yamashita, Keitaro; Hirata, Kunio; Yamamoto, Masaki
2018-05-01
In protein microcrystallography, radiation damage often hampers complete and high-resolution data collection from a single crystal, even under cryogenic conditions. One promising solution is to collect small wedges of data (5-10°) separately from multiple crystals. The data from these crystals can then be merged into a complete reflection-intensity set. However, data processing of multiple small-wedge data sets is challenging. Here, a new open-source data-processing pipeline, KAMO, which utilizes existing programs, including the XDS and CCP4 packages, has been developed to automate whole data-processing tasks in the case of multiple small-wedge data sets. Firstly, KAMO processes individual data sets and collates those indexed with equivalent unit-cell parameters. The space group is then chosen and any indexing ambiguity is resolved. Finally, clustering is performed, followed by merging with outlier rejections, and a report is subsequently created. Using synthetic and several real-world data sets collected from hundreds of crystals, it was demonstrated that merged structure-factor amplitudes can be obtained in a largely automated manner using KAMO, which greatly facilitated the structure analyses of challenging targets that only produced microcrystals. open access.
Tenboer, Jason; Basu, Shibom; Zatsepin, Nadia; ...
2014-12-05
We report that serial femtosecond crystallography using ultrashort pulses from X-ray Free Electron Lasers (XFELs) offers the possibility to study light-triggered dynamics of biomolecules. Using microcrystals of the blue light photoreceptor, photoactive yellow protein, as a model system, we present high resolution, time-resolved difference electron density maps of excellent quality with strong features, which allow the determination of structures of reaction intermediates to 1.6 Å resolution. These results open the way to the study of reversible and non-reversible biological reactions on time scales as short as femtoseconds under conditions which maximize the extent of reaction initiation throughout the crystal.
Femtosecond Structural Dynamics Drives the Trans/Cis Isomerization in Photoactive Yellow Protein
Pande, Kanupriya; Hutchison, Christopher D. M.; Groenhof, Gerrit; Aquila, Andy; Robinson, Josef S.; Tenboer, Jason; Basu, Shibom; Boutet, Sébastien; DePonte, Daniel P.; Liang, Mengning; White, Thomas A.; Zatsepin, Nadia A.; Yefanov, Oleksandr; Morozov, Dmitry; Oberthuer, Dominik; Gati, Cornelius; Subramanian, Ganesh; James, Daniel; Zhao, Yun; Koralek, Jake; Brayshaw, Jennifer; Kupitz, Christopher; Conrad, Chelsie; Roy-Chowdhury, Shatabdi; Coe, Jesse D.; Metz, Markus; Xavier, Paulraj Lourdu; Grant, Thomas D.; Koglin, Jason E.; Ketawala, Gihan; Fromme, Raimund; Šrajer, Vukica; Henning, Robert; Spence, John C. H.; Ourmazd, Abbas; Schwander, Peter; Weierstall, Uwe; Frank, Matthias; Fromme, Petra; Barty, Anton; Chapman, Henry N.; Moffat, Keith; van Thor, Jasper J.; Schmidt, Marius
2017-01-01
A variety of organisms have evolved mechanisms to detect and respond to light, in which the response is mediated by protein structural changes following photon absorption. The initial step is often the photo-isomerization of a conjugated chromophore. Isomerization occurs on ultrafast timescales, and is substantially influenced by the chromophore environment. Here we identify structural changes associated with the earliest steps in the trans to cis isomerization of the chromophore in photoactive yellow protein. Femtosecond, hard X-ray pulses emitted by the Linac Coherent Light Source were used to conduct time-resolved serial femtosecond crystallography on PYP microcrystals over the time range from 100 femtoseconds to 3 picoseconds to determine the structural dynamics of the photoisomerization reaction. PMID:27151871
Crystallizing Membrane Proteins Using Lipidic Mesophases
Caffrey, Martin; Cherezov, Vadim
2009-01-01
A detailed protocol for crystallizing membrane proteins that makes use of lipidic mesophases is described. This has variously been referred to as the lipid cubic phase or in meso method. The method has been shown to be quite general in that it has been used to solve X-ray crystallographic structures of prokaryotic and eukaryotic proteins, proteins that are monomeric, homo- and hetero-multimeric, chromophore-containing and chromophore-free, and α-helical and β-barrel proteins. Its most recent successes are the human engineered β2-adrenergic and adenosine A2A G protein-coupled receptors. Protocols are provided for preparing and characterizing the lipidic mesophase, for reconstituting the protein into the monoolein-based mesophase, for functional assay of the protein in the mesophase, and for setting up crystallizations in manual mode. Methods for harvesting micro-crystals are also described. The time required to prepare the protein-loaded mesophase and to set up a crystallization plate manually is about one hour. PMID:19390528
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Wei; Sun, Fengqiang, E-mail: fqsun@scnu.edu.cn; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University
2013-11-15
Graphical abstract: - Highlights: • Photocatalytic activity of Cu{sub 2}O octahedral microcrystals on ITO glass was studied. • They showed high abilities in degradation of methylene blue in the presence of H{sub 2}O{sub 2}. • H{sub 2}O{sub 2} amount could affect the degradation efficiency. • Such particles could be easily recycled and still kept high activity. • Many dye pollutants and their mixtures could be efficiently degraded. - Abstract: Cu{sub 2}O octahedral microcrystals were prepared on the ITO glass by galvanostatic electrodeposition in CuSO{sub 4} solution with poly(vinylpryrrolidone) as the surfactant. By controlling the electrodeposition time, the microcrystals could bemore » randomly distributed on the ITO glass and separated from each other, resulting in as many as possible (1 1 1) crystalline planes were exposed. Such microcrystals immobilized on ITO glass were employed in photodegradation of dye pollutants in the presence of H{sub 2}O{sub 2} under a 150 W halogen tungsten lamp. The photodegradation of methylene blue was taken as an example to evaluate the photocatalytic activities of the octahedral Cu{sub 2}O microcrystals. Effects of electrodeposition time and H{sub 2}O{sub 2} amount on the degradation efficiency was discussed, giving the optimum conditions and the corresponding degradation mechanism. The catalyst showed high ability in degradation of methylene blue, methyl orange, rhodamine B, eosin B and their mixtures under identical conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Aiping; Tian, Chungui, E-mail: tianchungui@yahoo.com.cn; Chang, Wei
Graphical abstract: The Ag{sub 3}PO{sub 4} with rhombic dodecahedral, spherical and small size particles were controllable fabricated just by changing the types of the solvent. The materials possess good antibacterial properties toward different kinds of bacteria. - Highlights: • The Ag{sub 3}PO{sub 4} with three morphologies were controllable fabricated. • The Ag{sub 3}PO{sub 4} as-prepared possess obvious antibacterial properties in the dark. • The antibacterial ability of Ag{sub 3}PO{sub 4} could be greatly improved under the visible light irradiation. - Abstract: We reported the controllable fabrication of Ag{sub 3}PO{sub 4} nano/microcrystals through a simple solution-based precipitation reaction. The samples weremore » characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy and infrared spectroscopy. The results indicated that the Ag{sub 3}PO{sub 4} crystals with three different morphology, including the rhombic dodecahedron of 500 nm, the sphere of 100 nm and the particles with small-size of 20 nm, could be obtained in the solvents of water, ethylene glycol (EG) and dimethyl sulfoxide (DMSO). The antibacterial assay showed that all samples possess obvious antibacterial properties. In addition, the Ag{sub 3}PO{sub 4} with small size of 20 nm showed better activity due to their high specific surface areas. Notably, we have found that the antibacterial ability of Ag{sub 3}PO{sub 4} could be greatly improved under the visible light irradiation, which are superior to that in the dark and commercial streptomycin.« less
Lelli, Marco; Putignano, Angelo; Marchetti, Marco; Foltran, Ismaela; Mangani, Francesco; Procaccini, Maurizio; Roveri, Norberto; Orsini, Giovanna
2014-01-01
Consumption of acidic foods and drinks and other factors that cause enamel wear are responsible for the daily enamel loss and degradation. Use of some toothpastes that have been showed to possess different properties of remineralisation and/or repair of the enamel surface may help to protect tooth enamel. The aim of this study was to evaluate whether the use of toothpaste containing Zn-carbonate hydroxyapatite (CHA) nanostructured microcrystals may exert remineralization/repair effects of the enamel surface. Two groups of patients, aged between 18 and 75 years, used a Zn-CHA nanocrystals-based toothpaste (experimental group) and a potassium nitrate/sodium fluoride toothpaste (active control group) for 8 weeks. At the end of this period, extractions were performed in five subjects per study group. Negative controls consisted of two subjects treated with non-specified fluoride toothpaste. Teeth were processed for morphological and chemical-physic superficial characterizations by means of Scanning Electronic Microscopy with Elementary analysis, X-Ray Diffraction analysis and Infrared analysis. In this study, the use of a Zn-CHA nanocrystals toothpaste led to a remineralization/repair of the enamel surface, by deposition of a hydroxyapatite-rich coating. On the other hand, the use of both a nitrate potassium/sodium fluoride and non-specified fluoride toothpastes did not appreciably change the enamel surface. In conclusion, this study demonstrates that the toothpaste containing Zn-CHA nanostructured microcrystals, differently from nitrate potassium/sodium fluoride and non-specified fluoride toothpastes, may promote enamel superficial repair by means of the formation of a protective biomimetic CHA coating. PMID:25249980
NASA Astrophysics Data System (ADS)
Nasieka, Iurii; Strelchuk, Victor; Naseka, Victor; Stubrov, Yuriy; Dudnik, Stanislav; Gritsina, Vasiliy; Opalev, Oleg; Koshevoy, Konstantin; Strel'nitskij, Vladimir; Tkach, Vasyl; Boyko, Mykola; Antypov, Ievgen
2018-06-01
The PE CVD method with magnetic field discharge stabilization was applied for the growth of arrays of freestanding diamond grains (island films) as well as continuous films on Mo and Si substrates with (1 1 1) and (1 0 0) faceted microcrystals, respectively. Raman, SEM, XRD and PL methods were used for search of the specific features of defects embedded into (1 0 0) and (1 1 1) faceted grains. The main characteristic differences in the defect states of the diamond island films grown on Si and Mo substrates with (1 0 0) and (1 1 1) faceted diamond microcrystals were discussed on the base of the experimental data.
Facile synthesis and shape evolution of oleic acid decorated Cu2O microcrystals
NASA Astrophysics Data System (ADS)
Xu, Bin; Cao, Xiaohai; Zhu, Bingchun; Lou, Baiyang; Ma, Xiaocun; Li, Xiao; Wang, Yuguang
2015-11-01
A facile synthetic method of oleic acid decorated Cu2O microcrystals has been developed by thermal decomposition of copper formate-octylamine complexes in paraffin using oleic acid as dispersing agent. This new method showed many advantages, which include free-reducing agent, enhancing antioxidant properties of Cu2O and good dispersity in paraffin, etc. The phase structure and morphology were investigated by means of XRD, SEM and TEM. It is found that the reaction time and temperature play the important roles in the crystallite morphology. With the increase of the reaction time, the Cu2O rhombic dodecahedron is gradually transformed into the spherical particle by intraparticle ripening. The shape evolution of Cu2O microcrystals can be accelerated with the increase of temperature.
A scheme for solving the plane-plane challenge in force measurements at the nanoscale.
Siria, Alessandro; Huant, Serge; Auvert, Geoffroy; Comin, Fabio; Chevrier, Joel
2010-05-19
Non-contact interaction between two parallel flat surfaces is a central paradigm in sciences. This situation is the starting point for a wealth of different models: the capacitor description in electrostatics, hydrodynamic flow, thermal exchange, the Casimir force, direct contact study, third body confinement such as liquids or films of soft condensed matter. The control of parallelism is so demanding that no versatile single force machine in this geometry has been proposed so far. Using a combination of nanopositioning based on inertial motors, of microcrystal shaping with a focused-ion beam (FIB) and of accurate in situ and real-time control of surface parallelism with X-ray diffraction, we propose here a "gedanken" surface-force machine that should enable one to measure interactions between movable surfaces separated by gaps in the micrometer and nanometer ranges.
Instrumentation for Laue diffraction (invited)
NASA Astrophysics Data System (ADS)
Helliwell, J. R.; Harrop, S.; Habash, J.; Magorrian, B. G.; Allinson, N. M.; Gomez, D.; Helliwell, M.; Derewenda, Z.; Cruickshank, D. W. J.
1989-07-01
Single-crystal x-ray diffraction data can be measured very quickly in Laue geometry compared with monochromatic methods. Alternatively, this gain factor can be used instead to reduce the sample volume for a fixed exposure time. In the latter case especially, there is a critical need to control parasitic scatter in the Laue camera. The use of Laue geometry as a means of quantitative data acquisition required the solution of some fundamental problems. The so-called ``overlapping orders problem'' has been found not to be limiting. It can be shown that the bulk of the Laue spots are single order, provided dhkl<2dmin where dhkl is the interplanar spacing and dmin is the resolution limit of the data. In addition, empirical wavelength normalization is required. This can be achieved by using the symmetry of the diffraction pattern. The fact that different equivalents occur at different wavelengths means that the differences in these intensities can be used to establish the ``λ curve.'' Successful wavelength normalization to date has used a relatively broad-band pass. The multiplicity distribution is the histogram of the number of spots of a given order. This distribution is determined by the ratio λmax/λmin (λmax =maximum wavelength, λmin =minimum wavelength in the beam). λmax is determined by the use of any filters in the beamline. λmin is determined either by the spectral curve or a critical cutoff if a mirror is used. A mirror can be usefully introduced to enhance the multiplicity distribution in favor of single wavelength spots or to focus the white beam; so far only vertical focussing has been used. The detector options used to date have been photographic film, Fuji image plate (at Photon Factory)/Kodak storage phosphor (at Cornell) and charge coupled device (CCD) (at Daresbury). It is useful to consider the joint theoretical spatial and energy distribution of spots in defining the detector specification and geometry. To date, we have processed Laue film data successfully. The attraction of using the CCD, even to look at a small portion of the Laue pattern, is to view the diffraction in real time. This will allow tight control of parasitic scatter for microcrystal Laue diffraction and real-time monitoring for time-resolved work. We performed initial experiments using a direct detection CCD imager, and have obtained satisfactory diffraction data on a 40 ms time scale. Results of this work will be presented. In order to assess the efficacy of the Laue method for quantitative crystallography, we have used Laue data from the protein pea lectin and compared it in detail with monochromatic pea lectin data. To assess the use of a vertically focussing mirror, we have successfully used a mercury derivative protein crystal to yield isomorphous and anomalous differences suitable for phase determination. In both the pea lectin and mercury derivative cases, doublet Laue spots were deconvoluted. In the latter case, the data were used in a difference Fourier calculation which showed the mercury peak. Future developments and projections based on multipole sources are given.
Song, Young Hyun; Choi, Seung Hee; Park, Won Kyu; Yoo, Jin Sun; Kwon, Seok Bin; Kang, Bong Kyun; Park, Sang Ryul; Seo, Young Soo; Yang, Woo Seok; Yoon, Dae Ho
2018-01-31
We report for the first time the mass production of Cs 4 PbBr 6 perovskite microcrystal with a Couette-Taylor flow reactor in order to enhance the efficiency of the synthesis reaction. We obtained a pure Cs 4 PbBr 6 perovskite solid within 3 hrs that then realized a high photoluminescence quantum yield (PLQY) of 46%. Furthermore, the Cs 4 PbBr 6 perovskite microcrystal is applied with red emitting K 2 SiF 6 phosphor on a blue-emitting InGaN chip, achieving a high-performance luminescence characteristics of 9.79 lm/W, external quantum efficiency (EQE) of 2.9%, and correlated color temperature (CCT) of 2976 K; therefore, this perovskite is expected to be a promising candidate material for applications in optoelectronic devices.
Growth mechanisms, polytypism, and real structure of kaolinite microcrystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samotoin, N. D., E-mail: samnik@igem.ru
2008-09-15
The mechanisms of growth of kaolinite microcrystals (0.1-5.0 {mu}m in size) at deposits related to the cluvial weathering crust, as well as to the low-temperature and medium-temperature hydrothermal processes of transformations of minerals in different rocks in Russia, Kazakhstan, Ukraine, Czechia, Vietnam, India, Cuba, and Madagascar, are investigated using transmission electron microscopy and vacuum decoration with gold. It is established that kaolinite microcrystals grow according to two mechanisms: the mechanism of periodic formation of two-dimensional nuclei and the mechanism of spiral growth. The spiral growth of kaolinite microcrystals is dominant and occurs on steps of screw dislocations that differ inmore » sign and magnitude of the Burgers vector along the c axis. The layered growth of kaolinite originates from a widespread source in the form of a step between polar (+ and -) dislocations, i.e., a growth analogue of the Frank-Read dislocation source. The density of growth screw dislocations varies over a wide range and can be as high as {approx}10{sup 9} cm{sup -2}. Layered stepped kaolinite growth pyramids for all mechanisms of growth on the (001) face of kaolinite exhibit the main features of the triclinic 1Tc and real structures of this mineral.« less
NASA Astrophysics Data System (ADS)
Tani, Tadaaki; Inami, Yoshiyasu
2000-09-01
Ultraviolet photoelectron spectroscopy has been successfully used to measure the heights of the tops of the valence bands of the surfaces of AgBr layers on Ag substrates for the verification of the space charge layer model. According to this model, the positive space charge layer (composed of negative charges with excess negative kink sites on the surface and corresponding positive charges with interstitial silver ions in the interior) is formed in silver halides, causing the difference in the electronic energy levels between their surface and interior. The depression of the positive space charge layer of AgBr caused by such adsorbates as photographic stabilizers and antifoggants was estimated from the decrease in the ionic conductivity of cubic AgBr microcrystals by the adsorbates. It was confirmed by the decrease in the heights of the tops of the valence bands of the surfaces of AgBr layers caused by the adsorbates in the presence of thin gelatin membranes on their surfaces. This result provided the explanation for the fact that the adsorbates increased the number of the microcrystals which formed latent image centers on the surface and decreased the number of the microcrystals, which formed latent image centers in the interior.
Serial Femtosecond Crystallography of G Protein-Coupled Receptors
Liu, Wei; Wacker, Daniel; Gati, Cornelius; Han, Gye Won; James, Daniel; Wang, Dingjie; Nelson, Garrett; Weierstall, Uwe; Katritch, Vsevolod; Barty, Anton; Zatsepin, Nadia A.; Li, Dianfan; Messerschmidt, Marc; Boutet, Sébastien; Williams, Garth J.; Koglin, Jason E.; Seibert, M. Marvin; Wang, Chong; Shah, Syed T.A.; Basu, Shibom; Fromme, Raimund; Kupitz, Christopher; Rendek, Kimberley N.; Grotjohann, Ingo; Fromme, Petra; Kirian, Richard A.; Beyerlein, Kenneth R.; White, Thomas A.; Chapman, Henry N.; Caffrey, Martin; Spence, John C.H.; Stevens, Raymond C.; Cherezov, Vadim
2014-01-01
X-ray crystallography of G protein-coupled receptors and other membrane proteins is hampered by difficulties associated with growing sufficiently large crystals that withstand radiation damage and yield high-resolution data at synchrotron sources. Here we used an x-ray free-electron laser (XFEL) with individual 50-fs duration x-ray pulses to minimize radiation damage and obtained a high-resolution room temperature structure of a human serotonin receptor using sub-10 µm microcrystals grown in a membrane mimetic matrix known as lipidic cubic phase. Compared to the structure solved by traditional microcrystallography from cryo-cooled crystals of about two orders of magnitude larger volume, the room temperature XFEL structure displays a distinct distribution of thermal motions and conformations of residues that likely more accurately represent the receptor structure and dynamics in a cellular environment. PMID:24357322
NASA Astrophysics Data System (ADS)
Gryzunova, N. N.; Vikarchuk, A. A.; Gryzunov, A. M.; Denisova, A. G.
2017-10-01
The morphology of the electrolytic copper single crystals formed under the mechanical activation of a cathode is described. Pentagonal pyramids and conical microcrystals with high growth steps are shown to form during electrocrystallization under these conditions. It is experimentally found that microcrystals grow on disclination defects, in particular, at the sites of termination of twin growth boundaries, and mechanical activation causes the formation of such defects.
Detection of birefringent microcrystals in bile
Darrow, Chris; Mirhej, Andrew; Seger, Tino
2003-09-30
A transparent flow channel fluidly communicates a fluid source and a collection reservoir. A light beam passes through a first polarizer having a first plane of polarization. The flow channel is orthogonal to the light beam. The light beam passes through a fluid sample as it flows through the flow channel. The light beam is then filtered through a second polarizer having a second plane of polarization rotated 90.degree. from the first plane of polarization. The birefringence of certain crystalline materials present in the fluid sample rotates the plane of polarization of the light beam. The presence of these microcrystals thus causes a component of the beam to pass through the second polarizer and impinge an electronic photo-detector located in the path of the beam. The photo-detector signals the presence of the microcrystals by generating voltage pulses. A display device visually presents the quantitative results of the assay.
Serial Millisecond Crystallography of Membrane Proteins.
Jaeger, Kathrin; Dworkowski, Florian; Nogly, Przemyslaw; Milne, Christopher; Wang, Meitian; Standfuss, Joerg
2016-01-01
Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) is a powerful method to determine high-resolution structures of pharmaceutically relevant membrane proteins. Recently, the technology has been adapted to carry out serial millisecond crystallography (SMX) at synchrotron sources, where beamtime is more abundant. In an injector-based approach, crystals grown in lipidic cubic phase (LCP) or embedded in viscous medium are delivered directly into the unattenuated beam of a microfocus beamline. Pilot experiments show the application of microjet-based SMX for solving the structure of a membrane protein and compatibility of the method with de novo phasing. Planned synchrotron upgrades, faster detectors and software developments will go hand-in-hand with developments at free-electron lasers to provide a powerful methodology for solving structures from microcrystals at room temperature, ligand screening or crystal optimization for time-resolved studies with minimal or no radiation damage.
NASA Astrophysics Data System (ADS)
Yan, Xiaodong; Liu, Yuan; Scheel, Kyle R.; Li, Yong; Yu, Yunhua; Yang, Xiaoping; Peng, Zhonghua
2018-03-01
The electrochemical properties of catalyst materials are highly dependent on the materials structure and architecture. Herein, nano-on-micro Cu electrodes are fabricated by growing Cu microcrystals on Ni foam substrate, followed by introducing Cu nanocrystals onto the surface of the Cu microcrystals. The introduction of Cu nanocrystals onto the surface of Cu microcrystals is shown to dramatically increase the electrochemically active surface area and thus significantly enhances the catalytic activity of the catalyst electrode towards electro-oxidation of hydrazine. The onset potential (-1.04 V vs. Ag/AgCl) of the nano-on-micro Cu electrode is lower than those of the reported Cu-based catalysts under similar testing conditions, and a current density of 16 mA·cm-2, which is 2 times that of the microsized Cu electrode, is achieved at a potential of -0.95 V vs. Ag/AgCl. Moreover, the nano-on-micro Cu electrode demonstrates good long-term stability.
Othman, Rahimah; Vladisavljević, Goran T; Simone, Elena; Nagy, Zoltan K; Holdich, Richard G
2017-12-06
Microcrystals of piroxicam (PRX) monohydrate with a narrow size distribution were prepared from acetone/PRX solutions by antisolvent crystallization via metallic membranes with ordered pore arrays. Crystallization was achieved by controlled addition of the feed solution through the membrane pores into a well-stirred antisolvent. A complete transformation of an anhydrous form I into a monohydrate form of PRX was confirmed by Raman spectroscopy and differential scanning calorimetry. The size of the crystals was 7-34 μm and was controlled by the PRX concentration in the feed solution (15-25 g L -1 ), antisolvent/solvent volume ratio (5-30), and type of antisolvent (Milli-Q water or 0.1-0.5 wt % aqueous solutions of hydroxypropyl methyl cellulose (HPMC), poly(vinyl alcohol) or Pluronic P-123). The smallest crystals were obtained by injecting 25 g L -1 PRX solution through a stainless-steel membrane with a pore size of 10 μm into a 0.06 wt % HPMC solution stirred at 1500 rpm using an antisolvent/solvent ratio of 20. HPMC provided better steric stabilization of microcrystals against agglomeration than poly(vinyl alcohol) and Pluronic P-123, due to hydrogen bonding interactions with PRX and water. A continuous production of large PRX monohydrate microcrystals with a volume-weighted mean diameter above 75 μm was achieved in a continuous stirred membrane crystallizer. Rapid pouring of Milli-Q water into the feed solution resulted in a mixture of highly polydispersed prism-shaped and needle-shaped crystals.
Priotti, Josefina; Codina, Ana V; Leonardi, Darío; Vasconi, María D; Hinrichsen, Lucila I; Lamas, María C
2017-05-01
The oral route has notable advantages to administering dosage forms. One of the most important questions to solve is the poor solubility of most drugs which produces low bioavailability and delivery problems, a major challenge for the pharmaceutical industry. Albendazole is a benzimidazole carbamate extensively used in oral chemotherapy against intestinal parasites, due to its extended spectrum activity and low cost. Nevertheless, the main disadvantage is the poor bioavailability due to its very low solubility in water. The main objective of this study was to prepare microcrystal formulations by the bottom-up technology to increase albendazole dissolution rate, in order to enhance its antiparasitic activity. Thus, 20 novel microstructures based on chitosan, cellulose derivatives, and poloxamer as a surfactant were produced and characterized by their physicochemical properties and in vitro biological activity. To determine the significance of type and concentration of polymer, and presence or absence of surfactant in the crystals, the variables area under the curve, albendazole microcrystal solubility, and drug released (%) at 30 min were analyzed with a three-way ANOVA. This analysis indicated that the microcrystals made with hydroxyethylcellulose or chitosan appear to be the best options to optimize oral absorption of the active pharmaceutical ingredient. The in vitro evaluation of anthelmintic activity on adult forms of Trichinella spiralis identified system S10A as the most effective, of choice for testing therapeutic efficacy in vivo.
Fabrication and characterization of dichroic fine crystals by the reprecipitation method
NASA Astrophysics Data System (ADS)
Iino, Tatsuya; Mori, Shunsuke; Shito, Keiji; Kimura, Ayaka; Morishita, Yoshii; Chiba, Takayuki; Katagiri, Hiroshi; Okada, Shuji; Masuhara, Akito
2018-06-01
Suspended particle devices can rapidly switch from a dark blue state to a clear state by applying AC voltage, but their maximum transmittance has to be improved. In this work, we have targeted dichroic dyes and applied the reprecipitation method to KPD-503, a trisazo dye showing little dichroism in bulk crystals despite the dye molecules having large dichroism. As a result, microcrystals showing large dichroism were obtained. These microcrystals were considered to have a kinetically stable structure and oriented by voltage in a dispersing medium.
Approaches to automated protein crystal harvesting
Deller, Marc C.; Rupp, Bernhard
2014-01-01
The harvesting of protein crystals is almost always a necessary step in the determination of a protein structure using X-ray crystallographic techniques. However, protein crystals are usually fragile and susceptible to damage during the harvesting process. For this reason, protein crystal harvesting is the single step that remains entirely dependent on skilled human intervention. Automation has been implemented in the majority of other stages of the structure-determination pipeline, including cloning, expression, purification, crystallization and data collection. The gap in automation between crystallization and data collection results in a bottleneck in throughput and presents unfortunate opportunities for crystal damage. Several automated protein crystal harvesting systems have been developed, including systems utilizing microcapillaries, microtools, microgrippers, acoustic droplet ejection and optical traps. However, these systems have yet to be commonly deployed in the majority of crystallography laboratories owing to a variety of technical and cost-related issues. Automation of protein crystal harvesting remains essential for harnessing the full benefits of fourth-generation synchrotrons, free-electron lasers and microfocus beamlines. Furthermore, automation of protein crystal harvesting offers several benefits when compared with traditional manual approaches, including the ability to harvest microcrystals, improved flash-cooling procedures and increased throughput. PMID:24637746
Darville, Nicolas; van Heerden, Marjolein; Erkens, Tim; De Jonghe, Sandra; Vynckier, An; De Meulder, Marc; Vermeulen, An; Sterkens, Patrick; Annaert, Pieter; Van den Mooter, Guy
2016-02-01
Long-acting injectable (LAI) drug suspensions consist of drug nano-/microcrystals suspended in an aqueous vehicle and enable prolonged therapeutic drug exposure up to several months. The examination of injection site reactions (ISRs) to the intramuscular (IM) injection of LAI suspensions is relevant not only from a safety perspective but also for the understanding of the pharmacokinetics. The aim of this study was to perform a multilevel temporal characterization of the local and lymphatic histopathological/immunological alterations triggered by the IM injection of an LAI paliperidone palmitate suspension and an analog polystyrene suspension in rats and identify critical time points and parameters with regard to the host response. The ISRs showed a moderate to marked chronic granulomatous inflammation, which was mediated by multiple cyto-/chemokines, including interleukin-1β, monocyte Chemoattractant Protein-1, and vascular endothelial growth factor. Lymphatic uptake and lymph node retention of nano-/microparticles were observed, but the contribution to the drug absorption was negligible. A simple image analysis procedure and empirical model were proposed for the accurate evaluation of the depot geometry, cell infiltration, and vascularization. This study was designed as a reference for the evaluation and comparison of future LAIs and to support the mechanistic modeling of the formulation-physiology interplay regulating the drug absorption from LAIs. © The Author(s) 2015.
2017-01-01
Microcrystals of piroxicam (PRX) monohydrate with a narrow size distribution were prepared from acetone/PRX solutions by antisolvent crystallization via metallic membranes with ordered pore arrays. Crystallization was achieved by controlled addition of the feed solution through the membrane pores into a well-stirred antisolvent. A complete transformation of an anhydrous form I into a monohydrate form of PRX was confirmed by Raman spectroscopy and differential scanning calorimetry. The size of the crystals was 7–34 μm and was controlled by the PRX concentration in the feed solution (15–25 g L–1), antisolvent/solvent volume ratio (5–30), and type of antisolvent (Milli-Q water or 0.1–0.5 wt % aqueous solutions of hydroxypropyl methyl cellulose (HPMC), poly(vinyl alcohol) or Pluronic P-123). The smallest crystals were obtained by injecting 25 g L–1 PRX solution through a stainless-steel membrane with a pore size of 10 μm into a 0.06 wt % HPMC solution stirred at 1500 rpm using an antisolvent/solvent ratio of 20. HPMC provided better steric stabilization of microcrystals against agglomeration than poly(vinyl alcohol) and Pluronic P-123, due to hydrogen bonding interactions with PRX and water. A continuous production of large PRX monohydrate microcrystals with a volume-weighted mean diameter above 75 μm was achieved in a continuous stirred membrane crystallizer. Rapid pouring of Milli-Q water into the feed solution resulted in a mixture of highly polydispersed prism-shaped and needle-shaped crystals. PMID:29234241
The indium oxide micro and nanopyramids: Morphology materializing and H2S sensing properties
NASA Astrophysics Data System (ADS)
Shariati, Mohsen
2015-07-01
Indium oxide (In2O3) pyramidal nano and microstructures were prepared by a thermal evaporation and condensation method. The preannealing step affected the nanostructures morphologies and their sensing capability. The nanosize structures have been fabricated in nucleated preorganized situation. By changing from prepared sites to undesired sites, the morphology was deteriorated. The synthesized In2O3 structures were characterized by field emission scanning electron microscopy (FESEM) and the X-ray diffraction (XRD) measurements. The FESEM images showed that nanostructures with 100-250 nm in size were fabricated. The XRD patterns indicated that most of the samples are crystalline. Then, the fabricated structures were investigated for H2S gas sensing. The nanocrystal pyramids were found to be sensitive to as low as 100 ppb of H2S gas at room temperature and microcrystal ones to 300 ppb. The nanopyramids demonstrated that they were very sensitive to gas presence and their response and recovery time were in a few seconds.
Applications of thin-film sandwich crystallization platforms.
Axford, Danny; Aller, Pierre; Sanchez-Weatherby, Juan; Sandy, James
2016-04-01
Examples are shown of protein crystallization in, and data collection from, solutions sandwiched between thin polymer films using vapour-diffusion and batch methods. The crystallization platform is optimal for both visualization and in situ data collection, with the need for traditional harvesting being eliminated. In wells constructed from the thinnest plastic and with a minimum of aqueous liquid, flash-cooling to 100 K is possible without significant ice formation and without any degradation in crystal quality. The approach is simple; it utilizes low-cost consumables but yields high-quality data with minimal sample intervention and, with the very low levels of background X-ray scatter that are observed, is optimal for microcrystals.
Controlled synthesis and luminescence properties of CaMoO4:Eu3+ microcrystals
NASA Astrophysics Data System (ADS)
Xie, Ying; Ma, Siming; Wang, Yu; Xu, Mai; Lu, Chengxi; Xiao, Linjiu; Deng, Shuguang
2018-03-01
Pure tetragonal-phased Ca0.9MoO4:0.1Eu3+ (CaMoO4:Eu3+) microcrystals with varying particle sizes were prepared via a co-deposition in water/oil (w/o) phase method. The particle sizes of as-prepared samples were controlled by calcination temperature and calcination time, and the crystallinity of the samples enhances with increasing particle size. The luminescence properties of CaMoO4:Eu3+ microcrystals were studied with varying particle size. The results reveal that the intensity of emission spectra of the CaMoO4:Eu3+ samples increases with increasing particle size, and they have closely correlation with each other. It is the same with the luminescence lifetime. The luminescence lifetime of the CaMoO4:Eu3+ samples decreases from 0.637 ms to 0.447 ms with increasing particle size from 0.12 μm to 1.79 μm, respectively. This study not only provides information for size-dependent luminescence properties of CaMoO4:Eu3+ but also gives a reference for potential applications in high voltage electric porcelain material.
Abin, Christopher A; Hollibaugh, James T
2014-01-01
Antimony (Sb) is a metalloid that has been exploited by humans since the beginning of modern civilization. The importance of Sb to such diverse industries as nanotechnology and health is underscored by the fact that it is currently the ninth-most mined metal worldwide. Although its toxicity mirrors that of its Group 15 neighbor arsenic, its environmental chemistry is very different, and, unlike arsenic, relatively little is known about the fate and transport of Sb, especially with regard to biologically mediated redox reactions. To further our understanding of the interactions between microorganisms and Sb, we have isolated a bacterium that is capable of using antimonate [Sb(V)] as a terminal electron acceptor for anaerobic respiration, resulting in the precipitation of antimonite [Sb(III)] as microcrystals of antimony trioxide. The bacterium, designated strain MLFW-2, is a sporulating member of a deeply branching lineage within the order Bacillales (phylum Firmicutes). This report provides the first unequivocal evidence that a bacterium is capable of conserving energy for growth and reproduction from the reduction of antimonate. Moreover, microbiological antimonate reduction may serve as a novel route for the production of antimony trioxide microcrystals of commercial significance to the nanotechnology industry.
Femtosecond X-ray Diffraction From Two-Dimensional Protein Crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frank, Matthias; Carlson, David B.; Hunter, Mark
2014-02-28
Here we present femtosecond x-ray diffraction patterns from two-dimensional (2-D) protein crystals using an x-ray free electron laser (XFEL). To date it has not been possible to acquire x-ray diffraction from individual 2-D protein crystals due to radiation damage. However, the intense and ultrafast pulses generated by an XFEL permits a new method of collecting diffraction data before the sample is destroyed. Utilizing a diffract-before-destroy methodology at the Linac Coherent Light Source, we observed Bragg diffraction to better than 8.5 Å resolution for two different 2-D protein crystal samples that were maintained at room temperature. These proof-of-principle results show promisemore » for structural analysis of both soluble and membrane proteins arranged as 2-D crystals without requiring cryogenic conditions or the formation of three-dimensional crystals.« less
Disentangling nonradiative recombination processes in Ge micro-crystals on Si substrates
NASA Astrophysics Data System (ADS)
Pezzoli, Fabio; Giorgioni, Anna; Gallacher, Kevin; Isa, Fabio; Biagioni, Paolo; Millar, Ross W.; Gatti, Eleonora; Grilli, Emanuele; Bonera, Emiliano; Isella, Giovanni; Paul, Douglas J.; Miglio, Leo
2016-06-01
We address nonradiative recombination pathways by leveraging surface passivation and dislocation management in μm-scale arrays of Ge crystals grown on deeply patterned Si substrates. The time decay photoluminescence (PL) at cryogenic temperatures discloses carrier lifetimes approaching 45 ns in band-gap engineered Ge micro-crystals. This investigation provides compelling information about the competitive interplay between the radiative band-edge transitions and the trapping of carriers by dislocations and free surfaces. Furthermore, an in-depth analysis of the temperature dependence of the PL, combined with capacitance data and finite difference time domain modeling, demonstrates the effectiveness of GeO2 in passivating the surface of Ge and thus in enhancing the room temperature PL emission.
Room temperature structures beyond 1.5 Å by serial femtosecond crystallography
Schmidt, Marius; Pande, Kanupriya; Basu, Shibom; Tenboer, Jason
2015-01-01
About 2.5 × 106 snapshots on microcrystals of photoactive yellow protein (PYP) from a recent serial femtosecond crystallographic (SFX) experiment were reanalyzed to maximum resolution. The resolution is pushed to 1.46 Å, and a PYP structural model is refined at that resolution. The result is compared to other PYP models determined at atomic resolution around 1 Å and better at the synchrotron. By comparing subtleties such as individual isotropic temperature factors and hydrogen bond lengths, we were able to assess the quality of the SFX data at that resolution. We also show that the determination of anisotropic temperature factor ellipsoids starts to become feasible with the SFX data at resolutions better than 1.5 Å. PMID:26798807
Applications of thin-film sandwich crystallization platforms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Axford, Danny, E-mail: danny.axford@diamond.ac.uk; Aller, Pierre; Sanchez-Weatherby, Juan
2016-03-24
Crystallization via sandwiches of thin polymer films is presented and discussed. Examples are shown of protein crystallization in, and data collection from, solutions sandwiched between thin polymer films using vapour-diffusion and batch methods. The crystallization platform is optimal for both visualization and in situ data collection, with the need for traditional harvesting being eliminated. In wells constructed from the thinnest plastic and with a minimum of aqueous liquid, flash-cooling to 100 K is possible without significant ice formation and without any degradation in crystal quality. The approach is simple; it utilizes low-cost consumables but yields high-quality data with minimal samplemore » intervention and, with the very low levels of background X-ray scatter that are observed, is optimal for microcrystals.« less
Effect of magnetic fields on green color formation in frog skin
NASA Astrophysics Data System (ADS)
Kashiwagi, H.; Kashiwagi, A.; Iwasaka, M.
2017-05-01
The present work is focused on a dynamic and efficient optical control system that is made possible by investigation of the body surfaces of various animals. Specifically, we expect Japanese tree frog (Hyla japonica) skin to provide a model for a flexible display device actuator mechanism. Tree frogs change body color from their original green to other colors in response to background colors. The color formation is controlled not only by chromatophores, but also by guanine microcrystals in iridophores. We collected sample microcrystals from the frog's dorsal skin and made a model display sheet using the green skin layers. The transparent chamber that contained the crystal suspension was layered to enhance light reflection. Sheet color was observed while the angle of light incidence was varied, with and without magnetic field exposure at 0.3 T. A slight increase in red and green intensity was detected. Additionally, reflected intensity increased with increasing angle of incidence. These results indicate that the guanine crystal platelets in frog skin can efficiently switch the reflected light direction under application of a magnetic field. This in turn suggests that a several-micron-sized microcrystal of this type is a candidate material for development of flexible optical chips for ambient light control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Guangci; Liu, Yunqi, E-mail: liuyq@upc.edu.cn; Liu, Di
Boehmite (AlOOH) with hierarchical flower-like structures was synthesized by the solvothermal reaction of AlCl{sub 3}.6H{sub 2}O in the presence of ethanol and toluene at 200 {sup o}C for 24 h. The product was characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that boehmite with flower-like nanostructures, which aggregated together by the weak hydrogen bonds, was formed through dissolution-deposition process of boehmite microcrystals and the toluene has a great effect on the morphology of product in the reaction system. Meanwhile, the {gamma}-Al{sub 2}O{sub 3} was alsomore » obtained by calcination of above product at 500 {sup o}C for 2 h, and the flower-like morphology kept no change. The surface area of {gamma}-Al{sub 2}O{sub 3} powder was determined to be 166.8 m{sup 2}/g by N{sub 2} adsorption measurement. The possible formation mechanism of flower-like boehmite nanostructures was proposed and discussed.« less
Size and shape dependence of CO adsorption sites on sapphire supported Fe microcrystals
NASA Technical Reports Server (NTRS)
Papageorgopoulos, C.; Heinemann, K.
1985-01-01
The surface structure and stoichiometry of alumina substrates, as well as the size, growth characteristics, and shape of Fe deposits on sapphire substrates have been investigated by low energy electron diffraction (LEED), Auger electron spectroscopy, electron energy loss spectroscopy, and X-ray photoemission spectroscopy (XPS), as well as work function measurements, in conjunction with transition electron microscopy observations. The substrates used in this work were the following: (1) new, clean Al2O3; (2) same surface amorphized by Ar ion bombardment; (3) same surface regenerated by 650 C annealing; (4) amorphous alumina films on Ta slab; and (5) polycrystal alumina films, obtained by heating amorphous films to 600 C. Substrate cleaning was found to be most effective in producing a reproducible surface upon oxygen RF plasma treatment. The Fe nucleation and growth process was found to depend strongly on the type of substrate surface and deposition conditions. Ar ion bombardment under beam flooding, and subsequent annealing at 650 C was found an effective means to restore the original Al2O3 (1102) surface for renewed Fe deposition.
Effect of carbon coating on spontaneous C12A7 whisker formation
NASA Astrophysics Data System (ADS)
Zaikovskii, Vladimir I.; Volodin, Alexander M.; Stoyanovskii, Vladimir O.; Cherepanova, Svetlana V.; Vedyagin, Aleksey A.
2018-06-01
A carbon nanoreactor concept was applied to study the stabilization effect of carbon shell on phase composition and morphology of dodecacalcium hepta-aluminate Ca12Al14O33. The starting C12A7 powder was obtained using aluminum and calcium hydroxides as precursors. Carbon shell was formed by a chemical vapor deposition of divinyl at 550 °C. After the calcination at 1400 °C, the product was characterized by X-ray diffraction analysis (XRD) and high resolution transmission electron microscopy (HRTEM). It was observed for a first time that spontaneous formation of calcium aluminate whiskers take place under the conditions described. Each whisker consists of a 'head' (globular particle of 0.5 microns in diameter) and a 'tail' (prolonged whisker of few microns in length and 0.1-0.2 microns in diameter). According to HRTEM, the 'head' is characterized with microcrystal lattice of Ca12Al14O33 compound. XRD data show the presence of CaAl2O4 phase traces. The 'head' and 'tail' of the whisker are covered with structured graphene layers of 10 nm and 3 nm, correspondingly.
Ayach, Maya; Bressanelli, Stéphane
2015-04-01
Processing of the polyprotein of Turnip yellow mosaic virus is mediated by the protease PRO. PRO cleaves at two places, one of which is at the C-terminus of the PRO domain of another polyprotein molecule. In addition to this processing activity, PRO possesses an ubiquitin hydrolase (DUB) activity. The crystal structure of PRO has previously been reported in its polyprotein-processing mode with the C-terminus of one PRO inserted into the catalytic site of the next PRO, generating PRO polymers in the crystal packing of the trigonal space group. Here, two mutants designed to disrupt specific PRO-PRO interactions were generated, produced and purified. Crystalline plates were obtained by seeding and cross-seeding from initial `sea urchin'-like microcrystals of one mutant. The plates diffracted to beyond 2 Å resolution at a synchrotron source and complete data sets were collected for the two mutants. Data processing and analysis indicated that both mutant crystals belonged to the same monoclinic space group, with two molecules of PRO in the asymmetric unit.
Raster-scanning serial protein crystallography using micro- and nano-focused synchrotron beams
Coquelle, Nicolas; Brewster, Aaron S.; Kapp, Ulrike; Shilova, Anastasya; Weinhausen, Britta; Burghammer, Manfred; Colletier, Jacques-Philippe
2015-01-01
High-resolution structural information was obtained from lysozyme microcrystals (20 µm in the largest dimension) using raster-scanning serial protein crystallography on micro- and nano-focused beamlines at the ESRF. Data were collected at room temperature (RT) from crystals sandwiched between two silicon nitride wafers, thereby preventing their drying, while limiting background scattering and sample consumption. In order to identify crystal hits, new multi-processing and GUI-driven Python-based pre-analysis software was developed, named NanoPeakCell, that was able to read data from a variety of crystallographic image formats. Further data processing was carried out using CrystFEL, and the resultant structures were refined to 1.7 Å resolution. The data demonstrate the feasibility of RT raster-scanning serial micro- and nano-protein crystallography at synchrotrons and validate it as an alternative approach for the collection of high-resolution structural data from micro-sized crystals. Advantages of the proposed approach are its thriftiness, its handling-free nature, the reduced amount of sample required, the adjustable hit rate, the high indexing rate and the minimization of background scattering. PMID:25945583
Raster-scanning serial protein crystallography using micro- and nano-focused synchrotron beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coquelle, Nicolas; Brewster, Aaron S.; Kapp, Ulrike
High-resolution structural information was obtained from lysozyme microcrystals (20 µm in the largest dimension) using raster-scanning serial protein crystallography on micro- and nano-focused beamlines at the ESRF. Data were collected at room temperature (RT) from crystals sandwiched between two silicon nitride wafers, thereby preventing their drying, while limiting background scattering and sample consumption. In order to identify crystal hits, new multi-processing and GUI-driven Python-based pre-analysis software was developed, named NanoPeakCell, that was able to read data from a variety of crystallographic image formats. Further data processing was carried out using CrystFEL, and the resultant structures were refined to 1.7 Åmore » resolution. The data demonstrate the feasibility of RT raster-scanning serial micro- and nano-protein crystallography at synchrotrons and validate it as an alternative approach for the collection of high-resolution structural data from micro-sized crystals. Advantages of the proposed approach are its thriftiness, its handling-free nature, the reduced amount of sample required, the adjustable hit rate, the high indexing rate and the minimization of background scattering.« less
Raster-scanning serial protein crystallography using micro- and nano-focused synchrotron beams.
Coquelle, Nicolas; Brewster, Aaron S; Kapp, Ulrike; Shilova, Anastasya; Weinhausen, Britta; Burghammer, Manfred; Colletier, Jacques Philippe
2015-05-01
High-resolution structural information was obtained from lysozyme microcrystals (20 µm in the largest dimension) using raster-scanning serial protein crystallography on micro- and nano-focused beamlines at the ESRF. Data were collected at room temperature (RT) from crystals sandwiched between two silicon nitride wafers, thereby preventing their drying, while limiting background scattering and sample consumption. In order to identify crystal hits, new multi-processing and GUI-driven Python-based pre-analysis software was developed, named NanoPeakCell, that was able to read data from a variety of crystallographic image formats. Further data processing was carried out using CrystFEL, and the resultant structures were refined to 1.7 Å resolution. The data demonstrate the feasibility of RT raster-scanning serial micro- and nano-protein crystallography at synchrotrons and validate it as an alternative approach for the collection of high-resolution structural data from micro-sized crystals. Advantages of the proposed approach are its thriftiness, its handling-free nature, the reduced amount of sample required, the adjustable hit rate, the high indexing rate and the minimization of background scattering.
Raster-scanning serial protein crystallography using micro- and nano-focused synchrotron beams
Coquelle, Nicolas; Brewster, Aaron S.; Kapp, Ulrike; ...
2015-04-25
High-resolution structural information was obtained from lysozyme microcrystals (20 µm in the largest dimension) using raster-scanning serial protein crystallography on micro- and nano-focused beamlines at the ESRF. Data were collected at room temperature (RT) from crystals sandwiched between two silicon nitride wafers, thereby preventing their drying, while limiting background scattering and sample consumption. In order to identify crystal hits, new multi-processing and GUI-driven Python-based pre-analysis software was developed, named NanoPeakCell, that was able to read data from a variety of crystallographic image formats. Further data processing was carried out using CrystFEL, and the resultant structures were refined to 1.7 Åmore » resolution. The data demonstrate the feasibility of RT raster-scanning serial micro- and nano-protein crystallography at synchrotrons and validate it as an alternative approach for the collection of high-resolution structural data from micro-sized crystals. Advantages of the proposed approach are its thriftiness, its handling-free nature, the reduced amount of sample required, the adjustable hit rate, the high indexing rate and the minimization of background scattering.« less
NASA Astrophysics Data System (ADS)
Trannoy, N.; Sayoud, A.; Diaf, M.; Duvaut, Th.; Jouart, J. P.; Grossel, Ph.
2015-04-01
Rare earth doped sub-micrometric luminescent materials are promising candidates for temperature sensing and play an efficient role in many technological fields. In this paper, a new optical sensor is developed for measuring local temperatures. This sensor is based on a thermal-resistive probe and on photoluminescence of a luminescent fluoride microcrystal. The final purpose is to develop a device calibrated in temperature and capable of acquiring images of local temperature at sub-micrometric scale. Indeed, the sensor temperature can be obtained in two distinct ways: one from the thermal probe parameters and the other from the green photoluminescence generated in the anti-Stokes mode by the active Er ions directly excited by a red laser. The thermal probe is based on Wollaston wire whose thermal-resistive element is in platinum/rhodium. Its temperature is estimated from the probe electrical characteristics and a modeling. A microcrystal of Sr0.3Cd0.7F2: Er3+(4%)-Yb3+(6%) of about 25 μm in diameter is glued at the probe extremity. This luminescent material has the particularity to give a green emission spectrum with intensities sensitive to small temperature variations. Using the fluorescence intensity ratio (FIR) technique, the crystal temperature is estimated from the intensity measurements at green wavelengths 522, 540 and 549 nm by taking advantage of particular optical properties due to the crystalline nature of Sr0.3Cd0.7F2: Er3+-Yb3+. The microcrystal temperature is then assessed as a function of electric current in the thermal probe by applying the Boltzmann's equations. The coupling of the scanning thermal microscope (SThM) with the photoluminescence probe reveals that the particle fluorescence signal is affected by the temperature rise of an electrical microsystem submitted to a Joule heating. The first results are presented and discussed.
Using textons to rank crystallization droplets by the likely presence of crystals
Ng, Jia Tsing; Dekker, Carien; Kroemer, Markus; Osborne, Michael; von Delft, Frank
2014-01-01
The visual inspection of crystallization experiments is an important yet time-consuming and subjective step in X-ray crystallography. Previously published studies have focused on automatically classifying crystallization droplets into distinct but ultimately arbitrary experiment outcomes; here, a method is described that instead ranks droplets by their likelihood of containing crystals or microcrystals, thereby prioritizing for visual inspection those images that are most likely to contain useful information. The use of textons is introduced to describe crystallization droplets objectively, allowing them to be scored with the posterior probability of a random forest classifier trained against droplets manually annotated for the presence or absence of crystals or microcrystals. Unlike multi-class classification, this two-class system lends itself naturally to unidirectional ranking, which is most useful for assisting sequential viewing because images can be arranged simply by using these scores: this places droplets with probable crystalline behaviour early in the viewing order. Using this approach, the top ten wells included at least one human-annotated crystal or microcrystal for 94% of the plates in a data set of 196 plates imaged with a Minstrel HT system. The algorithm is robustly transferable to at least one other imaging system: when the parameters trained from Minstrel HT images are applied to a data set imaged by the Rock Imager system, human-annotated crystals ranked in the top ten wells for 90% of the plates. Because rearranging images is fundamental to the approach, a custom viewer was written to seamlessly support such ranked viewing, along with another important output of the algorithm, namely the shape of the curve of scores, which is itself a useful overview of the behaviour of the plate; additional features with known usefulness were adopted from existing viewers. Evidence is presented that such ranked viewing of images allows faster but more accurate evaluation of drops, in particular for the identification of microcrystals. PMID:25286854
Can Solution Supersaturation Affect Protein Crystal Quality?
