Science.gov

Sample records for protein mrna expression

  1. Calpain expression in lymphoid cells. Increased mRNA and protein levels after cell activation.

    PubMed

    Deshpande, R V; Goust, J M; Chakrabarti, A K; Barbosa, E; Hogan, E L; Banik, N L

    1995-02-10

    Although calpain is ubiquitously present in human tissues and is thought to play a role in demyelination, its activity is very low in resting normal lymphocytes. To determine the nature of calpain expression at the mRNA and protein levels in human lymphoid cells, we studied human T lymphocytic, B lymphocytic, and monocytic lines as well as peripheral blood mononuclear cells. Stimulation of cells with the phorbol ester phorbol myristate acetate and the calcium ionophore A23187 resulted in increased calpain mRNA and protein expression. Calpain mRNA expression is also increased in human T cells stimulated with anti-CD3. A dissociation between the increases of RNA and protein suggested that calpain could be released from the cells; the subsequent experiments showed its presence in the extracellular environment. 5,6-Dichloro-1b-D-ribofuranosylbenzimidazole, a reversible inhibitor of mRNA synthesis, reduced calpain mRNA levels by 50-67% and protein levels by 72-91%. Its removal resulted in resumption of both calpain mRNA and protein synthesis. Cycloheximide, a translational inhibitor, reduced calpain protein levels by 77-81% and calpain mRNA levels by 96% in activated THP-1 cells. Interferon-gamma induced calpain mRNA and protein in U-937 and THP-1 cells. Dexamethasone increased mRNA expression in THP-1 cells. Our results indicate that activation of lymphoid cells results in de novo synthesis and secretion of calpain.

  2. Effect of taurine on mRNA expression of thioredoxin interacting protein in Caco-2 cells.

    PubMed

    Gondo, Yusuke; Satsu, Hideo; Ishimoto, Yoko; Iwamoto, Taku; Shimizu, Makoto

    2012-09-28

    Taurine (2-aminoethanesulfonic acid), a sulfur-containing β-amino acid, plays an important role in several essential biological processes; although, the underlying mechanisms for these regulatory functions remain to be elucidated, especially at the genetic level. We investigated the effects of taurine on the gene expression profile in Caco-2 cells using DNA microarray. Taurine increased the mRNA expression of thioredoxin interacting protein (TXNIP), which is involved in various metabolisms and diseases. β-Alanine or γ-aminobutyric acid (GABA), which are structurally or functionally related to taurine, did not increase TXNIP mRNA expression. These suggest the expression of TXNIP mRNA is induced specifically by taurine. β-Alanine is also known to be a substrate of taurine transporter (TAUT) and competitively inhibits taurine uptake. Inhibition of taurine uptake by β-alanine eliminated the up-regulation of TXNIP, which suggests TAUT is involved in inducing TXNIP mRNA expression. The up-regulation of TXNIP mRNA expression by taurine was also observed at the protein level. Furthermore, taurine significantly increased TXNIP promoter activity. Our present study demonstrated the taurine-specific phenomenon of TXNIP up-regulation, which sheds light on the physiological function of taurine.

  3. p73 expression is regulated by ribosomal protein RPL26 through mRNA translation and protein stability

    PubMed Central

    Yan, Wensheng; Chen, Xinbin

    2016-01-01

    p73, a p53 family tumor suppressor, is regulated by multiple mechanisms, including transcription and mRNA and protein stability. However, whether p73 expression is regulated via mRNA translation has not been explored. To test this, we examined whether ribosomal protein 26 (RPL26) plays a role in p73 expression. Here, we showed that p73 expression is controlled by RPL26 via protein stability and mRNA translation. To examine whether MDM2 mediates RPL26 to regulate p73 protein stability, we generated multiple MDM2-knockout cell lines by CRISPR-cas9. We found that in the absence of MDM2, the half-life of p73 protein is markedly increased. Interestingly, we also found that RPL26 is still capable of regulating p73 expression, albeit to a lesser extent, in MDM2-KO cells compared to that in isogenic control cells, suggesting that RPL26 regulates p73 expression via multiple mechanisms. Indeed, we found that RPL26 is necessary for efficient assembly of polysomes on p73 mRNA and de novo synthesis of p73 protein. Consistently, we found that RPL26 directly binds to p73 3′ untranslated region (3′UTR) and that RPL26 is necessary for efficient expression of an eGFP reporter that carries p73 3′UTR. We also found that RPL26 interacts with cap-binding protein eIF4E and enhances the association of eIF4E with p73 mRNA, leading to increased p73 mRNA translation. Finally, we showed that knockdown of RPL26 promotes, whereas ectopic expression of RPL26 inhibits, cell growth in a TAp73-dependent manner. Together, our data indicate that RPL26 regulates p73 expression via two distinct mechanisms: protein stability and mRNA translation. PMID:27825141

  4. Eosinophil cationic protein mRNA expression in children with bronchial asthma.

    PubMed

    Yu, H Y; Li, X Y; Cai, Z F; Li, L; Shi, X Z; Song, H X; Liu, X J

    2015-11-13

    Studies have shown that eosinophils are closely related to pathogenesis of bronchial asthma. Eosinophils release eosinophil cationic protein (ECP), which plays an important role in infection and allergic reactions. Serum ECP mRNA expression in children with bronchial asthma has not been adequately investigated. We analyzed serum ECP mRNA expression in 63 children with bronchial asthma and 21 healthy children by using reverse-transcriptase polymerase chain reaction to understand the role of ECP in children with bronchial asthma. The children with bronchial asthma were segregated into acute-phase and stable-phase groups, based on the severity of the illness. Serum ECP mRNA expression in children with bronchial asthma (0.375 ± 0.04) was significantly higher than that in healthy controls (0.20 ± 0.02; P < 0.05). Additionally, children in the acute-phase group showed higher ECP mRNA expression level (0.44 ± 0.06) than those in the stable-phase (0.31 ± 0.03) and healthy control groups (0.20 ± 0.02; P < 0.05), while the level in the stable-phase (0.31 ± 0.03) was markedly higher than that in the healthy control group (0.20 ± 0.02; P < 0.05). Detection of serum ECP mRNA expression level has possible applications in the diagnosis and treatment of children with bronchial asthma.

  5. Myxovirus Resistance Protein A mRNA Expression Kinetics in Multiple Sclerosis Patients Treated with IFNβ

    PubMed Central

    Libertinova, Jana; Meluzinova, Eva; Tomek, Ales; Horakova, Dana; Kovarova, Ivana; Matoska, Vaclav; Kumstyrova, Simona; Zajac, Miroslav; Hyncicova, Eva; Liskova, Petra; Houzvickova, Eva; Martinkovic, Lukas; Bojar, Martin; Havrdova, Eva; Marusic, Petr

    2017-01-01

    Introduction Interferon-β (IFNß) is the first-line treatment for relapsing-remitting multiple sclerosis. Myxovirus resistance protein A (MxA) is a marker of IFNß bioactivity, which may be reduced by neutralizing antibodies (NAbs) against IFNß. The aim of the study was to analyze the kinetics of MxA mRNA expression during long-term IFNβ treatment and assess its predictive value. Methods A prospective, observational, open-label, non-randomized study was designed in multiple sclerosis patients starting IFNß treatment. MxA mRNA was assessed prior to initiation of IFNß therapy and every three months subsequently. NAbs were assessed every six months. Assessment of relapses was scheduled every three months during 24 months of follow up. The disease activity was correlated to the pretreatment baseline MxA mRNA value. In NAb negative patients, clinical status was correlated to MxA mRNA values. Results 119 patients were consecutively enrolled and 107 were included in the final analysis. There was no correlation of MxA mRNA expression levels between baseline and month three. Using survival analysis, none of the selected baseline MxA mRNA cut off points allowed prediction of time to first relapse on the treatment. In NAb negative patients, mean MxA mRNA levels did not significantly differ in patients irrespective of relapse status. Conclusion Baseline MxA mRNA does not predict the response to IFNß treatment or the clinical status of the disease and the level of MxA mRNA does not correlate with disease activity in NAb negative patients. PMID:28081207

  6. Heterogeneous expression of protein and mRNA in pyruvate dehydrogenase deficiency.

    PubMed Central

    Wexler, I D; Kerr, D S; Ho, L; Lusk, M M; Pepin, R A; Javed, A A; Mole, J E; Jesse, B W; Thekkumkara, T J; Pons, G

    1988-01-01

    Deficiency of pyruvate dehydrogenase [pyruvate:lipoamide 2-oxidoreductase (decarboxylating and acceptor-acetylating), EC 1.2.4.1], the first component of the pyruvate dehydrogenase complex, is associated with lactic acidosis and central nervous system dysfunction. Using both specific antibodies to pyruvate dehydrogenase and cDNAs coding for its two alpha and beta subunits, we characterized pyruvate dehydrogenase deficiency in 11 patients. Three different patterns were found on immunologic and RNA blot analyses. (i) Seven patients had immunologically detectable crossreactive material for the alpha and beta proteins of pyruvate dehydrogenase. (ii) Two patients had no detectable crossreactive protein for either the alpha or beta subunit but had normal amounts of mRNA for both alpha and beta subunits. (iii) The remaining two patients also had no detectable crossreactive protein but had diminished amounts of mRNA for the alpha subunit of pyruvate dehydrogenase only. These results indicate that loss of pyruvate dehydrogenase activity may be associated with either absent or catalytically inactive proteins, and in those cases in which this enzyme is absent, mRNA for one of the subunits may also be missing. When mRNA for one of the subunits is lacking, both protein subunits are absent, suggesting that a mutation affecting the expression of one of the subunit proteins causes the remaining uncomplexed subunit to be unstable. The results show that several different mutations account for the molecular heterogeneity of pyruvate dehydrogenase deficiency. Images PMID:3140238

  7. Sprouty4 mRNA variants and protein expressions in breast and lung-derived cells

    PubMed Central

    Doriguzzi, Angelina; Salhi, Jihen; Sutterlüty-Fall, Hedwig

    2016-01-01

    Sprouty proteins are modulators of mitogen-induced signalling processes and are therefore hypothesized to affect malignant diseases. As a member of the Sprouty family, Sprouty4 has been previously shown to function as a tumour suppressor in lung and breast cancer. The present study analysed the expression of two known Sprouty4 splice variants in cells established from malignant and normal lung and breast tissues using semi-quantitative reverse transcription-polymerase chain reaction and immunoblotting. The results indicated that the expression of the two messenger RNA (mRNA) variants was reduced in the cells derived from malignant tissue in comparison to the normal counterparts. Although the expression of the two splice variants were associated in both tissue types, on average, the relative expression of the longer variant was slightly increased in malignant cells compared with normal tissues. Notably, the protein levels reflected the expression observed at the mRNA level only in breast-derived cells. Contrarily, with regards to the measured mRNA levels, Sprouty4 protein was disproportional augmented in lung cells known to harbour the mutated K-Ras gene. PMID:27895786

  8. Optimization of mRNA design for protein expression in the crustacean Daphnia magna.

    PubMed

    Törner, Kerstin; Nakanishi, Takashi; Matsuura, Tomoaki; Kato, Yasuhiko; Watanabe, Hajime

    2014-08-01

    The water flea Daphnia is a new model organism for ecological, evolutionary, and toxicological genomics. Detailed functional analysis of genes newly discovered through genomic approaches often requires overexpression of the identified protein. In the present study, we report the microinjection of in vitro-synthesized RNAs into the eggs as a method for overexpressing ubiquitous proteins in Daphnia magna. We injected a 1.3-kb mRNA that coded for the red fluorescent protein (DsRed2) flanked by UTRs from the ubiquitously expressed elongation factor 1α-1 (EF1α-1) into D. magna embryos. DsRed2 fluorescence in the embryos was measured 24 h after microinjection. Unexpectedly, the reporter RNA containing the 522-bp full-length EF1α-1 3' UTR failed to induce fluorescence. To assess reporter expression, the length of the 3' UTR that potentially contained negative regulatory elements of protein expression, including AU-rich regions and Musashi binding elements, was serially reduced from the 3' end. Assessing all injected RNA alternatives, mRNA containing the first 60 bp of the 3' UTR gave rise to the highest fluorescence, 14 times the Daphnia auto-fluorescence. In contrast, mRNA lacking the entire 3' UTR hardly induced any change in fluorescence intensity. This is the first evaluation of UTRs of mRNAs delivered into Daphnia embryos by microinjection for overexpressing proteins. The mRNA with truncated 3' UTRs of Daphnia EF1α-1 will be useful not only for gain-of-function analyses but also for labeling proteins and organelles with fluorescent proteins in Daphnia.

  9. Gallium nitrate regulates rat osteoblast expression of osteocalcin protein and mRNA levels.

    PubMed

    Guidon, P T; Salvatori, R; Bockman, R S

    1993-01-01

    Gallium nitrate, a group IIIa metal salt, has been found to be clinically effective for the treatment of accelerated bone resorption in cancer-related hypercalcemia and Paget's disease. Here we report the effects of gallium nitrate on osteocalcin mRNA and protein levels on the rat osteoblast-like cell line ROS 17/2.8. Gallium nitrate reduced both constitutive and vitamin D3-stimulated osteocalcin protein levels in culture medium by one-half and osteocalcin mRNA levels to one-third to one-tenth of control. Gallium nitrate also inhibited vitamin D3 stimulation of osteocalcin and osteopontin mRNA levels but did not affect constitutive osteopontin mRNA levels. Among several different metals examined, gallium was unique in its ability to reduce osteocalcin mRNA levels without decreasing levels of other mRNAs synthesized by ROS 17/2.8 cells. The effects of gallium nitrate on osteocalcin mRNA and protein synthesis mimic those seen when ROS 17/2.8 cells are exposed to transforming growth factor beta 1 (TGF beta 1); however, TGF-beta 1 was not detected in gallium nitrate-treated ROS 17/2.8 cell media. Use of the RNA polymerase II inhibitor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole demonstrated that gallium nitrate did not alter the stability of osteocalcin mRNA. Transient transfection assays using the rat osteocalcin promoter linked to the bacterial reporter gene chloramphenicol acetyltransferase indicated that gallium nitrate blocked reporter gene expression stimulated by the osteocalcin promoter. This is the first reported effect of gallium nitrate on isolated osteoblast cells.

  10. TLR2 and TLR4 polymorphisms influence mRNA and protein expression in colorectal cancer

    PubMed Central

    Proença, Marcela Alcântara; de Oliveira, Juliana Garcia; Cadamuro, Aline Cristina Targa; Succi, Maysa; Netinho, João Gomes; Goloni-Bertolo, Eny Maria; Pavarino, Érika Cristina; Silva, Ana Elizabete

    2015-01-01

    AIM: To evaluate the effect of promoter region polymorphisms of toll-like receptor (TLR)2-196 to -174del and TLR4-1607T/C (rs10759932) on mRNA and protein expression in tumor tissue and of TLR4+896A/G (rs4986790) on colorectal cancer (CRC) risk. METHODS: The TLR2-196 to -174del polymorphism was investigated using allele-specific polymerase chain reaction (PCR) and the TLR4-1607T/C and TLR4+896A/G by PCR-restriction fragment length polymorphism (RFLP). We genotyped 434 DNA samples from 194 CRC patients and 240 healthy individuals. The mRNA relative quantification (RQ) was performed in 40 tumor tissue samples by quantitative PCR TaqMan assay, using specific probes for TLR2 and TLR4 genes, and ACTB and GAPDH reference genes were used as endogenous controls. Protein expression was analyzed by immunohistochemistry with specific primary antibodies. RESULTS: No association was found for TLR4-1607T/C and TLR4+896A/G by three statistical models (log-additive, dominant and recessive). However, based on dominant and log-additive models, the polymorphic variant TLR2-196 to -174del was associated with increased CRC risk [dominant: odds ratio (OR) = 1.72, 95%CI: 1.03-2.89; P = 0.038 and log-additive: OR =1.59, 95%CI: 1.02-2.48; P = 0.039]. TLR2 mRNA expression was increased in tumor tissue (RQ = 2.36) when compared to adjacent normal tissue (RQ = 1; P < 0.0001), whereas the TLR4 mRNA showed a basal expression (RQ = 0.74 vs RQ = 1, P = 0.452). Immunohistochemistry analysis of TLR2 and TLR4 protein expression was concordant with the findings of mRNA expression. In addition, the TLR2-196 to -174del variant carriers showed mRNA relative expression 2.19 times higher than wild-genotype carriers. The TLR2 protein expression was also higher for the TLR2-196 to -174del variant carriers [117 ± 10 arbitrary unit (a.u.) vs 95 ± 4 a.u., P = 0.03]. However, for the TLR4 -1607T/C polymorphism no significant difference was found for both mRNA (P = 0.56) and protein expression (P = 0

  11. Control of Cytokine mRNA Expression by RNA-binding Proteins and microRNAs

    PubMed Central

    Palanisamy, V.; Jakymiw, A.; Van Tubergen, E.A.; D’Silva, N.J.; Kirkwood, K.L.

    2012-01-01

    Cytokines are critical mediators of inflammation and host defenses. Regulation of cytokines can occur at various stages of gene expression, including transcription, mRNA export, and post- transcriptional and translational levels. Among these modes of regulation, post-transcriptional regulation has been shown to play a vital role in controlling the expression of cytokines by modulating mRNA stability. The stability of cytokine mRNAs, including TNFα, IL-6, and IL-8, has been reported to be altered by the presence of AU-rich elements (AREs) located in the 3′-untranslated regions (3′UTRs) of the mRNAs. Numerous RNA-binding proteins and microRNAs bind to these 3′UTRs to regulate the stability and/or translation of the mRNAs. Thus, this paper describes the cooperative function between RNA-binding proteins and miRNAs and how they regulate AU-rich elements containing cytokine mRNA stability/degradation and translation. These mRNA control mechanisms can potentially influence inflammation as it relates to oral biology, including periodontal diseases and oral pharyngeal cancer progression. PMID:22302144

  12. Expression of connexin 43 mRNA and protein in developing follicles of prepubertal porcine ovaries

    USGS Publications Warehouse

    Melton, C.M.; Zaunbrecher, G.M.; Yoshizaki, G.; Patio, R.; Whisnant, S.; Rendon, A.; Lee, V.H.

    2001-01-01

    A major form of cell-cell communication is mediated by gap junctions, aggregations of intercellular channels composed of connexins (Cxs), which are responsible for exchange of low molecular weight (< 1200 Da) cytosolic materials. These channels are a growing family of related proteins. This study was designed to determine the ontogeny of connexin 43 (Cx43) during early stages of follicular development in prepubertal porcine ovaries. A partial-length (412 base) cDNA clone was obtained from mature porcine ovaries and determined to have 98% identity with published porcine Cx43. Northern blot analysis demonstrated a 4.3-kb mRNA in total RNA isolated from prepubertal and adult porcine ovaries. In-situ hybridization revealed that Cx43 mRNA was detectable in granulosa cells of primary follicles but undetectable in dormant primordial follicles. The intensity of the signal increased with follicular growth and was greatest in the large antral follicles. Immunohistochemical evaluation indicated that Cx43 protein expression correlated with the presence of Cx43 mRNA. These results indicate that substantial amounts of Cx43 are first expressed in granulosa cells following activation of follicular development and that this expression increases throughout follicular growth and maturation. These findings suggest an association between the enhancement of intercellular gap-junctional communication and onset of follicular growth. ?? 2001 Elsevier Science Inc. All rights reserved.

  13. Induction of Ski protein expression upon luteinization in rat granulosa cells without a change in its mRNA expression.

    PubMed

    Kim, Hyun; Yamanouchi, Keitaro; Matsuwaki, Takashi; Nishihara, Masugi

    2012-01-01

    The Ski protein is implicated in the proliferation/differentiation of a variety of cells. We previously reported that the Ski protein is present in granulosa cells of atretic follicles, but not in preovulatory follicles, suggesting that Ski has a role in apoptosis of granulosa cells. However, granulosa cells cannot only undergo apoptosis but can alternatively differentiate into luteal cells. It is unknown whether Ski is expressed and has a role in granulosa cells undergoing luteinization. Thus, the aim of the present study was to determine the localization of the Ski protein in the rat ovary during luteinization to examine if Ski might play a role in this process. In order to examine the Ski protein expression during the progression of luteinization, follicular growth was induced in immature female rats by administration of equine chorionic gonadotropin, and luteinization was induced by human chorionic gonadotropin treatment to mimic the luteinizing hormone (LH) surge. While no Ski-positive granulosa cells were present in the preovulatory follicle, Ski protein expression was induced in response to the LH surge and was maintained after formation of the corpus luteum (CL). Although the Ski protein is absent from the granulosa cells of the preovulatory follicle, its mRNA (c-ski) was expressed, and the level of c-ski mRNA was unchanged even after the LH surge. The combined results demonstrated that Ski protein expression is induced in granulosa cells upon luteinization, and suggested that its expression is regulated posttranscriptionally.

  14. Effect of running training on uncoupling protein mRNA expression in rat brown adipose tissue

    NASA Astrophysics Data System (ADS)

    Yamashita, Hitoshi; Yamamoto, Mikio; Sato, Yuzo; Izawa, Tetsuya; Komabayashi, Takao; Saito, Daizo; Ohno, Hideki

    1993-03-01

    The effect was investigated of endurance training on the expression of uncoupling protein (UCP) mRNA in brown adipose tissue (BAT) of rats. The exercised rats were trained on a rodent treadmill for 5 days per week and a total of 9 weeks. After the training programme, a marked decrease in BAT mass was found in terms of weight or weight per unit body weight; there was a corresponding decrease in DNA content and a downward trend in RNA and glycogen levels. The UCP mRNA was present at a markedly decreased level in BAT of trained animals. In consideration of the reduced levels of mRNAs for hormone-sensitive lipase and acylCoA synthetase, the brown adipose tissue investigated appeared to be in a relatively atrophied and thermogenically quiescent state.

  15. Tobamovirus infection is independent of HSP101 mRNA induction and protein expression.

    PubMed

    Carr, Tyrell; Wang, Yongzeng; Huang, Zhonglian; Yeakley, Joanne M; Fan, Jian-Bing; Whitham, Steven A

    2006-10-01

    Heat shock protein 101 (HSP101) has been implicated in tobamovirus infections by virtue of its ability to enhance translation of mRNAs possessing the 5'Omega-leader of Tobacco mosaic virus (TMV). Enhanced translation is mediated by HSP101 binding to a CAA-repeat motif in TMV Omega leader. CAA repeat sequences are present in the 5' leaders of other tobamoviruses including Oilseed rape mosaic virus (ORMV), which infects Arabidopsis thaliana. HSP101 is one of eight HSP100 gene family members encoded by the A. thaliana genome, and of these, HSP101 and HSP98.7 are predicted to encode proteins localized to the cytoplasm where they could potentially interact with TMV RNA. Analysis of the expression of the HSP100s showed that only HSP101 mRNA transcripts were induced significantly by ORMV in A. thaliana. The induction of HSP101 mRNA was also correlated with an increase in its protein levels and was independent of defense-related signaling pathways involving salicylic acid, jasmonic acid, or ethylene. A. thaliana mutants lacking HSP101, HSP98.7, or both supported wild-type levels of ORMV replication and movement. Similar results were obtained for TMV infection in Nicotiana benthamiana plants silenced for HSP101, demonstrating that HSP101 is not necessary for efficient tobamovirus infection.

  16. On a stochastic gene expression with pre-mRNA, mRNA and protein contribution.

    PubMed

    Rudnicki, Ryszard; Tomski, Andrzej

    2015-12-21

    In this paper we develop a model of stochastic gene expression, which is an extension of the model investigated in the paper [T. Lipniacki, P. Paszek, A. Marciniak-Czochra, A.R. Brasier, M. Kimmel, Transcriptional stochasticity in gene expression, J. Theor. Biol. 238 (2006) 348-367]. In our model, stochastic effects still originate from random fluctuations in gene activity status, but we precede mRNA production by the formation of pre-mRNA, which enriches classical transcription phase. We obtain a stochastically regulated system of ordinary differential equations (ODEs) describing evolution of pre-mRNA, mRNA and protein levels. We perform mathematical analysis of a long-time behavior of this stochastic process, identified as a piece-wise deterministic Markov process (PDMP). We check exact results using numerical simulations for the distributions of all three types of particles. Moreover, we investigate the deterministic (adiabatic) limit state of the process, when depending on parameters it can exhibit two specific types of behavior: bistability and the existence of the limit cycle. The latter one is not present when only two kinds of gene expression products are considered.

  17. Expression of c-Kit receptor mRNA and protein in the developing, adult and irradiated rodent testis.

    PubMed

    Prabhu, Sridurga Mithra; Meistrich, Marvin L; McLaughlin, Eileen A; Roman, Shaun D; Warne, Sam; Mendis, Sirisha; Itman, Catherine; Loveland, Kate Lakoski

    2006-03-01

    Germ cell proliferation, migration and survival during all stages of spermatogenesis are affected by stem cell factor signalling through the c-Kit receptor, the expression and function of which are vital for normal male reproductive function. The present study comprehensively describes the c-Kit mRNA and protein cellular expression profiles in germ cells of the postnatal and adult rodent testis, revealing their significant elevation in synthesis at the onset of spermatogenesis. Real-time PCR analysis for both mice and rats matched the cellular mRNA expression profile where examined. Localization studies in normal mouse testes indicated that both c-Kit mRNA and protein are first detectable in differentiating spermatogonia. In addition, all spermatogonia isolated from 8-day-old mice displayed detectable c-Kit mRNA, but 30-50% of these lacked protein expression. The c-Kit mRNA and protein profile in normal rat testes indicated expression in gonocytes, in addition to differentiating spermatogonia. However, in the irradiated adult rat testes, in which undifferentiated spermatogonia are the only germ cell type, mRNA was also detected in the absence of protein. This persisted at 3 days and 1 and 2 weeks following treatment with gonadotrophin-releasing hormone (GnRH) antagonist to stimulate spermatogenesis recovery. By 4 weeks of GnRH antagonist treatment, accompanying the emergence of differentiating spermatogonia, both mRNA and protein were detected. Based on these observations, we propose that c-Kit mRNA and protein synthesis are regulated separately, possibly by influences linked to testis maturation and circulating hormone levels.

  18. The Drosophila Tis11 Protein and Its Effects on mRNA Expression in Flies*

    PubMed Central

    Choi, Youn-Jeong; Lai, Wi S.; Fedic, Robert; Stumpo, Deborah J.; Huang, Weichun; Li, Leping; Perera, Lalith; Brewer, Brandy Y.; Wilson, Gerald M.; Mason, James M.; Blackshear, Perry J.

    2014-01-01

    Members of the mammalian tristetraprolin family of CCCH tandem zinc finger proteins can bind to certain AU-rich elements (AREs) in mRNAs, leading to their deadenylation and destabilization. Mammals express three or four members of this family, but Drosophila melanogaster and other insects appear to contain a single gene, Tis11. We found that recombinant Drosophila Tis11 protein could bind to ARE-containing RNA oligonucleotides with low nanomolar affinity. Remarkably, co-expression in mammalian cells with “target” RNAs demonstrated that Tis11 could promote destabilization of ARE-containing mRNAs and that this was partially dependent on a conserved C-terminal sequence resembling the mammalian NOT1 binding domain. Drosophila Tis11 promoted both deadenylation and decay of a target transcript in this heterologous cell system. We used chromosome deletion/duplication and P element insertion to produce two types of Tis11 deficiency in adult flies, both of which were viable and fertile. To address the hypothesis that Tis11 deficiency would lead to the abnormal accumulation of potential target transcripts, we analyzed gene expression in adult flies by deep mRNA sequencing. We identified 69 transcripts from 56 genes that were significantly up-regulated more than 1.5-fold in both types of Tis11-deficient flies. Ten of the up-regulated transcripts encoded probable proteases, but many other functional classes of proteins were represented. Many of the up-regulated transcripts contained potential binding sites for tristetraprolin family member proteins that were conserved in other Drosophila species. Tis11 is thus an ARE-binding, mRNA-destabilizing protein that may play a role in post-transcriptional gene expression in Drosophila and other insects. PMID:25342740

  19. Changes of expression of stretch-activated potassium channel TREK-1 mRNA and protein in hypertrophic myocardium.

    PubMed

    Cheng, Longxian; Su, Fengcheng; Ripen, Nsenga; Fan, Hong; Huang, Kai; Wang, Min; Peng, Hongyu; Mei, Chunli; Zhao, Fang; Liao, Yuhua

    2006-01-01

    The expression of stretch-activated potassium channel TREK-1 mRNA and protein of hypertrophic myocardium was measured. Using a model of hypertrophy induced by coarctation of abdominal aorta in male Wistar rats, the expression of TREK-1 mRNA and protein was detected by using semi-quantitative RT PCR and Western blot respectively. At 4th and 8th week after constriction of the abdominal aorta, rats developed significant left ventricular hypertrophy. As compared to sham-operated group, stretch-activated potassium channel TREK-1 mRNA was strongly expressed and protein was up-regulated in operation groups (P < 0.05). It was concluded that the expression of TREK-1 was up-regulated in hypertrophic myocardium induced by chronic pressure overload in Wistar rats.

  20. Comprehensive expression analysis of FSHD candidate genes at the mRNA and protein level.

    PubMed

    Klooster, Rinse; Straasheijm, Kirsten; Shah, Bharati; Sowden, Janet; Frants, Rune; Thornton, Charles; Tawil, Rabi; van der Maarel, Silvère

    2009-12-01

    In facioscapulohumeral muscular dystrophy (FSHD) the majority of patients carry a D4Z4 macrosatellite repeat contraction in the subtelomere of chromosome 4q. Several disease mechanisms have been proposed to explain how repeat contraction causes muscular dystrophy. All proposed mechanisms foresee a change from a closed to a more open chromatin structure followed by loss of control over expression of genes in or proximal to D4Z4. Initially, a distance and residual repeat size-dependent upregulation of the candidate genes FRG2, FRG1 and ANT1 was observed, but most successive expression studies failed to support transcriptional upregulation of 4qter genes. Moreover, chromatin studies do not provide evidence for a cis-spreading mechanism operating at 4qter in FSHD. In part, this inconsistency may be explained by differences in the techniques used, and the use of RNA samples obtained from different muscle groups. The aim of this study is to comprehensively and uniformly study the expression of the FSHD candidate genes FRG1, FRG2, CRYM, ANT1, ALP, PITX1 and LRP2BP at the RNA and protein level in identically processed primary myoblasts, myotubes and quadriceps muscle. Expression was compared between samples obtained from FSHD patients and normal controls with samples from myotonic dystrophy type 1 patients as disease controls. No consistent changes in RNA or protein expression levels were observed between the samples. The one exception was a selective increase in FRG2 mRNA expression in FSHD myotubes. This study provides further evidence that there is no demonstrable consistent, large magnitude, overexpression of any of the FSHD candidate genes.

  1. Expression of klotho mRNA and protein in rat brain parenchyma from early postnatal development into adulthood.

    PubMed

    Clinton, Sarah M; Glover, Matthew E; Maltare, Astha; Laszczyk, Ann M; Mehi, Stephen J; Simmons, Rebecca K; King, Gwendalyn D

    2013-08-21

    Without the age-regulating protein klotho, mouse lifespan is shortened and the rapid onset of age-related disorders occurs. Conversely, overexpression of klotho extends mouse lifespan. Klotho is most abundant in kidney and expressed in a limited number of other organs, including the brain, where klotho levels are highest in choroid plexus. Reports vary on where klotho is expressed within the brain parenchyma, and no data is available as to whether klotho levels change across postnatal development. We used in situ hybridization to map klotho mRNA expression in the developing and adult rat brain and report moderate, widespread expression across grey matter regions. mRNA expression levels in cortex, hippocampus, caudate putamen, and amygdala decreased during the second week of life and then gradually rose to adult levels by postnatal day 21. Immunohistochemistry revealed a protein expression pattern similar to the mRNA results, with klotho protein expressed widely throughout the brain. Klotho protein co-localized with both the neuronal marker NeuN, as well as, oligodendrocyte marker olig2. These results provide the first anatomical localization of klotho mRNA and protein in rat brain parenchyma and demonstrate that klotho levels vary during early postnatal development.

  2. Differential regulation of amyloid-. beta. -protein mRNA expression within hippocampal neuronal subpopulations in Alzheimer disease

    SciTech Connect

    Higgins, G.A.; Lewis, D.A.; Bahmanyar, S.; Goldgaber, D.; Gajdusek, D.C.; Young, W.G.; Morrison, J.H.; Wilson, M.C.

    1988-02-01

    The authors have mapped the neuroanatomical distribution of amyloid-..beta..-protein mRNA within neuronal subpopulations of the hippocampal formation in the cynomolgus monkey (Macaca fascicularis), normal aged human, and patients with Alzheimer disease. Amyloid-..beta..-protein mRNA appears to be expressed in all hippocampal neurons, but at different levels of abundance. In the central nervous system of monkey and normal aged human, image analysis shows that neurons of the dentate gyrus and cornu Ammonis fields contain a 2.5-times-greater hybridization signal than is present in neurons of the subiculum and entorhinal cortex. In contrast, in the Alzheimer disease hippocampal formation, the levels of amyloid-..beta..-protein mRNA in the cornu Ammonis field 3 and parasubiculum are equivalent. These findings suggest that within certain neuronal subpopulations cell type-specific regulation of amyloid-..beta..-protein gene expression may be altered in Alzheimer disease.

  3. Regional expression of inducible heat shock protein-70 mRNA in the rat brain following administration of convulsant drugs.

    PubMed

    Planas, A M; Soriano, M A; Ferrer, I; Rodríguez Farré, E

    1994-11-01

    Expression of inducible heat shock protein-70 mRNA (hsp-70 mRNA) was studied in the rat brain following systemic administration of different convulsant agents: an L-type voltage-dependent calcium channel agonist, (+/-)-BAY K 8644 (BAY-K); the excitotoxic glutamate agonists kainic acid and N-methyl-D-aspartic acid (NMDA); and the GABAA receptor complex antagonists pentylenetetrazole (PTZ) and lindane (gamma-hexaclorocyclohexane). BAY-K induced minimal hsp-70 mRNA expression in the hippocampus of convulsant rats, localized in the dentate gyrus and the pyramidal cell layer of Ammon's horn. Kainic acid treatment in rats, showing severe limbic convulsions, caused intense expression of hsp-70 mRNA and protein (HSP-70). Expression was localized in select cerebral regions, notably the pyramidal cell layer of the hippocampal CA3 field of Ammon's horn and the piriform cortex, and also the subicular complex and the amygdala, and, to a lesser extent, the entorhinal cortex, the pyramidal cell layer of CA1, several thalamic nuclei, and the parietal cortex. In contrast, systemic administration of NMDA, PTZ or lindane led to no detectable induction of hsp-70 mRNA in the rat brain, despite producing convulsions. Histological examination revealed cell injury only following kainic acid treatment. Damage was most apparent in the piriform and entorhinal cortices, pyramidal cell layer of the CA1 field, and cortical amygdaloid nuclei. BAY-K, NMDA, PTZ and lindane did not lead to any observable histopathological changes. These results show that convulsions of different aetiology do not inevitably induce hsp-70 mRNA expression or cell damage. Intense expression of hsp-70 mRNA was generally associated with regions that later showed variable degrees of nerve cell damage, although hsp-70 mRNA expression was not always predictive of subsequent cell death or survival.

  4. Breast Cancer Resistance Protein Abundance, but Not mRNA Expression, Correlates With Estrone-3-Sulfate Transport in Caco-2.

    PubMed

    Harwood, Matthew D; Neuhoff, Sibylle; Rostami-Hodjegan, Amin; Warhurst, Geoffrey

    2016-04-01

    Transporter mRNA and protein expression data are used to extrapolate in vitro transporter kinetics to in vivo drug disposition predictions. Breast cancer resistance protein (BCRP) possesses broad substrate specificity; therefore, understanding BCRP expression-activity relationships are necessary for the translation to in vivo. Bidirectional transport of estrone-3-sulfate (E-3-S), a BCRP probe, was evaluated with respect to relative BCRP mRNA expression and absolute protein abundance in 10- and 29-day cultured Caco-2 cells. BCRP mRNA expression was quantified by real-time PCR against a housekeeper gene, Cyclophilin A. The BCRP protein abundance in total membrane fractions was quantified by targeted proteomics, and [(3)H]-E-3-S bidirectional transport was determined in the presence or absence of Ko143, a potent BCRP inhibitor. BCRP mRNA expression was 1.5-fold higher in 29- versus 10-day cultured cells (n = 3), whereas a 2.4-fold lower (p < 0.001) BCRP protein abundance was observed in 29- versus 10-day cultured cells (1.28 ± 0.33 and 3.06 ± 0.22 fmol/μg protein, n = 6, respectively). This correlated to a 2.45-fold lower (p < 0.01) efflux ratio for E-3-S in 29- versus 10-day cultured cells (8.97 ± 2.51 and 3.32 ± 0.66, n = 6, respectively). Caco-2 cell BCRP protein abundance, but not mRNA levels, correlates with BCRP activity, suggesting that extrapolation strategies incorporating BCRP protein abundance-activity relationships may be more successful.

  5. Pattern of expression of transforming growth factor-beta 4 mRNA and protein in the developing chicken embryo.

    PubMed

    Jakowlew, S B; Ciment, G; Tuan, R S; Sporn, M B; Roberts, A B

    1992-12-01

    Expression of TGF-beta 4 mRNA and protein was studied in the developing chicken embryo using specific cDNA probes and antibodies for chicken TGF-beta 4. Expression of TGF-beta 4 mRNA was detected by day 4 of incubation (Hamburger and Hamilton stage 22, E4) by RNA Northern blot analysis and increased with developmental age until day 12 of incubation (stage 38, E12) where it was detected in every embryonic tissue examined, with expression being highest in smooth muscle and lowest in the kidney. The steady-state level of expression of TGF-beta 4 mRNA remained relatively constant in most embryonic tissues through day 19 (stage 45, E19). In situ hybridization analysis detected TGF-beta 4 mRNA as early as the "definitive primitive streak" stage (stage 4); during neurulation (stage 10), TGF-beta 4 mRNA was detected in all three germ layers, including neuroectoderm. Following neurulation, TGF-beta 4 mRNA was detected in the neural tube, notochord, ectoderm, endoderm, sclerotome, and myotome, but not dermotome at stage 16. By day 6 of incubation (stage 29, E6), TGF-beta 4 mRNA was localized in several tissues including heart, lung, and gizzard. Immunohistochemical staining analysis also showed expression of TGF-beta 4 protein in all three germ layers as early as stage 4 in various cell types in qualitatively similar locations as TGF-beta 4 mRNA. These results suggest that TGF-beta 4 may play an important role in the development of many tissues in the chicken.

  6. TP53 Promoter Methylation in Primary Glioblastoma: Relationship with TP53 mRNA and Protein Expression and Mutation Status

    PubMed Central

    Szybka, Malgorzata; Malachowska, Beata; Fendler, Wojciech; Potemski, Piotr; Piaskowski, Sylwester; Jaskolski, Dariusz; Papierz, Wielislaw; Skowronski, Wieslaw; Och, Waldemar; Kordek, Radzislaw

    2014-01-01

    Reduced expression of TP53 by promoter methylation has been reported in several neoplasms. It remains unclear whether TP53 promoter methylation is associated with reduced transcriptional and protein expression in glioblastoma (GB). The aim of our work was to study the impact of TP53 methylation and mutations on TP53 mRNA level and protein expression in 42 molecularly characterized primary GB tumors. We also evaluate the impact of all molecular alterations on the overall patient survival. The frequency of TP53 promoter methylation was found in 21.4%. To the best of our knowledge, this is the first report showing such high frequency of TP53 promoter methylation in primary GB. There was no relation between TP53 promoter methylation and TP53 mRNA level (p=0.5722) and between TP53 promoter methylation and TP53 protein expression (p=0.2045). No significant associations were found between TP53 mRNA expression and mutation of TP53 gene (p=0.9076). However, significant association between TP53 mutation and TP53 protein expression was found (p=0.0016). Our data suggest that in primary GB TP53 promoter methylation does not play a role in silencing of TP53 transcriptional and protein expression and is probably regulated by other genetic and epigenetic mechanisms associated with genes involved in the TP53 pathway. PMID:24506545

  7. Expression and localization of the cystic fibrosis transmembrane conductance regulator mRNA and its protein in rat brain.

    PubMed

    Mulberg, A E; Resta, L P; Wiedner, E B; Altschuler, S M; Jefferson, D M; Broussard, D L

    1995-07-01

    In previous studies we have characterized the expression of the cystic fibrosis transmembrane conductance regulator (CFTR) protein in clathrin-coated vesicles derived from bovine brain and in neurons of rat brain. In this study we have further characterized the expression of the CFTR protein mRNA and protein in rat brain with reverse transcriptase polymerase chain reaction amplification (RT-PCR), in situ hybridization, and immunocytochemistry. The expression of CFTR mRNA and protein in discrete areas of brain, including the hypothalamus, thalamus, and amygdaloid nuclei, which are involved in regulation of appetite and resting energy expenditure, is identical. The presence of CFTR in neurons localized to these regions of brain controlling homeostasis and energy expenditure may elucidate the pathogenesis of other nonpulmonary and gastrointestinal manifestations which commonly are observed in children with cystic fibrosis. Dysregulation of normal neuropeptide vesicle trafficking by mutant CFTR in brain may serve as a pathogenic mechanism for disruption of homeostasis.

  8. Expression and localization of the cystic fibrosis transmembrane conductance regulator mRNA and its protein in rat brain.

    PubMed Central

    Mulberg, A E; Resta, L P; Wiedner, E B; Altschuler, S M; Jefferson, D M; Broussard, D L

    1995-01-01

    In previous studies we have characterized the expression of the cystic fibrosis transmembrane conductance regulator (CFTR) protein in clathrin-coated vesicles derived from bovine brain and in neurons of rat brain. In this study we have further characterized the expression of the CFTR protein mRNA and protein in rat brain with reverse transcriptase polymerase chain reaction amplification (RT-PCR), in situ hybridization, and immunocytochemistry. The expression of CFTR mRNA and protein in discrete areas of brain, including the hypothalamus, thalamus, and amygdaloid nuclei, which are involved in regulation of appetite and resting energy expenditure, is identical. The presence of CFTR in neurons localized to these regions of brain controlling homeostasis and energy expenditure may elucidate the pathogenesis of other nonpulmonary and gastrointestinal manifestations which commonly are observed in children with cystic fibrosis. Dysregulation of normal neuropeptide vesicle trafficking by mutant CFTR in brain may serve as a pathogenic mechanism for disruption of homeostasis. Images PMID:7542288

  9. Specific responses in rat small intestinal epithelial mRNA expression and protein levels during chemotherapeutic damage and regeneration.

    PubMed

    Verburg, Melissa; Renes, Ingrid B; Van Nispen, Danielle J P M; Ferdinandusse, Sacha; Jorritsma, Marieke; Büller, Hans A; Einerhand, Alexandra W C; Dekker, Jan

    2002-11-01

    The rapidly dividing small intestinal epithelium is very sensitive to the cytostatic drug methotrexate. We investigated the regulation of epithelial gene expression in rat jejunum during methotrexate-induced damage and regeneration. Ten differentiation markers were localized on tissue sections and quantified at mRNA and protein levels relative to control levels. We analyzed correlations in temporal expression patterns between markers. mRNA expression of enterocyte and goblet cell markers decreased significantly during damage for a specific period. Of these, sucrase-isomaltase (-62%) and CPS (-82%) were correlated. Correlations were also found between lactase (-76%) and SGLT1 (-77%) and between I-FABP (-52%) and L-FABP (-45%). Decreases in GLUT5 (-53%), MUC2 (-43%), and TFF3 (-54%) mRNAs occurred independently of any of the other markers. In contrast, lysozyme mRNA present in Paneth cells increased (+76%). At the protein level, qualitative and quantitative changes were in agreement with mRNA expression, except for Muc2 (+115%) and TFF3 (+81%), which increased significantly during damage, following independent patterns. During regeneration, expression of each marker returned to control levels. The enhanced expression of cytoprotective molecules (Muc2, TFF3, lysozyme) during damage represents maintenance of goblet cell and Paneth cell functions, most likely to protect the epithelium. Decreased expression of enterocyte-specific markers represents decreased enterocyte function, of which fatty acid transporters were least affected.

  10. Heat stress stimulates hepcidin mRNA expression and C/EBPα protein expression in aged rodent liver.

    PubMed

    Bloomer, Steven A; Kregel, Kevin C; Brown, Kyle E

    2014-01-01

    Elevations in hepatic iron content occur with aging and physiological stressors, which may promote oxidative injury to the liver. Since dysregulation of the iron regulatory hormone, hepcidin, can cause iron accumulation, our goal was to characterize the regulation of hepcidin in young (6 mo) and old (24 mo) Fischer 344 rats exposed to environmental heat stress. Liver and blood samples were taken in the control condition and after heating. Hepcidin expression did not differ between young and old rats in the control condition, despite higher levels of hepatic iron and IL-6 mRNA in the latter. Following heat stress, pSTAT3 increased in both groups, but C/EBPα and hepcidin mRNA increased only in old rats. Despite this, serum iron decreased in both age groups 2 h after heat stress, suggesting hepcidin-independent hypoferremia in the young rats. The differential regulation of hepcidin between young and old rats after hyperthermia may be due to the enhanced expression of C/EBPα protein in old rats. These data support the concept of "inflammaging" and suggest that repeated exposures to stressors may contribute to the development of anemia in older individuals.

  11. Expression of statherin mRNA and protein in nasal and vaginal secretions.

    PubMed

    Sakurada, Koichi; Akutsu, Tomoko; Watanabe, Ken; Fujinami, Yoshihito; Yoshino, Mineo

    2011-11-01

    Nasal secretion has been regarded as one of the most difficult body fluids to identify and is especially difficult to discriminate from vaginal secretions and saliva. At present, few specific markers are known for nasal secretions. The aim of this study is to find a new approach for the identification of nasal secretions. We examined expression levels of statherin and histatin, peptides which are commonly found in saliva, in nasal and vaginal secretions by real-time RT-PCR and ELISA assays. Statherin mRNA was highly expressed in all nasal samples (dCt value=-1.49±1.10, n=8) and was detected even in 1-day-old 0.1-μL stains. However, the stability of mRNA in nasal stains was significantly (P<0.01) lower than in saliva. Low levels of statherin mRNA were detected in 4 of the 17 vaginal samples (dCt value=11.65-14.72). Histatin mRNA was not detected in any nasal or vaginal samples, although it was highly expressed in all saliva samples. ELISA assays with anti-statherin goat polyclonal antibody showed that statherin peptide was detected in all nasal and saliva samples even after dilution of more than 1000-fold. The statherin peptide was not detected in any vaginal samples, including samples that expressed low levels of statherin mRNA. The amount of statherin peptide in vaginal samples might be less than the limit of detection of this assay. In the present study, statherin was highly expressed in nasal secretions, but histatin was not. These markers may be useful for discriminating nasal secretions from vaginal secretions and saliva. However, the usefulness of these markers in practical forensic case samples has not yet been examined. Therefore, further research is required to establish the utility of these assays for identification of nasal secretions.

  12. Expression of fragile X mental retardation protein and Fmr1 mRNA during folliculogenesis in the rat.

    PubMed

    Ferder, Ianina; Parborell, Fernanda; Sundblad, Victoria; Chiauzzi, Violeta; Gómez, Karina; Charreau, Eduardo H; Tesone, Marta; Dain, Liliana

    2013-04-01

    Fragile X mental retardation protein (FMRP) belongs to a small family of RNA-binding proteins. Its absence or inactivity is responsible for fragile X syndrome, the most common cause of inherited mental retardation. Despite its ubiquitous expression, FMRP function and expression remain almost understudied in non-neuronal tissues, though previous studies on germline development during oogenesis may suggest a special function of this protein also in ovarian tissue. In addition, the well-documented association of FMR1 premutation state with fragile X-related premature ovarian insufficiency adds interest to the role of FMRP in ovarian physiology. The aim of the present work was to investigate the expression of Fmr1 mRNA and its protein, FMRP, at different stages of rat follicular development. By immunohistochemical studies we demonstrated FMRP expression in granulosa, theca and germ cells in all stages of follicular development. In addition, changes in Fmr1 expression, both at the protein and mRNA levels, were observed. FMRP levels increased upon follicular development while preantral and early antral follicles presented similar levels of Fmr1 transcripts with decreased expression in preovulatory follicles. These observations suggest that Fmr1 expression in the ovary is regulated at different and perhaps independent levels. In addition, our results show expression of at least four different isoforms of FMRP during all stages of follicular growth with expression patterns that differ from those observed in brain and testis. Our study shows a regulated expression of Fmr1, both at mRNA and protein levels, during rat follicular development.

  13. The Andes hantavirus NSs protein is expressed from the viral small mRNA by a leaky scanning mechanism.

    PubMed

    Vera-Otarola, Jorge; Solis, Loretto; Soto-Rifo, Ricardo; Ricci, Emiliano P; Pino, Karla; Tischler, Nicole D; Ohlmann, Théophile; Darlix, Jean-Luc; López-Lastra, Marcelo

    2012-02-01

    The small mRNA (SmRNA) of all Bunyaviridae encodes the nucleocapsid (N) protein. In 4 out of 5 genera in the Bunyaviridae, the smRNA encodes an additional nonstructural protein denominated NSs. In this study, we show that Andes hantavirus (ANDV) SmRNA encodes an NSs protein. Data show that the NSs protein is expressed in the context of an ANDV infection. Additionally, our results suggest that translation initiation from the NSs initiation codon is mediated by ribosomal subunits that have bypassed the upstream N protein initiation codon through a leaky scanning mechanism.

  14. The Andes Hantavirus NSs Protein Is Expressed from the Viral Small mRNA by a Leaky Scanning Mechanism

    PubMed Central

    Vera-Otarola, Jorge; Solis, Loretto; Soto-Rifo, Ricardo; Ricci, Emiliano P.; Pino, Karla; Tischler, Nicole D.; Ohlmann, Théophile; Darlix, Jean-Luc

    2012-01-01

    The small mRNA (SmRNA) of all Bunyaviridae encodes the nucleocapsid (N) protein. In 4 out of 5 genera in the Bunyaviridae, the smRNA encodes an additional nonstructural protein denominated NSs. In this study, we show that Andes hantavirus (ANDV) SmRNA encodes an NSs protein. Data show that the NSs protein is expressed in the context of an ANDV infection. Additionally, our results suggest that translation initiation from the NSs initiation codon is mediated by ribosomal subunits that have bypassed the upstream N protein initiation codon through a leaky scanning mechanism. PMID:22156529

  15. Pyruvate dehydrogenase complex: mRNA and protein expression patterns of E1α subunit genes in human spermatogenesis.

    PubMed

    Pinheiro, Ana; Silva, Maria João; Graça, Inês; Silva, Joaquina; Sá, Rosália; Sousa, Mário; Barros, Alberto; Tavares de Almeida, Isabel; Rivera, Isabel

    2012-09-10

    During spermatogenesis, germ cells undergo a complex process of cell differentiation and morphological restructuring, which depends on the coordinated expression of different genes. Some vital examples are those involved in cell energy metabolism, namely the genes encoding the E1α subunit of pyruvate dehydrogenase complex: the somatic PDHA1 (X-linked) and the testis-specific PDHA2 (autosomal). There are no data related to the study at the RNA and protein levels of PDHA genes during human spermatogenesis. The present study aimed to describe the mRNA and protein expression patterns of the human PDHA genes during spermatogenesis. Expression profiles of the PDHA1 and PDHA2 genes were characterized using different human tissues and cells. Diploid and haploid germ cells fractions were obtained from testis tissues. The mRNA profiles were analyzed by quantitative RT-PCR, whereas the protein profiles were evaluated by immunohistochemistry, western blotting and two-dimensional electrophoresis. Expression of the PDHA1 gene was found in all somatic cells, whereas expression of PDHA2 gene was restricted to germ cells. The switch from X-linked to autosomic gene expression occurred in spermatocytes. Data suggest the activation of PDHA2 gene expression is most probably a mechanism to ensure the continued expression of the protein, thus allowing germ cell viability and functionality.

  16. Differential expression of equine myosin heavy-chain mRNA and protein isoforms in a limb muscle.

    PubMed

    Eizema, Karin; van den Burg, Maarten; Kiri, Arpna; Dingboom, Elizabeth G; van Oudheusden, Hans; Goldspink, Geoffrey; Weijs, Wim A

    2003-09-01

    The horse is one of the few animals kept and bred for its athletic performance and is therefore an interesting model for human sports performance. The regulation of the development of equine locomotion in the first year of life, and the influence of early training on later performance, are largely unknown. The major structural protein in skeletal muscle, myosin heavy-chain (MyHC), is believed to be primarily transcriptionally controlled. To investigate the expression of the MyHC genes at the transcriptional level, we isolated cDNAs encoding the equine MyHC isoforms type 1 (slow), type 2a (fast oxidative), and type 2d/x (fast glycolytic). cDNAs encoding the 2b gene were not identified. The mRNA expression was compared to the protein expression on a fiber-to-fiber basis using in situ hybridization (non-radioactive) and immunohistochemistry. Marked differences were detected between the expression of MyHC transcripts and MyHC protein isoforms in adult equine gluteus medius muscle. Mismatches were primarily due to the presence of hybrid fibers expressing two fast (2ad) MyHC protein isoforms, but only one fast (mainly 2a) MyHC RNA isoform. This discrepancy was most likely not due to differential mRNA expression of myonuclei.

  17. Human skeletal muscle creatine transporter mRNA and protein expression in healthy, young males and females.

    PubMed

    Murphy, Robyn M; Tunstall, Rebecca J; Mehan, Kate A; Cameron-Smith, David; McKenna, Michael J; Spriet, Lawrence L; Hargreaves, Mark; Snow, Rodney J

    2003-02-01

    The present study investigated whether there were any differences between males and females in respect to creatine transporter (CreaT) gene expression and/or total creatine (TCr) content in human vastus lateralis muscle. Skeletal muscle obtained from young healthy male (n = 13, age: 23.2 +/- 5.0 years) and female subjects (n = 12, age: 21.7 +/- 4.3 years) was analyzed for CreaT mRNA, CreaT protein and TCr content. Total CreaT protein content in the muscle was similar (p > 0.05) between the sexes. Two bands (approximately 55 and 73 kDa) of the CreaT protein were detected in all muscle samples. Both the 55 and the 73 kDa bands were present in similar (p > 0.05) amounts in males compared with females. The 73 kDa band was in greater abundance (p < 0.05) than the 55 kDa band, irrespective of gender. In addition, CreaT mRNA expression relative to beta-actin mRNA and the TCr content (males: 117.8 +/- 2.2, females: 125.3 +/- 4.3 mmol.kg(-1) dry mass) were also unaffected (p > 0.05) by gender. These data demonstrate that gender does not influence skeletal muscle TCr content and CreaT gene expression in young human subjects.

  18. Molecular Cloning, mRNA Expression, and Localization of the G-protein Subunit Galphaq in Sheep Testis and Epididymis

    PubMed Central

    Li, Zhen; Lu, Jieli; Sun, Xiaowei; Pang, Quanhai; Zhao, Yiwen

    2016-01-01

    The reproductive function of G-protein subunit Galphaq (GNAQ), a member of the G protein alpha subunit family, has been extensively studied in humans and rats. However, no data is available on its status in ruminants. The objectives of this study were to evaluate the expression pattern of the GNAQ in the testis and epididymis of sheep by polymerase chain reaction (PCR). The mRNA expression levels were detected by real-time fluorescent quantitative PCR, and cellular localization of GNAQ in the testis and epididymis was examined by immunohistochemistry. Additionally, GNAQ protein was qualitatively evaluated via western blot, with the results indicating that similarities between GNAQ mRNA levels from sheep was highly conserved with those observed in Bos taurus and Sus scrofa. Our results also indicated that GNAQ exists in the caput and cauda epididymis of sheep, while GNAQ in the testis and epididymis was localized to Leydig cells, spermatogonial stem cells, spermatocytes, Sertoli cells, spermatid, principal cells, and epididymis interstitial cells. The concentrations of GNAQ mRNA and protein in the caput and cauda epididymis were significantly greater than those observed in the corpus epididymis (p<0.01) and testis (p<0.05). Our results indicated that GNAQ exists at high concentrations in the caput and cauda epididymis of sheep, suggesting that GNAQ may play an important role in gonad development and sperm maturation. PMID:27004818

  19. Effect of silicon dioxide on expression of poly (ADP-ribose) polymerase mRNA and protein.

    PubMed

    Gao, Ai; Song, Shanshan; Wang, Danlin; Peng, Wei; Tian, Lin

    2009-07-01

    Silicon dioxide induces acute injury and chronic pulmonary fibrosis. International Agency for Research on Cancer (IARC) listed it as a human carcinogen in 1996. However, the molecular mechanisms to induce cancer are not understood yet. The content of poly (ADP-ribose) polymerases (PARP) mRNA and protein in Hela cells treated with concentrations of silicon dioxide up to 400microg/ml was determined by real-time fluorogenetic quantitative PCR (RQ-PCR) and immunofluorescence assay, respectively. MTT assay was used to determine cell viability. The results showed that viability at 400microg/ml silica was significantly decreased but not at lower concentrations. The protein content of gamma-H2AX in silica-treated group was significantly higher than the controls. The PARP mRNA and protein levels were significantly reduced with a dose response manner from the lowest silicon dioxide level. Our findings suggested that silicon dioxide increased the expression of gamma-H2AX and inhibited the expression of PARP mRNA and protein in Hela cells.

  20. Actinidia DRM1--an intrinsically disordered protein whose mRNA expression is inversely correlated with spring budbreak in kiwifruit.

    PubMed

    Wood, Marion; Rae, Georgina M; Wu, Rong-Mei; Walton, Eric F; Xue, Bin; Hellens, Roger P; Uversky, Vladimir N

    2013-01-01

    Intrinsically disordered proteins (IDPs) are a relatively recently defined class of proteins which, under native conditions, lack a unique tertiary structure whilst maintaining essential biological functions. Functional classification of IDPs have implicated such proteins as being involved in various physiological processes including transcription and translation regulation, signal transduction and protein modification. Actinidia DRM1 (Ade DORMANCY ASSOCIATED GENE 1), represents a robust dormancy marker whose mRNA transcript expression exhibits a strong inverse correlation with the onset of growth following periods of physiological dormancy. Bioinformatic analyses suggest that DRM1 is plant specific and highly conserved at both the nucleotide and protein levels. It is predicted to be an intrinsically disordered protein with two distinct highly conserved domains. Several Actinidia DRM1 homologues, which align into two distinct Actinidia-specific families, Type I and Type II, have been identified. No candidates for the Arabidopsis DRM1-Homologue (AtDRM2) an additional family member, has been identified in Actinidia.

  1. Towards a multi protein and mRNA expression of biological predictive and distinguish model for post stroke depression

    PubMed Central

    Yue, Yingying; Jiang, Haitang; Liu, Rui; Yin, Yingying; Zhang, Yuqun; Liang, Jinfeng; Li, Shenghua; Wang, Jun; Lu, Jianxin; Geng, Deqin; Wu, Aiqin; Yuan, Yonggui

    2016-01-01

    Previous studies suggest that neurotrophic factors participate in the development of stroke and depression. So we investigated the utility of these biomarkers as predictive and distinguish model for post stroke depression (PSD). 159 individuals including PSD, stroke without depression (Non-PSD), major depressive disorder (MDD) and normal control groups were recruited and examined the protein and mRNA expression levels of vascular endothelial growth factor (VEGF), vascular endothelial growth factor receptors (VEGFR2), placental growth factor (PIGF), insulin-like growth factor (IGF-1) and insulin-like growth factor receptors (IGF-1R). The chi-square test was used to evaluate categorical variable, while nonparametric test and one-way analysis of variance were applied to continuous variables of general characteristics, clinical and biological changes. In order to explore the predictive and distinguish role of these factors in PSD, discriminant analysis and receiver operating characteristic curve were calculated. The four groups had statistical differences in these neurotrophic factors (all P < 0.05) except VEGF concentration and IGF-1R mRNA (P = 0.776, P = 0.102 respectively). We identified these mRNA expression and protein analytes with general predictive performance for PSD and Non-PSD groups [area under the curve (AUC): 0.805, 95% CI, 0.704-0.907, P < 0.001]. Importantly, there is an excellent predictive performance (AUC: 0.984, 95% CI, 0.964-1.000, P < 0.001) to differentiate PSD patients from MDD patients. This was the first study to explore the changes of neurotrophic factors family in PSD patients, the results intriguingly demonstrated that the combination of protein and mRNA expression of biological factors could use as a predictive and discriminant model for PSD. PMID:27527872

  2. Expression and Presence of OPG and RANKL mRNA and Protein in Human Periodontal Ligament with Orthodontic Force

    PubMed Central

    Otero, Liliana; García, Dabeiba Adriana; Wilches-Buitrago, Liseth

    2016-01-01

    OBJECTIVE The objective of this study is to investigate the expression and concentration of ligand receptor activator of NFkB (RANKL) and osteoprotegerin (OPG) in human periodontal ligament (hPDL) with orthodontic forces of different magnitudes. METHODS Right premolars in 32 patients were loaded with 4oz or 7oz of orthodontic force for 7 days. Left first premolars were not loaded. After 7 days, premolars were extracted for treatment as indicated. OPG and RANKL mRNA expressions were measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR), and ELISA was used to assess OPG and RANKL protein concentration in compression and tension sides of PDL. Data were subjected to analysis of variance and Tukey tests. RESULTS There was statistically significant difference in RANKL concentration on comparing control teeth with tension and compression sides of the experimental teeth (P < 0.0001). The expression of mRNA RANKL was increased in the tension and compression sides with 4oz (P < 0.0001). OPG did not show statistically significant association with any group. Changes in RANKL/OPG protein ratio in experimental and control groups showed statistically significant difference (P < 0.0001). CONCLUSIONS RANKL protein levels are elevated in hPDL loaded with orthodontic forces, suggesting that RANKL protein contributes to bone modeling in response to the initial placement of orthodontic force. PMID:26823650

  3. Luteotropic and luteolytic factors regulate mRNA and protein expression of progesterone receptor isoforms A and B in the bovine endometrium.

    PubMed

    Rekawiecki, Robert; Kowalik, Magdalena Karolina; Kotwica, Jan

    2014-12-17

    The aim of the present study was to examine the effects of luteotropic and luteolytic factors on the mRNA and protein levels of progesterone receptor isoforms A (PGRA) and B (PGRB) in the bovine endometrium. Endometrial slices from Days 6-10 and 17-20 of the oestrous cycle were treated with LH (100ngmL-1), oestradiol (E2; 1×10-8M), prostaglandin (PG) E2 (1×10-6M) and PGF2? (1×10-6M) and the nitric oxide donor NONOate (1×10-4M); these treatments lasted for 6h for mRNA expression analysis and 24h for protein expression analysis. On Days 6-10 of the oestrous cycle PGRAB (PGRAB; the entire PGRA mRNA sequence is common to the PGRB mRNA sequence) mRNA expression in endometrial slices was enhanced by E2 treatment (PPGRB mRNA expression was increased by LH (PPPPGRAB mRNA expression increased after E2 (P2 (PPGRB mRNA expression was increased by PGE2 (P2? (PPPPPP2? (P2 (P2? (P<0.001). These data suggest that luteotropic and luteolytic factors affect PGRA and PGRB mRNA and protein levels, and this may regulate the effects of progesterone on endometrial cells.

  4. Strain differences in cytochrome P450 mRNA and protein expression, and enzymatic activity among Sprague Dawley, Wistar, Brown Norway and Dark Agouti rats.

    PubMed

    Nishiyama, Yoshihiro; Nakayama, Shouta M M; Watanabe, Kensuke P; Kawai, Yusuke K; Ohno, Marumi; Ikenaka, Yoshinori; Ishizuka, Mayumi

    2016-05-03

    Rat cytochrome P450 (CYP) exhibits inter-strain differences, but their analysis has been scattered across studies under different conditions. To identify these strain differences in CYP more comprehensively, mRNA expression, protein expression and metabolic activity among Wistar (WI), Sprague Dawley (SD), Dark Agouti (DA) and Brown Norway (BN) rats were compared. The mRNA level and enzymatic activity of CYP1A1 were highest in SD rats. The rank order of Cyp3a2 mRNA expression mirrored its protein expression, i.e., DA>BN>SD>WI, and was similar to the CYP3A2-dependent warfarin metabolic activity, i.e., DA>SD>BN>WI. These results suggest that the strain differences in CYP3A2 enzymatic activity are caused by differences in mRNA expression. Cyp2b1 mRNA levels, which were higher in DA rats, did not correlate with its protein expression or enzymatic activity. This suggests that the strain differences in enzymatic activity are not related to Cyp2b1 mRNA expression. In conclusion, WI rats tended to have the lowest CYP1A1, 2B1 and 3A2 mRNA expression, protein expression and enzymatic activity among the strains. In addition, SD rats had the highest CYP1A1 mRNA expression and activity, while DA rats had higher CYP2B1 and CYP3A2 mRNA and protein expression. These inter-strain differences in CYP could influence pharmacokinetic considerations in preclinical toxicological studies.

  5. Effect of Gestational Age on mRNA and Protein Expression of Polyspecific Organic Cation Transporters during Pregnancy

    PubMed Central

    Lee, Nora; Hebert, Mary F.; Prasad, Bhagwat; Easterling, Thomas R.; Kelly, Edward J.; Unadkat, Jashvant D.

    2013-01-01

    Polyspecific organic cation (OC) transporters play important roles in the disposition of clinically used drugs, including drugs used during pregnancy. Pregnancy is known to alter the expression of drug-metabolizing enzymes and transporters, but its specific effect on OC transporters has not been well defined. Using quantitative polymerase chain reaction and liquid chromatography coupled with tandem mass spectrometry targeted proteomics, we determined the effect of pregnancy and gestational age on mRNA and protein expression of major OC transporters in the kidney, liver, and placenta in mice with timed pregnancies. Human organic cation transporter 3 (hOCT3) expression was further investigated in human placentas from the first and second trimesters and at term. Our results showed that pregnancy had a marginal effect on renal mouse organic cation transporter 1/2 (mOct1/2) expression but significantly reduced mouse multidrug and toxin extrusion transporter 1 (mMate1) expression by 20%–40%. Hepatic expression of mOct1 and mMate1 was minimally affected by pregnancy. Human and mouse placentas predominantly expressed OCT3 with little expression of OCT1/2, MATE1/2, and plasma membrane monoamine transporter (PMAT). The hOCT3 protein in first and second trimester and term placentas was quantified to be 0.23 ± 0.033, 0.38 ± 0.072, and 0.36 ± 0.099 fmol/μg membrane protein, respectively. In contrast with the moderate increase in hOCT3 protein during human pregnancy, mOct3 expression in the mouse placenta was highly dependent on gestational age. Compared with gestational day (gd) 10, placental mOct3 mRNA increased by 37-fold and 46-fold at gd 15 and 19, leading to a 56-fold and 128-fold increase in mOct3 protein, respectively. Our study provides new insights into the effect of pregnancy on the expression of polyspecific OC transporters and supports an important role of OCT3 in OC transport at the placental barrier. PMID:24101703

  6. Prognostic impact of HER3 based on protein and mRNA expression in high-grade serous ovarian carcinoma.

    PubMed

    Unger, Ulrike; Denkert, Carsten; Braicu, Ioana; Sehouli, Jalid; Dietel, Manfred; Loibl, Sibylle; Darb-Esfahani, Silvia

    2017-02-01

    HER3 is a member of the epidermal growth factor family and was predominantly described as a negative prognostic factor in various solid tumors as well as in ovarian cancer. In this study, we investigated HER3 on protein and mRNA expression in histologically defined subtypes of ovarian cancer looking for an influence on patient's survival. Altogether, we examined HER3 in ovarian high-grade serous (HGSC, n = 320), low-grade serous (LGSC, n = 55), endometrioid (EC, n = 33), and clear cell (CCC, n = 48) carcinomas using immunohistochemistry (IHC) and quantitative real-time reverse transcription PCR (qRT-PCR). Univariate and multivariate analyses were performed to explore the association between HER3 and overall survival (OS) as well as progression-free survival (PFS). In HGSC, high HER3 mRNA expression was a favorable prognostic factor for PFS (P = 0.008) and OS (P = 0.052), while for high HER3 protein expression, a trend towards better survival was seen (OS P = 0.064; PFS P = 0.099). A subgroup of HGSC with negative HER3 staining and negative HER3 mRNA levels showed most unfavorable OS and PFS (P = 0.002 and P = 0.004, respectively). Using the multivariate Cox regression model, HER3 was predictive for prolonged PFS (HR, 0.48; 95% CI, 0.26-0.88; P = 0.018). All in all, we cannot confirm the reported negative prognostic impact of HER3 expression in high-grade serous ovarian carcinoma and moreover find a rather positive prognostic implication of HER3 in this major ovarian cancer histological subtype.

  7. Impact of post-synaptic block of neuromuscular transmission, muscle unloading and mechanical ventilation on skeletal muscle protein and mRNA expression.

    PubMed

    Norman, H; Nordquist, J; Andersson, P; Ansved, T; Tang, X; Dworkin, B; Larsson, L

    2006-10-01

    To analyse mechanisms of muscle wasting in intensive care unit patients, we developed an experimental model where rats were pharmacologically paralysed by post-synaptic block of neuromuscular transmission (NMB) and mechanically ventilated for 9+/-2 days. Specific interest was focused on the effects on protein and mRNA expression of sarcomeric proteins, i.e., myosin heavy chain (MyHC), actin, myosin-binding protein C (MyBP-C) and myosin-binding protein H (MyBP-H) in fast- and slow-twitch limb, respiratory and masticatory muscles. Muscle-specific differences were observed in response to NMB at both the protein and mRNA levels. At the protein level, a decreased MyHC-to-actin ratio was observed in all muscles excluding the diaphragm, whereas at the mRNA level a decreased expression of the dominating MyHC isoform(s) was observed in the hind limb and intercostal muscles, but not in the diaphragm and masseter muscles. MyBP-C mRNA expression was decreased in the limb muscles, but it otherwise remained unaffected. MyBP-H conversely increased in all muscles. Furthermore, we found myofibrillar protein and mRNA expression to be affected differently when comparing NMB animals with peripherally denervated (DEN) ambulatory rats. We report that NMB has both a larger and different impact on muscle, at the protein and mRNA levels, than DEN has.

  8. Effect of hyperosmotic conditions on flavin-containing monooxygenase activity, protein and mRNA expression in rat kidney

    PubMed Central

    Rodríguez-Fuentes, Gabriela; Coburn, Cary; Currás-Collazo, Margarita; Guillén, Gabriel; Schlenk, Daniel

    2010-01-01

    Flavin-containing monooxigenases (FMOs) are a polymorphic family of drug and pesticide metabolizing enzymes, found in the smooth endoplasmatic reticulum that catalyze the oxidation of soft nucleophilic heteroatom substances to their respective oxides. Previous studies in euryhaline fishes have indicated induction of FMO expression and activity in vivo under hyperosmotic conditions. In this study we evaluated the effect of hypersaline conditions in rat kidney. Male Sprague–Dawley rats were injected intraperitoneal with 3.5 M NaCl at a doses ranging from 0.3 cm3/100 g to 0.6 cm3/100 g in two separate treatments. Three hours after injection, FMO activities and FMO1 protein was examined in the first experiment, and the expression of FMO1 mRNA was measured in the second experiment from kidneys after treatment with NaCl. A positive significant correlation was found between FMO1 protein expression and plasma osmolarity (p < 0.05, r = 0.6193). Methyl-p-tolyl sulfide oxidase showed a statistically significant increase in FMO activity, and a positive correlation was observed between plasma osmolarity and production of FMO1-derived (R)-methyl-p-tolyl sulfoxide (p < 0.05, r = 0.6736). Expression of FMO1 mRNA was also positively correlated with plasma osmolality (p < 0.05, r = 0.8428). Similar to studies in fish, these results suggest that expression and activities of FMOs may be influenced by hyperosmotic conditions in the kidney of rats. PMID:19429252

  9. Developmental Expression of CYP2B6: A Comprehensive Analysis of mRNA Expression, Protein Content and Bupropion Hydroxylase Activity and the Impact of Genetic Variation.

    PubMed

    Pearce, Robin E; Gaedigk, Roger; Twist, Greyson P; Dai, Hongying; Riffel, Amanda K; Leeder, J Steven; Gaedigk, Andrea

    2016-07-01

    Although CYP2B6 catalyzes the biotransformation of many drugs used clinically for children and adults, information regarding the effects of development on CYP2B6 expression and activity are scarce. Utilizing a large panel of human liver samples (201 donors: 24 fetal, 141 pediatric, and 36 adult), we quantified CYP2B6 mRNA and protein expression levels, characterized CYP2B6 (bupropion hydroxylase) activity in human liver microsomes (HLMs), and performed an extensive genotype analysis to differentiate CYP2B6 haplotypes such that the impact of genetic variation on these parameters could be assessed. Fetal livers contained extremely low levels of CYP2B6 mRNA relative to postnatal samples and fetal HLMs did not appear to catalyze bupropion hydroxylation; however, fetal CYP2B6 protein levels were not significantly different from postnatal levels. Considerable interindividual variation in CYP2B6 mRNA expression, protein levels, and activity was observed in postnatal HLMs (mRNA, ∼40,000-fold; protein, ∼300-fold; activity, ∼600-fold). The extremely wide range of interindividual variability in CYP2B6 expression and activity was significantly associated with age (P < 0.01) following log transformation of the data. Our data suggest that CYP2B6 activity appears as early as the first day of life, increases through infancy, and by 1 year of age, CYP2B6 levels and activity may approach those of adults. Surprisingly, CYP2B6 interindividual variability was not significantly associated with genetic variation in CYP2B6, nor was it associated with differences in gender or ethnicity, suggesting that factors other than these are largely responsible for the wide range of variability in CYP2B6 expression and activity observed among a large group of individuals/samples.

  10. p19INK4d mRNA and protein expression as new prognostic factors in ovarian cancer patients

    PubMed Central

    Felisiak-Golabek, Anna; Dansonka-Mieszkowska, Agnieszka; Rzepecka, Iwona K; Szafron, Lukasz; Kwiatkowska, Ewa; Konopka, Bozena; Podgorska, Agnieszka; Rembiszewska, Alina; Kupryjanczyk, Jolanta

    2013-01-01

    p19INK4d (CDKN2D) is a negative regulator of the cell cycle. Little is known of its role in cancer development and prognosis. We aimed to evaluate the clinical significance of p19INK4d expression in ovarian carcinomas with respect to the TP53 accumulation status, as well as the frequency of CDKN2D mutations. p19INK4d and TP53 expression was evaluated immunohistochemically in 445 ovarian carcinomas: 246 patients were treated with platinum–cyclophosphamide (PC/PAC), while 199 were treated with taxane–platinum agents (TP). CDKN2D gene expression (mRNA) was examined in 106 carcinomas, while CDKN2D mutations in 68 tumors. Uni- and multivariate statistical analyses (logistic regression and the Cox proportional hazards model) were performed for patient groups divided according to the chemotherapeutic regimen administered, and in subgroups with and without TP53 accumulation. High p19INK4d expression increased the risk of death, but only in patients with the TP53-negative carcinomas (HR 1.61, P = 0.049 for PC/PAC-treated patients, HR 2.00, P = 0.015 for TP-treated patients). This result was confirmed by the mRNA analysis (HR 4.24, P = 0.001 for TP-treated group). High p19INK4d protein expression associated with adverse clinicopathological factors. We found no alterations in the CDKN2D gene; the c.90C>G (p.R30R; rs1968445) polymorphism was detected in 10% of tumors. Our results suggest that p19INK4d expression is a poor prognostic factor in ovarian cancer patients. Analyses of tumor groups according to the TP53 accumulation status facilitate the identification of cancer biomarkers. PMID:24022213

  11. Tumor protein D52 expression is post-transcriptionally regulated by T-cell intercellular antigen (TIA) 1 and TIA-related protein via mRNA stability.

    PubMed

    Motohashi, Hiromi; Mukudai, Yoshiki; Ito, Chihiro; Kato, Kosuke; Shimane, Toshikazu; Kondo, Seiji; Shirota, Tatsuo

    2017-03-15

    Although tumor protein D52 (TPD) family proteins were first identified nearly 20 years ago, their molecular regulatory mechanisms remain unclear. Therefore, we investigated the post-transcriptional regulation of TPD52 family genes. An RNA immunoprecipitation assay showed the potential binding ability of TPD52 family mRNAs to several RNA-binding proteins, and an RNA degradation assay revealed that TPD52 is subject to more prominent post-transcriptional regulation than TPD53 and 54. We subsequently focused on the 3'-untranslated region (3'-UTR) of TPD52 as a cis -acting element in post-transcriptional gene regulation. Several deletion mutants of the 3'-UTR of TPD52 mRNA were constructed and ligated to the 3' end of a reporter green fluorescence protein gene. RNA degradation assay revealed that a minimal cis -acting region, located in the 78-280 region of the 5'-proximal region of the 3'-UTR, stabilized the reporter mRNA. Biotin pull-down and RNA immunoprecipitation assays revealed specific binding of the region to T-cell intracellular antigen 1 (TIA-1) and TIA-1-related protein (TIAR). Knockdown of TIA-1/TIAR decreased not only the expression, but also the stability of TPD52 mRNA; it also decreased the expression and stability of the reporter gene ligated to the 3' end of the 78-280 fragment. Stimulation of TGF-b and EGF decreased the binding ability of these factors, resulted in decreased mRNA stability. These results indicate that the 78-280 fragment and TIA-1/TIAR concordantly contribute to mRNA stability as a cis -acting element and trans -acting factor(s), respectively. Thus, we herein report the specific interactions between these elements in the post-transcriptional regulation of the TPD52 gene.

  12. Posttranscriptional regulation of GAP-43 gene expression in PC12 cells through protein kinase C-dependent stabilization of the mRNA

    PubMed Central

    1993-01-01

    We have previously shown that nerve growth factor (NGF) selectively stabilizes the GAP-43 mRNA in PC12 cells. To study the cellular mechanisms for this post-transcriptional control and to determine the contribution of mRNA stability to GAP-43 gene expression, we examined the effects of several agents that affect PC12 cell differentiation on the level of induction and rate of degradation of the GAP-43 mRNA. The NGF-mediated increase in GAP-43 mRNA levels and neurite outgrowth was mimicked by the phorbol ester TPA, but not by dibutyryl cAMP or the calcium ionophore A12783. Downregulation of protein kinase C (PKC) by high doses of phorbol esters or selective PKC inhibitors prevented the induction of this mRNA by NGF, suggesting that NGF and TPA act through a common PKC-dependent pathway. In mRNA decay studies, phorbol esters caused a selective 6-fold increase in the half-life of the GAP-43 mRNA, which accounts for most of the induction of this mRNA by TPA. The phorbol ester-induced stabilization of GAP-43 mRNA was blocked by the protein kinase inhibitor polymyxin B and was partially inhibited by dexamethasone, an agent that blocks GAP-43 expression and neuronal differentiation in PC12 cells. In contrast, the rates of degradation and the levels of the GAP-43 mRNA in control and TPA-treated cells were not affected by cycloheximide treatment. Thus, changes in GAP-43 mRNA turnover do not appear to require continuous protein synthesis. In conclusion, these data suggest that PKC activity regulates the levels of the GAP-43 mRNA in PC12 cells through a novel, translation- independent mRNA stabilization mechanism. PMID:8436593

  13. Actinidia DRM1 - An Intrinsically Disordered Protein Whose mRNA Expression Is Inversely Correlated with Spring Budbreak in Kiwifruit

    PubMed Central

    Wood, Marion; Rae, Georgina M.; Wu, Rong-Mei; Walton, Eric F.; Xue, Bin; Hellens, Roger P.; Uversky, Vladimir N.