NASA Technical Reports Server (NTRS)
Gorti, Sridhar
2013-01-01
The formation of large protein crystals of "high quality" is considered a characteristic manifestation of microgravity. The physical processes that predict the formation of large, high quality protein crystals in the microgravity environment of space are considered rooted in the existence of a "depletion zone" in the vicinity of crystal. Namely, it is considered reasonable that crystal quality suffers in earth-grown crystals as a result of the incorporation of large aggregates, micro-crystals and/or large molecular weight "impurities", processes which are aided by density driven convective flow or mixing at the crystal-liquid interface. Sedimentation and density driven convection produce unfavorable solution conditions in the vicinity of the crystal surface, which promotes rapid crystal growth to the detriment of crystal size and quality. In this effort, we shall further present the hypothesis that the solution supersaturatoin at the crystal surface determines the growth mechanism, or mode, by which protein crystals grow. It is further hypothesized that protein crystal quality is affected by the mechanism or mode of crystal growth. Hence the formation of a depletion zone in microgravity environment is beneficial due to inhibition of impurity incorporatoin as well as preventing a kinetic roughening transition. It should be noted that for many proteins the magnitude of neither protein crystal growth rates nor solution supersaturation are predictors of a kinetic roughening transition. That is, the kinetic roughening transition supersaturation must be dtermined for each individual protein.
Dong, Haiyun; Zhang, Chunhuan; Liu, Yuan; Yan, Yongli; Hu, Fengqin; Zhao, Yong Sheng
2018-03-12
The very broad emission bands of organic semiconductor materials are, in theory, suitable for achieving versatile solid-state lasers; however, most of organic materials only lase at short wavelength corresponding to the 0-1 transition governed by the Franck-Condon (FC) principle. A strategy is developed to overcome the limit of FC principle for tailoring the output of microlasers over a wide range based on the controlled vibronic emission of organic materials at microcrystal state. For the first time, the output wavelength of organic lasers is tailored across all vibronic (0-1, 0-2, 0-3, and even 0-4) bands spanning the entire emission spectrum. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ceramic micro-injection molded nozzles for serial femtosecond crystallography sample delivery
NASA Astrophysics Data System (ADS)
Beyerlein, K. R.; Adriano, L.; Heymann, M.; Kirian, R.; Knoška, J.; Wilde, F.; Chapman, H. N.; Bajt, S.
2015-12-01
Serial femtosecond crystallography (SFX) using X-ray Free-Electron Lasers (XFELs) allows for room temperature protein structure determination without evidence of conventional radiation damage. In this method, a liquid suspension of protein microcrystals can be delivered to the X-ray beam in vacuum as a micro-jet, which replenishes the crystals at a rate that exceeds the current XFEL pulse repetition rate. Gas dynamic virtual nozzles produce the required micrometer-sized streams by the focusing action of a coaxial sheath gas and have been shown to be effective for SFX experiments. Here, we describe the design and characterization of such nozzles assembled from ceramic micro-injection molded outer gas-focusing capillaries. Trends of the emitted jet diameter and jet length as a function of supplied liquid and gas flow rates are measured by a fast imaging system. The observed trends are explained by derived relationships considering choked gas flow and liquid flow conservation. Finally, the performance of these nozzles in a SFX experiment is presented, including an analysis of the observed background.
High Resolution X-Ray Diffraction of Macromolecules with Synchrotron Radiation
NASA Technical Reports Server (NTRS)
Stojanoff, Vivian; Boggon, Titus; Helliwell, John R.; Judge, Russell; Olczak, Alex; Snell, Edward H.; Siddons, D. Peter; Rose, M. Franklin (Technical Monitor)
2000-01-01
We recently combined synchrotron-based monochromatic X-ray diffraction topography methods with triple axis diffractometry and rocking curve measurements: high resolution X-ray diffraction imaging techniques, to better understand the quality of protein crystals. We discuss these methods in the light of results obtained on crystals grown under different conditions. These non destructive techniques are powerful tools in the characterization of the protein crystals and ultimately will allow to improve, develop, and understand protein crystal growth. High resolution X-ray diffraction imaging methods will be discussed in detail in light of recent results obtained on Hen Egg White Lysozyme crystals and other proteins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Guodong; Zhai, Wei; Sun, Fengqiang, E-mail: fqsun@scnu.edu.cn
2012-12-15
Graphical abstract: Display Omitted Highlights: ► PEG was used to electro-deposit Cu{sub 2}O microcrystalline particle films. ► Morphologies of Cu{sub 2}O microcrystals could be controlled by the amount of PEG. ► The films showed regularly varied photocatalytic activities under sunlight. ► The films could be recycled and showed stable activities. -- Abstract: Morphology-controlled Cu{sub 2}O microcrystalline particle films had been successfully electrodeposited on tin-doped indium oxide glass substrates in CuSO{sub 4} solutions containing different amounts of polyethylene glycol (PEG) additives. With an increase of PEG, microcrystals gradually changed from irregular shapes to cubes, octahedrons, and spherical shapes. Sizes increasingly becamemore » smaller with an increase of PEG under the same deposition time. These films had been first used as recyclable photocatalysts and showed excellent and photocatalytic activities in photodegradation of methylene blue (MB) under sunlight. Activities were regularly varied relative to the morphologies of films controlled by the amount of PEG and could be further enhanced by adding a little amount of hydrogen peroxide in the MB solution. The method for controllable preparation of Cu{sub 2}O microcrystals with photocatalytic activities was simple and inexpensive. The as-prepared particle films could also be used in photodegradation of many other pollutants under sunlight.« less
NASA Astrophysics Data System (ADS)
Kompan, T. A.; Korenev, A. S.; Lukin, A. Ya.
2008-10-01
The artificial material sitall CO-115M was developed purposely as a material with an extra-low thermal expansion. The controlled crystallization of an aluminosilicate glass melt leads to the formation of a mixture of β-spodumen, β-eucryptite, and β-silica anisotropic microcrystals in a matrix of residual glass. Due to the small size of the microcrystals, the material is homogeneous and transparent. Specific lattice anharmonism of these microcrystal materials results in close to zero average thermal linear expansion coefficient (TLEC) of the sitall material. The thermal expansion coefficient of this material was measured using an interferometric method in line with the classical approach of Fizeau. To obtain the highest accuracy, the registration of light intensity of the total interference field was used. Then, the parameters of the interference pattern were calculated. Due to the large amount of information in the interference pattern, the error of the calculated fringe position was less than the size of a pixel of the optical registration system. The thermal expansion coefficient of the sitall CO-115M and its temperature dependence were measured. The TLEC value of about 3 × 10-8 K-1 to 5 × 10-8 K-1 in the temperature interval from -20 °C to +60 °C was obtained. A special investigation was carried out to show the homogeneity of the material.
Pseudohalide (SCN(-))-Doped MAPbI3 Perovskites: A Few Surprises.
Halder, Ansuman; Chulliyil, Ramya; Subbiah, Anand S; Khan, Tuhin; Chattoraj, Shyamtanu; Chowdhury, Arindam; Sarkar, Shaibal K
2015-09-03
Pseudohalide thiocyanate anion (SCN(-)) has been used as a dopant in a methylammonium lead tri-iodide (MAPbI3) framework, aiming for its use as an absorber layer for photovoltaic applications. The substitution of SCN(-) pseudohalide anion, as verified using Fourier transform infrared (FT-IR) spectroscopy, results in a comprehensive effect on the optical properties of the original material. Photoluminescence measurements at room temperature reveal a significant enhancement in the emission quantum yield of MAPbI3-x(SCN)x as compared to MAPbI3, suggestive of suppression of nonradiative channels. This increased intensity is attributed to a highly edge specific emission from MAPbI3-x(SCN)x microcrystals as revealed by photoluminescence microscopy. Fluoresence lifetime imaging measurements further established contrasting carrier recombination dynamics for grain boundaries and the bulk of the doped material. Spatially resolved emission spectroscopy on individual microcrystals of MAPbI3-x(SCN)x reveals that the optical bandgap and density of states at various (local) nanodomains are also nonuniform. Surprisingly, several (local) emissive regions within MAPbI3-x(SCN)x microcrystals are found to be optically unstable under photoirradiation, and display unambiguous temporal intermittency in emission (blinking), which is extremely unusual and intriguing. We find diverse blinking behaviors for the undoped MAPbI3 crystals as well, which leads us to speculate that blinking may be a common phenomenon for most hybrid perovskite materials.
The strength and dislocation microstructure evolution in superalloy microcrystals
NASA Astrophysics Data System (ADS)
Hussein, Ahmed M.; Rao, Satish I.; Uchic, Michael D.; Parthasarathay, Triplicane A.; El-Awady, Jaafar A.
2017-02-01
In this work, the evolution of the dislocations microstructure in single crystal two-phase superalloy microcrystals under monotonic loading has been studied using the three-dimensional discrete dislocation dynamics (DDD) method. The DDD framework has been extended to properly handle the collective behavior of dislocations and their interactions with large collections of arbitrary shaped precipitates. Few constraints are imposed on the initial distribution of the dislocations or the precipitates, and the extended DDD framework can support experimentally-obtained precipitate geometries. Full tracking of the creation and destruction of anti-phase boundaries (APB) is accounted for. The effects of the precipitate volume fraction, APB energy, precipitate size, and crystal size on the deformation of superalloy microcrystals have been quantified. Correlations between the precipitate microstructure and the dominant deformation features, such as dislocation looping versus precipitate shearing, are also discussed. It is shown that the mechanical strength is independent of the crystal size, increases linearly with increasing the volume fraction, follows a near square-root relationship with the APB energy and an inverse square-root relationship with the precipitate size. Finally, the flow strength in simulations having initial dislocation pair sources show a flow strength that is about one half of that predicted from simulations starting with single dislocation sources. The method developed can be used, with minimal extensions, to simulate dislocation microstructure evolution in general multiphase materials.
Liquid sample delivery techniques for serial femtosecond crystallography
Weierstall, Uwe
2014-01-01
X-ray free-electron lasers overcome the problem of radiation damage in protein crystallography and allow structure determination from micro- and nanocrystals at room temperature. To ensure that consecutive X-ray pulses do not probe previously exposed crystals, the sample needs to be replaced with the X-ray repetition rate, which ranges from 120 Hz at warm linac-based free-electron lasers to 1 MHz at superconducting linacs. Liquid injectors are therefore an essential part of a serial femtosecond crystallography experiment at an X-ray free-electron laser. Here, we compare different techniques of injecting microcrystals in solution into the pulsed X-ray beam in vacuum. Sample waste due to mismatch of the liquid flow rate to the X-ray repetition rate can be addressed through various techniques. PMID:24914163
Nederlof, Igor; van Genderen, Eric; Li, Yao-Wang; Abrahams, Jan Pieter
2013-01-01
When protein crystals are submicrometre-sized, X-ray radiation damage precludes conventional diffraction data collection. For crystals that are of the order of 100 nm in size, at best only single-shot diffraction patterns can be collected and rotation data collection has not been possible, irrespective of the diffraction technique used. Here, it is shown that at a very low electron dose (at most 0.1 e− Å−2), a Medipix2 quantum area detector is sufficiently sensitive to allow the collection of a 30-frame rotation series of 200 keV electron-diffraction data from a single ∼100 nm thick protein crystal. A highly parallel 200 keV electron beam (λ = 0.025 Å) allowed observation of the curvature of the Ewald sphere at low resolution, indicating a combined mosaic spread/beam divergence of at most 0.4°. This result shows that volumes of crystal with low mosaicity can be pinpointed in electron diffraction. It is also shown that strategies and data-analysis software (MOSFLM and SCALA) from X-ray protein crystallography can be used in principle for analysing electron-diffraction data from three-dimensional nanocrystals of proteins. PMID:23793148
NASA Astrophysics Data System (ADS)
Boyko, K. M.; Nikolaeva, A. Yu.; Kachalova, G. S.; Bonchuk, A. N.; Popov, V. O.
2017-11-01
The spatial organization of the genome is controlled by a special class of architectural proteins, including proteins containing BTB domains that are able to dimerize or multimerize. The centrosomal protein 190 is one of such architectural proteins. The purification, crystallization, and preliminary X-ray diffraction study of the BTB domain of the centrosomal protein 190 are reported. The crystallization conditions were found by the vapor-diffusion technique. The crystals diffracted to 1.5 Å resolution and belonged to sp. gr. P3221. The structure was solved by the molecular replacement method. The structure refinement is currently underway.
Raster-scanning serial protein crystallography using micro- and nano-focused synchrotron beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coquelle, Nicolas; CNRS, IBS, 38044 Grenoble; CEA, IBS, 38044 Grenoble
A raster scanning serial protein crystallography approach is presented, that consumes as low ∼200–700 nl of sedimented crystals. New serial data pre-analysis software, NanoPeakCell, is introduced. High-resolution structural information was obtained from lysozyme microcrystals (20 µm in the largest dimension) using raster-scanning serial protein crystallography on micro- and nano-focused beamlines at the ESRF. Data were collected at room temperature (RT) from crystals sandwiched between two silicon nitride wafers, thereby preventing their drying, while limiting background scattering and sample consumption. In order to identify crystal hits, new multi-processing and GUI-driven Python-based pre-analysis software was developed, named NanoPeakCell, that was able tomore » read data from a variety of crystallographic image formats. Further data processing was carried out using CrystFEL, and the resultant structures were refined to 1.7 Å resolution. The data demonstrate the feasibility of RT raster-scanning serial micro- and nano-protein crystallography at synchrotrons and validate it as an alternative approach for the collection of high-resolution structural data from micro-sized crystals. Advantages of the proposed approach are its thriftiness, its handling-free nature, the reduced amount of sample required, the adjustable hit rate, the high indexing rate and the minimization of background scattering.« less
NASA Astrophysics Data System (ADS)
Tovbin, Yu. K.
2017-11-01
An approach to calculating the effects of fluctuations in density that considers the collective motions of molecules in small condensed phases (e.g., droplets, microcrystals, adsorption at microcrystal faces) is proposed. Statistical sums of the vibrational, rotational, and translational motions of molecules are of a collective character expressed in the dependences of these statistical sums on the local configurations of neighboring molecules. This changes their individual contributions to the free energy and modifies fluctuations in density in the inner homogeneous regions of small bodies. Interactions between nearest neighbors are considered in a quasi-chemical approximation that reflects the effects of short-range direct correlations. Expressions for isotherms relating the densities of mixture components to the chemical potentials in a thermostat are obtained, along with equations for pair distribution functions.
Directing the Branching Growth of Cuprous Oxide by OH- Ions
NASA Astrophysics Data System (ADS)
Chen, Kunfeng; Si, Yunfei; Xue, Dongfeng
The effect of OH- ions on the branching growth of cuprous oxide microcrystals was systematically studied by a reduction route, where copper-citrate complexes were reduced by glucose under alkaline conditions. Different copper salts including Cu(NO3)2, CuCl2, CuSO4, and Cu(Ac)2 were used in this work. The results indicate that the Cu2O branching growth habit is closely correlated to the concentration of OH- ions, which plays an important role in directing the diffusion-limited branching growth of Cu2O and influencing the reduction power of glucose. A variety of Cu2O branching patterns including 6-pod, 8-pod and 24-pod branches, have been achieved without using template and surfactant. The current method can provide a good platform for studying the growth mechanism of microcrystal branching patterns.
Sample mounts for microcrystal crystallography
NASA Technical Reports Server (NTRS)
Thorne, Robert E. (Inventor); Kmetko, Jan (Inventor); Stum, Zachary (Inventor); O'Neill, Kevin (Inventor)
2007-01-01
Sample mounts (10) for mounting microcrystals of biological macromolecules for X-ray crystallography are prepared by using patterned thin polyimide films (12) that have curvature imparted thereto, for example, by being attached to a curved outer surface of a small metal rod (16). The patterned film (12) preferably includes a tapered tip end (24) for holding a crystal. Preferably, a small sample aperture is disposed in the film for reception of the crystal. A second, larger aperture can also be provided that is connected to the sample aperture by a drainage channel, allowing removal of excess liquid and easier manipulation in viscous solutions. The curvature imparted to the film (12) increases the film's rigidity and allows a convenient scoop-like action for retrieving crystals. The polyimide contributes minimally to background and absorption, and can be treated to obtain desired hydrophobicity or hydrophilicity.
Sample mounts for microcrystal crystallography
NASA Technical Reports Server (NTRS)
O'Neill, Kevin (Inventor); Kmetko, Jan (Inventor); Thorne, Robert E. (Inventor); Stum, Zachary (Inventor)
2009-01-01
Sample mounts (10) for mounting microcrystals of biological macromolecules for X-ray crystallography are prepared by using patterned thin polyimide films (12) that have curvature imparted thereto, for example, by being attached to a curved outer surface of a small metal rod (16). The patterned film (12) preferably includes a tip end (24) for holding a crystal. Preferably, a small sample aperture is disposed in the film for reception of the crystal. A second, larger aperture can also be provided that is connected to the sample aperture by a drainage channel, allowing removal of excess liquid and easier manipulation in viscous solutions. The curvature imparted to the film (12) increases the film's rigidity and allows a convenient scoop-like action for retrieving crystals. The polyimide contributes minimally to background and absorption, and can be treated to obtain desired hydrophobicity or hydrophilicity.
YAG glass-ceramic phosphor for white LED (II): luminescence characteristics
NASA Astrophysics Data System (ADS)
Tanabe, Setsuhisa; Fujita, Shunsuke; Yoshihara, Satoru; Sakamoto, Akihiko; Yamamoto, Shigeru
2005-09-01
Optical properties of the Ce:YAG glass-ceramic (GC) phosphor for the white LED were investigated. Concentration dependence of fluorescence intensity of Ce3+:5d→4f transition in the GC showed a maximum at 0.5mol%Ce2O3. Quantum efficiency (QE) of Ce3+ fluorescence in the GC materials, the color coordinate and luminous flux of electroluminescence of LED composite were evaluated with an integrating sphere. QE increased with increasing ceramming temperature of the as-made glass. The color coordinates (x,y) of the composite were increased with increasing thickness of the GC mounted on a blue LED chip. The effect of Gd2O3 substitution on the optical properties of the GC materials was also investigated. The excitation and emission wavelength shifted to longer side up to Gd/(Y+Gd)=0.40 in molar composition. As a result, the color coordinate locus of the LED with various thickness of the GdYAG-GC shifted to closer to the Planckian locus for the blackbody radiation. These results were explained by partial substitution of Gd3+ ions in the precipitated YAG micro-crystals, leading to the increase of lattice constant of unit cell, which was confirmed by X-ray diffraction.
Augmented Photoelectrochemical Efficiency of ZnO/TiO2 Nanotube Heterostructures
NASA Astrophysics Data System (ADS)
Boda, Muzaffar Ahmad; Shah, Mohammad Ashraf
2017-11-01
ZnO/TiO2 nanotube heterostructures have been fabricated by electrodeposition of ZnO microcrystals over electrochemically anodized TiO2 nanotube arrays. The resulting ZnO/TiO2 nanotube heterostructures showed enhanced photocurrent density of 5.72 mA cm-2, about 1.5 times the value of 3.68 mA cm-2 shown by bare compact TiO2 nanotubes. This enhanced photocurrent density of the ZnO/TiO2 nanotube heterostructures is due to high electron mobility in the ZnO crystals, thereby decreasing the electron-hole recombination process, good interfacial quality between the ZnO and TiO2 structures, and a proposed smooth charge-transfer mechanism due to band bending at the interface. The morphological features of the as-prepared heterostructures were determined by field-emission scanning electron microscopy (FESEM). The crystallinity and phase purity of the samples were confirmed by x-ray diffraction (XRD) analysis. The light absorption properties of the prepared samples were investigated by ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS). The photoelectrochemical efficiency of bare and ZnO-modified TiO2 nanotube heterostructures was determined by electrochemical analyzer.
Structural and electrical properties of CZTS thin films by electrodeposition
NASA Astrophysics Data System (ADS)
Rao, M. C.; Basha, Sk. Shahenoor
2018-06-01
CZTS (Cu2ZnSnS4) thin films were coated on ITO glass substrates by single bath electrodeposition technique. The prepared films were subsequently characterized by XRD, SEM, FTIR, UV-visible spectroscopy and Raman studies. The thickness of the thin films was measured by wedge method. X-ray diffraction studies revealed the formation of polycrystalline phase. The morphological surface of the prepared thin films was examined by SEM and AFM and showed the presence of microcrystals on the surface of the samples. The elemental analysis and their compositional ratios present in the samples were confirmed by the energy dispersive X-ray analysis. Functional groups and the position of band structure involved in the materials were confirmed by FTIR. Optical absorption studies were performed on the prepared thin films in the wavelength ranging from 300 to 1000 nm and the energy bandgap values were found to be in the range from 1.39 to 1.60 eV. Raman spectral peak which was observed at 360 cm-1 correspond to kesterite phase, was formed due to the vibration of the molecules. Electrical measurements confirmed the nature of the thin film depending on the charge concentration present in the samples.
Kolmas, Joanna; Velard, Frédéric; Jaguszewska, Aneta; Lemaire, Flora; Kerdjoudj, Halima; Gangloff, Sophie C; Kaflak, Agnieszka
2017-10-01
Hydroxyapatite (HA) enriched with strontium and boron ions was synthesized using two different methods: the precipitation method (Sr,B-HAw) and the dry method (Sr,B-HAd). Additionally, for the sake of comparison, the "pure" unsubstituted HA was prepared together with HAs substituted only with one type of a foreign ion. The obtained materials were subjected to physicochemical analysis with the use of various analytical methods, such as powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), inductively coupled plasma optical emission spectroscopy (ICP-OES), Fourier transform infrared spectroscopy (FT-IR) and solid-state proton nuclear magnetic resonance ( 1 H ssNMR). All the obtained materials were also biologically tested for their potential cytotoxicity. The obtained materials (Sr,B-HAw and Sr,B-HAd) were homogeneous and respectively showed nano- and microcrystal apatitic structures. The simultaneous introduction of Sr 2+ and BO 3 3- ions turned out to be more effective in respect of the dry method. Of importance, doped materials obtained using both synthesis routes have been demonstrated to be biocompatible, opening the way for medical applications. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kolosov, Vladimir Yu.
2011-03-01
Uunusual transrotational structure is presented for crystal growth in thin amorphous films. Experimental results have been obtained for the microcrystals of different chemical nature (oxides, chalcogenides, metals and alloys) grown in thin films prepared by various methods. Basically we used transmission electron microscopy (TEM): our original bend contour technique combined with selected area diffraction (HREM, EDX and CBED used in due cases as well as AFM). The unusual phenomenon (also traced inside TEM in situ) resides in strong (up to the whole rotation per micrometer) regular internal bending of crystal lattice planes (transrotation) in a growing crystal. As a result permanent rotation of the lattice orientation (realized round an axis lying in the film plane) is revealed by TEM. Different geometries of transrotational nanostructures are described: cylindrical, ellipsoidal, etc. Such crystal with transrotational atom periodicity resembles ideal single crystal enclosed in a curved space. Transrotational crystals can be considered as endless 2.5 D analogy of nanotubes, nanonions. Transrotation is strongly increasing as the film gets thinner in the range 100-15 nm. Transrotations supplement well known dislocations (in crystals) and disclinations (in liquid crystals). Support of RF Ministry of Education and Science is acknowledged.
NASA Astrophysics Data System (ADS)
Kchaou, H.; Karoui, K.; Bulou, A.; Ben Rhaiem, A.
2017-04-01
[N(CH3)3H]CdCl3 between 295 and 433 K possesses four phases. Three phase transition at T1=416 K, T2=373 K and T3=330 K (on heating) and T1=410 K, T2=386 K and T3=322 K (on cooling) was determined by differential scanning calorimetry. Thermal hysteresis of these transitions ΔT1=6 K, ΔT2=13 K and ΔT3=8 K, indicating a first order character. The X-ray diffraction study at room temperature revealed an orthorhombic system with Pbnm space group. The vibrational characteristics have been measured at room temperature by infrared spectroscopy (400-3800 cm-1) and by polarized Raman spectroscopy (10-3800 cm-1) on microcrystals orientated with respect to the organic and inorganic sublattice. The structure of this compound was optimized by density functional theory (DFT) using B3LYP with LanL2DZ and LanL2MB basis sets. The temperature dependence of the Raman line shifts ν and the half-width Δν detect the phase transitions (T1, T2 and T3).
Towards phasing using high X-ray intensity
Galli, Lorenzo; Son, Sang -Kil; Barends, Thomas R. M.; ...
2015-09-30
X-ray free-electron lasers (XFELs) show great promise for macromolecular structure determination from sub-micrometre-sized crystals, using the emerging method of serial femtosecond crystallography. The extreme brightness of the XFEL radiation can multiply ionize most, if not all, atoms in a protein, causing their scattering factors to change during the pulse, with a preferential `bleaching' of heavy atoms. This paper investigates the effects of electronic damage on experimental data collected from a Gd derivative of lysozyme microcrystals at different X-ray intensities, and the degree of ionization of Gd atoms is quantified from phased difference Fourier maps. In conclusion, a pattern sorting schememore » is proposed to maximize the ionization contrast and the way in which the local electronic damage can be used for a new experimental phasing method is discussed.« less
Polarization anisotropy in fiber-optic second harmonic generation microscopy.
Fu, Ling; Gu, Min
2008-03-31
We report the investigation and implementation of a compact second harmonic generation microscope that uses a single-mode fiber coupler and a double-clad photonic crystal fiber. Second harmonic polarization anisotropy through the fiber-optic microscope systems is quantitatively measured with KTP microcrystals, fish scale and rat tail tendon. It is demonstrated that the polarized second harmonic signals can be excited and collected through the single-mode fiber coupler to analyze the molecular orientations of structural proteins. It has been discovered that a double-clad photonic crystal fiber can preserve the linear polarization in the core, although a depolarization effect is observed in the inner cladding region. The feasibility of polarization anisotropy measurements in fiber-optic second harmonic generation microscopy will benefit the in vivo study of collagen-related diseases with a compact imaging probe.
Distribution of organic matrix in calcium oxalate renal calculi.
Warpehoski, M A; Buscemi, P J; Osborn, D C; Finlayson, B; Goldberg, E P
1981-01-01
The quantity of protein and carbohydrate comprising the matrix of calcium oxalate monohydrate (COM) renal stones was found to decrease with distance from the surface of the stone. The average organic concentration of stones 3 to 30 mm in diameter ranged from 5.7% at the surface to 2.7% at the core. This concentration gradient suggests matrix involvement in a "growth front" on stone surfaces with migration of organic material from the "older" interior. The matrix distribution was not readily correlated with density variations or with the presence of hydroxyapatite or calcium oxalate dihydrate. Surface matrix concentrations were greater than amounts predicted by physical adsorption. Electron microscopy confirmed the presence of the organic-rich surface layer and also suggested that increase in stone size occurs predominantly by crystal growth with microcrystal aggregates as growth centers.
Nucleation Process of a Fibril Precursor in the C-Terminal Segment of Amyloid-β
NASA Astrophysics Data System (ADS)
Baftizadeh, Fahimeh; Pietrucci, Fabio; Biarnés, Xevi; Laio, Alessandro
2013-04-01
By extended atomistic simulations in explicit solvent and bias-exchange metadynamics, we study the aggregation process of 18 chains of the C-terminal segment of amyloid-β, an intrinsically disordered protein involved in Alzheimer’s disease and prone to form fibrils. Starting from a disordered aggregate, we are able to observe the formation of an ordered nucleus rich in beta sheets. The rate limiting step in the nucleation pathway involves crossing a barrier of approximately 40kcal/mol and is associated with the formation of a very specific interdigitation of the side chains belonging to different sheets. This structural pattern is different from the one observed experimentally in a microcrystal of the same system, indicating that the structure of a “nascent” fibril may differ from the one of an “extended” fibril.
Ceramic micro-injection molded nozzles for serial femtosecond crystallography sample delivery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beyerlein, K. R.; Adriano, L.; Heymann, M.
Serial femtosecond crystallography (SFX) using X-ray Free-Electron Lasers (XFELs) allows for room temperature protein structure determination without evidence of conventional radiation damage. In this method, a liquid suspension of protein microcrystals can be delivered to the X-ray beam in vacuum as a micro-jet, which replenishes the crystals at a rate that exceeds the current XFEL pulse repetition rate. Gas dynamic virtual nozzles produce the required micrometer-sized streams by the focusing action of a coaxial sheath gas and have been shown to be effective for SFX experiments. Here, we describe the design and characterization of such nozzles assembled from ceramic micro-injectionmore » molded outer gas-focusing capillaries. Trends of the emitted jet diameter and jet length as a function of supplied liquid and gas flow rates are measured by a fast imaging system. The observed trends are explained by derived relationships considering choked gas flow and liquidflow conservation. In conclusion, the performance of these nozzles in a SFX experiment is presented, including an analysis of the observed background.« less
Ceramic micro-injection molded nozzles for serial femtosecond crystallography sample delivery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beyerlein, K. R.; Heymann, M.; Kirian, R.
Serial femtosecond crystallography (SFX) using X-ray Free-Electron Lasers (XFELs) allows for room temperature protein structure determination without evidence of conventional radiation damage. In this method, a liquid suspension of protein microcrystals can be delivered to the X-ray beam in vacuum as a micro-jet, which replenishes the crystals at a rate that exceeds the current XFEL pulse repetition rate. Gas dynamic virtual nozzles produce the required micrometer-sized streams by the focusing action of a coaxial sheath gas and have been shown to be effective for SFX experiments. Here, we describe the design and characterization of such nozzles assembled from ceramic micro-injectionmore » molded outer gas-focusing capillaries. Trends of the emitted jet diameter and jet length as a function of supplied liquid and gas flow rates are measured by a fast imaging system. The observed trends are explained by derived relationships considering choked gas flow and liquid flow conservation. Finally, the performance of these nozzles in a SFX experiment is presented, including an analysis of the observed background.« less
Ceramic micro-injection molded nozzles for serial femtosecond crystallography sample delivery
Beyerlein, K. R.; Adriano, L.; Heymann, M.; ...
2015-12-08
Serial femtosecond crystallography (SFX) using X-ray Free-Electron Lasers (XFELs) allows for room temperature protein structure determination without evidence of conventional radiation damage. In this method, a liquid suspension of protein microcrystals can be delivered to the X-ray beam in vacuum as a micro-jet, which replenishes the crystals at a rate that exceeds the current XFEL pulse repetition rate. Gas dynamic virtual nozzles produce the required micrometer-sized streams by the focusing action of a coaxial sheath gas and have been shown to be effective for SFX experiments. Here, we describe the design and characterization of such nozzles assembled from ceramic micro-injectionmore » molded outer gas-focusing capillaries. Trends of the emitted jet diameter and jet length as a function of supplied liquid and gas flow rates are measured by a fast imaging system. The observed trends are explained by derived relationships considering choked gas flow and liquidflow conservation. In conclusion, the performance of these nozzles in a SFX experiment is presented, including an analysis of the observed background.« less
NASA Astrophysics Data System (ADS)
Song, Yoon-Kyu; Stein, John; Patterson, William R.; Bull, Christopher W.; Davitt, Kristina M.; Serruya, Mijail D.; Zhang, Jiayi; Nurmikko, Arto V.; Donoghue, John P.
2007-09-01
Recent advances in functional electrical stimulation (FES) show significant promise for restoring voluntary movement in patients with paralysis or other severe motor impairments. Current approaches for implantable FES systems involve multisite stimulation, posing research issues related to their physical size, power and signal delivery, surgical and safety challenges. To explore a different means for delivering the stimulus to a distant muscle nerve site, we have elicited in vitro FES response using a high efficiency microcrystal photovoltaic device as a neurostimulator, integrated with a biocompatible glass optical fiber which forms a lossless, interference-free lightwave conduit for signal and energy transport. As a proof of concept demonstration, a sciatic nerve of a frog is stimulated by the microcrystal device connected to a multimode optical fiber (core diameter of 62.5 µm), which converts optical activation pulses (~100 µs) from an infrared semiconductor laser source (at 852 nm wavelength) into an FES signal.
Darrow, Chris; Seger, Tino
2003-09-30
A transparent flow channel fluidly communicates a fluid source and a collection reservoir. An interrogating light beam passes through a first polarizer having a first plane of polarization. The flow channel is orthogonal to the light beam. The light beam passes through a fluid sample as it flows through the flow channel, and is then filtered through a second polarizer having a second plane of polarization rotated 90.degree. from the first plane of polarization. An electronic photo-detector is aligned with the light beam, and signals the presence of birefringent microcrystals in the fluid sample by generating voltage pulses. A disposable containment fixture includes the flow channel and the collection reservoir. The fixture is adapted for removable insertion into an interrogation cradle that includes optical and data processing components. The cradle rigidly positions the centerline of the flow channel orthogonal to the light beam.
Crystallization of PTP Domains.
Levy, Colin; Adams, James; Tabernero, Lydia
2016-01-01
Protein crystallography is the most powerful method to obtain atomic resolution information on the three-dimensional structure of proteins. An essential step towards determining the crystallographic structure of a protein is to produce good quality crystals from a concentrated sample of purified protein. These crystals are then used to obtain X-ray diffraction data necessary to determine the 3D structure by direct phasing or molecular replacement if the model of a homologous protein is available. Here, we describe the main approaches and techniques to obtain suitable crystals for X-ray diffraction. We include tools and guidance on how to evaluate and design the protein construct, how to prepare Se-methionine derivatized protein, how to assess the stability and quality of the sample, and how to crystallize and prepare crystals for diffraction experiments. While general strategies for protein crystallization are summarized, specific examples of the application of these strategies to the crystallization of PTP domains are discussed.
Pandian, Ramasamy P.; Dolgos, Michelle; Marginean, Camelia; Woodward, Patrick M.; Hammel, P. Chris; Manoharan, Periakaruppan T.; Kuppusamy, Periannan
2009-01-01
The synthesis, structural framework, magnetic and oxygen-sensing properties of a lithium naphthalocyanine (LiNc) radical probe are presented. LiNc was synthesized in the form of a microcrystalline powder using a chemical method and characterized by electron paramagnetic resonance (EPR) spectroscopy, magnetic susceptibility, powder X-ray diffraction analysis, and mass spectrometry. X-Ray powder diffraction studies revealed a structural framework that possesses long, hollow channels running parallel to the packing direction. The channels measured approximately 5.0 × 5.4 Å2 in the two-dimensional plane perpendicular to the length of the channel, enabling diffusion of oxygen molecules (2.9 × 3.9 Å2) through the channel. The powdered LiNc exhibited a single, sharp EPR line under anoxic conditions, with a peak-to-peak linewidth of 630 mG at room temperature. The linewidth was sensitive to surrounding molecular oxygen, showing a linear increase in pO2 with an oxygen sensitivity of 31.2 mG per mmHg. The LiNc microcrystals can be further prepared as nano-sized crystals without the loss of its high oxygen-sensing properties. The thermal variation of the magnetic properties of LiNc, such as the EPR linewidth, EPR intensity and magnetic susceptibility revealed the existence of two different temperature regimes of magnetic coupling and hence differing columnar packing, both being one-dimensional antiferromagnetic chains but with differing magnitudes of exchange coupling constants. At a temperature of ∼50 K, LiNc crystals undergo a reversible phase transition. The high degree of oxygen-sensitivity of micro- and nano-sized crystals of LiNc, combined with excellent stability, should enable precise and accurate measurements of oxygen concentration in biological systems using EPR spectroscopy. PMID:19809598
Stepped In content growth of InGaN
NASA Astrophysics Data System (ADS)
Kanie, Hisashi; Yoshimura, Takaya
2004-03-01
Although InGaN plays an important role in blue lasers or blue light emitting diodes the characteristic luminescent properties of InGaN is not yet well elucidated. One of them is the double- or multi- peaked luminescent band [1] often observed from the InGaN epilayers. The mechanism is explained by the In content fluctuation or phase separations. We report the observation of the stepped-In-content growth on the facets of InGaN microcrystal under the scanning electron microscope equipped with a highly resolved (50 nm) cathodoluminescent imaging system. InGaN microcrystals were synthesized by nitridation of the mixture of In compound and GaN microcrystals by ammonia. We observed small rectangular crystals emitting at 420 nm with a size of 150-300 x 250-450 nm oriented in the crystallographic direction on a facet emitting at 370 nm. We also observed that a crystal emitting at 460 nm exists in a belt on a facet emitting at 420 nm. Frequency analysis of wavelengths of emission band peak shows 3 peaks at 370, 420, and 450 nm. We think the mechanism of the InGaN growth with a stepped increase in In content is comparable to that of the compositional pulling effect [2] except that the initial nucleus of richer In content InGaN growth is not a endpoint of dislocation that acts as a non-luminescent center. [1] S. Pereira, et.al., Appl. Phys. Lett. 81, 1207 (2002). [2]K. Hiramatsu,et.al. MRS Internet J. Nitride Sem. Res.vl2, article 6.
Potrzebowski, Wojciech; André, Ingemar
2015-07-01
For highly oriented fibrillar molecules, three-dimensional structures can often be determined from X-ray fiber diffraction data. However, because of limited information content, structure determination and validation can be challenging. We demonstrate that automated structure determination of protein fibers can be achieved by guiding the building of macromolecular models with fiber diffraction data. We illustrate the power of our approach by determining the structures of six bacteriophage viruses de novo using fiber diffraction data alone and together with solid-state NMR data. Furthermore, we demonstrate the feasibility of molecular replacement from monomeric and fibrillar templates by solving the structure of a plant virus using homology modeling and protein-protein docking. The generated models explain the experimental data to the same degree as deposited reference structures but with improved structural quality. We also developed a cross-validation method for model selection. The results highlight the power of fiber diffraction data as structural constraints.
Mori, Hajime; Oda, Naoki; Abe, Satoshi; Ueno, Takafumi; Zhu, Wenliang; Pernstich, Chris; Pezzotti, Giuseppe
2018-05-16
Protein and amino acid structures of Norovirus-like particles (NoVLP) have been investigated by Raman spectroscopy before and after encapsulation into Bombyx mori cypovirus (BmCPV) cubic microcrystals, which are usually referred to as cubes or polyhedra. Two different types of tag were used in co-expression, namely VP3 and H1 tags. VP3 tag is derived from a capsid protein VP4 from BmCPV and H1 tag is N-terminal α-helix of BmCPV polyhedrin, respectively. A major capsid protein VP1 of NoVLP G11.4 was fused with H1 or VP3 tags, and then encapsulated into BmCPV polyhedra. Analyses of the spectroscopic data permitted the assignment of conformation-sensitive Raman bands to viral amino acid constituents and the observation of structural similarities or differences between differently tagged samples. Three separate Raman zones were attentioned, namely, the ring-mode structure region (1000-1500 cm -1 ), the CO and CC double-bond region and its surroundings (1500-1750 cm -1 ), and the high-frequency CH stretching region (2800-3100 cm -1 ). Structural fingerprints could be found in specific spectral zones for differently co-expressed samples. One clear characteristic of the H1-tagged VP1 polyhedra was the increase in tyrosine fraction, which played a critical role in binding neighboring strands through its unpaired negatively charged COO - sites. This feature could consistently be detected in different regions, but it was best represented by Raman signals associated with negatively charged COO - sites and H1 helices in the double-bond region. Such peculiar chemical features were revealed by two relatively broad bands at 1570 and 1630 cm -1 , which were assigned to COO - anti-symmetric stretching and amide I in 3 10 -helix extensions to α-helices at N-termini, respectively. These specific features did not display in the spectrum of the VP3-tagged VP1 polyhedra. Concurrently, a strong reduction of CH bond Raman signal was noticed in the high frequency stretching region of the Raman spectrum upon H1-tagged VP1 polyhedra. The Raman activity most strikingly also represented fingerprints of tagged NoVLP VP1 after its encapsulation into BmCPV polyhedra, opening thus the possibility to in situ advanced experiments in the fields of drug delivery and regenerative medicine. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Boyko, K. M.; Nikolaeva, A. Yu.; Kachalova, G. S.; Bonchuk, A. N.; Dorovatovskii, P. V.; Popov, V. O.
2017-11-01
The Drosophila genome has several dozens of transcription factors (TTK group) containing BTB domains assembled into octamers. The LOLA protein belongs to this family. The purification, crystallization, and preliminary X-ray diffraction and small-angle X-ray scattering (SAXS) studies of the BTB domain of this protein are reported. The crystallization conditions were found by the vapor-diffusion technique. A very low diffraction resolution (8.7 Å resolution) of the crystals was insufficient for the determination of the threedimensional structure of the BTB domain. The SAXS study demonstrated that the BTB domain of the LOLA protein exists as an octamer in solution.
NASA Astrophysics Data System (ADS)
Chung, Nguyen Thi Kim; Egorushina, E. A.; Latyshev, A. N.; Ovchinnikov, O. V.; Smirnov, M. S.; Suvorova, T. I.
2012-01-01
We have observed a significant increase in the intensity with anti-Stokes excitation of recombination luminescence in AgCl(I) microcrystals sensitized by methylene blue molecules in the presence of silver nanoparticles.
Functionalizing Designer DNA Crystals
NASA Astrophysics Data System (ADS)
Chandrasekaran, Arun Richard
Three-dimensional crystals have been self-assembled from a DNA tensegrity triangle via sticky end interaction. The tensegrity triangle is a rigid DNA motif containing three double helical edges connected pair-wise by three four-arm junctions. The symmetric triangle contains 3 unique strands combined in a 3:3:1 ratio: 3 crossover, 3 helical and 1 central. The length of the sticky end reported previously was two nucleotides (nt) (GA:TC) and the motif with 2-helical turns of DNA per edge diffracted to 4.9 A at beam line NSLS-X25 and to 4 A at beam line ID19 at APS. The purpose of these self-assembled DNA crystals is that they can be used as a framework for hosting external guests for use in crystallographic structure solving or the periodic positioning of molecules for nanoelectronics. This thesis describes strategies to improve the resolution and to incorporate guests into the 3D lattice. The first chapter describes the effect of varying sticky end lengths and the influence of 5'-phosphate addition on crystal formation and resolution. X-ray diffraction data from beam line NSLS-X25 revealed that the crystal resolution for 1-nt (G:C) sticky end was 3.4 A. Motifs with every possible combination of 1-nt and 2-nt sticky-ended phosphorylated strands were crystallized and X-ray data were collected. The position of the 5'-phosphate on either the crossover (strand 1), helical (strand 2), or central strand (3) had an impact on the resolution of the self-assembled crystals with the 1-nt 1P-2-3 system diffracting to 2.62 A at APS and 3.1 A at NSLS-X25. The second chapter describes the sequence-specific recognition of DNA motifs with triplex-forming oligonucleotides (TFOs). This study examined the feasibility of using TFOs to bind to specific locations within a 3-turn DNA tensegrity triangle motif. The TFO 5'-TTCTTTCTTCTCT was used to target the tensegrity motif containing an appropriately embedded oligopurine.oligopyrimidine binding site. As triplex formation involving cytidine nucleotides is usually pH dependent (pH < 6) four different TFOs were examined: TFO-1 was unmodified while TFOs 2-4 contained additional stabilizing analogues capable of extending triplex formation to pH 7. In addition, each of the TFOs contained a Cy5 dye at the 5'-end of the oligonucleotide to aid in characterization of TFO binding - crystals were obtained with all four variations of TFOs. Formation of DNA triplex in the motif was characterized by an electrophoretic mobility shift assay (EMSA), UV melting studies and FRET. Crystals containing TFO-1 (unmodified) and TFO-2 (with 2'-amino ethoxy modification) were isolated and flash-frozen in liquid nitrogen for X-ray data collection at beam line NSLS-X25. X-ray data was also collected for crystals of the 3-turn triangle without any TFO bound to it. Difference maps were done between the crystals with TFO against the one without to identify any additional electron density corresponding to the third strand in the triplex binding region. The data from the crystal containing TFO-2 was used to further analyze if the additional density can match the expected position of the TFO on the triangle motif. Since the additional density did not correspond to the entire binding region, 2Fo-Fc, 3Fo-2Fc and 4Fo-3Fc maps were done to check for missing pieces of the electron density. From the resulting 2Fo-Fc map, the asymmetric unit from the 3-turn triangle (31-bp duplex model based on previous structure 3UBI) was inserted into the density as a reference. However, the electron density corresponding to the TFO was still not continuous throughout the 13-nt triplex binding region and allowed only a partial fit of the TFO. The third nucleotide in positions 1, 3, 4, 6, 7 were fit into the density in the major groove of the underlying duplex with proper triplex configuration. The third chapter describes the triplex approach to position a functional group (the UV cross-linking agent psoralen) within a pre-formed DNA motif. Triplex formation and psoralen cross-linking of the motif were analyzed by native and denaturing gel electrophoresis respectively. Motifs containing the Psoralen-TFO were also successfully crystallized and the crosslinking shown by analyzing the denatured crystals on a gel. The end goal would be to form a crosslinked designed DNA crystal that can diffract to a higher resolution. The fourth chapter describes the use of serial femtosecond crystallography for structure determination of designed DNA lattices. X-ray diffraction data from self-assembled 3D DNA microcrystals were collected from a stream of crystals in solution. Serial femtosecond crystallography eliminates the need for large crystals and the need for freezing, thus overcoming any associated crystal defects and radiation damage. Self-assembled nano/microcrystals were successfully made and were diffracted at room temperature. The best diffraction was from the 1-nt SE motif to an extent of 3.5 A in resolution.
Live celloidosome structures based on the assembly of individual cells by colloid interactions.
Fakhrullin, Rawil F; Brandy, Marie-Laure; Cayre, Olivier J; Velev, Orlin D; Paunov, Vesselin N
2010-10-14
A new class of colloid structures, celloidosomes, has been developed which represent hollow microcapsules whose membranes consist of a single monolayer of living cells. Two routes for producing these structures were designed based on templating of: (i) air bubbles and (ii) anisotropic microcrystals of calcium carbonate with living cells, which allowed us to fabricate celloidosomes of spherical, rhombohedral and needle-like morphologies. Air microbubbles were templated by yeast cells coated with poly(allylamine hydrochloride) (PAH), then coated with carboxymethylcellulose and rehydrated resulting in the formation of spherical multicellular structures. Similarly, calcium carbonate microcrystals of anisotropic shapes were coated with several consecutive layers of oppositely charged polyelectrolytes to obtain a positive surface charge which was used to immobilise yeast cells coated with anionic polyelectrolyte of their surfaces. After dissolving of sacrificial cores, hollow multicellular structures were obtained. The viability of the cells in the produced structures was confirmed by using fluorescein diacetate. In order to optimize the separation of celloidosomes from free cells magnetic nanoparticles were immobilised onto the surface of templates prior to the cells deposition, which greatly facilitated the separation using a permanent magnet. Two alternative approaches were developed to form celloidosome structures using magnetically functionalised core-shell microparticles which resulted in the formation of celloidosomes with needle-like and cubic-like geometries which follows the original morphology of the calcium carbonate microcrystals. Our methods for fabrication of celloidosomes may found applications in the development of novel symbiotic bio-structures, artificial multicellular organisms and in tissue engineering. The unusual structure of celloidosomes resembles the primitive forms of multicellular species, like Volvox, and other algae and could be regarded as one possible mechanism of the evolutionary development of multicellularity.
Observing the overall rocking motion of a protein in a crystal
NASA Astrophysics Data System (ADS)
Ma, Peixiang; Xue, Yi; Coquelle, Nicolas; Haller, Jens D.; Yuwen, Tairan; Ayala, Isabel; Mikhailovskii, Oleg; Willbold, Dieter; Colletier, Jacques-Philippe; Skrynnikov, Nikolai R.; Schanda, Paul
2015-10-01
The large majority of three-dimensional structures of biological macromolecules have been determined by X-ray diffraction of crystalline samples. High-resolution structure determination crucially depends on the homogeneity of the protein crystal. Overall `rocking' motion of molecules in the crystal is expected to influence diffraction quality, and such motion may therefore affect the process of solving crystal structures. Yet, so far overall molecular motion has not directly been observed in protein crystals, and the timescale of such dynamics remains unclear. Here we use solid-state NMR, X-ray diffraction methods and μs-long molecular dynamics simulations to directly characterize the rigid-body motion of a protein in different crystal forms. For ubiquitin crystals investigated in this study we determine the range of possible correlation times of rocking motion, 0.1-100 μs. The amplitude of rocking varies from one crystal form to another and is correlated with the resolution obtainable in X-ray diffraction experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramdasi, O. A.; Kolekar, Y. D.; Kambale, R. C., E-mail: rckambale@gmail.com
The plate-like NaNbO{sub 3} (NN) templates with (100) preferential orientation was synthesized from bismuth layer structured ferroelectric Bi{sub 2.5}Na{sub 3.5}Nb{sub 5}O{sub 18} (BNN) precursor by topochemical microcrystal conversion (TMC) method. The large platelets of BNN were first obtained by molten salt synthesis at the 1125 °C with a salt-to oxide weight ratio 1.5: 1. The anisotropic NN templates were derived from BNN at the 975 °C with BNN/ Na{sub 2}CO{sub 3} molar ratio of 1:1.5. The NaNbO{sub 3} templates have an average length of ~ 10-14 µm. The NN templates retains their elemental constitutes of Na, Nb and O inmore » stoichiometric proportion. The effect of ultrasonication on the orientation factor (F{sub h00}) of NN templates was understood by X-ray diffraction (XRD) and scanning electron microscopy (SEM) results. The degree of (100) orientation of as synthesized NN templates (~57%) was found to be increased (~89%) after ultrasonication. Moreover, the microstructure i.e. alignment / shape of as synthesized NN templates was changed from rectangular (110) orientation to square (100) orientation geometry after ultrasonication. Hence, ultrasonication is a cost effective approach to preparing the textured piezoelectric ceramics by the template grain growth technique using tape casting.« less
Synthesis mechanism and improved (100) oriented NaNbO3 templates by ultrasonication
NASA Astrophysics Data System (ADS)
Ramdasi, O. A.; Kolekar, Y. D.; Kim, D. J.; Song, T. K.; Kambale, R. C.
2016-05-01
The plate-like NaNbO3 (NN) templates with (100) preferential orientation was synthesized from bismuth layer structured ferroelectric Bi2.5Na3.5Nb5O18 (BNN) precursor by topochemical microcrystal conversion (TMC) method. The large platelets of BNN were first obtained by molten salt synthesis at the 1125 °C with a salt-to oxide weight ratio 1.5: 1. The anisotropic NN templates were derived from BNN at the 975 °C with BNN/ Na2CO3 molar ratio of 1:1.5. The NaNbO3 templates have an average length of ~ 10-14 µm. The NN templates retains their elemental constitutes of Na, Nb and O in stoichiometric proportion. The effect of ultrasonication on the orientation factor (Fh00) of NN templates was understood by X-ray diffraction (XRD) and scanning electron microscopy (SEM) results. The degree of (100) orientation of as synthesized NN templates (~57%) was found to be increased (~89%) after ultrasonication. Moreover, the microstructure i.e. alignment / shape of as synthesized NN templates was changed from rectangular (110) orientation to square (100) orientation geometry after ultrasonication. Hence, ultrasonication is a cost effective approach to preparing the textured piezoelectric ceramics by the template grain growth technique using tape casting.
Anionic Gallium-Based Metal;#8722;Organic Framework and Its Sorption and Ion-Exchange Properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, Debasis; Kim, Sun Jin; Wu, Haohan
2012-04-30
A gallium-based metal-organic framework Ga{sub 6}(C{sub 9}H{sub 3}O{sub 6}){sub 8} {center_dot} (C{sub 2}H{sub 8}N){sub 6}(C{sub 3}H{sub 7}NO){sub 3}(H{sub 2}O){sub 26} [1, Ga{sub 6}(1,3,5-BTC){sub 8} {center_dot} 6DMA {center_dot} 3DMF {center_dot} 26H{sub 2}O], GaMOF-1; BTC = benzenetricarboxylate/trimesic acid and DMA = dimethylamine, with space group I{bar 4}3d, a = 19.611(1) {angstrom}, and V = 7953.4(6) {angstrom}{sup 3}, was synthesized using solvothermal techniques and characterized by synchrotron-based X-ray microcrystal diffraction. Compound 1 contains isolated gallium tetrahedra connected by the organic linker (BTC) forming a 3,4-connected anionic porous network. Disordered positively charged ions and solvent molecules are present in the pore, compensating for themore » negative charge of the framework. These positively charged molecules could be exchanged with alkali-metal ions, as is evident by an ICP-MS study. The H{sub 2} storage capacity of the parent framework is moderate with a H{sub 2} storage capacity of {approx}0.5 wt % at 77 K and 1 atm.« less
NASA Astrophysics Data System (ADS)
Li, Bowen; He, Mengsheng; Wang, Huaguang
2017-07-01
Andalusite has been realized as a special mineral for the production of refractory ceramics due to its unique property to automatically decompose into mullite and silica during heating at high temperature. The phase transformation from andalusite to mullite plays a critical role for the effective applications of andalusite. This study investigated the microstructural characteristics and sinterability of andalusite powder during high-temperature decomposition. The andalusite powder was bonded with kaolin and prepared as a cylinder green body at 20 MPa; it was then fired at 1423 K to 1723 K (1150 °C to 1450 °C). The microstructures and mechanical strengths of the sintered ceramics were studied by the compressive test, X-ray diffraction, and scanning electron microscopy. The results showed that newly born mullite appeared as rodlike microcrystals and dispersed around the initial andalusite. At 1423 K (1150 °C), the mullitization of andalusite was started, but the complete mullitization was not found until firing at 1723 K (1450 °C). The compressive strength of the ceramics increased from 93.7 to 294.6 MPa while increasing the fire temperature from 1423 K to 1723 K (1150 °C to 1450 °C). Meanwhile, the bulk density of the ceramics was only slightly changed from 2.15 to 2.19 g/cm3.
NASA Astrophysics Data System (ADS)
Hikal, Walid M.
In this thesis I have presented the findings of my research pursued during my Ph.D. study. Following the findings that 2,4,6-trinitrotoluene binds to porphyrins at room temperature and could be photoctalytically degraded using porphyrin solutions and visible light, the purpose of this work was to determine the nature of the binding between the two species and develop a solid porphyrin-based photocatalyst for TNT degradation. C1TPP porphyrin is found to be able to bind to TNT via 1.94 kcal/mole hydrogen bonds at room temperature and hydrophobic bonds at higher temperatures. Photocatalytic solid porphyrin crystalline structures have been developed using two oppositely charged, commercially available, and low cost porphyrins in presence and absence of PAMAM generation 4 (G4) dendrimer, by self-assembly at room temperature without acidification. Solid porphyrin crystals were characterized by means of optical microscopy, UV-visible spectroscopy, fluorescence spectroscopy, and powder X-ray diffraction. A hypothetical model for the structure of the crystals is proposed. The porphyrin crystals show photocatalytic capabilities; illumination of the crystals in a 2,4,6-trinitrotoluene solution by visible light results in degradation of TNT and the intermediates have been determined using high pressure liquid chromatography (HPLC) and gas chromatography (GC).
Racemic & quasi-racemic protein crystallography enabled by chemical protein synthesis.
Kent, Stephen Bh
2018-04-04
A racemic protein mixture can be used to form centrosymmetric crystals for structure determination by X-ray diffraction. Both the unnatural d-protein and the corresponding natural l-protein are made by total chemical synthesis based on native chemical ligation-chemoselective condensation of unprotected synthetic peptide segments. Racemic protein crystallography is important for structure determination of the many natural protein molecules that are refractory to crystallization. Racemic mixtures facilitate the crystallization of recalcitrant proteins, and give diffraction-quality crystals. Quasi-racemic crystallization, using a single d-protein molecule, can facilitate the determination of the structures of a series of l-protein analog molecules. Copyright © 2018 Elsevier Ltd. All rights reserved.
In cellulo serial crystallography of alcohol oxidase crystals inside yeast cells
Jakobi, Arjen J.; Passon, Daniel M.; Knoops, Kevin; ...
2016-03-01
The possibility of using femtosecond pulses from an X-ray free-electron laser to collect diffraction data from protein crystals formed in their native cellular organelle has been explored. X-ray diffraction of submicrometre-sized alcohol oxidase crystals formed in peroxisomes within cells of genetically modified variants of the methylotrophic yeast Hansenula polymorpha is reported and characterized. Furthermore, the observations are supported by synchrotron radiation-based powder diffraction data and electron microscopy. Based on these findings, the concept of in cellulo serial crystallography on protein targets imported into yeast peroxisomes without the need for protein purification as a requirement for subsequent crystallization is outlined.
In cellulo serial crystallography of alcohol oxidase crystals inside yeast cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jakobi, Arjen J.; Passon, Daniel M.; Knoops, Kevin
The possibility of using femtosecond pulses from an X-ray free-electron laser to collect diffraction data from protein crystals formed in their native cellular organelle has been explored. X-ray diffraction of submicrometre-sized alcohol oxidase crystals formed in peroxisomes within cells of genetically modified variants of the methylotrophic yeast Hansenula polymorpha is reported and characterized. Furthermore, the observations are supported by synchrotron radiation-based powder diffraction data and electron microscopy. Based on these findings, the concept of in cellulo serial crystallography on protein targets imported into yeast peroxisomes without the need for protein purification as a requirement for subsequent crystallization is outlined.
In cellulo serial crystallography of alcohol oxidase crystals inside yeast cells
Jakobi, Arjen J.; Passon, Daniel M.; Knoops, Kèvin; Stellato, Francesco; Liang, Mengning; White, Thomas A.; Seine, Thomas; Messerschmidt, Marc; Chapman, Henry N.; Wilmanns, Matthias
2016-01-01
The possibility of using femtosecond pulses from an X-ray free-electron laser to collect diffraction data from protein crystals formed in their native cellular organelle has been explored. X-ray diffraction of submicrometre-sized alcohol oxidase crystals formed in peroxisomes within cells of genetically modified variants of the methylotrophic yeast Hansenula polymorpha is reported and characterized. The observations are supported by synchrotron radiation-based powder diffraction data and electron microscopy. Based on these findings, the concept of in cellulo serial crystallography on protein targets imported into yeast peroxisomes without the need for protein purification as a requirement for subsequent crystallization is outlined. PMID:27006771
SnTe microcrystals: Surface cleaning of a topological crystalline insulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saghir, M., E-mail: M.Saghir@warwick.ac.uk, E-mail: G.Balakrishnan@warwick.ac.uk; Walker, M.; McConville, C. F.
Investigating nanometer and micron sized materials thought to exhibit topological surface properties that can present a challenge, as clean surfaces are a pre-requisite for band structure measurements when using nano-ARPES or laser-ARPES in ultra-high vacuum. This issue is exacerbated when dealing with nanometer or micron sized materials, which have been prepared ex-situ and so have been exposed to atmosphere. We present the findings of an XPS study where various cleaning methods have been employed to reduce the surface contamination and preserve the surface quality for surface sensitive measurements. Microcrystals of the topological crystalline insulator SnTe were grown ex-situ and transferredmore » into ultra high vacuum (UHV) before being treated with either atomic hydrogen, argon sputtering, annealing, or a combination of treatments. The samples were also characterised using the scanning electron microscopy, both before and after treatment. It was found that atomic hydrogen cleaning with an anneal cycle (200 °C) gave the best clean surface results.« less
microcrystals as an efficient heterogeneous Fenton-like catalyst in degradation of rhodamine 6G
NASA Astrophysics Data System (ADS)
Li, Zhan Jun; Ali, Ghafar; Kim, Hyun Jin; Yoo, Seong Ho; Cho, Sung Oh
2014-05-01
We present a novel heterogeneous Fenton-like catalyst of LiFePO4 (LFP). LFP has been widely used as an electrode material of a lithium ion battery, but we observed that commercial LFP (LFP-C) could act as a good Fenton-like catalyst to decompose rhodamine 6G. The catalytic activity of LFP-C microparticles was much higher than a popular catalyst, magnetite nanoparticles. Furthermore, we found that the catalytic activity of LFP-C could be further increased by increasing the specific surface area. The reaction rate constant of the hydrothermally synthesized LFP microcrystals (LFP-H) is at least 18 times higher than that of magnetite nanoparticles even though the particle size of LFP is far larger than magnetite nanoparticles. The LFP catalysts also exhibited a good recycling behavior and high stability under an oxidizing environment. The effects of the experimental parameters such as the concentration of the catalysts, pH, and the concentration of hydrogen peroxide on the catalytic activity of LFP were also analyzed.
Meenakshisundaram, Guruguhan; Pandian, Ramasamy P.; Eteshola, Edward; Lee, Stephen C.; Kuppusamy, Periannan
2009-01-01
Lithium naphthalocyanine (LiNc) is a microcrystalline EPR oximetry probe with high sensitivity to oxygen (Pandian et al. J. Mater. Chem., 19, 4138, 2009). However, direct implantation of the crystals in the tissue for in vivo oxygen measurements may be hindered by concerns associated with their direct contact with the tissue/cells and loss of EPR signal due to particle migration in the tissue. In order to address these concerns, we have developed encapsulations (chips) of LiNc microcrystals in polydimethyl siloxane (PDMS), an oxygen-permeable, bioinert polymer. Oximetry evaluation of the fabricated chips revealed that the oxygen sensitivity of the crystals was unaffected by encapsulation in PDMS. Chips were stable against sterilization procedures or treatment with common biological oxidoreductants. In vivo oxygen measurements established the ability of the chips to provide reliable and repeated measurements of tissue oxygenation. This study establishes PDMS-encapsulated LiNc as a potential probe for long-term and repeated measurements of tissue oxygenation. PMID:20006529
NASA Astrophysics Data System (ADS)
Gaman, V. I.; Almaev, A. V.; Sevast'yanov, E. Yu.; Maksimova, N. K.
2015-06-01
The results of studying the dependence of the energy band bending at the interface of contacting SnO2 microcrystals in the polycrystalline tin dioxide film on the humidity level of clean air and hydrogen concentration in the gas mixture of clean air + H2 are presented. The experimental results showed that the bending of energy bands in SnO2 is decreased under exposure to the water vapors and molecular hydrogen. The presence of two types of the adsorption centers for water molecules on the surface of SnO2 is found. It is shown that at the absolute humidity of the gas mixture above 12 g/m3, the H2O and H2 molecules are adsorbed on the same centers, whose surface density is of 1012 сm-2 at a concentration of donor impurity in SnO2 equal to 1018 сm-3.
Huang, Li-shar; Borders, Toni M.; Shen, John T.; Wang, Chung-Jen; Berry, Edward
2006-01-01
Synopsis A multi-subunit mitochondrial membrane protein complex involved in the Krebs Cycle and respiratory chain has been crystallized in a form suitable for near-atomic resolution structure determination. A procedure is presented for preparation of diffraction-quality crystals of a vertebrate mitochondrial respiratory Complex II. The crystals have the potential to diffract to at least 2.0 Å with optimization of post-crystal-growth treatment and cryoprotection. This should allow determination of the structure of this important and medically relevant membrane protein complex at near-atomic resolution and provide great detail of the mode of binding of substrates and inhibitors at the two substrate-binding sites. PMID:15805592
Diffraction and Imaging Study of Imperfections of Protein Crystals with Coherent X-rays
NASA Technical Reports Server (NTRS)
Hu, Z. W.; Thomas, B. R.; Chernov, A. A.; Chu, Y. S.; Lai, B.
2004-01-01
High angular-resolution x-ray diffraction and phase contrast x-ray imaging were combined to study defects and perfection of protein crystals. Imperfections including line defects, inclusions and other microdefects were observed in the diffraction images of a uniformly grown lysozyme crystal. The observed line defects carry distinct dislocation features running approximately along the <110> growth front and have been found to originate mostly in a central growth area and occasionally in outer growth regions. Slow dehydration led to the broadening of a fairly symmetric 4 4 0 rocking curve by a factor of approximately 2.6, which was primarily attributed to the dehydration-induced microscopic effects that are clearly shown in diffraction images. X-ray imaging and diffraction characterization of the quality of apoferritin crystals will also be discussed in the presentation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gromova, T. Yu., E-mail: duk@img.ras.ru; Demidyuk, I. V.; Kostrov, S. V.
2008-09-15
A protealysin precursor (the enzyme of the peptidase family M4) was crystallized for the first time. The crystal-growth conditions were found, and single crystals of the protein with dimensions of 0.3-0.5 mm were grown. The preliminary X-ray diffraction study of the enzyme was performed. The protealysin precursor was shown to crystallize in two crystal modifications suitable for the X-ray diffraction study of the three-dimensional structure of the protein molecule at atomic resolution.
Diffraction-based BioCD biosensor for point-of-care diagnostics
NASA Astrophysics Data System (ADS)
Choi, H.; Chang, C.; Savran, C.; Nolte, D.
2018-02-01
The BioCD platform technology uses spinning-disk interferometry to detect molecular binding to target molecular probes in biological samples. Interferometric configurations have included differential phase contrast and in-line quadrature detection. For the detection of extremely low analyte concentrations, nano- or microparticles can enhance the signal through background-free diffraction detection. Diffraction signal measurements on BioCD biosensors are achieved by forming gratings on a disc surface. The grating pattern was printed with biotinylated bovine serum albumin (BSA) and streptavidin coated beads were deployed. The diameter of the beads was 1 micron and strong protein bonding occurs between BSA and streptavidin-coated beads at the printed location. The wavelength for the protein binding detection was 635 nm. The periodic pattern on the disc amplified scattered light into the first-order diffraction position. The diffracted signal contains Mie scattering and a randomly-distributed-bead noise contributions. Variation of the grating pattern periodicity modulates the diffraction efficiency. To test multiple spatial frequencies within a single scan, we designed a fan-shaped grating to perform frequency filter multiplexing on a diffraction-based BioCD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishimura, Mitsuhiro; Protein Research Group, RIKEN Yokohama Institute, RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045; Kaminishi, Tatsuya
2007-11-01
A truncated variant of human ribosomal protien L10 was prepared and crystallized. Diffraction data were collected to 2.5 Å resolution. Eukaryotic ribosomal protein L10 is an essential component of the large ribosomal subunit, which organizes the architecture of the aminoacyl-tRNA binding site. The human L10 protein is also called the QM protein and consists of 214 amino-acid residues. For crystallization, the L10 core domain (L10CD, Phe34–Glu182) was recombinantly expressed in Escherichia coli and purified to homogeneity. A hexagonal crystal of L10CD was obtained by the sitting-drop vapour-diffusion method. The L10CD crystal diffracted to 2.5 Å resolution and belongs to spacemore » group P3{sub 1}21 or P3{sub 2}21.« less
Josts, Inokentijs; Grinter, Rhys; Kelly, Sharon M; Mosbahi, Khedidja; Roszak, Aleksander; Cogdell, Richard; Smith, Brian O; Byron, Olwyn; Walker, Daniel
2014-09-01
TamB is a recently described inner membrane protein that, together with its partner protein TamA, is required for the efficient secretion of a subset of autotransporter proteins in Gram-negative bacteria. In this study, the C-terminal DUF490963-1138 domain of TamB was overexpressed in Escherichia coli K-12, purified and crystallized using the sitting-drop vapour-diffusion method. The crystals belonged to the primitive trigonal space group P3121, with unit-cell parameters a = b = 57.34, c = 220.74 Å, and diffracted to 2.1 Å resolution. Preliminary secondary-structure and X-ray diffraction analyses are reported. Two molecules are predicted to be present in the asymmetric unit. Experimental phasing using selenomethionine-labelled protein will be undertaken in the future.
X-ray diffraction analysis and in vitro characterization of the UAM2 protein from Oryza sativa
Welner, Ditte Hededam; Tsai, Alex Yi-Lin; DeGiovanni, Andy M.; ...
2017-03-29
The role of seemingly non-enzymatic proteins in complexes interconverting UDP-arabinopyranose and UDP-arabinofuranose (UDP-arabinosemutases; UAMs) in the plant cytosol remains unknown. To shed light on their function, crystallographic and functional studies of the seemingly non-enzymatic UAM2 protein from Oryza sativa (OsUAM2) were undertaken. Here, X-ray diffraction data are reported, as well as analysis of the oligomeric state in the crystal and in solution. OsUAM2 crystallizes readily but forms highly radiation-sensitive crystals with limited diffraction power, requiring careful low-dose vector data acquisition. Using size-exclusion chromatography, it is shown that the protein is monomeric in solution. Finally, limited proteolysis was employed to demonstratemore » DTT-enhanced proteolytic digestion, indicating the existence of at least one intramolecular disulfide bridge or, alternatively, a requirement for a structural metal ion.« less
NASA Astrophysics Data System (ADS)
Nikolaeva, A. Yu.; Timofeev, V. I.; Boiko, K. M.; Korzhenevskii, D. A.; Rakitina, T. V.; Dorovatovskii, P. V.; Lipkin, A. V.
2015-11-01
HU proteins are involved in bacterial DNA and RNA repair. Since these proteins are absent in cells of higher organisms, inhibitors of HU proteins can be used as effective and safe antibiotics. The crystallization conditions for the M. gallisepticum HU protein were found and optimized by the vapor-diffusion method. The X-ray diffraction data set was collected to 2.91 Å resolution from the crystals grown by the vapor-diffusion method on a synchrotron source. The crystals of the HU protein belong to sp. gr. P41212 and have the following unit-cell parameters: a = b = 97.94 Å, c = 77.92 Å, α = β = γ = 90°.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vetting, Matthew W., E-mail: vetting@aecom.yu.edu; Hegde, Subray S.; Blanchard, John S.
2009-05-01
A method to modify proteins with glutaraldehyde under reducing conditions is presented. Treatment with glutaraldehyde and dimethylaminoborane was found to result in cyclic pentylation of free amines and facilitated the structural determination of a protein previously recalcitrant to the formation of diffraction quality crystals. The pentapeptide-repeat protein EfsQnr from Enterococcus faecalis protects DNA gyrase from inhibition by fluoroquinolones. EfsQnr was cloned and purified to homogeneity, but failed to produce diffraction-quality crystals in initial crystallization screens. Treatment of EfsQnr with glutaraldehyde and the strong reducing agent borane–dimethylamine resulted in a derivatized protein which produced crystals that diffracted to 1.6 Å resolution;more » their structure was subsequently determined by single-wavelength anomalous dispersion. Analysis of the derivatized protein using Fourier transform ion cyclotron resonance mass spectrometry indicated a mass increase of 68 Da per free amino group. Electron-density maps about a limited number of structurally ordered lysines indicated that the modification was a cyclic pentylation of free amines, producing piperidine groups.« less
Three-dimensional electron diffraction of plant light-harvesting complex
Wang, Da Neng; Kühlbrandt, Werner
1992-01-01
Electron diffraction patterns of two-dimensional crystals of light-harvesting chlorophyll a/b-protein complex (LHC-II) from photosynthetic membranes of pea chloroplasts, tilted at different angles up to 60°, were collected to 3.2 Å resolution at -125°C. The reflection intensities were merged into a three-dimensional data set. The Friedel R-factor and the merging R-factor were 21.8 and 27.6%, respectively. Specimen flatness and crystal size were critical for recording electron diffraction patterns from crystals at high tilts. The principal sources of experimental error were attributed to limitations of the number of unit cells contributing to an electron diffraction pattern, and to the critical electron dose. The distribution of strong diffraction spots indicated that the three-dimensional structure of LHC-II is less regular than that of other known membrane proteins and is not dominated by a particular feature of secondary structure. ImagesFIGURE 1FIGURE 2 PMID:19431817
Edlund, Petra; Takala, Heikki; Claesson, Elin; ...
2016-10-19
Phytochromes are a family of photoreceptors that control light responses of plants, fungi and bacteria. A sequence of structural changes, which is not yet fully understood, leads to activation of an output domain. Time-resolved serial femtosecond crystallography (SFX) can potentially shine light on these conformational changes. Here we report the room temperature crystal structure of the chromophore-binding domains of the Deinococcus radiodurans phytochrome at 2.1 Å resolution. The structure was obtained by serial femtosecond X-ray crystallography from microcrystals at an X-ray free electron laser. We find overall good agreement compared to a crystal structure at 1.35 Å resolution derived frommore » conventional crystallography at cryogenic temperatures, which we also report here. The thioether linkage between chromophore and protein is subject to positional ambiguity at the synchrotron, but is fully resolved with SFX. As a result, the study paves the way for time-resolved structural investigations of the phytochrome photocycle with time-resolved SFX.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edlund, Petra; Takala, Heikki; Claesson, Elin
Phytochromes are a family of photoreceptors that control light responses of plants, fungi and bacteria. A sequence of structural changes, which is not yet fully understood, leads to activation of an output domain. Time-resolved serial femtosecond crystallography (SFX) can potentially shine light on these conformational changes. Here we report the room temperature crystal structure of the chromophore-binding domains of the Deinococcus radiodurans phytochrome at 2.1 Å resolution. The structure was obtained by serial femtosecond X-ray crystallography from microcrystals at an X-ray free electron laser. We find overall good agreement compared to a crystal structure at 1.35 Å resolution derived frommore » conventional crystallography at cryogenic temperatures, which we also report here. The thioether linkage between chromophore and protein is subject to positional ambiguity at the synchrotron, but is fully resolved with SFX. As a result, the study paves the way for time-resolved structural investigations of the phytochrome photocycle with time-resolved SFX.« less
Gómez-Mascaraque, Laura G; Casagrande Sipoli, Caroline; de La Torre, Lucimara Gaziola; López-Rubio, Amparo
2017-10-15
Novel food-grade hybrid encapsulation structures based on the entrapment of phosphatidylcholine liposomes, within a WPC matrix through electrospraying, were developed and used as delivery vehicles for curcumin. The loading capacity and encapsulation efficiency of the proposed system was studied, and the suitability of the approach to stabilize curcumin and increase its bioaccessibility was assessed. Results showed that the maximum loading capacity of the liposomes was around 1.5% of curcumin, although the loading capacity of the hybrid microencapsulation structures increased with the curcumin content by incorporation of curcumin microcrystals upon electrospraying. Microencapsulation of curcumin within the proposed hybrid structures significantly increased its bioaccessibility (∼1.7-fold) compared to the free compound, and could successfully stabilize it against degradation in PBS (pH=7.4). The proposed approach thus proved to be a promising alternative to produce powder-like functional ingredients. Copyright © 2017 Elsevier Ltd. All rights reserved.
X-ray diffraction from nonuniformly stretched helical molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prodanovic, Momcilo; Irving, Thomas C.; Mijailovich, Srboljub M.
2016-04-18
The fibrous proteins in living cells are exposed to mechanical forces interacting with other subcellular structures. X-ray fiber diffraction is often used to assess deformation and movement of these proteins, but the analysis has been limited to the theory for fibrous molecular systems that exhibit helical symmetry. However, this approach cannot adequately interpret X-ray data from fibrous protein assemblies where the local strain varies along the fiber length owing to interactions of its molecular constituents with their binding partners. To resolve this problem a theoretical formulism has been developed for predicting the diffraction from individual helical molecular structures nonuniformly strainedmore » along their lengths. This represents a critical first step towards modeling complex dynamical systems consisting of multiple helical structures using spatially explicit, multi-scale Monte Carlo simulations where predictions are compared with experimental data in a `forward' process to iteratively generate ever more realistic models. Here the effects of nonuniform strains and the helix length on the resulting magnitude and phase of diffraction patterns are quantitatively assessed. Examples of the predicted diffraction patterns of nonuniformly deformed double-stranded DNA and actin filaments in contracting muscle are presented to demonstrate the feasibly of this theoretical approach.« less
Wood anatomy of the neotropical Sapotaceae. XXII, Pradosia
B.F. Kukachka
1981-01-01
As constituted here, the genus Pradosia consists of a group of closely related species including the species attributed to Glycoxylon and Neopometia. The members of Pradosia are readily separable anatomically from other American Sapotaceae by the presence of silica in the wood rays and of microcrystals (crystal sand) in the axial parenchyma. Although Podoluma does...
Zhou, Wei; Wu, Ya-Pan; Zhao, Jun; Dong, Wen-Wen; Qiao, Xiu-Qing; Hou, Dong-Fang; Bu, Xianhui; Li, Dong-Sheng
2017-11-20
Detecting formaldehyde at low operating temperature and maintaining long-term stability are of great significance. In this work, a hierarchical Co 3 O 4 nanostructure has been fabricated by calcining Co 5 -based metal-organic framework (MOF) microcrystals. Co 3 O 4 -350 particles were used for efficient gas-sensing for the detecting of formaldehyde vapor at lower working temperature (170 °C), low detection limit of 10 ppm, and long-term stability (30 days), which not only is the optimal value among all reported pure Co 3 O 4 sensing materials for the detection of formaldehyde but also is superior to that of majority of Co 3 O 4 -based composites. Such extraordinarily efficient properties might be resulted from hierarchically structures, larger surface area and unique pore structure. This strategy is further confirmed that MOFs, especially Co-clusters MOFs, could be used as precursor to synthesize 3D nanostructure metal oxide materials with high-performance, which possess high porosity and more active sites and shorter ionic diffusion lengths.
Li, Zhan Jun; Ali, Ghafar; Kim, Hyun Jin; Yoo, Seong Ho; Cho, Sung Oh
2014-01-01
We present a novel heterogeneous Fenton-like catalyst of LiFePO4 (LFP). LFP has been widely used as an electrode material of a lithium ion battery, but we observed that commercial LFP (LFP-C) could act as a good Fenton-like catalyst to decompose rhodamine 6G. The catalytic activity of LFP-C microparticles was much higher than a popular catalyst, magnetite nanoparticles. Furthermore, we found that the catalytic activity of LFP-C could be further increased by increasing the specific surface area. The reaction rate constant of the hydrothermally synthesized LFP microcrystals (LFP-H) is at least 18 times higher than that of magnetite nanoparticles even though the particle size of LFP is far larger than magnetite nanoparticles. The LFP catalysts also exhibited a good recycling behavior and high stability under an oxidizing environment. The effects of the experimental parameters such as the concentration of the catalysts, pH, and the concentration of hydrogen peroxide on the catalytic activity of LFP were also analyzed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan-Rong, Zhang; School of Civil Engineering, Beijing Key Laboratory of Track Engineering, Beijing Jiaotong University, Beijing 100044; Xiang-Ming, Kong
The influences of triethanolamine (TEA) on the portlandite in hardened cement pastes (HCPs) were systematically investigated. Results show that the addition of TEA in cement pastes leads to a visible reduction of Ca(OH){sub 2} (CH) content and considerably alters the morphology of CH crystals from large and parallel-stacked lamellar shape to smaller and distorted actinomorphic one. For the first time, the CH micro-crystals and even non-crystalline CH in HCPs were observed in the presence of TEA. Due to integration of CH micro-crystals in C–S–H phase, remarkable higher Ca/Si ratio of C–S–H phase was found. The formation of TEA-Ca{sup 2+} complexmore » via the interaction between Ca{sup 2+} and the oxygen atoms in TEA molecule was evidenced by the results of NMR and UV. It is believed that TEA can be introduced into the crystallization process of portlandite and thus significantly alters the morphology of CH crystals and even the content of the crystalline CH phase.« less
Xie, Hui; Tian, Shengtao; Yu, Haipeng; Yang, Xueling; Liu, Jia; Wang, Huaming; Feng, Fan; Guo, Zhi
2018-01-01
Radiofrequency ablation (RFA) is the foremost treatment option for advanced hepatocellular carcinoma (HCC), however, rapid and aggressive recurrence of HCC often occurs after RFA due to epithelial-mesenchymal transition process. Although combination of RFA with sorafenib, a molecular targeted agent, could attenuate the recurrence of HCC, application of this molecular targeted agent poses a heavy medical burden and oral administration of sorafenib also brings severe side effects. In this study, we prepared an apatinib microcrystal formulation (Apa-MS) that sustainably releases apatinib, a novel molecular targeted agent, for advanced HCC treatment. We injected apatinib solution or Apa-MS into subcutaneous HCC tumors. It was found that Apa-MS exhibited slow apatinib release in vivo and in turn inhibited the epithelial-mesenchymal transition of HCC cells for extended time. Moreover, in rodent HCC model, Apa-MS enhanced the antitumor effect of RFA treatment. Based on these results, we conclude that Apa-MS, a slow releasing system of apatinib, allows apatinib to remain effective in tumor tissues for a long time and could enhance the antitumor effect of RFA on HCC.
Graphene as a protein crystal mounting material to reduce background scatter.
Wierman, Jennifer L; Alden, Jonathan S; Kim, Chae Un; McEuen, Paul L; Gruner, Sol M
2013-10-01
The overall signal-to-noise ratio per unit dose for X-ray diffraction data from protein crystals can be improved by reducing the mass and density of all material surrounding the crystals. This article demonstrates a path towards the practical ultimate in background reduction by use of atomically thin graphene sheets as a crystal mounting platform for protein crystals. The results show the potential for graphene in protein crystallography and other cases where X-ray scatter from the mounting material must be reduced and specimen dehydration prevented, such as in coherent X-ray diffraction imaging of microscopic objects.
Graphene as a protein crystal mounting material to reduce background scatter
Wierman, Jennifer L.; Alden, Jonathan S.; Kim, Chae Un; McEuen, Paul L.; Gruner, Sol M.
2013-01-01
The overall signal-to-noise ratio per unit dose for X-ray diffraction data from protein crystals can be improved by reducing the mass and density of all material surrounding the crystals. This article demonstrates a path towards the practical ultimate in background reduction by use of atomically thin graphene sheets as a crystal mounting platform for protein crystals. The results show the potential for graphene in protein crystallography and other cases where X-ray scatter from the mounting material must be reduced and specimen dehydration prevented, such as in coherent X-ray diffraction imaging of microscopic objects. PMID:24068843
Khvostichenko, Daria S.; Schieferstein, Jeremy M.; Pawate, Ashtamurthy S.; ...
2014-08-21
Crystallization from lipidic mesophase matrices is a promising route to diffraction-quality crystals and structures of membrane proteins. The microfluidic approach reported here eliminates two bottlenecks of the standard mesophase-based crystallization protocols: (i) manual preparation of viscous mesophases and (ii) manual harvesting of often small and fragile protein crystals. In the approach reported here, protein-loaded mesophases are formulated in an X-ray transparent microfluidic chip using only 60 nL of the protein solution per crystallization trial. The X-ray transparency of the chip enables diffraction data collection from multiple crystals residing in microfluidic wells, eliminating the normally required manual harvesting and mounting ofmore » individual crystals. In addition, we validated our approach by on-chip crystallization of photosynthetic reaction center, a membrane protein from Rhodobacter sphaeroides, followed by solving its structure to a resolution of 2.5 Å using X-ray diffraction data collected on-chip under ambient conditions. A moderate conformational change in hydrophilic chains of the protein was observed when comparing the on-chip, room temperature structure with known structures for which data were acquired under cryogenic conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khvostichenko, Daria S.; Schieferstein, Jeremy M.; Pawate, Ashtamurthy S.
2014-10-01
Crystallization from lipidic mesophase matrices is a promising route to diffraction-quality crystals and structures of membrane proteins. The microfluidic approach reported here eliminates two bottlenecks of the standard mesophase-based crystallization protocols: (i) manual preparation of viscous mesophases and (ii) manual harvesting of often small and fragile protein crystals. In the approach reported here, protein-loaded mesophases are formulated in an X-ray transparent microfluidic chip using only 60 nL of the protein solution per crystallization trial. The X-ray transparency of the chip enables diffraction data collection from multiple crystals residing in microfluidic wells, eliminating the normally required manual harvesting and mounting ofmore » individual crystals. We validated our approach by on-chip crystallization of photosynthetic reaction center, a membrane protein from Rhodobacter sphaeroides, followed by solving its structure to a resolution of 2.5 Å using X-ray diffraction data collected on-chip under ambient conditions. A moderate conformational change in hydrophilic chains of the protein was observed when comparing the on-chip, room temperature structure with known structures for which data were acquired under cryogenic conditions.« less
Umprayn, K; Luengtummuen, A; Kitiyadisai, C; Pornpiputsakul, T
2001-11-01
A ternary diagram, representing the solubility of binding solvent (chloroform) in a mixture of ethanol and water, was constructed. For this study, the solvent mixture that gave the best ibuprofen pellets (IPs) was composed of chloroform.ethanol:water at a ratio of 1.5%:8%:90.5%. The suitable agitator speed, temperature, and mixing time were found to be 1,500 rpm, 25 degrees C +/- 2 degrees C, and 20 min, respectively. In addition, suitable stirring time when the phase partition process of IPs began was 15 min. IPs obtained from these conditions were small and round, approximately 1 mm; surface determination by scanning electron microscopy (SEM) indicated that the IPs were composed of drug microcrystals rearranged on the surface. For the dissolution, IPs showed lower drug release when compared with pure ibuprofen crystal (IC) (f2 analysis). An attempt to modify the dissolution property of IP by incorporating various concentrations of Aerosil and Tween 80 in the binding solvent was made. Microscopic appearance showed that both Aerosil and Tween 80 gave less spherical pellets when compared with the use of binding solvent alone. For both the Aerosil and Tween 80 employed, the results indicated a change in rearrangement of drug microcrystals and a change in crystal habit. However, Tween 80 gave more change of the crystallographic direction of drug microcrystals than Aerosil. In term of dissolution, the results showed that employing Tween 80 at 1.2% gave the highest drug release compared to the use of Aerosil and IC alone (f2 analysis). These pellets had a good flow property, as indicated by Carr's compressibility, flow rate, and angle of repose, and they can be compressed into a tablet, encapsulated by suitable polymer, or pulverized to obtain micronized crystals. In the case of compression into tablets, the dissolution profiles of these tablets compared with those of commercial product meet the USP 24 requirement (Q > or = 80% at 60 min).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Kun; Gao, Ziwei, E-mail: zwgao@snnu.edu.cn; Da, Min
Highlights: Black-Right-Pointing-Pointer Highly oriented and well-defined ZnO urchin-like crystals were successfully fabricated by a facile and effective hydrotherm method. Black-Right-Pointing-Pointer Polyvinylpyrrolidone- and hydrogen peroxide-assisted synthesis of ZnO could optimize its crystalline quality and the obtained ZnO have smooth surface, radial growth of morphology, obvious crystal edges and decreased defects. Black-Right-Pointing-Pointer The physicochemical properties of samples were studied by analysis of its structure, morphology, surface and optical properties. Black-Right-Pointing-Pointer This study represented a multistep mechanism based on [Zn(OH){sub 4}]{sup 2-} growth units about formation such urchin-like structure. -- Abstract: The urchin-like ZnO microcrystals with high crystallinity decomposed from [Zn(OH){sub 4}]{sup 2-}more » directly were obtained via a hydrothermal method. The morphology, particle size, crystalline structure and fluorescence of the as-prepared ZnO were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and photoluminescence (PL) analyses. The results demonstrated that the urchin-like ZnO crystals with wurtzite structure had a narrow distribution in size, which could be adjusted in the range of 30-80 {mu}m by varying reaction time. Broad visible light emission peak was also observed in the PL spectra of the synthesized ZnO products. A multistep growth process about how to form such a structure was proposed.« less
NASA Astrophysics Data System (ADS)
Thambiraj, S.; Ravi Shankaran, D.
2017-08-01
We aimed to develop a simple and low-cost method for the production of high-performance cellulose nanomaterials from renewable and sustainable resources. Here, cellulose microcrystals (CMCs) were prepared by controlled acidic and basic hydrolysis of cotton from textile industry wastes. The resulted CMCs were further converted into cellulose nanocrystals (CNCs) with high crystallinity by acidic hydrolysis. The physicochemical characteristics and morphological feature of CMCs and CNCs were studied by various analytical techniques such as UV-vis spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), Scanning electron microscope (SEM), Fluorescence spectroscopy, Atomic force microscopy (AFM), High-resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The isolated CNCs possess a needle-like morphological structure with the longitudinal and lateral dimensions of 180 ± 60 nm, 10 ± 1 nm, respectively. The AFM result reveals that the CNCs have a high aspect ratio of 40 ± 14 nm and the average thickness of 6.5 nm. The XRD and TEM analysis indicate that the synthesized CNCs possess face-centered cubic crystal structure. Preliminary experiments were carried out to fabricate CNCs incorporated poly (vinyl alcohol) (PVA) film. The results suggest that the concept of waste to wealth could be well executed from the prepared CNCs, which have great potential for various applications including bio-sensors, food packaging and drug delivery applications.
NASA Astrophysics Data System (ADS)
Pereira, Wyllamanney da S.; Sczancoski, Júlio C.; Calderon, Yormary N. C.; Mastelaro, Valmor R.; Botelho, Gleice; Machado, Thales R.; Leite, Edson R.; Longo, Elson
2018-05-01
Materials presenting high photocatalytic performance and interesting photoluminescence emissions are promising candidates for photodegradation of organic pollutants discharged into natural waters as well as for development of new electro-optical devices, respectively. In this study, Ag3-2xCuxPO4 (x = 0.00, 0.01, 0.02, 0.04 and 0.08) powders were synthesized by the precipitation method. The long- and short-range structural ordering was affected when the copper (Cu) content was increased in the lattice, as identified by X-ray diffraction patterns, Fourier transform infrared spectroscopy and Raman spectroscopy, respectively. The field emission scanning electron microscope and transmission electron microscope revealed a particle system composed of irregular spherical-like microcrystals. The presence of Cu as well as its real amount in the samples were confirmed by means of X-ray photoelectron spectroscopy and inductively coupled plasma-atomic emission spectrometry, respectively. On increasing Cu level, a slight variation was noted on the photocatalytic activity of Ag3-2xCuxPO4 powders for degradation of rhodamine B under visible light irradiation. A photodegradation mechanism was proposed in details. The photoluminescence emissions were explained by electronic transitions involving intermediary energy levels in the band gap. The origin these energy levels was related to defects caused by the substitution of Ag by Cu in the crystalline structure.
NASA Astrophysics Data System (ADS)
Sutton, S.; Eng., P. J.; Jaski, Y. R.; Lazaraz, N.; Pluth, J.; Murray, P.; Rarback, H.; Rivers, M.
1996-09-01
The GSECARS (APS sector 13) scientific program will provide fundamental new information on the deep structure and composition of the Earth and other planets, the formation of economic mineral deposits, the cycles and fate of toxic metals in the environment, and the mechanisms of nutrient uptake and disease in plants. In the four experimental stations (2 per beamline), scientists will have access to three main x-ray techniques: diffraction (microcrystal, powder, diamond anvil cell, and large volume press), fluorescence microprobe, and spectroscopy (conventional, microbeam, liquid and solid surfaces). The high pressure facilities will be capable of x-ray crystallography at P≳360 GPa and T˜6000 K with the diamond anvil cell and P˜25 GPa and T˜2500 °C with the large volume press. Diffractometers will allow study of 1 micrometer crystals and micro-powders. The microprobe (1 micrometer focused beam) will be capable of chemical analyses in the sub-ppm range using wavelength and energy dispersive detectors. Spectroscopy instrumentation will be available for XANES and EXAFS with microbeams as well as high sensitivity conventional XAS and studies of liquid and solid interfaces. Visiting scientists will be able to setup, calibrate, and test experiments in off-line laboratories with equipment such as micromanipulators, optical microscopes, clean bench, glove boxes, high powered optical and Raman spectrometers.
Barmpalexis, Panagiotis; Kachrimanis, Kyriakos; Georgarakis, Emanouil
2011-01-01
The present study investigates the use of nimodipine-polyethylene glycol solid dispersions for the development of effervescent controlled release floating tablet formulations. The physical state of the dispersed nimodipine in the polymer matrix was characterized by differential scanning calorimetry, powder X-ray diffraction, FT-IR spectroscopy and polarized light microscopy, and the mixture proportions of polyethylene glycol (PEG), polyvinyl-pyrrolidone (PVP), hydroxypropylmethylcellulose (HPMC), effervescent agents (EFF) and nimodipine were optimized in relation to drug release (% release at 60 min, and time at which the 90% of the drug was dissolved) and floating properties (tablet's floating strength and duration), employing a 25-run D-optimal mixture design combined with artificial neural networks (ANNs) and genetic programming (GP). It was found that nimodipine exists as mod I microcrystals in the solid dispersions and is stable for at least a three-month period. The tablets showed good floating properties and controlled release profiles, with drug release proceeding via the concomitant operation of swelling and erosion of the polymer matrix. ANNs and GP both proved to be efficient tools in the optimization of the tablet formulation, and the global optimum formulation suggested by the GP equations consisted of PEG=9%, PVP=30%, HPMC=36%, EFF=11%, nimodipine=14%. Copyright © 2010 Elsevier B.V. All rights reserved.
Optimization of crystallization conditions for biological macromolecules.
McPherson, Alexander; Cudney, Bob
2014-11-01
For the successful X-ray structure determination of macromolecules, it is first necessary to identify, usually by matrix screening, conditions that yield some sort of crystals. Initial crystals are frequently microcrystals or clusters, and often have unfavorable morphologies or yield poor diffraction intensities. It is therefore generally necessary to improve upon these initial conditions in order to obtain better crystals of sufficient quality for X-ray data collection. Even when the initial samples are suitable, often marginally, refinement of conditions is recommended in order to obtain the highest quality crystals that can be grown. The quality of an X-ray structure determination is directly correlated with the size and the perfection of the crystalline samples; thus, refinement of conditions should always be a primary component of crystal growth. The improvement process is referred to as optimization, and it entails sequential, incremental changes in the chemical parameters that influence crystallization, such as pH, ionic strength and precipitant concentration, as well as physical parameters such as temperature, sample volume and overall methodology. It also includes the application of some unique procedures and approaches, and the addition of novel components such as detergents, ligands or other small molecules that may enhance nucleation or crystal development. Here, an attempt is made to provide guidance on how optimization might best be applied to crystal-growth problems, and what parameters and factors might most profitably be explored to accelerate and achieve success.
Tunable growth of TiO2 nanostructures on Ti substrates
NASA Astrophysics Data System (ADS)
Peng, Xinsheng; Wang, Jingpeng; Thomas, Dan F.; Chen, Aicheng
2005-10-01
A simple and facile method is described to directly synthesize TiO2 nanostructures on titanium substrates by oxidizing Ti foil using small organic molecules as the oxygen source. The effect of reaction temperature and oxygen source on the formation of the TiO2 nanostructures has been studied using scanning electron microscopy, x-ray diffraction, transmission electron microscopy, Raman spectroscopy and water contact angle measurement. Polycrystalline grains are formed when pure oxygen and formic acid are used as the oxygen source; elongated micro-crystals are produced when water vapour is used as the oxygen source; oriented and aligned TiO2 nanorod arrays are synthesized when ethanol, acetaldehyde or acetone are used as the oxygen source. The growth mechanism of the TiO2 nanostructures is discussed. The diffusion of Ti atoms to the oxide/gas interface via the network of the grain boundaries of the thin oxide layer is the determining factor for the formation of well-aligned TiO2 nanorod arrays. The wetting properties of the TiO2 nanostructured surfaces formed are dictated by their structure, varying from a hydrophilic surface to a strongly hydrophobic surface as the surface structure changes from polycrystalline grains to well-aligned nanorod arrays. This tunable growth of TiO2 nanostructures is desirable for promising applications of TiO2 nanostructures in the development of optical devices, sensors, photo-catalysts and self-cleaning coatings.
Optimization of crystallization conditions for biological macromolecules
McPherson, Alexander; Cudney, Bob
2014-01-01
For the successful X-ray structure determination of macromolecules, it is first necessary to identify, usually by matrix screening, conditions that yield some sort of crystals. Initial crystals are frequently microcrystals or clusters, and often have unfavorable morphologies or yield poor diffraction intensities. It is therefore generally necessary to improve upon these initial conditions in order to obtain better crystals of sufficient quality for X-ray data collection. Even when the initial samples are suitable, often marginally, refinement of conditions is recommended in order to obtain the highest quality crystals that can be grown. The quality of an X-ray structure determination is directly correlated with the size and the perfection of the crystalline samples; thus, refinement of conditions should always be a primary component of crystal growth. The improvement process is referred to as optimization, and it entails sequential, incremental changes in the chemical parameters that influence crystallization, such as pH, ionic strength and precipitant concentration, as well as physical parameters such as temperature, sample volume and overall methodology. It also includes the application of some unique procedures and approaches, and the addition of novel components such as detergents, ligands or other small molecules that may enhance nucleation or crystal development. Here, an attempt is made to provide guidance on how optimization might best be applied to crystal-growth problems, and what parameters and factors might most profitably be explored to accelerate and achieve success. PMID:25372810
Crystal growth of enzymes in low gravity (L-5)
NASA Technical Reports Server (NTRS)
Morita, Yuhei
1993-01-01
Recent developments in protein engineering have expanded the possibilities of studies of enzymes and other proteins. Now such studies are not limited to the elucidation of the relationship between the structure and function of the protein. They also aim at the production of proteins with new and practical functions, based on results obtained during investigation of structure and function. For continuing research in this field, investigation of the tertiary structure of proteins is important. X-ray diffraction of single crystals of protein is usually used for this purpose. The main difficulty is the preparation of the crystals. The theme of the research is to prepare such crystals at very low gravity, with the main purpose being to obtain large single crystals of proteins suitable for x-ray diffraction studies.
Gicquel, Yannig; Schubert, Robin; Kapis, Svetlana; Bourenkov, Gleb; Schneider, Thomas; Perbandt, Markus; Betzel, Christian; Chapman, Henry N; Heymann, Michael
2018-04-24
This protocol describes fabricating microfluidic devices with low X-ray background optimized for goniometer based fixed target serial crystallography. The devices are patterned from epoxy glue using soft lithography and are suitable for in situ X-ray diffraction experiments at room temperature. The sample wells are lidded on both sides with polymeric polyimide foil windows that allow diffraction data collection with low X-ray background. This fabrication method is undemanding and inexpensive. After the sourcing of a SU-8 master wafer, all fabrication can be completed outside of a cleanroom in a typical research lab environment. The chip design and fabrication protocol utilize capillary valving to microfluidically split an aqueous reaction into defined nanoliter sized droplets. This loading mechanism avoids the sample loss from channel dead-volume and can easily be performed manually without using pumps or other equipment for fluid actuation. We describe how isolated nanoliter sized drops of protein solution can be monitored in situ by dynamic light scattering to control protein crystal nucleation and growth. After suitable crystals are grown, complete X-ray diffraction datasets can be collected using goniometer based in situ fixed target serial X-ray crystallography at room temperature. The protocol provides custom scripts to process diffraction datasets using a suite of software tools to solve and refine the protein crystal structure. This approach avoids the artefacts possibly induced during cryo-preservation or manual crystal handling in conventional crystallography experiments. We present and compare three protein structures that were solved using small crystals with dimensions of approximately 10-20 µm grown in chip. By crystallizing and diffracting in situ, handling and hence mechanical disturbances of fragile crystals is minimized. The protocol details how to fabricate a custom X-ray transparent microfluidic chip suitable for in situ serial crystallography. As almost every crystal can be used for diffraction data collection, these microfluidic chips are a very efficient crystal delivery method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rong, Hui; Li, Yan; Lou, Xiao-hua
2007-02-01
A novel cardiotoxin-like basic protein from Naja naja atra was crystallized and diffraction data were collected to 2.35 Å resolution. A novel cardiotoxin-like basic protein was isolated from the venom of the Chinese cobra (Naja naja atra) from the south of Anhui in China. The protein inhibits the expression of vascular endothelial growth factor and basic fibroblast growth factor in human lung cancer cell line H1299 and induces the haemolysis of rabbit erythrocytes under low-lecithin conditions. After a two-step chromatographic purification, the resultant 7 kDa protein was crystallized by the hanging-drop vapour-diffusion method at room temperature. A complete data setmore » was collected to 2.35 Å resolution using an in-house X-ray diffraction system. The crystal belongs to space group P4{sub 1}2{sub 1}2, with unit-cell parameters a = b = 43.2, c = 147.9 Å. There are two molecules in the crystallographic asymmetric unit.« less
Wood anatomy of the neotropical Sapotaceae. VI, Chloroluma
B. F. Kukachka
1978-01-01
The old genus Chloroluma has been reinstated to generic status after having been in synonomy under Chrysophyllum for many years. The description is based on the type species C. gonocarpa which is characterized by: Its clear yellow wood; pores in radial-echelon arrangement; rhombic, two-sized, and microcrystals frequent in the axial parenchyma and wood rays; colored...
Reciprocal space mapping and single-crystal scattering rods.
Smilgies, Detlef M; Blasini, Daniel R; Hotta, Shu; Yanagi, Hisao
2005-11-01
Reciprocal space mapping using a linear gas detector in combination with a matching Soller collimator has been applied to map scattering rods of well oriented organic microcrystals grown on a solid surface. Formulae are provided to correct image distortions in angular space and to determine the required oscillation range, in order to measure properly integrated scattering intensities.
Dynamic X-ray diffraction sampling for protein crystal positioning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scarborough, Nicole M.; Godaliyadda, G. M. Dilshan P.; Ye, Dong Hye
A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction,more » significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Furthermore, by usingin situtwo-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by limiting the dose and area exposed for image reconstruction and crystal positioning using data collection hardware present in most macromolecular crystallography end-stations.« less
Dynamic X-ray diffraction sampling for protein crystal positioning
Scarborough, Nicole M.; Godaliyadda, G. M. Dilshan P.; Ye, Dong Hye; ...
2017-01-01
A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction,more » significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Furthermore, by usingin situtwo-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by limiting the dose and area exposed for image reconstruction and crystal positioning using data collection hardware present in most macromolecular crystallography end-stations.« less
Dynamic X-ray diffraction sampling for protein crystal positioning
Scarborough, Nicole M.; Godaliyadda, G. M. Dilshan P.; Ye, Dong Hye; Kissick, David J.; Zhang, Shijie; Newman, Justin A.; Sheedlo, Michael J.; Chowdhury, Azhad U.; Fischetti, Robert F.; Das, Chittaranjan; Buzzard, Gregery T.; Bouman, Charles A.; Simpson, Garth J.
2017-01-01
A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction, significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Using in situ two-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by limiting the dose and area exposed for image reconstruction and crystal positioning using data collection hardware present in most macromolecular crystallography end-stations. PMID:28009558
Dynamic X-ray diffraction sampling for protein crystal positioning.