    2013-01-01

    Intrinsically disordered proteins (IDPs) are a relatively recently defined class of proteins which, under native conditions, lack a unique tertiary structure whilst maintaining essential biological functions. Functional classification of IDPs have implicated such proteins as being involved in various physiological processes including transcription and translation regulation, signal transduction and protein modification. Actinidia DRM1 (Ade DORMANCY ASSOCIATED GENE 1), represents a robust dormancy marker whose mRNA transcript expression exhibits a strong inverse correlation with the onset of growth following periods of physiological dormancy. Bioinformatic analyses suggest that DRM1 is plant specific and highly conserved at both the nucleotide and protein levels. It is predicted to be an intrinsically disordered protein with two distinct highly conserved domains. Several Actinidia DRM1 homologues, which align into two distinct Actinidia-specific families, Type I and Type II, have been identified. No candidates for the Arabidopsis DRM1-Homologue (AtDRM2) an additional family member, has been identified in Actinidia. PMID:23516402

  14. Promoter methylation and mRNA expression of HLA-G in relation to HLA-G protein expression in colorectal cancer.

    PubMed

    Swets, Marloes; Seneby, Lina; Boot, Arnoud; van Wezel, Tom; Gelderblom, Hans; van de Velde, Cornelis J H; van den Elsen, Peter J; Kuppen, Peter J K

    2016-09-01

    Expression of human leukocyte antigen-G (HLA-G) is a suggested mechanism used by tumor cells to escape from host immune recognition and destruction. Advances in the field have made it evident that HLA-G is expressed in different types of malignancies including colorectal cancer (CRC). We analyzed HLA-G expression in 21 low passage CRC cell lines. The level of DNA methylation of the HLA-G gene and the presence of mRNA encoding HLA-G was measured. Moreover, HLA-G protein expression was determined by flow cytometry and immunohistochemistry (IHC). IHC was performed with three different monoclonal antibodies (mAbs) (4H84, MEM-G/1 and MEM-G/2). In addition, HLA-G protein expression was measured in matching primary tumor tissues. RNA analysis using RT-PCR followed by sequencing in 6 samples indicated strong homology of the PCR product with HLA-G3 in 5 samples. In accordance, in none of the cell lines, HLA-G1 expression was detected by flow-cytometry. Furthermore, no association between HLA-G DNA methylation patterns and HLA-G mRNA expression was observed. In addition, different immunohistochemical staining profiles among various anti-HLA-G mAbs were observed. In conclusion, the results of this study show that the HLA-G3 isoform was expressed in some of the CRC cell lines irrespective of the level of DNA methylation of HLA-G.

  15. Sex-dependent expression of mRNA encoding a major egg protein in the gonochoric coral Galaxea fascicularis

    NASA Astrophysics Data System (ADS)

    Hayakawa, H.; Nakano, Y.; Andoh, T.; Watanabe, T.

    2005-11-01

    A cDNA encoding a major egg protein was cloned in Galaxea fascicularis, a hermatypic coral with a gonochoric breeding system, and gene expression at the transcriptional level was compared between female and functional male colonies. In an electrophoretic analysis, four soluble proteins were present in high abundance in the female egg, but not in the pseudo-eggs of functional males. Partial amino acid sequences of one of the major proteins named GfEP-1 (88 kDa) were determined, and a cDNA fragment of about 2 kb containing a partial GfEP-1 sequence was isolated. The deduced amino acid sequence exhibited sequence similarities to vertebrate and invertebrate vitellogenins. GfEP-1 transcripts were detected in both sexes 0 1 month before spawning. However, the mRNA levels were significantly higher in females than in functional males. The expression of GfEP-1 may be utilized in sexing and also monitoring effects of environmental and anthropogenic factors on vitellogenesis and sex determination.

  16. [In vitro effect of total flavones of Fructus Chorspondiatis on expression of collagen type I and type III mRNA and protein of cultured rat cardiac fibroblasts].

    PubMed

    Bao, Jun-Ping; Jin, Ming; Yang, Yu-Min; Gao, Xiao-Hui; Shu, Liang; Xing, Hui-Hui; Jia, Lei

    2014-01-01

    This study aims to investigate the effect of total flavones of Fructus Chorspondiatis (TFFC) on the mRNA and protein expression of collagen type I and III of rat cardiac fibroblasts (CFs) induced by angiotensin II (Ang II), and explore its anti-myocardial fibrosis molecular mechanism. Neonatal rat CFs were prepared from Sprague-Dawley rats (1-3 d after birth). The expression of collagen type I and III mRNA and protein were measured by RT-PCR and Western blotting, respectively. The study showed that stimulation of neonatal rat CFs with 100 nmol.L-1 of Ang II for 72 h resulted in a significant increase of the expression of collagen type I and III mRNA and protein. The changes on the expression level were blocked by TFFC. The results demonstrated that TFFC can inhibit myocardial fibrosis induced by Ang II in rats, which is probably associated with the collagen type I and III mRNA and protein levels up-regulated by Ang II, and TFFC was shown to decrease the expression levels of collagen type I and III mRNA and protein.

  17. Glyceraldehyde 3-phosphate dehydrogenase protein and mRNA are both differentially expressed in adult chickens but not chick embryos.

    PubMed Central

    Milner, R J; Brow, M D; Cleveland, D W; Shinnick, T M; Sutcliffe, J G

    1983-01-01

    We have determined the 679 nucleotide sequence of a cDNA clone which, by hybridization-translation experiments, corresponds to a 36K chick brain protein. Our studies provide a partial amino acid sequence for this protein, identifying it as chicken glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Antisera raised against purified chicken GAPDH reacted with a 36K protein present in chick brain extracts and estimated to be the fourth most prevalent protein, as determined by either Coomassie Blue staining or by in vitro translation of chick brain mRNA. The amounts of GAPDH mRNA in chick brain, liver and muscle and adult chicken brain are similar, whereas the relative amount of adult chicken muscle GPDH mRNA is greatly elevated and that of adult liver lowered. The GAPDH protein levels showed a similar variation between tissues, suggesting that the levels of GAPDH protein are largely regulated by the amount of available GAPDH mRNA. The chicken GAPDH clone does not hybridize to rat mRNA, even though GAPDH is one of the most evolutionarily conserved proteins, indicating that selection pressures are heavier at the primary protein sequence level than at the nucleic acid sequence level for this gene, a situation contrasting to that of the tubulins. Images PMID:6687938

  18. Imbalanced Expression of Vcan mRNA Splice Form Proteins Alters Heart Morphology and Cellular Protein Profiles

    PubMed Central

    Burns, Tara A.; Dours-Zimmermann, Maria T.; Zimmermann, Dieter R.; Krug, Edward L.; Comte-Walters, Susana; Reyes, Leticia; Davis, Monica A.; Schey, Kevin L.; Schwacke, John H.; Kern, Christine B.; Mjaatvedt, Corey H.

    2014-01-01

    The fundamental importance of the proteoglycan versican to early heart formation was clearly demonstrated by the Vcan null mouse called heart defect (hdf). Total absence of the Vcan gene halts heart development at a stage prior to the heart’s pulmonary/aortic outlet segment growth. This creates a problem for determining the significance of versican’s expression in the forming valve precursors and vascular wall of the pulmonary and aortic roots. This study presents data from a mouse model, Vcan(tm1Zim), of heart defects that results from deletion of exon 7 in the Vcan gene. Loss of exon 7 prevents expression of two of the four alternative splice forms of the Vcan gene. Mice homozygous for the exon 7 deletion survive into adulthood, however, the inability to express the V2 or V0 forms of versican results in ventricular septal defects, smaller cushions/valve leaflets with diminished myocardialization and altered pulmonary and aortic outflow tracts. We correlate these phenotypic findings with a large-scale differential protein expression profiling to identify compensatory alterations in cardiac protein expression at E13.5 post coitus that result from the absence of Vcan exon 7. The Vcan(tm1Zim) hearts show significant changes in the relative abundance of several cytoskeletal and muscle contraction proteins including some previously associated with heart disease. These alterations define a protein fingerprint that provides insight to the observed deficiencies in pre-valvular/septal cushion mesenchyme and the stability of the myocardial phenotype required for alignment of the outflow tract with the heart ventricles. PMID:24586547

  19. Expression of NK1 receptor at the protein and mRNA level in the porcine female reproductive system.

    PubMed

    Bukowski, R

    2014-01-01

    The presence and distribution of substance P (SP) receptor NK1 was studied in the ovary, the oviduct and the uterus (uterine horn and cervix) of the domestic pig using the methods of molecular biology (RT-PCR and immunoblot) and immunohistochemistry. The expression of NK1 receptor at mRNA level was confirmed with RT-PCR in all the studied parts of the porcine female reproductive system by the presence of 525 bp PCR product and at the protein level by the detection of 46 kDa protein band in immunoblot. Immunohistochemical staining revealed the cellular distribution of NK1 receptor protein. In the ovary NKI receptor was present in the wall of arterial blood vessels, as well as in ovarian follicles of different stages of development. In the tubular organs the NK1 receptor immunohistochemical stainings were observed in the wall of the arterial blood vessels, in the muscular membrane, as well as in the mucosal epithelium. The study confirmed the presence of NK1 receptor in the tissues of the porcine female reproductive tract which clearly points to the possibility that SP can influence porcine ovary, oviduct and uterus.

  20. Integration of MicroRNA, mRNA, and Protein Expression Data for the Identification of Cancer-Related MicroRNAs

    PubMed Central

    Seo, Jiyoun; Jin, Daeyong; Choi, Chan-Hun; Lee, Hyunju

    2017-01-01

    MicroRNAs (miRNAs) are responsible for the regulation of target genes involved in various biological processes, and may play oncogenic or tumor suppressive roles. Many studies have investigated the relationships between miRNAs and their target genes, using mRNA and miRNA expression data. However, mRNA expression levels do not necessarily represent the exact gene expression profiles, since protein translation may be regulated in several different ways. Despite this, large-scale protein expression data have been integrated rarely when predicting gene-miRNA relationships. This study explores two approaches for the investigation of gene-miRNA relationships by integrating mRNA expression and protein expression data. First, miRNAs were ranked according to their effects on cancer development. We calculated influence scores for each miRNA, based on the number of significant mRNA-miRNA and protein-miRNA correlations. Furthermore, we constructed modules containing mRNAs, proteins, and miRNAs, in which these three molecular types are highly correlated. The regulatory interactions between miRNA and genes in these modules have been validated based on the direct regulations, indirect regulations, and co-regulations through transcription factors. We applied our approaches to glioblastomas (GBMs), ranked miRNAs depending on their effects on GBM, and obtained 52 GBM-related modules. Compared with the miRNA rankings and modules constructed using only mRNA expression data, the rankings and modules constructed using mRNA and protein expression data were shown to have better performance. Additionally, we experimentally verified that miR-504, highly ranked and included in the identified modules, plays a suppressive role in GBM development. We demonstrated that the integration of both expression profiles allows a more precise analysis of gene-miRNA interactions and the identification of a higher number of cancer-related miRNAs and regulatory mechanisms. PMID:28056026

  1. Correlative mRNA and protein expression of middle and inner ear inflammatory cytokines during mouse acute otitis media.

    PubMed

    Trune, Dennis R; Kempton, Beth; Hausman, Frances A; Larrain, Barbara E; MacArthur, Carol J

    2015-08-01

    Although the inner ear has long been reported to be susceptible to middle ear disease, little is known of the inflammatory mechanisms that might cause permanent sensorineural hearing loss. Recent studies have shown inner ear tissues are capable of expressing inflammatory cytokines during otitis media. However, little quantitative information is available concerning cytokine gene expression in the inner ear and the protein products that result. Therefore, this study was conducted of mouse middle and inner ear during acute otitis media to measure the relationship between inflammatory cytokine genes and their protein products with quantitative RT-PCR and ELISA, respectively. Balb/c mice were inoculated transtympanically with heat-killed Haemophilus influenzae and middle and inner ear tissues collected for either quantitative RT-PCR microarrays or ELISA multiplex arrays. mRNA for several cytokine genes was significantly increased in both the middle and inner ear at 6 h. In the inner ear, these included MIP-2 (448 fold), IL-6 (126 fold), IL-1β (7.8 fold), IL-10 (10.7 fold), TNFα (1.8 fold), and IL-1α (1.5 fold). The 24 h samples showed a similar pattern of gene expression, although generally at lower levels. In parallel, the ELISA showed the related cytokines were present in the inner ear at concentrations higher by 2-122 fold higher at 18 h, declining slightly from there at 24 h. Immunohistochemistry with antibodies to a number of these cytokines demonstrated they occurred in greater amounts in the inner ear tissues. These findings demonstrate considerable inflammatory gene expression and gene products in the inner ear following acute otitis media. These higher cytokine levels suggest one potential mechanism for the permanent hearing loss seen in some cases of acute and chronic otitis media.

  2. OIL FLY ASH AND VANADIUM DIMINISH NRAMP-2MRNA AND PROTEIN EXPRESSION IN HUMAN BRONCHIAL EPITHELIAL CELLS

    EPA Science Inventory

    The capacity of Nramp2 to transport iron and its ubiquitous expression make it a likely candidate for transferrin-independent uptake of iron in peripheral tissues. Airway epithelial cells increase both mRNA and expression of that isoform of Nramp-2 without an iron response ele...

  3. Expression of mRNA of apolipoprotein E, apolipoprotein A-IV, and matricellular proteins in the myocardium and intensity of fibroplastic processes during experimental hypercholesterolemia.

    PubMed

    Lushnikova, E L; Nepomnyashchikh, L M; Pichigin, V I; Klinnikova, M G; Nepomnyashchikh, R D; Sergeevichev, D S

    2013-12-01

    The expression of mRNA of matricellular proteins (osteopontin, and lumican), apolipoproteins E and A-IV, and microsomal triglyceride transfer protein, and the intensity of fibroplastic processes were studied in the myocardium of rats during experimental chronic hypercholesterolemia. We have found that the development of chronic hypercholesterolemia was followed by an increase in volume density of interstitial connective tissue in the myocardium reflecting the activation of fibroplastic processes. A slight positive correlation was observed between the connective tissue density in the myocardium and expression of osteopontin mRNA (r=0.408) and lumican mRNA (r=0.470). Myocardium remodeling during hypercholesterolemia is realized against the background of increased expression of apolipoproteins E and A-IV mRNA and microsomal triglyceride transfer protein mRNA involved in transport and metabolism of lipoproteins in several tissues and probably play a pivotal role in the regulation of lipoprotein transport and metabolism in the myocardium. We concluded that the increase in the expression of apolipoproteins (E and A-IV) and microsomal triglyceride transfer protein play adaptive and compensatory role and is related to the increase in lipoprotein utilization by macrophages.

  4. The Expression Level of mRNA, Protein, and DNA Methylation Status of FOSL2 of Uyghur in XinJiang in Type 2 Diabetes

    PubMed Central

    Cao, Guolei; Wang, Xiaoli

    2016-01-01

    Objective. We investigated the expression levels of both FOSL2 mRNA and protein as well as evaluating DNA methylation in the blood of type 2 diabetes mellitus (T2DM) Uyghur patients from Xinjiang. This study also evaluated whether FOSL2 gene expression had demonstrated any associations with clinical and biochemical indicators of T2DM. Methods. One hundred Uyghur subjects where divided into two groups, T2DM and nonimpaired glucose tolerance (NGT) groups. DNA methylation of FOSL2 was also analyzed by MassARRAY Spectrometry and methylation data of individual units were generated by the EpiTyper v1.0.5 software. The expression levels of FOS-like antigen 2 (FOSL2) and the protein expression levels were analyzed. Results. Significant differences were observed in mRNA and protein levels when compared with the NGT group, while methylation rates of eight CpG units within the FOSL2 gene were higher in the T2DM group. Methylation of CpG sites was found to inversely correlate with expression of other markers. Conclusions. Results show that a correlation between mRNA, protein, and DNA methylation of FOSL2 gene exists among T2DM patients from Uyghur. FOSL2 protein and mRNA were downregulated and the DNA became hypermethylated, all of which may be involved in T2DM pathogenesis in this population. PMID:28050569

  5. Disorders in barrier protein mRNA expression and placenta secretory activity under the influence of polychlorinated biphenyls in vitro.

    PubMed

    Wojciechowska, A; Mlynarczuk, J; Kotwica, J

    2017-02-01

    Pregnancy disorders are often correlated with the presence of organic pollutants in the tissues of living bodies. The aim of this study was to investigate the effects (over 24 and 48 hours) of polychlorinated biphenyls (PCBs) 153, 126, and 77 at doses of 1, 10, and 100 ng/mL on barrier function and secretory activity in cow placentome sections collected during the second trimester of pregnancy. None of the PCBs affected the viability of the sections (P > 0.05). Polychlorinated biphenyl 153 decreased (P < 0.05) connexin 26 (Cx 26) mRNA expression, and all three PCBs reduced (P < 0.05) Cx 43 mRNA expression. Cx 32 mRNA expression showed a downward trend (P > 0.05) under the influence of PCBs 126 and 77. Moreover, PCBs 153 and 126 increased keratin 8 (KRT8) mRNA expression, whereas all PCBs decreased (P < 0.05) placenta specific protein 1 (PLAC-1) mRNA expression without changing (P > 0.05) hypoxia inducible factor 1α (HIF1α) mRNA expression. Concomitantly, PCBs 153 and 126 stimulated (P < 0.05) cyclooxygenase 2 (COX-2) mRNA expression, all PCBs increased (P < 0.05) prostaglandin E2 synthase (PGES) mRNA expression, and PCBs 126 and 77 increased prostaglandin E2 (PGE2) secretion. All three PCBs decreased (P < 0.05) prostaglandin F2α synthase (PGFS) mRNA expression and prostaglandin F2α (PGF2α) secretion. In addition, all three PCBs increased (P < 0.05) neurophysin I/oxytocin (NP-I/OT) mRNA expression and OT secretion but did not affect peptidyl-glycine-α-amidating monooxygenase (PGA) mRNA expression (P > 0.05). Moreover, the PCBs increased (P < 0.05) estradiol (E2) secretion, whereas progesterone (P4) secretion remained unchanged (P > 0.05). These changes could affect trophoblast invasion and uterine contractility and thus impact the course of gestation and/or fetal development in the cow.

  6. Posttranscriptional regulation of hsp70 expression in human cells: effects of heat shock, inhibition of protein synthesis, and adenovirus infection on translation and mRNA stability.

    PubMed Central

    Theodorakis, N G; Morimoto, R I

    1987-01-01

    We have examined the posttranscriptional regulation of hsp70 gene expression in two human cell lines, HeLa and 293 cells, which constitutively express high levels of HSP70. HSP70 mRNA translates with high efficiency in both control and heat-shocked cells. Therefore, heat shock is not required for the efficient translation of HSP70 mRNA. Rather, the main effect of heat shock on translation is to suppress the translatability of non-heat shock mRNAs. Heat shock, however, has a marked effect on the stability of HSP70 mRNA; in non-heat-shocked cells the half-life of HSP70 mRNA is approximately 50 min, and its stability increases at least 10-fold upon heat shock. Moreover, HSP70 mRNA is more stable in cells treated with protein synthesis inhibitors, suggesting that a heat shock-sensitive labile protein regulates its turnover. An additional effect on posttranscriptional regulation of hsp70 expression can be found in adenovirus-infected cells, in which HSP70 mRNA levels decline precipititously late during infection although hsp70 transcription continues unabated. Images PMID:3437893

  7. Effect of the increased stability of the penicillin amidase mRNA on the protein expression levels.

    PubMed

    Viegas, Sandra C; Schmidt, Dorothea; Kasche, Volker; Arraiano, Cecília M; Ignatova, Zoya

    2005-09-12

    Several factors at transcriptional, post-transcriptional or post-translational level determine the fate of a target protein and can severely restrict its yield. Here, we focus on the post-transcriptional regulation of the biosynthesis of the periplasmic protein, penicillin amidase (PA). The PA mRNA stability was determined under depleted RNase conditions in strains carrying single or multiple RNase deletions. Single deletion of the endonuclease RNase E yielded, as the highest, a fourfold stabilization of the PA mRNA. This effect, however, was reduced twice at post-translational level. The RNase II, generating secondary exonucleolytic cleavages in the mRNA, although not significantly influencing the PA mRNA decay, led also to an increase of the amount of mature PA. The non-proportional correlation between increased mRNA longevity and amount of active enzyme propose that the rational strategies for yield improvement must be based on a simultaneous tuning of more than one yield restricting factor.

  8. The effect of GABA stimulation on GABAA receptor subunit protein and mRNA expression in rat cultured cerebellar granule cells.

    PubMed Central

    Platt, K. P.; Zwartjes, R. E.; Bristow, D. R.

    1996-01-01

    1. After 8 days in vitro, rat cerebellar granule cells were exposed to 1 mM gamma-aminobutyric acid (GABA) for periods of 1, 2, 4, 6, 8 and 10 days. The effect of the GABA exposure on GABAA receptor alpha 1, alpha 6 and beta 2,3 subunit protein expression and alpha 1 and alpha 6 subunit steady-state mRNA levels, was examined using Western blotting and reverse transcriptase-polymerase chain reaction (RT-PCR), respectively. 2. GABA exposure for 2 days decreased alpha 1 (35 +/- 10%, mean +/- s.e.mean), beta 2,3 (21 +/- 9%) and alpha 6 (28 +/- 10%) subunit protein expression compared to control levels. The GABA-mediated reduction in alpha 1 subunit expression after 2 days treatment was abolished in the presence of the GABAA receptor antagonist, Ru 5135 (10 microM). 3. GABA exposure for 8 days increased alpha 1 (26 +/- 10%, mean +/- s.e.mean) and beta 2,3 (56 +/- 23%) subunit protein expression over control levels, whereas alpha 6 subunit protein expression remained below control levels (by 38 +/- 10%). However, after 10 days GABA exposure, alpha 6 subunit protein expression was also increased over control levels by 65 +/- 29% (mean +/- s.e.mean). 4. GABA exposure did not change the alpha 1 or alpha 6 subunit steady-state mRNA levels over and 8 day period, nor did it alter the expression of cyclophilin mRNA over 1-8 days. 5. These results suggest that chronic GABA exposure of rat cerebellar granule cells has a bi-phasic effect on GABAA receptor subunit expression that is independent of changes to mRNA levels. Therefore, the regulation of the GABAA receptor expression by chronic agonist treatment appears to involve post-transcriptional and/or post-translational processes. Images Figure 1 Figure 3 Figure 4 PMID:8968548

  9. MEIS1 intronic risk haplotype associated with restless legs syndrome affects its mRNA and protein expression levels

    PubMed Central

    Xiong, Lan; Catoire, Hélène; Dion, Patrick; Gaspar, Claudia; Lafrenière, Ronald G.; Girard, Simon L.; Levchenko, Anastasia; Rivière, Jean-Baptiste; Fiori, Laura; St-Onge, Judith; Bachand, Isabelle; Thibodeau, Pascale; Allen, Richard; Earley, Christopher; Turecki, Gustavo; Montplaisir, Jacques; Rouleau, Guy A.

    2009-01-01

    Restless legs syndrome (RLS) is a common neurological disorder characterized by an irresistible urge to move the legs at night, which is often accompanied by unpleasant sensations. A recent genomewide association study identified an association between RLS and intronic markers from the MEIS1 gene. Comparative genomic analysis indicates that MEIS1 is the only gene encompassed in this evolutionarily conserved chromosomal segment, i.e. a conservation synteny block, from mammals to fish. We carried out a series of experiments to delineate the role of MEIS1 in RLS pathogenesis and the underlying genetic mechanism. We sequenced all 13 MEIS1 exons and their splice junctions in 285 RLS probands with confirmed clinical diagnosis and did not identify any causative coding or exon–intron junction mutations. We found no evidence of structural variation or disease-associated haplotype differential splicing. However, sequencing of conserved regions of MEIS1 introns 8 and 9 identified a novel single nucleotide polymorphism (C13B_2) significantly associated with RLS (allelic association, P = 1.81E−07). We detected a significant decrease in MEIS1 mRNA expression by quantitative real-time polymerase chain reaction in lymphoblastoid cell lines (LCLs) and brain tissues from RLS patients homozygous for the intronic RLS risk haplotype, compared with those homozygous for the non-risk haplotype. Finally, we found significantly decreased MEIS1 protein levels in the same batch of LCLs and brain tissues from the homozygous carriers of the risk haplotype, compared with the homozygous non-carriers. Therefore, these data suggest that reduced expression of the MEIS1 gene, possibly through intronic cis-regulatory element(s), predisposes to RLS. PMID:19126776

  10. In phyllodes tumors of the breast expression of SPARC (osteonectin/BM40) mRNA by in situ hybridization correlates with protein expression by immunohistochemistry and is associated with tumor progression.

    PubMed

    Kim, Nah Ihm; Kim, Ga-Eon; Lee, Ji Shin; Park, Min Ho

    2017-01-01

    Secreted protein acidic and rich in cysteine (SPARC) plays an essential role in tumor invasion and metastasis. The present work was undertaken to detect expression of SPARC mRNA in phyllodes tumors (PTs) and its association with SPARC protein expression. This study also evaluated expression of SPARC mRNA and its correlation between grade and clinical behavior of PTs. In addition, we assessed in PTs the association of expression of SPARC with that of matrix metalloproteinase (MMP)-2 and of MMP-9. SPARC mRNA expression was determined by RNAscope in situ hybridization (ISH) in 50 benign, 22 borderline, and 10 malignant PTs using a tissue microarray. Furthermore, we applied immunohistochemistry (IHC) to examine expression of SPARC, MMP-2, and MMP-9. SPARC mRNA appeared to be concentrated mainly in the stromal compartment of PTs. IHC staining patterns of SPARC protein showed concordance with SPARC mRNA ISH results. Stromal SPARC expression increased continuously as PTs progress from benign through borderline to malignant PTs, both at mRNA (using ISH) (P = 0.044) and protein level (using IHC) (P = 0.000). The recurrence percentage was higher in the stromal SPARC mRNA or protein-positive group than in the SPARC-negative group but this difference was not statistically significant. Stromal SPARC mRNA and protein expression was associated with PT grade and correlated with MMP-2 expression. These results indicate that SPARC-mediated degradation of the extracellular matrix, and its possible association with MMPs, might contribute to progression of PTs.

  11. Cellular protein and mRNA expression of β1 nicotinic acetylcholine receptor (nAChR) subunit in brain, skeletal muscle and placenta.

    PubMed

    Aishah, Atqiya; Hinton, Tina; Machaalani, Rita

    2017-01-30

    The β1 nicotinic acetylcholine receptor (nAChR) subunit is a muscle type subunit of this family and as such, is found predominantly in muscle. Recent reports document its expression in other tissues and cell lines including adrenal glands, carcinomas, lung and brain. However, the majority of studies were of tissue lysates, thus the cellular distribution was not determined. This study aimed to determine the cellular distribution of the β1 nAChR subunit in the brain, at both the mRNA and protein levels, using non-radioactive in situ hybridization (ISH) and immunohistochemistry (IHC), respectively, and to compare it to two muscle tissue types, skeletal and placenta. Tissue was formalin fixed and paraffin embedded (all tissue types) and frozen (placenta) from humans. Additional control tissue from the piglet and mouse brain were also studied, as was mRNA for the α3 nAChR and N-methyl-d-aspartate receptor 1 (NR1) subunit. We found no β1 nAChR subunit mRNA expression in the human and piglet brain despite strong protein expression. Some signal was seen in the mouse brain but considered inconclusive given the probes designed were not of 100% homology to the mouse. In the skeletal muscle and placenta tissues, β1 nAChR subunit mRNA expression was prominent and mirrored protein expression. No α3 nAChR or NR1 mRNA was seen in the skeletal muscle, as expected, although both subunit mRNAs were present in the placenta. This study concludes that further experiments are required to conclusively state that the β1 nAChR subunit is expressed in the human, piglet and mouse brain.

  12. Increased expression and localization of the RNA-binding protein HuD and GAP-43 mRNA to cytoplasmic granules in DRG neurons during nerve regeneration.

    PubMed

    Anderson, K D; Merhege, M A; Morin, M; Bolognani, F; Perrone-Bizzozero, N I

    2003-09-01

    The neuronal-specific RNA-binding protein, HuD, binds to a U-rich regulatory element of the 3' untranslated region (3' UTR) of the GAP-43 mRNA and delays the onset of its degradation. We have recently shown that overexpression of HuD in embryonic rat cortical cells accelerated the time course of normal neurite outgrowth and resulted in a twofold increase in GAP-43 mRNA levels. Given this evidence, we sought to investigate the involvement of HuD during nerve regeneration. It is known that HuD protein and GAP-43 mRNA are expressed in the dorsal root ganglia (DRG) of adult rat and that GAP-43 is upregulated in DRG neurons during regeneration. In this study, we examined the expression patterns and levels of HuD and GAP-43 mRNA in DRG neurons following sciatic nerve injury using a combination of in situ hybridization, immunocytochemistry, and quantitative RT-PCR. GAP-43 and HuD expression increased in the ipsilateral DRG during the first 3 weeks of regeneration, with peak values seen at 7 days postcrush. At this time point, the levels of HuD and GAP-43 mRNAs in the ipsilateral DRG increased by twofold and sixfold, respectively, relative to the contralateral DRG. Not only were the temporal patterns of expression of HuD protein and GAP-43 mRNA similar, but also they were found to colocalize in the cytoplasm of DRG neurons. Moreover, both molecules were distributed in cytoplasmic granules containing ribosomal RNA. In conclusion, our results suggest that HuD is involved in the upregulation of GAP-43 expression observed at early stages of peripheral nerve regeneration.

  13. Gastric acid induces mucosal H2S release in rats by upregulating mRNA and protein expression of cystathionine gamma lyase.

    PubMed

    Mard, Seyyed Ali; Veisi, Ali; Ahangarpour, Akram; Gharib-Naseri, Mohammad Kazem

    2015-11-01

    It is well known that hydrogen sulfide (H2S) protects the gastric mucosa against gastric acid and other noxious stimulants by several mechanisms but until now the effect of gastric acid on H2S production has not been evaluated. This study was performed to determine the effect of basal and stimulated gastric acid secretion on mRNA and protein expression of cystathionine gamma lyase (CSE) and cystathionine beta synthase (CBS), and on mucosal release of H2S in rats. Seventy-two male rats were randomly assigned into 9 groups (8 in each)-control, distention, and pentagastrin-induced gastric acid secretion groups. The effects of 15% alcohol solution, propargylglycine (PAG), L-NAME, and pantoprazole were also investigated. Under anesthesia, animals underwent tracheostomy and midline laparotomy. A catheter was inserted into the stomach through the duodenum for gastric washout. At the end of the experiments, the animals were killed and the gastric mucosa was collected to measure H2S concentration and to quantify mRNA expression of CSE and CBS by quantitative real-time PCR, and expression of their proteins by western blot. Basal and stimulated gastric acid secretion increased mucosal levels of H2S, and mRNA and protein expression of CSE. Pantoprazole and L-NAME reversed H2S release and restored protein expression of CSE to the control level. Pantoprazole, but not propargylglycine, pretreatment inhibited the elevated level of protein expression of eNOS in response to distention-induced gastric acid secretion. Our findings indicated that NO mediated the stimulatory effect of gastric acid on H2S release and protein expression of CSE.

  14. The autoimmunity-associated BLK haplotype exhibits cis-regulatory effects on mRNA and protein expression that are prominently observed in B cells early in development

    PubMed Central

    Simpfendorfer, Kim R.; Olsson, Lina M.; Manjarrez Orduño, Nataly; Khalili, Houman; Simeone, Alyssa M.; Katz, Matthew S.; Lee, Annette T.; Diamond, Betty; Gregersen, Peter K.

    2012-01-01

    The gene B lymphocyte kinase (BLK) is associated with rheumatoid arthritis, systemic lupus erythematosus and several other autoimmune disorders. The disease risk haplotype is known to be associated with reduced expression of BLK mRNA transcript in human B cell lines; however, little is known about cis-regulation of BLK message or protein levels in native cell types. Here, we show that in primary human B lymphocytes, cis-regulatory effects of disease-associated single nucleotide polymorphisms in BLK are restricted to naïve and transitional B cells. Cis-regulatory effects are not observed in adult B cells in later stages of differentiation. Allelic expression bias was also identified in primary human T cells from adult peripheral and umbilical cord blood (UCB), thymus and tonsil, although mRNA levels were reduced compared with B cells. Allelic regulation of Blk expression at the protein level was confirmed in UCB B cell subsets by intracellular staining and flow cytometry. Blk protein expression in CD4+ and CD8+ T cells was documented by western blot analysis; however, differences in protein expression levels by BLK genotype were not observed in any T cell subset. Blk allele expression differences at the protein level are thus restricted to early B cells, indicating that the involvement of Blk in the risk for autoimmune disease likely acts during the very early stages of B cell development. PMID:22678060

  15. The Minor Allele of rs7574865 in the STAT4 Gene Is Associated with Increased mRNA and Protein Expression

    PubMed Central

    Lamana, Amalia; López-Santalla, Mercedes; Castillo-González, Raquel; Ortiz, Ana María; Martín, Javier; García-Vicuña, Rosario; González-Álvaro, Isidoro

    2015-01-01

    Objective The T allele of rs7574865 in STAT4 confers risk of developing autoimmune disorders. However, its functional significance remains unclear. Here we analyze how rs7574865 affects the transcription of STAT4 and its protein expression. Methods We studied 201 patients (80% female; median age, 54 years; median disease duration, 5.4 months) from PEARL study. Demographic, clinical, laboratory and therapeutic data were collected at each visit. IL-6 serum levels were measured by enzyme immune assay. The rs7574865 was genotyped using TaqMan probes. The expression levels of STAT4 mRNA were determined at 182 visits from 69 patients using quantitative real-time polymerase chain reaction. STAT4 protein was assessed by western blot in 62 samples from 34 patients. To determine the effect of different variables on the expression of STAT4 mRNA and protein, we performed multivariate longitudinal analyses using generalized linear models. Results After adjustment for age, disease activity and glucocorticoid dose as confounders, the presence of at least one copy of the T allele of rs7574865 was significantly associated with higher levels of STAT4 mRNA. Similarly, TT patients showed significantly higher levels of STAT4 protein than GG patients. IL-6 induced STAT4 and STAT5 phosphorylation in peripheral blood lymphocytes. Patients carrying at least one T allele of rs7574865 displayed lower levels of serum IL-6 compared to GG homozygous; by contrast the production of C-reactive protein was similar in both populations. Conclusion Our data suggest that the presence of the rs7574865 T allele enhances STAT4 mRNA transcription and protein expression. It may enhance the signaling of molecules depending on the STAT4 pathway. PMID:26569609

  16. Platelet-derived growth factor activity and mRNA expression in healing vascular grafts in baboons. Association in vivo of platelet-derived growth factor mRNA and protein with cellular proliferation.

    PubMed Central

    Golden, M A; Au, Y P; Kirkman, T R; Wilcox, J N; Raines, E W; Ross, R; Clowes, A W

    1991-01-01

    In a baboon graft model of arterial intimal thickening, smooth muscle cells (SMC) have been observed to proliferate underneath an intact monolayer of endothelium and in the absence of platelet adherence. Because platelets are not present and therefore cannot be a major source of growth stimulus, we have proposed that the vascular wall cells in the graft intima express mitogens and regulate SMC proliferation. To test this hypothesis, we assayed the grafts for mitogenic activity and expression of growth factor genes. Segments of healing graft and of normal artery, when perfused ex vivo, released mitogenic activity into the perfusate. The graft released more mitogen than the normal arterial segment, and some of the activity was inhibitable with an antibody to human platelet-derived growth factor (PDGF). In addition, Northern analysis of total RNA demonstrated higher expression of PDGF-A chain mRNA in the graft intima compared to normal artery. PDGF-B chain mRNA was barely detectable in both tissues. PDGF mRNA levels within the graft interstices were not measured. In situ hybridization of 7.5- or 12-wk grafts indicated that some luminal endothelial cells and adjacent intimal SMC contained PDGF-A chain mRNA. By thymidine autoradiography, intimal SMC were observed to be proliferating in the inner third of the intima. These data demonstrate a difference in the pattern of PDGF transcript expression and luminal perfusate activity in graft as compared with control arteries. The association of intimal smooth muscle cell proliferation with intimal PDGF mRNA expression and release of PDGF-like protein supports the hypothesis that factors from cells that have grown into the graft or populated its surface rather than platelets may regulate intimal smooth muscle cell proliferation in this model. Images PMID:1825089

  17. Effects of quercetin on CDK4 mRNA and protein expression in A549 cells infected by H1N1

    PubMed Central

    WAN, QIAOFENG; WANG, HAO; LIN, YUAN; GU, LIGANG; HAN, MEI; YANG, ZHIWEI; ZHANG, YANLI; MA, RUI; WANG, LI; WANG, ZHISHENG

    2013-01-01

    This study was conducted to investigate the effects of quercetin on the expression of cyclin-dependent kinase (CDK4) mRNA and protein in A549 lung epithelial tumor cells infected by H1N1. First, the Thiazolyl Blue Tetrazolium Bromide (MTT) method was used to determine H1N1 virulence, quercetin cytotoxicity and inhibition of the cytopathic effect of H1N1 on A549 cells by quercetin. Subsequently, 100 TCID50 H1N1 was used to infect A549 cells for 2 h prior to culture in maintenance media containing 10 mg/l quercetin. After 4, 12, 24 and 48 h of culture, the cells were collected and total RNA and protein were extracted. Fluorescent quantitative polymerase chain reaction and western blot analysis were then performed to assess the expression of CDK4 mRNA and protein. The experiment demonstrated that the TCID50 of H1N1 in A549 cells was 10−4.75, the maximum non-toxic concentration of quercetin in A549 cells was 30–60 mg/l and the minimum effective concentration of quercetin for the inhibition of the H1N1 cytopathic effect on A549 cells was 10 mg/l. The results indicated that quercetin may significantly inhibit CDK4 mRNA and protein overexpression caused by H1N1 within 4–48 h. In conclusion, quercetin may protect against H1N1 infection by effectively reducing the mRNA and protein expression of CDK4 caused by H1N1 infection. PMID:24649026

  18. Parathyroid hormone regulates osterix and Runx2 mRNA expression predominantly through protein kinase A signaling in osteoblast-like cells.

    PubMed

    Wang, B L; Dai, C L; Quan, J X; Zhu, Z F; Zheng, F; Zhang, H X; Guo, S Y; Guo, G; Zhang, J Y; Qiu, M C

    2006-02-01

    Runt-related transcription factor 2 (Runx2) and osterix are osteoblast-specific transcription factors essential for the development of osteoblastic cells and bone formation. PTH given intermittently has anabolic effects on bone; however, the exact role remains to be understood completely. The purpose of this study was both to investigate whether PTH regulates Runx2 as well as osterix expression and to identify the signaling used. Using RT-PCR, we confirmed that PTH (1-34) regulated Runx2 and osterix mRNA expression, in rat osteoblast-like cell line UMR 106, in a dose- and time-dependent manner. PTH in low concentrations stimulated both Runx2 and osterix mRNA expression while that in high concentrations did not. Forskolin, an adenylate cyclase activator, also enhanced Runx2 and osterix transcription, and the stimulatory effects of PTH and forskolin were blocked by the pre-treatment of the cells with H-89, a protein kinase A (PKA) inhibitor. In contrast, the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) had no effect on Runx2 transcription, but induced an increase in osterix mRNA level at the concentration of 500 nM at 12 h after treatment. Moreover, pre-treatment of the cells with calphostin C, a PKC-specific inhibitor, reduced the increase in osterix transcripts enhanced by PTH and PMA 12 h after treatment. However, these inhibitory effects were not sustained for longer terms. These observations demonstrate that PTH stimulates Runx2 and osterix expression in vitro, at least in part, at transcriptional level. Induction of Runx2 mRNA is mediated through the activation of cAMP/PKA signal transduction. In the case of osterix, although the increase in mRNA level is predominantly mediated via cAMP/PKA signaling, PKC activation might also be involved in this process.

  19. Status epilepticus decreases glutamate receptor 2 mRNA and protein expression in hippocampal pyramidal cells before neuronal death

    PubMed Central

    Grooms, Sonja Y.; Opitz, Thoralf; Bennett, Michael V. L.; Zukin, R. Suzanne

    2000-01-01

    Kainic acid (KA)-induced status epilepticus in adult rats leads to delayed, selective death of pyramidal neurons in the hippocampal CA1 and CA3. Death is preceded by down-regulation of glutamate receptor 2 (GluR2) mRNA and protein [the subunit that limits Ca2+ permeability of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors] in CA1 and CA3, as indicated by in situ hybridization, immunolabeling, and quantitative Western blotting. GluR1 mRNA and protein are unchanged or slightly increased before cell death. These changes could lead to formation of GluR2-lacking, Ca2+-permeable AMPA receptors and increased toxicity of endogenous glutamate. GluR2 immunolabeling is unchanged in granule cells of the dentate gyrus, which are resistant to seizure-induced death. Thus, formation of Ca2+-permeable AMPA receptors may be a critical mediator of delayed neurodegeneration after status epilepticus. PMID:10725374

  20. Expression of heat-shock protein 72 mRNA in relation to heart rate variability of Sahiwal and Karan-Fries in different temperature-humidity indices

    PubMed Central

    Mayengbam, Prava; Tolenkhomba, T. C.; Upadhyay, R. C.