Scarborough, Nicole M; Godaliyadda, G M Dilshan P; Ye, Dong Hye; Kissick, David J; Zhang, Shijie; Newman, Justin A; Sheedlo, Michael J; Chowdhury, Azhad U; Fischetti, Robert F; Das, Chittaranjan; Buzzard, Gregery T; Bouman, Charles A; Simpson, Garth J
2017-01-01
A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction, significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Using in situ two-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by limiting the dose and area exposed for image reconstruction and crystal positioning using data collection hardware present in most macromolecular crystallography end-stations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rantanen, Mika K.; Lehtiö, Lari; Rajagopal, Lakshmi
Two S. agalactiae proteins, the inorganic pyrophosphatase and the serine/threonine phosphatase, were crystallized and diffraction data were collected and processed from these crystals. The data from the two protein crystals extended to 2.80 and 2.65 Å, respectively. Streptococcus agalactiae, which infects human neonates and causes sepsis and meningitis, has recently been shown to possess a eukaryotic-like serine/threonine protein phosphorylation signalling cascade. Through their target proteins, the S. agalactiae Ser/Thr kinase and Ser/Thr phosphatase together control the growth as well as the morphology and virulence of this organism. One of the targets is the S. agalactiae family II inorganic pyrophosphatase. Themore » inorganic pyrophosphatase and the serine/threonine phosphatase have therefore been purified and crystallized and diffraction data have been collected from their crystals. The data were processed using XDS. The inorganic pyrosphosphatase crystals diffracted to 2.80 Å and the Ser/Thr phosphatase crystals to 2.65 Å. Initial structure-solution experiments indicate that structure solution will be successful in both cases. Solving the structure of the proteins involved in this cascade is the first step towards understanding this phenomenon in atomic detail.« less
Unraveling protein catalysis through neutron diffraction
NASA Astrophysics Data System (ADS)
Myles, Dean
Neutron scattering and diffraction are exquisitely sensitive to the location, concentration and dynamics of hydrogen atoms in materials and provide a powerful tool for the characterization of structure-function and interfacial relationships in biological systems. Modern neutron scattering facilities offer access to a sophisticated, non-destructive suite of instruments for biophysical characterization that provide spatial and dynamic information spanning from Angstroms to microns and from picoseconds to microseconds, respectively. Applications range from atomic-resolution analysis of individual hydrogen atoms in enzymes, through to multi-scale analysis of hierarchical structures and assemblies in biological complexes, membranes and in living cells. Here we describe how the precise location of protein and water hydrogen atoms using neutron diffraction provides a more complete description of the atomic and electronic structures of proteins, enabling key questions concerning enzyme reaction mechanisms, molecular recognition and binding and protein-water interactions to be addressed. Current work is focused on understanding how molecular structure and dynamics control function in photosynthetic, cell signaling and DNA repair proteins. We will highlight recent studies that provide detailed understanding of the physiochemical mechanisms through which proteins recognize ligands and catalyze reactions, and help to define and understand the key principles involved.
Transmission electron microscopy as a tool for nanocrystal characterization pre- and post-injector
Stevenson, H. P.; DePonte, D. P.; Makhov, A. M.; Conway, James F.; Zeldin, O. B.; Boutet, S.; Calero, G.; Cohen, A. E.
2014-01-01
Recent advancements at the Linac Coherent Light Source X-ray free-electron laser (XFEL) enabling successful serial femtosecond diffraction experiments using nanometre-sized crystals (NCs) have opened up the possibility of X-ray structure determination of proteins that produce only submicrometre crystals such as many membrane proteins. Careful crystal pre-characterization including compatibility testing of the sample delivery method is essential to ensure efficient use of the limited beamtime available at XFEL sources. This work demonstrates the utility of transmission electron microscopy for detecting and evaluating NCs within the carrier solutions of liquid injectors. The diffraction quality of these crystals may be assessed by examining the crystal lattice and by calculating the fast Fourier transform of the image. Injector reservoir solutions, as well as solutions collected post-injection, were evaluated for three types of protein NCs (i) the membrane protein PTHR1, (ii) the multi-protein complex Pol II-GFP and (iii) the soluble protein lysozyme. Our results indicate that the concentration and diffraction quality of NCs, particularly those with high solvent content and sensitivity to mechanical manipulation may be affected by the delivery process. PMID:24914151
Vieira, Diana; Figueiredo, Teresa A.; Verma, Anil; Sobral, Rita G.; Ludovice, Ana M.; de Lencastre, Hermínia; Trincao, Jose
2014-01-01
Amidation of peptidoglycan is an essential feature in Staphylococcus aureus that is necessary for resistance to β-lactams and lysozyme. GatD, a 27 kDa type I glutamine amidotransferase-like protein, together with MurT ligase, catalyses the amidation reaction of the glutamic acid residues of the peptidoglycan of S. aureus. The native and the selenomethionine-derivative proteins were crystallized using the sitting-drop vapour-diffusion method with polyethylene glycol, sodium acetate and calcium acetate. The crystals obtained diffracted beyond 1.85 and 2.25 Å, respectively, and belonged to space group P212121. X-ray diffraction data sets were collected at Diamond Light Source (on beamlines I02 and I04) and were used to obtain initial phases. PMID:24817726
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pathuri, Puja; Nguyen, Emily Tam; Luecke, Hartmut, E-mail: hudel@uci.edu
2006-11-01
α-11 giardin from the intestinal protozoan parasite, G. lamblia has been cloned, expressed, purified and crystallized under two different conditions and in two different space groups. Crystals from the first condition diffracted to 1.1 Å and belong to a primitive orthorhombic space group and crystals obtained in the second condition diffracted to 2.93 Å and belong to a primitive monoclinic space group. α-11 Giardin, a protein from the annexin superfamily, is a 35.0 kDa protein from the intestinal protozoan parasite Giardia lamblia which triggers a form of diarrhea called giardiasis. Here, the cloning, expression, purification and the crystallization of α-11more » giardin under two different conditions and in two different space groups is reported. Crystals from the first condition diffracted to 1.1 Å and belong to a primitive orthorhombic space group, while crystals from the second condition, which included calcium in the crystallization solution, diffracted to 2.93 Å and belong to a primitive monoclinic space group. Determination of the detailed atomic structure of α-11 giardin will provide a better insight into its biological function and might establish whether this class of proteins is a potential drug target against giardiasis.« less
Goniometer-based femtosecond X-ray diffraction of mutant 30S ribosomal subunit crystals
Dao, E. Han; Sierra, Raymond G.; Laksmono, Hartawan; ...
2015-04-30
In this work, we collected radiation-damage-free data from a set of cryo-cooled crystals for a novel 30S ribosomal subunit mutant using goniometer-based femtosecond crystallography. Crystal quality assessment for these samples was conducted at the X-ray Pump Probe end-station of the Linac Coherent Light Source (LCLS) using recently introduced goniometer-based instrumentation. These 30S subunit crystals were genetically engineered to omit a 26-residue protein, Thx, which is present in the wild-type Thermus thermophilus 30S ribosomal subunit. We are primarily interested in elucidating the contribution of this ribosomal protein to the overall 30S subunit structure. To assess the viability of this study, femtosecondmore » X-ray diffraction patterns from these crystals were recorded at the LCLS during a protein crystal screening beam time. During our data collection, we successfully observed diffraction from these difficult-to-grow 30S ribosomal subunit crystals. Most of our crystals were found to diffract to low resolution, while one crystal diffracted to 3.2 Å resolution. These data suggest the feasibility of pursuing high-resolution data collection as well as the need to improve sample preparation and handling in order to collect a complete radiation-damage-free data set using an X-ray Free Electron Laser.« less
Hydrogen atoms in protein structures: high-resolution X-ray diffraction structure of the DFPase
2013-01-01
Background Hydrogen atoms represent about half of the total number of atoms in proteins and are often involved in substrate recognition and catalysis. Unfortunately, X-ray protein crystallography at usual resolution fails to access directly their positioning, mainly because light atoms display weak contributions to diffraction. However, sub-Ångstrom diffraction data, careful modeling and a proper refinement strategy can allow the positioning of a significant part of hydrogen atoms. Results A comprehensive study on the X-ray structure of the diisopropyl-fluorophosphatase (DFPase) was performed, and the hydrogen atoms were modeled, including those of solvent molecules. This model was compared to the available neutron structure of DFPase, and differences in the protein and the active site solvation were noticed. Conclusions A further examination of the DFPase X-ray structure provides substantial evidence about the presence of an activated water molecule that may constitute an interesting piece of information as regard to the enzymatic hydrolysis mechanism. PMID:23915572
Comparative Analysis of Thaumatin Crystals Grown on Earth and in Microgravity. Experiment 23
NASA Technical Reports Server (NTRS)
Ng, Joseph D.; Lorber, Bernard; Giege, Richard; Koszelak, Stanley; Day, John; Greenwood, Aaron; McPherson, Alexander
1998-01-01
The protein thaumatin was studied as a model macromolecule for crystallization in microgravity environment experiments conducted on two U.S. Space Shuttle missions (second United States Microgravity Laboratory (USML-2) and Life and Microgravity Spacelab (LMS)). In this investigation we evaluated and compared the quality of space- and Earth-grown thaumatin crystals using x-ray diffraction analysis and characterized them according to crystal size, diffraction resolution limit, and mosaicity. Two different approaches for growing thaumatin crystals in the microgravity environment, dialysis and liquid-liquid diffusion, were employed as a joint experiment by our two investigative teams. Thaumatin crystals grown under a microgravity environment were generally larger in volume with fewer total crystals. They diffracted to significantly higher resolution and with improved diffraction properties as judged by relative Wilson plots. The mosaicity for space-grown crystals was significantly less than for those grown on Earth. Increasing concentrations of protein in the crystallization chambers under microgravity lead to larger crystals. The data presented here lend further support to the idea that protein crystals of improved quality can be obtained in a microgravity environment.
Abendroth, Jan; McCormick, Michael S.; Edwards, Thomas E.; Staker, Bart; Loewen, Roderick; Gifford, Martin; Rifkin, Jeff; Mayer, Chad; Guo, Wenjin; Zhang, Yang; Myler, Peter; Kelley, Angela; Analau, Erwin; Hewitt, Stephen Nakazawa; Napuli, Alberto J.; Kuhn, Peter; Ruth, Ronald D.; Stewart, Lance J.
2010-01-01
Structural genomics discovery projects require ready access to both X-ray and NMR instrumentation which support the collection of experimental data needed to solve large numbers of novel protein structures. The most productive X-ray crystal structure determination laboratories make extensive frequent use of tunable synchrotron X-ray light to solve novel structures by anomalous diffraction methods. This requires that frozen cryo-protected crystals be shipped to large government-run synchrotron facilities for data collection. In an effort to eliminate the need to ship crystals for data collection, we have developed the first laboratory-scale synchrotron light source capable of performing many of the state-of-the-art synchrotron applications in X-ray science. This Compact Light Source is a first-in-class device that uses inverse Compton scattering to generate X-rays of sufficient flux, tunable wavelength and beam size to allow high-resolution X-ray diffraction data collection from protein crystals. We report on benchmarking tests of X-ray diffraction data collection with hen egg white lysozyme, and the successful high-resolution X-ray structure determination of the Glycine cleavage system protein H from Mycobacterium tuberculosis using diffraction data collected with the Compact Light Source X-ray beam. PMID:20364333
Lu, Hui-Meng; Yin, Da-Chuan; Ye, Ya-Jing; Luo, Hui-Min; Geng, Li-Qiang; Li, Hai-Sheng; Guo, Wei-Hong; Shang, Peng
2009-01-01
As the most widely utilized technique to determine the 3-dimensional structure of protein molecules, X-ray crystallography can provide structure of the highest resolution among the developed techniques. The resolution obtained via X-ray crystallography is known to be influenced by many factors, such as the crystal quality, diffraction techniques, and X-ray sources, etc. In this paper, the authors found that the protein sequence could also be one of the factors. We extracted information of the resolution and the sequence of proteins from the Protein Data Bank (PDB), classified the proteins into different clusters according to the sequence similarity, and statistically analyzed the relationship between the sequence similarity and the best resolution obtained. The results showed that there was a pronounced correlation between the sequence similarity and the obtained resolution. These results indicate that protein structure itself is one variable that may affect resolution when X-ray crystallography is used.
Macromolecular diffractive imaging using imperfect crystals
Ayyer, Kartik; Yefanov, Oleksandr; Oberthür, Dominik; Roy-Chowdhury, Shatabdi; Galli, Lorenzo; Mariani, Valerio; Basu, Shibom; Coe, Jesse; Conrad, Chelsie E.; Fromme, Raimund; Schaffer, Alexander; Dörner, Katerina; James, Daniel; Kupitz, Christopher; Metz, Markus; Nelson, Garrett; Lourdu Xavier, Paulraj; Beyerlein, Kenneth R.; Schmidt, Marius; Sarrou, Iosifina; Spence, John C. H.; Weierstall, Uwe; White, Thomas A.; Yang, Jay-How; Zhao, Yun; Liang, Mengning; Aquila, Andrew; Hunter, Mark S.; Robinson, Joseph S.; Koglin, Jason E.; Boutet, Sébastien; Fromme, Petra; Barty, Anton; Chapman, Henry N.
2016-01-01
The three-dimensional structures of macromolecules and their complexes are predominantly elucidated by X-ray protein crystallography. A major limitation is access to high-quality crystals, to ensure X-ray diffraction extends to sufficiently large scattering angles and hence yields sufficiently high-resolution information that the crystal structure can be solved. The observation that crystals with shrunken unit-cell volumes and tighter macromolecular packing often produce higher-resolution Bragg peaks1,2 hints that crystallographic resolution for some macromolecules may be limited not by their heterogeneity but rather by a deviation of strict positional ordering of the crystalline lattice. Such displacements of molecules from the ideal lattice give rise to a continuous diffraction pattern, equal to the incoherent sum of diffraction from rigid single molecular complexes aligned along several discrete crystallographic orientations and hence with an increased information content3. Although such continuous diffraction patterns have long been observed—and are of interest as a source of information about the dynamics of proteins4 —they have not been used for structure determination. Here we show for crystals of the integral membrane protein complex photosystem II that lattice disorder increases the information content and the resolution of the diffraction pattern well beyond the 4.5 Å limit of measurable Bragg peaks, which allows us to directly phase5 the pattern. With the molecular envelope conventionally determined at 4.5 Å as a constraint, we then obtain a static image of the photosystem II dimer at 3.5 Å resolution. This result shows that continuous diffraction can be used to overcome long-supposed resolution limits of macromolecular crystallography, with a method that puts great value in commonly encountered imperfect crystals and opens up the possibility for model-free phasing6,7. PMID:26863980
Order and disorder in crystals of hexameric NTPases from dsRNA bacteriophages.
Mancini, Erika J; Grimes, Jonathan M; Malby, Robyn; Sutton, Geoffrey C; Kainov, Denis E; Juuti, Jarmo T; Makeyev, Eugene V; Tuma, Roman; Bamford, Dennis H; Stuart, David I
2003-12-01
The packaging of genomic RNA in members of the Cystoviridae is performed by P4, a hexameric protein with NTPase activity. Across family members such as Phi6, Phi8 and Phi13, the P4 proteins show low levels of sequence identity, but presumably have similar atomic structures. Initial structure-determination efforts for P4 from Phi6 and Phi8 were hampered by difficulties in obtaining crystals that gave ordered diffraction. Diffraction from crystals of full-length P4 showed a variety of disorder and anisotropy. Subsequently, crystals of Phi13 P4 were obtained which yielded well ordered diffraction to 1.7 A. Comparison of the packing arrangements of P4 hexamers in different crystal forms and analysis of the disorder provides insights into the flexibility of this family of proteins, which might be an integral part of their biological function.
Berger, R G; Yount, W J
1990-08-01
We describe a patient who had an immediate, intense, localized synovitis due to intraarticular triamcinolone hexacetonide injection. The reaction was secondary to rapid intracellular ingestion of the steroid microcrystals as demonstrated by compensated polarized microscopy. We report the unique nature of this patient's response, and we review previous literature regarding "steroid flare" after intraarticular injection.
Wood, Matthew R; Lalancette, Roger A
2013-04-01
The ortho-metallation product of the reaction of (±)-amphetamine with gold(III) chloride, [D,L-2-(2-aminopropyl)phenyl-κ(2)N,C(1)]dichloridogold(III), [Au(C9H12N)Cl2], and the two salts resulting from crystallization of (+)-methamphetamine with gold(III) chloride, D-methyl(1-phenylpropan-2-yl)azanium tetrachloridoaurate(III), (C10H16N)[AuCl4], and of (±)-ephedrine with gold(III) chloride, D,L-(1-hydroxy-1-phenylpropan-2-yl)(methyl)azanium tetrachloridoaurate(III), (C10H16NO)[AuCl4], have different structures. The first makes a bidentate complex directly with a dichloridogold(III) group, forming a six-membered ring structure; the second and third each form a salt with [AuCl4](-) (each has two formula units in the asymmetric unit). The organic components are all members of the same class of stimulants that are prevalent in illicit drug use. These structures are important contributions to the understanding of the microcrystal tests for these drugs that have been employed for well over 100 years.
VO2 microcrystals as an advanced smart window material at semiconductor to metal transition
NASA Astrophysics Data System (ADS)
Basu, Raktima; Magudapathy, P.; Sardar, Manas; Pandian, Ramanathaswamy; Dhara, Sandip
2017-11-01
Textured VO2(0 1 1) microcrystals are grown in the monoclinic, M1 phase which undergoes a reversible first order semiconductor to metal transition (SMT) accompanied by a structural phase transition to rutile tetragonal, R phase. Around the phase transition, VO2 also experiences noticeable change in its optical and electrical properties. A change in color of the VO2 micro crystals from white to cyan around the transition temperature is observed, which is further understood by absorption of red light using temperature dependent ultraviolet-visible spectroscopic analysis and photoluminescence studies. The absorption of light in the red region is explained by the optical transition between Hubbard states, confirming the electronic correlation as the driving force for SMT in VO2. The thermochromism in VO2 has been studied for smart window applications so far in the IR region, which supports the opening of the band gap in semiconducting phase; whereas there is hardly any report in the management of visible light. The filtering of blue light along with reflection of infrared above the semiconductor to metal transition temperature make VO2 applicable as advanced smart windows for overall heat management of a closure.
Niu, Na; He, Fei; Wang, Liuzhen; Wang, Lin; Wang, Yan; Gai, Shili; Yang, Piaoping
2014-05-01
In this paper, well-defined tetragonal-phase LiYF4:Yb3+,Er3+/Tm3+/Ho3+ micro-crystals with octahedral morphology were successfully prepared through a surfactant-free molten salt process for the first time. By gradually increasing the LiF content in the NaNO3-KNO3 reaction medium, the crystal phase transforms from a mixture of YF3 and LiYF4 to pure tetragonal-phase LiYF4. The possible formation process for the phase and morphology evolution is also presented. Moreover, upon 980 nm laser diode (LD) excitation, the lanthanide ions (Yb3+, Er3+/Tm3+/Ho3+) doped LiYF4 crystals exhibit intense upconversion emission lights. By tuning the sensitizer concentrations of Yb3+ ions in LiYF4:Yb3+,Er3+, the relative intensities of green and red emissions can be precisely adjusted under single wavelength excitation. Consequently, multicolor upconversion emissions can be obtained. On the other hand, UC mechanisms were also given based on the emission spectra and the plot of luminescence intensity to pump power.
NASA Astrophysics Data System (ADS)
Chandra, B. P.; Chandra, V. K.; Jha, Piyush; Sonwane, V. D.
2016-06-01
The threshold pressure for elastico-mechanoluminescence (EML) of ZnS:Mn macrocrystals is 20 MPa, and ZnS:Cu,Al macrocrystals do not show ML during elastic deformation. However, the threshold pressure for EML of ZnS:Mn and ZnS:Cu,Cl microcrystals and nanocrystals is nearly 1 MPa. Thus, it seems that high concentration of defects in microcrystalline and nanocrystalline ZnS:Mn and ZnS:Cu,Cl produces disorder and distortion in lattice and changes the local crystal-structure near impurities, and consequently, the enhanced piezoelectric constant of local region produces EML for low value of applied pressure. The threshold pressure for the ML of ZnS:Mn and ZnS:Cu,Al single macrocrystals is higher because such crystals possess comparatively less number of defects near the impurities where the phase-transition is not possible and their ML is caused for high value of stress because the bulk piezoelectric constant is less. Thus, size-dependent threshold pressure for ML supports the origin of EML from piezoelectricity in local region of the crystals. The finding of present investigation may be useful in tailoring phosphors emitting intense EML of different colours.
Massive ordering and alignment of cylindrical micro-objects by photovoltaic optoelectronic tweezers.
Elvira, Iris; Muñoz-Martínez, Juan F; Barroso, Álvaro; Denz, Cornelia; Ramiro, José B; García-Cabañes, Angel; Agulló-López, Fernando; Carrascosa, Mercedes
2018-01-01
Optical tools for manipulation and trapping of micro- and nano-objects are a fundamental issue for many applications in nano- and biotechnology. This work reports on the use of one such method, known as photovoltaic optoelectronics tweezers, to orientate and organize cylindrical microcrystals, specifically elongated zeolite L, on the surface of Fe-doped LiNbO 3 crystal plates. Patterns of aligned zeolites have been achieved through the forces and torques generated by the bulk photovoltaic effect. The alignment patterns with zeolites parallel or perpendicular to the substrate surface are highly dependent on the features of light distribution and crystal configuration. Moreover, dielectrophoretic chains of zeolites with lengths up to 100 μm have often been observed. The experimental results of zeolite trapping and alignment have been discussed and compared together with theoretical simulations of the evanescent photovoltaic electric field and the dielectrophoretic potential. They demonstrate the remarkable capabilities of the optoelectronic photovoltaic method to orientate and pattern anisotropic microcrystals. The combined action of patterning and alignment offers a unique tool to prepare functional nanostructures with potential applications in a variety of fields such as nonlinear optics or plasmonics.
Fiber-optic control and thermometry of single-cell thermosensation logic.
Fedotov, I V; Safronov, N A; Ermakova, Yu G; Matlashov, M E; Sidorov-Biryukov, D A; Fedotov, A B; Belousov, V V; Zheltikov, A M
2015-11-13
Thermal activation of transient receptor potential (TRP) cation channels is one of the most striking examples of temperature-controlled processes in cell biology. As the evidence indicating the fundamental role of such processes in thermosensation builds at a fast pace, adequately accurate tools that would allow heat receptor logic behind thermosensation to be examined on a single-cell level are in great demand. Here, we demonstrate a specifically designed fiber-optic probe that enables thermal activation with simultaneous online thermometry of individual cells expressing genetically encoded TRP channels. This probe integrates a fiber-optic tract for the delivery of laser light with a two-wire microwave transmission line. A diamond microcrystal fixed on the fiber tip is heated by laser radiation transmitted through the fiber, providing a local heating of a cell culture, enabling a well-controlled TRP-assisted thermal activation of cells. Online local temperature measurements are performed by using the temperature-dependent frequency shift of optically detected magnetic resonance, induced by coupling the microwave field, delivered by the microwave transmission line, to nitrogen--vacancy centers in the diamond microcrystal. Activation of TRP channels is verified by using genetically encoded fluorescence indicators, visualizing an increase in the calcium flow through activated TRP channels.
Pendini, Nicole R; Polyak, Steve W; Booker, Grant W; Wallace, John C; Wilce, Matthew C J
2008-06-01
Biotin protein ligase from Staphylococcus aureus catalyses the biotinylation of acetyl-CoA carboxylase and pyruvate carboxylase. Recombinant biotin protein ligase from S. aureus has been cloned, expressed and purified. Crystals were grown using the hanging-drop vapour-diffusion method using PEG 8000 as the precipitant at 295 K. X-ray diffraction data were collected to 2.3 A resolution from crystals using synchrotron X-ray radiation at 100 K. The diffraction was consistent with the tetragonal space group P4(2)2(1)2, with unit-cell parameters a = b = 93.665, c = 131.95.
X-ray Microscopic Characterization of Protein Crystals
NASA Technical Reports Server (NTRS)
Hu, Z. W.; Holmes, A.; Thomas, B.R.; Chernov, a. A.; Chu, Y. S.; Lai, B.
2004-01-01
The microscopic mapping of the variation in degree of perfection and in type of defects in entire protein crystals by x-rays may well be a prerequisite for better understanding causes of lattice imperfections, the growth history, and properties of protein crystals. However, x-ray microscopic characterization of bulk protein crystals, in the as-grown state, is frequently more challenging than that of small molecular crystals due to the experimental difficulties arising largely from the unique features possessed by protein crystals. In this presentation, we will illustrate ssme recent activities in employing coherence-based phase contrast x-ray imaging and high-angular-resolution diffraction techniques for mapping microdefects and the degree of perfection of protein crystals, and demonstrate a correlation between crystal perfection, diffraction phenomena., and crystallization conditions. The observed features and phenomena will be discussed in context to gain insight into the nature of defects, nucleation and growth, and the properties of protein crystals.
Cai, Zhongyu; Sasmal, Aniruddha; Liu, Xinyu; Asher, Sanford A
2017-10-27
Lectin proteins, such as the highly toxic lectin protein, ricin, and the immunochemically important lectin, jacalin, play significant roles in many biological functions. It is highly desirable to develop a simple but efficient method to selectively detect lectin proteins. Here we report the development of carbohydrate containing responsive hydrogel sensing materials for the selective detection of lectin proteins. The copolymerization of a vinyl linked carbohydrate monomer with acrylamide and acrylic acid forms a carbohydrate hydrogel that shows specific "multivalent" binding to lectin proteins. The resulting carbohydrate hydrogels are attached to 2-D photonic crystals (PCs) that brightly diffract visible light. This diffraction provides an optical readout that sensitively monitors the hydrogel volume. We utilize lactose, galactose, and mannose containing hydrogels to fabricate a series of 2-D PC sensors that show strong selective binding to the lectin proteins ricin, jacalin, and concanavalin A (Con A). This binding causes a carbohydrate hydrogel shrinkage which significantly shifts the diffraction wavelength. The resulting 2-D PC sensors can selectively detect the lectin proteins ricin, jacalin, and Con A. These unoptimized 2-D PC hydrogel sensors show a limit of detection (LoD) of 7.5 × 10 -8 M for ricin, a LoD of 2.3 × 10 -7 M for jacalin, and a LoD of 3.8 × 10 -8 M for Con A, respectively. This sensor fabrication approach may enable numerous sensors for the selective detection of numerous lectin proteins.
Structural molecular biology: Recent results from neutron diffraction
NASA Astrophysics Data System (ADS)
Timmins, Peter A.
1995-02-01
Neutron diffraction is of importance in structural biology at several different levels of resolution. In most cases the unique possibility arising from deuterium labelling or contrast variation is of fundamental importance in providing information complementary to that which can be obtained from X-ray diffraction. At high resolution, neutron crystallography of proteins allows the location of hydrogen atoms in the molecule or of the hydration water, both of which may be central to biological activity. A major difficulty in this field has been the poor signal-to-noise ratio of the data arising not only from relatively low beam intensities and small crystals but, most importantly from the incoherent background due to hydrogen atoms in the sample. Modern methods of molecular biology now offer ways of producing fully deuterated proteins by cloning in bacteria grown on fully deuterated media. At a slightly lower resolution, there are a number of systems which may be ordered in one or two dimensions. This is the case in the purple membrane where neutron diffraction with deuterium labelling has complemented high resolution electron diffraction. Finally there is a class of very large macromolecular systems which can be crystallised and have been studied by X-ray diffraction but in which part of the structure is locally disordered and usually has insufficient contrast to be seen with X-rays. In this case the use of H 2O/D 2O contrast variation allows these components to be located. Examples of this are the nucleic acid in virus structures and detergent bound to membrane proteins.
Purification, crystallization and preliminary X-ray diffraction of human S100A15
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boeshans, Karen M.; Wolf, Ronald; Voscopoulos, Christopher
2006-05-01
S100 proteins are differentially expressed during epithelial cell maturation, tumorigenesis and inflammation. The novel human S100A15 protein has been cloned, expressed, purified and crystallized in two crystal forms, a triclinic and a monoclinic form, which diffract to 1.7 and 2.0 Å, respectively. Human S100A15 is a novel member of the S100 family of EF-hand calcium-binding proteins and was recently identified in psoriasis, where it is significantly upregulated in lesional skin. The protein is implicated as an effector in calcium-mediated signal transduction pathways. Although its biological function is unclear, the association of the 11.2 kDa S100A15 with psoriasis suggests that itmore » contributes to the pathogenesis of the disease and could provide a molecular target for therapy. To provide insight into the function of S100A15, the protein was crystallized to visualize its structure and to further the understanding of how the many similar calcium-binding mediator proteins in the cell distinguish their cognate target molecules. The S100A15 protein has been cloned, expressed and purified to homogeneity and produced two crystal forms. Crystals of form I are triclinic, with unit-cell parameters a = 33.5, b = 44.3, c = 44.8 Å, α = 71.2, β = 68.1, γ = 67.8° and an estimated two molecules in the asymmetric unit, and diffract to 1.7 Å resolution. Crystals of form II are monoclinic, with unit-cell parameters a = 82.1, b = 33.6, c = 52.2 Å, β = 128.2° and an estimated one molecule in the asymmetric unit, and diffract to 2.0 Å resolution. This structural analysis of the human S100A15 will further aid in the phylogenic comparison between the other members of the S100 protein family, especially the highly homologous paralog S100A7.« less
Controlled dehydration improves the diffraction quality of two RNA crystals.
Park, HaJeung; Tran, Tuan; Lee, Jun Hyuck; Park, Hyun; Disney, Matthew D
2016-11-03
Post-crystallization dehydration methods, applying either vapor diffusion or humidity control devices, have been widely used to improve the diffraction quality of protein crystals. Despite the fact that RNA crystals tend to diffract poorly, there is a dearth of reports on the application of dehydration methods to improve the diffraction quality of RNA crystals. We use dehydration techniques with a Free Mounting System (FMS, a humidity control device) to recover the poor diffraction quality of RNA crystals. These approaches were applied to RNA constructs that model various RNA-mediated repeat expansion disorders. The method we describe herein could serve as a general tool to improve diffraction quality of RNA crystals to facilitate structure determinations.
2001-06-06
X-rays diffracted from a well-ordered protein crystal create sharp patterns of scattered light on film. A computer can use these patterns to generate a model of a protein molecule. To analyze the selected crystal, an X-ray crystallographer shines X-rays through the crystal. Unlike a single dental X-ray, which produces a shadow image of a tooth, these X-rays have to be taken many times from different angles to produce a pattern from the scattered light, a map of the intensity of the X-rays after they diffract through the crystal. The X-rays bounce off the electron clouds that form the outer structure of each atom. A flawed crystal will yield a blurry pattern; a well-ordered protein crystal yields a series of sharp diffraction patterns. From these patterns, researchers build an electron density map. With powerful computers and a lot of calculations, scientists can use the electron density patterns to determine the structure of the protein and make a computer-generated model of the structure. The models let researchers improve their understanding of how the protein functions. They also allow scientists to look for receptor sites and active areas that control a protein's function and role in the progress of diseases. From there, pharmaceutical researchers can design molecules that fit the active site, much like a key and lock, so that the protein is locked without affecting the rest of the body. This is called structure-based drug design.
Fibrous Protein Structures: Hierarchy, History and Heroes.
Squire, John M; Parry, David A D
2017-01-01
During the 1930s and 1940s the technique of X-ray diffraction was applied widely by William Astbury and his colleagues to a number of naturally-occurring fibrous materials. On the basis of the diffraction patterns obtained, he observed that the structure of each of the fibres was dominated by one of a small number of different types of molecular conformation. One group of fibres, known as the k-m-e-f group of proteins (keratin - myosin - epidermin - fibrinogen), gave rise to diffraction characteristics that became known as the α-pattern. Others, such as those from a number of silks, gave rise to a different pattern - the β-pattern, while connective tissues yielded a third unique set of diffraction characteristics. At the time of Astbury's work, the structures of these materials were unknown, though the spacings of the main X-ray reflections gave an idea of the axial repeats and the lateral packing distances. In a breakthrough in the early 1950s, the basic structures of all of these fibrous proteins were determined. It was found that the long protein chains, composed of strings of amino acids, could be folded up in a systematic manner to generate a limited number of structures that were consistent with the X-ray data. The most important of these were known as the α-helix, the β-sheet, and the collagen triple helix. These studies provided information about the basic building blocks of all proteins, both fibrous and globular. They did not, however, provide detailed information about how these molecules packed together in three-dimensions to generate the fibres found in vivo. A number of possible packing arrangements were subsequently deduced from the X-ray diffraction and other data, but it is only in the last few years, through the continued improvements of electron microscopy, that the packing details within some fibrous proteins can now be seen directly. Here we outline briefly some of the milestones in fibrous protein structure determination, the role of the amino acid sequences and how new techniques, including electron microscopy, are helping to define fibrous protein structures in three-dimensions. We also introduce the idea that, from the known sequence characteristics of different fibrous proteins, new molecules can be designed and synthesized, thereby generating new biological materials with specific structural properties. Some of these, for example, are planned for use in drug delivery systems. Along the way we also introduce the various Chapters of the book, where individual fibrous proteins are discussed in detail.
Miller, C E; Majewski, J; Watkins, E B; Weygand, M; Kuhl, T L
2008-07-01
The structure of cholera toxin (CTAB(5)) bound to its putative ganglioside receptor, galactosyl-N-acetylgalactosaminyl (N-acetyl-neuraminyl) galactosylglucosylceramide (GM(1)), in a lipid monolayer at the air-water interface has been studied utilizing grazing incidence x-ray diffraction. Cholera toxin is one of very few proteins to be crystallized in two dimensions and characterized in a fully hydrated state. The observed grazing incidence x-ray diffraction Bragg peaks indicated cholera toxin was ordered in a hexagonal lattice and the order extended 600-800 A. The pentameric binding portion of cholera toxin (CTB(5)) improved in-plane ordering over the full toxin (CTAB(5)) especially at low pH. Disulfide bond reduction (activation of the full toxin) also increased the protein layer ordering. These findings are consistent with A-subunit flexibility and motion, which cause packing inefficiencies and greater disorder of the protein layer. Corroborative out-of-plane diffraction (Bragg rod) analysis indicated that the scattering units in the cholera layer with CTAB(5) shortened after disulfide bond reduction of the A subunit. These studies, together with Part I results, revealed key changes in the structure of the cholera toxin-lipid system under different pH conditions.
7 Å Resolution in Protein 2-Dimentional-Crystal X-Ray Diffraction at Linac Coherent Light Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pedrini, Bill; Tsai, Ching-Ju; Capitani, Guido
2014-06-09
Membrane proteins arranged as two-dimensional (2D) crystals in the lipid en- vironment provide close-to-physiological structural information, which is essential for understanding the molecular mechanisms of protein function. X-ray diffraction from individual 2D crystals did not represent a suitable investigation tool because of radiation damage. The recent availability of ultrashort pulses from X-ray Free Electron Lasers (X-FELs) has now provided a mean to outrun the damage. Here we report on measurements performed at the LCLS X-FEL on bacteriorhodopsin 2D crystals mounted on a solid support and kept at room temperature. By merg- ing data from about a dozen of single crystalmore » diffraction images, we unambiguously identified the diffraction peaks to a resolution of 7 °A, thus improving the observable resolution with respect to that achievable from a single pattern alone. This indicates that a larger dataset will allow for reliable quantification of peak intensities, and in turn a corresponding increase of resolution. The presented results pave the way to further X-FEL studies on 2D crystals, which may include pump-probe experiments at subpicosecond time resolution.« less
7 Å resolution in protein two-dimensional-crystal X-ray diffraction at Linac Coherent Light Source
Pedrini, Bill; Tsai, Ching-Ju; Capitani, Guido; Padeste, Celestino; Hunter, Mark S.; Zatsepin, Nadia A.; Barty, Anton; Benner, W. Henry; Boutet, Sébastien; Feld, Geoffrey K.; Hau-Riege, Stefan P.; Kirian, Richard A.; Kupitz, Christopher; Messerschmitt, Marc; Ogren, John I.; Pardini, Tommaso; Segelke, Brent; Williams, Garth J.; Spence, John C. H.; Abela, Rafael; Coleman, Matthew; Evans, James E.; Schertler, Gebhard F. X.; Frank, Matthias; Li, Xiao-Dan
2014-01-01
Membrane proteins arranged as two-dimensional crystals in the lipid environment provide close-to-physiological structural information, which is essential for understanding the molecular mechanisms of protein function. Previously, X-ray diffraction from individual two-dimensional crystals did not represent a suitable investigational tool because of radiation damage. The recent availability of ultrashort pulses from X-ray free-electron lasers (XFELs) has now provided a means to outrun the damage. Here, we report on measurements performed at the Linac Coherent Light Source XFEL on bacteriorhodopsin two-dimensional crystals mounted on a solid support and kept at room temperature. By merging data from about a dozen single crystal diffraction images, we unambiguously identified the diffraction peaks to a resolution of 7 Å, thus improving the observable resolution with respect to that achievable from a single pattern alone. This indicates that a larger dataset will allow for reliable quantification of peak intensities, and in turn a corresponding increase in the resolution. The presented results pave the way for further XFEL studies on two-dimensional crystals, which may include pump–probe experiments at subpicosecond time resolution. PMID:24914166
Rapid time-resolved diffraction studies of protein structures using synchrotron radiation
NASA Astrophysics Data System (ADS)
Bartunik, Hans D.; Bartunik, Lesley J.
1992-07-01
The crystal structure of intermediate states in biological reactions of proteins of multi-protein complexes may be studied by time-resolved X-ray diffraction techniques which make use of the high spectral brilliance, continuous wavelength distribution and pulsed time structure of synchrotron radiation. Laue diffraction methods provide a means of investigating intermediate structures with lifetimes in the millisecond time range at presently operational facilities. Third-generation storage rings which are under construction may permit one to reach a time resolution of one microsecond for non-cyclic and one nanosecond for cyclic reactions. The number of individual exposures required for exploring reciprocal space and hence the total time scale strongly depend on the lattice order that may be affected, e.g., by conformational changes. Time-resolved experiments require high population of a specific intermediate which has to be homogeneous over the crystal volume. A number of external excitation techniques have been developed including in situ liberation of active metabolites by laser pulse photolysis of photolabile inactive precursors. First applications to crystal structure analysis of catalytic intermediates of enzymes demonstrate the potential of time-resolved protein crystallography.
Inorganic pyrophosphatase crystals from Thermococcus thioreducens for X-ray and neutron diffraction.
Hughes, Ronny C; Coates, Leighton; Blakeley, Matthew P; Tomanicek, Steve J; Langan, Paul; Kovalevsky, Andrey Y; García-Ruiz, Juan M; Ng, Joseph D
2012-12-01
Inorganic pyrophosphatase (IPPase) from the archaeon Thermococcus thioreducens was cloned, overexpressed in Escherichia coli, purified and crystallized in restricted geometry, resulting in large crystal volumes exceeding 5 mm3. IPPase is thermally stable and is able to resist denaturation at temperatures above 348 K. Owing to the high temperature tolerance of the enzyme, the protein was amenable to room-temperature manipulation at the level of protein preparation, crystallization and X-ray and neutron diffraction analyses. A complete synchrotron X-ray diffraction data set to 1.85 Å resolution was collected at room temperature from a single crystal of IPPase (monoclinic space group C2, unit-cell parameters a=106.11, b=95.46, c=113.68 Å, α=γ=90.0, β=98.12°). As large-volume crystals of IPPase can be obtained, preliminary neutron diffraction tests were undertaken. Consequently, Laue diffraction images were obtained, with reflections observed to 2.1 Å resolution with I/σ(I) greater than 2.5. The preliminary crystallographic results reported here set in place future structure-function and mechanism studies of IPPase.
Efficient, balanced, transmission line RF circuits by back propagation of common impedance nodes.
Markhasin, Evgeny; Hu, Jianping; Su, Yongchao; Herzfeld, Judith; Griffin, Robert G
2013-06-01
We present a new, efficient strategy for designing fully balanced transmission line RF circuits for solid state NMR probes based on back propagation of common impedance nodes (BPCIN). In this approach, the impedance node phenomenon is the sole means of achieving mutual RF isolation and balance in all RF channels. BPCIN is illustrated using a custom double resonance 3.2 mm MAS probe operating at 500 MHz ((1)H) and 125 MHz ((13)C). When fully optimized, the probe is capable of producing high homogeneity (810°/90° ratios of 86% and 89% for (1)H and (13)C, respectively) and high efficiency (γB1=100 kHz for (1)H and (13)C at 70 W and 180 W of RF input, respectively; up to 360 kHz for (1)H). The probe's performance is illustrated by 2D MAS correlation spectra of microcrystals of the tripeptide N-f-MLF-OH and hydrated amyloid fibrils of the protein PI3-SH3. Copyright © 2013 Elsevier Inc. All rights reserved.
Protein crystallization X-ray diffraction data collection Protein structure determination Obtaining structures of protein-ligand complexes Site-directed mutagenesis Structure-function relationship Enzymatic CelA," Science (2013) "Sequence, Structure, and Evolution of Cellulases in Glycoside
An Overview of Hardware for Protein Crystallization in a Magnetic Field.
Yan, Er-Kai; Zhang, Chen-Yan; He, Jin; Yin, Da-Chuan
2016-11-16
Protein crystallization under a magnetic field is an interesting research topic because a magnetic field may provide a special environment to acquire improved quality protein crystals. Because high-quality protein crystals are very useful in high-resolution structure determination using diffraction techniques (X-ray, neutron, and electron diffraction), research using magnetic fields in protein crystallization has attracted substantial interest; some studies have been performed in the past two decades. In this research field, the hardware is especially essential for successful studies because the environment is special and the design and utilization of the research apparatus in such an environment requires special considerations related to the magnetic field. This paper reviews the hardware for protein crystallization (including the magnet systems and the apparatus designed for use in a magnetic field) and progress in this area. Future prospects in this field will also be discussed.
NASA Astrophysics Data System (ADS)
Liu, Zhen; Xing, Dong; Su, Qian Peter; Zhu, Yun; Zhang, Jiamei; Kong, Xinyu; Xue, Boxin; Wang, Sheng; Sun, Hao; Tao, Yile; Sun, Yujie
2014-07-01
Imaging the location and dynamics of individual interacting protein pairs is essential but often difficult because of the fluorescent background from other paired and non-paired molecules, particularly in the sub-diffraction cellular space. Here we develop a new method combining bimolecular fluorescence complementation and photoactivated localization microscopy for super-resolution imaging and single-molecule tracking of specific protein-protein interactions. The method is used to study the interaction of two abundant proteins, MreB and EF-Tu, in Escherichia coli cells. The super-resolution imaging shows interesting distribution and domain sizes of interacting MreB-EF-Tu pairs as a subpopulation of total EF-Tu. The single-molecule tracking of MreB, EF-Tu and MreB-EF-Tu pairs reveals intriguing localization-dependent heterogonous dynamics and provides valuable insights to understanding the roles of MreB-EF-Tu interactions.
An Overview of Hardware for Protein Crystallization in a Magnetic Field
Yan, Er-Kai; Zhang, Chen-Yan; He, Jin; Yin, Da-Chuan
2016-01-01
Protein crystallization under a magnetic field is an interesting research topic because a magnetic field may provide a special environment to acquire improved quality protein crystals. Because high-quality protein crystals are very useful in high-resolution structure determination using diffraction techniques (X-ray, neutron, and electron diffraction), research using magnetic fields in protein crystallization has attracted substantial interest; some studies have been performed in the past two decades. In this research field, the hardware is especially essential for successful studies because the environment is special and the design and utilization of the research apparatus in such an environment requires special considerations related to the magnetic field. This paper reviews the hardware for protein crystallization (including the magnet systems and the apparatus designed for use in a magnetic field) and progress in this area. Future prospects in this field will also be discussed. PMID:27854318
Sierpe, Rodrigo; Lang, Erika; Jara, Paul; Guerrero, Ariel R; Chornik, Boris; Kogan, Marcelo J; Yutronic, Nicolás
2015-07-22
We report the synthesis of a 1:1 β-cyclodextrin-phenylethylamine (βCD-PhEA) inclusion complex (IC) and the adhesion of gold nanoparticles (AuNPs) onto microcrystals of this complex, which forms a ternary system. The formation of the IC was confirmed by powder X-ray diffraction and NMR analyses ((1)H and ROESY). The stability constant of the IC (760 M(-1)) was determined using the phase solubility method. The adhesion of AuNPs was obtained using the magnetron sputtering technique, and the presence of AuNPs was confirmed using UV-vis spectroscopy (surface plasmon resonance effect), which showed an absorbance at 533 nm. The powder X-ray diffractograms of βCD-PhEA were similar to those of the crystals decorated with AuNPs. A comparison of the one- and two-dimensional NMR spectra of the IC with and without AuNPs suggests partial displacement of the guest to the outside of the βCD due to attraction toward AuNPs, a characteristic tropism effect. The size, morphology, and distribution of the AuNPs were analyzed using TEM and SEM. The average size of the AuNPs was 14 nm. Changes in the IR and Raman spectra were attributed to the formation of the complex and to the specific interactions of this group with the AuNPs. Laser irradiation assays show that the ternary system βCD-PhEA-AuNPs in solution enables the release of the guest.
Schoenborn, Benno P
2010-11-01
The first neutron diffraction data were collected from crystals of myoglobin almost 42 years ago using a step-scan diffractometer with a single detector. Since then, major advances have been made in neutron sources, instrumentation and data collection and analysis, and in biochemistry. Fundamental discoveries about enzyme mechanisms, biological complex structures, protein hydration and H-atom positions have been and continue to be made using neutron diffraction. The promise of neutrons has not changed since the first crystal diffraction data were collected. Today, with the developments of beamlines at spallation neutron sources and the use of the Laue method for data collection, the field of neutrons in structural biology has renewed vitality.
Automatic protein structure solution from weak X-ray data
NASA Astrophysics Data System (ADS)
Skubák, Pavol; Pannu, Navraj S.
2013-11-01
Determining new protein structures from X-ray diffraction data at low resolution or with a weak anomalous signal is a difficult and often an impossible task. Here we propose a multivariate algorithm that simultaneously combines the structure determination steps. In tests on over 140 real data sets from the protein data bank, we show that this combined approach can automatically build models where current algorithms fail, including an anisotropically diffracting 3.88 Å RNA polymerase II data set. The method seamlessly automates the process, is ideal for non-specialists and provides a mathematical framework for successfully combining various sources of information in image processing.
Coughlan, H D; Darmanin, C; Phillips, N W; Hofmann, F; Clark, J N; Harder, R J; Vine, D J; Abbey, B
2015-07-01
For laboratory and synchrotron based X-ray sources, radiation damage has posed a significant barrier to obtaining high-resolution structural data from biological macromolecules. The problem is particularly acute for micron-sized crystals where the weaker signal often necessitates the use of higher intensity beams to obtain the relevant data. Here, we employ a combination of techniques, including Bragg coherent diffractive imaging to characterise the radiation induced damage in a micron-sized protein crystal over time. The approach we adopt here could help screen for potential protein crystal candidates for measurement at X-ray free election laser sources.
Pendini, Nicole R.; Polyak, Steve W.; Booker, Grant W.; Wallace, John C.; Wilce, Matthew C. J.
2008-01-01
Biotin protein ligase from Staphylococcus aureus catalyses the biotinylation of acetyl-CoA carboxylase and pyruvate carboxylase. Recombinant biotin protein ligase from S. aureus has been cloned, expressed and purified. Crystals were grown using the hanging-drop vapour-diffusion method using PEG 8000 as the precipitant at 295 K. X-ray diffraction data were collected to 2.3 Å resolution from crystals using synchrotron X-ray radiation at 100 K. The diffraction was consistent with the tetragonal space group P42212, with unit-cell parameters a = b = 93.665, c = 131.95. PMID:18540065
Coughlan, H. D.; Darmanin, C.; Phillips, N. W.; Hofmann, F.; Clark, J. N.; Harder, R. J.; Vine, D. J.; Abbey, B.
2015-01-01
For laboratory and synchrotron based X-ray sources, radiation damage has posed a significant barrier to obtaining high-resolution structural data from biological macromolecules. The problem is particularly acute for micron-sized crystals where the weaker signal often necessitates the use of higher intensity beams to obtain the relevant data. Here, we employ a combination of techniques, including Bragg coherent diffractive imaging to characterise the radiation induced damage in a micron-sized protein crystal over time. The approach we adopt here could help screen for potential protein crystal candidates for measurement at X-ray free election laser sources. PMID:26798804
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coughlan, H. D.; Darmanin, C.; Phillips, N. W.
For laboratory and synchrotron based X-ray sources, radiation damage has posed a significant barrier to obtaining high-resolution structural data from biological macromolecules. The problem is particularly acute for micron-sized crystals where the weaker signal often necessitates the use of higher intensity beams to obtain the relevant data. Here, we employ a combination of techniques, including Bragg coherent diffractive imaging to characterise the radiation induced damage in a micron-sized protein crystal over time. The approach we adopt here could help screen for potential protein crystal candidates for measurement at X-ray free election laser sources.
Coughlan, H. D.; Darmanin, C.; Phillips, N. W.; ...
2015-04-29
For laboratory and synchrotron based X-ray sources, radiation damage has posed a significant barrier to obtaining high-resolution structural data from biological macromolecules. The problem is particularly acute for micron-sized crystals where the weaker signal often necessitates the use of higher intensity beams to obtain the relevant data. Here, we employ a combination of techniques, including Bragg coherent diffractive imaging to characterise the radiation induced damage in a micron-sized protein crystal over time. The approach we adopt here could help screen for potential protein crystal candidates for measurement at X-ray free election laser sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budayova-Spano, Monika, E-mail: spano@embl-grenoble.fr; Institut Laue-Langevin, 6 Rue Jules Horowitz, BP 156, 38042 Grenoble; Bonneté, Françoise
2006-03-01
Neutron diffraction data of hydrogenated recombinant urate oxidase enzyme (Rasburicase), complexed with a purine-type inhibitor 8-azaxanthin, was collected to 2.1 Å resolution from a crystal grown in D{sub 2}O by careful control and optimization of crystallization conditions via knowledge of the phase diagram. Deuterium atoms were clearly seen in the neutron-scattering density map. Crystallization and preliminary neutron diffraction measurements of rasburicase, a recombinant urate oxidase enzyme expressed by a genetically modified Saccharomyces cerevisiae strain, complexed with a purine-type inhibitor (8-azaxanthin) are reported. Neutron Laue diffraction data were collected to 2.1 Å resolution using the LADI instrument from a crystal (grownmore » in D{sub 2}O) with volume 1.8 mm{sup 3}. The aim of this neutron diffraction study is to determine the protonation states of the inhibitor and residues within the active site. This will lead to improved comprehension of the enzymatic mechanism of this important enzyme, which is used as a protein drug to reduce toxic uric acid accumulation during chemotherapy. This paper illustrates the high quality of the neutron diffraction data collected, which are suitable for high-resolution structural analysis. In comparison with other neutron protein crystallography studies to date in which a hydrogenated protein has been used, the volume of the crystal was relatively small and yet the data still extend to high resolution. Furthermore, urate oxidase has one of the largest primitive unit-cell volumes (space group I222, unit-cell parameters a = 80, b = 96, c = 106 Å) and molecular weights (135 kDa for the homotetramer) so far successfully studied with neutrons.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Xiong-Zhuo; National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871; Li, Lan-Fen
The SMU.961 protein from S. mutans was crystallized and preliminary characterization of the crystals, which diffracted to 2.9 Å resolution, shows them to belong to space group C2. The smu.961 gene encodes a putative protein of 183 residues in Streptococcus mutans, a major pathogen in human dental caries. The gene was cloned into expression vector pET28a and expressed in a substantial quantity in Escherichia coli strain BL21 (DE3) with a His tag at its N-terminus. The recombinant protein SMU.961 was purified to homogeneity in a two-step procedure consisting of Ni{sup 2+}-chelating and size-exclusion chromatography. Crystals suitable for X-ray diffraction weremore » obtained by the hanging-drop vapour-diffusion method and diffracted to 2.9 Å resolution at beamline I911-3, MAX-II-lab, Sweden. The crystal belonged to space group C2, with unit-cell parameters a = 98.62, b = 73.73, c = 184.73 Å, β = 98.82°.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renzi, Fabiana; Panetta, Gianna; Vallone, Beatrice
Recombinant His-tagged XendoU, a eukaryotic endoribonuclease, appeared to aggregate in the presence of divalent cations. Monodisperse protein which yielded crystals diffracting to 2.2 Å was obtained by addition of EDTA. XendoU is the first endoribonuclease described in higher eukaryotes as being involved in the endonucleolytic processing of intron-encoded small nucleolar RNAs. It is conserved among eukaryotes and its viral homologue is essential in SARS replication and transcription. The large-scale purification and crystallization of recombinant XendoU are reported. The tendency of the recombinant enzyme to aggregate could be reversed upon the addition of chelating agents (EDTA, imidazole): aggregation is a potentialmore » drawback when purifying and crystallizing His-tagged proteins, which are widely used, especially in high-throughput structural studies. Purified monodisperse XendoU crystallized in two different space groups: trigonal P3{sub 1}21, diffracting to low resolution, and monoclinic C2, diffracting to higher resolution.« less
NASA Technical Reports Server (NTRS)
2001-01-01
X-rays diffracted from a well-ordered protein crystal create sharp patterns of scattered light on film. A computer can use these patterns to generate a model of a protein molecule. To analyze the selected crystal, an X-ray crystallographer shines X-rays through the crystal. Unlike a single dental X-ray, which produces a shadow image of a tooth, these X-rays have to be taken many times from different angles to produce a pattern from the scattered light, a map of the intensity of the X-rays after they diffract through the crystal. The X-rays bounce off the electron clouds that form the outer structure of each atom. A flawed crystal will yield a blurry pattern; a well-ordered protein crystal yields a series of sharp diffraction patterns. From these patterns, researchers build an electron density map. With powerful computers and a lot of calculations, scientists can use the electron density patterns to determine the structure of the protein and make a computer-generated model of the structure. The models let researchers improve their understanding of how the protein functions. They also allow scientists to look for receptor sites and active areas that control a protein's function and role in the progress of diseases. From there, pharmaceutical researchers can design molecules that fit the active site, much like a key and lock, so that the protein is locked without affecting the rest of the body. This is called structure-based drug design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, Stacy A.; Holloway, Gavan; Coulson, Barbara S.
2005-06-01
The sialic acid-binding domain (VP8*) component of the porcine CRW-8 rotavirus spike protein has been overexpressed in E. coli, purified and co-crystallized with an N-acetylneuraminic acid derivative. X-ray diffraction data have been collected to 2.3 Å, which has enabled determination of the structure by molecular replacement. Rotavirus recognition and attachment to host cells involves interaction with the spike protein VP4 that projects outwards from the surface of the virus particle. An integral component of these spikes is the VP8* domain, which is implicated in the direct recognition and binding of sialic acid-containing cell-surface carbohydrates and facilitates subsequent invasion by themore » virus. The expression, purification, crystallization and preliminary X-ray diffraction analysis of VP8* from porcine CRW-8 rotavirus is reported. Diffraction data have been collected to 2.3 Å resolution, enabling the determination of the VP8* structure by molecular replacement.« less
Sawaya, Michael R.; Cascio, Duilio; Gingery, Mari; Rodriguez, Jose; Goldschmidt, Lukasz; Colletier, Jacques-Philippe; Messerschmidt, Marc M.; Boutet, Sébastien; Koglin, Jason E.; Williams, Garth J.; Brewster, Aaron S.; Nass, Karol; Hattne, Johan; Botha, Sabine; Doak, R. Bruce; Shoeman, Robert L.; DePonte, Daniel P.; Park, Hyun-Woo; Federici, Brian A.; Sauter, Nicholas K.; Schlichting, Ilme; Eisenberg, David S.
2014-01-01
It has long been known that toxins produced by Bacillus thuringiensis (Bt) are stored in the bacterial cells in crystalline form. Here we describe the structure determination of the Cry3A toxin found naturally crystallized within Bt cells. When whole Bt cells were streamed into an X-ray free-electron laser beam we found that scattering from other cell components did not obscure diffraction from the crystals. The resolution limits of the best diffraction images collected from cells were the same as from isolated crystals. The integrity of the cells at the moment of diffraction is unclear; however, given the short time (∼5 µs) between exiting the injector to intersecting with the X-ray beam, our result is a 2.9-Å-resolution structure of a crystalline protein as it exists in a living cell. The study suggests that authentic in vivo diffraction studies can produce atomic-level structural information. PMID:25136092
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zipper, Lauren E.; Aristide, Xavier; Bishop, Dylan P.
A method is described for using plate lids to reduce evaporation in low-volume vapor-diffusion crystallization experiments. The plate lids contain apertures through which the protein and precipitants were added to different crystallization microplates (the reservoir was filled before fitting the lids). Plate lids were designed for each of these commonly used crystallization microplates. This system minimizes the dehydration of crystallization droplets containing just a few nanolitres of protein and precipitant, and results in more reproducible diffraction from the crystals. For each lid design, changes in the weight of the plates were used to deduce the rate of evaporation under differentmore » conditions of temperature, air movement, droplet size and precipitant. For comparison, the state of dehydration was also visually assessed throughout the experiment. Finally, X-ray diffraction methods were used to compare the diffraction of protein crystals that were conventionally prepared against those that were prepared on plates with plate lids. The measurements revealed that the plate lids reduced the rate of evaporation by 63–82%. Crystals grown in 5 nl drops that were set up with plate lids diffracted to higher resolution than similar crystals from drops that were set up without plate lids. Ultimately, the results demonstrate that plate lids can be instrumental for improving few-nanolitre crystallizations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraschnefski, Mark J.; Scott, Stacy A.; Holloway, Gavan
2005-11-01
The carbohydrate-binding component (VP8*{sub 64–223}) of the human Wa rotavirus spike protein has been overexpressed in E. coli, purified and crystallized in two different crystal forms. X-ray diffraction data have been collected that have enabled determination of the Wa VP8*{sub 64–223} structure by molecular replacement. Rotaviruses exhibit host-specificity and the first crystallographic information on a rotavirus strain that infects humans is reported here. Recognition and attachment to host cells, leading to invasion and infection, is critically linked to the function of the outer capsid spike protein of the rotavirus particle. In some strains the VP8* component of the spike proteinmore » is implicated in recognition and binding of sialic-acid-containing cell-surface carbohydrates, thereby enabling infection by the virus. The cloning, expression, purification, crystallization and initial X-ray diffraction analysis of the VP8* core from human Wa rotavirus is reported. Two crystal forms (trigonal P3{sub 2}21 and monoclinic P2{sub 1}) have been obtained and X-ray diffraction data have been collected, enabling determination of the VP8*{sub 64–223} structure by molecular replacement.« less
Zipper, Lauren E; Aristide, Xavier; Bishop, Dylan P; Joshi, Ishita; Kharzeev, Julia; Patel, Krishna B; Santiago, Brianna M; Joshi, Karan; Dorsinvil, Kahille; Sweet, Robert M; Soares, Alexei S
2014-12-01
A method is described for using plate lids to reduce evaporation in low-volume vapor-diffusion crystallization experiments. The plate lids contain apertures through which the protein and precipitants were added to different crystallization microplates (the reservoir was filled before fitting the lids). Plate lids were designed for each of these commonly used crystallization microplates. This system minimizes the dehydration of crystallization droplets containing just a few nanolitres of protein and precipitant, and results in more reproducible diffraction from the crystals. For each lid design, changes in the weight of the plates were used to deduce the rate of evaporation under different conditions of temperature, air movement, droplet size and precipitant. For comparison, the state of dehydration was also visually assessed throughout the experiment. Finally, X-ray diffraction methods were used to compare the diffraction of protein crystals that were conventionally prepared against those that were prepared on plates with plate lids. The measurements revealed that the plate lids reduced the rate of evaporation by 63-82%. Crystals grown in 5 nl drops that were set up with plate lids diffracted to higher resolution than similar crystals from drops that were set up without plate lids. The results demonstrate that plate lids can be instrumental for improving few-nanolitre crystallizations.
Femtosecond X-ray protein nanocrystallography.
Chapman, Henry N; Fromme, Petra; Barty, Anton; White, Thomas A; Kirian, Richard A; Aquila, Andrew; Hunter, Mark S; Schulz, Joachim; DePonte, Daniel P; Weierstall, Uwe; Doak, R Bruce; Maia, Filipe R N C; Martin, Andrew V; Schlichting, Ilme; Lomb, Lukas; Coppola, Nicola; Shoeman, Robert L; Epp, Sascha W; Hartmann, Robert; Rolles, Daniel; Rudenko, Artem; Foucar, Lutz; Kimmel, Nils; Weidenspointner, Georg; Holl, Peter; Liang, Mengning; Barthelmess, Miriam; Caleman, Carl; Boutet, Sébastien; Bogan, Michael J; Krzywinski, Jacek; Bostedt, Christoph; Bajt, Saša; Gumprecht, Lars; Rudek, Benedikt; Erk, Benjamin; Schmidt, Carlo; Hömke, André; Reich, Christian; Pietschner, Daniel; Strüder, Lothar; Hauser, Günter; Gorke, Hubert; Ullrich, Joachim; Herrmann, Sven; Schaller, Gerhard; Schopper, Florian; Soltau, Heike; Kühnel, Kai-Uwe; Messerschmidt, Marc; Bozek, John D; Hau-Riege, Stefan P; Frank, Matthias; Hampton, Christina Y; Sierra, Raymond G; Starodub, Dmitri; Williams, Garth J; Hajdu, Janos; Timneanu, Nicusor; Seibert, M Marvin; Andreasson, Jakob; Rocker, Andrea; Jönsson, Olof; Svenda, Martin; Stern, Stephan; Nass, Karol; Andritschke, Robert; Schröter, Claus-Dieter; Krasniqi, Faton; Bott, Mario; Schmidt, Kevin E; Wang, Xiaoyu; Grotjohann, Ingo; Holton, James M; Barends, Thomas R M; Neutze, Richard; Marchesini, Stefano; Fromme, Raimund; Schorb, Sebastian; Rupp, Daniela; Adolph, Marcus; Gorkhover, Tais; Andersson, Inger; Hirsemann, Helmut; Potdevin, Guillaume; Graafsma, Heinz; Nilsson, Björn; Spence, John C H
2011-02-03
X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction 'snapshots' are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source. We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes. More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals (∼200 nm to 2 μm in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes. This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage.
Synthesis and evaluation of α-Ag2WO4 as novel antifungal agent
NASA Astrophysics Data System (ADS)
Foggi, Camila C.; Fabbro, Maria T.; Santos, Luís P. S.; de Santana, Yuri V. B.; Vergani, Carlos E.; Machado, Ana L.; Cordoncillo, Eloisa; Andrés, Juan; Longo, Elson
2017-04-01
Because of the need for new antifungal materials with greater potency, microcrystals of α-Ag2WO4, a complex metal oxide, have been synthetized by a simple co-precipitation method, and their antifungal activity against Candida albicans has been investigated. A theoretical model based on clusters that are building blocks of α-Ag2WO4 has been proposed to explain the experimental results.
Bent, Andrew F; Mann, Greg; Houssen, Wael E; Mykhaylyk, Vitaliy; Duman, Ramona; Thomas, Louise; Jaspars, Marcel; Wagner, Armin; Naismith, James H
2016-11-01
Determination of protein crystal structures requires that the phases are derived independently of the observed measurement of diffraction intensities. Many techniques have been developed to obtain phases, including heavy-atom substitution, molecular replacement and substitution during protein expression of the amino acid methionine with selenomethionine. Although the use of selenium-containing methionine has transformed the experimental determination of phases it is not always possible, either because the variant protein cannot be produced or does not crystallize. Phasing of structures by measuring the anomalous diffraction from S atoms could in theory be almost universal since almost all proteins contain methionine or cysteine. Indeed, many structures have been solved by the so-called native sulfur single-wavelength anomalous diffraction (S-SAD) phasing method. However, the anomalous effect is weak at the wavelengths where data are normally recorded (between 1 and 2 Å) and this limits the potential of this method to well diffracting crystals. Longer wavelengths increase the strength of the anomalous signal but at the cost of increasing air absorption and scatter, which degrade the precision of the anomalous measurement, consequently hindering phase determination. A new instrument, the long-wavelength beamline I23 at Diamond Light Source, was designed to work at significantly longer wavelengths compared with standard synchrotron beamlines in order to open up the native S-SAD method to projects of increasing complexity. Here, the first novel structure, that of the oxidase domain involved in the production of the natural product patellamide, solved on this beamline is reported using data collected to a resolution of 3.15 Å at a wavelength of 3.1 Å. The oxidase is an example of a protein that does not crystallize as the selenium variant and for which no suitable homology model for molecular replacement was available. Initial attempts collecting anomalous diffraction data for native sulfur phasing on a standard macromolecular crystallography beamline using a wavelength of 1.77 Å did not yield a structure. The new beamline thus has the potential to facilitate structure determination by native S-SAD phasing for what would previously have been regarded as very challenging cases with modestly diffracting crystals and low sulfur content.
NASA Astrophysics Data System (ADS)
Zhang, Chuang; Wang, Shou Yu; Liu, Wei Fang; Xu, Xun Ling; Li, Xiu; Zhang, Hong; Gao, Ju; Li, De Jun
2017-05-01
Exchange bias (EB) of multiferroics presents many potential opportunities for magnetic devices. However, instead of using low-temperature field cooling in the hysteresis loop measurement, which usually shows an effective approach to obtain obvious EB phenomenon, there are few room temperature EB. In this article, extensive studies on room temperature EB without field cooling were observed in BiFeO3 nano- and microcrystals. Moreover, with increasing size the hysteresis loops shift from horizontal negative exchange bias (NEB) to positive exchange bias (PEB). In order to explain the tunable EB behaviors with size dependence, a phenomenological qualitative model based on the framework of antiferromagnetic (AFM) core-two-dimensional diluted antiferromagnet in a field (2D-DAFF) shell structure was proposed. The training effect (TE) ascertained the validity of model and the presence of unstable magnetic structure using Binek's model. Experimental results show that the tunable EB effect can be explained by the competition of ferromagnetic (FM) exchange coupling and AFM exchange coupling interaction between AFM core and 2D-DAFF shell. Additionally, the local distortion of lattice fringes was observed in hexagonal-shaped BiFeO3 nanocrystals with well-dispersed behavior. The electrical conduction properties agreed well with the space charge-limited conduction mechanism.
Duan, Jiahua; Chen, Runkun; Li, Jingcheng; Jin, Kuijuan; Sun, Zhigang; Chen, Jianing
2017-10-01
Interference-free hyperbolic phonon polaritons (HPPs) excited by natural wrinkles in a hexagonal boron nitride (hBN) microcrystal are reported both experimentally and theoretically. Although their geometries are off-resonant with the excitation wavelength, the wrinkles compensate for the large momentum mismatch between photon and phonon polariton, and launch the HPPs without interference. The spatial feature of wrinkles is about 200 nm, which is an order of magnitude smaller than resonant metal antennas at the same excitation wavelength. Compared with phonon polaritons launched by an atomic force microscopy tip, the phonon polaritons launched by wrinkles are interference-free, independent of the launcher geometry, and exhibit a smaller damping rate (γ ≈ 0.028). On the same hBN microcrystal, in situ nanoinfrared imaging of HPPs launched by different mechanisms is performed. In addition, the dispersion of HPPs is modified by changing the dielectric environments of hBN crystals. The wavelength of HPPs is compressed twofold when the substrate is changed from SiO 2 to gold. The findings provide insights into the intrinsic properties of hBN-HPPs and demonstrate a new way to launch and control polaritons in van der Waals materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nippe, Stefanie; General, Sascha
2011-09-15
Drospirenone (DRSP) is a contraceptive drug substance with challenging physicochemical properties, due to insufficient solubility in aqueous and oil-based vehicles as well as low chemical stability in aqueous fluids. Although it is one of the most popular orally used progestins, no parenteral long-acting contraceptive containing the drug substance is marketed. An oil-based DRSP microcrystal suspension (MCS) might be an attractive formulation option. The main focus of this study was to investigate the physicochemical stability of such preparations. Moreover, syringeability and injectability via autoinjector were analysed using a materials testing machine. A high chemical stability of DRSP was found in oil-based vehicles. Span(®) 83, cholesteryl oleate, lecithin, methyl cholate, Aerosil(®) R972 and 200 Pharma were tested for increasing the physical stability of DRSP dispersions. Changes in viscosity, rheological properties, and solubility were analysed. The intention was to show a stabilising effect of the excipients without increasing viscosity and solubility. To evaluate the physical stability of DRSP MCS with and without addition of stabilising agents, sedimentation and particle growth after storage were examined. Especially, the silica derivatives Aerosil(®) 200 and R972 Pharma influenced the physical stability positively. Copyright © 2011 Elsevier B.V. All rights reserved.
Cramer, Tobias; Travaglini, Lorenzo; Lai, Stefano; Patruno, Luca; de Miranda, Stefano; Bonfiglio, Annalisa; Cosseddu, Piero; Fraboni, Beatrice
2016-01-01
The development of new materials and devices for flexible electronics depends crucially on the understanding of how strain affects electronic material properties at the nano-scale. Scanning Kelvin-Probe Microscopy (SKPM) is a unique technique for nanoelectronic investigations as it combines non-invasive measurement of surface topography and surface electrical potential. Here we show that SKPM in non-contact mode is feasible on deformed flexible samples and allows to identify strain induced electronic defects. As an example we apply the technique to investigate the strain response of organic thin film transistors containing TIPS-pentacene patterned on polymer foils. Controlled surface strain is induced in the semiconducting layer by bending the transistor substrate. The amount of local strain is quantified by a mathematical model describing the bending mechanics. We find that the step-wise reduction of device performance at critical bending radii is caused by the formation of nano-cracks in the microcrystal morphology of the TIPS-pentacene film. The cracks are easily identified due to the abrupt variation in SKPM surface potential caused by a local increase in resistance. Importantly, the strong surface adhesion of microcrystals to the elastic dielectric allows to maintain a conductive path also after fracture thus providing the opportunity to attenuate strain effects. PMID:27910889
Polarized light scattering by macromolecular self-assembly of J-aggregates
NASA Astrophysics Data System (ADS)
Rebane, Aleksander; Mikhaylov, Alexander
2018-02-01
We have recently reported that by sending a tightly collimated (0.05 - 2 mm diameter) red- or near-IR laser beam through an aqueous solution of pseudoisocyanine (PIC) J-aggregates, a macroscopic tube-like structure is formed surrounding the laser beam on the time scale of minutes. This self-assembled structure is comprised of heterogeneous material containing micrometer-size rod-like strands or microcrystals. Because the illumination wavelength is far redshifted from the linear absorption range of the PIC and J-aggregates, the self-assembly is likely induced by some very weak background absorption or dissipation. Furthermore, strong correlation of the effect with the characteristic Jaggregate peak in the absorption spectrum and critical dependence of the "tube" formation on pH of the solution indicate molecular charge related non-equilibrium nature of the underlying mechanism. Most interestingly, the structure formation is accompanied by strongly polarized scattering. When observed between crossed polarizers, the angular intensity distribution of the scattered light resembles Maltese cross figure, indicating that the scattering rods are arranged in a circular pattern around the beam axis direction. It appears that the illumination is creating in the medium a radially directed gradient of either concentration-, temperature- or other type of parameter that controls the microcrystal formation.
Zhang, Diwei; Xu, Yan; Liu, Quanlin; Xia, Zhiguo
2018-04-16
The stability issue of organometallic halide perovskites remains a great challenge for future research as to their applicability in different functional material fields. Herein, a novel and facile two-step synthesis procedure is reported for encapsulation of CH 3 NH 3 PbBr 3 perovskite quantum dots (QDs) in MOF-5 microcrystals, where PbBr 2 and CH 3 NH 3 Br precursors are added stepwise to fabricate stable CH 3 NH 3 PbBr 3 @MOF-5 composites. In comparison to CH 3 NH 3 PbBr 3 QDs, CH 3 NH 3 PbBr 3 @MOF-5 composites exhibited highly improved water resistance and thermal stability, as well as better pH adaptability over a wide range. Luminescent investigations demonstrate that CH 3 NH 3 PbBr 3 @MOF-5 composites not only featured excellent sensing properties with respect to temperature changes from 30 to 230 °C but also exhibited significant selective luminescent response to several different metal ions in aqueous solution. These outstanding characteristics indicate that the stable CH 3 NH 3 PbBr 3 @MOF-5 composites are potentially interesting for application in fluorescence sensors or detectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshida, Koji; Baron, Alfred Q. R.; Uchiyama, Hiroshi
We investigated hydrated antifreeze protein type III (AFP III) powder with a hydration level h (=mass of water/mass of protein) of 0.4 in the temperature range between 180 K and 298 K using X-ray diffraction and inelastic X-ray scattering (IXS). The X-ray diffraction data showed smooth, largely monotonic changes between 180 K and 298 K without freezing water. Meanwhile, the collective dynamics observed by IXS showed a strong change in the sound velocity at 180 K, after being largely temperature independent at higher temperatures (298–220 K). We interpret this change in terms of the dynamic transition previously discussed using othermore » probes including THz IR absorption spectroscopy and incoherent elastic and quasi-elastic neutron scattering. This finding suggests that the dynamic transition of hydrated proteins is observable on the subpicosecond time scale as well as nano- and pico-second scales, both in collective dynamics from IXS and single particle dynamics from neutron scattering. Moreover, it is most likely that the dynamic transition of hydrated AFP III is not directly correlated with its hydration structure.« less
NASA Astrophysics Data System (ADS)
Yoshida, Koji; Baron, Alfred Q. R.; Uchiyama, Hiroshi; Tsutsui, Satoshi; Yamaguchi, Toshio
2016-04-01
We investigated hydrated antifreeze protein type III (AFP III) powder with a hydration level h (=mass of water/mass of protein) of 0.4 in the temperature range between 180 K and 298 K using X-ray diffraction and inelastic X-ray scattering (IXS). The X-ray diffraction data showed smooth, largely monotonic changes between 180 K and 298 K without freezing water. Meanwhile, the collective dynamics observed by IXS showed a strong change in the sound velocity at 180 K, after being largely temperature independent at higher temperatures (298-220 K). We interpret this change in terms of the dynamic transition previously discussed using other probes including THz IR absorption spectroscopy and incoherent elastic and quasi-elastic neutron scattering. This finding suggests that the dynamic transition of hydrated proteins is observable on the subpicosecond time scale as well as nano- and pico-second scales, both in collective dynamics from IXS and single particle dynamics from neutron scattering. Moreover, it is most likely that the dynamic transition of hydrated AFP III is not directly correlated with its hydration structure.
Yoshida, Koji; Baron, Alfred Q R; Uchiyama, Hiroshi; Tsutsui, Satoshi; Yamaguchi, Toshio
2016-04-07
We investigated hydrated antifreeze protein type III (AFP III) powder with a hydration level h (=mass of water/mass of protein) of 0.4 in the temperature range between 180 K and 298 K using X-ray diffraction and inelastic X-ray scattering (IXS). The X-ray diffraction data showed smooth, largely monotonic changes between 180 K and 298 K without freezing water. Meanwhile, the collective dynamics observed by IXS showed a strong change in the sound velocity at 180 K, after being largely temperature independent at higher temperatures (298-220 K). We interpret this change in terms of the dynamic transition previously discussed using other probes including THz IR absorption spectroscopy and incoherent elastic and quasi-elastic neutron scattering. This finding suggests that the dynamic transition of hydrated proteins is observable on the subpicosecond time scale as well as nano- and pico-second scales, both in collective dynamics from IXS and single particle dynamics from neutron scattering. Moreover, it is most likely that the dynamic transition of hydrated AFP III is not directly correlated with its hydration structure.
NASA Astrophysics Data System (ADS)
Illing, Gerd; Saenger, Wolfram; Heinemann, Udo
2000-06-01
The Protein Structure Factory will be established to characterize proteins encoded by human genes or cDNAs, which will be selected by criteria of potential structural novelty or medical or biotechnological usefulness. It represents an integrative approach to structure analysis combining bioinformatics techniques, automated gene expression and purification of gene products, generation of a biophysical fingerprint of the proteins and the determination of their three-dimensional structures either by NMR spectroscopy or by X-ray diffraction. The use of synchrotron radiation will be crucial to the Protein Structure Factory: high brilliance and tunable wavelengths are prerequisites for fast data collection, the use of small crystals and multiwavelength anomalous diffraction (MAD) phasing. With the opening of BESSY II, direct access to a third-generation XUV storage ring source with excellent conditions is available nearby. An insertion device with two MAD beamlines and one constant energy station will be set up until 2001.
Baba, Seiki; Hoshino, Takeshi; Ito, Len; Kumasaka, Takashi
2013-01-01
Protein crystals are fragile, and it is sometimes difficult to find conditions suitable for handling and cryocooling the crystals before conducting X-ray diffraction experiments. To overcome this issue, a protein crystal-mounting method has been developed that involves a water-soluble polymer and controlled humid air that can adjust the moisture content of a mounted crystal. By coating crystals with polymer glue and exposing them to controlled humid air, the crystals were stable at room temperature and were cryocooled under optimized humidity. Moreover, the glue-coated crystals reproducibly showed gradual transformations of their lattice constants in response to a change in humidity; thus, using this method, a series of isomorphous crystals can be prepared. This technique is valuable when working on fragile protein crystals, including membrane proteins, and will also be useful for multi-crystal data collection. PMID:23999307
Aikawa, Yoshiki; Kida, Hiroshi; Nishitani, Yuichi; Miki, Kunio
2015-09-01
Proper protein folding is an essential process for all organisms. Prefoldin (PFD) is a molecular chaperone that assists protein folding by delivering non-native proteins to group II chaperonin. A heterohexamer of eukaryotic PFD has been shown to specifically recognize and deliver non-native actin and tubulin to chaperonin-containing TCP-1 (CCT), but the mechanism of specific recognition is still unclear. To determine its crystal structure, recombinant human PFD was reconstituted, purified and crystallized. X-ray diffraction data were collected to 4.7 Å resolution. The crystals belonged to space group P21212, with unit-cell parameters a = 123.2, b = 152.4, c = 105.9 Å.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subburaman, P.; Austin, B.P.; Shaw, G.X.
2010-11-03
Francisella tularensis, a potential bioweapon, causes a rare infectious disease called tularemia in humans and animals. The macrophage growth locus A (MglA) protein from F. tularensis associates with RNA polymerase to positively regulate the expression of multiple virulence factors that are required for its survival and replication within macrophages. The MglA protein was overproduced in Escherichia coli, purified and crystallized. The crystals diffracted to 7.5 {angstrom} resolution at the Advanced Photon Source, Argonne National Laboratory and belonged to the hexagonal space group P6{sub 1} or P6{sub 5}, with unit-cell parameters a = b = 125, c = 54 {angstrom}.
Crystallization of Proteins from Crude Bovine Rod Outer Segments☆
Baker, Bo Y.; Gulati, Sahil; Shi, Wuxian; Wang, Benlian; Stewart, Phoebe L.; Palczewski, Krzysztof
2015-01-01
Obtaining protein crystals suitable for X-ray diffraction studies comprises the greatest challenge in the determination of protein crystal structures, especially for membrane proteins and protein complexes. Although high purity has been broadly accepted as one of the most significant requirements for protein crystallization, a recent study of the Escherichia coli proteome showed that many proteins have an inherent propensity to crystallize and do not require a highly homogeneous sample (Totir et al., 2012). As exemplified by RPE65 (Kiser, Golczak, Lodowski, Chance, & Palczewski, 2009), there also are cases of mammalian proteins crystallized from less purified samples. To test whether this phenomenon can be applied more broadly to the study of proteins from higher organisms, we investigated the protein crystallization profile of bovine rod outer segment (ROS) crude extracts. Interestingly, multiple protein crystals readily formed from such extracts, some of them diffracting to high resolution that allowed structural determination. A total of seven proteins were crystallized, one of which was a membrane protein. Successful crystallization of proteins from heterogeneous ROS extracts demonstrates that many mammalian proteins also have an intrinsic propensity to crystallize from complex biological mixtures. By providing an alternative approach to heterologous expression to achieve crystallization, this strategy could be useful for proteins and complexes that are difficult to purify or obtain by recombinant techniques. PMID:25950977
High-throughput crystallization screening.
Skarina, Tatiana; Xu, Xiaohui; Evdokimova, Elena; Savchenko, Alexei
2014-01-01
Protein structure determination by X-ray crystallography is dependent on obtaining a single protein crystal suitable for diffraction data collection. Due to this requirement, protein crystallization represents a key step in protein structure determination. The conditions for protein crystallization have to be determined empirically for each protein, making this step also a bottleneck in the structure determination process. Typical protein crystallization practice involves parallel setup and monitoring of a considerable number of individual protein crystallization experiments (also called crystallization trials). In these trials the aliquots of purified protein are mixed with a range of solutions composed of a precipitating agent, buffer, and sometimes an additive that have been previously successful in prompting protein crystallization. The individual chemical conditions in which a particular protein shows signs of crystallization are used as a starting point for further crystallization experiments. The goal is optimizing the formation of individual protein crystals of sufficient size and quality to make them suitable for diffraction data collection. Thus the composition of the primary crystallization screen is critical for successful crystallization.Systematic analysis of crystallization experiments carried out on several hundred proteins as part of large-scale structural genomics efforts allowed the optimization of the protein crystallization protocol and identification of a minimal set of 96 crystallization solutions (the "TRAP" screen) that, in our experience, led to crystallization of the maximum number of proteins.
Bolze, J; Pontoni, D; Ballauff, M; Narayanan, T; Cölfen, H
2004-09-01
The effect of a double hydrophilic block-copolymer additive (made of polyaspartic acid and polyethyleneglycol, pAsp(10)-b-PEG(110)) on the initial formation of calcium carbonate from a supersaturated salt solution has been studied in situ by means of time-resolved synchrotron small-angle X-ray scattering (SAXS). A stopped-flow cell was used for rapidly mixing the 20 mM aqueous reactant solutions of calcium chloride and sodium carbonate. In reference measurements without polymer additive the very rapid formation of primary, overall spherical CaCO(3) particles with a radius of ca. 19 nm and a size polydispersity of ca. 26% was observed within the first 10 ms after mixing. A subsequent, very rapid aggregation of these primary particles was evidenced by a distinct upturn of the SAXS intensity at smallest angles. During the aggregation process the size of the primary particles remained unchanged. From an analysis of the absolute scattering intensity the mass density of these particles was determined to 1.9 g/cm(3). From this rather low density it is concluded that those precursor particles are amorphous, which has been confirmed by simultaneous wide-angle X-ray diffraction measurements. Upon adding 200 pm of the block-copolymer no influence on the size, the size polydispersity and morphology of the primary particles, nor on the kinetics of their formation and growth, was found. On the other hand, the subsequent aggregation and precipitation process is considerably slowed down by the additive and smaller aggregates result. The crystalline morphology of the sediment was studied in situ by WAXS ca. 50 min after mixing the reactants. Several diffraction rings could be detected, which indicate that a transformation of the metastable, amorphous precursor particles to randomly oriented vaterite nanocrystallites has taken place. In addition, a few isolated Bragg spots of high intensity were detected, which are attributed to individual, oriented calcite microcrystals that nucleated at the wall of the capillary.
X-ray Diffraction from Membrane Protein Nanocrystals
Hunter, M.S.; DePonte, D.P.; Shapiro, D.A.; Kirian, R.A.; Wang, X.; Starodub, D.; Marchesini, S.; Weierstall, U.; Doak, R.B.; Spence, J.C.H.; Fromme, P.
2011-01-01
Membrane proteins constitute >30% of the proteins in an average cell, and yet the number of currently known structures of unique membrane proteins is <300. To develop new concepts for membrane protein structure determination, we have explored the serial nanocrystallography method, in which fully hydrated protein nanocrystals are delivered to an x-ray beam within a liquid jet at room temperature. As a model system, we have collected x-ray powder diffraction data from the integral membrane protein Photosystem I, which consists of 36 subunits and 381 cofactors. Data were collected from crystals ranging in size from 100 nm to 2 μm. The results demonstrate that there are membrane protein crystals that contain <100 unit cells (200 total molecules) and that 3D crystals of membrane proteins, which contain <200 molecules, may be suitable for structural investigation. Serial nanocrystallography overcomes the problem of x-ray damage, which is currently one of the major limitations for x-ray structure determination of small crystals. By combining serial nanocrystallography with x-ray free-electron laser sources in the future, it may be possible to produce molecular-resolution electron-density maps using membrane protein crystals that contain only a few hundred or thousand unit cells. PMID:21190672
NASA Astrophysics Data System (ADS)
Schulz, G. E.; Dreyer, M.; Klein, C.; Kreusch, A.; Mittl, P.; Mu¨ller, C. W.; Mu¨ller-Dieckmann, J.; Muller, Y. A.; Proba, K.; Schlauderer, G.; Spu¨rgin, P.; Stehle, T.; Weiss, M. S.
1992-08-01
Preparation and crystallization procedures as well as crystal properties are reported for 12 proteins plus numerous site-directed mutants. The proteins are: the integral membrane protein porin from Rhodobacter capsulatus which diffracts to at least 1.8A˚resolution, porin from Rhodopseudomonas blastica which diffracts to at least 2.0A˚resolution, adenylate kinase from yeast and mutants, adenylate kinase from Escherichia coli and mutants, bovine liver mitochondrial adenylate kinase, guanylate kinase from yeast, uridylate kinase from yeast, glutathione reductase from E. coli and mutants, NADH peroxidase from Streptococcus faecalis containing a sulfenic acid as redox-center, pyruvate oxidase from Lactobacillus plantarum containing FAD and TPP, cyclodextrin glycosyltransferase from Bacillus circulans and mutants, and a fuculose aldolase from E. coli.
Salvage of failed protein targets by reductive alkylation.
Tan, Kemin; Kim, Youngchang; Hatzos-Skintges, Catherine; Chang, Changsoo; Cuff, Marianne; Chhor, Gekleng; Osipiuk, Jerzy; Michalska, Karolina; Nocek, Boguslaw; An, Hao; Babnigg, Gyorgy; Bigelow, Lance; Joachimiak, Grazyna; Li, Hui; Mack, Jamey; Makowska-Grzyska, Magdalena; Maltseva, Natalia; Mulligan, Rory; Tesar, Christine; Zhou, Min; Joachimiak, Andrzej
2014-01-01
The growth of diffraction-quality single crystals is of primary importance in protein X-ray crystallography. Chemical modification of proteins can alter their surface properties and crystallization behavior. The Midwest Center for Structural Genomics (MCSG) has previously reported how reductive methylation of lysine residues in proteins can improve crystallization of unique proteins that initially failed to produce diffraction-quality crystals. Recently, this approach has been expanded to include ethylation and isopropylation in the MCSG protein crystallization pipeline. Applying standard methods, 180 unique proteins were alkylated and screened using standard crystallization procedures. Crystal structures of 12 new proteins were determined, including the first ethylated and the first isopropylated protein structures. In a few cases, the structures of native and methylated or ethylated states were obtained and the impact of reductive alkylation of lysine residues was assessed. Reductive methylation tends to be more efficient and produces the most alkylated protein structures. Structures of methylated proteins typically have higher resolution limits. A number of well-ordered alkylated lysine residues have been identified, which make both intermolecular and intramolecular contacts. The previous report is updated and complemented with the following new data; a description of a detailed alkylation protocol with results, structural features, and roles of alkylated lysine residues in protein crystals. These contribute to improved crystallization properties of some proteins.
Salvage of Failed Protein Targets by Reductive Alkylation
Tan, Kemin; Kim, Youngchang; Hatzos-Skintges, Catherine; Chang, Changsoo; Cuff, Marianne; Chhor, Gekleng; Osipiuk, Jerzy; Michalska, Karolina; Nocek, Boguslaw; An, Hao; Babnigg, Gyorgy; Bigelow, Lance; Joachimiak, Grazyna; Li, Hui; Mack, Jamey; Makowska-Grzyska, Magdalena; Maltseva, Natalia; Mulligan, Rory; Tesar, Christine; Zhou, Min; Joachimiak, Andrzej
2014-01-01
The growth of diffraction-quality single crystals is of primary importance in protein X-ray crystallography. Chemical modification of proteins can alter their surface properties and crystallization behavior. The Midwest Center for Structural Genomics (MCSG) has previously reported how reductive methylation of lysine residues in proteins can improve crystallization of unique proteins that initially failed to produce diffraction-quality crystals. Recently, this approach has been expanded to include ethylation and isopropylation in the MCSG protein crystallization pipeline. Applying standard methods, 180 unique proteins were alkylated and screened using standard crystallization procedures. Crystal structures of 12 new proteins were determined, including the first ethylated and the first isopropylated protein structures. In a few cases, the structures of native and methylated or ethylated states were obtained and the impact of reductive alkylation of lysine residues was assessed. Reductive methylation tends to be more efficient and produces the most alkylated protein structures. Structures of methylated proteins typically have higher resolution limits. A number of well-ordered alkylated lysine residues have been identified, which make both intermolecular and intramolecular contacts. The previous report is updated and complemented with the following new data; a description of a detailed alkylation protocol with results, structural features, and roles of alkylated lysine residues in protein crystals. These contribute to improved crystallization properties of some proteins. PMID:24590719
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allaire, Marc, E-mail: allaire@bnl.gov; Moiseeva, Natalia; Botez, Cristian E.
The correlation coefficients calculated between raw powder diffraction profiles can be used to identify ligand-bound/unbound states of lysozyme. The discovery of ligands that bind specifically to a targeted protein benefits from the development of generic assays for high-throughput screening of a library of chemicals. Protein powder diffraction (PPD) has been proposed as a potential method for use as a structure-based assay for high-throughput screening applications. Building on this effort, powder samples of bound/unbound states of soluble hen-egg white lysozyme precipitated with sodium chloride were compared. The correlation coefficients calculated between the raw diffraction profiles were consistent with the known bindingmore » properties of the ligands and suggested that the PPD approach can be used even prior to a full description using stereochemically restrained Rietveld refinement.« less
Heymann, Michael; Opthalage, Achini; Wierman, Jennifer L.; Akella, Sathish; Szebenyi, Doletha M. E.; Gruner, Sol M.; Fraden, Seth
2014-01-01
An emulsion-based serial crystallographic technology has been developed, in which nanolitre-sized droplets of protein solution are encapsulated in oil and stabilized by surfactant. Once the first crystal in a drop is nucleated, the small volume generates a negative feedback mechanism that lowers the supersaturation. This mechanism is exploited to produce one crystal per drop. Diffraction data are measured, one crystal at a time, from a series of room-temperature crystals stored on an X-ray semi-transparent microfluidic chip, and a 93% complete data set is obtained by merging single diffraction frames taken from different unoriented crystals. As proof of concept, the structure of glucose isomerase was solved to 2.1 Å, demonstrating the feasibility of high-throughput serial X-ray crystallography using synchrotron radiation. PMID:25295176
Zakharov, Boris; Fisyuk, Alexander; Fitch, Andy; Watier, Yves; Kostyuchenko, Anastasia; Varshney, Dushyant; Sztucki, Michael; Boldyreva, Elena; Shalaev, Evgenyi
2016-07-01
Ice formation and recrystallization is a key phenomenon in freezing and freeze-drying of pharmaceuticals and biopharmaceuticals. In this investigation, high-resolution synchrotron X-ray diffraction is used to quantify the extent of disorder of ice crystals in binary aqueous solutions of a cryoprotectant (sorbitol) and a protein, bovine serum albumin. Ice crystals in more dilute (10 wt%) solutions have lower level of microstrain and larger crystal domain size than these in more concentrated (40 wt%) solutions. Warming the sorbitol-water mixtures from 100 to 228 K resulted in partial ice melting, with simultaneous reduction in the microstrain and increase in crystallite size, that is, recrystallization. In contrast to sorbitol solutions, ice crystals in the BSA solutions preserved both the microstrain and smaller crystallite size on partial melting, demonstrating that BSA inhibits ice recrystallization. The results are consistent with BSA partitioning into quasi-liquid layer on ice crystals but not with a direct protein-ice interaction and protein sorption on ice surface. The study shows for the first time that a common (i.e., not-antifreeze) protein can have a major impact on ice recrystallization and also presents synchrotron X-ray diffraction as a unique tool for quantification of crystallinity and disorder in frozen aqueous systems. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shu, F.; Ramakrishnan, V.; Schoenborn, B.P.
1994-12-31
Neutron diffraction has become one of the best ways to study light atoms, such as hydrogens. Hydrogen however has a negative coherent scattering factor, and a large incoherent scattering factor, while deuterium has virtually no incoherent scattering, but a large positive coherent scattering factor. Beside causing high background due to its incoherent scattering, the negative coherent scattering of hydrogen tends to cancel out the positive contribution from other atoms in a neutron density map. Therefore a fully deuterated sample will yield better diffraction data with stronger density in the hydrogen position. On this basis, a sperm whale myoglobin gene modifiedmore » to include part of the A cII protein gene has been cloned into the T7 expression system. Milligram amounts of fully deuterated holo-myoglobin have been obtained and used for crystallization. The synthetic sperm whale myoglobin crystallized in P2{sub 1} space group isomorphous with the native protein crystal. A complete X-ray diffraction dataset at 1.5{Angstrom} has been collected. This X-ray dataset, and a neutron data set collected previously on a protonated carbon-monoxymyoglobin crystal have been used for solvent structure studies. Both X-ray and neutron data have shown that there are ordered hydration layers around the protein surface. Solvent shell analysis on the neutron data further has shown that the first hydration layer behaves differently around polar and apolar regions of the protein surface. Finally, the structure of per-deuterated myoglobin has been refined using all reflections to a R factor of 17%.« less
Development of Ultra Long Duration Local Anesthetic Agents in a Rat Model
1994-02-24
this formulation is not toxic to the spinal cord. Initial trials with lecithin-coated bupivacaine microcrystals indic,-.. that this preparation also has...an ultra long duration local anesthetic effect, producing a 43 hour block in the rat tail. Clinical trials of this preparation in a human model are...l f _ _ _ Memorandum for LTC Dean E. Calcagni, M.D. Director, Combat Casualty Research Program USAMRDC Subject: Annual Report for Clinical
2008-01-01
Sevillano, et. al . directly developed a definition of the single-slip glide-resistance correlation length, 10//5.8 o , from 2d simulations of single...dislocation percolation through point-obstacle fields [35, 36]. Subsequently, predictions for the size- dependence of * from Gil Sevillano, et. al ...Sevillano, et. al ., and microcrystal deformation experiments was perhaps fortuitous, significant merit remains within their treatment. The more general
2016 International Workshop on Nitride Semiconductors (IWN 2016)
2017-01-01
Doping Structure & Photoluminescence Properties of Flower-Like Spiral AIN Micro-Crystal Array Thermal Conductivity of Bulk AIN Direct Determination of...5.03 Optical and Electronic Properties HVPE GaN Wafers with Improved Crystallinity 5:00pm Michael Slomski 01.5.04 Thermal Conductivity of Bulk GaN...Broad-Band Emission Effect of lnter1ayers on the Vertical Electrical Conductivity of Si-Doped AIN/GaN DBRs Grown by PA-MBE Thermal Analys is of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Jianzhao; Wu, Zhonghua; Hu, Gang
Selection of proper targets for the X-ray crystallography will benefit biological research community immensely. Several computational models were proposed to predict propensity of successful protein production and diffraction quality crystallization from protein sequences. We reviewed a comprehensive collection of 22 such predictors that were developed in the last decade. We found that almost all of these models are easily accessible as webservers and/or standalone software and we demonstrated that some of them are widely used by the research community. We empirically evaluated and compared the predictive performance of seven representative methods. The analysis suggests that these methods produce quite accuratemore » propensities for the diffraction-quality crystallization. We also summarized results of the first study of the relation between these predictive propensities and the resolution of the crystallizable proteins. We found that the propensities predicted by several methods are significantly higher for proteins that have high resolution structures compared to those with the low resolution structures. Moreover, we tested a new meta-predictor, MetaXXC, which averages the propensities generated by the three most accurate predictors of the diffraction-quality crystallization. MetaXXC generates putative values of resolution that have modest levels of correlation with the experimental resolutions and it offers the lowest mean absolute error when compared to the seven considered methods. We conclude that protein sequences can be used to fairly accurately predict whether their corresponding protein structures can be solved using X-ray crystallography. Moreover, we also ascertain that sequences can be used to reasonably well predict the resolution of the resulting protein crystals.« less
Aikawa, Yoshiki; Kida, Hiroshi; Nishitani, Yuichi; Miki, Kunio
2015-01-01
Proper protein folding is an essential process for all organisms. Prefoldin (PFD) is a molecular chaperone that assists protein folding by delivering non-native proteins to group II chaperonin. A heterohexamer of eukaryotic PFD has been shown to specifically recognize and deliver non-native actin and tubulin to chaperonin-containing TCP-1 (CCT), but the mechanism of specific recognition is still unclear. To determine its crystal structure, recombinant human PFD was reconstituted, purified and crystallized. X-ray diffraction data were collected to 4.7 Å resolution. The crystals belonged to space group P21212, with unit-cell parameters a = 123.2, b = 152.4, c = 105.9 Å. PMID:26323306
Laguerre, Aisha; Wielens, Jerome; Parker, Michael W.; Porter, Christopher J. H.; Scanlon, Martin J.
2011-01-01
Fatty-acid binding proteins (FABPs) are abundantly expressed proteins that bind a range of lipophilic molecules. They have been implicated in the import and intracellular distribution of their ligands and have been linked with metabolic and inflammatory responses in the cells in which they are expressed. Despite their high sequence identity, human intestinal FABP (hIFABP) and rat intestinal FABP (rIFABP) bind some ligands with different affinities. In order to address the structural basis of this differential binding, diffraction-quality crystals have been obtained of hIFABP and rIFABP in complex with the fluorescent fatty-acid analogue 11-(dansylamino)undecanoic acid. PMID:21301109
Casadei, Cecilia M.; Tsai, Ching-Ju; Barty, Anton; ...
2018-01-01
Previous proof-of-concept measurements on single-layer two-dimensional membrane-protein crystals performed at X-ray free-electron lasers (FELs) have demonstrated that the collection of meaningful diffraction patterns, which is not possible at synchrotrons because of radiation-damage issues, is feasible. Here, the results obtained from the analysis of a thousand single-shot, room-temperature X-ray FEL diffraction images from two-dimensional crystals of a bacteriorhodopsin mutant are reported in detail. The high redundancy in the measurements boosts the intensity signal-to-noise ratio, so that the values of the diffracted intensities can be reliably determined down to the detector-edge resolution of 4 Å. The results show that two-dimensional serial crystallography atmore » X-ray FELs is a suitable method to study membrane proteins to near-atomic length scales at ambient temperature. The method presented here can be extended to pump–probe studies of optically triggered structural changes on submillisecond timescales in two-dimensional crystals, which allow functionally relevant large-scale motions that may be quenched in three-dimensional crystals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casadei, Cecilia M.; Tsai, Ching-Ju; Barty, Anton
Previous proof-of-concept measurements on single-layer two-dimensional membrane-protein crystals performed at X-ray free-electron lasers (FELs) have demonstrated that the collection of meaningful diffraction patterns, which is not possible at synchrotrons because of radiation-damage issues, is feasible. Here, the results obtained from the analysis of a thousand single-shot, room-temperature X-ray FEL diffraction images from two-dimensional crystals of a bacteriorhodopsin mutant are reported in detail. The high redundancy in the measurements boosts the intensity signal-to-noise ratio, so that the values of the diffracted intensities can be reliably determined down to the detector-edge resolution of 4 Å. The results show that two-dimensional serial crystallography atmore » X-ray FELs is a suitable method to study membrane proteins to near-atomic length scales at ambient temperature. The method presented here can be extended to pump–probe studies of optically triggered structural changes on submillisecond timescales in two-dimensional crystals, which allow functionally relevant large-scale motions that may be quenched in three-dimensional crystals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yap, Thai Leong; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551; Chen, Yen Liang
Crystals of the RNA-dependent RNA polymerase catalytic domain from the dengue virus NS5 protein have been obtained using a strategy that included expression screening of naturally occurring serotype variants of the protein, the addition of divalent metal ions and crystal dehydration. These crystals diffract to 1.85 Å resolution and are thus suitable for a structure-based drug-design program. Dengue virus, a member of the Flaviviridae genus, causes dengue fever, an important emerging disease with several million infections occurring annually for which no effective therapy exists. The viral RNA-dependent RNA polymerase NS5 plays an important role in virus replication and represents anmore » interesting target for the development of specific antiviral compounds. Crystals that diffract to 1.85 Å resolution that are suitable for three-dimensional structure determination and thus for a structure-based drug-design program have been obtained using a strategy that included expression screening of naturally occurring serotype variants of the protein, the addition of divalent metal ions and crystal dehydration.« less
ERIC Educational Resources Information Center
Poeylaut-Palena, Andres, A.; de los Angeles Laborde, Maria
2013-01-01
A learning module for molecular level analysis of protein structure and ligand/drug interaction through the visualization of X-ray diffraction is presented. Using DeepView as molecular model visualization software, students learn about the general concepts of protein structure. This Biochemistry classroom exercise is designed to be carried out by…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pareja-Rivera, Carina; Cuéllar-Cruz, Mayra; Esturau-Escofet, Nuria
Here, in this contribution we use nonconventional methods that help to increase the success rate of a protein crystal growth, and consequently of structural projects using X-ray diffraction techniques. In order to achieve this purpose, this contribution presents new approaches involving more sophisticated techniques of protein crystallization, not just for growing protein crystals of different sizes by using electric fields, but also for controlling crystal size and orientation. Also, this latter was possible through the use of magnetic fields that allow to obtain protein crystals suitable for both high-resolution X-ray and neutron diffraction crystallography where big crystals are required. Thismore » contribution discusses some pros, cons and realities of the role of electromagnetic fields in protein crystallization research, and their effect on protein crystal contacts. Additionally, we discuss the importance of room and low temperatures during data collection. Finally, we also discuss the effect of applying a rather strong magnetic field of 16.5 T, for shorts and long periods of time, on protein crystal growth, and on the 3D structure of two model proteins.« less
Pareja-Rivera, Carina; Cuéllar-Cruz, Mayra; Esturau-Escofet, Nuria; ...
2016-12-05
Here, in this contribution we use nonconventional methods that help to increase the success rate of a protein crystal growth, and consequently of structural projects using X-ray diffraction techniques. In order to achieve this purpose, this contribution presents new approaches involving more sophisticated techniques of protein crystallization, not just for growing protein crystals of different sizes by using electric fields, but also for controlling crystal size and orientation. Also, this latter was possible through the use of magnetic fields that allow to obtain protein crystals suitable for both high-resolution X-ray and neutron diffraction crystallography where big crystals are required. Thismore » contribution discusses some pros, cons and realities of the role of electromagnetic fields in protein crystallization research, and their effect on protein crystal contacts. Additionally, we discuss the importance of room and low temperatures during data collection. Finally, we also discuss the effect of applying a rather strong magnetic field of 16.5 T, for shorts and long periods of time, on protein crystal growth, and on the 3D structure of two model proteins.« less
Zipper, Lauren E.; Aristide, Xavier; Bishop, Dylan P.; Joshi, Ishita; Kharzeev, Julia; Patel, Krishna B.; Santiago, Brianna M.; Joshi, Karan; Dorsinvil, Kahille; Sweet, Robert M.; Soares, Alexei S.