    2016-01-01

    Aim: To investigate the effect of temperature-humidity index (THI) on the expression pattern of heat-shock protein 72 (HSP72) mRNA of Sahiwal and Karan-Fries (KF) cattle in different THIs. Materials and Methods: Five different periods of a year were selected based on combinations of Tmax/Tmin, viz., P1: <20°C/<10°C; P2: >20°C/<10°C, P3: <30°C/<15°C; P4: >35°C/<20°C, and P5: >35°C/>20°C. The THI was calculated from the records of temperature and relative humidity in different periods. Heart rate variability (HRV) was calculated from electrocardiogram records in different periods. HSP72 mRNA expression was estimated by reverse transcription polymerase chain reaction. Results: The THI recorded during P1, P2, P3, P4, and P5 were 55.5, 60.3, 70.1, 74.5, and 79.0, respectively. THI in P4 and P5 were stressful to animals. HSP72 mRNA expression increased during cold stress in P1 in Sahiwal and heat stress in P4 and P5 in both Sahiwal and KF. Sahiwal maintained increased HSP72 mRNA expression longer than KF without causing a significant change in HRV. Conclusion: Both low THI in winter and high THI in summer increased HSP72 mRNA of Sahiwal and KF without significant change in HRV. Thermotolerance of Sahiwal could be due to the maintenance of higher HSP72 expression longer than KF in prolonged heat stress in summer. PMID:27847412

  1. The regulation of exon-specific brain-derived neurotrophic factor mRNA expression by protein kinase C in rat cultured dorsal root ganglion neurons.

    PubMed

    Morioka, Norimitsu; Yoshida, Yosuke; Nakamura, Yoki; Hidaka, Nobue; Hisaoka-Nakashima, Kazue; Nakata, Yoshihiro

    2013-05-06

    Although brain-derived neurotrophic factor (BDNF) is localized in primary sensory neurons and has crucial roles in nociceptive transduction, the mechanisms involved in regulation of BDNF exon-specific mRNA expression in dorsal root ganglion (DRG) neurons have yet to be determined. Rat primary cultures of DRG neurons were stimulated with phorbol-12-myristate-13-acetate (PMA), a potent activator of protein kinase C (PKC), which resulted in the robust expression of both BDNF mRNA and protein. Among each BDNF mRNA exon, it was found that exons I, IV and VI were especially induced after PMA stimulation. The induction of these exons was significantly blocked by Gö6983 (a broad spectrum PKC inhibitor), Gö6976 (a conventional PKCs and PKCμ inhibitor), and rottlerin (a PKCδ inhibitor), but not by a PKCε inhibitor. The effect of PMA on exons I and VI was blocked by either U0126 (a MAP kinase kinase (MEK) inhibitor) or SB202190 (a p38 inhibitor), and PMA's effect on exon IV was inhibited by U0126 but not by SB202190. Furthermore, the activation of cAMP-responsive element-binding protein (CREB) was associated with the induction of exons I and IV, and the activation of nuclear factor-κB (NF-κB) contributed to the induction of exons I, IV and VI. These results show that the activation of PKCs induces the expression of BDNF mRNA exons I, IV and VI through exon-specific mechanisms, including extracellular signal-regulated kinase, p38, CREB and NF-κB, in cultured DRG neurons. These data suggest multiple pathways in the expression of BDNF in nociceptive sensory neurons.

  2. Cloning of a nitrate reductase inactivator (NRI) cDNA from Spinacia oleracea L. and expression of mRNA and protein of NRI in cultured spinach cells.

    PubMed

    Sonoda, Masatoshi; Ide, Hiroaki; Nakayama, Shinya; Sasaki, Asako; Kitazaki, Shinei; Sato, Takahide; Nakagawa, Hiroki

    2003-04-01

    The spinach ( Spinacia oleracea L. (cv. Hoyo) nitrate reductase inactivator (NRI) is a novel protein that irreversibly inactivates NR. Using degenerate primers based on an N-terminal amino acid sequence of NRI purified from spinach leaves and a cDNA library, we isolated a full-length NRI cDNA from spinach that contains an open reading frame encoding 479 amino acid residues. This protein shares 67.4% and 51.1-68.3% amino acid sequence similarities with a nucleotide pyrophosphatase (EC 3.6.1.9) from rice and three types of the nucleotide pyrophosphatase-like protein from Arabidopsis thaliana, respectively. Immunoblot analysis revealed that NRI was constitutively expressed in suspension-cultured spinach cells; however, its expression level is quite low in 1-day-subcultured cells. Moreover, northern blot analysis indicated that this expression was regulated at the mRNA level. These results suggest that NRI functions in mature cells.

  3. Effects of Saturated Long-chain Fatty Acid on mRNA Expression of Genes Associated with Milk Fat and Protein Biosynthesis in Bovine Mammary Epithelial Cells.

    PubMed

    Qi, Lizhi; Yan, Sumei; Sheng, Ran; Zhao, Yanli; Guo, Xiaoyu

    2014-03-01

    This study was conducted to determine the effects of saturated long-chain fatty acids (LCFA) on cell proliferation and triacylglycerol (TAG) content, as well as mRNA expression of αs1-casein (CSN1S1) and genes associated with lipid and protein synthesis in bovine mammary epithelial cells (BMECs). Primary cells were isolated from the mammary glands of Holstein dairy cows, and were passaged twice. Then cells were cultured with different levels of palmitate or stearate (0, 200, 300, 400, 500, and 600 μM) for 48 h and fetal bovine serum in the culture solution was replaced with fatty acid-free BSA (1 g/L). The results showed that cell proliferation tended to be increased quadratically with increasing addition of stearate. Treatments with palmitate or stearate induced an increase in TAG contents at 0 to 600 μM in a concentration-dependent manner, and the addition of 600 μM was less effective in improving TAG accumulation. The expression of acetyl-coenzyme A carboxylase alpha, fatty acid synthase and fatty acid-binding protein 3 was inhibited when palmitate or stearate were added in culture medium, whereas cluster of differentiation 36 and CSN1S1 mRNA abundance was increased in a concentration-dependent manner. The mRNA expressions of peroxisome proliferator-activated receptor gamma, mammalian target of rapamycin and signal transducer and activator of transcription 5 with palmitate or stearate had no significant differences relative to the control. These results implied that certain concentrations of saturated LCFA could stimulate cell proliferation and the accumulation of TAG, whereas a reduction may occur with the addition of an overdose of saturated LCFA. Saturated LCFA could up-regulate CSN1S1 mRNA abundance, but further studies are necessary to elucidate the mechanism for regulating milk fat and protein synthesis.

  4. The effect of select seminal plasma proteins on endometrial mRNA cytokine expression in mares susceptible to persistent mating-induced endometritis.

    PubMed

    Fedorka, C E; Scoggin, K E; Woodward, E M; Squires, E L; Ball, B A; Troedsson, Mht

    2017-02-01

    In the horse, breeding induces a transient endometrial inflammation. A subset of mares are unable to resolve this inflammation, and they are considered susceptible to persistent mating-induced endometritis PMIE Select seminal plasma proteins cysteine-rich secretory protein-3 (CRISP-3) and lactoferrin have been shown to affect the innate immune response to sperm in vitro. The objective of this study was to determine whether the addition of CRISP-3 and lactoferrin at the time of insemination had an effect on the mRNA expression of endometrial cytokines in susceptible mares after breeding. Six mares classified as susceptible to PMIE were inseminated during four consecutive oestrous cycles with treatments in randomized order of: 1 mg/ml CRISP-3, 150 μg/ml lactoferrin, seminal plasma (positive control) or lactated Ringer's solution (LRS; negative control) to a total volume of 10 ml combined with 1 × 10(9) spermatozoa pooled from two stallions. Six hours after treatment, an endometrial biopsy was obtained for qPCR analysis of selected genes associated with inflammation (pro-inflammatory cytokines interleukin (IL)-1β, IL-8, tumour necrosis factor (TNF)-α, interferon (INF)-γ, anti-inflammatory cytokines IL-1RN and IL-10, and inflammatory-modulating cytokine IL-6). Seminal plasma treatment increased the mRNA expression of IL-1β (p = .019) and IL-8 (p = .0068), while suppressing the mRNA expression of TNF (p = .0013). Lactoferrin also suppressed the mRNA expression of TNF (p = .0013). In conclusion, exogenous lactoferrin may be considered as one modulator of the complex series of events resulting in the poorly regulated pro-inflammatory response seen in susceptible mares.

  5. Alpha1-chimaerin, a Rac1 GTPase-activating protein, is expressed at reduced mRNA levels in the brain of Alzheimer's disease patients

    PubMed Central

    Kato, Tomoko; Konishi, Yoshihiro; Shimohama, Shun; Beach, Thomas G.; Akatsu, Hiroyasu; Tooyama, Ikuo

    2015-01-01

    Alpha1-chimaerin is a GTPase-activating protein (GAP) for Rac1, a member of the Rho small GTPase family, whose action leads to the inactivation of Rac1. Rac1 activity is upregulated in Alzheimer's disease, but little is known about the role of α1-chimaerin. In this study, we investigated the expression and localization of α1-chimaerin mRNA in postmortem human brains from patients with Alzheimer's disease and control subjects. In situ hybridization studies demonstrated that α1-chimaerin was expressed by neurons in the neo-cortex of the temporal lobe and the hippocampus of both controls and Alzheimer's disease cases, with the signal intensity dramatically decreased in patients with Alzheimer's disease. Real-time PCR analysis confirmed a significant reduction of α1-chimaerin mRNA expression in the temporal cortex of Alzheimer's disease cases. In contrast, α2-chimaerin mRNA levels showed no significant difference between the groups. The present study showed reduced α1-chimaerin expression in the brain of Alzheimer's disease cases, suggesting a role in the upregulation of Rac1 activity during the disease process. PMID:25676811

  6. DECREASED EXPRESSION OF ErbB4 AND TYROSINE HYDROXYLASE mRNA AND PROTEIN IN THE VENTRAL MIDBRAIN OF AGED RATS

    PubMed Central

    DICKERSON, J. W.; HEMMERLE, A. M.; NUMAN, S.; LUNDGREN, K. H.; SEROOGY, K. B.

    2009-01-01

    Decreased availability or efficacy of neurotrophic factors may underlie an increased susceptibility of mesencephalic dopaminergic cells to age-related degeneration. Neuregulins (NRGs) are pleotrophic growth factors for many cell types including mesencephalic dopamine cells in culture and in vivo. The functional NRG receptor ErbB4 is expressed by virtually all midbrain dopamine neurons. To determine if levels of the NRG receptor are maintained during aging in the dopaminergic ventral mesencephalon, expression of ErbB4 mRNA and protein was examined in young (3 months), middle-aged (18 months), and old (24–25 months) Brown Norway/Fischer 344 F1 rats. ErbB4 mRNA levels in the substantia nigra pars compacta (SNpc), but not the adjacent ventral tegmental area (VTA) or subtantia nigra pars lateralis (SNl), were significantly reduced in the middle-aged and old animals when compared to young rats. Protein expression of ErbB4 in the ventral midbrain was significantly decreased in the old rats when compared to the young rats. Expression of tyrosine hydroxylase (TH) mRNA levels were significantly reduced in the old rats when compared to young animals in the SNpc, but not in the VTA or SNl. Tyrosine hydroxylase protein levels in the ventral midbrain were also decreased in the old animals when compared to the young animals. These data demonstrate a progressive decline of ErbB4 expression, coinciding with a loss of the dopamine-synthesizing enzyme TH, in the ventral midbrain of aged rats, particularly in the SNpc. These findings may implicate a role for diminished NRG/ErbB4 trophic support in dopamine-related neurodegenerative disorders of aging such as Parkinson’s disease. PMID:19505538

  7. Association of time-dependent changes in mu opioid receptor mRNA, but not BDNF, TrkB, or MeCP2 mRNA and protein expression in the rat nucleus accumbens with incubation of heroin craving

    PubMed Central

    Theberge, Florence R. M.; Pickens, Charles L.; Goldart, Evan; Fanous, Sanya; Hope, Bruce T.; Liu, Qing-Rong

    2013-01-01

    Rationale and objectives Responding to heroin cues progressively increases after cessation of heroin self-administration (incubation of heroin craving). We investigated whether this incubation is associated with time-dependent changes in brain-derived neurotrophic factor (BDNF) and methyl-CpG binding protein 2 (MeCP2) signaling and mu opioid receptor (MOR) expression in nucleus accumbens (NAc), dorsal striatum (DS), and medial pre-frontal cortex (mPFC). We also investigated the effect of the preferential MOR antagonist naloxone on cue-induced heroin seeking during abstinence. Methods We trained rats to self-administer heroin or saline for 9–10 days and then dissected the NAc, DS, and mPFC at different abstinence days and measured mRNA and protein levels of BDNF, TrkB, and MeCP2, as well as MOR mRNA (Oprm1). In other groups, we assessed cue-induced heroin seeking in extinction tests after 1, 11, and 30 abstinence days, and naloxone’s (0–1.0 mg/kg) effect on extinction responding after 1 and 15 days. Results Cue-induced heroin seeking progressively increased or incubated during abstinence. This incubation was not associated with changes in BDNF, TrkB, or MeCP2 mRNA or protein levels in NAc, DS, or mPFC; additionally, no molecular changes were observed after extinction tests on day 11. In NAc, but not DS or mPFC, MOR mRNA decreased on abstinence day 1 and returned to basal levels over time. Naloxone significantly decreased cue-induced heroin seeking after 15 abstinence days but not 1 day. Conclusions Results suggest a role of MOR in incubation of heroin craving. As previous studies implicated NAc BDNF in incubation of cocaine craving, our data suggest that different mechanisms contribute to incubation of heroin versus cocaine craving. PMID:22790874

  8. Human Immunodeficiency Virus Tat-Activated Expression of Poliovirus Protein 2A Inhibits mRNA Translation

    NASA Astrophysics Data System (ADS)

    Sun, Xiao-Hong; Baltimore, David

    1989-04-01

    To study the effect of poliovirus protein 2A on cellular RNA translation, the tat control system of human immunodeficiency virus (HIV) was used. Protein 2A was expressed from a plasmid construct (pHIV/2A) incorporating the HIV long terminal repeat. Protein synthesis was measured by using chloramphenicol acetyltransferase as a reporter gene driven by the Rous sarcoma virus long terminal repeat. When HIV/2A was contransfected with the reporter, addition of a tat-producing plasmid caused at least a 50-fold drop in chloramphenicol acetyltransferase synthesis. A HeLa cell line carrying HIV/2A was established. In it, tat expression caused more than a 10-fold drop in chloramphenicol acetyltransferase synthesis from the reporter plasmid. Furthermore, 2A induction by tat caused cleavage of the cellular translation factor P220, a part of eukaryotic translation initiation factor 4F. Thus protein 2A can, by itself, carry out the inhibition of cellular protein synthesis characteristic of a poliovirus infection. Also, the HIV tat activation provides a very effective method to control gene expression in mammalian cells.

  9. PrP mRNA and protein expression in brain and PrP(c) in CSF in Creutzfeldt-Jakob disease MM1 and VV2.

    PubMed

    Llorens, Franc; Ansoleaga, Belén; Garcia-Esparcia, Paula; Zafar, Saima; Grau-Rivera, Oriol; López-González, Irene; Blanco, Rosi; Carmona, Margarita; Yagüe, Jordi; Nos, Carlos; Del Río, José Antonio; Gelpí, Ellen; Zerr, Inga; Ferrer, Isidre

    2013-01-01

    Creutzfeldt-Jakob disease (CJD) is a heterogenic neurodegenerative disorder associated with abnormal post-translational processing of cellular prion protein (PrP(c)). CJD displays distinctive clinical and pathological features which correlate with the genotype at the codon 129 (methionine or valine: M or V respectively) in the prion protein gene and with size of the protease-resistant core of the abnormal prion protein PrP(sc) (type 1: 20/21 kDa and type 2: 19 kDa). MM1 and VV2 are the most common sporadic CJD (sCJD) subtypes. PrP mRNA expression levels in the frontal cortex and cerebellum are reduced in sCJD in a form subtype-dependent. Total PrP protein levels and PrP(sc) levels in the frontal cortex and cerebellum accumulate differentially in sCJD MM1 and sCJD VV2 with no relation between PrP(sc) deposition and spongiform degeneration and neuron loss, but with microgliosis, and IL6 and TNF-α response. In the CSF, reduced PrP(c), the only form present in this compartment, occurs in sCJD MM1 and VV2. PrP mRNA expression is also reduced in the frontal cortex in advanced stages of Alzheimer disease, Lewy body disease, progressive supranuclear palsy, and frontotemporal lobe degeneration, but PrP(c) levels in brain varies from one disease to another. Reduced PrP(c) levels in CSF correlate with PrP mRNA expression in brain, which in turn reflects severity of degeneration in sCJD.

  10. PrP mRNA and protein expression in brain and PrPc in CSF in Creutzfeldt-Jakob disease MM1 and VV2

    PubMed Central

    Llorens, Franc; Ansoleaga, Belén; Garcia-Esparcia, Paula; Zafar, Saima; Grau-Rivera, Oriol; López-González, Irene; Blanco, Rosi; Carmona, Margarita; Yagüe, Jordi; Nos, Carlos; del Río, José Antonio; Gelpí, Ellen; Zerr, Inga; Ferrer, Isidre

    2013-01-01

    Creutzfeldt-Jakob disease (CJD) is a heterogenic neurodegenerative disorder associated with abnormal post-translational processing of cellular prion protein (PrPc). CJD displays distinctive clinical and pathological features which correlate with the genotype at the codon 129 (methionine or valine: M or V respectively) in the prion protein gene and with size of the protease-resistant core of the abnormal prion protein PrPsc (type 1: 20/21 kDa and type 2: 19 kDa). MM1 and VV2 are the most common sporadic CJD (sCJD) subtypes. PrP mRNA expression levels in the frontal cortex and cerebellum are reduced in sCJD in a form subtype-dependent. Total PrP protein levels and PrPsc levels in the frontal cortex and cerebellum accumulate differentially in sCJD MM1 and sCJD VV2 with no relation between PrPsc deposition and spongiform degeneration and neuron loss, but with microgliosis, and IL6 and TNF-α response. In the CSF, reduced PrPc, the only form present in this compartment, occurs in sCJD MM1 and VV2. PrP mRNA expression is also reduced in the frontal cortex in advanced stages of Alzheimer disease, Lewy body disease, progressive supranuclear palsy, and frontotemporal lobe degeneration, but PrPc levels in brain varies from one disease to another. Reduced PrPc levels in CSF correlate with PrP mRNA expression in brain, which in turn reflects severity of degeneration in sCJD. PMID:24047819

  11. Chicken growth-associated protein (GAP)-43: primary structure and regulated expression of mRNA during embryogenesis.

    PubMed

    Baizer, L; Alkan, S; Stocker, K; Ciment, G

    1990-01-01

    Growth-associated protein (GAP)-43 is a neuron-specific phosphoprotein whose expression is associated with axonal outgrowth during neuronal development and regeneration. In order to investigate the expression of this gene product in the early developing nervous system we have isolated and sequenced a cDNA for chicken GAP-43. The predicted amino acid sequence for chicken GAP-43 displays extensive similarity to that of the mammalian protein, particularly in the amino-terminal region, to which functional domains of the protein have been assigned. The cDNA hybridizes with two RNAs of differing molecular weights on Northern blots; both appear to be regulated similarly. These RNAs first appear in the brain on embryonic day 3 (E3), suggesting that GAP-43 begins to be expressed when neuroblasts become post-mitotic. In situ hybridization analysis reveals that GAP-43 RNA is expressed by several neural structures in the chick embryo, including derivatives of the neural tube, neural crest, and neuroectodermal placodes.

  12. Age determines the magnitudes of angiotensin II-induced contractions, mRNA, and protein expression of angiotensin type 1 receptors in rat carotid arteries.

    PubMed

    Vamos, Zoltan; Cseplo, Peter; Ivic, Ivan; Matics, Robert; Hamar, Janos; Koller, Akos

    2014-05-01

    In this study, we hypothesized that aging alters angiotensin II (Ang II)-induced vasomotor responses and expression of vascular mRNA and protein angiotensin type 1 receptor (AT1R). Thus, carotid arteries were isolated from the following age groups of rats: 8 days, 2-9 months, 12-20 months, and 20-30 months, and their vasomotor responses were measured in a myograph after repeated administrations of Ang II. Vascular relative AT1R mRNA level was determined by quantitative reverse-transcriptase polymerase chain reaction and the AT1R protein density was measured by Western blot. Contractions to the first administration of Ang II increased from 8 days to 6 months and then they decreased to 30 months. In general, second administration of Ang II elicited reduced contractions, but they also increased from 8 days until 2 months and then they decreased to 30 months. Similarly the AT1R mRNA level increased from 8 days to 12 months and then decreased to 30 months. Similarly the AT1R protein density increased from 8 days until 16 months and then they decreased to 30 months. The pattern of these changes correlated with functional vasomotor data. We conclude that aging (newborn to senescence) has substantial effects on Ang II-induced vasomotor responses and AT1R signaling suggesting the importance of genetic programs.

  13. Correlation of mRNA expression and protein abundance affected by multiple sequence features related to translational efficiency in Desulfovibrio vulgaris: A quantitative analysis

    SciTech Connect

    Nie, Lei; Wu, Gang; Zhang, Weiwen

    2006-12-01

    The modest correlation between mRNA expression and protein abundance in large scale datasets is explained in part by experimental challenges, such as technological limitations, and in part by fundamental biological factors in the transcription and translation processes. Among various factors affecting the mRNA-protein correlation, the roles of biological factors related to translation are poorly understood. In this study, using experimental mRNA expression and protein abundance data collected from Desulfovibrio vulgaris by DNA microarray and LC-MS/MS proteomic analysis, we quantitatively examined the effects of several translational-efficiency-related sequence features on mRNA-protein correlation. Three classes of sequence features were investigated according to different translational stages: (1) initiation: Shine-Dalgarno sequences, start codon identity and start codon context; (2) elongation: codon usage and amino acid usage; and (3) termination: stop codon identity and stop codon context. Surprisingly, although it is widely accepted that translation initiation is a rate-limiting step for translation, our results showed that the mRNA-protein correlation was affected the most by the features at elongation stages, codon usage and amino acid composition (7.4-12.6% and 5.3-9.3% of the total variation of mRNA-protein correlation, respectively), followed by stop codon context and the Shine-Dalgarno sequence (2.5-4.2% and 2.3%, respectively). Taken together, all sequence features contributed to 18.4-21.8% of the total variation of mRNA-protein correlation. As the first comprehensive quantitative analysis of the mRNA-protein correlation in bacterial D. vulgaris, our results suggest that the traditional view of the relative importance of various sequence features in prokaryotic protein translation might be questionable.

  14. Alternative splicing of human immunodeficiency virus type 1 mRNA modulates viral protein expression, replication, and infectivity.

    PubMed Central

    Purcell, D F; Martin, M A

    1993-01-01

    Multiple RNA splicing sites exist within human immunodeficiency virus type 1 (HIV-1) genomic RNA, and these sites enable the synthesis of many mRNAs for each of several viral proteins. We evaluated the biological significance of the alternatively spliced mRNA species during productive HIV-1 infections of peripheral blood lymphocytes and human T-cell lines to determine the potential role of alternative RNA splicing in the regulation of HIV-1 replication and infection. First, we used a semiquantitative polymerase chain reaction of cDNAs that were radiolabeled for gel analysis to determine the relative abundance of the diverse array of alternatively spliced HIV-1 mRNAs. The predominant rev, tat, vpr, and env RNAs contained a minimum of noncoding sequence, but the predominant nef mRNAs were incompletely spliced and invariably included noncoding exons. Second, the effect of altered RNA processing was measured following mutagenesis of the major 5' splice donor and several cryptic, constitutive, and competing 3' splice acceptor motifs of HIV-1NL4-3. Mutations that ablated constitutive splice sites led to the activation of new cryptic sites; some of these preserved biological function. Mutations that ablated competing splice acceptor sites caused marked alterations in the pool of virus-derived mRNAs and, in some instances, in virus infectivity and/or the profile of virus proteins. The redundant RNA splicing signals in the HIV-1 genome and alternatively spliced mRNAs provides a mechanism for regulating the relative proportions of HIV-1 proteins and, in some cases, viral infectivity. Images PMID:8411338

  15. MUC1-ARF—A Novel MUC1 Protein That Resides in the Nucleus and Is Expressed by Alternate Reading Frame Translation of MUC1 mRNA

    PubMed Central

    Pichinuk, Edward; Garbar, Christian; Bensussan, Armand; Meeker, Alan; Ziv, Ravit; Zehavi, Tania; Smorodinsky, Nechama I.; Hilkens, John; Hanisch, Franz-Georg; Rubinstein, Daniel B.; Wreschner, Daniel H.

    2016-01-01

    Translation of mRNA in alternate reading frames (ARF) is a naturally occurring process heretofore underappreciated as a generator of protein diversity. The MUC1 gene encodes MUC1-TM, a signal-transducing trans-membrane protein highly expressed in human malignancies. Here we show that an AUG codon downstream to the MUC1-TM initiation codon initiates an alternate reading frame thereby generating a novel protein, MUC1-ARF. MUC1-ARF, like its MUC1-TM 'parent’ protein, contains a tandem repeat (VNTR) domain. However, the amino acid sequence of the MUC1-ARF tandem repeat as well as N- and C- sequences flanking it differ entirely from those of MUC1-TM. In vitro protein synthesis assays and extensive immunohistochemical as well as western blot analyses with MUC1-ARF specific monoclonal antibodies confirmed MUC1-ARF expression. Rather than being expressed at the cell membrane like MUC1-TM, immunostaining showed that MUC1-ARF protein localizes mainly in the nucleus: Immunohistochemical analyses of MUC1-expressing tissues demonstrated MUC1-ARF expression in the nuclei of secretory luminal epithelial cells. MUC1-ARF expression varies in different malignancies. While the malignant epithelial cells of pancreatic cancer show limited expression, in breast cancer tissue MUC1-ARF demonstrates strong nuclear expression. Proinflammatory cytokines upregulate expression of MUC1-ARF protein and co-immunoprecipitation analyses demonstrate association of MUC1-ARF with SH3 domain-containing proteins. Mass spectrometry performed on proteins coprecipitating with MUC1-ARF demonstrated Glucose-6-phosphate 1-dehydrogenase (G6PD) and Dynamin 2 (DNM2). These studies not only reveal that the MUC1 gene generates a previously unidentified MUC1-ARF protein, they also show that just like its ‘parent’ MUC1-TM protein, MUC1-ARF is apparently linked to signaling and malignancy, yet a definitive link to these processes and the roles it plays awaits a precise identification of its molecular functions

  16. MUC1-ARF-A Novel MUC1 Protein That Resides in the Nucleus and Is Expressed by Alternate Reading Frame Translation of MUC1 mRNA.

    PubMed

    Chalick, Michael; Jacobi, Oded; Pichinuk, Edward; Garbar, Christian; Bensussan, Armand; Meeker, Alan; Ziv, Ravit; Zehavi, Tania; Smorodinsky, Nechama I; Hilkens, John; Hanisch, Franz-Georg; Rubinstein, Daniel B; Wreschner, Daniel H

    2016-01-01

    Translation of mRNA in alternate reading frames (ARF) is a naturally occurring process heretofore underappreciated as a generator of protein diversity. The MUC1 gene encodes MUC1-TM, a signal-transducing trans-membrane protein highly expressed in human malignancies. Here we show that an AUG codon downstream to the MUC1-TM initiation codon initiates an alternate reading frame thereby generating a novel protein, MUC1-ARF. MUC1-ARF, like its MUC1-TM 'parent' protein, contains a tandem repeat (VNTR) domain. However, the amino acid sequence of the MUC1-ARF tandem repeat as well as N- and C- sequences flanking it differ entirely from those of MUC1-TM. In vitro protein synthesis assays and extensive immunohistochemical as well as western blot analyses with MUC1-ARF specific monoclonal antibodies confirmed MUC1-ARF expression. Rather than being expressed at the cell membrane like MUC1-TM, immunostaining showed that MUC1-ARF protein localizes mainly in the nucleus: Immunohistochemical analyses of MUC1-expressing tissues demonstrated MUC1-ARF expression in the nuclei of secretory luminal epithelial cells. MUC1-ARF expression varies in different malignancies. While the malignant epithelial cells of pancreatic cancer show limited expression, in breast cancer tissue MUC1-ARF demonstrates strong nuclear expression. Proinflammatory cytokines upregulate expression of MUC1-ARF protein and co-immunoprecipitation analyses demonstrate association of MUC1-ARF with SH3 domain-containing proteins. Mass spectrometry performed on proteins coprecipitating with MUC1-ARF demonstrated Glucose-6-phosphate 1-dehydrogenase (G6PD) and Dynamin 2 (DNM2). These studies not only reveal that the MUC1 gene generates a previously unidentified MUC1-ARF protein, they also show that just like its 'parent' MUC1-TM protein, MUC1-ARF is apparently linked to signaling and malignancy, yet a definitive link to these processes and the roles it plays awaits a precise identification of its molecular functions

  17. Differential expression of p53, p63 and p73 protein and mRNA for DMBA-induced hamster buccal-pouch squamous-cell carcinomas

    PubMed Central

    Chen, Yuk-Kwan; Huse, Shue-Sang; Lin, Li-Min

    2004-01-01

    Abnormalities in the p53 gene are regarded as the most consistent of the genetic abnormalities associated with oral squamous-cell carcinoma. Two related members of the p53 gene family, p73 and p63, have shown remarkable structural similarity to p53, suggesting possible functional and biological interactions. The purpose of this study was to investigate the differential expression of p73, p63 and p53 genes for DMBA-induced hamster buccal-pouch squamous-cell carcinoma. Immunohistochemical analysis for protein expression and reverse transcriptase-polymerase chain reaction (RT-PCR) for mRNA expression were performed for 40 samples of hamster buccal pouches, the total being separated into one experimental group (15-week DMBA-treated; 20 animals) and two control groups (untreated and mineral oil-treated; 10 animals each). Using immunohistochemical techniques, nuclear staining of p53 and p73 proteins was detected in a subset of hamster buccal-pouch tissue specimens treated with DMBA for a period of 15 weeks, whereas p63 proteins were noted for all of the 20 hamster buccal-pouch tissue specimens treated with DMBA for 15 weeks as well as for all of the untreated and mineral oil-treated hamster buccal-pouch tissue specimens. Differential expression of p63, p73 and p53 protein for the experimental group was as follows: p63+/p73+/p53+ (n = 14; 70%); p63+/p73+/p53− (n = 2; 10%); p63+/p73−/p53− (n = 4; 20%) and p63+/p73−/p53− (untreated [n = 10] and mineral oil-treated mucosa [n = 10]; 100% each). Upon RT-PCR, ΔNp63mRNA was detected within all of the 20 hamster buccal-pouch tissue specimens treated with DMBA for 15 weeks, whereas expression of TAp63 was not detected. Furthermore, p73 mRNA was identified for 16 of the hamster buccal-pouch tissue specimens treated with DMBA for 15 weeks, whereas p53 mRNA was noted for 14 15-week DMBA-treated pouches. The proportional (percentage) expression of ΔNp63, p73 and p53 mRNA for the hamster buccal-pouch tissue specimens

  18. Growth hormone stimulates protein synthesis in bovine skeletal muscle cells without altering insulin-like growth factor-I mRNA expression.

    PubMed

    Ge, X; Yu, J; Jiang, H

    2012-04-01

    Growth hormone is a major stimulator of skeletal muscle growth in animals, including cattle. In this study, we determined whether GH stimulates skeletal muscle growth in cattle by direct stimulation of proliferation or fusion of myoblasts, by direct stimulation of protein synthesis, or by direct inhibition of protein degradation in myotubes. We also determined whether these direct effects of GH are mediated by IGF-I produced by myoblasts or myotubes. Satellite cells were isolated from cattle skeletal muscle and were allowed to proliferate as myoblasts or induced to fuse into myotubes in culture. Growth hormone at 10 and 100 ng/mL increased protein synthesis in myotubes (P < 0.05), but had no effect on protein degradation in myotubes or proliferation of myoblasts (P > 0.05). Insulin-like growth factor-I at 50 and 500 ng/mL stimulated protein synthesis (P < 0.01), and this effect of IGF-I was much greater than that of GH (P < 0.05). Besides stimulating protein synthesis, IGF-I at 50 and 500 ng/mL also inhibited protein degradation in myotubes (P < 0.01), and IGF-I at 500 ng/mL stimulated proliferation of myoblasts (P < 0.05). Neither GH nor IGF-I had effects on fusion of myoblasts into myotubes (P > 0.1). These data indicate that GH and IGF-I have largely different direct effects on bovine muscle cells. Growth hormone at 10 and 100 ng/mL had no effect on IGF-I mRNA expression in either myoblasts or myotubes (P > 0.1). This lack of effect was not because the cultured myoblasts or myotubes were not responsive to GH; GH receptor mRNA was detectable in them and the expression of the cytokine-inducible SH2-containing protein (CISH) gene, a well-established GH target gene, was increased by GH in bovine myoblasts (P < 0.05). Overall, the data suggest that GH stimulates skeletal muscle growth in cattle in part through stimulation of protein synthesis in the muscle and that this stimulation is not mediated through increased IGF-I mRNA expression in the muscle.

  19. Nav1.7 protein and mRNA expression in the dorsal root ganglia of rats with chronic neuropathic pain.

    PubMed

    Liu, Chao; Cao, Jing; Ren, Xiuhua; Zang, Weidong

    2012-07-15

    Neuropathic pain was produced by chronic constriction injury of the sciatic nerve in rats. Behavioral tests showed that the thresholds for thermal and mechanical hyperalgesia were significantly reduced in neuropathic pain rats 3-28 days following model induction. The results of immunohistochemistry, western blot assays and reverse transcription-PCR showed that Nav1.7 protein and mRNA expression was significantly increased in the injured dorsal root ganglia. These findings indicated that Nav1.7 might play an important role in the model of chronic neuropathic pain.

  20. Intestinal immune function, antioxidant status and tight junction proteins mRNA expression in young grass carp (Ctenopharyngodon idella) fed riboflavin deficient diet.

    PubMed

    Chen, Liang; Feng, Lin; Jiang, Wei-Dan; Jiang, Jun; Wu, Pei; Zhao, Juan; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu; Liu, Yang

    2015-11-01

    This study investigated the effects of riboflavin on intestinal immunity, tight junctions and antioxidant status of young grass carp (Ctenopharyngodon idella). Fish were fed diets containing graded levels of riboflavin (0.63-10.04 mg/kg diet) for 8 weeks. The study indicated that riboflavin deficiency decreased lysozyme, acid phosphatase, copper/zinc superoxide dismutase, glutathione reductase and glutathione peroxidase activities, and contents of complement component 3 and reduced glutathione in the intestine of fish (P < 0.05). Meanwhile, riboflavin deficiency increased reactive oxygen species, malondialdehyde and protein carbonyl contents and catalase activity (P < 0.05) in the intestine of fish. Furthermore, real-time polymerase chain reaction analysis was used to investigate mRNA expression patterns and found that the mRNA levels of interleukin 10 and transforming growth factor β1, Occludin, zonula occludens 1, Claudin-b and Claudin-c, inhibitor protein κBα, target of rapamycin, ribosomal S6 protein kinase 1 and NF-E2-related factor 2, copper/zinc superoxide dismutase, glutathione peroxidase and glutathione reductase were decreased (P < 0.05) in the intestine of fish fed riboflavin-deficient diet. Conversely, the mRNA levels of tumor necrosis factor α, interleukin 1β, interleukin 8, nuclear factor kappa B p65, Ikappa B kinase β, Ikappa B kinase γ, Kelch-like-ECH-associated protein 1b, p38 mitogen-activated protein kinase, myosin light chain kinase and Claudin-12 were increased (P < 0.05) in the intestine of fish fed riboflavin-deficient diet. In conclusion, riboflavin deficiency decreased immunity and structural integrity of fish intestine. The optimum riboflavin level for intestinal acid phosphatase activity of young grass carp was estimated to be 6.65 mg/kg diet.

  1. [Effects of arsenic trioxide or retinoic acid on mRNA and protein expression of tissue factor and thrombomodulin and procoagulant activity in NB4 cells].

    PubMed

    Zhang, Xiao-Hui; Hu, Yu; Hong, Mei; Xia, Ling-Hui; Guo, Tao; Shen, Guan-Xin; Wei, Wen-Ning; Song, Shan-Jun

    2007-04-01

    To investigate the effect of arsenic trioxide (As(2)O(3)) or all-trans retinoic acid (ATRA) on the mRNA and protein expression of tissue factor (TF) and thrombomodulin (TM) and procoagulant activity (PCA) in NB4 cells. The NB4 cells were cultured in vitro and treated with As(2)O(3) or ATRA, expression of TF and TM antigen, and PCA change of treated NB4 cells were detected with ELISA, TF and TM mRNA transcription on the NB4 cells was assayed with reversed transcription polymerase chain reaction (RT-PCR). The results showed that 1 micromol/L As(2)O(3) and 1 micromol/L ATRA both gradually downregulated the expression of TF antigen and mRNA on NB4 cells, a human promyelocytic leukemia cell line, in time-dependent manner, as compared with control. The levels of TF antigen expression in AS(2)O(3) group were 13.3 +/- 1.8, 8.6 +/- 1.9, 10.8 +/- 1.5, 2.0 +/- 0.6 and 2.6 +/- 0.9 ng/10(7) respectively; while the levels of TF antigen expression in ATRA group were 12.4 +/- 1.1, 11.3 +/- 1.8, 5.7 +/- 1.7, 2.8 +/- 0.8 and 2.0 +/- 0.6 ng/10(7) at 24, 48, 72, 96 and 120 hours respectively (P<0.05). The procoagulant activity (PCA) of NB4 cells was decreased, blood coagulation times were 123.5 +/- 10.5, 156.3 +/- 11.6, 179.3 +/- 15.3, 248.9 +/- 20.1, 312.0 +/- 29.8 seconds in As(2)O(3) groups, respectively; 76.4 +/- 5.6, 146.8 +/- 10.9, 198.2 +/- 15.6, 265.8 +/- 20.6 and 363.8 +/- 31.9 seconds in ATRA groups respectively at 24, 48, 72, 96 and 120 hours (P<0.05). ATRA upregulated TM antigen expression on NB4 cells. It is concluded that the As(2)O(3) and ATRA decrease mRNA transcription of TF, downregulate expression of TF and reduce procoagulant activity in NB4 cells. The TM transcription and expression upregulated by ATRA may alleviate dysfunction of coagulation in APL.

  2. Steroidogenic acute regulatory protein in eels: cDNA cloning and effects of ACTH and seawater transfer on its mRNA expression.

    PubMed

    Li, Yuan-You; Inoue, Koji; Takei, Yoshio

    2003-02-01

    Steroidogenic acute regulatory protein (StAR) is a key molecule for steroid production by translocating cholesterol from the outer to inner mitochondrial membrane. Two cDNAs of different length encoding StAR was cloned from the head kidney of the eel (Anguilla japonica). In the 3'-untranslated region (UTR) of the longer cDNA, two putative polyadenylation signals were found. The shorter one differed from the longer one solely by the lack of middle of 3'-UTR including the first polyadenylation signal. Reverse transcription-polymerase chain reaction (RT-PCR) that differentiates the two mRNAs showed that the ratio of the two was highly variable among individuals, and no preferential expression was detected between freshwater and seawater eels. The predicted protein consists of 285 amino acid residues with 64-83% identity to other StARs thus far obtained. RT-PCR analyses revealed that eel StAR mRNA was expressed abundantly in the head kidney and gonad, and faintly in the brain; but no expression was detected in the gill, heart, liver, intestine, kidney and skeletal muscle. Plasma cortisol concentration increased, but StAR mRNA content in the head kidney did not change, 3 and 24 h after transfer of freshwater eels to seawater, indicating that the transcriptional regulation of StAR may not be involved in cortisol production after seawater transfer. However, ACTH elevated both plasma cortisol and StAR mRNA levels in the head kidney 1.5 and 4.5 h after injection. Thus, the steroidogenic effect of ACTH is mediated by increased StAR production as observed in mammals.

  3. Expression of insulin-like growth factor I receptors at mRNA and protein levels during metamorphosis of Japanese flounder (Paralichthys olivaceus).

    PubMed

    Zhang, Junling; Shi, Zhiyi; Cheng, Qi; Chen, Xiaowu

    2011-08-01

    Insulin-like growth factor I (IGF-I) is an important regulator of fish growth and development, and its biological actions are initiated by binding to IGF-I receptor (IGF-IR). Our previous study has revealed that IGF-I could play an important role during metamorphosis of Japanese flounder, Paralichthys olivaceus. The analysis of IGF-IR expression thus helps further elucidate the IGF-I regulation of metamorphic processes. In this study, the spatial-temporal expression of two distinct IGF-IR mRNAs was investigated by real-time RT-PCR. The spatial distribution of two IGF-IR mRNAs in adult tissues is largely overlapped, but they exhibit distinct temporal expression patterns during larval development. A remarkable decrease in IGF-IR-2 mRNA was detected during metamorphosis. In contrast, a significant increase in IGF-IR-1 mRNA was determined from pre-metamorphosis to metamorphic completion. These indicate that they may play different function roles during the flounder metamorphosis. The levels and localization of IGF-IR proteins during larval development were further studied by Western blotting and immunohistochemistry. Immunoreactive IGF-IRs were detected throughout larval development, and the IGF-IR proteins displayed a relatively abundant expression during metamorphosis. Moreover, the IGF-IR proteins appeared in key tissues, such as thickened skin beneath the migrating eye, developing intestine, gills and kidney during metamorphosis. These results further suggest that the IGF-I system may be involved in metamorphic development of Japanese flounder.

  4. Resveratrol induces antioxidant and heat shock protein mRNA expression in response to heat stress in black-boned chickens.

    PubMed

    Liu, L L; He, J H; Xie, H B; Yang, Y S; Li, J C; Zou, Y

    2014-01-01

    This study investigated the effects of dietary resveratrol at 0, 200, 400, or 600 mg/kg of diet on the performance, immune organ growth index, serum parameters, and expression levels of heat shock protein (Hsp) 27, Hsp70, and Hsp90 mRNA in the bursa of Fabricius, thymus, and spleen of 42-d-old female black-boned chickens exposed to heat stress at 37 ± 2°C for 15 d. The results showed that heat stress reduced daily feed intake and BW gain; decreased serum glutathione (GSH), growth hormone, and insulin-like growth factor-1 levels; and inhibited GSH peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT) activities compared with birds subjected to thermo-neutral circumstances. Chickens that were fed diets supplemented with resveratrol exhibited a linear increase in feed intake and BW gain (P < 0.001); serum GSH, growth hormone, and insulin-like growth factor-1 levels (P ≤ 0.01); and GSH-Px, SOD, and CAT activities (P < 0.001) compared with chickens that were fed diets without resveratrol during heat stress. In contrast, serum malonaldehyde concentrations were decreased (P < 0.001) in the chickens fed a resveratrol-supplemented diet. Heat stress also reduced (P < 0.05) the growth index of the bursa of Fabricus and spleen; however, it had no effect on the growth index of the thymus. The growth index of the bursa of Fabricius and spleen increased (P < 0.05) upon heat stress and coincided with an increase in supplemental resveratrol levels. The expression of Hsp27, Hsp70, and Hsp90 mRNA in the bursa of Fabricius and spleen were increased (P < 0.01), but those of Hsp27 and Hsp90 mRNA in thymus were decreased (P < 0.01) under heat stress compared with no heat stress. Resveratrol attenuated the heat stress-induced overexpression of Hsp27, Hsp70, and Hsp90 mRNA in the bursa of Fabricius and spleen and increased the low expression of Hsp27 and Hsp90 mRNA in thymus upon heat stress. The results suggest that supplemental resveratrol improves growth performance

  5. Protein and mRNA expression of Shh, Smo and Gli1 and inhibition by cyclopamine in hepatocytes of rats with chronic fluorosis.

    PubMed

    Zhao, Lina; Yu, Yanni; Deng, Chaonan

    2014-03-03

    In order to investigate the Sonic hedgehog (Shh) signaling pathway and the effect of cyclopamine in rat hepatocytes with chronic fluorosis, 48 Wistar rats were randomly divided into 4 groups. The control group was provided with tap water in which the fluorine concentration was <1mg/L, while the remaining three groups were provided with water containing sodium fluoride (NaF) at a concentration of 50mg/L. After 6 months, the blocking and blocking control groups were injected intraperitoneally once every 2 days for 6 days with 10mg/kg cyclopamine or dimethyl sulfoxide, respectively. The urinary and skeletal fluoride contents were determined by the ion selective electrode method. Levels of aspartate transaminase (AST), alanine transaminase (ALT), total protein (TP) and albumin (Alb) in the serum were determined by using autobiochemical machine. Histological changes in liver tissue were evaluated with Hematoxylin & Eeosin (H&E) staining using light microscopy. The protein and mRNA expression of Shh, Smo and Gli1 in hepatocytes of experimental animals was determined by immunohistochemistry (IHC), Western blotting (Wb) and Real-time quantitative PCR (RT-qPCR). Fluoride content of the urine and bone was increased in the fluorosis and blocking groups compared to those in the control group (P<0.05), while fluoride content in the blocking group was decreased compared to the fluorosis and blocking control groups (P<0.05). The expression of Shh, Smo and Gli1 at the mRNA and protein levels was significantly increased in hepatocytes from the fluorosis and blocking control groups compared with the control group, and expression in the blocking group was lower than that of the fluorosis and blocking control groups. The difference between any two groups was considered to be statistically significant (P<0.05). Taken together, our study indicates that the expression of Shh, Smo and Gli1 at the protein and mRNA level in hepatocytes of rats with chronic fluorosis can be increased by

  6. Estrogen secreting adrenal adenocarcinoma in an 18-month-old boy: aromatase activity, protein expression, mRNA and utilization of gonadal type promoter.

    PubMed

    Watanabe, T; Yasuda, T; Noda, H; Wada, K; Kazukawa, I; Someya, T; Minamitani, K; Minagawa, M; Wataki, K; Matsunaga, T; Ohnuma, N; Kohno, Y; Harada, N

    2000-12-01

    We examined clinical, endocrinological and molecular biological aspects of an estrogen-secreting adrenal carcinoma in an 18-month-old male to clarify the pathogenesis of this condition. An 18-month-old boy was referred for evaluation of progressive bilateral gynecomastia and appearance of pubic hair. The patient had elevated plasma estradiol (349 pg/ml) and testosterone (260 ng/dl) levels that completely suppressed FSH and LH levels, and was subsequently diagnosed with an adrenal tumor on the right side. After removal of a 300-g adenocarcinoma, gynecomastia regressed and essentially normal hormone levels were restored. Aromatase activity in the tumor tissue determined by the 3H-water method was 71.0-104.4 pmol/min/mg protein. High levels of aromatase protein and mRNA in the tumor tissue were also demonstrated, while neither aromatase activity nor protein was detected in normal adrenal glands. To investigate the regulation of aromatase expression in the adrenal carcinoma, we examined the usage of alternate promoters responsible for aromatase gene transcription. In the present case, the amounts of aromatase mRNA utilizing gonadal types of exon 1c (1.3) and 1d (II) were significantly higher than those that using other exon 1s. This result suggested that the utilization of a gonadal-type exon 1 might be involved in the over-production of aromatase in estrogen-secreting adrenal carcinoma.

  7. Cinnamaldehyde up-regulates the mRNA expression level of TRPV1 receptor potential ion channel protein and its function in primary rat DRG neurons in vitro.

    PubMed

    Sui, Feng; Lin, Na; Guo, Jian-You; Zhang, Chang-Bin; Du, Xin-Liang; Zhao, Bao-Sheng; Liu, Hong-Bin; Yang, Na; Li, Lan-Fang; Guo, Shu-Ying; Huo, Hai-Ru; Jiang, Ting-Liang

    2010-01-01

    Cinnamaldehyde (1) is a pharmacologically active ingredient isolated from cassia twig (Ramulus Cinnamomi), which is commonly used in herbal remedies to treat fever-related diseases. Both TRPV1 and TRPM8 ion channel proteins are abundantly expressed in sensory neurons, and are assumed to act as a thermosensor, with the former mediating the feeling of warmth and the latter the feeling of cold in the body. Both of them have recently been reported to be involved in thermoregulation. The purpose of this paper is to further uncover the antipyretic mechanisms of 1 by investigating its effects on the mRNA expression levels and functions of both TRPV1 and TRPM8. The results showed that 1 could up-regulate the mRNA expression levels of TRPV1 at both 37 and 39 degrees C, and its calcium-mediating function was significantly increased at 39 degrees C, all of which could not be blocked by pretreatment of the neuronal cells with ruthenium red, a general transient receptor potential (TRP) blocker, indicating that the action of 1 was achieved through a non-TRPA1 channel pathway. In conclusion, the findings in our in vitro studies might account for part of the peripheral molecular mechanisms for the antipyretic action of 1.

  8. Expression of progesterone receptor membrane component 1, serpine mRNA binding protein 1 and nuclear progesterone receptor isoforms A and B in the bovine myometrium during the estrous cycle and early pregnancy.

    PubMed

    Slonina, Dominika; Kowalik, Magdalena K; Kotwica, Jan

    2012-01-01

    The aim of this study was to investigate the (1) expression of progesterone membrane component 1 (PGRMC1), serpine mRNA binding protein 1 (SERBP1) and progesterone receptor (PR) mRNA and (2) protein expression levels of PGRMC1, SERBP1 and PR isoforms A and B in the bovine myometrium during the estrous cycle and early pregnancy. Uteri from cows on days 1-5, 6-10, 11-16 and 17-21 of the estrous cycle and weeks 3-5, 6-8 and 9-12 of pregnancy were used (n=5-6 per period). There were no changes (P>0.05) in PGRMC1 mRNA expression during the estrous cycle, while expression of SERBP1 and PR mRNA was the lowest (P<0.05) on days 11-16 relative to other days of the cycle. The highest mRNA expression of PGRMC1, SERBP1 and PR was found during pregnancy. There were no changes (P>0.05) in SERBP1 protein expression in cycling and pregnant cows, while the highest (P<0.05) PGRMC1 protein expression was found during weeks 3-5 of pregnancy. Similar protein expression profiles for PRA and PRB were found, and protein levels were highest on days 1-5 of the estrous cycle. From day 6 of the cycle, PRA and PRB protein expression decreased and were maintained at this lower level during pregnancy. In conclusion, our study assessed mRNA and protein expression levels of PGRMC1, SERBP1 and PR in the bovine myometrium during the estrous cycle and the first trimester of pregnancy. It is possible that progesterone (P4) affects myometrial function in a genomic and nongenomic manner.

  9. Balancing Arc synthesis, mRNA decay, and proteasomal degradation: maximal protein expression triggered by rapid eye movement sleep-like bursts of muscarinic cholinergic receptor stimulation.

    PubMed

    Soulé, Jonathan; Alme, Maria; Myrum, Craig; Schubert, Manja; Kanhema, Tambudzai; Bramham, Clive R

    2012-06-22

    Cholinergic signaling induces Arc/Arg3.1, an immediate early gene crucial for synaptic plasticity. However, the molecular mechanisms that dictate Arc mRNA and protein dynamics during and after cholinergic epochs are little understood. Using human SH-SY5Y neuroblastoma cells, we show that muscarinic cholinergic receptor (mAchR) stimulation triggers Arc synthesis, whereas translation-dependent RNA decay and proteasomal degradation strictly limit the amount and duration of Arc expression. Chronic application of the mAchR agonist, carbachol (Cch), induces Arc transcription via ERK signaling and release of calcium from IP(3)-sensitive stores. Arc translation requires ERK activation, but not changes in intracellular calcium. Proteasomal degradation of Arc (half-life ∼37 min) was enhanced by thapsigargin, an inhibitor of the endoplasmic calcium-ATPase pump. Similar mechanisms of Arc protein regulation were observed in cultured rat hippocampal slices. Functionally, we studied the impact of cholinergic epoch duration and temporal pattern on Arc protein expression. Acute Cch treatment (as short as 2 min) induces transient, moderate Arc expression, whereas continuous treatment of more than 30 min induces maximal expression, followed by rapid decline. Cholinergic activity associated with rapid eye movement sleep may function to facilitate long term synaptic plasticity and memory. Employing a paradigm designed to mimic intermittent rapid eye movement sleep epochs, we show that application of Cch in a series of short bursts generates persistent and maximal Arc protein expression. The results demonstrate dynamic, multifaceted control of Arc synthesis during mAchR signaling, and implicate cholinergic epoch duration and repetition as critical determinants of Arc expression and function in synaptic plasticity and behavior.

  10. Lupin protein isolate versus casein modifies cholesterol excretion and mRNA expression of intestinal sterol transporters in a pig model

    PubMed Central

    2014-01-01

    Background Lupin proteins exert hypocholesterolemic effects in man and animals, although the underlying mechanism remains uncertain. Herein we investigated whether lupin proteins compared to casein modulate sterol excretion and mRNA expression of intestinal sterol transporters by use of pigs as an animal model with similar lipid metabolism as humans, and cellular cholesterol-uptake by Caco-2 cells. Methods Two groups of pigs were fed cholesterol-containing diets with either 230 g/kg of lupin protein isolate from L. angustifolius or 230 g/kg casein, for 4 weeks. Faeces were collected quantitatively over a 5 d period for analysis of neutral sterols and bile acids by gas chromatographically methods. The mRNA abundances of intestinal lipid transporters were analysed by real-time RT-PCR. Cholesterol-uptake studies were performed with Caco-2 cells that were incubated with lupin conglutin γ, phytate, ezetimibe or albumin in the presence of labelled [4-14C]-cholesterol. Results Pigs fed the lupin protein isolate revealed lower cholesterol concentrations in total plasma, LDL and HDL than pigs fed casein (P < 0.05). Analysis of faeces revealed a higher output of cholesterol in pigs that were fed lupin protein isolate compared to pigs that received casein (+57.1%; P < 0.05). Relative mRNA concentrations of intestinal sterol transporters involved in cholesterol absorption (Niemann-Pick C1-like 1, scavenger receptor class B, type 1) were lower in pigs fed lupin protein isolate than in those who received casein (P < 0.05). In vitro data showed that phytate was capable of reducing the uptake of labelled [4-14C]-cholesterol into the Caco-2 cells to the same extend as ezetimibe when compared to control (−20.5% vs. −21.1%; P < 0.05). Conclusions Data reveal that the cholesterol-lowering effect of lupin protein isolate is attributable to an increased faecal output of cholesterol and a reduced intestinal uptake of cholesterol. The findings indicate phytate as a

  11. Short Communication: Effect of heat stress on heat-shock protein (Hsp60) mRNA expression in rainbow trout Oncorhynchus mykiss.

    PubMed

    Shi, H N; Liu, Z; Zhang, J P; Kang, Y J; Wang, J F; Huang, J Q; Wang, W M

    2015-05-18

    The enhanced expression of heat shock proteins (hsps) in organisms can be detected in response to many kinds of stressor. For fish, high temperature is an important stressor, and hsp expression is associated with differences in environmental temperature. In this study, rainbow trout (Oncorhynchus mykiss) that were accustomed to an aquatic temperature of 18°C were exposed to an elevated temperature (25°C), and hsp60 expression in the gill, liver, spleen, heart, and head kidney was quantified using real-time polymerase chain reaction in unstressed and heat-stressed animals. The fish responded to heat stress in a time- and tissue-specific manner. Cardiac hsp60 mRNA levels were largely unchanged, and the greatest induction of hsp60 in heat-stressed animals was recorded in the liver, suggesting that protein damage and the consequent requirement for the Hsp60 protein are probably greater in hepatic tissue. Therefore, fish must be provided with optimal temperature conditions in order to realize their potential growth and maximize fish farm profits.

  12. Modeling rotavirus-like particles production in a baculovirus expression vector system: Infection kinetics, baculovirus DNA replication, mRNA synthesis and protein production.

    PubMed

    Roldão, António; Vieira, Helena L A; Charpilienne, Annie; Poncet, Didier; Roy, Polly; Carrondo, Manuel J T; Alves, Paula M; Oliveira, R

    2007-03-10

    Rotavirus is the most common cause of severe diarrhoea in children worldwide, responsible for more than half a million deaths in children per year. Rotavirus-like particles (Rota VLPs) are excellent vaccine candidates against rotavirus infection, since they are non-infectious, highly immunogenic, amenable to large-scale production and safer to produce than those based on attenuated viruses. This work focuses on the analysis and modeling of the major events taking place inside Spodoptera frugiperda (Sf-9) cells infected by recombinant baculovirus that may be critical for the expression of rotavirus viral proteins (VPs). For model validation, experiments were performed adopting either a co-infection strategy, using three monocistronic recombinant baculovirus each one coding for viral proteins VP(2), VP(6) and VP(7), or single-infection strategies using a multigene baculovirus coding for the three proteins of interest. A characteristic viral DNA (vDNA) replication rate of 0.19+/-0.01 h(-1) was obtained irrespective of the monocistronic or multigene vector employed, and synthesis of progeny virus was found to be negligible in comparison to intracellular vDNA concentrations. The timeframe for vDNA, mRNA and VP synthesis tends to decrease with increasing multiplicity of infection (MOI) due to the metabolic burden effect. The protein synthesis rates could be ranked according to the gene size in the multigene experiments but not in the co-infection experiments. The model exhibits acceptable prediction power of the dynamics of intracellular vDNA replication, mRNA synthesis and VP production for the three proteins involved. This model is intended to be the basis for future Rota VLPs process optimisation and also a means to evaluating different baculovirus constructs for Rota VLPs production.

  13. Angiotensin II-induced protein kinase D activates the ATF/CREB family of transcription factors and promotes StAR mRNA expression.

    PubMed

    Olala, Lawrence O; Choudhary, Vivek; Johnson, Maribeth H; Bollag, Wendy B

    2014-07-01

    Aldosterone synthesis is initiated upon the transport of cholesterol from the outer to the inner mitochondrial membrane, where the cholesterol is hydrolyzed to pregnenolone. This process is the rate-limiting step in acute aldosterone production and is mediated by the steroidogenic acute regulatory (StAR) protein. We have previously shown that angiotensin II (AngII) activation of the serine/threonine protein kinase D (PKD) promotes acute aldosterone production in bovine adrenal glomerulosa cells, but the mechanism remains unclear. Thus, the purpose of this study was to determine the downstream signaling effectors of AngII-stimulated PKD activity. Our results demonstrate that overexpression of the constitutively active serine-to-glutamate PKD mutant enhances, whereas the dominant-negative serine-to-alanine PKD mutant inhibits, AngII-induced StAR mRNA expression relative to the vector control. PKD has been shown to phosphorylate members of the activating transcription factor (ATF)/cAMP response element binding protein (CREB) family of leucine zipper transcription factors, which have been shown previously to bind the StAR proximal promoter and induce StAR mRNA expression. In primary glomerulosa cells, AngII induces ATF-2 and CREB phosphorylation in a time-dependent manner. Furthermore, overexpression of the constitutively active PKD mutant enhances the AngII-elicited phosphorylation of ATF-2 and CREB, and the dominant-negative mutant inhibits this response. Furthermore, the constitutively active PKD mutant increases the binding of phosphorylated CREB to the StAR promoter. Thus, these data provide insight into the previously reported role of PKD in AngII-induced acute aldosterone production, providing a mechanism by which PKD may be mediating steroidogenesis in primary bovine adrenal glomerulosa cells.

  14. Reduction in mRNA and protein expression of a nicotinic acetylcholine receptor α8 subunit is associated with resistance to imidacloprid in the brown planthopper, Nilaparvata lugens.

    PubMed

    Zhang, Yixi; Wang, Xin; Yang, Baojun; Hu, Yuanyuan; Huang, Lixin; Bass, Chris; Liu, Zewen

    2015-11-01

    Target-site resistance is commonly caused by qualitative changes in insecticide target-receptors and few studies have implicated quantitative changes in insecticide targets in resistance. Here we show that resistance to imidacloprid in a selected strain of Nilaparvata lugens is associated with a reduction in expression levels of the nicotinic acetylcholine receptor (nAChR) subunit Nlα8. Synergism bioassays of the selected strain suggested resistance was conferred, in part, by a target-site mechanism. Sequencing of N. lugens nAChR subunit genes identified no mutations associated with resistance, however, a decrease in mRNA and protein levels of Nlα8 was observed during selection. RNA interference knockdown of Nlα8 decreased the sensitivity of N. lugens to imidacloprid, demonstrating that a decrease in Nlα8 expression is sufficient to confer resistance in vivo. Radioligand binding assays revealed that the affinity of the high-affinity imidacloprid-binding site of native nAChRs was reduced by selection, and reducing the amount of Nlα8 cRNA injected into Xenopus oocytes significantly decreased imidacloprid potency on recombinant receptors. Taken together, these results provide strong evidence that a decrease in Nlα8 levels confers resistance to imidacloprid in N. lugens, and thus provides a rare example of target-site resistance associated with a quantitative rather than qualitative change. In insects, target-site mutations often cause high resistance to insecticides, such as neonicotinoids acting on nicotinic acetylcholine receptors (nAChRs). Here we found that a quantitative change in target-protein level, decrease in mRNA and protein levels of Nlα8, contributed importantly to imidacloprid resistance in Nilaparvata lugens. This finding provides a new target-site mechanism of insecticide resistance.

  15. Suppressed expression of insulin-like growth factor binding protein-1 mRNA in the endometrium: a molecular mechanism associating endometrial cancer with its risk factors.

    PubMed

    Rutanen, E M; Nyman, T; Lehtovirta, P; Ammälä, M; Pekonen, F

    1994-11-01

    The insulin-like growth factor (IGF) system is thought to function as a mediator of steroid hormone actions in the endometrium. IGFs (IGF-I and IGF-II) are also potent mitogens in endometrial cancer. The biological actions of IGFs are modulated by specific binding proteins (IGFBP)--6 cloned and sequenced so far--which may either inhibit or enhance the effects of IGF at the cellular level. In the endometrium, IGFBP-1 gene expression is stimulated by progesterone and inhibited by insulin, while IGFBP-1 inhibits the mitogenic action of IGF-I. In this study, we used a quantitative reverse transcriptase polymerase chain reaction (RT-PCR) to investigate IGFBP-1, IGFBP-2, IGFBP-4, IGFBP-5 and IGFBP-6 gene expression in endometrial cancer tissues. Endometrial cancer tissue samples were collected from 20 women (aged 54-79 yrs) with stage I to II well-differentiated endometrial adenocarcinoma. Samples of normal endometrium (n = 14) obtained from women undergoing tubal ligation in various phases of the menstrual cycle, and normal early-pregnancy endometrium (decidua) were studied for comparison. In endometrial cancer tissues, the IGFBP-1 mRNA was undetectable or minimally expressed when studied by RT-PCR. The mean (+ SD) levels of IGFBP-2 and IGFBP-4 and IGFBP-5 mRNAs in endometrial cancer tissues did not differ from those in normal endometrium, in which no cyclic variation was observed, suggesting that the genes encoding IGFBP-2, IGFBP-4 and IGFBP-5 are not hormonally regulated in the endometrium. The IGFBP-6 mRNA expression showed a significant cyclic variation in normal endometrium, with low levels in late-proliferative and early- to mid-secretory phases and high expression in late-secretory and early-proliferative phases. In endometrial cancer tissues, the mean IGFBP-6 mRNA level was similar to that in cycling endometrium during the peri-ovulatory period. In summary, a continuous stimulation of the endometrial epithelial cells by IGFs with suppressed IGFBP-1 expression

  16. HIF1A and EPAS1 mRNA and protein expression during in vitro culture of human primary term cytotrophoblasts and effect of oxygen tension on their expression.

    PubMed

    Depoix, Christophe Louis; Flabat, Olivier; Debiève, Frédéric; Hubinont, Corinne

    2016-09-01

    During the first trimester of pregnancy, placenta formation probably occurs in a low-oxygen environment necessary to protect cytotrophoblasts from oxidative stress and to allow proper gene regulation. Transcription factors involved in gene regulation under low oxygen tension are the hypoxia-inducible factors, mainly HIF1A, EPAS1 and their dimerization partner HIF1B. Little is known about their expression during in vitro culture of cytotrophoblasts under chronic hypoxia. We assessed HIF1A and EPAS1 expression in a 4-day in vitro culture of primary term cytotrophoblasts under 21% O2 and 2.5% O2. Copy numbers and relative mRNA expression were assessed by real-time quantitative polymerase chain reaction. Protein levels were quantified by immunoblot and densitometric analysis. In undifferentiated cytotrophoblasts, EPAS1 transcripts were four times more abundant than HIF1A transcripts (2.14e(7) and 5e(6)copies/μg total RNA, respectively). During cell culture, HIF1A mRNA expression increased after 24h and then decreased to stay stable. The expression was even lower when cells were grown under 2.5% O2. EPAS1 mRNA expression increased during cytotrophoblast differentiation. The expression was higher when cells were under 21% O2 than when they were under 2.5% O2. Interestingly, HIF1A, but not EPAS1, was detected in the nuclei of undifferentiated cytotrophoblasts, and in the nuclei of cytotrophoblasts that grew under 21% O2. During cytotrophoblast differentiation, no variation in HIF1A protein levels was detected. To the contrary, EPAS1 protein level increased during differentiation, and oxygen tension had no effect on EPAS1 protein level. In conclusion, HIF1A and EPAS1 expression was not inhibited by chronic hypoxia during in vitro cytotrophoblast differentiation.

  17. Effect of oxytocin on expression of cytosolic phospholipase A2 mRNA and protein in ovine endometrial tissue in vivo.

    PubMed

    Burns, P D; Graf, G A; Hayes, S H; Silvia, W J

    2000-11-01

    The induction of endometrial prostaglandin (PG) F2alpha synthesis by oxytocin is dependent upon activation of phospholipase (PL) A2 and mobilization of arachidonic acid. The objective of this study was to determine if oxytocin stimulates PGF2alpha synthesis by inducing synthesis of cytosolic PLA2 (cPLA2). In Experiment 1, 15 ovariectomized ewes were given progesterone and estradiol to simulate an estrous cycle. Ewes were then given an injection of oxytocin on Day 14 of the simulated estrous cycle. Jugular blood samples were collected and assayed for 13,14-dihydro-15-keto-prostaglandin F2alpha (PGFM). Uteri were collected at 0, 7.5, 25, 90, or 240 min postinjection (n = 3 ewes/time point). Total RNA was isolated from caruncular endometrium and subjected to dot-blot analysis. Oxytocin induced a rapid and transient increase in serum PGFM (P < 0.01). However, endometrial concentrations of cPLA2 mRNA did not change following oxytocin administration (P > 0.10). In Experiment 2, 11 ovary-intact ewes were given oxytocin (n = 5) or saline (n = 6) on Day 15 after estrus. Jugular blood samples were collected and assayed for serum concentrations of PGFM. Uteri were collected at 15 min postinjection. Homogenates were prepared from caruncular endometrium and subjected to Western blot analysis. Concentrations of PGFM were higher in oxytocin treated ewes compared to saline treated ewes at 15 min postinjection (P < 0.01). Endometrial concentrations of cPLA2 protein were greater in the cytosolic than in the microsomal fraction (P < 0.01). Oxytocin did not affect the amount of cPLA2 protein in either fraction (P > 0.10). In conclusion, oxytocin did not effect expression of either cPLA2 mRNA or protein in ovine endometrium. Oxytocin may stimulate PGF2alpha synthesis by activating cPLA2 protein that is already present in an inactive form.

  18. Changes in the mRNA expression of structural proteins, hormone synthesis and secretion from bovine placentome sections after DDT and DDE treatment.

    PubMed

    Wojciechowska, A; Mlynarczuk, J; Kotwica, J

    2017-01-15

    Disorders in the barrier function and secretory activity of the placenta can be caused by xenobiotics (XB) present in the environment and their accumulation in tissues of living organisms. Thus, the aim of this study was to investigate the effect of 1,1,1-trichloro-2,2,-bis-4-chlorophenyl-ethane (DDT) and its metabolite 1,1-dichloro-2,2-bis-4-chlorophenyl-ethene (DDE) (for 24 or 48h) at doses of 1, 10 or 100ng/ml on the function of cow placentome sections in the second trimester of pregnancy. DDT and DDE affected neither (P>0.05) the viability nor hypoxia inducible factor 1 (HIF1α) mRNA expression of the sections. XB decreased (P<0.05) connexin (Cx) 26, 32, 43 and placenta-specific 1 (PLAC-1) mRNA expression but did not affect (P>0.05) keratin 8 (KRT8) mRNA expression. DDT and DDE also reduced (P<0.05) prostaglandin F2α (PGF2α) synthase (PGFS) mRNA expression, while DDT increased (P<0.05) prostaglandin E2 (PGE2) synthase (PGES) mRNA expression. Neither cyclooxygenase 2 (COX-2) mRNA expression nor PGF2α and PGE2 secretion were affected. Both DDT and DDE increased (P<0.05) neurophysin I/oxytocin (NP1/OT) mRNA expression and oxytocin (OT), oestradiol (E2) and progesterone (P4) secretion while DDT stimulated only 3β-hydroxysteroid dehydrogenase (3βHSD) and cholesterol side-chain cleavage enzyme (CYP11A1) mRNA expression (P<0.05). In summary, DDT and DDE impaired the barrier function and secretory activity of the placenta. Thus, these compounds can disrupt trophoblast invasion, myometrium contractility and gas/nutrient exchange throughout pregnancy in cows.

  19. Endogenous expression of type II cGMP-dependent protein kinase mRNA and protein in rat intestine. Implications for cystic fibrosis transmembrane conductance regulator.

    PubMed Central

    Markert, T; Vaandrager, A B; Gambaryan, S; Pöhler, D; Häusler, C; Walter, U; De Jonge, H R; Jarchau, T; Lohmann, S M

    1995-01-01

    Certain pathogenic bacteria produce a family of heat stable enterotoxins (STa) which activate intestinal guanylyl cyclases, increase cGMP, and elicit life-threatening secretory diarrhea. The intracellular effector of cGMP actions has not been clarified. Recently we cloned the cDNA for a rat intestinal type II cGMP dependent protein kinase (cGK II) which is highly enriched in intestinal mucosa. Here we show that cGK II mRNA and protein are restricted to the intestinal segments from the duodenum to the proximal colon, with the highest amounts of cGK II protein in duodenum and jejunum. cGK II mRNA and protein decreased along the villus to crypt axis in the small intestine, whereas substantial amounts of both were found in the crypts of cecum. In intestinal epithelia, cGK II was specifically localized in the apical membrane, a major site of ion transport regulation. In contrast to cGK II, cGK I was localized in smooth muscle cells of the villus lamina propria. Short circuit current (ISC), a measure of Cl- secretion, was increased to a similar extent by STa and by 8-Br-cGMP, a selective activator of cGK, except in distal colon and in monolayers of T84 human colon carcinoma cells in which cGK II was not detected. In human and mouse intestine, the cyclic nucleotide-regulated Cl- conductance can be exclusively accounted for by the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel. Viewed collectively, the data suggest that cGK II is the mediator of STa and cGMP effects on Cl- transport in intestinal-epithelia. Images PMID:7543493

  20. Production of a Locus- and Allele-Specific Monoclonal Antibody for the Characterization of SLA-1*0401 mRNA and Protein Expression Levels in MHC-Defined Microminipigs

    PubMed Central

    Kametani, Yoshie; Ohshima, Shino; Miyamoto, Asuka; Shigenari, Atsuko; Takasu, Masaki; Imaeda, Noriaki; Matsubara, Tatsuya; Tanaka, Masafumi; Shiina, Takashi; Kamiguchi, Hiroshi; Suzuki, Ryuji; Kitagawa, Hitoshi; Kulski, Jerzy K.; Hirayama, Noriaki; Inoko, Hidetoshi; Ando, Asako

    2016-01-01

    The class I major histocompatibility complex (MHC) presents self-developed peptides to specific T cells to induce cytotoxity against infection. The MHC proteins are encoded by multiple loci that express numerous alleles to preserve the variability of the antigen-presenting ability in each species. The mechanism regulating MHC mRNA and protein expression at each locus is difficult to analyze because of the structural and sequence similarities between alleles. In this study, we examined the correlation between the mRNA and surface protein expression of swine leukocyte antigen (SLA)-1*0401 after the stimulation of peripheral blood mononuclear cells (PBMCs) by Staphylococcus aureus superantigen toxic shock syndrome toxin-1 (TSST-1). We prepared a monoclonal antibody (mAb) against a domain composed of Y102, L103 and L109 in the α2 domain. The Hp-16.0 haplotype swine possess only SLA-1*0401, which has the mAb epitope, while other haplotypes possess 0 to 3 SLA classical class I loci with the mAb epitopes. When PBMCs from SLA-1*0401 homozygous pigs were stimulated, the SLA-1*0401 mRNA expression level increased until 24 hrs and decreased at 48 hrs. The kinetics of the interferon regulatory transcription factor-1 (IRF-1) mRNA level were similar to those of the SLA-1*0401 mRNA. However, the surface protein expression level continued to increase until 72 hrs. Similar results were observed in the Hp-10.0 pigs with three mAb epitopes. These results suggest that TSST-1 stimulation induced both mRNA and surface protein expression of class I SLA in the swine PBMCs differentially and that the surface protein level was sustained independently of mRNA regulation. PMID:27760184

  1. mRNA Expression and activity of ion-transporting proteins in gills of the blue crab Callinectes sapidus: effects of waterborne copper.

    PubMed

    Martins, Camila M G; Almeida, Daniela Volcan; Marins, Luis Fernando Fernandes; Bianchini, Adalto

    2011-01-01

    Waterborne Cu effects on the transcription of genes encoding ion-transporting proteins and the activities of these proteins were evaluated in gills of the blue crab Callinectes sapidus acclimated to diluted (2‰) and full (30‰) seawater. Crabs were exposed (96 h) to an environmentally relevant concentration of dissolved Cu (0.78 µM) and had their posterior (osmoregulating) gills dissected for enzymatic and molecular analysis. Endpoints analyzed were the activity of key enzymes involved in crab osmoregulation (sodium-potassium adenosine triphosphatase [Na(+)/K(+)-ATPase], hydrogen adenosine triphosphatase [H(+)-ATPase], and carbonic anhydrase [CA]) and the mRNA expression of genes encoding these enzymes and the sodium-potassium-chloride (Na(+)/K(+)/2Cl⁻) cotransporter. Copper effects were observed only in crabs acclimated to diluted seawater (hyperosmoregulating crabs) and were associated with an inhibition of the expression of mRNA of genes encoding the Na(+)/K(+)-ATPase and the Na(+)/K(+)/2Cl⁻ cotransporter. However, Cu did not affect Na(+)/K(+)-ATPase activity, indicating that the gene transcription is downregulated before a significant inhibition of the enzyme activity can be observed. This also suggests the existence of a compensatory response of this enzyme to prevent osmoregulatory disturbances after short-term exposure to environmentally relevant Cu concentrations. These findings suggest that Cu is a potential ionoregulatory toxicant in blue crabs C. sapidus acclimated to low salinity. The lack of Cu effect on blue crabs acclimated to full seawater would be due to the reduced ion uptake needed for the regulation of the hemolymph osmotic concentration in full seawater (30‰). Also, this could be explained considering the lower bioavailability of toxic Cu (free ion) associated with the higher ionic content and dissolved organic matter concentration in high salinity (30‰) than in diluted seawater (2‰).

  2. Knockdown of BC200 RNA expression reduces cell migration and invasion by destabilizing mRNA for calcium-binding protein S100A11.

    PubMed

    Shin, Heegwon; Lee, Jungmin; Kim, Youngmi; Jang, Seonghui; Lee, Yunhee; Kim, Semi; Lee, Younghoon

    2017-03-01

    Although BC200 RNA is best known as a neuron-specific non-coding RNA, it is overexpressed in various cancer cells. BC200 RNA was recently shown to contribute to metastasis in several cancer cell lines, but the underlying mechanism was not understood in detail. To examine this mechanism, we knocked down BC200 RNA in cancer cells, which overexpress the RNA, and examined cell motility, profiling of ribosome footprints, and the correlation between cell motility changes and genes exhibiting altered ribosome profiles. We found that BC200 RNA knockdown reduced cell migration and invasion, suggesting that BC200 RNA promotes cell motility. Our ribosome profiling analysis identified 29 genes whose ribosomal occupations were altered more than 2-fold by BC200 RNA knockdown. Many (> 30%) of them were directly or indirectly related to cancer progression. Among them, we focused on S100A11 (which showed a reduced ribosome footprint) because its expression was previously shown to increase cellular motility. S100A11 was decreased at both the mRNA and protein levels following knockdown of BC200 RNA. An actinomycin-chase experiment showed that BC200 RNA knockdown significantly decreased the stability of the S100A11 mRNA without changing its transcription rate, suggesting that the down-regulation of S100A11 was mainly caused by destabilization of its mRNA. Finally, we showed that the BC200 RNA-knockdown-induced decrease in cell motility was mainly mediated by S100A11. Together, our results show that BC200 RNA promotes cell motility by stabilizing S100A11 transcripts.

  3. Preserved Expression of mRNA Coding von Willebrand Factor–Cleaving Protease ADAMTS13 by Selenite and Activated Protein C

    PubMed Central

    Ekaney, Michael L; Bockmeyer, Clemens L; Sossdorf, Maik; Reuken, Philipp A; Conradi, Florian; Schuerholz, Tobias; Blaess, Markus F; Friedman, Scott L; Lösche, Wolfgang; Bauer, Michael; Claus, Ralf A

    2015-01-01

    In sepsis, the severity-dependent decrease of von Willebrand factor (VWF)–inactivating protease, a disintegrin and metalloproteinase with thrombospondin motifs 13 (ADAMTS13), results in platelet aggregation and consumption, leading to sepsis-associated thrombotic microangiopathy (TMA) and organ failure. Previous reports assessing its functional deficiency have pinpointed involvement of autoantibodies or mutations to propagate thrombotic thrombocytopenic purpura (TTP). However, mechanisms of acquired ADAMTS13 deficiency during host response remain unclear. To enhance understanding of ADAMTS13 deficiency in sepsis, we evaluated changes in expression of mRNA coding ADAMTS13 during septic conditions using primary cellular sources of the protease. We hypothesized that proinflammatory cytokines and constituents of serum from septic patients affect the transcriptional level of ADAMTS13 in vitro, and previously recommended therapeutic agents as adjunctive therapy for sepsis interact therewith. Cultured hepatic stellate cells (HSCs), endothelial cells (HMEC) and human precision-cut liver slices as an ex vivo model were stimulated with sepsis prototypic cytokines, bacterial endotoxin and pooled serum obtained from septic patients. Stimulation resulted in a significant decrease in ADAMTS13 mRNA between 10% and 80% of basal transcriptional rates. Costimulation of selenite or recombinant activated protein C (APC) with serum prevented ADAMTS13 decrease in HSCs and increased ADAMTS13 transcripts in HMEC. In archived clinical samples, the activity of ADAMTS13 in septic patients treated with APC (n = 5) increased with an accompanying decrease in VWF propeptide as surrogate for improved endothelial function. In conclusion, proinflammatory conditions of sepsis repress mRNA coding ADAMTS13 and the ameliorating effect by selenite and APC may support the concept for identification of beneficial mechanisms triggered by these drugs at a molecular level. PMID:25860876

  4. Preserved Expression of mRNA Coding von Willebrand Factor-Cleaving Protease ADAMTS13 by Selenite and Activated Protein C.