2014-01-01
A method is described for using plate lids to reduce evaporation in low-volume vapor-diffusion crystallization experiments. The plate lids contain apertures through which the protein and precipitants were added to different crystallization microplates (the reservoir was filled before fitting the lids). Plate lids were designed for each of these commonly used crystallization microplates. This system minimizes the dehydration of crystallization droplets containing just a few nanolitres of protein and precipitant, and results in more reproducible diffraction from the crystals. For each lid design, changes in the weight of the plates were used to deduce the rate of evaporation under different conditions of temperature, air movement, droplet size and precipitant. For comparison, the state of dehydration was also visually assessed throughout the experiment. Finally, X-ray diffraction methods were used to compare the diffraction of protein crystals that were conventionally prepared against those that were prepared on plates with plate lids. The measurements revealed that the plate lids reduced the rate of evaporation by 63–82%. Crystals grown in 5 nl drops that were set up with plate lids diffracted to higher resolution than similar crystals from drops that were set up without plate lids. The results demonstrate that plate lids can be instrumental for improving few-nanolitre crystallizations. PMID:25484231
Zipper, Lauren E.; Aristide, Xavier; Bishop, Dylan P.; ...
2014-11-28
A method is described for using plate lids to reduce evaporation in low-volume vapor-diffusion crystallization experiments. The plate lids contain apertures through which the protein and precipitants were added to different crystallization microplates (the reservoir was filled before fitting the lids). Plate lids were designed for each of these commonly used crystallization microplates. This system minimizes the dehydration of crystallization droplets containing just a few nanolitres of protein and precipitant, and results in more reproducible diffraction from the crystals. For each lid design, changes in the weight of the plates were used to deduce the rate of evaporation under differentmore » conditions of temperature, air movement, droplet size and precipitant. For comparison, the state of dehydration was also visually assessed throughout the experiment. Finally, X-ray diffraction methods were used to compare the diffraction of protein crystals that were conventionally prepared against those that were prepared on plates with plate lids. The measurements revealed that the plate lids reduced the rate of evaporation by 63–82%. Crystals grown in 5 nl drops that were set up with plate lids diffracted to higher resolution than similar crystals from drops that were set up without plate lids. Ultimately, the results demonstrate that plate lids can be instrumental for improving few-nanolitre crystallizations.« less
Femtosecond X-ray protein nanocrystallography
Chapman, Henry N.; Fromme, Petra; Barty, Anton; White, Thomas A.; Kirian, Richard A.; Aquila, Andrew; Hunter, Mark S.; Schulz, Joachim; DePonte, Daniel P.; Weierstall, Uwe; Doak, R. Bruce; Maia, Filipe R. N. C.; Martin, Andrew V.; Schlichting, Ilme; Lomb, Lukas; Coppola, Nicola; Shoeman, Robert L.; Epp, Sascha W.; Hartmann, Robert; Rolles, Daniel; Rudenko, Artem; Foucar, Lutz; Kimmel, Nils; Weidenspointner, Georg; Holl, Peter; Liang, Mengning; Barthelmess, Miriam; Caleman, Carl; Boutet, Sébastien; Bogan, Michael J.; Krzywinski, Jacek; Bostedt, Christoph; Bajt, Saša; Gumprecht, Lars; Rudek, Benedikt; Erk, Benjamin; Schmidt, Carlo; Hömke, André; Reich, Christian; Pietschner, Daniel; Strüder, Lothar; Hauser, Günter; Gorke, Hubert; Ullrich, Joachim; Herrmann, Sven; Schaller, Gerhard; Schopper, Florian; Soltau, Heike; Kühnel, Kai-Uwe; Messerschmidt, Marc; Bozek, John D.; Hau-Riege, Stefan P.; Frank, Matthias; Hampton, Christina Y.; Sierra, Raymond G.; Starodub, Dmitri; Williams, Garth J.; Hajdu, Janos; Timneanu, Nicusor; Seibert, M. Marvin; Andreasson, Jakob; Rocker, Andrea; Jönsson, Olof; Svenda, Martin; Stern, Stephan; Nass, Karol; Andritschke, Robert; Schröter, Claus-Dieter; Krasniqi, Faton; Bott, Mario; Schmidt, Kevin E.; Wang, Xiaoyu; Grotjohann, Ingo; Holton, James M.; Barends, Thomas R. M.; Neutze, Richard; Marchesini, Stefano; Fromme, Raimund; Schorb, Sebastian; Rupp, Daniela; Adolph, Marcus; Gorkhover, Tais; Andersson, Inger; Hirsemann, Helmut; Potdevin, Guillaume; Graafsma, Heinz; Nilsson, Björn; Spence, John C. H.
2012-01-01
X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded1-3. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction ‘snapshots’ are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source4. We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes5. More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals (~200 nm to 2 μm in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes6. This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage. PMID:21293373
Spectral X-Ray Diffraction using a 6 Megapixel Photon Counting Array Detector.
Muir, Ryan D; Pogranichniy, Nicholas R; Muir, J Lewis; Sullivan, Shane Z; Battaile, Kevin P; Mulichak, Anne M; Toth, Scott J; Keefe, Lisa J; Simpson, Garth J
2015-03-12
Pixel-array array detectors allow single-photon counting to be performed on a massively parallel scale, with several million counting circuits and detectors in the array. Because the number of photoelectrons produced at the detector surface depends on the photon energy, these detectors offer the possibility of spectral imaging. In this work, a statistical model of the instrument response is used to calibrate the detector on a per-pixel basis. In turn, the calibrated sensor was used to perform separation of dual-energy diffraction measurements into two monochromatic images. Targeting applications include multi-wavelength diffraction to aid in protein structure determination and X-ray diffraction imaging.
Spectral x-ray diffraction using a 6 megapixel photon counting array detector
NASA Astrophysics Data System (ADS)
Muir, Ryan D.; Pogranichniy, Nicholas R.; Muir, J. Lewis; Sullivan, Shane Z.; Battaile, Kevin P.; Mulichak, Anne M.; Toth, Scott J.; Keefe, Lisa J.; Simpson, Garth J.
2015-03-01
Pixel-array array detectors allow single-photon counting to be performed on a massively parallel scale, with several million counting circuits and detectors in the array. Because the number of photoelectrons produced at the detector surface depends on the photon energy, these detectors offer the possibility of spectral imaging. In this work, a statistical model of the instrument response is used to calibrate the detector on a per-pixel basis. In turn, the calibrated sensor was used to perform separation of dual-energy diffraction measurements into two monochromatic images. Targeting applications include multi-wavelength diffraction to aid in protein structure determination and X-ray diffraction imaging.
Super-resolution biomolecular crystallography with low-resolution data.
Schröder, Gunnar F; Levitt, Michael; Brunger, Axel T
2010-04-22
X-ray diffraction plays a pivotal role in the understanding of biological systems by revealing atomic structures of proteins, nucleic acids and their complexes, with much recent interest in very large assemblies like the ribosome. As crystals of such large assemblies often diffract weakly (resolution worse than 4 A), we need methods that work at such low resolution. In macromolecular assemblies, some of the components may be known at high resolution, whereas others are unknown: current refinement methods fail as they require a high-resolution starting structure for the entire complex. Determining the structure of such complexes, which are often of key biological importance, should be possible in principle as the number of independent diffraction intensities at a resolution better than 5 A generally exceeds the number of degrees of freedom. Here we introduce a method that adds specific information from known homologous structures but allows global and local deformations of these homology models. Our approach uses the observation that local protein structure tends to be conserved as sequence and function evolve. Cross-validation with R(free) (the free R-factor) determines the optimum deformation and influence of the homology model. For test cases at 3.5-5 A resolution with known structures at high resolution, our method gives significant improvements over conventional refinement in the model as monitored by coordinate accuracy, the definition of secondary structure and the quality of electron density maps. For re-refinements of a representative set of 19 low-resolution crystal structures from the Protein Data Bank, we find similar improvements. Thus, a structure derived from low-resolution diffraction data can have quality similar to a high-resolution structure. Our method is applicable to the study of weakly diffracting crystals using X-ray micro-diffraction as well as data from new X-ray light sources. Use of homology information is not restricted to X-ray crystallography and cryo-electron microscopy: as optical imaging advances to subnanometre resolution, it can use similar tools.
Lung biodurability and free radical production of cellulose nanomaterials
Stefaniak, Aleksandr B.; Seehra, Mohindar S.; Fix, Natalie R.; Leonard, Stephen S.
2015-01-01
The potential applications of cellulose nanomaterials in advanced composites and biomedicine makes it imperative to understand their pulmonary exposure to human health. Here, we report the results on the biodurability of three cellulose nanocrystal (CNC), two cellulose nanofibril (CNF) and a benchmark cellulose microcrystal (CMC) when exposed to artificial lung airway lining fluid (SUF, pH 7.3) for up to 7 days and alveolar macrophage phagolysosomal fluid (PSF, pH 4.5) for up to 9 months. X-ray diffraction analysis was used to monitor biodurability and thermogravimetry, surface area, hydrodynamic diameter, zeta potential and free radical generation capacity of the samples were determined (in vitro cell-free and RAW 264.7 cell line models). The CMC showed no measurable changes in crystallinity (xCR) or crystallite size D in either SUF or PSF. For one CNC, a slight decrease in xCR and D in SUF was observed. In acidic PSF, a slight increase in xCR with exposure time was observed, possibly due to dissolution of the amorphous component. In a cell-free reaction with H2O2, radicals were observed; the CNCs and a CNF generated significantly more ●OH radicals than the CMC (p<0.05). The ●OH radical production correlates with particle decomposition temperature and is explained by the higher surface area to volume ratio of the CNCs. Based on their biodurability, mechanical clearance would be the primary mechanism for lung clearance of cellulose materials. The production of ●OH radicals indicates the need for additional studies to characterize the potential inhalation hazards of cellulose. PMID:25265049
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sato, Keiichiro, E-mail: Sato_Keiichiro@takeda.co.jp; Awasaki, Yasuyuki; Kandori, Hitoshi
Pioglitazone hydrochloride (PIO), a peroxisome proliferator-activated receptor gamma (PPAR{gamma}) agonist, was administered orally for 85 weeks at 16 mg/kg/day to male rats fed either a diet containing 1.5% ammonium chloride (acid-forming diet) or a control diet to investigate the effects of urinary acidification induced by the acid-forming diet on the tumorigenic potential of PIO in the urinary bladder. The surviving animals at the end of the administration period were followed to the end of the 2-year study period without changes in the diet and were subjected to terminal necropsy on Week 104. The number of urinary microcrystals, evaluated by manualmore » counting with light microscopy and by an objective method with a laser diffraction particle size analyzer, was increased by PIO on Weeks 12 and 25 and the increases were markedly suppressed by urinary acidification. Urinary citrate was decreased by PIO throughout the study period, but no changes were seen in urinary oxalate at any timepoint. The incidences of PIO-treated males bearing at least one of the advanced proliferative changes consisting of papillary hyperplasia, nodular hyperplasia, papilloma or carcinoma were significantly decreased from 11 of 82 males fed the control diet to 2 of 80 males fed the acid-forming diet. The acid-forming diet did not show any effects on the toxicokinetic parameters of PIO and its metabolites. Microcrystalluria appears to be involved in the development of the advanced stage proliferative lesions in bladder tumorigenesis induced by PIO in male rats.« less
Darville, Nicolas; van Heerden, Marjolein; Vynckier, An; De Meulder, Marc; Sterkens, Patrick; Annaert, Pieter; Van den Mooter, Guy
2014-07-01
The present study aims at elucidating the intricate nature of the drug release and absorption following intramuscular (i.m.) injection of sustained-release prodrug nanocrystals/microcrystals. A paliperidone palmitate (PPP) long-acting suspension was characterized with regard to particle size (Dv,50 = 1.09 μm) and morphology prior to i.m. injection in rats. The local disposition was rigorously investigated by means of (immuno)histochemistry and transmission electron microscopy while the concurrent multiphasic pharmacokinetics was linked to the microanatomy. A transient (24 h) trauma-induced inflammation promptly evolved into a subclinical but chronic granulomatous inflammatory reaction initiated by the presence of solid material. The dense inflammatory envelope (CD68(+) macrophages) led to particle agglomeration with subsequent drop in dissolution rate beyond 24 h postinjection. This was associated with a decrease in apparent paliperidone (PP) absorption (near-zero order) until 96 h and a delayed time of occurrence of observed maximum drug plasma concentration (168 h). The infiltrating macrophages phagocytosed large fractions of the depot, thereby influencing the (pro)drug release. Radial angiogenesis (CD31(+)) was observed throughout the inflammatory rim from 72 h onwards and presumably contributed to the sustained systemic PP concentrations by maintaining a sufficient absorptive capacity. No solid-state transitions of the retrieved formulation were recorded with X-ray diffraction analysis. In summary, the initial formulation-driven prodrug (PPP) dissolution and drug (PP) absorption were followed by a complex phase determined by the relative contribution of formulation factors and dynamic physiological variables. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Han; Yan, Xiaohong, E-mail: xhyan@nuaa.edu.cn; College of Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210046
Double alkaline rare-earth molybdates NaY(MoO{sub 4}){sub 2} with multilayered flower-like architectures have been successfully synthesized via hydrothermal method in polyvinylpyrrolidone (PVP)-modified processes. The crystal structure and morphology of the obtained products were characterized by X-ray diffraction, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It was found that reaction time and the amount of PVP have crucial influences on the morphology of the resulting novel microstructures. Under 450 nm excitation, Ho{sup 3+}/Yb{sup 3+} co-doped NaY(MoO{sub 4}){sub 2} samples exhibit 539 nm green emission and 960–1200 nm broadband near-infrared emission, corresponding to the characteristic lines of Ho{sup 3+} and Yb{supmore » 3+}, respectively. Moreover, increasing Yb{sup 3+} doping enhances the energy transfer efficiency from Ho{sup 3+} to Yb{sup 3+}. - Graphical abstract: Low and high-magnification SEM images demonstrate the perfect flower-like NaY(MoO{sub 4}){sub 2} prepared in the presence of PVP; Detailed TEM and HRTEM images further manifest the single-crystalline feature. Highlights: • NaY(MoO{sub 4}){sub 2} flower-like microstructures were synthesized by hydrothermal method using polyvinylpyrrolidone. • Polyvinylpyrrolidone induces the growth of the NaY(MoO{sub 4}){sub 2} to form multilayered architectures. • Flowerlike NaY(MoO{sub 4}){sub 2}: Ho{sup 3+}, Yb{sup 3+} phosphors were investigated as a downconversion layer candidate.« less
Preferential orientation relationships in Ca{sub 2}MnO{sub 4} Ruddlesden-Popper thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacotte, M.; David, A.; Prellier, W., E-mail: wilfrid.prellier@ensicaen.fr
2015-07-28
A high-throughput investigation of local epitaxy (called combinatorial substrate epitaxy) was carried out on Ca{sub 2}MnO{sub 4} Ruddlesden-Popper thin films of six thicknesses (from 20 to 400 nm), all deposited on isostructural polycrystalline Sr{sub 2}TiO{sub 4} substrates. Electron backscatter diffraction revealed grain-over-grain local epitaxial growth for all films, resulting in a single orientation relationship (OR) for each substrate-film grain pair. Two preferred epitaxial ORs accounted for more than 90% of all ORs on 300 different microcrystals, based on analyzing 50 grain pairs for each thickness. The unit cell over unit cell OR ([100][001]{sub film} ∥ [100][001]{sub substrate}, or OR1) accounted formore » approximately 30% of each film. The OR that accounted for 60% of each film ([100][001]{sub film} ∥ [100][010]{sub substrate}, or OR2) corresponds to a rotation from OR1 by 90° about the a-axis. OR2 is strongly favored for substrate orientations in the center of the stereographic triangle, and OR1 is observed for orientations very close to (001) or to those near the edge connecting (100) and (110). While OR1 should be lower in energy, the majority observation of OR2 implies kinetic hindrances decrease the frequency of OR1. Persistent grain over grain growth and the absence of variations of the OR frequencies with thickness implies that the growth competition is finished within the first few nm, and local epitaxy persists thereafter during growth.« less
Sato, Keiichiro; Awasaki, Yasuyuki; Kandori, Hitoshi; Tanakamaru, Zen-Yo; Nagai, Hirofumi; Baron, David; Yamamoto, Masaki
2011-03-15
Pioglitazone hydrochloride (PIO), a peroxisome proliferator-activated receptor gamma (PPARγ) agonist, was administered orally for 85 weeks at 16 mg/kg/day to male rats fed either a diet containing 1.5% ammonium chloride (acid-forming diet) or a control diet to investigate the effects of urinary acidification induced by the acid-forming diet on the tumorigenic potential of PIO in the urinary bladder. The surviving animals at the end of the administration period were followed to the end of the 2-year study period without changes in the diet and were subjected to terminal necropsy on Week 104. The number of urinary microcrystals, evaluated by manual counting with light microscopy and by an objective method with a laser diffraction particle size analyzer, was increased by PIO on Weeks 12 and 25 and the increases were markedly suppressed by urinary acidification. Urinary citrate was decreased by PIO throughout the study period, but no changes were seen in urinary oxalate at any timepoint. The incidences of PIO-treated males bearing at least one of the advanced proliferative changes consisting of papillary hyperplasia, nodular hyperplasia, papilloma or carcinoma were significantly decreased from 11 of 82 males fed the control diet to 2 of 80 males fed the acid-forming diet. The acid-forming diet did not show any effects on the toxicokinetic parameters of PIO and its metabolites. Microcrystalluria appears to be involved in the development of the advanced stage proliferative lesions in bladder tumorigenesis induced by PIO in male rats. Copyright © 2011 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jun, E-mail: j-zhang@126.com; Wang, Xiucai; Li, Lili
2013-10-15
Graphical abstract: The ultrafine Ni powders with the shapes including sphere, pearl-string, leaf, fish-bone, hexagonal sheet and silknet were prepared through one-step hydrothermal reduction using different reductants. Their saturation magnetization, remanent magnetization and coercivity sequentially increase, and the coercivity of hexagonal sheet-like Ni powders increases by 25% compared with the Ni bulk counterpart. - Highlights: • The ultrafine Ni powders with various shapes of sphere, fish-bone, hexagonal sheet, etc. • Facile and one-step hydrothermal reduction using three reductants and PVP additive was developed. • Magnetic properties of the ultrafine Ni powders with different shapes were measured. • Compared with bulkmore » Ni material, coercivity of hexagonal sheet Ni increases by 25%. • The formation mechanism of the shapes was suggested. - Abstract: The ultrafine nickel particles with different shapes including sphere, pearl-string, leaf, fish-bone, hexagonal sheet and silknet were prepared through one-step hydrothermal reduction using hydrazine hydrate, sodium hypophosphite and ethylene glycol as reductants, polyvinylpyrrolidone as structure-directing agent. It has been verified with the characterization of X-ray powder diffraction and transmission/scanning electronic microscopy that as-prepared products belong to face-centered cubic structure of nickel microcrystals with high purity and fine dispersity. The magnetic hysteresis loops measured at room temperature reveal that the values of saturation magnetization, remanent magnetization and coercivity rise sequentially from silknet, sphere to hexagonal sheet. In comparison with nickel bulk counterpart, the coercivity of the hexagonal sheet nickel powders increases by 25%.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Guan-Jing; Li, Lan-Fen; Li, Dan
2007-09-01
A glucosamine 6-phosphate deaminase homologue from S. mutans was expressed, purified and crystallized. Diffraction data have been collected to 2.4 Å resolution. The SMU.636 protein from Streptococcus mutans is a putative glucosamine 6-phosphate deaminase with 233 residues. The smu.636 gene was PCR-amplified from S. mutans genomic DNA and cloned into the expression vector pET-28a(+). The resultant His-tagged fusion protein was expressed in Escherichia coli and purified to homogeneity in two steps. Crystals of the fusion protein were obtained by the hanging-drop vapour-diffusion method. The crystals diffracted to 2.4 Å resolution and belong to space group P2{sub 1}2{sub 1}2{sub 1}, withmore » unit-cell parameters a = 53.83, b = 82.13, c = 134.70 Å.« less
Liu, Zhen; Xing, Dong; Su, Qian Peter; Zhu, Yun; Zhang, Jiamei; Kong, Xinyu; Xue, Boxin; Wang, Sheng; Sun, Hao; Tao, Yile; Sun, Yujie
2014-01-01
Imaging the location and dynamics of individual interacting protein pairs is essential but often difficult because of the fluorescent background from other paired and non-paired molecules, particularly in the sub-diffraction cellular space. Here we develop a new method combining bimolecular fluorescence complementation and photoactivated localization microscopy for super-resolution imaging and single-molecule tracking of specific protein–protein interactions. The method is used to study the interaction of two abundant proteins, MreB and EF-Tu, in Escherichia coli cells. The super-resolution imaging shows interesting distribution and domain sizes of interacting MreB–EF-Tu pairs as a subpopulation of total EF-Tu. The single-molecule tracking of MreB, EF-Tu and MreB–EF-Tu pairs reveals intriguing localization-dependent heterogonous dynamics and provides valuable insights to understanding the roles of MreB–EF-Tu interactions. PMID:25030837
The MORPHEUS II protein crystallization screen
Gorrec, Fabrice
2015-01-01
High-quality macromolecular crystals are a prerequisite for the process of protein structure determination by X-ray diffraction. Unfortunately, the relative yield of diffraction-quality crystals from crystallization experiments is often very low. In this context, innovative crystallization screen formulations are continuously being developed. In the past, MORPHEUS, a screen in which each condition integrates a mix of additives selected from the Protein Data Bank, a cryoprotectant and a buffer system, was developed. Here, MORPHEUS II, a follow-up to the original 96-condition initial screen, is described. Reagents were selected to yield crystals when none might be observed in traditional initial screens. Besides, the screen includes heavy atoms for experimental phasing and small polyols to ensure the cryoprotection of crystals. The suitability of the resulting novel conditions is shown by the crystallization of a broad variety of protein samples and their efficiency is compared with commercially available conditions. PMID:26144227
DeWalt, Emma L.; Begue, Victoria J.; Ronau, Judith A.; Sullivan, Shane Z.; Das, Chittaranjan; Simpson, Garth J.
2013-01-01
Polarization-resolved second-harmonic generation (PR-SHG) microscopy is described and applied to identify the presence of multiple crystallographic domains within protein-crystal conglomerates, which was confirmed by synchrotron X-ray diffraction. Principal component analysis (PCA) of PR-SHG images resulted in principal component 2 (PC2) images with areas of contrasting negative and positive values for conglomerated crystals and PC2 images exhibiting uniformly positive or uniformly negative values for single crystals. Qualitative assessment of PC2 images allowed the identification of domains of different internal ordering within protein-crystal samples as well as differentiation between multi-domain conglomerated crystals and single crystals. PR-SHG assessments of crystalline domains were in good agreement with spatially resolved synchrotron X-ray diffraction measurements. These results have implications for improving the productive throughput of protein structure determination through early identification of multi-domain crystals. PMID:23275165
Perederina, Anna; Esakova, Olga; Quan, Chao; Khanova, Elena; Krasilnikov, Andrey S
2010-01-01
Eukaryotic ribonucleases P and MRP are closely related RNA-based enzymes which contain a catalytic RNA component and several protein subunits. The roles of the protein subunits in the structure and function of eukaryotic ribonucleases P and MRP are not clear. Crystals of a complex that included a circularly permuted 46-nucleotide-long P3 domain of the RNA component of Saccharomyces cerevisiae ribonuclease MRP and selenomethionine derivatives of the shared ribonuclease P/MRP protein components Pop6 (18.2 kDa) and Pop7 (15.8 kDa) were obtained using the sitting-drop vapour-diffusion method. The crystals belonged to space group P4(2)22 (unit-cell parameters a = b = 127.2, c = 76.8 A, alpha = beta = gamma = 90 degrees ) and diffracted to 3.25 A resolution.
The MORPHEUS II protein crystallization screen.
Gorrec, Fabrice
2015-07-01
High-quality macromolecular crystals are a prerequisite for the process of protein structure determination by X-ray diffraction. Unfortunately, the relative yield of diffraction-quality crystals from crystallization experiments is often very low. In this context, innovative crystallization screen formulations are continuously being developed. In the past, MORPHEUS, a screen in which each condition integrates a mix of additives selected from the Protein Data Bank, a cryoprotectant and a buffer system, was developed. Here, MORPHEUS II, a follow-up to the original 96-condition initial screen, is described. Reagents were selected to yield crystals when none might be observed in traditional initial screens. Besides, the screen includes heavy atoms for experimental phasing and small polyols to ensure the cryoprotection of crystals. The suitability of the resulting novel conditions is shown by the crystallization of a broad variety of protein samples and their efficiency is compared with commercially available conditions.
Fiber Diffraction Data Indicate a Hollow Core for the Alzheimer’s Aβ Three-fold Symmetric Fibril
McDonald, Michele; Box, Hayden; Bian, Wen; Kendall, Amy; Tycko, Robert; Stubbs, Gerald
2012-01-01
Amyloid β protein (Aβ), the principal component of the extracellular plaques found in the brains of Alzheimer’s disease patients, forms fibrils well suited to structural study by X-ray fiber diffraction. Fiber diffraction patterns from the 40-residue form Aβ(1–40) confirm a number of features of a three-fold symmetric Aβ model from solid state NMR, but suggest that the fibrils have a hollow core, not present in the original ssNMR models. Diffraction patterns calculated from a revised hollow three-fold model with a more regular β-sheet structure are in much better agreement with the observed diffraction data than patterns calculated from the original ssNMR model. Refinement of a hollow-core model against ssNMR data led to a revised ssNMR model, similar to the fiber diffraction model. PMID:22903058
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paterson, Neil G., E-mail: neison@chem.gla.ac.uk; Riboldi-Tunicliffe, Alan; Mitchell, Timothy J.
2006-07-01
The choline-binding protein CbpI from S. pneumoniae has been purified and crystallized and diffraction data have been collected to 3.5 Å resolution. The choline-binding protein CbpI from Streptococcus pneumoniae is a 23.4 kDa protein with no known function. The protein has been successfully purified initially using Ni–NTA chromatography and to homogeneity using Q-Sepharose ion-exchange resin as an affinity column. CbpI was crystallized using PEG 3350 as a precipitant and X-ray crystallographic analysis showed that the crystals belonged to the tetragonal space group P4, with unit-cell parameters a = b = 83.31, c = 80.29 Å, α = β = γmore » = 90°. The crystal contains two molecules in the asymmetric unit with a solvent content of 55.7% (V{sub M} = 2.77 Å{sup 3} Da{sup −1}) and shows a diffraction limit of 3.5 Å.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Raka; Chakrabarti, Chandana, E-mail: chandana.chakrabarti@saha.ac.in
2005-08-01
A thaumatin-like antifungal protein, NP24-I, has been isolated from ripe tomato fruits. It was crystallized by the vapour-diffusion method and data were collected to 2.45 Å. The structure was solved by molecular replacement. NP24 is a 24 kDa (207-amino-acid) antifungal thaumatin-like protein (TLP) found in tomato fruits. An isoform of the protein, NP24-I, is reported to play a possible role in ripening of the fruit in addition to its antifungal properties. The protein has been isolated and purified and crystallized by the hanging-drop vapour-diffusion method. The crystals belong to the tetragonal space group P4{sub 3}, with unit-cell parameters a =more » b = 61.01, c = 62.90 Å and one molecule per asymmetric unit. X-ray diffraction data were processed to a resolution of 2.45 Å and the structure was solved by molecular replacement.« less
Simulations of single-particle imaging of hydrated proteins with x-ray free-electron lasers
NASA Astrophysics Data System (ADS)
Fortmann-Grote, C.; Bielecki, J.; Jurek, Z.; Santra, R.; Ziaja-Motyka, B.; Mancuso, A. P.
2017-08-01
We employ start-to-end simulations to model coherent diffractive imaging of single biomolecules using x-ray free electron lasers. This technique is expected to yield new structural information about biologically relevant macromolecules thanks to the ability to study the isolated sample in its natural environment as opposed to crystallized or cryogenic samples. The effect of the solvent on the diffraction pattern and interpretability of the data is an open question. We present first results of calculations where the solvent is taken into account explicitly. They were performed with a molecular dynamics scheme for a sample consisting of a protein and a hydration layer of varying thickness. Through R-factor analysis of the simulated diffraction patterns from hydrated samples, we show that the scattering background from realistic hydration layers of up to 3 Å thickness presents no obstacle for the resolution of molecular structures at the sub-nm level.
Did template-directed nucleation precede molecular replication?
NASA Technical Reports Server (NTRS)
Orgel, Leslie E.
1986-01-01
It is proposed that mononucleotides incorporated into the surfaces of microcrystals of inorganic phosphates such as hydroxyapatite can act as templates to assemble complementary mononucleotides from solution, and that the phosphate groups of the assembled nucleotides can facilitate nucleation of a second hydroxyapatite crystal. This would provide a mechanism of replication that is subject to natural selection. The possible role of a replicating system of this kind in the origins of life on the earth is discussed.
Strengthening and Plastic Flow of Ni3Al Alloy Microcrystals (Preprint)
2012-08-01
the degree they can be re- solved ), with essentially no slip-band thickening. Note that the image of Fig. 4b has been digi- tally enhanced to better...solution hardening stress. The second term in Eqn. (2) represents a forest hardening contribution. Solving for the mi- crocrystal flow stress, one...but, the truncated glide lengths associated with the mean-field dis- location dynamics forces the stress to increase to re-scale the processes to the
Porous hollow Co3O4 with rhombic dodecahedral structures for high-performance supercapacitors
NASA Astrophysics Data System (ADS)
Zhang, Yi-Zhou; Wang, Yang; Xie, Ye-Lei; Cheng, Tao; Lai, Wen-Yong; Pang, Huan; Huang, Wei
2014-11-01
Porous hollow Co3O4 with rhombic dodecahedral structures were prepared by the calcination of ZIF-67 ([Co(mim)2; mim = 2-methylimidazolate]) rhombic dodecahedral microcrystals. A supercapacitor was successfully constructed by adopting the resulting porous hollow Co3O4 rhombic dodecahedral structure as the electrode material, which showed a large specific capacitance of 1100 F g-1 and retained more than 95.1% of the specific capacitance after 6000 continuous charge-discharge cycles. The excellent capacitive properties and stability mark the porous hollow Co3O4 with the rhombic dodecahedral structure as one of the most promising electrode materials for high-performance supercapacitors.Porous hollow Co3O4 with rhombic dodecahedral structures were prepared by the calcination of ZIF-67 ([Co(mim)2; mim = 2-methylimidazolate]) rhombic dodecahedral microcrystals. A supercapacitor was successfully constructed by adopting the resulting porous hollow Co3O4 rhombic dodecahedral structure as the electrode material, which showed a large specific capacitance of 1100 F g-1 and retained more than 95.1% of the specific capacitance after 6000 continuous charge-discharge cycles. The excellent capacitive properties and stability mark the porous hollow Co3O4 with the rhombic dodecahedral structure as one of the most promising electrode materials for high-performance supercapacitors. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04782f
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Y; Roy, U N; Bai, L
Ytterbium doped strontium fluoroapatite Yb{sup 3+}:Sr{sub 5}(PO{sub 4}){sub 3}F (Yb: S-FAP) crystals have been used in High Average Power Laser systems as gain medium. Growth induced defects associated with the crystal often affect their performance. In order to improve the crystal quality and its optical applications, it is imperative to understand the nature of these defects. In this study, we utilize Micro-Raman spectroscopy to characterize two common growth-induced defects: bubble core and cloudiness. We find the bubble core consist of voids and microcrystals of Yb: S-FAP. These microcrystals have very different orientation from that of the pure crystal outside themore » bubble core. In contrast to a previous report, neither Sr{sub 3}(PO{sub 4}){sub 2} nor Yb{sub 2}O{sub 3} are observed in the bubble core regions. On the other hand, the cloudy regions are made up of the host materials blended with a structural deformation along with impurities which include CaCO{sub 3}, YbPO{sub 4}, SrHPO{sub 4} and Sr{sub 2}P{sub 2}O{sub 7}. The impurities are randomly distributed in the cloudy regions. This analysis is necessary for understanding and eliminating these growth defects in Yb:S-FAP crystals.« less
Angle-resolved diffraction grating biosensor based on porous silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lv, Changwu; Li, Peng; Jia, Zhenhong, E-mail: jzhh@xju.edu.cn
2016-03-07
In this study, an optical biosensor based on a porous silicon composite structure was fabricated using a simple method. This structure consists of a thin, porous silicon surface diffraction grating and a one-dimensional porous silicon photonic crystal. An angle-resolved diffraction efficiency spectrum was obtained by measuring the diffraction efficiency at a range of incident angles. The angle-resolved diffraction efficiency of the 2nd and 3rd orders was studied experimentally and theoretically. The device was sensitive to the change of refractive index in the presence of a biomolecule indicated by the shift of the diffraction efficiency spectrum. The sensitivity of this sensormore » was investigated through use of an 8 base pair antifreeze protein DNA hybridization. The shifts of the angle-resolved diffraction efficiency spectrum showed a relationship with the change of the refractive index, and the detection limit of the biosensor reached 41.7 nM. This optical device is highly sensitive, inexpensive, and simple to fabricate. Using shifts in diffraction efficiency spectrum to detect biological molecules has not yet been explored, so this study establishes a foundation for future work.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zipper, Lauren E.; Binghamton University, 4400 Vestal Parkway East, Vestal, NY 13902; Aristide, Xavier
This article describes the use of evaporation control lids that are fitted to crystallization plates to improve the reproducibility of trials using as little as 5 nl. The plate lids contain apertures which are large enough for the transfer of protein containing droplets, but small enough to greatly reduce the rate of evaporation during the time needed to prepare the plate. A method is described for using plate lids to reduce evaporation in low-volume vapor-diffusion crystallization experiments. The plate lids contain apertures through which the protein and precipitants were added to different crystallization microplates (the reservoir was filled before fittingmore » the lids). Plate lids were designed for each of these commonly used crystallization microplates. This system minimizes the dehydration of crystallization droplets containing just a few nanolitres of protein and precipitant, and results in more reproducible diffraction from the crystals. For each lid design, changes in the weight of the plates were used to deduce the rate of evaporation under different conditions of temperature, air movement, droplet size and precipitant. For comparison, the state of dehydration was also visually assessed throughout the experiment. Finally, X-ray diffraction methods were used to compare the diffraction of protein crystals that were conventionally prepared against those that were prepared on plates with plate lids. The measurements revealed that the plate lids reduced the rate of evaporation by 63–82%. Crystals grown in 5 nl drops that were set up with plate lids diffracted to higher resolution than similar crystals from drops that were set up without plate lids. The results demonstrate that plate lids can be instrumental for improving few-nanolitre crystallizations.« less
Pechkova, E; Vasile, F; Spera, R; Fiordoro, S; Nicolini, C
2005-11-01
Protein nanocrystallography, a new technology for crystal growth based on protein nanotemplates, has recently been shown to produce diffracting, stable and radiation-resistant lysozyme crystals. This article, by computing these lysozyme crystals' atomic structures, obtained by the diffraction patterns of microfocused synchrotron radiation, provides a possible mechanism for this increased stability, namely a significant decrease in water content accompanied by a minor but significant alpha-helix increase. These data are shown to be compatible with the circular dichroism and two-dimensional Fourier transform spectra of high-resolution H NMR of proteins dissolved from the same nanotemplate-based crystal versus those from a classical crystal. Finally, evidence for protein direct transfer from the nanotemplate to the drop and the participation of the template proteins in crystal nucleation and growth is provided by high-resolution NMR spectrometry and mass spectrometry. Furthermore, the lysozyme nanotemplate appears stable up to 523 K, as confirmed by a thermal denaturation study using spectropolarimetry. The overall data suggest that heat-proof lysozyme presence in the crystal provides a possible explanation of the crystal's resistance to synchrotron radiation.
Solvent and temperature effects on crambin, a hydrophobic protein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Llinas, M.; Lecomte, J.T.J.; De Marco, A.
1980-10-01
Crambin, a 5000-mol. wt. water-insoluble protein found in crambe abyssinica seeds is presently being studied by x-ray diffraction to 0.9 A resolution and /sup 1/H-nuclear magnetic resonance (NMR) spectroscopy. Preliminary /sup 1/H-NMR data at 250 and 600 MHz have suggested that this hydrophobic protein retains a similar globular conformation in both glacial acetic acid (AA), a Bronsted acid, and dimethylformamide (DMF), a Lewis base. These observations suggest that the globular conformation observed in these organic solvents is most likely the native structure present in the crystalline state. As suggested by the high intrinsic resolution of the crystallographic x-ray diffraction pattern,more » and demonstrated by the NMR data, crambin is a very rigid protein. Work is in progress to assign the /sup 1/H-resonances and to correlate H and /sup 13/C NMR dynamic data with the crystallographic model. It is hoped that unravelling conformational features of this hydrophobic protein will provide clues to help us understand other membrane-bound functional proteins.« less
Femtosecond X-ray diffraction from an aerosolized beam of protein nanocrystals
Awel, Salah; Kirian, Richard A.; Wiedorn, Max O.; ...
2018-02-01
High-resolution Bragg diffraction from aerosolized single granulovirus nanocrystals using an X-ray free-electron laser is demonstrated. The outer dimensions of the in-vacuum aerosol injector components are identical to conventional liquid-microjet nozzles used in serial diffraction experiments, which allows the injector to be utilized with standard mountings. As compared with liquid-jet injection, the X-ray scattering background is reduced by several orders of magnitude by the use of helium carrier gas rather than liquid. Such reduction is required for diffraction measurements of small macromolecular nanocrystals and single particles. High particle speeds are achieved, making the approach suitable for use at upcoming high-repetition-rate facilities.
Incoherent Diffractive Imaging via Intensity Correlations of Hard X Rays
NASA Astrophysics Data System (ADS)
Classen, Anton; Ayyer, Kartik; Chapman, Henry N.; Röhlsberger, Ralf; von Zanthier, Joachim
2017-08-01
Established x-ray diffraction methods allow for high-resolution structure determination of crystals, crystallized protein structures, or even single molecules. While these techniques rely on coherent scattering, incoherent processes like fluorescence emission—often the predominant scattering mechanism—are generally considered detrimental for imaging applications. Here, we show that intensity correlations of incoherently scattered x-ray radiation can be used to image the full 3D arrangement of the scattering atoms with significantly higher resolution compared to conventional coherent diffraction imaging and crystallography, including additional three-dimensional information in Fourier space for a single sample orientation. We present a number of properties of incoherent diffractive imaging that are conceptually superior to those of coherent methods.
Graphene unit cell imaging by holographic coherent diffraction.
Longchamp, Jean-Nicolas; Latychevskaia, Tatiana; Escher, Conrad; Fink, Hans-Werner
2013-06-21
We have imaged a freestanding graphene sheet of 210 nm in diameter with 2 Å resolution by combining coherent diffraction and holography with low-energy electrons. The entire sheet is reconstructed from a single diffraction pattern displaying the arrangement of 660.000 individual graphene unit cells at once. Given the fact that electrons with kinetic energies of the order of 100 eV do not damage biological molecules, it will now be a matter of developing methods for depositing individual proteins onto such graphene sheets.
NASA Astrophysics Data System (ADS)
Peng, Wen-Chao; Wang, Xi; Li, Xiao-Yan
2014-06-01
The photo-degradation of organic pollutants using solar light is an attractive chemical process for water pollution control. In this study, we synthesized a new composite material consisting of silver phosphate (Ag3PO4) sub-microcrystals grown on a layered molybdenum disulfide (MoS2) and graphene (GR) hybrid as a high-performance photocatalyst for the degradation of toxic organic pollutants. This composite photocatalyst was prepared via a simple two-step hydrothermal process that used sodium molybdate, thiourea and graphene oxide as precursors for the MoS2/GR hybrid and silver nitrate for the Ag3PO4 sub-microcrystals. The composite Ag3PO4-0.02(MoS2/0.005GR) was found to be the most effective catalyst for the photo-decomposition of 2,4-dichlorophenol under simulated solar light and visible light (λ >= 420 nm). The photocatalyst was also highly active for the degradation of nitrophenol and chlorophenol. The ultra photocatalytic activity of the novel catalyst arose from the synergetic effects of MoS2 and GR as cocatalysts in the composite. MoS2/GR nanosheets served as electron collectors for the interfacial electron transfer from Ag3PO4 to electron acceptors in the aqueous solution and thus enhanced the separation of the photo-generated electron-hole pairs and made the holes more available for organic oxidation. In addition, the presence of MoS2 and GR provided more active adsorption sites and allowed for the activation of dissolved O2 for organic degradation in water.The photo-degradation of organic pollutants using solar light is an attractive chemical process for water pollution control. In this study, we synthesized a new composite material consisting of silver phosphate (Ag3PO4) sub-microcrystals grown on a layered molybdenum disulfide (MoS2) and graphene (GR) hybrid as a high-performance photocatalyst for the degradation of toxic organic pollutants. This composite photocatalyst was prepared via a simple two-step hydrothermal process that used sodium molybdate, thiourea and graphene oxide as precursors for the MoS2/GR hybrid and silver nitrate for the Ag3PO4 sub-microcrystals. The composite Ag3PO4-0.02(MoS2/0.005GR) was found to be the most effective catalyst for the photo-decomposition of 2,4-dichlorophenol under simulated solar light and visible light (λ >= 420 nm). The photocatalyst was also highly active for the degradation of nitrophenol and chlorophenol. The ultra photocatalytic activity of the novel catalyst arose from the synergetic effects of MoS2 and GR as cocatalysts in the composite. MoS2/GR nanosheets served as electron collectors for the interfacial electron transfer from Ag3PO4 to electron acceptors in the aqueous solution and thus enhanced the separation of the photo-generated electron-hole pairs and made the holes more available for organic oxidation. In addition, the presence of MoS2 and GR provided more active adsorption sites and allowed for the activation of dissolved O2 for organic degradation in water. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01654h
Research Associate | Center for Cancer Research
PROGRAM DESCRIPTION The Basic Science Program (BSP) pursues independent, multidisciplinary research in basic and applied molecular biology, immunology, retrovirology, cancer biology, and human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick National Laboratory for Cancer Research (FNLCR). KEY ROLES/RESPONSIBILITIES - Research Associate III Dr. Zbigniew Dauter is the head investigator of the Synchrotron Radiation Research Section (SRRS) of CCR’s Macromolecular Crystallography Laboratory. The Synchrotron Radiation Research Section is located at Argonne National Laboratory, Argonne, Illinois; this is the site of the largest U.S. synchrotron facility. The SRRS uses X-ray diffraction technique to solve crystal structures of various proteins and nucleic acids of biological and medical relevance. The section is also specializing in analyzing crystal structures at extremely high resolution and accuracy and in developing methods of effective diffraction data collection and in using weak anomalous dispersion effects to solve structures of macromolecules. The areas of expertise are: Structural and molecular biology Macromolecular crystallography Diffraction data collection Dr. Dauter requires research support in these areas, and the individual will engage in the purification and preparation of samples, crystallize proteins using various techniques, and derivatize them with heavy atoms/anomalous scatterers, and establish conditions for cryogenic freezing. Individual will also participate in diffraction data collection at the Advanced Photon Source. In addition, the candidate will perform spectroscopic and chromatographic analyses of protein and nucleic acid samples in the context of their purity, oligomeric state and photophysical properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tran, Thanh Thuy; Nguyen, Phuong H., E-mail: phuong.nguyen@ibpc.fr; Derreumaux, Philippe, E-mail: philippe.derreumaux@ibpc.fr
Coarse-grained protein lattice models approximate atomistic details and keep the essential interactions. They are, therefore, suitable for capturing generic features of protein folding and amyloid formation at low computational cost. As our aim is to study the critical nucleus sizes of two experimentally well-characterized peptide fragments Aβ{sub 16−22} and Aβ{sub 37−42} of the full length Aβ{sub 1−42} Alzheimer’s peptide, it is important that simulations with the lattice model reproduce all-atom simulations. In this study, we present a comprehensive force field parameterization based on the OPEP (Optimized Potential for Efficient protein structure Prediction) force field for an on-lattice protein model, whichmore » incorporates explicitly the formation of hydrogen bonds and directions of side-chains. Our bottom-up approach starts with the determination of the best lattice force parameters for the Aβ{sub 16−22} dimer by fitting its equilibrium parallel and anti-parallel β-sheet populations to all-atom simulation results. Surprisingly, the calibrated force field is transferable to the trimer of Aβ{sub 16−22} and the dimer and trimer of Aβ{sub 37−42}. Encouraged by this finding, we characterized the free energy landscapes of the two decamers. The dominant structure of the Aβ{sub 16−22} decamer matches the microcrystal structure. Pushing the simulations for aggregates between 4-mer and 12-mer suggests a nucleus size for fibril formation of 10 chains. In contrast, the Aβ{sub 37−42} decamer is largely disordered with mixed by parallel and antiparallel chains, suggesting that the nucleus size is >10 peptides. Our refined force field coupled to this on-lattice model should provide useful insights into the critical nucleation number associated with neurodegenerative diseases.« less
(NZ)CH...O contacts assist crystallization of a ParB-like nuclease.
Shaw, Neil; Cheng, Chongyun; Tempel, Wolfram; Chang, Jessie; Ng, Joseph; Wang, Xin-Yu; Perrett, Sarah; Rose, John; Rao, Zihe; Wang, Bi-Cheng; Liu, Zhi-Jie
2007-07-07
The major bottleneck for determination of 3 D structures of proteins using X-rays is the production of diffraction quality crystals. Often proteins are subjected to chemical modification to improve the chances of crystallization Here, we report the successful crystallization of a nuclease employing a reductive methylation protocol. The key to crystallization was the successful introduction of 44 new cohesive (NZ) CH...O contacts (3.2-3.7 A) by the addition of 2 methyl groups to the side chain amine nitrogen (NZ) of 9 lysine residues of the nuclease. The new contacts dramatically altered the crystallization properties of the protein, resulting in crystals that diffracted to 1.2 A resolution. Analytical ultracentrifugation analysis and thermodynamics results revealed a more compact protein structure with better solvent exclusion of buried Trp residues in the folded state of the methylated protein, assisting crystallization. In this study, introduction of novel cohesive (NZ)CH...O contacts by reductive methylation resulted in the crystallization of a protein that had previously resisted crystallization in spite of extensive purification and crystallization space screening. Introduction of (NZ)CH...O contacts could provide a solution to crystallization problems for a broad range of protein targets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodríguez Guilbe, María M.; Protein Research and Development Center, University of Puerto Rico; Alfaro Malavé, Elisa C.
The genetically encoded fluorescent calcium-indicator protein GCaMP2 was crystallized in the calcium-saturated form. X-ray diffraction data were collected to 2.0 Å resolution and the structure was solved by molecular replacement. Fluorescent proteins and their engineered variants have played an important role in the study of biology. The genetically encoded calcium-indicator protein GCaMP2 comprises a circularly permuted fluorescent protein coupled to the calcium-binding protein calmodulin and a calmodulin target peptide, M13, derived from the intracellular calmodulin target myosin light-chain kinase and has been used to image calcium transients in vivo. To aid rational efforts to engineer improved variants of GCaMP2, thismore » protein was crystallized in the calcium-saturated form. X-ray diffraction data were collected to 2.0 Å resolution. The crystals belong to space group C2, with unit-cell parameters a = 126.1, b = 47.1, c = 68.8 Å, β = 100.5° and one GCaMP2 molecule in the asymmetric unit. The structure was phased by molecular replacement and refinement is currently under way.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueser, Timothy C., E-mail: timothy.mueser@utoledo.edu; Griffith, Wendell P.; Kovalevsky, Andrey Y.
2010-11-01
X-ray and neutron diffraction studies of cyanomethemoglobin are being used to evaluate the structural waters within the dimer–dimer interface involved in quaternary-state transitions. Improvements in neutron diffraction instrumentation are affording the opportunity to re-examine the structures of vertebrate hemoglobins and to interrogate proton and solvent position changes between the different quaternary states of the protein. For hemoglobins of unknown primary sequence, structural studies of cyanomethemoglobin (CNmetHb) are being used to help to resolve sequence ambiguity in the mass spectra. These studies have also provided additional structural evidence for the involvement of oxidized hemoglobin in the process of erythrocyte senescence. X-raymore » crystal studies of Tibetan snow leopard CNmetHb have shown that this protein crystallizes in the B state, a structure with a more open dyad, which possibly has relevance to RBC band 3 protein binding and erythrocyte senescence. R-state equine CNmetHb crystal studies elaborate the solvent differences in the switch and hinge region compared with a human deoxyhemoglobin T-state neutron structure. Lastly, comparison of histidine protonation between the T and R state should enumerate the Bohr-effect protons.« less
A pipeline for comprehensive and automated processing of electron diffraction data in IPLT.
Schenk, Andreas D; Philippsen, Ansgar; Engel, Andreas; Walz, Thomas
2013-05-01
Electron crystallography of two-dimensional crystals allows the structural study of membrane proteins in their native environment, the lipid bilayer. Determining the structure of a membrane protein at near-atomic resolution by electron crystallography remains, however, a very labor-intense and time-consuming task. To simplify and accelerate the data processing aspect of electron crystallography, we implemented a pipeline for the processing of electron diffraction data using the Image Processing Library and Toolbox (IPLT), which provides a modular, flexible, integrated, and extendable cross-platform, open-source framework for image processing. The diffraction data processing pipeline is organized as several independent modules implemented in Python. The modules can be accessed either from a graphical user interface or through a command line interface, thus meeting the needs of both novice and expert users. The low-level image processing algorithms are implemented in C++ to achieve optimal processing performance, and their interface is exported to Python using a wrapper. For enhanced performance, the Python processing modules are complemented with a central data managing facility that provides a caching infrastructure. The validity of our data processing algorithms was verified by processing a set of aquaporin-0 diffraction patterns with the IPLT pipeline and comparing the resulting merged data set with that obtained by processing the same diffraction patterns with the classical set of MRC programs. Copyright © 2013 Elsevier Inc. All rights reserved.