    PubMed

    Ekaney, Michael L; Bockmeyer, Clemens L; Sossdorf, Maik; Reuken, Philipp A; Conradi, Florian; Schuerholz, Tobias; Blaess, Markus F; Friedman, Scott L; Lösche, Wolfgang; Bauer, Michael; Claus, Ralf A

    2015-04-03

    In sepsis, the severity-dependent decrease of von Willebrand factor (VWF)-inactivating protease, a disintegrin and metalloproteinase with thrombospondin motifs 13 (ADAMTS13), results in platelet aggregation and consumption, leading to sepsis-associated thrombotic microangiopathy (TMA) and organ failure. Previous reports assessing its functional deficiency have pinpointed involvement of autoantibodies or mutations to propagate thrombotic thrombocytopenic purpura (TTP). However, mechanisms of acquired ADAMTS13 deficiency during host response remain unclear. To enhance understanding of ADAMTS13 deficiency in sepsis, we evaluated changes in expression of mRNA coding ADAMTS13 during septic conditions using primary cellular sources of the protease. We hypothesized that proinflammatory cytokines and constituents of serum from septic patients affect the transcriptional level of ADAMTS13 in vitro, and previously recommended therapeutic agents as adjunctive therapy for sepsis interact therewith. Cultured hepatic stellate cells (HSCs), endothelial cells (HMEC) and human precision-cut liver slices as an ex vivo model were stimulated with sepsis prototypic cytokines, bacterial endotoxin and pooled serum obtained from septic patients. Stimulation resulted in a significant decrease in ADAMTS13 mRNA between 10% and 80% of basal transcriptional rates. Costimulation of selenite or recombinant activated protein C (APC) with serum prevented ADAMTS13 decrease in HSCs and increased ADAMTS13 transcripts in HMEC. In archived clinical samples, the activity of ADAMTS13 in septic patients treated with APC (n = 5) increased with an accompanying decrease in VWF propeptide as surrogate for improved endothelial function. In conclusion, proinflammatory conditions of sepsis repress mRNA coding ADAMTS13 and the ameliorating effect by selenite and APC may support the concept for identification of beneficial mechanisms triggered by these drugs at a molecular level.

  5. High lib mRNA expression in breast carcinomas.

    PubMed

    Satoh, Kazuki; Hata, Mitsumi; Yokota, Hiroshi

    2004-06-30

    Lib, first identified as a novel beta-amyloid responsive gene in rat astrocytes, has an extracellular domain of 15 leucine-rich repeats (LRRs) followed by a transmembrane domain and a short cytoplasmic region. It is a distinctly inducible gene and is thought to play a key role in inflammatory states via the LRR extracellular motif, an ideal structural framework for protein-protein and protein-matrix interactions. To evaluate potential roles of Lib, we screened various tumors for Lib expression. Lib mRNA expression was high and uniquely expressed in breast tumor tissues, compared to paired normal breast tissues. Lib mRNA was localized in the ductal carcinoma cells and Lib protein displayed a homophilic association on the surface of cultured cells. These data suggest that Lib may play a role in the progression of breast carcinomas and may be a diagnostic marker for breast tumors.

  6. Ribosomal protein S6 is highly expressed in non-Hodgkin lymphoma and associates with mRNA containing a 5' terminal oligopyrimidine tract.

    PubMed

    Hagner, P R; Mazan-Mamczarz, K; Dai, B; Balzer, E M; Corl, S; Martin, S S; Zhao, X F; Gartenhaus, R B

    2011-03-31

    The molecular mechanism(s) linking tumorigenesis and morphological alterations in the nucleolus are presently coming into focus. The nucleolus is the cellular organelle in which the formation of ribosomal subunits occurs. Ribosomal biogenesis occurs through the transcription of ribosomal RNA (rRNA), rRNA processing and production of ribosomal proteins. An error in any of these processes may lead to deregulated cellular translation, evident in multiple cancers and 'ribosomopathies'. Deregulated protein synthesis may be achieved through the overexpression of ribosomal proteins as seen in primary leukemic blasts with elevated levels of ribosomal proteins S11 and S14. In this study, we demonstrate that ribosomal protein S6 (RPS6) is highly expressed in primary diffuse large B-cell lymphoma (DLBCL) samples. Genetic modulation of RPS6 protein levels with specifically targeted short hairpin RNA (shRNA) lentiviruses led to a decrease in the actively proliferating population of cells compared with control shRNA. Low-dose rapamycin treatments have been shown to affect the translation of 5' terminal oligopyrimidine (5' TOP) tract mRNA, which encodes the translational machinery, implicating RPS6 in 5' TOP translation. Recently, it was shown that disruption of 40S ribosomal biogenesis through specific small inhibitory RNA knockdown of RPS6 defined RPS6 as a critical regulator of 5' TOP translation. For the first time, we show that RPS6 associates with multiple mRNAs containing a 5' TOP tract. These findings expand our understanding of the mechanism(s) involved in ribosomal biogenesis and deregulated protein synthesis in DLBCL.

  7. Aestivation Induces Changes in the mRNA Expression Levels and Protein Abundance of Two Isoforms of Urea Transporters in the Gills of the African Lungfish, Protopterus annectens.

    PubMed

    Chng, You R; Ong, Jasmine L Y; Ching, Biyun; Chen, Xiu L; Hiong, Kum C; Wong, Wai P; Chew, Shit F; Lam, Siew H; Ip, Yuen K

    2017-01-01

    The African lungfish, Protopterus annectens, is ammonotelic in water despite being ureogenic. When it aestivates in mucus cocoon on land, ammonia is detoxified to urea. During the maintenance phase of aestivation, urea accumulates in the body, which is subsequently excreted upon arousal. Urea excretion involves urea transporters (UT/Ut). This study aimed to clone and sequence the ut isoforms from the gills of P. annectens, and to test the hypothesis that the mRNA and/or protein expression levels of ut/Ut isoforms could vary in the gills of P. annectens during the induction, maintenance, and arousal phases of aestivation. Two isoforms of ut, ut-a2a and ut-a2b, were obtained from the gills of P. annectens. ut-a2a consisted of 1227 bp and coded for 408 amino acids with an estimated molecular mass of 44.7 kDa, while ut-a2b consisted of 1392 bp and coded for 464 amino acids with an estimated molecular mass of 51.2 kDa. Ut-a2a and Ut-a2b of P. annectens had a closer phylogenetic relationship with Ut/UT of tetrapods than Ut of fishes. While the mRNA expression pattern of ut-a2a and ut-a2b across various tissues of P. annectens differed, the transcript levels of ut-a2a and ut-a2b in the gills were comparable, indicating that they might be equally important for branchial urea excretion during the initial arousal phase of aestivation. During the maintenance phase of aestivation, the transcript level of ut-a2a increased significantly, but the protein abundance of Ut-a2a remained unchanged in the gills of P. annectens. This could be an adaptive feature to prepare for an increase in the production of Ut-a2a upon arousal. Indeed, arousal led to a significant increase in the branchial Ut-a2a protein abundance. Although the transcript level of ut-a2b remained unchanged, there were significant increases in the protein abundance of Ut-a2b in the gills of P. annectens throughout the three phases of aestivation. The increase in the protein abundance of Ut-a2b during the maintenance

  8. Aestivation Induces Changes in the mRNA Expression Levels and Protein Abundance of Two Isoforms of Urea Transporters in the Gills of the African Lungfish, Protopterus annectens

    PubMed Central

    Chng, You R.; Ong, Jasmine L. Y.; Ching, Biyun; Chen, Xiu L.; Hiong, Kum C.; Wong, Wai P.; Chew, Shit F.; Lam, Siew H.; Ip, Yuen K.

    2017-01-01

    The African lungfish, Protopterus annectens, is ammonotelic in water despite being ureogenic. When it aestivates in mucus cocoon on land, ammonia is detoxified to urea. During the maintenance phase of aestivation, urea accumulates in the body, which is subsequently excreted upon arousal. Urea excretion involves urea transporters (UT/Ut). This study aimed to clone and sequence the ut isoforms from the gills of P. annectens, and to test the hypothesis that the mRNA and/or protein expression levels of ut/Ut isoforms could vary in the gills of P. annectens during the induction, maintenance, and arousal phases of aestivation. Two isoforms of ut, ut-a2a and ut-a2b, were obtained from the gills of P. annectens. ut-a2a consisted of 1227 bp and coded for 408 amino acids with an estimated molecular mass of 44.7 kDa, while ut-a2b consisted of 1392 bp and coded for 464 amino acids with an estimated molecular mass of 51.2 kDa. Ut-a2a and Ut-a2b of P. annectens had a closer phylogenetic relationship with Ut/UT of tetrapods than Ut of fishes. While the mRNA expression pattern of ut-a2a and ut-a2b across various tissues of P. annectens differed, the transcript levels of ut-a2a and ut-a2b in the gills were comparable, indicating that they might be equally important for branchial urea excretion during the initial arousal phase of aestivation. During the maintenance phase of aestivation, the transcript level of ut-a2a increased significantly, but the protein abundance of Ut-a2a remained unchanged in the gills of P. annectens. This could be an adaptive feature to prepare for an increase in the production of Ut-a2a upon arousal. Indeed, arousal led to a significant increase in the branchial Ut-a2a protein abundance. Although the transcript level of ut-a2b remained unchanged, there were significant increases in the protein abundance of Ut-a2b in the gills of P. annectens throughout the three phases of aestivation. The increase in the protein abundance of Ut-a2b during the maintenance

  9. Peroxisome Proliferator Activated Receptors Alpha, Beta, and Gamma mRNA and protein expression in human fetal tissues

    EPA Science Inventory

    Peroxisome proliferator-activated receptors (PPARs) regulate lipid and glucose homeostasis, are targets of pharmaceuticals, and are also activated by environmental contaminants. Almost nothing is known about expression of PPARs during human fetal development. This study examine...

  10. Muscle Glycogen Depletion Following 75-km of Cycling Is Not Linked to Increased Muscle IL-6, IL-8, and MCP-1 mRNA Expression and Protein Content

    PubMed Central

    Nieman, David C.; Zwetsloot, Kevin A.; Lomiwes, Dominic D.; Meaney, Mary P.; Hurst, Roger D.

    2016-01-01

    The cytokine response to heavy exertion varies widely for unknown reasons, and this study evaluated the relative importance of glycogen depletion, muscle damage, and stress hormone changes on blood and muscle cytokine measures. Cyclists (N = 20) participated in a 75-km cycling time trial (168 ± 26.0 min), with blood and vastus lateralis muscle samples collected before and after. Muscle glycogen decreased 77.2 ± 17.4%, muscle IL-6, IL-8, and MCP-1 mRNA increased 18.5 ± 2.8−, 45.3 ± 7.8−, and 8.25 ± 1.75-fold, and muscle IL-6, IL-8, and MCP-1 protein increased 70.5 ± 14.1%, 347 ± 68.1%, and 148 ± 21.3%, respectively (all, P < 0.001). Serum myoglobin and cortisol increased 32.1 ± 3.3 to 242 ± 48.3 mg/mL, and 295 ± 27.6 to 784 ± 63.5 nmol/L, respectively (both P < 0.001). Plasma IL-6, IL-8, and MCP-1 increased 0.42 ± 0.07 to 18.5 ± 3.8, 4.07 ± 0.37 to 17.0 ± 1.8, and 96.5 ± 3.7 to 240 ± 21.6 pg/mL, respectively (all P < 0.001). Increases in muscle IL-6, IL-8, and MCP-1 mRNA were unrelated to any of the outcome measures. Muscle glycogen depletion was related to change in plasma IL-6 (r = 0.462, P = 0.040), with change in myoglobin related to plasma IL-8 (r = 0.582, P = 0.007) and plasma MCP-1 (r = 0.457, P = 0.043), and muscle MCP-1 protein (r = 0.588, P = 0.017); cortisol was related to plasma IL-8 (r = 0.613, P = 0.004), muscle IL-8 protein (r = 0.681, P = 0.004), and plasma MCP-1 (r = 0.442, P = 0.050). In summary, this study showed that muscle IL-6, IL-8, and MCP-1 mRNA expression after 75-km cycling was unrelated to glycogen depletion and muscle damage, with change in muscle glycogen related to plasma IL-6, and changes in serum myoglobin and cortisol related to the chemotactic cytokines IL-8 and MCP-1. PMID:27729872

  11. Asymptotic behavior of distributions of mRNA and protein levels in a model of stochastic gene expression

    NASA Astrophysics Data System (ADS)

    Bobrowski, Adam; Lipniacki, Tomasz; Pichór, Katarzyna; Rudnicki, Ryszard

    2007-09-01

    The paper is devoted to a stochastic process introduced in the recent paper by Lipniacki et al. [T. Lipniacki, P. Paszek, A. Marciniak-Czochra, A.RE Brasier, M. Kimmel, Transcriptional stochasticity in gene expression, JE Theor. Biol. 238 (2006) 348-367] in modelling gene expression in eukaryotes. Starting from the full generator of the process we show that its distributions satisfy a (Fokker-Planck-type) system of partial differential equations. Then, we construct a c0 Markov semigroup in L1 space corresponding to this system. The main result of the paper is asymptotic stability of the involved semigroup in the set of densities.

  12. Expression of progesterone receptor membrane component (PGRMC) 1 and 2, serpine mRNA binding protein 1 (SERBP1) and nuclear progesterone receptor (PGR) in the bovine endometrium during the estrous cycle and the first trimester of pregnancy.

    PubMed

    Kowalik, Magdalena K; Slonina, Dominika; Rekawiecki, Robert; Kotwica, Jan

    2013-03-01

    Progesterone (P4) is involved in the regulation of essential reproductive functions affecting the target cells through both nuclear progesterone receptors (PGRs) and membrane progesterone receptors. The aim of this study was to determine the mRNA and protein expression for PGRMC1, PGRMC2, SERBP1 and PGR within the bovine endometrium during the estrous cycle and the first trimester of pregnancy. There were no changes in PGRMC1 and PGRMC2 mRNA and protein expression during the estrous cycle, however, mRNA levels of PGRMC1 and PGRMC2 were increased (P<0.001) in pregnant animals. SERBP1 mRNA expression was increased (P<0.05), while the level of this protein was decreased (P<0.05) on days 11-16 of the estrous cycle. The expression of PGR mRNA was higher (P<0.01) on days 17-20 compared to days 6-10 and 11-16 of the estrous cycle and pregnancy. PGR-A and PGR-B protein levels were elevated on days 1-5 and 17-20 of the estrous cycle as compared to other stages of the cycle and during pregnancy. In conclusion, our results indicate that P4 may influence endometrial cells through both genomic and nongenomic way. This mechanism may contribute to the regulation of the estrous cycle and provide protection during pregnancy.

  13. Immunolabelling, histochemistry and in situ hybridisation in human skeletal muscle fibres to detect myosin heavy chain expression at the protein and mRNA level

    PubMed Central

    SERRANO, A. L.; PÉREZ, MARGARITA; LUCÍA, A.; CHICHARRO, J. L.; QUIROZ-ROTHE, E.; RIVERO, J. L. L.

    2001-01-01

    The distribution of muscle fibres classified on the basis of their content of different myosin heavy chain (MHC) isoforms was analysed in vastus lateralis muscle biopsies of 15 young men (with an average age of 22 y) by correlating immunohistochemistry with specific anti-MHC monoclonal antibodies, myofibrillar ATPase (mATPase) histochemistry and in situ hybridisation with probes specific for MHC β-slow, MHC-IIA and MHC-IIX. The characterisation of a large number of individual fibres was compared and correlated on a fibre-to-fibre basis. The panel of monoclonal antibodies used in the study allowed classification of human skeletal muscle fibres into 5 categories according to the MHC isoform they express at the protein level, types I, I+IIA, IIA, IIAX and IIX. Hybrid fibres coexpressing two isoforms represented a considerable proportion of the fibre composition (about 14%) and were clearly underestimated by mATPase histochemistry. For a very high percentage of fibres there was a precise correspondence between the MHC protein isoforms and mRNA transcripts. The integrated methods used demonstrate a high degree of precision of the immunohistochemical procedure used for the identification and quantification of human skeletal muscle fibre types. The monoclonal antibody S5-8H2 is particularly useful for identifying hybrid IIAX fibres. This protocol offers new prospects for muscle fibre classification in human experimental studies. PMID:11554510

  14. Effect of electroacupuncture on the mRNA and protein expression of Rho-A and Rho-associated kinase II in spinal cord injury rats

    PubMed Central

    Min, You-jiang; Ding, Li-li-qiang; Cheng, Li-hong; Xiao, Wei-ping; He, Xing-wei; Zhang, Hui; Min, Zhi-yun; Pei, Jia

    2017-01-01

    Electroacupuncture is beneficial for the recovery of spinal cord injury, but the underlying mechanism is unclear. The Rho/Rho-associated kinase (ROCK) signaling pathway regulates the actin cytoskeleton by controlling the adhesive and migratory behaviors of cells that could inhibit neurite regrowth after neural injury and consequently hinder the recovery from spinal cord injury. Therefore, we hypothesized electroacupuncture could affect the Rho/ROCK signaling pathway to promote the recovery of spinal cord injury. In our experiments, the spinal cord injury in adult Sprague-Dawley rats was caused by an impact device. Those rats were subjected to electroacupuncture at Yaoyangguan (GV3), Dazhui (GV14), Zusanli (ST36) and Ciliao (BL32) and/or monosialoganglioside treatment. Behavioral scores revealed that the hindlimb motor functions improved with those treatments. Real-time quantitative polymerase chain reaction, fluorescence in situ hybridization and western blot assay showed that electroacupuncture suppressed the mRNA and protein expression of Rho-A and Rho-associated kinase II (ROCKII) of injured spinal cord. Although monosialoganglioside promoted the recovery of hindlimb motor function, monosialoganglioside did not affect the expression of Rho-A and ROCKII. However, electroacupuncture combined with monosialoganglioside did not further improve the motor function or suppress the expression of Rho-A and ROCKII. Our data suggested that the electroacupuncture could specifically inhibit the activation of the Rho/ROCK signaling pathway thus partially contributing to the repair of injured spinal cord. Monosialoganglioside could promote the motor function but did not suppress expression of RhoA and ROCKII. There was no synergistic effect of electroacupuncture combined with monosialoganglioside.

  15. Enhanced protein expression by internal ribosomal entry site-driven mRNA translation as a novel approach for in vitro loading of dendritic cells with antigens.

    PubMed

    Tan, Xiaohua; Wan, Yonghong

    2008-01-01

    Transfection of dendritic cells (DCs) with messenger RNAs (mRNAs) of tumor-associated antigens (TAAs) is a promising strategy for cancer vaccines. TAA mRNA can be generated by in vitro transcription using DNA encoding the TAA gene as a template. A cap analog is usually added upon in vitro transcription to stabilize mRNA and enhance the efficiency of mRNA translation. However, the inclusion of the cap analog correlates with significantly lower-yield mRNA transcription, potentially leading to an expensive vaccine manufacturing process. To solve this problem, we present a novel approach in which DNA templates are modified with an internal ribosomal entry site (IRES) sequence inserted upstream of the gene of interest to replace the use of the cap analog. The presence of IRES greatly enhanced transcription for the mRNA in vitro compared with the cap analog. Also, higher transgene expression was achieved using luciferase (Luc) mRNA with IRES than using capped Luc mRNA to transfect DCs. Immunization of mice with DCs transfected with IRES-containing mRNA encoding chicken ovalbumin (OVA) induced significant levels of antigen-specific interferon gamma-producing CD8(+) T cells and in vivo killing of antigen-bearing cells. Consistently, mice immunized with IRES-containing OVA mRNA-transfected DCs were protected from pulmonary metastasis of melanoma cells injected intravenously. We suggest that IRES can be used for the production of larger quantities of mRNA and that such IRES-containing mRNAs may be useful for DC-based antitumor immunotherapy.

  16. The activity, protein, and mRNA expression of CYP2E1 and CYP3A1 in rats after exposure to acute and chronic high altitude hypoxia.

    PubMed

    Li, Xiangyang; Wang, Xuejun; Li, Yongping; Zhu, Junbo; Su, Xiaodong; Yao, Xingchen; Fan, Xueru; Duan, Yabin

    2014-12-01

    The effects of exposure to acute and chronic high altitude hypoxia on the activity and expression of CYP2E1 and CYP3A1 were examined in rats. Rats were divided into low altitude (LA, 400 m), acute moderate altitude hypoxia (AMH, 2800 m), chronic moderate altitude hypoxia (CMH, 2800 m), acute high altitude hypoxia (AHH, 4300 m), and chronic high altitude hypoxia groups (CHH, 4300 m). Probe drugs were administrated orally to all five groups. Then the serum concentration of probe drug and its metabolite was determined by RP-HPLC. The activity of CYP2E1 and CYP3A1 was evaluated using the ratio of the metabolite to chlorzoxazone and testosterone, respectively. ELISA and real-time PCR were used to analyze the protein and mRNA expression of CYP2E1 and CYP3A1 in liver microsomes, respectively. Chronic high altitude hypoxia caused significant decreases in the activity and protein and mRNA expression of rat CYP2E1 and CYP3A1 in vivo. Acute high altitude hypoxia was not found to change the activity, protein or mRNA expression of rat CYP2E1 or CYP3A1. This study showed significant changes in the activity and protein and mRNA expression of CYP2E1 or CYP3A1 in rats after exposure to chronic high altitude hypoxia.

  17. Effect of Potato Virus Y on the NADP-Malic Enzyme from Nicotiana tabacum L.: mRNA, Expressed Protein and Activity

    PubMed Central

    Doubnerová, Veronika; Müller, Karel; Čeřovská, Noemi; Synková, Helena; Spoustová, Petra; Ryšlavá, Helena

    2009-01-01

    The effect of biotic stress induced by viral infection (Potato virus Y, strain NTN and O) on NADP-malic enzyme (EC 1.1.1.40) in tobacco plants (Nicotiana tabacum L., cv. Petit Havana, SR1) was tested at the transcriptional, translational and activity level. The increase of enzyme activity in infected leaves was correlated with the increased amount of expressed protein and with mRNA of cytosolic NADP-ME isoform. Transcription of the chloroplastic enzyme was not influenced by viral infection. The increase of the enzyme activity was also detected in stems and roots of infected plants. The effect of viral infection induced by Potato virus Y, NTN strain, causing more severe symptoms, was compared with the effect induced by milder strain PVYO. The observed increase in NADP-malic enzyme activity in all parts of the studied plants was higher in the case of PVYNTN strain than in the case of strain PVYO. The relevance of NADP-malic enzyme in plants under stress conditions was discussed. PMID:20111689

  18. Glucocorticoid-induced changes in glucocorticoid receptor mRNA and protein expression in the human placenta as a potential factor for altering fetal growth and development.

    PubMed

    Bivol, Svetlana; Owen, Suzzanne J; Rose'Meyer, Roselyn B

    2016-02-05

    Glucocorticoids (GCs) control essential metabolic processes in virtually every cell in the body and play a vital role in the development of fetal tissues and organ systems. The biological actions of GCs are mediated via glucocorticoid receptors (GRs), the cytoplasmic transcription factors that regulate the transcription of genes involved in placental and fetal growth and development. Several experimental studies have demonstrated that fetal exposure to high maternal GC levels early in gestation is associated with adverse fetal outcomes, including low birthweight, intrauterine growth restriction and anatomical and structural abnormalities that may increase the risk of cardiovascular, metabolic and neuroendocrine disorders in adulthood. The response of the fetus to GCs is dependent on gender, with female fetuses becoming hypersensitive to changes in GC levels whereas male fetuses develop GC resistance in the environment of high maternal GCs. In this paper we review GR function and the physiological and pathological effects of GCs on fetal development. We propose that GC-induced changes in the placental structure and function, including alterations in the expression of GR mRNA and protein levels, may play role in inhibiting in utero fetal growth.

  19. The RNA-binding protein HuD is required for GAP-43 mRNA stability, GAP-43 gene expression, and PKC-dependent neurite outgrowth in PC12 cells.

    PubMed

    Mobarak, C D; Anderson, K D; Morin, M; Beckel-Mitchener, A; Rogers, S L; Furneaux, H; King, P; Perrone-Bizzozero, N I

    2000-09-01

    The RNA-binding protein HuD binds to a regulatory element in the 3' untranslated region (3' UTR) of the GAP-43 mRNA. To investigate the functional significance of this interaction, we generated PC12 cell lines in which HuD levels were controlled by transfection with either antisense (pDuH) or sense (pcHuD) constructs. pDuH-transfected cells contained reduced amounts of GAP-43 protein and mRNA, and these levels remained low even after nerve growth factor (NGF) stimulation, a treatment that is normally associated with protein kinase C (PKC)-dependent stabilization of the GAP-43 mRNA and neuronal differentiation. Analysis of GAP-43 mRNA stability demonstrated that the mRNA had a shorter half-life in these cells. In agreement with their deficient GAP-43 expression, pDuH cells failed to grow neurites in the presence of NGF or phorbol esters. These cells, however, exhibited normal neurite outgrowth when exposed to dibutyryl-cAMP, an agent that induces outgrowth independently from GAP-43. We observed opposite effects in pcHuD-transfected cells. The GAP-43 mRNA was stabilized in these cells, leading to an increase in the levels of the GAP-43 mRNA and protein. pcHuD cells were also found to grow short spontaneous neurites, a process that required the presence of GAP-43. In conclusion, our results suggest that HuD plays a critical role in PKC-mediated neurite outgrowth in PC12 cells and that this protein does so primarily by promoting the stabilization of the GAP-43 mRNA.

  20. Hodgkin's lymphoma cell lines express a fusion protein encoded by intergenically spliced mRNA for the multilectin receptor DEC-205 (CD205) and a novel C-type lectin receptor DCL-1.

    PubMed

    Kato, Masato; Khan, Seema; Gonzalez, Nelson; O'Neill, Brian P; McDonald, Kylie J; Cooper, Ben J; Angel, Nicola Z; Hart, Derek N J

    2003-09-05

    Classic Hodgkin's lymphoma (HL) tissue contains a small population of morphologically distinct malignant cells called Hodgkin and Reed-Sternberg (HRS) cells, associated with the development of HL. Using 3'-rapid amplification of cDNA ends (RACE) we identified an alternative mRNA for the DEC-205 multilectin receptor in the HRS cell line L428. Sequence analysis revealed that the mRNA encodes a fusion protein between DEC-205 and a novel C-type lectin DCL-1. Although the 7.5-kb DEC-205 and 4.2-kb DCL-1 mRNA were expressed independently in myeloid and B lymphoid cell lines, the DEC-205/DCL-1 fusion mRNA (9.5 kb) predominated in the HRS cell lines (L428, KM-H2, and HDLM-2). The DEC-205 and DCL-1 genes comprising 35 and 6 exons, respectively, are juxtaposed on chromosome band 2q24 and separated by only 5.4 kb. We determined the DCL-1 transcription initiation site within the intervening sequence by 5'-RACE, confirming that DCL-1 is an independent gene. Two DEC-205/DCL-1 fusion mRNA variants may result from cotranscription of DEC-205 and DCL-1, followed by splicing DEC-205 exon 35 or 34-35 along with DCL-1 exon 1. The resulting reading frames encode the DEC-205 ectodomain plus the DCL-1 ectodomain, the transmembrane, and the cytoplasmic domain. Using DCL-1 cytoplasmic domain-specific polyclonal and DEC-205 monoclonal antibodies for immunoprecipitation/Western blot analysis, we showed that the fusion mRNA is translated into a DEC-205/DCL-1 fusion protein, expressed in the HRS cell lines. These results imply an unusual transcriptional control mechanism in HRS cells, which cotranscribe an mRNA containing DEC-205 and DCL-1 prior to generating the intergenically spliced mRNA to produce a DEC-205/DCL-1 fusion protein.

  1. Human peripheral blood CD4+ and CD8+ T cells express Th1-like cytokine mRNA and proteins following in vitro stimulation with heat-inactivated Brucella abortus.

    PubMed Central

    Zaitseva, M B; Golding, H; Betts, M; Yamauchi, A; Bloom, E T; Butler, L E; Stevan, L; Golding, B

    1995-01-01

    Defining the pattern of lymphokine production associated with Brucella abortus is critical for advancing the development of B. abortus as a vaccine carrier. In the present study we investigated the ability of heat-inactivated B. abortus or lipopolysaccharide from B. abortus to induce lymphokine production from purified human T cells in vitro. Gamma interferon (IFN-gamma), interleukin-2 (IL-2), IL-4, and IL-5 induction was assayed by mRNA-specific PCR and by enzyme-linked immunosorbent assay and bioassay for protein production. Following depletion of monocytes and B cells, B. abortus increased IFN-gamma and IL-2 mRNA expression in purified T cells compared with expression in unstimulated cells. In contrast, no IL-5 mRNA expression and only transient low-level IL-4 mRNA expression and no IL-4 protein secretion were detected. Phytohemagglutinin or phorbol myristate acetate plus ionomycin induced mRNA and protein for all these cytokines. Similar results were obtained with LPS purified from B. abortus. Removal of NK cells did not reduce lymphokine production, and enriched NK cells did not express IFN-gamma mRNA or secrete IFN-gamma protein in response to B. abortus, indicating that NK cells were not the responding population. Both CD4+ and CD8+ populations produced IFN-gamma and IL-2 in response to B. abortus. Preincubation of resting T cells with B. abortus or LPS from B. abortus for 7 days induced their differentiation into Th1-like cells as judged by their subsequent lymphokine response to phorbol myristate acetate plus ionomycin. These results suggest that B. abortus can induce differentiation of Th0 into Th1-type cells. PMID:7790090

  2. Expression and localization of progesterone receptor membrane component 1 and 2 and serpine mRNA binding protein 1 in the bovine corpus luteum during the estrous cycle and the first trimester of pregnancy.

    PubMed

    Kowalik, Magdalena K; Rekawiecki, Robert; Kotwica, Jan

    2014-11-01

    The aim of this study was to evaluate the mRNA and protein expression and the localization of progesterone receptor membrane component 1 (PGRMC1), PGRMC2, and the PGRMC1 partner serpine mRNA binding protein 1 (SERBP1) in the bovine CL on Days 2 to 5, 6 to 10, 11 to 16, and 17 to 20 of the estrous cycle as well as during Weeks 3 to 5, 6 to 8, and 9 to 12 of pregnancy (n = 5-6 per each period). The highest levels of PGRMC1 and PGRMC2 mRNA expression were found on Days 6 to 16 (P < 0.05) and 11 to 16, respectively, of the estrous cycle and during pregnancy (P < 0.001). The level of PGRMC1 protein was the highest (P < 0.05) on Days 11 to 16 of the estrous cycle compared with the other stages of the estrous cycle and pregnancy, whereas PGRMC2 protein expression (P < 0.001) was the highest on Days 17 to 20 and also during pregnancy. The mRNA expression of SERBP1 was increased (P < 0.05) on Days 11 to 16, whereas the level of its protein product was decreased (P < 0.05) on Days 6 to 10 of the estrous cycle and was at its lowest (P < 0.001) on Days 17 to 20. In pregnant cows, the patterns of SERBP1 mRNA and protein expression remained constant and were comparable with those observed during the estrous cycle. Progesterone receptor membrane component 1 and PGRMC2 localized to both large and small luteal cells, whereas SERBP1 was observed mainly in small luteal cells and much less frequently in large luteal cells. All proteins were also localized in the endothelial cells of blood vessels. The data obtained indicate the variable expression of PGRMC1, PGRMC2, and SERBP1 mRNA and protein in the bovine CL and suggest that progesterone may regulate CL function via its membrane receptors during both the estrous cycle and pregnancy.

  3. An NXF1 mRNA with a retained intron is expressed in hippocampal and neocortical neurons and is translated into a protein that functions as an Nxf1 cofactor

    PubMed Central

    Li, Ying; Bor, Yeou-cherng; Fitzgerald, Mark P.; Lee, Kevin S.; Rekosh, David; Hammarskjold, Marie-Louise

    2016-01-01

    The Nxf1 protein is a major nuclear export receptor for the transport of mRNA, and it also is essential for export of retroviral mRNAs with retained introns. In the latter case, it binds to RNA elements known as constitutive transport elements (CTEs) and functions in conjunction with a cofactor known as Nxt1. The NXF1 gene also regulates expression of its own intron-containing RNA through the use of a functional CTE within intron 10. mRNA containing this intron is exported to the cytoplasm, where it can be translated into the 356–amino acid short Nxf1(sNxf1) protein, despite the fact that it is a prime candidate for nonsense-mediated decay (NMD). Here we demonstrate that sNxf1 is highly expressed in nuclei and dendrites of hippocampal and neocortical neurons in rodent brain. Additionally, we show that sNxf1 localizes in RNA granules in neurites of differentiated N2a mouse neuroblastoma cells, where it shows partial colocalization with Staufen2 isoform SS, a protein known to play a role in dendritic mRNA trafficking. We also show that sNxf1 forms heterodimers in conjunction with the full-length Nxf1 and that sNxf1 can replace Nxt1 to enhance the expression of CTE-containing mRNA and promote its association with polyribosomes. PMID:27708137

  4. Enhancing recombinant protein production in human cell lines with a constitutive transport element and mRNA export proteins.

    PubMed

    Aihara, Yuki; Fujiwara, Naoko; Yamazaki, Tomohiro; Kambe, Taiho; Nagao, Masaya; Hirose, Yutaka; Masuda, Seiji

    2011-05-20

    Recent research into mRNA maturation processes in the nucleus has identified a number of proteins involved in mRNA transcription, capping, splicing, end processing and export. Among them, the Tap-p15 heterodimer acts as an mRNA export receptor. Tap-p15 is recruited onto fully processed mRNA in the nucleus, which is ready for export to the cytoplasm, through associating with Aly or SR proteins on mRNA, or by directly associating with a constitutive transport element (CTE), an RNA element derived from type D retroviruses. mRNA containing a CTE is exported to the cytoplasm by directly associating with Tap-p15, even in the absence of Tap-recruiting proteins such as Aly or SR proteins on the mRNA. Here, we showed that the use of a CTE enhanced the expression of recombinant protein in human cell lines. The co-expression of reporter proteins and Tap-p15 also enhanced recombinant protein expression. Moreover, the use of a CTE and Tap-p15 synergistically further enhanced the recombinant protein expression. In addition to Tap-p15, several Tap-p15-recruiting proteins, including Aly and SR proteins, enhanced recombinant protein expression, albeit independently of the CTE. The incorporation of a CTE and Tap-p15-recruiting proteins into protein expression system is useful to increase recombinant protein yield in human cells.

  5. Feeding a DHA-enriched diet increases skeletal muscle protein synthesis in growing pigs: association with increased skeletal muscle insulin action and local mRNA expression of insulin-like growth factor 1.

    PubMed

    Wei, Hong-Kui; Zhou, Yuanfei; Jiang, Shuzhong; Tao, Ya-Xiong; Sun, Haiqing; Peng, Jian; Jiang, Siwen

    2013-08-01

    Dietary n-3 PUFA have been demonstrated to promote muscle growth in growing animals. In the present study, fractional protein synthesis rates (FSR) in the skeletal muscle of growing pigs fed a DHA-enriched (DE) diet (DE treatment) or a soyabean oil (SO) diet (SO treatment) were evaluated in the fed and feed-deprived states. Feeding-induced increases in muscle FSR, as well as the activation of the mammalian target of rapamycin and protein kinase B, were higher in the DE treatment as indicated by the positive interaction between diet and feeding. In the fed state, the activation of eIF4E-binding protein 1 in the skeletal muscle of pigs on the DE diet was higher than that in pigs on the SO diet (P<0·05). Feeding the DE diet increased muscle insulin-like growth factor 1 (IGF-1) expression (P<0·05) and insulin action (as demonstrated by increased insulin receptor (IR) phosphorylation, P<0·05), resulting in increased IR substrate 1 activation in the fed state. However, no difference in plasma IGF-1 concentration or hepatic IGF-1 expression between the two treatments was associated. The increased IGF-1 expression in the DE treatment was associated with increased mRNA expression of the signal transducer and activator of transcription 5A and decreased mRNA expression of protein tyrosine phosphatase, non-receptor type 3 in skeletal muscle. Moreover, mRNA expression of protein tyrosine phosphatase, non-receptor type 1 (PTPN1), the activation of PTPN1 and the activation of NF-κB in muscle were significantly lower in the DE treatment (P<0·05). The results of the present study suggest that feeding a DE diet increased feeding-induced muscle protein synthesis in growing pigs, and muscle IGF-1 expression and insulin action were involved in this action.

  6. Over-Expression of CDC25B and LAMC2 mRNA and Protein in Esophageal Squamous Cell Carcinomas and Pre-Malignant Lesions in Subjects from a High-Risk Population in China

    PubMed Central

    Shou, Jian-Zhong; Hu, Nan; Takikita, Mikiko; Roth, Mark J; Johnson, Laura Lee; Giffen, Carol; Wang, Quan-Hong; Wang, Chaoyu; Wang, Yuan; Su, Hua; Kong, Li-Hui; Emmert-Buck, Michael R; Goldstein, Alisa M; Hewitt, Stephen M; Taylor, Philip R

    2009-01-01

    Molecular events associated with the initiation and progression of esophageal squamous cell carcinoma (ESCC) remain poorly understood, but likely hold the key to effective early detection approaches for this almost invariably fatal cancer. CDC25B and LAMC2 are two promising early detection candidates emerging from new molecular studies of ESCC. To further elucidate the role of these two genes in esophageal carcinogenesis, we performed a series of studies to: (i) confirm RNA over-expression; (ii) establish the prevalence of protein over-expression; (iii) relate protein over-expression to survival; and (iv) explore their potential as early detection biomarkers. Results of these studies indicated that CDC25B mRNA was over-expressed (≥2-fold over-expression in tumor compared to normal) in 64% of the 73 ESCC cases evaluated, while LAMC2 mRNA was over-expressed in 89% of cases. CDC25B protein expression was categorized as positive in 59% (144/243) of ESCC cases on a tumor tissue microarray, and non-negative LAMC2 patterns of protein expression were observed in 82% (225/275) of cases. Multivariate-adjusted proportional hazard regression models showed no association between CDC25B protein expression score and risk of death (Hazard Ratio [HR] for each unit increase in expression score = 1.00, P=0.90), however, several of the LAMC2 protein expression patterns strongly predicted survival. Using the cytoplasmic pattern as the reference (the pattern with the lowest mortality), cases with a diffuse pattern had a 254% increased risk of death (HR=3.52, P=0.007), cases with no LAMC2 expression had a 169% increased risk of death (HR=2.69, P=0.009), and cases with a peripheral pattern had a 130% greater risk of death (HR=2.30, P=0.02). CDC25B protein expression scores in subjects with esophageal biopsies diagnosed as normal (n=35), dysplastic (n=23), or ESCC (n=32) increased significantly with morphologic progression. For LAMC2, all normal and dysplastic patients had a continuous

  7. Effects of high environmental ammonia on branchial ammonia excretion rates and tissue Rh-protein mRNA expression levels in seawater acclimated Dungeness crab Metacarcinus magister.

    PubMed

    Martin, Michael; Fehsenfeld, Sandra; Sourial, Mary M; Weihrauch, Dirk

    2011-10-01

    In the present study of the marine Dungeness crabs Metacarcinus magister, the long term effects of high environmental ammonia (HEA) on hemolymph ammonia and urea concentrations, branchial ammonia excretion rates and mRNA expression levels of the crustacean Rh-like ammonia transporter (RhMM), H(+)-ATPase (subunit B), Na(+)/K(+)-ATPase (α-subunit) and Na(+)/H(+)-exchanger (NHE) were investigated. Under control conditions, the crabs' hemolymph exhibited a total ammonia concentration of 179.3±14.5μmol L(-1), while urea accounted for 467.2±33.5μmol L(-1), respectively. Both anterior and posterior gills were capable of excreting ammonia against a 16-fold inwardly directed gradient. Under control conditions, mRNA expression levels of RhMM were high in the gills in contrast to very low expression levels in all other tissues investigated, including the antennal gland, hepatopancreas, and skeletal muscle. After exposure to 1mmol L(-1) NH(4)Cl, hemolymph ammonia increased within the first 12h to ca. 500µmol L(-1) and crabs were able the keep this hemolymph ammonia level for at least 4 days. During this initial period, branchial RhMM and H(+)-ATPase (subunit B) mRNA expression levels roughly doubled. After 14 days of HEA exposure, hemolymph ammonia raised up to environmental levels, whereas urea levels increased by ca. 30%. At the same time, whole animal ammonia and urea excretion vanished. Additionally, branchial RhMM, H(+)-ATPase, Na(+)/K(+)-ATPase and NHE mRNA levels decreased significantly after long term HEA exposure, whereas expression levels of RhMM in the internal tissues increased substantially. Interestingly, crabs acclimated to HEA showed no mortality even after 4 weeks of HEA exposure. This suggests that M. magister possesses a highly adaptive mechanism to cope with elevated ammonia concentrations in its body fluids, including an up-regulation of an Rh-like ammonia transporter in the internal tissues and excretion or storage of waste nitrogen in a so far

  8. Up-Regulation of mRNA Ventricular PRNP Prion Protein Gene Expression in Air Pollution Highly Exposed Young Urbanites: Endoplasmic Reticulum Stress, Glucose Regulated Protein 78, and Nanosized Particles

    PubMed Central

    Villarreal-Calderon, Rodolfo; Franco-Lira, Maricela; González-Maciel, Angélica; Reynoso-Robles, Rafael; Harritt, Lou; Pérez-Guillé, Beatriz; Ferreira-Azevedo, Lara; Drecktrah, Dan; Zhu, Hongtu; Sun, Qiang; Torres-Jardón, Ricardo; Aragón-Flores, Mariana; Calderón-Garcidueñas, Ana; Diaz, Philippe; Calderón-Garcidueñas, Lilian

    2013-01-01

    Mexico City Metropolitan Area children and young adults exposed to high concentrations of air pollutants including fine and ultrafine particulate matter (PM) vs. clean air controls, exhibit myocardial inflammation and inflammasome activation with a differential right and left ventricular expression of key inflammatory genes and inflammasomes. We investigated the mRNA expression levels of the prion protein gene PRNP, which plays an important role in the protection against oxidative stress and metal toxicity, and the glucose regulated protein 78, a key protein in endoplasmic reticulum (ER) stress signaling, in ventricular autopsy samples from 30 children and young adults age 19.97 ± 6.8 years with a lifetime of low (n:4) vs. high (n:26) air pollution exposures. Light microscopy and transmission electron microscopy studies were carried out in human ventricles, and electron microscopy studies were also done in 5 young, highly exposed Mexico City dogs. There was significant left ventricular PRNP and bi-ventricular GRP78 mRNA up-regulation in Mexico City young urbanites vs. controls. PRNP up-regulation in the left ventricle was significantly different from the right, p < 0.0001, and there was a strong left ventricular PRNP and GRP78 correlation (p = 0.0005). Marked abnormalities in capillary endothelial cells, numerous nanosized particles in myocardial ER and in abnormal mitochondria characterized the highly exposed ventricles. Early and sustained cardiac ER stress could result in detrimental irreversible consequences in urban children, and while highly complex systems maintain myocardial homeostasis, failure to compensate for chronic myocardial inflammation, oxidative and ER stress, and particles damaging myocardial organelles may prime the development of pathophysiological cardiovascular states in young urbanites. Nanosized PM could play a key cardiac myocyte toxicity role. PMID:24287918

  9. Up-regulation of mRNA ventricular PRNP prion protein gene expression in air pollution highly exposed young urbanites: endoplasmic reticulum stress, glucose regulated protein 78, and nanosized particles.

    PubMed

    Villarreal-Calderon, Rodolfo; Franco-Lira, Maricela; González-Maciel, Angélica; Reynoso-Robles, Rafael; Harritt, Lou; Pérez-Guillé, Beatriz; Ferreira-Azevedo, Lara; Drecktrah, Dan; Zhu, Hongtu; Sun, Qiang; Torres-Jardón, Ricardo; Aragón-Flores, Mariana; Calderón-Garcidueñas, Ana; Diaz, Philippe; Calderón-Garcidueñas, Lilian

    2013-11-28

    Mexico City Metropolitan Area children and young adults exposed to high concentrations of air pollutants including fine and ultrafine particulate matter (PM) vs. clean air controls, exhibit myocardial inflammation and inflammasome activation with a differential right and left ventricular expression of key inflammatory genes and inflammasomes. We investigated the mRNA expression levels of the prion protein gene PRNP, which plays an important role in the protection against oxidative stress and metal toxicity, and the glucose regulated protein 78, a key protein in endoplasmic reticulum (ER) stress signaling, in ventricular autopsy samples from 30 children and young adults age 19.97 ± 6.8 years with a lifetime of low (n:4) vs. high (n:26) air pollution exposures. Light microscopy and transmission electron microscopy studies were carried out in human ventricles, and electron microscopy studies were also done in 5 young, highly exposed Mexico City dogs. There was significant left ventricular PRNP and bi-ventricular GRP78 mRNA up-regulation in Mexico City young urbanites vs. controls. PRNP up-regulation in the left ventricle was significantly different from the right, p < 0.0001, and there was a strong left ventricular PRNP and GRP78 correlation (p = 0.0005). Marked abnormalities in capillary endothelial cells, numerous nanosized particles in myocardial ER and in abnormal mitochondria characterized the highly exposed ventricles. Early and sustained cardiac ER stress could result in detrimental irreversible consequences in urban children, and while highly complex systems maintain myocardial homeostasis, failure to compensate for chronic myocardial inflammation, oxidative and ER stress, and particles damaging myocardial organelles may prime the development of pathophysiological cardiovascular states in young urbanites. Nanosized PM could play a key cardiac myocyte toxicity role.

  10. Cytokine mRNA expression in postischemic/reperfused myocardium.

    PubMed Central

    Herskowitz, A.; Choi, S.; Ansari, A. A.; Wesselingh, S.

    1995-01-01

    While the role of cytokines in mediating injury during hind limb skeletal muscle ischemia followed by reperfusion has recently been described, the role of cytokines in myocardial infarction and ischemia/reperfusion have remained relatively unexplored. We hypothesize that cytokines play an important role in the regulation of postischemic myocardial inflammation. This study reports the temporal sequence of proinflammatory cytokine gene expression in postischemic/reperfused myocardium and localizes interleukin-1 beta (IL-1 beta) and tumor necrosis factor-alpha (TNF-alpha)-protein by immunostaining. Rats were subjected to either permanent left anterior descending (LAD) occlusion or to 35 minutes of LAD occlusion followed by reperfusion and sacrificed up to 7 days later. Rat-specific oligonucleotide probes were used to semiquantitatively assess the relative expression of mRNA for TNF-alpha, IL-1 beta, IL-2, IL-6, interferon-gamma (IFN-gamma), and transforming growth factor-beta 1 (TGF-beta 1) utilizing the reverse transcriptase-polymerase chain reaction amplification technique. Increased cardiac mRNA levels for all cytokines except IL-6 and IFN-gamma were measurable within 15 to 30 minutes of LAD occlusion and increased levels were generally sustained for 3 hours. During early reperfusion, mRNA levels for IL-6 and TGF-beta 1 were significantly reduced compared with permanent LAD occlusion. In both groups, cytokine mRNA levels all returned to baseline levels at 24 hours, while IL-1 beta, TNF-alpha, and TGF-beta 1 mRNA levels again rose significantly at 7 days only in animals with permanent LAD occlusion. Immunostaining for IL-1 beta and TNF-alpha protein revealed two patterns of reactivity: 1) microvascular staining for both IL-1 beta and TNF-alpha protein only in postischemic reperfused myocardium in early post-reperfusion time points; and 2) staining of infiltrating macrophages in healing infarct zones which was most prominent at 7 days after permanent LAD occlusion

  11. Transfection efficiency and transgene expression kinetics of mRNA delivered in naked and nanoparticle format.

    PubMed

    Phua, Kyle K L; Leong, Kam W; Nair, Smita K

    2013-03-28

    Transfection efficiencies and transgene expression kinetics of messenger RNA (mRNA), an emerging class of nucleic acid-based therapeutics, have been poorly characterized. In this study, we evaluated transfection efficiencies of mRNA delivered in naked and nanoparticle format in vitro and in vivo using GFP and luciferase as reporters. While mRNA nanoparticles transfect primary human and mouse dendritic cells (DCs) efficiently in vitro, naked mRNA could not produce any detectable gene product. The protein expression of nanoparticle-mediated transfection in vitro peaks rapidly within 5-7h and decays in a biphasic manner. In vivo, naked mRNA is more efficient than mRNA nanoparticles when administered subcutaneously. In contrast, mRNA nanoparticle performs better when administered intranasally and intravenously. Gene expression is most transient when delivered intravenously in nanoparticle format with an apparent half-life of 1.4h and lasts less than 24h, and most sustained when delivered in the naked format subcutaneously at the base of tail with an apparent half-life of 18h and persists for at least 6days. Notably, exponential decreases in protein expression are consistently observed post-delivery of mRNA in vivo regardless of the mode of delivery (naked or nanoparticle) or the site of administration. This study elucidates the performance of mRNA transfection and suggests a niche for mRNA therapeutics when predictable in vivo transgene expression kinetics is imperative.

  12. The correlation of TRPM1 (Melastatin) mRNA expression with microphthalmia-associated transcription factor (MITF) and other melanogenesis-related proteins in normal and pathological skin, hair follicles and melanocytic nevi

    PubMed Central

    Lu, Song; Slominski, Andrzej; Yang, Sung-Eun; Sheehan, Christine; Ross, Jeffrey; Carlson, J. Andrew

    2010-01-01

    Background Melastatin (TRPM1), a.k.a. transient receptor potential cation channel, subfamily M, member 1 (TRPM-1) regulates melanocyte differentiation and proliferation. TRPM1 is transcriptionally regulated by the essential melanocyte transcription factor MITF (microphthalmia-associated transcription factor). For the most part, MITF expression is preserved during melanoma progression, while TRPM1 mRNA expression decreases or is completely lost. The loss of TRPM1 is associated with melanomas that are more aggressive. Objective To assess the relationship between TRPM1 mRNA expression and the expression of MITF and nine other markers of melanocytes and melanin-related proteins by immunohistochemistry in normal skin, scars, hair follicles and ordinary melanocytic nevi. Methods Samples of normal skin (n = 102; from tumor excisions and plastic procedures), scars (n = 5; from re-excision specimens) and compound melanocytic nevi (n = 4) were evaluated for the presence of TRPM1 mRNA transcripts as detected by chromogenic in situ hybridization (CISH). Immunohistochemical techniques were used to detect melanin-related proteins including: MITF, S100 protein, Mart-1, tyrosinase, Mel5, HMB45, tyrosinase-related protein-1 (TRP1), TRP2 and α-melanocyte stimulating hormone (αMSH). The labeling index (LI) was defined as the number of intraepidermal cells expressing mRNA or protein per one hundred basal keratinocytes. Results A wide range of LI was found for all markers (0–33 positive cells/100 keratinocytes). When these LI were compared, no significant differences in the expression of MITF, S100, Mart1, tyrosinase proteins and TRPM1 mRNA were identified. The LI for TRPM1 mRNA expression ranged from 74% of that for MITF to 86% for tyrosinase. The LI for TRP-1, TRP-2 and Mel5 was similar to that of TRPM1, while HMB-45 had a significantly lower LI than all other markers. TRPM1 mRNA correlated most tightly with MITF and tyrosinase expression (r = 0.81 and 0.68, respectively, both p

  13. Effects of Ethanol on the Expression Level of Various BDNF mRNA Isoforms and Their Encoded Protein in the Hippocampus of Adult and Embryonic Rats

    PubMed Central

    Shojaei, Shahla; Ghavami, Saeid; Panjehshahin, Mohammad Reza; Owji, Ali Akbar

    2015-01-01

    We aimed to compare the effects of oral ethanol (Eth) alone or combined with the phytoestrogen resveratrol (Rsv) on the expression of various brain-derived neurotrophic factor (BDNF) transcripts and the encoded protein pro-BDNF in the hippocampus of pregnant and embryonic rats. A low (0.25 g/kg body weight (BW)/day) dose of Eth produced an increase in the expression of BDNF exons I, III and IV and a decrease in that of the exon IX in embryos, but failed to affect BDNF transcript and pro-BDNF protein expression in adults. However, co-administration of Eth 0.25 g/kg·BW/day and Rsv led to increased expression of BDNF exons I, III and IV and to a small but significant increase in the level of pro-BDNF protein in maternal rats. A high (2.5 g/kg·BW/day) dose of Eth increased the expression of BDNF exons III and IV in embryos, but it decreased the expression of exon IX containing BDNF mRNAs in the maternal rats. While the high dose of Eth alone reduced the level of pro-BDNF in adults, it failed to change the levels of pro-BDNF in embryos. Eth differentially affects the expression pattern of BDNF transcripts and levels of pro-BDNF in the hippocampus of both adult and embryonic rats. PMID:26703578

  14. The alteration of mRNA expression of SOD and GPX genes, and proteins in tomato (Lycopersicon esculentum Mill) under stress of NaCl and/or ZnO nanoparticles.

    PubMed

    Alharby, Hesham F; Metwali, Ehab M R; Fuller, Michael P; Aldhebiani, Amal Y

    2016-11-01

    Five cultivars of tomato having different levels of salt stress tolerance were exposed to different treatments of NaCl (0, 3 and 6 g L(-1)) and ZnO-NPs (0, 15 and 30 mg L(-1)). Treatments with NaCl at both 3 and 6 g L(-1) suppressed the mRNA levels of superoxide dismutase (SOD) and glutathione peroxidase (GPX) genes in all cultivars while plants treated with ZnO-NPs in the presence of NaCl, showed increments in the mRNA expression levels. This indicated that ZnO-NPs had a positive response on plant metabolism under salt stress. Superior expression levels of mRNA were observed in the salt tolerant cultivars, Sandpoint and Edkawy while the lowest level was detected in the salt sensitive cultivar, Anna Aasa. SDS-PAGE showed clear differences in patterns of protein expression among the cultivars. A negative protein marker for salt sensitivity and ZnO-NPs was detected in cv. Anna Aasa at a molecular weight of 19.162 kDa, while the tolerant cultivar Edkawy had two positive markers at molecular weights of 74.991 and 79.735 kDa.

  15. Insulin-like growth factor II in human adrenal and pheochromocytomas and Wilms tumors: expression at the mRNA and protein level

    SciTech Connect

    Haselbacher, G.K.; Irminger, J.C.; Zapf, J.; Ziegler, W.H.; Humbel, R.E.

    1987-02-01

    Two forms of insulin-like growth factor (IGF) II with molecular masses of 10 and 7.5 kDa, respectively, were found in tumor tissue from human adrenal pheochromocytomas. The tumors contained 5.3-7.1 ..mu..g of immunoreactive IGF-II per g of tissue, which is about 20 times more than in adrenal medulla. The total bioactive IGF measured by radioimmunoassay in the pheochromocytomas exceeded that in normal liver or kidney, which contained only the 7.5-kDa IGF-II species, by a factor of approx.100. By contrast, the amount of IGF-I was just measurable and did not vary significantly between tumor and normal tissue. The high amounts of IGF-II in the pheochromocytomas were not reflected, however, by a corresponding increase of mRNA. The opposite situations was found in Wilms tumors, where IGF-II content was in the same range as in nontumor tissues despite increased expression of IGF-II mRNA.

  16. Effect of polysaccharides extract of rhizoma atractylodis macrocephalae on thymus, spleen and cardiac indexes, caspase-3 activity ratio, Smac/DIABLO and HtrA2/Omi protein and mRNA expression levels in aged rats.

    PubMed

    Guo, Ling; Sun, Yong Le; Wang, Ai Hong; Xu, Chong En; Zhang, Meng Yuan

    2012-10-01

    This study was designed to determine the possible protective effect of polysaccharides extract of rhizoma atractylodis macrocephalae on heart function in aged rats. Polysaccharides extract of rhizoma atractylodis macrocephalae was administered to aged rats. Results showed that thymus, spleen and cardiac indexs were significantly increased, whereas caspase-3 activity ratio, Smac/DIABLO and HtrA2/Omi protein expression, Smac/DIABLO and HtrA2/Omi mRNA expression levels were markedly reduced. It can be concluded that polysaccharides extract of rhizoma atractylodis macrocephalae may enhance immunity and improve heart function in aged rats.

  17. Several Cis-regulatory Elements Control mRNA Stability, Translation Efficiency, and Expression Pattern of Prrxl1 (Paired Related Homeobox Protein-like 1)*

    PubMed Central

    Regadas, Isabel; Matos, Mariana Raimundo; Monteiro, Filipe Almeida; Gómez-Skarmeta, José Luis; Lima, Deolinda; Bessa, José; Casares, Fernando; Reguenga, Carlos

    2013-01-01

    The homeodomain transcription factor Prrxl1/DRG11 has emerged as a crucial molecule in the establishment of the pain circuitry, in particular spinal cord targeting of dorsal root ganglia (DRG) axons and differentiation of nociceptive glutamatergic spinal cord neurons. Despite Prrxl1 importance in the establishment of the DRG-spinal nociceptive circuit, the molecular mechanisms that regulate its expression along development remain largely unknown. Here, we show that Prrxl1 transcription is regulated by three alternative promoters (named P1, P2, and P3), which control the expression of three distinct Prrxl1 5′-UTR variants, named 5′-UTR-A, 5′-UTR-B, and 5′-UTR-C. These 5′-UTR sequences confer distinct mRNA stability and translation efficiency to the Prrxl1 transcript. The most conserved promoter (P3) contains a TATA-box and displays in vivo enhancer activity in a pattern that overlaps with the zebrafish Prrxl1 homologue, drgx. Regulatory modules present in this sequence were identified and characterized, including a binding site for Phox2b. Concomitantly, we demonstrate that zebrafish Phox2b is required for the expression of drgx in the facial, glossopharyngeal, and vagal cranial ganglia. PMID:24214975

  18. Imaging mRNA and protein interactions within neurons

    PubMed Central

    Eliscovich, Carolina; Shenoy, Shailesh M.

    2017-01-01

    RNA–protein interactions are essential for proper gene expression regulation, particularly in neurons with unique spatial constraints. Currently, these interactions are defined biochemically, but a method is needed to evaluate them quantitatively within morphological context. Colocalization of two-color labels using wide-field microscopy is a method to infer these interactions. However, because of chromatic aberrations in the objective lens, this approach lacks the resolution to determine whether two molecules are physically in contact or simply nearby by chance. Here, we developed a robust super registration methodology that corrected the chromatic aberration across the entire image field to within 10 nm, which is capable of determining whether two molecules are physically interacting or simply in proximity by random chance. We applied this approach to image single-molecule FISH in combination with immunofluorescence (smFISH-IF) and determined whether the association between an mRNA and binding protein(s) within a neuron was significant or accidental. We evaluated several mRNA-binding proteins identified from RNA pulldown assays to determine which of these exhibit bona fide interactions. Surprisingly, many known mRNA-binding proteins did not bind the mRNA in situ, indicating that adventitious interactions are significant using existing technology. This method provides an ability to evaluate two-color registration compatible with the scale of molecular interactions. PMID:28223507

  19. Exercise and adrenaline increase PGC-1α mRNA expression in rat adipose tissue

    PubMed Central

    Sutherland, Lindsey N; Bomhof, Marc R; Capozzi, Lauren C; Basaraba, Susan A U; Wright, David C

    2009-01-01

    The purpose of the present investigation was to explore the effects of exercise and adrenaline on the mRNA expression of PGC-1α, a master regulator of mitochondrial biogenesis, in rat abdominal adipose tissue. We hypothesized that (1) exercise training would increase PGC-1α mRNA expression in association with increases in mitochondrial marker enzymes, (2) adrenaline would increase PGC-1α mRNA expression and (3) the effect of exercise on PGC-1α mRNA expression in white adipose tissue would be attenuated by a β-blocker. Two hours of daily swim training for 4 weeks led to increases in mitochondrial marker proteins and PGC-1α mRNA expression in epididymal and retroperitoneal fat depots. Additionally, a single 2 h bout of exercise led to increases in PGC-1α mRNA expression immediately following exercise cessation. Adrenaline treatment of adipose tissue organ cultures led to dose-dependent increases in PGC-1α mRNA expression. A supra-physiological concentration of adrenaline increased PGC-1α mRNA expression in epididymal but not retroperitoneal adipose tissue. β-Blockade attenuated the effects of an acute bout of exercise on PGC-1α mRNA expression in epididymal but not retroperitoneal fat pads. In summary, this is the first investigation to demonstrate that exercise training, an acute bout of exercise and adrenaline all increase PGC-1α mRNA expression in rat white adipose tissue. Furthermore it would appear that increases in circulating catecholamine levels may be one potential mechanism mediating exercise induced increases in PGC-1α mRNA expression in rat abdominal adipose tissue. PMID:19221126

  20. BAX/BCL-2 mRNA and protein expression in human breast MCF-7 cells exposed to drug vehicles-methanol and dimethyl sulfoxide (DMSO) for 24 hrs

    PubMed Central

    Adefolaju, Gbenga Anthony; Theron, Kathrine E; Hosie, Margot Jill

    2015-01-01

    Background: Methanol and DMSO are commonly used as carrier solvents for lipophilic chemicals in in-vitro experiments. However, very little information is available regarding the effects of these solvents on the expression of pro and anti-apoptotic genes and proteins. Materials and Methods: In this study, we examined the cytotoxic effects of methanol and dimethylsulfoxide at 0.5% (final concentrations recommended for in-vitro toxicity assays) on human breast cancer MCF-7 cells. We also investigated the effects of these solvents on the mRNA and immunocytochemical expression of apoptotic proteins BAX and BCL-2. Results: The results of neutral red cell viability assay showed that methanol and DMSO concentrations of 0.5% exhibited no cytotoxic effects on MCF-7 cells following a 24 hour exposure. Gene expression and Immunofluorescence results showed that methanol but not DMSO reduced the expression of the BAX pro-apoptotic protein, while both solvents did not alter the expression of the BCL-2 oncoprotein. Conclusion: Our results suggest that while methanol concentrations at 0.5% may be appropriate for in vitro toxicity studies in human breast cancer MCF-7 cells, it could alter the results of gene and protein expression experiments. PMID:26229223

  1. Quantitative analysis of CDKN2A methylation, mRNA, and p16(INK4a) protein expression in children and adolescents with Burkitt lymphoma: biological and clinical implications.

    PubMed

    Robaina, Marcela Cristina S; Faccion, Roberta Soares; Arruda, Viviane Oliveira; de Rezende, Lidia Maria Magalhães; Vasconcelos, Gisele Moledo; Apa, Alexandre Gustavo; Bacchi, Carlos E; Klumb, Claudete Esteves

    2015-02-01

    CDKN2A is a tumor suppressor gene critical in the cell cycle regulation. Little is known regarding the role of CDKN2A methylation in the pathogenesis of Burkitt lymphoma (BL). CDKN2A methylation was investigated using pyrosequencing in 51 tumor samples. p16(INK4a) mRNA and protein levels were measured using real-time PCR and immunohistochemistry, respectively. CDKN2A methylation was detectable in 72% cases. Nuclear expression of p16(INK4a) was not detected in 41% cases. There was an association between methylation and absence of CDKN2A mRNA (P=0.003). In conclusion, CDKN2A methylation occurs at a high frequency suggesting a role in BL pathogenesis and potential therapeutic implications.

  2. Dietary riboflavin deficiency decreases immunity and antioxidant capacity, and changes tight junction proteins and related signaling molecules mRNA expression in the gills of young grass carp (Ctenopharyngodon idella).

    PubMed

    Chen, Liang; Feng, Lin; Jiang, Wei-Dan; Jiang, Jun; Wu, Pei; Zhao, Juan; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu; Liu, Yang

    2015-08-01

    This study investigated the effects of dietary riboflavin on the growth, gill immunity, tight junction proteins, antioxidant system and related signaling molecules mRNA expression of young grass carp (Ctenopharyngodon idella). Fish were fed six diets containing graded levels of riboflavin (0.63-10.04 mg/kg diet) for 8 weeks. The study indicated that riboflavin deficiency decreased lysozyme and acid phosphatase activities, and complement component 3 content in the gills of fish (P < 0.05). Moreover, riboflavin deficiency caused oxidative damage, which might be partly due to decrease copper, zinc superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase and glutathione-S-transferase activities and reduced glutathione content in the gills of fish (P < 0.05). Furthermore, the relative mRNA levels of antimicrobial peptides (liver expressed antimicrobial peptide 2 and Hepcidin), anti-inflammatory cytokines (interleukin 10 and transforming growth factor β1), tight junction proteins (Occludin, zonula occludens 1, Claudin-c and Claudin-3), signaling molecules (inhibitor of κBα, target of rapamycin and NF-E2-related factor 2) and antioxidant enzymes (copper, zinc superoxide dismutase and glutathione reductase) were significantly decreased (P < 0.05) in the gills of fish fed riboflavin-deficient diet. Conversely, the mRNA levels of pro-inflammatory cytokines (tumor necrosis factor α, interleukin 8, interferon γ2, and interleukin 1β), signaling molecules (nuclear factor kappa B p65, IκB kinase β, IκB kinase γ, Kelch-like-ECH-associated protein 1b and myosin light chain kinase) and tight junction protein Claudin-12 were significantly increased (P < 0.05) in the gills of fish fed riboflavin-deficient diet. In addition, this study indicated for the first time that young fish fed a riboflavin-deficient diet exhibited anorexia and poor growth. In conclusion, riboflavin deficiency decreased growth and gill immunity, impaired gill antioxidant system, as

  3. Fragile X mental retardation protein control of neuronal mRNA metabolism: Insights into mRNA stability.

    PubMed

    De Rubeis, Silvia; Bagni, Claudia

    2010-01-01

    The fragile X mental retardation protein (FMRP) is an RNA binding protein that has an essential role in neurons. From the soma to the synapse, FMRP is associated with a specific subset of messenger RNAs and controls their posttranscriptional fates, i.e., dendritic localization and local translation. Because FMRP target mRNAs encode important neuronal proteins, the deregulation of their expression in the absence of FMRP leads to a strong impairment of synaptic function. Here, we review emerging evidence indicating a critical role for FMRP in the control of mRNA stability. To date, two mRNAs have been identified as being regulated in this manner: PSD-95 mRNA, encoding a scaffolding protein, and Nxf1 mRNA, encoding a general export factor. Moreover, expression studies suggest that the turnover of other neuronal mRNAs, including those encoding for the GABA(A) receptors subunits, could be affected by the loss of FMRP. According to the specific target and/or cellular context, FMRP could influence mRNA stability in the brain.

  4. p53-Regulated Networks of Protein, mRNA, miRNA, and lncRNA Expression Revealed by Integrated Pulsed Stable Isotope Labeling With Amino Acids in Cell Culture (pSILAC) and Next Generation Sequencing (NGS) Analyses*

    PubMed Central

    Hünten, Sabine; Kaller, Markus; Drepper, Friedel; Oeljeklaus, Silke; Bonfert, Thomas; Erhard, Florian; Dueck, Anne; Eichner, Norbert; Friedel, Caroline C.; Meister, Gunter; Zimmer, Ralf; Warscheid, Bettina; Hermeking, Heiko

    2015-01-01

    We determined the effect of p53 activation on de novo protein synthesis using quantitative proteomics (pulsed stable isotope labeling with amino acids in cell culture/pSILAC) in the colorectal cancer cell line SW480. This was combined with mRNA and noncoding RNA expression analyses by next generation sequencing (RNA-, miR-Seq). Furthermore, genome-wide DNA binding of p53 was analyzed by chromatin-immunoprecipitation (ChIP-Seq). Thereby, we identified differentially regulated proteins (542 up, 569 down), mRNAs (1258 up, 415 down), miRNAs (111 up, 95 down) and lncRNAs (270 up, 123 down). Changes in protein and mRNA expression levels showed a positive correlation (r = 0.50, p < 0.0001). In total, we detected 133 direct p53 target genes that were differentially expressed and displayed p53 occupancy in the vicinity of their promoter. More transcriptionally induced genes displayed occupied p53 binding sites (4.3% mRNAs, 7.2% miRNAs, 6.3% lncRNAs, 5.9% proteins) than repressed genes (2.4% mRNAs, 3.2% miRNAs, 0.8% lncRNAs, 1.9% proteins), suggesting indirect mechanisms of repression. Around 50% of the down-regulated proteins displayed seed-matching sequences of p53-induced miRNAs in the corresponding 3′-UTRs. Moreover, proteins repressed by p53 significantly overlapped with those previously shown to be repressed by miR-34a. We confirmed up-regulation of the novel direct p53 target genes LINC01021, MDFI, ST14 and miR-486 and showed that ectopic LINC01021 expression inhibits proliferation in SW480 cells. Furthermore, KLF12, HMGB1 and CIT mRNAs were confirmed as direct targets of the p53-induced miR-34a, miR-205 and miR-486–5p, respectively. In line with the loss of p53 function during tumor progression, elevated expression of KLF12, HMGB1 and CIT was detected in advanced stages of cancer. In conclusion, the integration of multiple omics methods allowed the comprehensive identification of direct and indirect effectors of p53 that provide new insights and leads into the

  5. Cadherin-11 mRNA and protein expression in ovarian tumors of different malignancy: No evidence of oncogenic or tumor-suppressive function

    PubMed Central

    VON BÜLOW, CHARLOTTE; OLIVEIRA-FERRER, LETICIA; LÖNING, THOMAS; TRILLSCH, FABIAN; MAHNER, SVEN; MILDE-LANGOSCH, KARIN

    2015-01-01

    Cadherin-11 (CDH11, OB-cadherin) is a mesenchymal cadherin found to be upregulated in various types of tumors and implicated in tumor progression and metastasis. In order to determine the role of CDH11 expression in ovarian tumors, we performed a combined reverse transcription quantitative polymerase chain reaction (RT-qPCR), western blot analysis and immunohistochemical study on a large cohort of benign, borderline and invasive ovarian tumors. The RT-qPCR and western blot analysis demonstrated that the CDH11 expression was high in benign cystadenomas and decreased with increasing malignancy. This may be explained by the different tumor-stroma ratios, since immunohistochemistry revealed strong staining of stromal cells, particularly vascular smooth muscle cells and endothelial cells, but only weak cytoplasmic or nuclear immunoreactivity of cancer cells. Within the group of invasive carcinomas, high CDH11 protein expression, as detected by western blot analysis, was found to be significantly correlated with advanced stage and nodal involvement. However, the recurrence-free and overall survival analyses did not reveal any prognostic or predictive significance. In conclusion, in contrast to other tumor types, CDH11 does not play an important role in ovarian cancer progression. PMID:26623052

  6. Differential expression of IGF-1 mRNA isoforms in colorectal carcinoma and normal colon tissue.

    PubMed

    Kasprzak, Aldona; Szaflarski, Witold; Szmeja, Jacek; Andrzejewska, Małgorzata; Przybyszewska, Wiesława; Kaczmarek, Elżbieta; Koczorowska, Maria; Kościński, Tomasz; Zabel, Maciej; Drews, Michał

    2013-01-01

    The insulin-like growth factor (IGF)-1 gene consists of 6 exons resulting in the expression of 6 variant forms of mRNA (IA, IB, IC, IIA, IIB and IIC) due to an alternative splicing. The mechanisms of IGF-1 gene splicing and the role of local expression manifested by IGF-1 mRNA variants in colorectal carcinoma (CRC) have not been extensively investigated. Therefore, the aim of our study was to analyse the expression of IGF-1 mRNA isoforms [A, B, C, P1 (class I) and P2 (class II)], as well as the protein expression in CRC and control samples isolated from 28 patients. The expression of Ki-67 was also analysed and clinical data were obtained. For this purpose, we used quantitative real-time PCR (qPCR) and immunocytochemistry. The expression of mRNAs coding for all splicing isoforms of IGF-1 was observed in every tissue sample studied, with a significantly lower expression noted in the CRC as compared to the control samples. The cytoplasmic expression of IGF-1 protein was found in 50% of the CRC and in ~40% of the non-tumor tissues; however, no significant quantitative inter-group differences were observed. The expression of the IGF-1 gene in the 2 groups of tissues was controlled by the P1 and P2 promoters in a similar manner. No significant differences were detected in the expression of the IGF-1 A and B isoforms; however, their expression was significantly higher compared to that of isoform C. No significant differences were observed between the expression of Ki-67 mRNA in the CRC and control tissue even though the expression of the Ki-67 protein was higher in the CRC compared to the control samples. Ki-67 protein expression was associated with the macroscopic and microscopic aspects of CRC. A significant positive correlation was found between the local production of total mRNA and isoform A and the expression of Ki-67 mRNA, although only in the non-tumor tissues. In CRC samples, the local expression of the total IGF-1 mRNA and all splicing isoforms of IGF-1 mRNA

  7. Effects of dietary soybean isoflavones on non-specific immune responses and hepatic antioxidant abilities and mRNA expression of two heat shock proteins (HSPs) in juvenile golden pompano Trachinotus ovatus under pH stress.

    PubMed

    Zhou, Chuanpeng; Lin, Heizhao; Huang, Zhong; Wang, Jun; Wang, Yun; Yu, Wei

    2015-12-01

    This study determined the effect of dietary soybean isoflavones on non-specific immunity and on mRNA expression of two HSPs in juvenile golden pompano Trachinotus ovatus under pH stress. Six diets were formulated to contain 0, 10, 20, 40, 60 and 80 mg/kg of soybean isoflavones. Each diet was fed to triplicate groups of fish in cylindrical tanks. After 56 days of feeding, 15 fish per tank were exposed to pH stress (pH ≈ 9.2) for 24 h. Serum total protein (TP), respiratory burst activity (RBA), alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (AKP), lysozyme (LYZ), complement 3 (C3), complement 4 (C4), cortisol, hepatic total antioxidant capacity (T-AOC), superoxide dismutase (SOD), malondialdehyde (MDA), catalase (CAT) and the relative mRNA expression of heat shock protein 70 (HSP70) and 90 (HSP90) were investigated. The results showed that after pH stress, serum TP, RBA, LYZ, C4, hepatic T-AOC and CAT levels were significantly reduced (P < 0.05) while serum ALT, hepatic MDA and HSP70 and HSP90 mRNA expression levels were significantly increased (P < 0.05). On the other hand, supplementation with soybean isoflavones significantly reduced levels of serum ALT (20, 40, 60 mg/kg soybean isoflavones groups) and hepatic MDA (40, 60 and 80 mg/kg soybean isoflavones groups). Supplemented groups had increased serum TP content (40 mg/kg soybean isoflavones groups), RBA (20 and 40 mg/kg soybean isoflavones groups), LYZ (40 and 60 mg/kg soybean isoflavones groups), C3(20, 40, 60 and 80 mg/kg soybean isoflavones groups), hepatic SOD activity (40, 60 and 80 mg/kg soybean isoflavones groups) as well as increased relative mRNA expression of hepatic HSP70 (40, 60 and 80 mg/kg soybean isoflavones groups) and HSP90 (40 and 60 mg/kg soybean isoflavones groups) (P < 0.05). These results indicate that ingestion of a basal diet supplemented with 40-60 mg/kg soybean isoflavones could enhance resistance against pH stress in T. Ovatus to some degree.

  8. Massive bowel resection upregulates the intestinal mRNA expression levels of cellular retinol-binding protein II and apolipoprotein A-IV and alters the intestinal vitamin A status in rats.

    PubMed

    Hebiguchi, Taku; Mezaki, Yoshihiro; Morii, Mayako; Watanabe, Ryo; Yoshikawa, Kiwamu; Miura, Mitsutaka; Imai, Katsuyuki; Senoo, Haruki; Yoshino, Hiroaki

    2015-03-01

    Short bowel (SB) syndrome causes the malabsorption of various nutrients. Among these, vitamin A is important for a number of physiological activities. Vitamin A is absorbed by epithelial cells of the small intestine and is discharged into the lymphatic vessels as a component of chylomicrons and is delivered to the liver. In the present study, we used a rat model of SB syndrome in order to assess its effects on the expression of genes associated with the absorption, transport and metabolism of vitamin A. In the rats with SB, the intestinal mRNA expression levels of cellular retinol-binding protein II (CRBP II, gene symbol Rbp2) and apolipoprotein A-IV (gene symbol Apoa4) were higher than those in the sham-operated rats, as shown by RT-qPCR. Immunohistochemical analysis revealed that absorptive epithelial cells stained positive for both CRBP II and lecithin retinol acyltransferase, which are both required for the effective esterification of vitamin A. In the rats with SB, the retinol content in the ileum and the retinyl ester content in the jejunum were lower than those in the sham-operated rats, as shown by quantitative analysis of retinol and retinyl esters by high performance liquid chromatography. These results suggest that the elevated mRNA expression levels of Rbp2 and Apoa4 in the rats with SB contribute to the effective esterification and transport of vitamin A.

  9. Expression of brain derived neurotrophic factor, activity-regulated cytoskeleton protein mRNA, and enhancement of adult hippocampal neurogenesis in rats after sub-chronic and chronic treatment with the triple monoamine re-uptake inhibitor tesofensine.

    PubMed

    Larsen, Marianne H; Rosenbrock, Holger; Sams-Dodd, Frank; Mikkelsen, Jens D

    2007-01-26

    The changes of gene expression resulting from long-term exposure to monoamine antidepressant drugs in experimental animals are key to understanding the mechanisms of action of this class of drugs in man. Many of these genes and their products are either relevant biomarkers or directly involved in structural changes that are perhaps necessary for the antidepressant effect. Tesofensine is a novel triple monoamine reuptake inhibitor that acts to increase noradrenaline, serotonin, and dopamine neurotransmission. This study was undertaken to examine the effect of sub-chronic (5 days) and chronic (14 days) administration of Tesofensine on the expression of brain derived neurotrophic factor (BDNF) and activity-regulated cytoskeleton protein (Arc) in the rat hippocampus. Furthermore, hippocampi from the same animals were used to investigate the effect on cell proliferation by means of Ki-67- and NeuroD-immunoreactivity. We find that chronic, but not sub-chronic treatment with Tesofensine increases BDNF mRNA in the CA3 region of the hippocampus (35%), and Arc mRNA in the CA1 of the hippocampus (65%). Furthermore, the number of Ki-67- and neuroD-positive cells increased after chronic, but not sub-chronic treatment. This study shows that Tesofensine enhances hippocampal gene expression and new cell formation indicative for an antidepressant potential of this novel drug substance.

  10. Enhanced SRSF5 Protein Expression Reinforces Lamin A mRNA Production in HeLa Cells and Fibroblasts of Progeria Patients.

    PubMed

    Vautrot, Valentin; Aigueperse, Christelle; Oillo-Blanloeil, Florence; Hupont, Sébastien; Stevenin, James; Branlant, Christiane; Behm-Ansmant, Isabelle

    2016-03-01

    The Hutchinson Gilford Progeria Syndrome (HGPS) is a rare genetic disease leading to accelerated aging. Three mutations of the LMNA gene leading to HGPS were identified. The more frequent ones, c.1824C>T and c.1822G>A, enhance the use of the intron 11 progerin 5'splice site (5'SS) instead of the LMNA 5'SS, leading to the production of the truncated dominant negative progerin. The less frequent c.1868C>G mutation creates a novel 5'SS (LAΔ35 5'SS), inducing the production of another truncated LMNA protein (LAΔ35). Our data show that the progerin 5'SS is used at low yield in the absence of HGPS mutation, whereas utilization of the LAΔ35 5'SS is dependent upon the presence of the c.1868C>G mutation. In the perspective to correct HGPS splicing defects, we investigated whether SR proteins can modify the relative yields of utilization of intron 11 5'SSs. By in cellulo and in vitro assays, we identified SRSF5 as a direct key regulator increasing the utilization of the LMNA 5'SS in the presence of the HGPS mutations. Enhanced SRSF5 expression in dermal fibroblasts of HGPS patients as well as PDGF-BB stimulation of these cells decreased the utilization of the progerin 5'SS, and improves nuclear morphology, opening new therapeutic perspectives for premature aging.

  11. Isolation and nucleotide sequence analysis of the of Rhinella arenarum β-catenin: an mRNA and protein expression study during the larval stages of the digestive tract development.

    PubMed

    Galetto, C D; Izaguirre, M F; Bessone, V; Casco, V H

    2012-12-15

    β-catenin interacts with several proteins mediating key biological processes, such as cadherin-mediated cell-cell adhesion as well as signal transduction. This work was done to establish the molecular basis and regulation of the formation pattern of cadherin/β-catenin-mediated adherens junctions, using an animal model of unknown gene sequence, the toad Rhinella arenarum. A Rhinella arenarum β-catenin homolog was isolated from larval tissue, their sequence compared and analyzed with those of eight other vertebrates using bioinformatics tools. The mRNA and protein expression levels of β-catenin were determined during the development of Rhinella arenarum digestive tract both by Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) and immunohistochemistry-morphometry respectively. Using Xenopus laevis frog specific primers, a fragment 539 bp of Rhinella arenarum toad β-catenin cDNA was obtained and sequenced. The resulting putative sequence of 177 amino acids showed high similarity at the amino acid level (97%) when compared to other six vertebrates (Xenopus laevis, Xenopus tropicalis, Mus musculus, Rattus norvegicus, Bos taurus and Homo sapiens), with sequences and structural domains characteristic of catenins. Subsequently, using primers specifically designed for Rhinella arenarum nucleotide sequence, β-catenin-mRNA increasing levels were found during the Rhinella arenarum metamorphosis. Finally, increasing β-catenin protein expression during development has confirmed the specificity the detection of Rhinella arenarum β-catenin. Summarizing, we have isolated and sequenced a β-catenin-homologue sequence from the Rhinella arenarum toad, which is highly conserved between species, and following we have detected β-catenin mRNA and protein levels during their digestive tract development.