A pipeline for comprehensive and automated processing of electron diffraction data in IPLT
Schenk, Andreas D.; Philippsen, Ansgar; Engel, Andreas; Walz, Thomas
2013-01-01
Electron crystallography of two-dimensional crystals allows the structural study of membrane proteins in their native environment, the lipid bilayer. Determining the structure of a membrane protein at near-atomic resolution by electron crystallography remains, however, a very labor-intense and time-consuming task. To simplify and accelerate the data processing aspect of electron crystallography, we implemented a pipeline for the processing of electron diffraction data using the Image Processing Library & Toolbox (IPLT), which provides a modular, flexible, integrated, and extendable cross-platform, open-source framework for image processing. The diffraction data processing pipeline is organized as several independent modules implemented in Python. The modules can be accessed either from a graphical user interface or through a command line interface, thus meeting the needs of both novice and expert users. The low-level image processing algorithms are implemented in C++ to achieve optimal processing performance, and their interface is exported to Python using a wrapper. For enhanced performance, the Python processing modules are complemented with a central data managing facility that provides a caching infrastructure. The validity of our data processing algorithms was verified by processing a set of aquaporin-0 diffraction patterns with the IPLT pipeline and comparing the resulting merged data set with that obtained by processing the same diffraction patterns with the classical set of MRC programs. PMID:23500887
Homology-based hydrogen bond information improves crystallographic structures in the PDB.
van Beusekom, Bart; Touw, Wouter G; Tatineni, Mahidhar; Somani, Sandeep; Rajagopal, Gunaretnam; Luo, Jinquan; Gilliland, Gary L; Perrakis, Anastassis; Joosten, Robbie P
2018-03-01
The Protein Data Bank (PDB) is the global archive for structural information on macromolecules, and a popular resource for researchers, teachers, and students, amassing more than one million unique users each year. Crystallographic structure models in the PDB (more than 100,000 entries) are optimized against the crystal diffraction data and geometrical restraints. This process of crystallographic refinement typically ignored hydrogen bond (H-bond) distances as a source of information. However, H-bond restraints can improve structures at low resolution where diffraction data are limited. To improve low-resolution structure refinement, we present methods for deriving H-bond information either globally from well-refined high-resolution structures from the PDB-REDO databank, or specifically from on-the-fly constructed sets of homologous high-resolution structures. Refinement incorporating HOmology DErived Restraints (HODER), improves geometrical quality and the fit to the diffraction data for many low-resolution structures. To make these improvements readily available to the general public, we applied our new algorithms to all crystallographic structures in the PDB: using massively parallel computing, we constructed a new instance of the PDB-REDO databank (https://pdb-redo.eu). This resource is useful for researchers to gain insight on individual structures, on specific protein families (as we demonstrate with examples), and on general features of protein structure using data mining approaches on a uniformly treated dataset. © 2017 The Protein Society.
Enhancement of structure images of interstellar diamond microcrystals by image processing
NASA Technical Reports Server (NTRS)
O'Keefe, Michael A.; Hetherington, Crispin; Turner, John; Blake, David; Freund, Friedemann
1988-01-01
Image processed high resolution TEM images of diamond crystals found in oxidized acid residues of carbonaceous chondrites are presented. Two models of the origin of the diamonds are discussed. The model proposed by Lewis et al. (1987) supposes that the diamonds formed under low pressure conditions, whereas that of Blake et al (1988) suggests that the diamonds formed due to particle-particle collisions behind supernova shock waves. The TEM images of the diamond presented support the high pressure model.
Observation of twinning in diamond CVD films
NASA Astrophysics Data System (ADS)
Marciniak, W.; Fabisiak, K.; Orzeszko, S.; Rozploch, F.
1992-10-01
Diamond particles prepared by dc-glow-discharge enhanced HF-CVD hybrid method, from a mixture of acetone vapor and hydrogen gas have been examined by TEM, RHEED and dark field method of observation. Results suggest the presence of twinned diamond particles, which can be reconstructed by a sequence of twinning operations. Contrary to the 'stick model' of the lattice, very common five-fold symmetry of diamond microcrystals may be obtained by applying a number of edge dislocations rather than the continuous deformation of many tetrahedral C-C bonds.
Metamagnetism and weak ferromagnetism in nickel (II) oxalate crystals
NASA Astrophysics Data System (ADS)
Romero-Tela, E.; Mendoza, M. E.; Escudero, R.
2012-05-01
Microcrystals of orthorhombic nickel (II) oxalate dihydrate were synthesized through a precipitation reaction of aqueous solutions of nickel chloride and oxalic acid. Magnetic susceptibility exhibits a sharp peak at 3.3 K and a broad rounded maximum near 43 K. We associated the lower maximum with a metamagnetic transition that occurs when the magnetic field is about ≥ 3.5 T. The maximum at 43 K is typical of 1D antiferromagnets, whereas weak ferromagnetism behavior was observed in the range of 3.3-43 K.
NASA Astrophysics Data System (ADS)
Ohmichi, Eiji; Miki, Toshihiro; Horie, Hidekazu; Okamoto, Tsubasa; Takahashi, Hideyuki; Higashi, Yoshinori; Itoh, Shoichi; Ohta, Hitoshi
2018-02-01
We developed piezoresistive microcantilevers for mechanically detected electron spin resonance (ESR) in the millimeter-wave region. In this article, fabrication process and device characterization of our self-sensing microcantilevers are presented. High-frequency ESR measurements of a microcrystal of paramagnetic sample is also demonstrated at multiple frequencies up to 160 GHz at liquid helium temperature. Our fabrication is based on relatively simplified processes with silicon-on-insulator (SOI) wafers and spin-on diffusion doping, thus enabling cost-effective and time-saving cantilever fabrication.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohtsuki, Takayuki; Ohshima, Shigeru; Uchida, Akira, E-mail: auchida@biomol.sci.toho-u.ac.jp
2007-09-01
A water-soluble chlorophyll-binding protein with photoconvertibility from C. album was extracted, purified and crystallized in a darkroom. The crystal diffracted to around 2.0 Å resolution. A water-soluble chlorophyll-binding protein (WSCP) with photoconvertibility from Chenopodium album was extracted, purified and crystallized in a darkroom. Green crystals suitable for data collection appeared in about 10 d. A native data set was collected to 2.0 Å resolution at 100 K. The space group of the crystal was determined to be orthorhombic I222 or I2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 48.13, b = 60.59, c = 107.21 Å. Preliminary analysis ofmore » the X-ray data indicated that there is one molecule per asymmetric unit.« less
Cleverley, Steve; Chen, Irene; Houle, Jean-François
2010-01-15
Immunoaffinity approaches remain invaluable tools for characterization and quantitation of biopolymers. Their application in separation science is often limited due to the challenges of immunoassay development. Typical end-point immunoassays require time consuming and labor-intensive approaches for optimization. Real-time label-free analysis using diffractive optics technology (dot) helps guide a very effective iterative process for rapid immunoassay development. Both label-free and amplified approaches can be used throughout feasibility testing and ultimately in the final assay, providing a robust platform for biopolymer analysis over a very broad dynamic range. We demonstrate the use of dot in rapidly developing assays for quantitating (1) human IgG in complex media, (2) a fusion protein in production media and (3) protein A contamination in purified immunoglobulin preparations. 2009 Elsevier B.V. All rights reserved.
Process for Encapsulating Protein Crystals
NASA Technical Reports Server (NTRS)
Morrison, Dennis R.; Mosier, Benjamin
2003-01-01
A process for growing protein crystals encapsulated within membranes has been invented. This process begins with the encapsulation of a nearly saturated aqueous protein solution inside semipermeable membranes to form microcapsules. The encapsulation is effected by use of special formulations of a dissolved protein and a surfactant in an aqueous first liquid phase, which is placed into contact with a second, immiscible liquid phase that contains one or more polymers that are insoluble in the first phase. The second phase becomes formed into the semipermeable membranes that surround microglobules of the first phase, thereby forming the microcapsules. Once formed, the microcapsules are then dehydrated osmotically by exposure to a concentrated salt or polymer solution. The dehydration forms supersaturated solutions inside the microcapsules, thereby enabling nucleation and growth of protein crystals inside the microcapsules. By suitable formulation of the polymer or salt solution and of other physical and chemical parameters, one can control the rate of transport of water out of the microcapsules through the membranes and thereby create physicochemical conditions that favor the growth, within each microcapsule, of one or a few large crystals suitable for analysis by x-ray diffraction. The membrane polymer can be formulated to consist of low-molecular-weight molecules that do not interfere with the x-ray diffraction analysis of the encapsulated crystals. During dehydration, an electrostatic field can be applied to exert additional control over the rate of dehydration. This protein-crystal-encapsulation process is expected to constitute the basis of protein-growth experiments to be performed on the space shuttle and the International Space Station. As envisioned, the experiments would involve the exposure of immiscible liquids to each other in sequences of steps under microgravitational conditions. The experiments are expected to contribute to knowledge of the precise conditions under which protein crystals form. By enhancing the ability to grow crystals suitable for x-ray diffraction analysis, this knowledge can be expected to benefit not only the space program but also medicine and the pharmaceutical industry.
Imaging whole Escherichia coli bacteria by using single-particle x-ray diffraction
NASA Astrophysics Data System (ADS)
Miao, Jianwei; Hodgson, Keith O.; Ishikawa, Tetsuya; Larabell, Carolyn A.; Legros, Mark A.; Nishino, Yoshinori
2003-01-01
We report the first experimental recording, to our knowledge, of the diffraction pattern from intact Escherichia coli bacteria using coherent x-rays with a wavelength of 2 Å. By using the oversampling phasing method, a real space image at a resolution of 30 nm was directly reconstructed from the diffraction pattern. An R factor used for characterizing the quality of the reconstruction was in the range of 5%, which demonstrated the reliability of the reconstruction process. The distribution of proteins inside the bacteria labeled with manganese oxide has been identified and this distribution confirmed by fluorescence microscopy images. Compared with lens-based microscopy, this diffraction-based imaging approach can examine thicker samples, such as whole cultured cells, in three dimensions with resolution limited only by radiation damage. Looking forward, the successful recording and reconstruction of diffraction patterns from biological samples reported here represent an important step toward the potential of imaging single biomolecules at near-atomic resolution by combining single-particle diffraction with x-ray free electron lasers.
Radiation damage free ghost diffraction with atomic resolution
Li, Zheng; Medvedev, Nikita; Chapman, Henry N.; ...
2017-12-21
The x-ray free electron lasers can enable diffractive structural determination of protein nanocrystals and single molecules that are too small and radiation-sensitive for conventional x-ray diffraction. However the electronic form factor may be modified during the ultrashort x-ray pulse due to photoionization and electron cascade caused by the intense x-ray pulse. For general x-ray imaging techniques, the minimization of the effects of radiation damage is of major concern to ensure reliable reconstruction of molecular structure. Here in this paper, we show that radiation damage free diffraction can be achieved with atomic spatial resolution by using x-ray parametric down-conversion and ghostmore » diffraction with entangled photons of x-ray and optical frequencies. We show that the formation of the diffraction patterns satisfies a condition analogous to the Bragg equation, with a resolution that can be as fine as the crystal lattice length scale of several Ångstrom. Since the samples are illuminated by low energy optical photons, they can be free of radiation damage.« less
Radiation damage free ghost diffraction with atomic resolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zheng; Medvedev, Nikita; Chapman, Henry N.
The x-ray free electron lasers can enable diffractive structural determination of protein nanocrystals and single molecules that are too small and radiation-sensitive for conventional x-ray diffraction. However the electronic form factor may be modified during the ultrashort x-ray pulse due to photoionization and electron cascade caused by the intense x-ray pulse. For general x-ray imaging techniques, the minimization of the effects of radiation damage is of major concern to ensure reliable reconstruction of molecular structure. Here in this paper, we show that radiation damage free diffraction can be achieved with atomic spatial resolution by using x-ray parametric down-conversion and ghostmore » diffraction with entangled photons of x-ray and optical frequencies. We show that the formation of the diffraction patterns satisfies a condition analogous to the Bragg equation, with a resolution that can be as fine as the crystal lattice length scale of several Ångstrom. Since the samples are illuminated by low energy optical photons, they can be free of radiation damage.« less
The solvation structure of alprazolam.
Sridhar, Akshay; Johnston, Andrew J; Varathan, Luxmmi; McLain, Sylvia E; Biggin, Philip C
2016-08-10
Alprazolam is a benzodiazepine that is commonly prescribed for the treatment of anxiety and other related disorders. Like other benzodiazepines, it is thought to exert its effect through interaction with GABAA receptors. However, it has also been described as a potent and selective protein interaction inhibitor of bromodomain and extra-terminal (BET) proteins. Indeed, the only crystal structure of alprazolam bound to a protein is a complex between alprazolam and the BRD4 bromodomain. The structure shows that the complex also involves many water interactions that mediate contacts between the drug and the protein, a scenario that exists in many drug-protein complexes. How such waters relate to solvation patterns of small molecules may improve our understanding of what dictates their appearance or absence in bridging positions within complexes and thus will be important in terms of future rational drug-design. Here, we use neutron diffraction in conjunction with molecular dynamics simulations to provide a detailed analysis of how water molecules interact with alprazolam in methanol/water mixtures. The agreement between the neutron diffraction and the molecular dynamics is extremely good. We discuss the results in the context of drug design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molina, Rafael; González, Ana; Moscoso, Miriam
2007-09-01
The modular choline-binding protein F (CbpF) from S. pneumoniae has been crystallized by the hanging-drop vapour-diffusion method. A SAD data set from a gadolinium-complex derivative has been collected to 2.1 Å resolution. Choline-binding protein F (CbpF) is a modular protein that is bound to the pneumococcal cell wall through noncovalent interactions with choline moieties of the bacterial teichoic and lipoteichoic acids. Despite being one of the more abundant proteins on the surface, along with the murein hydrolases LytA, LytB, LytC and Pce, its function is still unknown. CbpF has been crystallized using the hanging-drop vapour-diffusion method at 291 K. Diffraction-qualitymore » orthorhombic crystals belong to space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 49.13, b = 114.94, c = 75.69 Å. A SAD data set from a Gd-HPDO3A-derivatized CbpF crystal was collected to 2.1 Å resolution at the gadolinium L{sub III} absorption edge using synchrotron radiation.« less
Protein crystallography beamline BL2S1 at the Aichi synchrotron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, Nobuhisa; Nagae, Takayuki; Yamada, Yusuke
The protein crystallography beamline BL2S1, constructed at one of the 5 T superconducting bending-magnet ports of the Aichi synchrotron, is available to users associated with academic and industrial organizations. The beamline is mainly intended for use in X-ray diffraction measurements of single-crystals of macromolecules such as proteins and nucleic acids. Diffraction measurements for crystals of other materials are also possible, such as inorganic and organic compounds. BL2S1 covers the energy range 7–17 keV (1.8–0.7 Å) with an asymmetric-cut curved single-crystal monochromator [Ge(111) or Ge(220)], and a platinum-coated Si mirror is used for vertical focusing and as a higher-order cutoff filter.more » The beamline is equipped with a single-axis goniometer, a CCD detector, and an open-flow cryogenic sample cooler. Lastly, high-pressure protein crystallography with a diamond anvil cell can also be performed using this beamline.« less
Protein crystallography beamline BL2S1 at the Aichi synchrotron.
Watanabe, Nobuhisa; Nagae, Takayuki; Yamada, Yusuke; Tomita, Ayana; Matsugaki, Naohiro; Tabuchi, Masao
2017-01-01
The protein crystallography beamline BL2S1, constructed at one of the 5 T superconducting bending-magnet ports of the Aichi synchrotron, is available to users associated with academic and industrial organizations. The beamline is mainly intended for use in X-ray diffraction measurements of single-crystals of macromolecules such as proteins and nucleic acids. Diffraction measurements for crystals of other materials are also possible, such as inorganic and organic compounds. BL2S1 covers the energy range 7-17 keV (1.8-0.7 Å) with an asymmetric-cut curved single-crystal monochromator [Ge(111) or Ge(220)], and a platinum-coated Si mirror is used for vertical focusing and as a higher-order cutoff filter. The beamline is equipped with a single-axis goniometer, a CCD detector, and an open-flow cryogenic sample cooler. High-pressure protein crystallography with a diamond anvil cell can also be performed using this beamline.
Petty, Tom J.; Nishimura, Taisuke; Emamzadah, Soheila; Gabus, Caroline; Paszkowski, Jerzy; Halazonetis, Thanos D.; Thore, Stéphane
2010-01-01
Of the known epigenetic control regulators found in plants, the Morpheus’ molecule 1 (MOM1) protein is atypical in that the deletion of MOM1 does not affect the level of epigenetic marks controlling the transcriptional status of the genome. A short 197-amino-acid fragment of the MOM1 protein sequence can complement MOM1 deletion when coupled to a nuclear localization signal, suggesting that this region contains a functional domain that compensates for the loss of the full-length protein. Numerous constructs centred on the highly conserved MOM1 motif 2 (CMM2) present in these 197 residues have been generated and expressed in Escherichia coli. Following purification and crystallization screening, diamond-shaped single crystals were obtained that diffracted to ∼3.2 Å resolution. They belonged to the trigonal space group P3121 (or P3221), with unit-cell parameters a = 85.64, c = 292.74 Å. Structure determination is ongoing. PMID:20693667
Petty, Tom J; Nishimura, Taisuke; Emamzadah, Soheila; Gabus, Caroline; Paszkowski, Jerzy; Halazonetis, Thanos D; Thore, Stéphane
2010-08-01
Of the known epigenetic control regulators found in plants, the Morpheus' molecule 1 (MOM1) protein is atypical in that the deletion of MOM1 does not affect the level of epigenetic marks controlling the transcriptional status of the genome. A short 197-amino-acid fragment of the MOM1 protein sequence can complement MOM1 deletion when coupled to a nuclear localization signal, suggesting that this region contains a functional domain that compensates for the loss of the full-length protein. Numerous constructs centred on the highly conserved MOM1 motif 2 (CMM2) present in these 197 residues have been generated and expressed in Escherichia coli. Following purification and crystallization screening, diamond-shaped single crystals were obtained that diffracted to approximately 3.2 A resolution. They belonged to the trigonal space group P3(1)21 (or P3(2)21), with unit-cell parameters a=85.64, c=292.74 A. Structure determination is ongoing.
Structure determination of an integral membrane protein at room temperature from crystals in situ
DOE Office of Scientific and Technical Information (OSTI.GOV)
Axford, Danny; Foadi, James; Imperial College London, London SW7 2AZ
2015-05-14
The X-ray structure determination of an integral membrane protein using synchrotron diffraction data measured in situ at room temperature is demonstrated. The structure determination of an integral membrane protein using synchrotron X-ray diffraction data collected at room temperature directly in vapour-diffusion crystallization plates (in situ) is demonstrated. Exposing the crystals in situ eliminates manual sample handling and, since it is performed at room temperature, removes the complication of cryoprotection and potential structural anomalies induced by sample cryocooling. Essential to the method is the ability to limit radiation damage by recording a small amount of data per sample from many samplesmore » and subsequently assembling the resulting data sets using specialized software. The validity of this procedure is established by the structure determination of Haemophilus influenza TehA at 2.3 Å resolution. The method presented offers an effective protocol for the fast and efficient determination of membrane-protein structures at room temperature using third-generation synchrotron beamlines.« less
NASA Astrophysics Data System (ADS)
Yang, Guangrui; Qin, Dezhi; Zhang, Li
2014-06-01
A simple, convenient, and controllable strategy was reported in this contribution for protein-assisted synthesis BHb-conjugated PbS nanocubes. Powder X-ray diffraction, energy disperse X-ray spectroscopy, transmission electron microscopy, high-resolution transmission electron microscopy, and selected-area electron diffraction characterizations were used to determine the structure and morphology of BHb-conjugated PbS nanocubes. The prepared PbS nanocrystals with cubic rock salt structure were uniform and monodispersed with homogeneous size around 12 nm. The results of Fourier transform infrared and circular dichroism assay proved that Pb2+/PbS had coordination interaction with functional groups of BHb besides physical-binding effect, and the secondary structure of protein significantly changed with this interaction. Thermogravimetric analysis results confirmed the existence of BHb in PbS nanocrystals and indicated that the conjugate bonds existed between PbS and BHb. A clear perspective was shown here that special nanostructure could be created by using proteins as a mediating template at the inorganic-organic interface.
The plug-based nanovolume Microcapillary Protein Crystallization System (MPCS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerdts, Cory J.; Elliott, Mark; Lovell, Scott
2012-02-08
The Microcapillary Protein Crystallization System (MPCS) embodies a new semi-automated plug-based crystallization technology which enables nanolitre-volume screening of crystallization conditions in a plasticware format that allows crystals to be easily removed for traditional cryoprotection and X-ray diffraction data collection. Protein crystals grown in these plastic devices can be directly subjected to in situ X-ray diffraction studies. The MPCS integrates the formulation of crystallization cocktails with the preparation of the crystallization experiments. Within microfluidic Teflon tubing or the microfluidic circuitry of a plastic CrystalCard, {approx}10-20 nl volume droplets are generated, each representing a microbatch-style crystallization experiment with a different chemical composition.more » The entire protein sample is utilized in crystallization experiments. Sparse-matrix screening and chemical gradient screening can be combined in one comprehensive 'hybrid' crystallization trial. The technology lends itself well to optimization by high-granularity gradient screening using optimization reagents such as precipitation agents, ligands or cryoprotectants.« less
Crystallization screening test for the whole-cell project on Thermus thermophilus HB8
Iino, Hitoshi; Naitow, Hisashi; Nakamura, Yuki; Nakagawa, Noriko; Agari, Yoshihiro; Kanagawa, Mayumi; Ebihara, Akio; Shinkai, Akeo; Sugahara, Mitsuaki; Miyano, Masashi; Kamiya, Nobuo; Yokoyama, Shigeyuki; Hirotsu, Ken; Kuramitsu, Seiki
2008-01-01
It was essential for the structural genomics of Thermus thermophilus HB8 to efficiently crystallize a number of proteins. To this end, three conventional robots, an HTS-80 (sitting-drop vapour diffusion), a Crystal Finder (hanging-drop vapour diffusion) and a TERA (modified microbatch) robot, were subjected to a crystallization condition screening test involving 18 proteins from T. thermophilus HB8. In addition, a TOPAZ (microfluidic free-interface diffusion) designed specifically for initial screening was also briefly examined. The number of diffraction-quality crystals and the time of appearance of crystals increased in the order HTS-80, Crystal Finder, TERA. With the HTS-80 and Crystal Finder, the time of appearance was short and the rate of salt crystallization was low. With the TERA, the number of diffraction-quality crystals was high, while the time of appearance was long and the rate of salt crystallization was relatively high. For the protein samples exhibiting low crystallization success rates, there were few crystallization conditions that were common to the robots used. In some cases, the success rate depended greatly on the robot used. The TOPAZ showed the shortest time of appearance and the highest success rate, although the crystals obtained were too small for diffraction studies. These results showed that the combined use of different robots significantly increases the chance of obtaining crystals, especially for proteins exhibiting low crystallization success rates. The structures of 360 of 944 purified proteins have been successfully determined through the combined use of an HTS-80 and a TERA. PMID:18540056
Mine, Shouhei; Nakamura, Tsutomu; Hirata, Kunio; Ishikawa, Kazuhiko; Hagihara, Yoshihisa; Uegaki, Koichi
2006-01-01
The crystallization and preliminary X-ray diffraction analysis of a catalytic domain of chitinase (PF1233 gene) from the hyperthermophilic archaeon Pyrococcus furiosus is reported. The recombinant protein, prepared using an Escherichia coli expression system, was crystallized by the hanging-drop vapour-diffusion method. An X-ray diffraction data set was collected at the undulator beamline BL44XU at SPring-8 to a resolution of 1.50 Å. The crystals belong to space group P212121, with unit-cell parameters a = 90.0, b = 92.8, c = 107.2 Å. PMID:16880559
Recombinant Reflectin-Based Optical Materials
2012-01-01
sili- con substrates were placed in a sealed plastic box. The RH was controlled using a Dydra electronic cigar humidifier and monitored using a Fisher...diffraction gratings to generate diffraction patterns. Nano-spheres and la- mellar microstructures of refCBA samples were observed by scanning electron ...samples were observed by scanning electron microscopy and atomic force microscopy. Despite the reduced complexity of the refCBA protein compared to natural
Synthesis and Characterization of Functional Mesostructures Using Colloidal Crystal Templating
2004-01-01
fluorescent probes in aqueous polymer solutions . Khoury and co-workers measured the diffusion coefficient of several fluorescein-labeled proteins in...diffraction naq refractive index of the aqueous solution phase xvii ni refractive index of component i ngel refractive index of the hydrogel...phase Tg glass transition temperature α angle of diffraction φaq volume fraction of the aqueous solution phase φi volume fraction of
Naqvi, Kubra F.; Staker, Bart L.; Dobson, Renwick C. J.; ...
2016-01-01
The enzyme dihydrodipicolinate synthase catalyzes the committed step in the synthesis of diaminopimelate and lysine to facilitate peptidoglycan and protein synthesis. Dihydrodipicolinate synthase catalyzes the condensation of L-aspartate 4-semialdehyde and pyruvate to synthesize L-2,3-dihydrodipicolinate. Here, the cloning, expression, purification, crystallization and X-ray diffraction analysis of dihydrodipicolinate synthase from the pathogenic bacteriumBartonella henselae, the causative bacterium of cat-scratch disease, are presented. Protein crystals were grown in conditions consisting of 20%(w/v) PEG 4000, 100 mMsodium citrate tribasic pH 5.5 and were shown to diffract to ~2.10 Å resolution. They belonged to space groupP2 12 12 1, with unit-cell parametersa= 79.96,b= 106.33,c= 136.25more » Å. The finalRvalues wereR r.i.m.= 0.098,R work= 0.183,R free= 0.233.« less
Jarrott, R; Shouldice, S R; Guncar, G; Totsika, M; Schembri, M A; Heras, B
2010-05-01
Pathogens require protein-folding enzymes to produce functional virulence determinants. These foldases include the Dsb family of proteins, which catalyze oxidative folding in bacteria. Bacterial disulfide catalytic processes have been well characterized in Escherichia coli K-12 and these mechanisms have been extrapolated to other organisms. However, recent research indicates that the K-12 complement of Dsb proteins is not common to all bacteria. Importantly, many pathogenic bacteria have an extended arsenal of Dsb catalysts that is linked to their virulence. To help to elucidate the process of oxidative folding in pathogens containing a wide repertoire of Dsb proteins, Salmonella enterica serovar Typhimurium has been focused on. This Gram-negative bacterium contains three DsbA proteins: SeDsbA, SeDsbL and SeSrgA. Here, the expression, purification, crystallization and preliminary diffraction analysis of these three proteins are reported. SeDsbA, SeDsbL and SeSrgA crystals diffracted to resolution limits of 1.55, 1.57 and 2.6 A and belonged to space groups P2(1), P2(1)2(1)2 and C2, respectively.
Ohki, Taku; Mizuno, Nobuhiro; Shibata, Naoki; Takeo, Masahiro; Negoro, Seiji; Higuchi, Yoshiki
2005-01-01
To investigate the structure–function relationship between 6-aminohexanoate-dimer hydrolase (EII) from Arthrobacter sp. and a cryptic protein (EII′) which shows 88% sequence identity to EII, a hybrid protein (named Hyb-24) of EII and EII′ was overexpressed, purified and crystallized using the sitting-drop vapour-diffusion method with ammonium sulfate as a precipitant in MES buffer pH 6.5. The crystal belongs to space group P3121 or P3221, with unit-cell parameters a = b = 96.37, c = 113.09 Å. Diffraction data were collected from native and methylmercuric chloride derivative crystals to resolutions of 1.75 and 1.80 Å, respectively. PMID:16511198
NASA Astrophysics Data System (ADS)
Zhang, Ying; Cui, Weidong; Wecksler, Aaron T.; Zhang, Hao; Molina, Patricia; Deperalta, Galahad; Gross, Michael L.
2016-07-01
Native mass spectrometry (MS) and top-down electron-capture dissociation (ECD) combine as a powerful approach for characterizing large proteins and protein assemblies. Here, we report their use to study an antibody Fab (Fab-1)-VEGF complex in its near-native state. Native ESI with analysis by FTICR mass spectrometry confirms that VEGF is a dimer in solution and that its complex with Fab-1 has a binding stoichiometry of 2:2. Applying combinations of collisionally activated dissociation (CAD), ECD, and infrared multiphoton dissociation (IRMPD) allows identification of flexible regions of the complex, potentially serving as a guide for crystallization and X-ray diffraction analysis.
Progression of 3D Protein Structure and Dynamics Measurements
NASA Astrophysics Data System (ADS)
Sato-Tomita, Ayana; Sekiguchi, Hiroshi; Sasaki, Yuji C.
2018-06-01
New measurement methodologies have begun to be proposed with the recent progress in the life sciences. Here, we introduce two new methodologies, X-ray fluorescence holography for protein structural analysis and diffracted X-ray tracking (DXT), to observe the dynamic behaviors of individual single molecules.
MacKay, Mark; Anderson, Collin
2015-08-01
The solubility of inorganic calcium and phosphate in parenteral solutions can be complicated in pediatrics due to the dosing of calcium and phosphorus at the saturation point. The purpose of this study was to test the solubility of sodium glycerophosphate (NaGP) with calcium gluconate in pediatric parenteral nutrition (PN) solutions. Five PN solutions were compounded by adding calcium gluconate at 10, 20, 30, 40, and 50 mEq/L and corresponding concentrations of NaGP at 10, 20, 30, 40, and 50 mmol/L. Each of the 5 solutions was compounded using 1.5% and 4% amino acids, cysteines, and lipids. Compatibility was evaluated by visual inspection (precipitation, haze, and color change). Solutions were evaluated microscopically for any microcrystals and measured by a turbidimeter for changes in turbidity. Solutions were further analyzed using United States Pharmacopeia 788 standards. Six hundred seventy-one PN solutions were compounded at various concentrations and evaluated for visual stability. Compatibility testing showed no changes in the PN solution in any of the concentrations tested. Microscopically, no microcrystals were detected. The turbidimeter measurements had changes of ≤ 0.14 nephelometric turbidity units for all test solutions. There were no visual changes in any of the 671 PN solutions. It is recommended that NaGP replace sodium phosphate in PN solutions. This would eliminate the concern of calcium and phosphorus precipitation and the need of any saturation curves. © 2014 American Society for Parenteral and Enteral Nutrition.
Coherent X-ray diffraction from collagenous soft tissues
Berenguer de la Cuesta, Felisa; Wenger, Marco P. E.; Bean, Richard J.; Bozec, Laurent; Horton, Michael A.; Robinson, Ian K.
2009-01-01
Coherent X-ray diffraction has been applied in the imaging of inorganic materials with great success. However, its application to biological specimens has been limited to some notable exceptions, due to the induced radiation damage and the extended nature of biological samples, the last limiting the application of most part of the phasing algorithms. X-ray ptychography, still under development, is a good candidate to overcome such difficulties and become a powerful imaging method for biology. We describe herein the feasibility of applying ptychography to the imaging of biological specimens, in particular collagen rich samples. We report here speckles in diffraction patterns from soft animal tissue, obtained with an optimized small angle X-ray setup that exploits the natural coherence of the beam. By phasing these patterns, dark field images of collagen within tendon, skin, bone, or cornea will eventually be obtained with a resolution of 60–70 nm. We present simulations of the contrast mechanism in collagen based on atomic force microscope images of the samples. Simulations confirmed the ‘speckled’ nature of the obtained diffraction patterns. Once inverted, the patterns will show the disposition and orientation of the fibers within the tissue, by enhancing the phase contrast between protein and no protein regions of the sample. Our work affords the application of the most innovative coherent X-ray diffraction tools to the study of biological specimens, and this approach will have a significant impact in biology and medicine because it overcomes many of the limits of current microscopy techniques. PMID:19706395
Coherent X-ray diffraction from collagenous soft tissues.
Berenguer de la Cuesta, Felisa; Wenger, Marco P E; Bean, Richard J; Bozec, Laurent; Horton, Michael A; Robinson, Ian K
2009-09-08
Coherent X-ray diffraction has been applied in the imaging of inorganic materials with great success. However, its application to biological specimens has been limited to some notable exceptions, due to the induced radiation damage and the extended nature of biological samples, the last limiting the application of most part of the phasing algorithms. X-ray ptychography, still under development, is a good candidate to overcome such difficulties and become a powerful imaging method for biology. We describe herein the feasibility of applying ptychography to the imaging of biological specimens, in particular collagen rich samples. We report here speckles in diffraction patterns from soft animal tissue, obtained with an optimized small angle X-ray setup that exploits the natural coherence of the beam. By phasing these patterns, dark field images of collagen within tendon, skin, bone, or cornea will eventually be obtained with a resolution of 60-70 nm. We present simulations of the contrast mechanism in collagen based on atomic force microscope images of the samples. Simulations confirmed the 'speckled' nature of the obtained diffraction patterns. Once inverted, the patterns will show the disposition and orientation of the fibers within the tissue, by enhancing the phase contrast between protein and no protein regions of the sample. Our work affords the application of the most innovative coherent X-ray diffraction tools to the study of biological specimens, and this approach will have a significant impact in biology and medicine because it overcomes many of the limits of current microscopy techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gati, Cornelius; Oberthuer, Dominik; Yefanov, Oleksandr
To understand how molecules function in biological systems, new methods are required to obtain atomic resolution structures from biological material under physiological conditions. Intense femtosecond-duration pulses from X-ray free-electron lasers (XFELs) can outrun most damage processes, vastly increasing the tolerable dose before the specimen is destroyed. This in turn allows structure determination from crystals much smaller and more radiation sensitive than previously considered possible, allowing data collection from room temperature structures and avoiding structural changes due to cooling. Regardless, high-resolution structures obtained from XFEL data mostly use crystals far larger than 1 μm3 in volume, whereas the X-ray beam ismore » often attenuated to protect the detector from damage caused by intense Bragg spots. Here, we describe the 2 Å resolution structure of native nanocrystalline granulovirus occlusion bodies (OBs) that are less than 0.016 μm3 in volume using the full power of the Linac Coherent Light Source (LCLS) and a dose up to 1.3 GGy per crystal. The crystalline shell of granulovirus OBs consists, on average, of about 9,000 unit cells, representing the smallest protein crystals to yield a high-resolution structure by X-ray crystallography to date. The XFEL structure shows little to no evidence of radiation damage and is more complete than a model determined using synchrotron data from recombinantly produced, much larger, cryocooled granulovirus granulin microcrystals. Furthermore, our measurements suggest that it should be possible, under ideal experimental conditions, to obtain data from protein crystals with only 100 unit cells in volume using currently available XFELs and suggest that single-molecule imaging of individual biomolecules could almost be within reach.« less
Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser
Kupitz, Christopher; Basu, Shibom; Grotjohann, Ingo; Fromme, Raimund; Zatsepin, Nadia A.; Rendek, Kimberly N.; Hunter, Mark S.; Shoeman, Robert L.; White, Thomas A.; Wang, Dingjie; James, Daniel; Yang, Jay-How; Cobb, Danielle E.; Reeder, Brenda; Sierra, Raymond G.; Liu, Haiguang; Barty, Anton; Aquila, Andrew L.; Deponte, Daniel; Kirian, Richard A.; Bari, Sadia; Bergkamp, Jesse J.; Beyerlein, Kenneth R.; Bogan, Michael J.; Caleman, Carl; Chao, Tzu-Chiao; Conrad, Chelsie E.; Davis, Katherine M.; Fleckenstein, Holger; Galli, Lorenzo; Hau-Riege, Stefan P.; Kassemeyer, Stephan; Laksmono, Hartawan; Liang, Mengning; Lomb, Lukas; Marchesini, Stefano; Martin, Andrew V.; Messerschmidt, Marc; Milathianaki, Despina; Nass, Karol; Ros, Alexandra; Roy-Chowdhury, Shatabdi; Schmidt, Kevin; Seibert, Marvin; Steinbrener, Jan; Stellato, Francesco; Yan, Lifen; Yoon, Chunhong; Moore, Thomas A.; Moore, Ana L.; Pushkar, Yulia; Williams, Garth J.; Boutet, Sébastien; Doak, R. Bruce; Weierstall, Uwe; Frank, Matthias; Chapman, Henry N.; Spence, John C. H.; Fromme, Petra
2015-01-01
Photosynthesis, a process catalysed by plants, algae and cyanobacteria converts sunlight to energy thus sustaining all higher life on Earth. Two large membrane protein complexes, photosystem I and II (PSI and PSII), act in series to catalyse the light-driven reactions in photosynthesis. PSII catalyses the light-driven water splitting process, which maintains the Earth’s oxygenic atmosphere1. In this process, the oxygen-evolving complex (OEC) of PSII cycles through five states, S0 to S4, in which four electrons are sequentially extracted from the OEC in four light-driven charge-separation events. Here we describe time resolved experiments on PSII nano/microcrystals from Thermosynechococcus elongatus performed with the recently developed2 technique of serial femtosecond crystallography. Structures have been determined from PSII in the dark S1 state and after double laser excitation (putative S3 state) at 5 and 5.5 Å resolution, respectively. The results provide evidence that PSII undergoes significant conformational changes at the electron acceptor side and at the Mn4CaO5 core of the OEC. These include an elongation of the metal cluster, accompanied by changes in the protein environment, which could allow for binding of the second substrate water molecule between the more distant protruding Mn (referred to as the ‘dangler’ Mn) and the Mn3CaOx cubane in the S2 to S3 transition, as predicted by spectroscopic and computational studies3,4. This work shows the great potential for time-resolved serial femtosecond crystallography for investigation of catalytic processes in biomolecules. PMID:25043005
Low-resolution structure of Drosophila translin
Kumar, Vinay; Gupta, Gagan D.
2012-01-01
Crystals of native Drosophila melanogaster translin diffracted to 7 Å resolution. Reductive methylation of the protein improved crystal quality. The native and methylated proteins showed similar profiles in size-exclusion chromatography analyses but the methylated protein displayed reduced DNA-binding activity. Crystals of the methylated protein diffracted to 4.2 Å resolution at BM14 of the ESRF synchrotron. Crystals with 49% solvent content belonged to monoclinic space group P21 with eight protomers in the asymmetric unit. Only 2% of low-resolution structures with similar low percentage solvent content were found in the PDB. The crystal structure, solved by molecular replacement method, refined to Rwork (Rfree) of 0.24 (0.29) with excellent stereochemistry. The crystal structure clearly shows that drosophila protein exists as an octamer, and not as a decamer as expected from gel-filtration elution profiles. The similar octameric quaternary fold in translin orthologs and in translin–TRAX complexes suggests an up-down dimer as the basic structural subunit of translin-like proteins. The drosophila oligomer displays asymmetric assembly and increased radius of gyration that accounts for the observed differences between the elution profiles of human and drosophila proteins on gel-filtration columns. This study demonstrates clearly that low-resolution X-ray structure can be useful in understanding complex biological oligomers. PMID:23650579
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yan-Feng; Li, Lan-Fen; Yang, Cheng
2008-01-01
SMU.573 from S. mutans was expressed in E. coli and crystallized. The crystals belong to space group I4 and 2.5 Å resolution diffraction data were collected at an in-house chromium radiation source. SMU.573 from Streptococcus mutans is a structurally and functionally uncharacterized protein that was selected for structural biology studies. Native and SeMet-labelled proteins were expressed with an N-His tag in Escherichia coli BL21 (DE3) and purified by Ni{sup 2+}-chelating and size-exclusion chromatography. Crystals of the SeMet-labelled protein were obtained by the hanging-drop vapour-diffusion method and a 2.5 Å resolution diffraction data set was collected using an in-house chromium radiationmore » source. The crystals belong to space group I4, with unit-cell parameters a = b = 96.53, c = 56.26 Å, α = β = γ = 90°.« less
Chen, Yu Wai; Tajima, Toshitaka; Rees, Martin; Garcia-Maya, Mitla
2009-09-01
Human homologue A of Rad23 (hHR23A) plays dual roles in DNA repair as well as serving as a shuttle vehicle targeting polyubiquitinated proteins for degradation. Its N-terminal ubiquitin-like (UbL) domain interacts with the 19S proteasomal cap and provides the docking mechanism for protein delivery. Pyramidal crystals of the UbL domain of hHR23A were obtained by the hanging-drop vapour-diffusion method with ammonium sulfate as the crystallizing agent. The crystals diffracted to beyond 2 A resolution and belonged to the hexagonal space group P6(5)22, with unit-cell parameters a = b = 78.48, c = 63.57 A. The structure was solved by molecular replacement using the UbL domain of yeast Dsk2 as the search model.
Shah, Dhaval A; Patel, Manan; Murdande, Sharad B; Dave, Rutesh H
2016-11-01
The purpose for the current research is to compare and evaluate physiochemical properties of spray-dried (SD) microcrystals (MCs), nanocrystals (NCs), and nanocrystals with a dispersion agent (NCm) from a poorly soluble compound. The characterization was carried out by performing size and surface analysis, interfacial tension (at particle moisture interface), and in-vitro drug dissolution rate experiments. Nanosuspensions were prepared by media milling and were spray-dried. The SD powders that were obtained were characterized morphologically using scanning electron microscopy (SEM), polarized light microscopy (PLM), and Flowchem. Solid-state characterization was performed using X-ray powder diffraction (XRPD), Fourier transfer infrared spectroscopy (FT-IR), and differential scanning calorimetry (DSC) for the identification of the crystalline nature of all the SD powders. The powders were characterized for their redispersion tendency in the water and in pH 1.2. Significant differences in redispersion were noted for both the NCs in both dissolution media. The interfacial tension for particle moisture interface was determined by applying the BET (Braunauer-Emmett-Teller) equation to the vapor sorption data. No significant reduction in the interfacial tension was observed between MCs and NCs; however, a significant reduction in the interfacial tension was observed for NCm at both 25 °C and 35 °C temperatures. The difference in interfacial tension and redispersion behavior can be attributed to a difference in the wetting tendency for all the SD powders. The dissolution studies were carried out under sink and under non-sink conditions. The non-sink dissolution approach was found suitable for quantification of the dissolution rate enhancement, and also for providing the rank order to the SD formulations.
Serial femtosecond crystallography at the SACLA: breakthrough to dynamic structural biology.
Mizohata, Eiichi; Nakane, Takanori; Fukuda, Yohta; Nango, Eriko; Iwata, So
2018-04-01
X-ray crystallography visualizes the world at the atomic level. It has been used as the most powerful technique for observing the three-dimensional structures of biological macromolecules and has pioneered structural biology. To determine a crystal structure with high resolution, it was traditionally required to prepare large crystals (> 200 μm). Later, synchrotron radiation facilities, such as SPring-8, that produce powerful X-rays were built. They enabled users to obtain good quality X-ray diffraction images even with smaller crystals (ca. 200-50 μm). In recent years, one of the most important technological innovations in structural biology has been the development of X-ray free electron lasers (XFELs). The SPring-8 Angstrom Compact free electron LAser (SACLA) in Japan generates the XFEL beam by accelerating electrons to relativistic speeds and directing them through in-vacuum, short-period undulators. Since user operation started in 2012, we have been involved in the development of serial femtosecond crystallography (SFX) measurement systems using XFEL at the SACLA. The SACLA generates X-rays a billion times brighter than SPring-8. The extremely bright XFEL pulses enable data collection with microcrystals (ca. 50-1 μm). Although many molecular analysis techniques exist, SFX is the only technique that can visualize radiation-damage-free structures of biological macromolecules at room temperature in atomic resolution and fast time resolution. Here, we review the achievements of the SACLA-SFX Project in the past 5 years. In particular, we focus on: (1) the measurement system for SFX; (2) experimental phasing by SFX; (3) enzyme chemistry based on damage-free room-temperature structures; and (4) molecular movie taken by time-resolved SFX.
Mittapelly, Naresh; Rachumallu, Ramakrishna; Pandey, Gitu; Sharma, Shweta; Arya, Abhishek; Bhatta, Rabi Shankar; Mishra, Prabhat Ranjan
2016-04-01
In the present work, we prepared memantine-pamoic acid (MEM-PAM) salt by counter ion exchange in the aqueous phase to reduce the water solubility of MEM hydrochloride (native form) to make it suitable for long acting injection. The ratio of MEM to PAM in salt formation was optimized to maximize the loading efficiency and complexation efficiency. The 2:1 molar ratio of MEM to PAM salt form displayed nearly 95% complexation efficiency and 50% drug loading. The solubility was decreased by a ∼1250 folds. Thermo Gravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), and Powder X-ray Diffraction Analysis (PXRD) studies revealed the formation of new solid phase. Additionally, Nuclear Magnetic Resonance (NMR) spectroscopy confirmed the anhydrous nature of the salt form. Through Fourier transformation infrared spectroscopy (FT-IR) we identified the molecular interactions. Further, the microcrystals of the salt were transformed into nanocrystals (NCs) using high pressure homogenization. The particle size distribution and atomic force microscopy confirmed the monodispersed and spherical shape of the NCs. The in vitro dissolution studies were performed under sink condition in phosphate buffer saline pH 6.8. The results of MTT assay in murine fibroblast 3T3 cell line show that the NCs were less cytotoxic and more tolerable than plain MEM HCl. The in vivo performance of NCs administered as i.m. injection at three different doses in female Sprague-Dawley rats showed that the plasma levels lasted till the 24th day of the study. The pharmacokinetic parameters AUC0-∞ and Cmax increased linearly with increasing dose. Therefore, the results suggest that injectable NCs could represent a therapeutic alternative for the treatment of AD. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clausen, Henrik F.; Chen, Yu-Sheng; Jayatilaka, Dylan
2012-02-07
The crystal structure of the {beta}-polymorph of hydroquinone ({beta}-HQ), the apohost of a large family of clathrates, is reported with a specific focus on intermolecular interactions and the electrostatic nature of its cavity. Hirshfeld surface analysis reveals subtle close contacts between two interconnecting HQ networks, and the local packing and related close contacts were examined by breakdown of the fingerprint plot. An experimental multipole model containing anisotropic thermal parameters for hydrogen atoms has been successfully refined against 15(2) K single microcrystal synchrotron X-ray diffraction data. The experimental electron density model has been compared with a theoretical electron density calculated withmore » the molecule embedded in its own crystal field. Hirshfeld charges, interaction energies and the electrostatic potential calculated for both models are qualitatively in good agreement, but small differences in the electrostatic potential persist due to charge transfer from all hydrogen atoms to the oxygen atoms in the theoretical model. The electrostatic potential in the center of the cavity is positive, very shallow and highly symmetric, suggesting that the inclusion of polar molecules in the void will involve a balance between opposing effects. The electric field is by symmetry zero in the center of the cavity, increasing to a value of 0.0185 e/{angstrom}{sup 2} (0.27 V/{angstrom}) 1 {angstrom} along the 3-fold axis and 0.0105 e/{angstrom}{sup 2} (0.15 V/{angstrom}) 1 {angstrom} along the perpendicular direction. While these values are substantial in a macroscopic context, they are quite small for a molecular cavity and are not expected to strongly polarize a guest molecule.« less
Vermiculation patterns in Coiba Mare cave, Bihor Mountains, Romania
NASA Astrophysics Data System (ADS)
Bojar, Ana-Voica; Guja, Ovidiu; Stefanescu, Daniel
2014-05-01
Vermiculation patterns developing on cave surfaces are certainly a spectacular feature. Sometimes vermiculation cover hundreds of square meters, like for example in Coiba Mare cave, which is situated in the Bihor Mountains, Romania. The Coiba Mare Cave is located at 1020 m altitude, on the Gardisoara Valley, not far from the Casa de Piatra Hamlet, in the Apuseni Natural Park (Bihor Mountains) situated in the western part of Romania. The first written document concerning the cave dates back to 1929, when R. Jeannel and E. Racovitza presented a brief description. Speleological investigations, which were started by I. Viehmann, D. Coman and M. Bleahu in 1953, were continued by several speleological clubs during 1975-1976. In this study, we are investigating the mineralogy, stable isotope distribution and patterns of vermiculations in the Coiba Mare cave. Material from the vermiculations developed on cave wall was analysed using Powder X-ray diffraction (PXRD), Fourier transformed infrared (FTIR) and energy dispersive analyses (EDS). The material consists mainly of calcite with traces of quartz, muscovite, chlinochlore, kaolinite, potassium feldspar and organic material. In Coiba Mare, the general look of the vermiculation pattern is that of a "pelli de leopardo" (Leopard's spots), a term used by Bini et al. (1978) for large vermiculations composed of clay. In the light of previous literature and according, to the own field and laboratory data a mechanism responsible for the formation of vermiculations is proposed. Evaporation and water film rupture cause the concentration of the loose particles. Evaporation is also associated with the formation of calcite microcrystals at the water-air interface. Concentration of the particle in vermiculations patterns and crystallisation is the result of evaporation and shrinking water spots.
Zhang, Qiao Li; Lin, Y C; Chen, X; Gao, Nai Yun
2007-09-30
Iron oxide/activated carbon (FeO/AC) composite adsorbent material, which was used to modify the coal-based activated carbon (AC) 12 x 40, was prepared by the special ferric oxide microcrystal in this study. This composite can be used as the adsorbent to remove arsenic from drinking water, and Langmuir isotherm adsorption equation well describes the experimental adsorption isotherms. Then, the arsenic desorption can subsequently be separated from the medium by using a 1% aqueous NaOH solution. The apparent characters and physical chemistry performances of FeO/AC composite were investigated by X-ray diffraction (XRD), nitrogen adsorption, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Batch and column adsorption experiments were carried out to investigate and compare the arsenic removal capability of the prepared FeO/AC composite material and virgin activated carbon. It can be concluded that: (1) the main phase present in this composite are magnetite (Fe(3)O(4)), maghemite (gamma-Fe(2)O(3)), hematite (alpha-Fe(2)O(3)) and goethite (alpha-FeO(OH)); (2) the presence of iron oxides did not significantly affect the surface area or the pore structure of the activated carbon; (3) the comparisons between the adsorption isotherms of arsenic from aqueous solution onto the composite and virgin activated carbon showed that the FeO/AC composite behave an excellent capacity of adsorption arsenic than the virgin activated carbon; (4) column adsorption experiments with FeO/AC composite adsorbent showed that the arsenic could be removed to below 0.01 mg/L within 1250 mL empty bed volume when influent concentration was 0.5mg/L.
The tymbal muscle of cicada has flight muscle-type sarcomeric architecture and protein expression.
Iwamoto, Hiroyuki
2017-01-01
The structural and biochemical features of the tymbal (sound-producing) muscle of cicadas were studied by X-ray diffraction and immunochemistry, and compared with those of flight muscles from the same species. The X-ray diffraction pattern of the tymbal muscle was very similar to that of the dorsal longitudinal flight muscle: In both muscles, the 2,0 equatorial reflection is much more intense than the 1,1, indicating that both muscles have a flight muscle-type myofilament lattice. In rigor, the first myosin/actin layer line reflection was finely lattice-sampled, indicating that the contractile proteins are arranged with a crystalline regularity as in asynchronous flight muscles. In contrast, the diffraction pattern from the tensor muscle, which modulates the sound by stressing the tymbal, did not show signs of such high regularity or flight muscle-type filament lattice. Electrophoretic patterns of myofibrillar proteins were also very similar in the tymbal muscle and flight muscles, but distinct from those from the tensor or leg muscles. The antibody raised against the flight muscle-specific troponin-I isoform reacted with an 80-kDa band from both tymbal and flight muscles, but with none of the bands from the tensor or leg muscles. The close similarities of the structural and biochemical profiles between the tymbal and the flight muscles suggest the possibility that a set of flight muscle-specific proteins is diverted to the tymbal muscle to meet its demand for fast, repetitive contractions.
X-ray transparent Microfluidics for Protein Crystallization and Biomineralization
NASA Astrophysics Data System (ADS)
Opathalage, Achini
Protein crystallization demands the fundamental understanding of nucleation and applying techniques to find the optimal conditions to achieve the kinetic pathway for a large and defect free crystal. Classical nucleation theory predicts that the nucleation occurs at high supersaturation conditions. In this dissertation we sought out to develop techniques to attain optimal supersaturation profile to a large defect free crystal and subject it to in-situ X-ray diffraction using microfluidics. We have developed an emulsion-based serial crystallographic technology in nanolitre-sized droplets of protein solution encapsulated in to nucleate one crystal per drop. Diffraction data are measured, one crystal at a time, from a series of room temperature crystals stored on an X-ray semi-transparent microfluidic chip, and a 93% complete data set is obtained by merging single diffraction frames taken from different un-oriented crystals. As proof of concept, the structure of Glucose Isomerase was solved to 2.1 A. We have developed a suite of X-ray semi-transparent micrfluidic devices which enables; controlled evaporation as a method of increasing supersaturation and manipulating the phase space of proteins and small molecules. We exploited the inherently high water permeability of the thin X-ray semi-transparent devices as a mean of increasing the supersaturation by controlling the evaporation. We fabricated the X-ray semi-transparent version of the PhaseChip with a thin PDMS membrane by which the storage and the reservoir layers are separated, and studies the phase transition of amorphous CaCO3.
Radiation damage to macromolecules: kill or cure?
Garman, Elspeth F; Weik, Martin
2015-03-01
Radiation damage induced by X-ray beams during macromolecular diffraction experiments remains an issue of concern in structural biology. While advances in our understanding of this phenomenon, driven in part by a series of workshops in this area, undoubtedly have been and are still being made, there are still questions to be answered. Eight papers in this volume give a flavour of ongoing investigations, addressing various issues. These range over: a proposed new metric derived from atomic B-factors for identifying potentially damaged amino acid residues, a study of the relative damage susceptibility of protein and DNA in a DNA/protein complex, a report of an indication of specific radiation damage to a protein determined from data collected using an X-ray free-electron laser (FEL), an account of the challenges in FEL raw diffraction data analysis, an exploration of the possibilities of using radiation damage induced phasing to solve structures using FELs, simulations of radiation damage as a function of FEL temporal pulse profiles, results on the influence of radiation damage during scanning X-ray diffraction measurements and, lastly, consideration of strategies for minimizing radiation damage during SAXS experiments. In this short introduction, these contributions are briefly placed in the context of other current work on radiation damage in the field.
NASA Astrophysics Data System (ADS)
Zabelskii, D. V.; Vlasov, A. V.; Ryzhykau, Yu L.; Murugova, T. N.; Brennich, M.; Soloviov, D. V.; Ivankov, O. I.; Borshchevskiy, V. I.; Mishin, A. V.; Rogachev, A. V.; Round, A.; Dencher, N. A.; Büldt, G.; Gordeliy, V. I.; Kuklin, A. I.
2018-03-01
The method of small angle scattering (SAS) is widely used in the field of biophysical research of proteins in aqueous solutions. Obtaining low-resolution structure of proteins is still a highly valuable method despite the advances in high-resolution methods such as X-ray diffraction, cryo-EM etc. SAS offers the unique possibility to obtain structural information under conditions close to those of functional assays, i.e. in solution, without different additives, in the mg/mL concentration range. SAS method has a long history, but there are still many uncertainties related to data treatment. We compared 1D SAS profiles of apoferritin obtained by X-ray diffraction (XRD) and SAS methods. It is shown that SAS curves for X-ray diffraction crystallographic structure of apoferritin differ more significantly than it might be expected due to the resolution of the SAS instrument. Extrapolation to infinite dilution (EID) method does not sufficiently exclude dimerization and oligomerization effects and therefore could not guarantee total absence of dimers account in the final SAS curve. In this study, we show that EID SAXS, EID SANS and SEC-SAXS methods give complementary results and when they are used all together, it allows obtaining the most accurate results and high confidence from SAS data analysis of proteins.
Compressive auto-indexing in femtosecond nanocrystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maia, Filipe; Yang, Chao; Marchesini, Stefano
2010-09-20
Ultrafast nanocrystallography has the potential to revolutionize biology by enabling structural elucidation of proteins for which it is possible to grow crystals with 10 or fewer unit cells. The success of nanocrystallography depends on robust orientation-determination procedures that allow us to average diffraction data from multiple nanocrystals to produce a 3D diffraction data volume with a high signal-to-noise ratio. Such a 3D diffraction volume can then be phased using standard crystallographic techniques."Indexing" algorithms used in crystallography enable orientation determination of a diffraction data from a single crystal when a relatively large number of reflections are recorded. Here we show thatmore » it is possible to obtain the exact lattice geometry from a smaller number of measurements than standard approaches using a basis pursuit solver.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, Tsutomu; Ishikawa, Kazuhiko; Hagihara, Yoshihisa
The expression, purification and preliminary X-ray diffraction studies of a chitin-binding domain of the chitinase from P. furiosus are reported. The crystallization and preliminary X-ray diffraction analysis of the chitin-binding domain of chitinase from a hyperthermophilic archaeon, Pyrococcus furiosus, are reported. The recombinant protein was prepared using an Escherichia coli overexpression system and was crystallized by the hanging-drop vapour-diffusion method. An X-ray diffraction data set was collected to 1.70 Å resolution. The crystal belonged to space group P4{sub 3}2{sub 1}2 or P4{sub 1}2{sub 1}2. The unit-cell parameters were determined to be a = b = 48.8, c = 85.0 Å.
Overcoming barriers to membrane protein structure determination.
Bill, Roslyn M; Henderson, Peter J F; Iwata, So; Kunji, Edmund R S; Michel, Hartmut; Neutze, Richard; Newstead, Simon; Poolman, Bert; Tate, Christopher G; Vogel, Horst
2011-04-01
After decades of slow progress, the pace of research on membrane protein structures is beginning to quicken thanks to various improvements in technology, including protein engineering and microfocus X-ray diffraction. Here we review these developments and, where possible, highlight generic new approaches to solving membrane protein structures based on recent technological advances. Rational approaches to overcoming the bottlenecks in the field are urgently required as membrane proteins, which typically comprise ~30% of the proteomes of organisms, are dramatically under-represented in the structural database of the Protein Data Bank.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Granell, Meritxell; Namura, Mikiyoshi; Alvira, Sara
2014-06-19
The crystallization of three C-terminal fragments of the bacteriophage T4 protein gp34 is reported. Diffraction data have been obtained for three native crystal forms and two selenomethionine derivatives, one of which contained high-quality anomalous signal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wall, Michael E.
X-ray diffraction from macromolecular crystals includes both sharply peaked Bragg reflections and diffuse intensity between the peaks. The information in Bragg scattering reflects the mean electron density in the unit cells of the crystal. The diffuse scattering arises from correlations in the variations of electron density that may occur from one unit cell to another, and therefore contains information about collective motions in proteins.
NASA Astrophysics Data System (ADS)
Costa, M.; Benseny-Cases, N.; Cócera, M.; Teixeira, C. V.; Alsina, M.; Cladera, J.; López, O.; Fernández, M.; Sabés, M.
In previous chapters, the basis of SAXS for the study of biological systems like proteins in solution have been presented. The SAXS patterns of proteins in solution present, in general, broad dependences with the scattering vector, and the interpretation requires a huge component of modelling. In this chapter and in the following one, it is shown how SAXS technique can be used to study biological systems that are partially crystalline and with a large crystalline cells. This is done by analysing the diffraction obtained from these systems at small angles. In this chapter, a new approach to the application of small-angle X-ray scattering (SAXS) for diagnosis using the diffraction pattern of collagen is presented. This chapter shows the development of a new strategy in the preventive diagnosis of breast cancer following changes on collagen from breast connective tissue. SAXS profiles are related to different features in cutaneous preparations and to the supra-molecular arrangement of skin layers (stratum corneum, epidermis and dermis), in order to introduce objective values on the diagnosis of different skin pathologies. Working parameters (size, thickness) and methods (freezing, paraffin embedment) have been established. The results suggest that collagen diffraction patterns could be used as diagnostic indicators; especially for breast cancer and preliminary results obtained with skin collagen are promising too.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massant, Jan, E-mail: jan.massant@vub.ac.be; Peeters, Eveline; Charlier, Daniel
2006-01-01
The arginine repressor of the hyperthermophile T. neapolitana was crystallized with and without its corepressor arginine. Both crystals diffracted to high resolution and belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with similar unit-cell parameters. The arginine repressor of Thermotoga neapolitana (ArgRTnp) is a member of the family of multifunctional bacterial arginine repressors involved in the regulation of arginine metabolism. This hyperthermophilic repressor shows unique DNA-binding features that distinguish it from its homologues. ArgRTnp exists as a homotrimeric protein that assembles into hexamers at higher protein concentrations and/or in the presence of arginine. ArgRTnp was crystallized with andmore » without its corepressor arginine using the hanging-drop vapour-diffusion method. Crystals of the aporepressor diffracted to a resolution of 2.1 Å and belong to the orthorhombic P2{sub 1}2{sub 1}2{sub 1} space group, with unit-cell parameters a = 117.73, b = 134.15, c = 139.31 Å. Crystals of the repressor in the presence of its corepressor arginine diffracted to a resolution of 2.4 Å and belong to the same space group, with similar unit-cell parameters.« less
Laser Scattering Tomography for the Study of Defects in Protein Crystals
NASA Technical Reports Server (NTRS)
Feigelson, Robert S.; DeLucas, Lawrence; DeMattei, R. C.
1997-01-01
The goal of this research is to explore the application of the non-destructive technique of Laser Scattering Tomography (LST) to study the defects in protein crystals and relate them to the x-ray diffraction performance of the crystals. LST has been used successfully for the study of defects in inorganic crystals and. in the case of lysozyme, for protein crystals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santos-Silva, Teresa; Trincão, José; Carvalho, Ana L.
2005-11-01
Superoxide reductase is a non-haem iron-containing protein involved in resistance to oxidative stress. The oxidized form of the protein has been crystallized and its three-dimensional structure solved. A highly redundant X-ray diffraction data set was collected on a rotating-anode generator using Cu Kα X-ray radiation. Four Fe atoms were located in the asymmetric unit corresponding to four protein molecules arranged as a dimer of homodimers. Superoxide reductase is a 14 kDa metalloprotein containing a catalytic non-haem iron centre [Fe(His){sub 4}Cys]. It is involved in defence mechanisms against oxygen toxicity, scavenging superoxide radicals from the cell. The oxidized form of Treponemamore » pallidum superoxide reductase was crystallized in the presence of polyethylene glycol and magnesium chloride. Two crystal forms were obtained depending on the oxidizing agents used after purification: crystals grown in the presence of K{sub 3}Fe(CN){sub 6} belonged to space group P2{sub 1} (unit-cell parameters a = 60.3, b = 59.9, c = 64.8 Å, β = 106.9°) and diffracted beyond 1.60 Å resolution, while crystals grown in the presence of Na{sub 2}IrCl{sub 6} belonged to space group C2 (a = 119.4, b = 60.1, c = 65.6 Å, β = 104.9°) and diffracted beyond 1.55 Å. A highly redundant X-ray diffraction data set from the C2 crystal form collected on a copper rotating-anode generator (λ = 1.542 Å) clearly defined the positions of the four Fe atoms present in the asymmetric unit by SAD methods. A MAD experiment at the iron absorption edge confirmed the positions of the previously determined iron sites and provided better phases for model building and refinement. Molecular replacement using the P2{sub 1} data set was successful using a preliminary trace as a search model. A similar arrangement of the four protein molecules could be observed.« less
High yield fabrication of fluorescent nanodiamonds
Boudou, Jean-Paul; Curmi, Patrick; Jelezko, Fedor; Wrachtrup, Joerg; Aubert, Pascal; Sennour, Mohamed; Balasubramanian, Gopalakrischnan; Reuter, Rolf; Thorel, Alain; Gaffet, Eric
2009-01-01
A new fabrication method to produce homogeneously fluorescent nanodiamonds with high yields is described. The powder obtained by high energy ball milling of fluorescent high pressure, high temperature diamond microcrystals was converted in a pure concentrated aqueous colloidal dispersion of highly crystalline ultrasmall nanoparticles with a mean size less than or equal to 10 nm. The whole fabrication yield of colloidal quasi-spherical nanodiamonds was several orders of magnitude higher than those previously reported starting from microdiamonds. The results open up avenues for the industrial cost-effective production of fluorescent nanodiamonds with well-controlled properties. PMID:19451687
The MORPHEUS II protein crystallization screen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorrec, Fabrice, E-mail: fgorrec@mrc-lmb.cam.ac.uk
2015-06-27
MORPHEUS II is a 96-condition initial crystallization screen formulated de novo. The screen incorporates reagents selected from the Protein Data Bank to yield crystals that are not observed in traditional conditions. In addition, the formulation facilitates the optimization and cryoprotection of crystals. High-quality macromolecular crystals are a prerequisite for the process of protein structure determination by X-ray diffraction. Unfortunately, the relative yield of diffraction-quality crystals from crystallization experiments is often very low. In this context, innovative crystallization screen formulations are continuously being developed. In the past, MORPHEUS, a screen in which each condition integrates a mix of additives selected frommore » the Protein Data Bank, a cryoprotectant and a buffer system, was developed. Here, MORPHEUS II, a follow-up to the original 96-condition initial screen, is described. Reagents were selected to yield crystals when none might be observed in traditional initial screens. Besides, the screen includes heavy atoms for experimental phasing and small polyols to ensure the cryoprotection of crystals. The suitability of the resulting novel conditions is shown by the crystallization of a broad variety of protein samples and their efficiency is compared with commercially available conditions.« less
Protein Crystal Movements and Fluid Flows During Microgravity Growth
NASA Technical Reports Server (NTRS)
Boggon, Titus J.; Chayen, Naomi E.; Snell, Edward H.; Dong, Jun; Lautenschlager, Peter; Potthast, Lothar; Siddons, D. Peter; Stojanoff, Vivian; Gordon, Elspeth; Thompson, Andrew W.;
1998-01-01
The growth of protein crystals suitable for x-ray crystal structure analysis is an important topic. The quality (perfection) of protein crystals is now being evaluated by mosaicity analysis (rocking curves) and x-ray topographic images as well as the diffraction resolution limit and overall data quality. In yet another study, use of hanging drop vapour diffusion geometry on the IML-2 shuttle mission showed, again via CCD video monitoring, growing apocrustacyanin C(sub 1) protein crystal executing near cyclic movement, reminiscent of Marangoni convection flow of fluid, the crystals serving as "markers" of the fluid flow. A review is given here of existing results and experience over several microgravity missions. Some comment is given on gel protein crystal growth in attempts to 'mimic' the benefits of microgravity on Earth. Finally, the recent new results from our experiments on the shuttle mission LMS are described. These results include CCD video as well as interferometry during the mission, followed, on return to Earth, by reciprocal space mapping at the NSLS, Brookhaven, and full X-ray data collection on LMS and Earth control lysozyme crystals. Diffraction data recorded from LMS and ground control apocrustacyanin C(sub 1) crystals are also described.
Söhnel, Anna-Carina; Kohl, Wladislaw; Gregor, Ingo; Enderlein, Jörg; Rieger, Bettina; Busch, Karin B
2016-08-01
The cell is metabolically highly compartmentalized. Especially, mitochondria host many vital reactions in their different microcompartments. However, due to their small size, these microcompartments are not accessible by conventional microscopy. Here, we demonstrate that time-correlated single-photon counting (TCSPC) fluorescence lifetime-imaging microscopy (FLIM) classifies not only mitochondria, but different microcompartments inside mitochondria. Sensor proteins in the matrix had a different lifetime than probes at membrane proteins. Localization in the outer and inner mitochondrial membrane could be distinguished by significant differences in the lifetime. The method was sensitive enough to monitor shifts in protein location within mitochondrial microcompartments. Macromolecular crowding induced by changes in the protein content significantly affected the lifetime, while oxidizing conditions or physiological pH changes had only marginal effects. We suggest that FLIM is a versatile and completive method to monitor spatiotemporal events in mitochondria. The sensitivity in the time domain allows for gaining substantial information about sub-mitochondrial localization overcoming diffraction limitation. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi. Copyright © 2016 Elsevier B.V. All rights reserved.
Learning about Biomolecular Solvation from Water in Protein Crystals.
Altan, Irem; Fusco, Diana; Afonine, Pavel V; Charbonneau, Patrick
2018-03-08
Water occupies typically 50% of a protein crystal and thus significantly contributes to the diffraction signal in crystallography experiments. Separating its contribution from that of the protein is, however, challenging because most water molecules are not localized and are thus difficult to assign to specific density peaks. The intricateness of the protein-water interface compounds this difficulty. This information has, therefore, not often been used to study biomolecular solvation. Here, we develop a methodology to surmount in part this difficulty. More specifically, we compare the solvent structure obtained from diffraction data for which experimental phasing is available to that obtained from constrained molecular dynamics (MD) simulations. The resulting spatial density maps show that commonly used MD water models are only partially successful at reproducing the structural features of biomolecular solvation. The radial distribution of water is captured with only slightly higher accuracy than its angular distribution, and only a fraction of the water molecules assigned with high reliability to the crystal structure is recovered. These differences are likely due to shortcomings of both the water models and the protein force fields. Despite these limitations, we manage to infer protonation states of some of the side chains utilizing MD-derived densities.
Nishimune, Hiroshi; Badawi, Yomna; Mori, Shuuichi; Shigemoto, Kazuhiro
2016-06-20
Presynaptic active zones play a pivotal role as synaptic vesicle release sites for synaptic transmission, but the molecular architecture of active zones in mammalian neuromuscular junctions (NMJs) at sub-diffraction limited resolution remains unknown. Bassoon and Piccolo are active zone specific cytosolic proteins essential for active zone assembly in NMJs, ribbon synapses, and brain synapses. These proteins are thought to colocalize and share some functions at active zones. Here, we report an unexpected finding of non-overlapping localization of these two proteins in mouse NMJs revealed using dual-color stimulated emission depletion (STED) super resolution microscopy. Piccolo puncta sandwiched Bassoon puncta and aligned in a Piccolo-Bassoon-Piccolo structure in adult NMJs. P/Q-type voltage-gated calcium channel (VGCC) puncta colocalized with Bassoon puncta. The P/Q-type VGCC and Bassoon protein levels decreased significantly in NMJs from aged mouse. In contrast, the Piccolo levels in NMJs from aged mice were comparable to levels in adult mice. This study revealed the molecular architecture of active zones in mouse NMJs at sub-diffraction limited resolution, and described the selective degeneration mechanism of active zone proteins in NMJs from aged mice. Interestingly, the localization pattern of active zone proteins described herein is similar to active zone structures described using electron microscope tomography.
Triest, Sarah; Wohlkönig, Alexandre; Pardon, Els; Steyaert, Jan
2014-11-01
GPCR-G-protein complexes are one of the most important components of cell-signalling cascades. Extracellular signals are sensed by membrane-associated G-protein-coupled receptors (GPCRs) and transduced via G proteins towards intracellular effector molecules. Structural studies of these transient complexes are crucial to understand the molecular details of these interactions. Although a nucleotide-free GPCR-G-protein complex is stable, it is not an ideal sample for crystallization owing to the intrinsic mobility of the Gαs α-helical domain (AHD). To stabilize GPCR-G-protein complexes in a nucleotide-free form, nanobodies were selected that target the flexible GαsAHD. One of these nanobodies, CA9177, was co-crystallized with the GαsAHD. Initial crystals were obtained using the sitting-drop method in a sparse-matrix screen and further optimized. The crystals diffracted to 1.59 Å resolution and belonged to the monoclinic space group P2₁, with unit-cell parameters a=44.07, b=52.55, c=52.66 Å, α=90.00, β=107.89, γ=90.00°. The structure of this specific nanobody reveals its binding epitope on GαsAHD and will help to determine whether this nanobody could be used as crystallization chaperone for GPCR-G-protein complexes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyakawa, Takuya; Sawano, Yoriko; Miyazono, Ken-ichi
Purification and crystallization of ginkbilobin-2 and its selenomethionine derivative allowed the collection of complete data to 2.38 Å resolution and multiwavelength anomalous diffraction data sets, respectively. The antifungal protein ginkbilobin-2 (Gnk2) from Ginkgo biloba seeds does not show homology to other pathogenesis-related proteins, but does show homology to the extracellular domain of plant cysteine-rich receptor-like kinases. Native Gnk2 purified from ginkgo nuts and the selenomethionine derivative of recombinant Gnk2 (SeMet-rGnk2) were crystallized by the sitting-drop vapour-diffusion method using different precipitants. X-ray diffraction data were collected from Gnk2 at 2.38 Å resolution and from SeMet-rGnk2 at 2.79 Å resolution using amore » synchrotron-radiation source. The crystals of both proteins belonged to the primitive cubic space group P2{sub 1}3, with unit-cell parameters a = b = c = 143.2 Å.« less
Tsukazaki, Tomoya; Mori, Hiroyuki; Fukai, Shuya; Numata, Tomoyuki; Perederina, Anna; Adachi, Hiroaki; Matsumura, Hiroyoshi; Takano, Kazufumi; Murakami, Satoshi; Inoue, Tsuyoshi; Mori, Yusuke; Sasaki, Takatomo; Vassylyev, Dmitry G.; Nureki, Osamu; Ito, Koreaki
2006-01-01
Thermus thermophilus has a multi-path membrane protein, TSecDF, as a single-chain homologue of Escherichia coli SecD and SecF, which form a translocon-associated complex required for efficient preprotein translocation and membrane-protein integration. Here, the cloning, expression in E. coli, purification and crystallization of TSecDF are reported. Overproduced TSecDF was solubilized with dodecylmaltoside, chromatographically purified and crystallized by vapour diffusion in the presence of polyethylene glycol. The crystals yielded a maximum resolution of 4.2 Å upon X-ray irradiation, revealing that they belonged to space group P43212. Attempts were made to improve the diffraction quality of the crystals by combinations of micro-stirring, laser-light irradiation and dehydration, which led to the eventual collection of complete data sets at 3.74 Å resolution and preliminary success in the single-wavelength anomalous dispersion analysis. These results provide information that is essential for the determination of the three-dimensional structure of this important membrane component of the protein-translocation machinery. PMID:16582489
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Che-Yen; Karolinska Institute Structural Virology, F68 Karolinska University Hospital, SE-14186 Stockholm; Institute of Public Health, National Yang-Ming University, 112 Taipei,Taiwan
A recombinant virus-like particle that is a potential oral hepatitis E vaccine was crystallized. Diffraction data were collected to 8.3 Å resolution and the X-ray structure was phased with the aid of a low-resolution density map determined using cryo-electron microscopy data. Hepatitis E virus (HEV) accounts for the majority of enterically transmitted hepatitis infections worldwide. Currently, there is no specific treatment for or vaccine against HEV. The major structural protein is derived from open reading frame (ORF) 2 of the viral genome. A potential oral vaccine is provided by the virus-like particles formed by a protein construct of partial ORF3more » protein (residue 70–123) fused to the N-terminus of the ORF2 protein (residues 112–608). Single crystals obtained by the hanging-drop vapour-diffusion method at 293 K diffract X-rays to 8.3 Å resolution. The crystals belong to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 337, b = 343, c = 346 Å, α = β = γ = 90°, and contain one particle per asymmetric unit.« less
Iwai, Wakari; Yagi, Daichi; Ishikawa, Takuya; Ohnishi, Yuki; Tanaka, Ichiro; Niimura, Nobuo
2008-01-01
To observe the ionized status of the amino acid residues in proteins at different pH (protein pH titration in the crystalline state) by neutron diffraction, hen egg-white lysozyme was crystallized over a wide pH range (2.5–8.0). Crystallization phase diagrams at pH 2.5, 6.0 and 7.5 were determined. At pH < 4.5 the border between the metastable region and the nucleation region shifted to the left (lower precipitant concentration) in the phase diagram, and at pH > 4.5 the border shifted to the right (higher precipitant concentration). The qualities of these crystals were characterized using the Wilson plot method. The qualities of all crystals at different pH were more or less equivalent (B-factor values within 25–40). It is expected that neutron diffraction analysis of these crystals of different pH provides equivalent data in quality for discussions of protein pH titration in the crystalline state of hen egg-white lysozyme. PMID:18421167
Iwai, Wakari; Yagi, Daichi; Ishikawa, Takuya; Ohnishi, Yuki; Tanaka, Ichiro; Niimura, Nobuo
2008-05-01
To observe the ionized status of the amino acid residues in proteins at different pH (protein pH titration in the crystalline state) by neutron diffraction, hen egg-white lysozyme was crystallized over a wide pH range (2.5-8.0). Crystallization phase diagrams at pH 2.5, 6.0 and 7.5 were determined. At pH < 4.5 the border between the metastable region and the nucleation region shifted to the left (lower precipitant concentration) in the phase diagram, and at pH > 4.5 the border shifted to the right (higher precipitant concentration). The qualities of these crystals were characterized using the Wilson plot method. The qualities of all crystals at different pH were more or less equivalent (B-factor values within 25-40). It is expected that neutron diffraction analysis of these crystals of different pH provides equivalent data in quality for discussions of protein pH titration in the crystalline state of hen egg-white lysozyme.
Cranston, Laura J; Roszak, Aleksander W; Cogdell, Richard J
2014-06-01
LH2 from the purple photosynthetic bacterium Marichromatium (formerly known as Chromatium) purpuratum is an integral membrane pigment-protein complex that is involved in harvesting light energy and transferring it to the LH1-RC `core' complex. The purified LH2 complex was crystallized using the sitting-drop vapour-diffusion method at 294 K. The crystals diffracted to a resolution of 6 Å using synchrotron radiation and belonged to the tetragonal space group I4, with unit-cell parameters a=b=109.36, c=80.45 Å. The data appeared to be twinned, producing apparent diffraction symmetry I422. The tetragonal symmetry of the unit cell and diffraction for the crystals of the LH2 complex from this species reveal that this complex is an octamer.
Cranston, Laura J.; Roszak, Aleksander W.; Cogdell, Richard J.
2014-01-01
LH2 from the purple photosynthetic bacterium Marichromatium (formerly known as Chromatium) purpuratum is an integral membrane pigment–protein complex that is involved in harvesting light energy and transferring it to the LH1–RC ‘core’ complex. The purified LH2 complex was crystallized using the sitting-drop vapour-diffusion method at 294 K. The crystals diffracted to a resolution of 6 Å using synchrotron radiation and belonged to the tetragonal space group I4, with unit-cell parameters a = b = 109.36, c = 80.45 Å. The data appeared to be twinned, producing apparent diffraction symmetry I422. The tetragonal symmetry of the unit cell and diffraction for the crystals of the LH2 complex from this species reveal that this complex is an octamer. PMID:24915099
San Martin, Fabiana; Mechaly, Ariel E; Larrieux, Nicole; Wunder, Elsio A; Ko, Albert I; Picardeau, Mathieu; Trajtenberg, Felipe; Buschiazzo, Alejandro
2017-03-01
The protein FcpA is a unique component of the flagellar filament of spirochete bacteria belonging to the genus Leptospira. Although it plays an essential role in translational motility and pathogenicity, no structures of FcpA homologues are currently available in the PDB. Its three-dimensional structure will unveil the novel motility mechanisms that render pathogenic Leptospira particularly efficient at invading and disseminating within their hosts, causing leptospirosis in humans and animals. FcpA from L. interrogans was purified and crystallized, but despite laborious attempts no useful X ray diffraction data could be obtained. This challenge was solved by expressing a close orthologue from the related saprophytic species L. biflexa. Three different crystal forms were obtained: a primitive and a centred monoclinic form, as well as a hexagonal variant. All forms diffracted X-rays to suitable resolutions for crystallographic analyses, with the hexagonal type typically reaching the highest limits of 2.0 Å and better. A variation of the quick-soaking procedure resulted in an iodide derivative that was instrumental for single-wavelength anomalous diffraction methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arreola, Rodrigo; Vega-Miranda, Anita; Gómez-Puyou, Armando
The gene-regulation factor PyrR from B. halodurans has been crystallized in two crystal forms. Preliminary crystallographic analysis showed that the protein forms tetramers in both space groups. The PyrR transcriptional regulator is widely distributed in bacteria. This RNA-binding protein is involved in the control of genes involved in pyrimidine biosynthesis, in which uridyl and guanyl nucleotides function as effectors. Here, the crystallization and preliminary X-ray diffraction analysis of two crystal forms of Bacillus halodurans PyrR are reported. One of the forms belongs to the monoclinic space group P2{sub 1} with unit-cell parameters a = 59.7, b = 87.4, c =more » 72.1 Å, β = 104.4°, while the other form belongs to the orthorhombic space group P22{sub 1}2{sub 1} with unit-cell parameters a = 72.7, b = 95.9, c = 177.1 Å. Preliminary X-ray diffraction data analysis and molecular-replacement solution revealed the presence of four and six monomers per asymmetric unit; a crystallographic tetramer is formed in both forms.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yueyong; Xu, Yanhui; Zhu, Jieqing
2005-09-01
Single crystals of the central structure domains from mumps virus F protein have been obtained by the hanging-drop vapour-diffusion method. A diffraction data set has been collected to 2.2 Å resolution. Fusion of members of the Paramyxoviridae family involves two glycoproteins: the attachment protein and the fusion protein. Changes in the fusion-protein conformation were caused by binding of the attachment protein to the cellular receptor. In the membrane-fusion process, two highly conserved heptad-repeat (HR) regions, HR1 and HR2, are believed to form a stable six-helix coiled-coil bundle. However, no crystal structure has yet been determined for this state in themore » mumps virus (MuV, a member of the Paramyxoviridae family). In this study, a single-chain protein consisting of two HR regions connected by a flexible amino-acid linker (named 2-Helix) was expressed, purified and crystallized by the hanging-drop vapour-diffusion method. A complete X-ray data set was obtained in-house to 2.2 Å resolution from a single crystal. The crystal belongs to space group C2, with unit-cell parameters a = 161.2, b = 60.8, c = 40.1 Å, β = 98.4°. The crystal structure will help in understanding the molecular mechanism of Paramyxoviridae family membrane fusion.« less
Homology‐based hydrogen bond information improves crystallographic structures in the PDB
van Beusekom, Bart; Touw, Wouter G.; Tatineni, Mahidhar; Somani, Sandeep; Rajagopal, Gunaretnam; Luo, Jinquan; Gilliland, Gary L.; Perrakis, Anastassis
2017-01-01
Abstract The Protein Data Bank (PDB) is the global archive for structural information on macromolecules, and a popular resource for researchers, teachers, and students, amassing more than one million unique users each year. Crystallographic structure models in the PDB (more than 100,000 entries) are optimized against the crystal diffraction data and geometrical restraints. This process of crystallographic refinement typically ignored hydrogen bond (H‐bond) distances as a source of information. However, H‐bond restraints can improve structures at low resolution where diffraction data are limited. To improve low‐resolution structure refinement, we present methods for deriving H‐bond information either globally from well‐refined high‐resolution structures from the PDB‐REDO databank, or specifically from on‐the‐fly constructed sets of homologous high‐resolution structures. Refinement incorporating HOmology DErived Restraints (HODER), improves geometrical quality and the fit to the diffraction data for many low‐resolution structures. To make these improvements readily available to the general public, we applied our new algorithms to all crystallographic structures in the PDB: using massively parallel computing, we constructed a new instance of the PDB‐REDO databank (https://pdb-redo.eu). This resource is useful for researchers to gain insight on individual structures, on specific protein families (as we demonstrate with examples), and on general features of protein structure using data mining approaches on a uniformly treated dataset. PMID:29168245
NASA Astrophysics Data System (ADS)
Park, GwangSik; Shin, SeungWoo; Kim, Kyoohyun; Park, YongKeun
2017-02-01
Optical diffraction tomography (ODT) has been an emerging optical technique for label-free imaging of three-dimensional (3-D) refractive index (RI) distribution of biological samples. ODT employs interferometric microscopy for measuring multiple holograms of samples with various incident angles, from which the Fourier diffraction theorem reconstructs the 3-D RI distribution of samples from retrieved complex optical fields. Since the RI value is linearly proportional to the protein concentration of biological samples where the proportional coefficient is called as refractive index increment (RII), reconstructed 3-D RI tomograms provide precise structural and biochemical information of individual biological samples. Because most proteins have similar RII value, however, ODT has limited molecular specificity, especially for imaging eukaryotic cells having various types of proteins and subcellular organelles. Here, we present an ODT system combined with structured illumination microscopy which can measure the 3-D RI distribution of biological samples as well as 3-D super-resolution fluorescent images in the same optical setup. A digital micromirror device (DMD) controls the incident angle of the illumination beam for tomogram reconstruction, and the same DMD modulates the structured illumination pattern of the excitation beam for super-resolution fluorescent imaging. We first validate the proposed method for simultaneous optical diffraction tomographic imaging and super-resolution fluorescent imaging of fluorescent beads. The proposed method is also exploited for various biological samples.
Rodamilans, Bernardo; Montoya, Guillermo
2007-01-01
DDX3 is a human RNA helicase that is involved in RNA processing and important human diseases. This enzyme belongs to the DEAD-box protein family, the members of which are characterized by the presence of nine conserved motifs including the Asp-Glu-Ala-Asp motif that defines the family. DDX3 has two distinct domains: an ATP-binding domain in the central region of the protein and a helicase domain in the carboxy-terminal region. The helicase domain of DDX3 was cloned and overexpressed in Escherichia coli. Crystallization experiments yielded crystals that were suitable for X-ray diffraction analysis. The final crystallization conditions were a reservoir solution consisting of 2 M ammonium sulfate, 0.1 M imidazole pH 6.4 plus 5 mM spermine tetrahydrochloride and a protein solution containing 10 mM HEPES, 500 mM ammonium sulfate pH 8.0. The crystals of the helicase domain belong to the monoclinic space group P21, with unit-cell parameters a = 43.85, b = 60.72, c = 88.39 Å, α = γ = 90, β = 101.02°, and contained three molecules per asymmetric unit. These crystals diffracted to a resolution limit of 2.2 Å using synchrotron radiation at the European Synchrotron Radiation Facility (ESRF) and the Swiss Light Source (SLS). PMID:17401195
Rodamilans, Bernardo; Montoya, Guillermo
2007-04-01
DDX3 is a human RNA helicase that is involved in RNA processing and important human diseases. This enzyme belongs to the DEAD-box protein family, the members of which are characterized by the presence of nine conserved motifs including the Asp-Glu-Ala-Asp motif that defines the family. DDX3 has two distinct domains: an ATP-binding domain in the central region of the protein and a helicase domain in the carboxy-terminal region. The helicase domain of DDX3 was cloned and overexpressed in Escherichia coli. Crystallization experiments yielded crystals that were suitable for X-ray diffraction analysis. The final crystallization conditions were a reservoir solution consisting of 2 M ammonium sulfate, 0.1 M imidazole pH 6.4 plus 5 mM spermine tetrahydrochloride and a protein solution containing 10 mM HEPES, 500 mM ammonium sulfate pH 8.0. The crystals of the helicase domain belong to the monoclinic space group P2(1), with unit-cell parameters a = 43.85, b = 60.72, c = 88.39 A, alpha = gamma = 90, beta = 101.02 degrees , and contained three molecules per asymmetric unit. These crystals diffracted to a resolution limit of 2.2 A using synchrotron radiation at the European Synchrotron Radiation Facility (ESRF) and the Swiss Light Source (SLS).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Yue; College of Life Science, Dalian Nationalities University, Dalian, Liaoning 116600; Chen, Baojiu, E-mail: chenmbj@sohu.com
Tb{sup 3+}, Eu{sup 3+} codoped YF{sub 3} nano- and micro-crystals with the morphologies of ellipsoid-like nanoplate, spindle, sandwich-structural rhombus and nanoaggregate were synthesized through a solvothermal method. The morphologies of the prepared products can be tailored by controlling the volume ratio of ethylene glycol (EG) to H{sub 2}O, solvent type or the reaction time. A possible formation mechanism of the sandwich-structural rhombus like YF{sub 3} phosphor was proposed. The emitting colors of YF{sub 3}:Tb{sup 3+},Eu{sup 3+} phosphors can be easily tuned from yellowish green, yellow to orange by increasing Eu{sup 3+} concentration. The energy transfer from Tb{sup 3+} to Eu{supmore » 3+} in YF{sub 3} phosphors was studied. It was found that the interaction type between Tb{sup 3+} and Eu{sup 3+} is electric dipole-dipole interaction. - Graphical abstract: Sandwich-structural rhombus like YF{sub 3}:Tb{sup 3+}, Eu{sup 3+} phosphors were synthesized through a solvothermal process. The formation mechanism of the sandwich-structural rhombus like YF{sub 3}:Tb{sup 3+}, Eu{sup 3+} phosphors was studied. Highlights: Black-Right-Pointing-Pointer YF{sub 3} nano- and micro-crystals were synthesized through solvothermal route. Black-Right-Pointing-Pointer A formation mechanism of the sandwich-structural rhombus like YF{sub 3} was proposed. Black-Right-Pointing-Pointer The emitting colors of YF{sub 3}:Tb{sup 3+},Eu{sup 3+} phosphors can be tuned. Black-Right-Pointing-Pointer Energy transfer from Tb{sup 3+} to Eu{sup 3+} is confirmed as electric dipole-dipole interaction.« less
Raman intensity as a probe of concentration near a crystal growing in solution
NASA Technical Reports Server (NTRS)
Wilkinson, R. Allen
1989-01-01
The feasibility of using Raman spectral scattering signals for measurements of concentration profiles near a crystal interface during growth or dissolution is discussed. With KH2PO4 (KDP) as a test material, optical multichannel analyzer (OMA) detection of a solute Raman vibrational band provided direct quantification of solute concentration with band intensity. The intersection of incident laser and Raman collection optics provided 3-D selective point measurements of the solution concentration field. Unlike many other techniques, the Raman band intensity is not sensitive to the typical temperature variations. Precision calibration of Raman intensity versus KDP concentration with less than 1 pct standard deviation error levels was demonstrated. A fiber optic, which sampled incident laser intensity and coupled it to the OMA, provided a fully synchronized monitor of fluctuations in laser power to correlate with observed Raman signals. With 1 W of laser power at the sample, good data statistics required eight repeated data collections at approximately 2.5 min collection. The accumulated time represents the concentration measurement time at one spatial location. Photomicroscopy documented a 30 micrometer diameter by 200 micrometer of laser Raman scattering region in the solution near the crystal surface. The laser beam was able to approach up to 25 micrometer from the crystal surface. However, a crystal surface reflected intensity contribution was weakly detectable. Nucleated microcrystals were seen in the crystal-growing solution. These microcrystals convect right up to the crystal surface and indicate no quiet diffusion region under normal gravity conditions. Translation of the solution cell with respect to the optics caused systematic intensity errors.
Qiang, Qinping; Du, Shanshan; Ma, Xinlong; Chen, Wenbo; Zhang, Gangyi; Wang, Yuhua
2018-05-09
In this paper, fluorescent and optical temperature sensing bi-functional Li+-doping NaLuF4:Ln (Ln = Yb3+, Tm3+/Er3+) nanocrystals were synthesized via a simple hydrothermal method using oleic acid as a capping ligand. The crystal phase, size, upconversion (UC) properties, and optical temperature sensing characteristics of the crystals can be easily modified by Li+ doping. The results reveal that additional Li+ can promote the transformation from the hexagonal phase to the cubic phase and reduce the size of the nanocrystals. In addition, NaLuF4:Ln (Ln = Yb3+, Tm3+, Li+) nanocrystals present efficient near infrared (NIR) emission, which is beneficial for in vivo biomedical applications due to the increased penetration depth and low radiation damage of NIR light in bio-tissues. More importantly, under 980 nm excitation, the temperature dependent UCL from the 2H11/2 and 4S3/2 levels of Er3+ ions in NaLuF4:Yb3+,Er3+,Li+ microcrystals was investigated systematically. The fluorescence intensity ratios (FIR) of the pairs of thermally coupled levels were studied as a function of temperature in the range of 298-523 K. The maximum sensor sensitivities were found to be about 0.0039 K-1 (523 K) by exploiting the UC emissions from the 2H11/2 and 4S3/2 levels. This suggests that the Li+-doped upconversion luminescence (UCL) materials are promising prototypes for application as multi-mode probes for use in bio-separation and optical thermometers.
Rawas-Qalaji, Mutasem; Rachid, Ousama; Mendez, Belacryst A; Losada, Annette; Simons, F Estelle R; Simons, Keith J
2015-01-01
For anaphylaxis treatment in community settings, adrenaline (epinephrine) administration using an auto-injector in the thigh is universally recommended. Despite this, many people at risk of anaphylaxis in community settings do not carry their prescribed auto-injectors consistently and hesitate to use them when anaphylaxis occurs.The objective of this research was to study the effect of a substantial reduction in adrenaline (Epi) particle size to a few micrometres (Epi microcrystals (Epi-MC)) on enhancing adrenaline dissolution and increasing the rate and extent of sublingual absorption from a previously developed rapidly disintegrating sublingual tablet (RDST) formulation in a validated preclinical model. The in-vivo absorption of Epi-MC 20 mg RDSTs and Epi 40 mg RDSTs was evaluated in rabbits. Epi 0.3 mg intramuscular (IM) injection in the thigh and placebo RDSTs were used as positive and negative controls, respectively. Epimean (standard deviation) area under the plasma concentration vs time curves up to 60 min and Cmax from Epi-MC 20 mg and Epi 40 mg RDSTs did not differ significantly (P > 0.05) from Epi 0.3 mg IM injection. After adrenaline, regardless of route of administration, pharmacokinetic parameters were significantly higher (P < 0.05) than after placebo RDSTs administration (reflecting endogenous adrenaline levels). Epi-MC RDSTs facilitated a twofold increase in Epi absorption and a 50% reduction in the sublingual dose. This novel sublingual tablet formulation is potentially useful for the first-aid treatment of anaphylaxis in community settings. © 2014 Royal Pharmaceutical Society.
Experimental Approaches for Solution X-Ray Scattering and Fiber Diffraction
Irving, T. C.
2008-01-01
X-ray scattering and diffraction from non-crystalline systems have gained renewed interest in recent years, as focus shifts from the structural chemistry information gained by high-resolution studies to the context of structural physiology at larger length scales. Such techniques permit the study of isolated macromolecules as well as highly organized macromolecular assemblies as a whole under near-physiological conditions. Time-resolved approaches, made possible by advanced synchrotron instrumentation, add a critical dimension to many of these investigations. This article reviews experimental approaches in non-crystalline x-ray scattering and diffraction that may be used to illuminate important scientific questions such as protein/nucleic acid folding and structure-function relationships in large macromolecular assemblies. PMID:18801437
Xiaodan, Chen; Xiurong, Zhan; Xinyu, Wu; Chunyan, Zhao; Wanghong, Zhao
2015-04-01
The aim of this study is to analyze the three-dimensional crystal structure of SMU.2055 protein, a putative acetyltransferase from the major caries pathogen Streptococcus mutans (S. mutans). The design and selection of the structure-based small molecule inhibitors are also studied. The three-dimensional crystal structure of SMU.2055 protein was obtained by structural genomics research methods of gene cloning and expression, protein purification with Ni²⁺-chelating affinity chromatography, crystal screening, and X-ray diffraction data collection. An inhibitor virtual model matching with its target protein structure was set up using computer-aided drug design methods, virtual screening and fine docking, and Libdock and Autodock procedures. The crystal of SMU.2055 protein was obtained, and its three-dimensional crystal structure was analyzed. This crystal was diffracted to a resolution of 0.23 nm. It belongs to orthorhombic space group C222(1), with unit cell parameters of a = 9.20 nm, b = 9.46 nm, and c = 19.39 nm. The asymmetric unit contained four molecules, with a solvent content of 56.7%. Moreover, five small molecule compounds, whose structure matched with that of the target protein in high degree, were designed and selected. Protein crystallography research of S. mutans SMU.2055 helps to understand the structures and functions of proteins from S. mutans at the atomic level. These five compounds may be considered as effective inhibitors to SMU.2055. The virtual model of small molecule inhibitors we built will lay a foundation to the anticaries research based on the crystal structure of proteins.
Medjoubi, Kadda; Thompson, Andrew; Bérar, Jean-François; Clemens, Jean-Claude; Delpierre, Pierre; Da Silva, Paulo; Dinkespiler, Bernard; Fourme, Roger; Gourhant, Patrick; Guimaraes, Beatriz; Hustache, Stéphanie; Idir, Mourad; Itié, Jean-Paul; Legrand, Pierre; Menneglier, Claude; Mercere, Pascal; Picca, Frederic; Samama, Jean-Pierre
2012-05-01
The XPAD3S-CdTe, a CdTe photon-counting pixel array detector, has been used to measure the energy and the intensity of the white-beam diffraction from a lysozyme crystal. A method was developed to calibrate the detector in terms of energy, allowing incident photon energy measurement to high resolution (approximately 140 eV), opening up new possibilities in energy-resolved X-ray diffraction. In order to demonstrate this, Laue diffraction experiments were performed on the bending-magnet beamline METROLOGIE at Synchrotron SOLEIL. The X-ray energy spectra of diffracted spots were deduced from the indexed Laue patterns collected with an imaging-plate detector and then measured with both the XPAD3S-CdTe and the XPAD3S-Si, a silicon photon-counting pixel array detector. The predicted and measured energy of selected diffraction spots are in good agreement, demonstrating the reliability of the calibration method. These results open up the way to direct unit-cell parameter determination and the measurement of high-quality Laue data even at low resolution. Based on the success of these measurements, potential applications in X-ray diffraction opened up by this type of technology are discussed.
Rahaman, Siti Nurulnabila A; Mat Yusop, Jastina; Mohamed-Hussein, Zeti-Azura; Ho, Kok Lian; Teh, Aik-Hong; Waterman, Jitka; Ng, Chyan Leong
2016-03-01
C1ORF123 is a human hypothetical protein found in open reading frame 123 of chromosome 1. The protein belongs to the DUF866 protein family comprising eukaryote-conserved proteins with unknown function. Recent proteomic and bioinformatic analyses identified the presence of C1ORF123 in brain, frontal cortex and synapses, as well as its involvement in endocrine function and polycystic ovary syndrome (PCOS), indicating the importance of its biological role. In order to provide a better understanding of the biological function of the human C1ORF123 protein, the characterization and analysis of recombinant C1ORF123 (rC1ORF123), including overexpression and purification, verification by mass spectrometry and a Western blot using anti-C1ORF123 antibodies, crystallization and X-ray diffraction analysis of the protein crystals, are reported here. The rC1ORF123 protein was crystallized by the hanging-drop vapor-diffusion method with a reservoir solution comprised of 20% PEG 3350, 0.2 M magnesium chloride hexahydrate, 0.1 M sodium citrate pH 6.5. The crystals diffracted to 1.9 Å resolution and belonged to an orthorhombic space group with unit-cell parameters a = 59.32, b = 65.35, c = 95.05 Å. The calculated Matthews coefficient (VM) value of 2.27 Å(3) Da(-1) suggests that there are two molecules per asymmetric unit, with an estimated solvent content of 45.7%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kane Dickson, Veronica
The purification and three-dimensional crystallization of membrane proteins are commonly affected by a cumulation of pathologies that are less prevalent in their soluble counterparts. This may include severe anisotropy, poor spot shape, poor to moderate-resolution diffraction, crystal twinning, translational pseudo-symmetry and poor uptake of heavy atoms for derivatization. Such challenges must be circumvented by adaptations in the approach to crystallization and/or phasing. Here, an example of a protein that exhibited all of the above-mentioned complications is presented. Bestrophin-1 is a eukaryotic calcium-activated chloride channel, the structure of which was recently determined in complex with monoclonal antibody fragments using SAD phasingmore » with tantalum bromide clusters (Ta 6Br 12·Br 2). Some of the obstacles to obtaining improved diffraction and phasing for this particular channel are discussed, as well as the approach and adaptations that were key to determining the structure.« less
Alsarraf, Husam M. A. B.; Laroche, Fabrice; Spaink, Herman; Thirup, Søren; Blaise, Mickael
2011-01-01
Cell metabolic processes are constantly producing reactive oxygen species (ROS), which have deleterious effects by triggering, for example, DNA damage. Numerous enzymes such as catalase, and small compounds such as vitamin C, provide protection against ROS. The TLDc domain of the human oxidation resistance protein has been shown to be able to protect DNA from oxidative stress; however, its mechanism of action is still not understood and no structural information is available on this domain. Structural information on the TLDc domain may therefore help in understanding exactly how it works. Here, the purification, crystallization and preliminary crystallographic studies of the TLDc domain from zebrafish are reported. Crystals belonging to the orthorhombic space group P21212 were obtained and diffracted to 0.97 Å resolution. Selenomethionine-substituted protein could also be crystallized; these crystals diffracted to 1.1 Å resolution and the structure could be solved by SAD/MAD methods. PMID:22102041
Self-assembling holographic biosensors and biocomputers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Light, Yooli Kim; Bachand, George David; Schoeniger, Joseph S.
2006-05-01
We present concepts for self-assembly of diffractive optics with potential uses in biosensors and biocomputers. The simplest such optics, diffraction gratings, can potentially be made from chemically-stabilized microtubules migrating on nanopatterned tracks of the motor protein kinesin. We discuss the fabrication challenges involved in patterning sub-micron-scale structures with proteins that must be maintained in aqueous buffers to preserve their activity. A novel strategy is presented that employs dry contact printing onto glass-supported amino-silane monolayers of heterobifunctional crosslinkers, followed by solid-state reactions of these cross-linkers, to graft patterns of reactive groups onto the surface. Successive solution-phase addition of cysteine-mutant proteins andmore » amine-reactive polyethylene glycol allows assembly of features onto the printed patterns. We present data from initial experiments showing successful micro- and nanopatterning of lines of single-cysteine mutants of kinesin interleaved with lines of polyethylene, indicating that this strategy can be employed to arrays of features with resolutions suitable for gratings.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evdokimov, Artem G.; Mekel, Marlene; Hutchings, Kim
2008-07-08
In this article, we describe for the first time the high-resolution crystal structure of a phenylalanine tRNA synthetase from the pathogenic bacterium Staphylococcus haemolyticus. We demonstrate the subtle yet important structural differences between this enzyme and the previously described Thermus thermophilus ortholog. We also explain the structure-activity relationship of several recently reported inhibitors. The native enzyme crystals were of poor quality -- they only diffracted X-rays to 3--5 {angstrom} resolution. Therefore, we have executed a rational surface mutagenesis strategy that has yielded crystals of this 2300-amino acid multidomain protein, diffracting to 2 {angstrom} or better. This methodology is discussed andmore » contrasted with the more traditional domain truncation approach.« less
Umehara, Takashi; Wakamori, Masatoshi; Tanaka, Akiko; Padmanabhan, Balasundaram; Yokoyama, Shigeyuki
2007-01-01
BRD2 is a bromodomain-containing BET-family protein that associates with acetylated histones throughout the cell cycle. Although the tertiary structures of the bromodomains involved in histone acetyl transfer are already known, the structures of the BET-type bromodomains, which are required for tight association with acetylated chromatin, are poorly understood. Here, the expression, purification and crystallization of the C-terminal bromodomain of human BRD2 are reported. The protein was crystallized by the sitting-drop vapour-diffusion method in the orthorhombic space group P21212, with unit-cell parameters a = 71.78, b = 52.60, c = 32.06 Å and one molecule per asymmetric unit. The crystal diffracted beyond 1.80 Å resolution using synchrotron radiation. PMID:17620725
Purification, crystallization and preliminary X-ray analysis of the IgV domain of human nectin-4.
Xu, Xiang; Zhang, Xiaoai; Lu, Guangwen; Cai, Yongping
2012-08-01
Nectin-4 belongs to a family of immunoglobulin-like cell adhesion molecules and is highly expressed in cancer cells. Recently, nectin-4 was found to be a receptor of measles virus and the IgV domain sustains strong binding to measles virus H protein. In this study, the successful expression and purification of human nectin-4 V domain (nectin-4v) is reported. The purified protein was crystallized using the sitting-drop vapour-diffusion method. The crystals diffracted to 1.8 Å resolution and belonged to space group P2(1), with unit-cell parameters a = 33.1, b = 51.7, c = 56.9 Å, β = 94.7°. Preliminary analysis of the diffraction data was also performed.