  12. The mRNA and Proteins Expression Levels Analysis of TC-1 Cells Immune Response to H9N2 Avian Influenza Virus

    PubMed Central

    Liu, Jiyuan; Li, Ning; Meng, Dan; Hao, Mengchan; Wei, Liangmeng; Chai, Tongjie

    2016-01-01

    Since 1994, the H9N2 avian influenza virus (AIV) has spread widely in mainland China, causing great economic losses to the poultry industry there. Subsequently, it was found that the H9N2 AIV had the ability to infect mammals, which gave rise to great panic. In order to investigate the immune response of a host infected with H9N2 AIV, TC-1 cells were set as a model in this research. Quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay methods were used to study the expression changes of pattern recognition receptors (PRRs), inflammatory cytokines, and chemokines in AIV-infected TC-1 cells. Our research found that TC-1 cells had similar susceptibility to both CK/SD/w3 (A/Chicken/Shandong/W3/2012) and CK/SD/w4 (A/Chicken/Shandong/W4/2012) H9N2 isolates, while the CK/SD/w3 isolate had a stronger capability of replication in the TC-1 cells. At the same time, the expression of PRRs (melanoma differentiation-associated gene 5, MDA-5), cytokines [interleukin (IL)-1β and IL-6], and chemokines [regulated on activation, normal T cell expressed and secreted (RANTES) and interferon-γ-induced protein-10 kDa (IP-10)] were significantly up-regulated. These results indicated that MDA-5, IL-1β, IL-6, RANTES, and IP-10 might play important roles in the host immune response to H9N2 AIV infection. This study provided useful information for further understanding the interaction between H9N2 virus infection and host immunity, and had certain guiding significance for the prevention and treatment of this disease. PMID:27446066

  13. Molecular Characterization of Aquaporin 1 and Aquaporin 3 from the Gills of the African Lungfish, Protopterus annectens, and Changes in Their Branchial mRNA Expression Levels and Protein Abundance during Three Phases of Aestivation

    PubMed Central

    Chng, You R.; Ong, Jasmine L. Y.; Ching, Biyun; Chen, Xiu L.; Hiong, Kum C.; Wong, Wai P.; Chew, Shit F.; Lam, Siew H.; Ip, Yuen K.

    2016-01-01

    African lungfishes can undergo long periods of aestivation on land during drought. During aestivation, lungfishes are confronted with desiccation and dehydration, and their gills become non-functional and covered with a thick layer of dried mucus. Aquaporins (Aqps) are a superfamily of integral membrane proteins which generally facilitate the permeation of water through plasma membranes. This study aimed to obtain the complete cDNA coding sequences of aqp1 and aqp3 from the gills of Protopterus annectens, and to determine their branchial mRNA and protein expression levels during the induction, maintenance and arousal phases of aestivation. Dendrogramic analyses of the deduced Aqp1 and Aqp3 amino acid sequences of P. annectens revealed their close relationships with those of Latimeria chalumnae and tetrapods. During the induction phase, there were significant decreases in the transcript levels of aqp1 and aqp3 in the gills of P. annectens, but the branchial Aqp1 and Aqp3 protein abundance remained unchanged. As changes in transcription might precede changes in translation, this could be regarded as an adaptive response to decrease the protein abundance of Aqp1 and Aqp3 in the subsequent maintenance phase of aestivation. As expected, the branchial transcript levels and protein abundance of aqp1/Aqp1 and aqp3/Aqp3 were significantly down-regulated during the maintenance phase, probably attributable to the shutdown of branchial functions and the cessation of volume regulation of branchial epithelial cells. Additionally, these changes could reduce the loss of water through branchial epithelial surfaces, supplementing the anti-desiccating property of the dried mucus. Upon arousal, it was essential for the lungfish to restore branchial functions. Indeed, the protein abundance of Aqp1 recovered partially, with complete recovery of mRNA expression level and protein abundance of Aqp3, in the gills of P. annectens after 3 days of arousal. These results provide insights into

  14. Molecular Characterization of Aquaporin 1 and Aquaporin 3 from the Gills of the African Lungfish, Protopterus annectens, and Changes in Their Branchial mRNA Expression Levels and Protein Abundance during Three Phases of Aestivation.

    PubMed

    Chng, You R; Ong, Jasmine L Y; Ching, Biyun; Chen, Xiu L; Hiong, Kum C; Wong, Wai P; Chew, Shit F; Lam, Siew H; Ip, Yuen K

    2016-01-01

    African lungfishes can undergo long periods of aestivation on land during drought. During aestivation, lungfishes are confronted with desiccation and dehydration, and their gills become non-functional and covered with a thick layer of dried mucus. Aquaporins (Aqps) are a superfamily of integral membrane proteins which generally facilitate the permeation of water through plasma membranes. This study aimed to obtain the complete cDNA coding sequences of aqp1 and aqp3 from the gills of Protopterus annectens, and to determine their branchial mRNA and protein expression levels during the induction, maintenance and arousal phases of aestivation. Dendrogramic analyses of the deduced Aqp1 and Aqp3 amino acid sequences of P. annectens revealed their close relationships with those of Latimeria chalumnae and tetrapods. During the induction phase, there were significant decreases in the transcript levels of aqp1 and aqp3 in the gills of P. annectens, but the branchial Aqp1 and Aqp3 protein abundance remained unchanged. As changes in transcription might precede changes in translation, this could be regarded as an adaptive response to decrease the protein abundance of Aqp1 and Aqp3 in the subsequent maintenance phase of aestivation. As expected, the branchial transcript levels and protein abundance of aqp1/Aqp1 and aqp3/Aqp3 were significantly down-regulated during the maintenance phase, probably attributable to the shutdown of branchial functions and the cessation of volume regulation of branchial epithelial cells. Additionally, these changes could reduce the loss of water through branchial epithelial surfaces, supplementing the anti-desiccating property of the dried mucus. Upon arousal, it was essential for the lungfish to restore branchial functions. Indeed, the protein abundance of Aqp1 recovered partially, with complete recovery of mRNA expression level and protein abundance of Aqp3, in the gills of P. annectens after 3 days of arousal. These results provide insights into

  15. A multi-omic analysis of an Enterococcus faecium mutant reveals specific genetic mutations and dramatic changes in mRNA and protein expression

    PubMed Central

    2013-01-01

    Background For a long time, Enterococcus faecium was considered a harmless commensal of the mammalian gastrointestinal (GI) tract and was used as a probiotic in fermented foods. In recent decades, E. faecium has been recognised as an opportunistic pathogen that causes diseases such as neonatal meningitis, urinary tract infections, bacteremia, bacterial endocarditis and diverticulitis. E. faecium could be taken into space with astronauts and exposed to the space environment. Thus, it is necessary to observe the phenotypic and molecular changes of E. faecium after spaceflight. Results An E. faecium mutant with biochemical features that are different from those of the wild-type strain was obtained from subculture after flight on the SHENZHOU-8 spacecraft. To understand the underlying mechanism causing these changes, the whole genomes of both the mutant and the WT strains were sequenced using Illumina technology. The genomic comparison revealed that dprA, a recombination-mediator gene, and arpU, a gene associated with cell wall growth, were mutated. Comparative transcriptomic and proteomic analyses showed that differentially expressed genes or proteins were involved with replication, recombination, repair, cell wall biogenesis, glycometabolism, lipid metabolism, amino acid metabolism, predicted general function and energy production/conversion. Conclusion This study analysed the comprehensive genomic, transcriptomic and proteomic changes of an E. faecium mutant from subcultures that were loaded on the SHENZHOU-8 spacecraft. The implications of these gene mutations and expression changes and their underlying mechanisms should be investigated in the future. We hope that the current exploration of multiple “-omics” analyses of this E. faecium mutant will provide clues for future studies on this opportunistic pathogen. PMID:24373636

  16. GLUT3 protein and mRNA in autopsy muscle specimens

    NASA Technical Reports Server (NTRS)

    Stuart, C. A.; Wen, G.; Jiang, J.

    1999-01-01

    GLUT3 is expressed in rat muscle, but this glucose transporter protein has not been identified previously in adult human skeletal muscle. We quantified the rapidity of disappearance of mRNA and protein from human skeletal muscle at room temperature and at 4 degrees C. Fifty percent of the immunologically detectable GLUT3 protein disappeared by 1 hour at 20 degrees C and by 2 hours at 4 degrees C. mRNA for GLUT3 was decreased 50% by 2.2 hours at 20 degrees C and by 24 hours at 4 degrees C. Half of the measurable mRNAs for GLUT4, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), alpha-actin, and beta-myosin disappeared by 0.8 to 2.1 hours at 20 degrees C and by 5.0 to 16.6 hours at 4 degrees C. Previous conclusions that GLUT3 is not expressed in human muscle were likely drawn because of artifacts related to degradation of GLUT3 protein in the specimens prior to study. Because of the rapid degradation of protein and mRNA, autopsy specimens of muscle must be obtained within 6 hours of death, and even then, protein and mRNA data will likely dramatically underestimate their expression in fresh muscle. Some previously published conclusions and recommendations regarding autopsy specimens are not stringent enough to consistently yield useful protein and mRNA.

  17. RRM1, TUBB3, TOP2A, CYP19A1, CYP2D6: Difference between mRNA and protein expression in predicting prognosis of breast cancer patients.

    PubMed

    Xu, Ying-Chun; Zhang, Feng-Chun; Li, Jun-Jian; Dai, Jia-Qi; Liu, Qiang; Tang, Lei; Ma, Yue; Xu, Qi; Lin, Xiao-Lin; Fan, Hong-Bin; Wang, Hong-Xia

    2015-10-01

    The study investigated the clinical significance of RRM1 (ribonucleoside reductase subunit M1), TUBB3 (tubulin-β-III), TOP2A (DNA topoisomerase II), CYP19A1 (cytochrome P450, family 19, subfamily A, polypeptide 1) and CYP2D6 (cytochrome P450, family 2, subfamily D, polypeptide 6) for the diagnosis and possible predictive roles in breast cancer. Tissue microarray detected the expression of RRM1, tubulin-β-III, Topo IIα, CYP19A1 and CYP2D6 protein in breast cancer tissue and tissue adjacent to tumors (TATs). In addition, a publically available tool, was used to assess the prognostic value of their gene expression in breast cancer (http://kmplot.com). Analysis for relapse-free survival (RFS), disease-free survival (DFS) and overall survival (OS) was performed. Cytoplasmic RRM1, tubulin-β-III, CYP19A1 and Topo IIα staining were significantly higher in breast cancer tissues compared with TATs (P<0.050). Significant correlation occurred between RRM1 expression with pathological classification (P=0.018), lymph node involvement (P=0.035) and ER status (P=0.003). Tubulin-β-III and CYP2D6 expression correlated significantly with tumor grade (P=0.021 for tubulin-β-III and P=0.029 for CYP2D6, respectively). Cox analysis showed that the protein expression of CYP2D6, CYP19A1, RRM1, Topo IIα or tubulin-β-III was not an independent prognostic factor. A significant association occurred between RFS and TUBB3, TOP2A, CYP19A1, and CYP2D6 mRNA expression. With CYP19A1 (P<0.001) and CYP2D6 (P<0.001), a high expression was associated with good clinical outcome. Conversely, a low expression of TUBB3 (P<0.001) and TOP2A (P<0.001) was associated with good clinical outcome. TUBB3 (P=0.0004) and TOP2A (P<0.001) were significant prognostic factors in predicting the patient OS. The expression of RRM1, tubulin-β-III, Topo IIα and CYP19A1 in tumor tissues was significantly higher than that in TATs. TUBB3, TOP2A, CYP19A1 and CYP2D6 gene expression, but not protein expression, was

  18. In utero and postnatal exposure to a high-protein or high-carbohydrate diet leads to differences in adipose tissue mRNA expression and blood metabolites in kittens.

    PubMed

    Vester, Brittany M; Liu, Kari J; Keel, Tonya L; Graves, Thomas K; Swanson, Kelly S

    2009-10-01

    The objective of the present study was to measure the differences in body composition, adipose tissue gene expression, blood metabolite and hormone concentrations, and insulin sensitivity in kittens exposed to high-protein (HP) or high-carbohydrate (HC) nutrition in utero and through the growth period. Eight dams were randomised onto two test diets, and fed the diets throughout gestation and lactation. Male offspring were evaluated for 9 months. Kittens were weaned at 2 months of age onto the same treatment diet as the dam and were allowed to consume diets ad libitum. The HC diet contained 34.3 % crude protein (CP), 19.2 % fat and 30.8 % digestible carbohydrate, while the HP diet contained 52.9 % CP, 23.5 % fat and 10.8 % digestible carbohydrate. Blood samples were collected at 6 months after birth. Body composition was determined at 2 and 8 months of age and an intravenous glucose tolerance test, neutering and adipose tissue biopsy conducted at 8 months of age. Physical activity was quantified at 6 and 9 months. Energy intake, DM intake and body weight were not different between groups. At 2 months, blood TAG were greater (P < 0.05) in kittens fed the HP diet. At 8 months, blood leptin was higher (P < 0.05) in kittens fed the HC diet, while chemokine receptor 5, hormone-sensitive lipase, uncoupling protein 2, leptin and insulin receptor mRNA were greater (P < 0.05) in kittens fed the HP diet. The present results demonstrate some of the changes in blood metabolites and hormones, physical activity and mRNA abundance that occur with feeding high protein levels to kittens.

  19. Huntington’s Disease Protein Huntingtin Associates with its own mRNA

    PubMed Central

    Culver, Brady P.; DeClercq, Josh; Dolgalev, Igor; Yu, Man Shan; Ma, Bin; Heguy, Adriana; Tanese, Naoko

    2016-01-01

    Background: The Huntington’s disease (HD) protein huntingtin (Htt) plays a role in multiple cellular pathways. Deregulation of one or more of these pathways by the mutant Htt protein has been suggested to contribute to the disease pathogenesis. Our recent discovery-based proteomics studies have uncovered RNA binding proteins and translation factors associated with the endogenous Htt protein purified from mouse brains, suggesting a potential new role for Htt in RNA transport and translation. Objective: To investigate how Htt might affect RNA metabolism we set out to purify and analyze RNA associated with Htt. Methods: RNA was extracted from immunopurified Htt-containing protein complexes and analyzed by microarrays and RNA-Seq. Results: Surprisingly, the most enriched mRNA that co-purified with Htt was Htt mRNA itself. The association of Htt protein and Htt mRNA was detected independent of intact ribosomes suggesting that it is not an RNA undergoing translation. Furthermore, we identified the recently reported mis-spliced Htt mRNA encoding a truncated protein comprised of exon 1 and a portion of the downstream intron in the immunoprecipitates containing mutant Htt protein. We show that Htt protein co-localizes with Htt mRNA and that wild-type Htt reduces expression of a reporter construct harboring the Htt 3’ UTR. Conclusions: HD protein is found in a complex with its own mRNA and RNA binding proteins and translation factors. Htt may be involved in modulating its expression through post-transcriptional pathways. It is possible that Htt shares mechanistic properties similar to RNA binding proteins such as TDP-43 and FUS implicated in other neurodegenerative diseases. PMID:26891106

  20. The ticking tail: daily oscillations in mRNA poly(A) tail length drive circadian cycles in protein synthesis.

    PubMed

    Gotic, Ivana; Schibler, Ueli

    2012-12-15

    In this issue of Genes & Development, Kojima and colleagues (pp. 2724-2736) examined the impact of mRNA poly(A) tail length on circadian gene expression. Their study demonstrates how dynamic changes in transcript poly(A) tail length can lead to rhythmic protein expression, irrespective of whether mRNA accumulation is circadian or constitutive.

  1. Molecular characterization of myostatin from the skeletal muscle of the African lungfish, Protopterus annectens, and changes in its mRNA and protein expression levels during three phases of aestivation.

    PubMed

    Ong, Jasmine L Y; Chng, You R; Ching, Biyun; Chen, Xiu L; Hiong, Kum C; Wong, Wai P; Chew, Shit F; Ip, Yuen K

    2017-05-01

    African lungfishes can aestivate and remain torpid without food and water for years, but disuse muscle atrophy is not prominent during aestivation. This study aimed to clone myostatin (mstn/Mstn), a factor associated with disuse muscle atrophy in mammals, from the skeletal muscle of the African lungfish Protopterus annectens, and to determine its mRNA expression level and protein abundance therein during the induction, maintenance, and arousal phases of aestivation. The complete coding cDNA sequence of mstn comprised 1128 bp, encoding for 376 amino acids with an estimated molecular mass of 42.9 kDa. It was grouped together with Mstn/MSTN of coelacanth and tetrapods in a clade separated from teleost Mstn. After 6 days (the induction phase) of aestivation, the mstn transcript level in the muscle increased significantly, while the protein abundance of Mstn remained comparable to the control. Following that, a significant increase in the expression levels of mstn/Mstn occurred on day 12 (the early maintenance phase) of aestivation. After 6 months of aestivation (the prolonged maintenance phase), the expression levels of mstn/Mstn returned to control levels, indicating the possible impediment of a drastic increase in muscle degradation to prevent muscle atrophy. During 1-3 days of arousal from aestivation, the expression levels of mstn/Mstn in the muscle remained comparable to the control. Hence, tissue reconstruction/regeneration of certain organs might not involve the mobilization of amino acids from the muscle during the early arousal. These results provide insights into how aestivating P. annectens regulates the expression of mstn/Mstn possibly to ameliorate disuse muscle atrophy.

  2. Amount and source of dietary copper affects small intestine morphology, duodenal lipid peroxidation, hepatic oxidative stress,and mRNA expression of hepatic copper regulatory proteins in weanling pigs.

    PubMed

    Fry, R S; Ashwell, M S; Lloyd, K E; O'Nan, A T; Flowers, W L; Stewart, K R; Spears, J W

    2012-09-01

    Thirty weanling, crossbred barrows (SUS SCROFA) were used to determine the effects of amount and source of dietary Cu on small intestinal morphology and lipid peroxidation, Cu metabolism, and mRNA expression of proteins involved in hepatic Cu homeostasis. At 21 d of age, pigs were stratified by BW (6.33 ± 0.23 kg) and allocated to 1 of the following dietary treatments: i) control (no supplemental Cu; 6.7 mg Cu/kg), ii) 225 mg supplemental Cu/kg diet from Cu sulfate (CuSO(4)), or iii) 225 mg supplemental Cu/kg diet from tribasic Cu chloride (TBCC). Pigs were housed 2 pigs per pen and were fed a 3-phase diet regimen until d 35 or 36 of the study. During harvest, bile and liver were obtained for mineral analysis, and liver samples were also obtained for analysis of liver glutathione (GSH) and mRNA expression of Cu regulatory proteins. Segments of duodenum, proximal jejunum, and ileum were obtained for mucosal morphology, and duodenal mucosal scrapings were collected from all pigs for analysis of malondialdehyde (MDA). Duodenal villus height was reduced in CuSO(4) pigs compared with control (P = 0.001) and TBCC (P = 0.03) pigs. Villus height in the proximal jejunum of CuSO(4) pigs was reduced (P = 0.03) compared with control pigs, but ileal villus height was not affected (P = 0.82) by treatment. Duodenal MDA concentrations were greater (P = 0.03) in CuSO(4) pigs and tended to be greater (P = 0.10) in pigs supplemented with TBCC compared with control pigs. Liver Cu was greater (P = 0.01) in CuSO(4) vs. control pigs, and tended (P = 0.07) to be greater in TBCC pigs than control pigs. Bile Cu concentrations were greater (P < 0.001) in CuSO(4) and TBCC pigs vs. controls and were also greater (P = 0.04) in TBCC vs. CuSO(4) pigs. Total liver GSH concentrations were less (P = 0.02) in pigs fed diets supplemented with CuSO(4) vs. pigs fed control diets but total liver GSH did not differ (P = 0.11) between control and TBCC pigs. Hepatic mRNA of cytochrome c oxidase assembly

  3. Transcriptional bursting explains the noise–versus–mean relationship in mRNA and protein levels

    SciTech Connect

    Dar, Roy; Shaffer, Sydney M.; Singh, Abhyudai; Razooky, Brandon S.; Simpson, Michael L.; Raj, Arjun; Weinberger, Leor S.

    2016-07-28

    Recent analysis demonstrates that the HIV-1 Long Terminal Repeat (HIV LTR) promoter exhibits a range of possible transcriptional burst sizes and frequencies for any mean-expression level. However, these results have also been interpreted as demonstrating that cell-tocell expression variability (noise) and mean are uncorrelated, a significant deviation from previous results. Here, we re-examine the available mRNA and protein abundance data for the HIV LTR and find that noise in mRNA and protein expression scales inversely with the mean along analytically predicted transcriptional burst-size manifolds. We then experimentally perturb transcriptional activity to test a prediction of the multiple burst-size model: that increasing burst frequency will cause mRNA noise to decrease along given burst-size lines as mRNA levels increase. In conclusion, the data show that mRNA and protein noise decrease as mean expression increases, supporting the canonical inverse correlation between noise and mean.

  4. Transcriptional bursting explains the noise–versus–mean relationship in mRNA and protein levels

    DOE PAGES

    Dar, Roy; Shaffer, Sydney M.; Singh, Abhyudai; ...

    2016-07-28

    Recent analysis demonstrates that the HIV-1 Long Terminal Repeat (HIV LTR) promoter exhibits a range of possible transcriptional burst sizes and frequencies for any mean-expression level. However, these results have also been interpreted as demonstrating that cell-tocell expression variability (noise) and mean are uncorrelated, a significant deviation from previous results. Here, we re-examine the available mRNA and protein abundance data for the HIV LTR and find that noise in mRNA and protein expression scales inversely with the mean along analytically predicted transcriptional burst-size manifolds. We then experimentally perturb transcriptional activity to test a prediction of the multiple burst-size model: thatmore » increasing burst frequency will cause mRNA noise to decrease along given burst-size lines as mRNA levels increase. In conclusion, the data show that mRNA and protein noise decrease as mean expression increases, supporting the canonical inverse correlation between noise and mean.« less

  5. A novel cis-acting element from the 3'UTR of DNA damage-binding protein 2 mRNA links transcriptional and post-transcriptional regulation of gene expression.

    PubMed

    Melanson, Brian D; Cabrita, Miguel A; Bose, Reetesh; Hamill, Jeffrey D; Pan, Elysia; Brochu, Christian; Marcellus, Kristen A; Zhao, Tong T; Holcik, Martin; McKay, Bruce C

    2013-06-01

    The DNA damage-binding protein 2 (DDB2) is an adapter protein that can direct a modular Cul4-DDB1-RING E3 Ligase complex to sites of ultraviolet light-induced DNA damage to ubiquitinate substrates during nucleotide excision repair. The DDB2 transcript is ultraviolet-inducible; therefore, its regulation is likely important for its function. Curiously, the DDB2 mRNA is reportedly short-lived, but the transcript does not contain any previously characterized cis-acting determinants of mRNA stability in its 3' untranslated region (3'UTR). Here, we used a tetracycline regulated d2EGFP reporter construct containing specific 3'UTR sequences from DDB2 to identify novel cis-acting elements that regulate mRNA stability. Synthetic 3'UTRs corresponding to sequences as short as 25 nucleotides from the central region of the 3'UTR of DDB2 were sufficient to accelerate decay of the heterologous reporter mRNA. Conversely, these same 3'UTRs led to more rapid induction of the reporter mRNA, export of the message to the cytoplasm and the subsequent accumulation of the encoded reporter protein, indicating that this newly identified cis-acting element affects transcriptional and post-transciptional processes. These results provide clear evidence that nuclear and cytoplasmic processing of the DDB2 mRNA is inextricably linked.

  6. Developmental expression of parvalbumin mRNA in the cerebral cortex and hippocampus of the rat.

    PubMed

    de Lecea, L; del Río, J A; Soriano, E

    1995-08-01

    Parvalbumin (PARV) belongs to the family of calcium-binding proteins bearing the EF hand domain. Immunocytochemical studies in the cerebral cortex have demonstrated that neurons containing PARV include two types of GABAergic interneurons, namely, basket and axo-axonic chandelier cells. The present study examines the onset and pattern of PARV mRNA expression during the development of rat neocortex and hippocampus by means of 'in situ' hybridization with an oligonucleotide probe corresponding to rat PARV cDNA. In animals aged P0-P6 no signal was detected above background in neocortex or hippocampus. At P8, a few cortical cells displayed a number of silver grains just above background levels. By P10 PARV mRNA-expressing cells in the neocortex were detected almost exclusively in layer V of somatosensory, frontal and cingulate cortices. At P12 PARV mRNA was mainly detected in layers IV, V and VIa. By P14 there was a marked overall increase in the entire neocortex, including layer II-III, both in the number of cells and in their intensity of labelling. Further maturation in the pattern of PARV mRNA concentration was observed between P16 and P21. In the hippocampus low hybridization was observed at P10-P12. In subsequent stages both the number of positive cells and the intensity of labelling increased steadily. No clear-cut radial gradients for the expression of PARV mRNA were observed in the hippocampal region. Our results show that the developmental radial gradient followed by PARV mRNA expression in the neocortex does not follow an 'inside-out' gradient, consistent with previous immunocytochemical findings. Taken together, these data indicate that the developmental sequence followed by the PARV protein directly reflects mRNA abundance and suggest that PARV mRNA expression correlates with the functional maturation of cortical interneurons.

  7. Vibrational force alters mRNA expression in osteoblasts

    NASA Technical Reports Server (NTRS)

    Tjandrawinata, R. R.; Vincent, V. L.; Hughes-Fulford, M.

    1997-01-01

    Serum-deprived mouse osteoblastic (MC3T3E1) cells were subjected to a vibrational force modeled by NASA to simulate a space shuttle launch (7.83 G rms). The mRNA levels for eight genes were investigated to determine the effect of vibrational force on mRNA expression. The mRNA levels of two growth-related protooncogenes, c-fos and c-myc, were up-regulated significantly within 30 min after vibration, whereas those of osteocalcin as well as transforming growth factor-beta1 were decreased significantly within 3 h after vibration. No changes were detected in the levels of beta-actin, histone H4, or cytoplasmic phospholipase A2 after vibration. No basal levels of cyclooxygenase-2 expression were detected. In addition, the extracellular concentrations of prostaglandin E2 (PGE2), a potent autocrine/paracrine growth factor in bone, were not significantly altered after vibration most likely due to the serum deprivation state of the osteoblasts. In comparison with the gravitational launch profile, vibrational-induced changes in gene expression were greater both in magnitude and number of genes activated. Taken together, these data suggest that the changes in mRNA expression are due to a direct mechanical effect of the vibrational force on the osteoblast cells and not to changes in the local PGE2 concentrations. The finding that launch forces induce gene expression is of utmost importance since many of the biological experiments do not dampen vibrational loads on experimental samples. This lack of dampening of vibrational forces may partially explain why 1-G onboard controls sometimes do not reflect 1-G ground controls. These data may also suggest that scientists use extra ground controls that are exposed to launch forces, have these forces dampened on launched samples, or use facilities such as Biorack that provide an onboard 1-G centrufuge in order to control for space shuttle launch forces.

  8. Tualang Honey Protects against BPA-Induced Morphological Abnormalities and Disruption of ERα, ERβ, and C3 mRNA and Protein Expressions in the Uterus of Rats

    PubMed Central

    Mohamad Zaid, Siti Sarah; Kassim, Normadiah M.; Othman, Shatrah

    2015-01-01

    Bisphenol A (BPA) is an endocrine disrupting chemical (EDC) that can disrupt the normal functions of the reproductive system. The objective of the study is to investigate the potential protective effects of Tualang honey against BPA-induced uterine toxicity in pubertal rats. The rats were administered with BPA by oral gavage over a period of six weeks. Uterine toxicity in BPA-exposed rats was determined by the degree of the morphological abnormalities, increased lipid peroxidation, and dysregulated expression and distribution of ERα, ERβ, and C3 as compared to the control rats. Concurrent treatment of rats with BPA and Tualang honey significantly improved the uterine morphological abnormalities, reduced lipid peroxidation, and normalized ERα, ERβ, and C3 expressions and distribution. There were no abnormal changes observed in rats treated with Tualang honey alone, comparable with the control rats. In conclusion, Tualang honey has potential roles in protecting the uterus from BPA-induced toxicity, possibly accounted for by its phytochemical properties. PMID:26788107

  9. Robust changes in expression of brain-derived neurotrophic factor (BDNF) mRNA and protein across the brain do not translate to detectable changes in BDNF levels in CSF or plasma.

    PubMed

    Lanz, Thomas A; Bove, Susan E; Pilsmaker, Catherine D; Mariga, Abigail; Drummond, Elena M; Cadelina, Gregory W; Adamowicz, Wendy O; Swetter, Brentt J; Carmel, Sharon; Dumin, Jo Ann; Kleiman, Robin J

    2012-09-01

    Adult rats were treated acutely with peripheral kainic acid (KA), and changes in brain-derived neurotrophic factor (BDNF) mRNA and protein were tracked over time across multiple brain regions. Despite robust elevation in both mRNA and protein in multiple brain regions, plasma BDNF was unchanged and cerebrospinal fluid (CSF) BDNF levels remained undetectable. Primary neurons were then treated with KA. BDNF was similarly elevated within neurons, but was undetectable in neuronal media. Thus, while deficits in BDNF signaling have been implicated in a number of diseases, these data suggest that extracellular concentrations of BDNF may not be a facile biomarker for changes in neurons.

  10. Molecular mechanism of teratogenic effects induced by the fungicide triadimefon: Study of the expression of TGF-{beta} mRNA and TGF-{beta} and CRABPI proteins during rat in vitro development

    SciTech Connect

    Di Renzo, F.; Corsini, E.; Broccia, M.L.; Marinovich, M.; Galli, C.L.; Giavini, E.; Menegola, E.

    2009-01-01

    Azole derivatives are teratogenic in rats and mice in vitro and in vivo. The postulated mechanism for the dysmorphogenetic effects is the inhibition of retinoic acid (RA)-degrading enzyme CYP26. Azole-related abnormalities are confined to structures controlled by RA, especially the neural crest cells, hindbrain, cranial nerves, and craniofacial structures, through a complex signal cascade. The aim of this work is to study the expression of signal molecules activated by RA (TGF-{beta}s) or involved in the modulation of cellular RA concentrations (CRABPI). E9.5 (9.5 day post coitum old embryos) rat embryos, exposed in vitro to triadimefon (FON) for 24 h, were examined or cultured in normal serum for extra 4, 16, and 24 h. RT-PCR was performed to quantify TGF-{beta}1, TGF-{beta}2, TGF-{beta}3, TGF-{beta}RI, TGF-{beta}RII, and TGF-{beta}RIII mRNA in the hindbrain after 24 h of culture. TGF-{beta}1, TGF-{beta}2, and TGF-{beta}RI were found significantly decreased by FON exposure, and consequently their protein expression was analyzed by Western blot and immunohistochemistry. In both controls and FON-exposed embryos, TGF-{beta}1 and TGF-{beta}RI were detected at 24 and 24 + 4 h; TGF-{beta}2 was present only at 24 h. Only TGF-{beta}1 was expressed at the level of hindbrain and branchial tissues. After quantization, TGF-{beta}1 was reduced in the FON group. The expression of CRABPI was observed at all developmental stages. However, in FON-exposed embryos, it was increased at 24 and 24 + 4 h. The hindbrain distribution of CRABPI-positive cells was abnormal in FON-exposed embryos. The results show that the two RA-related molecules (TGF-{beta}1 and CRABPI) are altered by FON exposure in vitro.

  11. Prolyl carboxypeptidase mRNA expression in the mouse brain.

    PubMed

    Jeong, Jin Kwon; Diano, Sabrina

    2014-01-13

    Prolyl carboxypeptidase (PRCP), a serine protease, is widely expressed in the body including liver, lung, kidney and brain, with a variety of known substrates such as plasma prekallikrein, bradykinin, angiotensins II and III, and α-MSH, suggesting its role in the processing of tissue-specific substrates. In the brain, PRCP has been shown to inactivate hypothalamic α-MSH, thus modulating melanocortin signaling in the control of energy metabolism. While its expression pattern has been reported in the hypothalamus, little is known on the distribution of PRCP throughout the mouse brain. This study was undertaken to determine PRCP expression in the mouse brain. Radioactive in situ hybridization was performed to determine endogenous PRCP mRNA expression. In addition, using a gene-trap mouse model for PRCP deletion, X-gal staining was performed to further determine PRCP distribution. Results from both approaches showed that PRCP gene is broadly expressed in the brain.

  12. Expression of Npas4 mRNA in Telencephalic Areas of Adult and Postnatal Mouse Brain

    PubMed Central

    Damborsky, Joanne C.; Slaton, G. Simona; Winzer-Serhan, Ursula H.

    2015-01-01

    The transcription factor neuronal PAS domain-containing protein 4 (Npas4) is an inducible immediate early gene which regulates the formation of inhibitory synapses, and could have a significant regulatory role during cortical circuit formation. However, little is known about basal Npas4 mRNA expression during postnatal development. Here, postnatal and adult mouse brain sections were processed for isotopic in situ hybridization using an Npas4 specific cRNA antisense probe. In adults, Npas4 mRNA was found in the telencephalon with very restricted or no expression in diencephalon or mesencephalon. In most telencephalic areas, including the anterior olfactory nucleus (AON), piriform cortex, neocortex, hippocampus, dorsal caudate putamen (CPu), septum and basolateral amygdala nucleus (BLA), basal Npas4 expression was detected in scattered cells which exhibited strong hybridization signal. In embryonic and neonatal brain sections, Npas4 mRNA expression signals were very low. Starting at postnatal day 5 (P5), transcripts for Npas4 were detected in the AON, CPu and piriform cortex. At P8, additional Npas4 hybridization was found in CA1 and CA3 pyramidal layer, and in primary motor cortex. By P13, robust mRNA expression was located in layers IV and VI of all sensory cortices, frontal cortex and cingulate cortex. After onset of expression, postnatal spatial mRNA distribution was similar to that in adults, with the exception of the CPu, where Npas4 transcripts became gradually restricted to the most dorsal part. In conclusion, the spatial distribution of Npas4 mRNA is mostly restricted to telencephalic areas, and the temporal expression increases with developmental age during postnatal development, which seem to correlate with the onset of activity-driven excitatory transmission. PMID:26633966

  13. UCP2 mRNA expression is dependent on glucose metabolism in pancreatic islets

    SciTech Connect

    Dalgaard, Louise T.

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer UCP2 mRNA levels are decreased in islets of Langerhans from glucokinase deficient mice. Black-Right-Pointing-Pointer UCP2 mRNA up-regulation by glucose is dependent on glucokinase. Black-Right-Pointing-Pointer Absence of UCP2 increases GSIS of glucokinase heterozygous pancreatic islets. Black-Right-Pointing-Pointer This may protect glucokinase deficient mice from hyperglycemic damages. -- Abstract: Uncoupling Protein 2 (UCP2) is expressed in the pancreatic {beta}-cell, where it partially uncouples the mitochondrial proton gradient, decreasing both ATP-production and glucose-stimulated insulin secretion (GSIS). Increased glucose levels up-regulate UCP2 mRNA and protein levels, but the mechanism for UCP2 up-regulation in response to increased glucose is unknown. The aim was to examine the effects of glucokinase (GK) deficiency on UCP2 mRNA levels and to characterize the interaction between UCP2 and GK with regard to glucose-stimulated insulin secretion in pancreatic islets. UCP2 mRNA expression was reduced in GK+/- islets and GK heterozygosity prevented glucose-induced up-regulation of islet UCP2 mRNA. In contrast to UCP2 protein function UCP2 mRNA regulation was not dependent on superoxide generation, but rather on products of glucose metabolism, because MnTBAP, a superoxide dismutase mimetic, did not prevent the glucose-induced up-regulation of UCP2. Glucose-stimulated insulin secretion was increased in UCP2-/- and GK+/- islets compared with GK+/- islets and UCP2 deficiency improved glucose tolerance of GK+/- mice. Accordingly, UCP2 deficiency increased ATP-levels of GK+/- mice. Thus, the compensatory down-regulation of UCP2 is involved in preserving the insulin secretory capacity of GK mutant mice and might also be implicated in limiting disease progression in MODY2 patients.

  14. Tissue-specific mRNA expression profiling in grape berry tissues

    PubMed Central

    Grimplet, Jerome; Deluc, Laurent G; Tillett, Richard L; Wheatley, Matthew D; Schlauch, Karen A; Cramer, Grant R; Cushman, John C

    2007-01-01

    transport processes. Seeds, which supply essential resources for embryo development, showed higher mRNA abundance of genes encoding phenylpropanoid biosynthetic enzymes, seed storage proteins, and late embryogenesis abundant proteins. Water-deficit stress affected the mRNA abundance of 13% of the genes with differential expression patterns occurring mainly in the pulp and skin. In pulp and seed tissues transcript abundance in most functional categories declined in water-deficit stressed vines relative to well-watered vines with transcripts for storage proteins and novel (no-hit) functional assignments being over represented. In the skin of berries from water-deficit stressed vines, however, transcripts from several functional categories including general phenypropanoid and ethylene metabolism, pathogenesis-related responses, energy, and interaction with the environment were significantly over-represented. Conclusion These results revealed novel insights into the tissue-specific expression mRNA expression patterns of an extensive repertoire of genes expressed in berry tissues. This work also establishes an extensive catalogue of gene expression patterns for future investigations aimed at the dissection of the transcriptional regulatory hierarchies that govern tissue-specific expression patterns associated with tissue differentiation within berries. These results also confirmed that water-deficit stress has a profound effect on mRNA expression patterns particularly associated with the biosynthesis of aroma and color metabolites within skin and pulp tissues that ultimately impact wine quality. PMID:17584945

  15. Constitutive and allergen-induced expression of eotaxin mRNA in the guinea pig lung

    PubMed Central

    1995-01-01

    Eotaxin is a member of the C-C family of chemokines and is related during antigen challenge in a guinea pig model of allergic airway inflammation (asthma). Consistent with its putative role in eosinophilic inflammation, eotaxin induces the selective infiltration of eosinophils when injected into the lung and skin. Using a guinea pig lung cDNA library, we have cloned full-length eotaxin cDNA. The cDNA encodes a protein of 96 amino acids, including a putative 23-amino acid hydrophobic leader sequence, followed by 73 amino acids composing the mature active eotaxin protein. The protein-coding region of this cDNA is 73, 71, 50, and 48% identical in nucleic acid sequence to those of human macrophage chemoattractant protein (MCP) 3, MCP-1, macrophage inflammatory protein (MIP) 1 alpha, and RANTES, respectively. Analysis of genomic DNA suggested that there is a single eotaxin gene in guinea pig which is apparently conserved in mice. High constitutive levels of eotaxin mRNA expression were observed in the lung, while the intestines, stomach, spleen, liver, heart, thymus, testes, and kidney expressed lower levels. To determine if eotaxin mRNA levels are elevated during allergen-induced eosinophilic airway inflammation, ovalbumin (OVA)-sensitized guinea pigs were challenged with aerosolized antigen. Compared with the lungs from saline-challenged animals, eotaxin mRNA levels increased sixfold within 3 h and returned to baseline by 6 h. Thus, eotaxin mRNA levels are increased in response to allergen challenge during the late phase response. The identification of constitutive eotaxin mRNA expression in multiple tissues suggests that in addition to regulating airway eosinophilia, eotaxin is likely to be involved in eosinophil recruitment into other tissues as well as in baseline tissue homing. PMID:7869037

  16. Influenza A viruses suppress cyclooxygenase-2 expression by affecting its mRNA stability

    PubMed Central

    Dudek, Sabine Eva; Nitzsche, Katja; Ludwig, Stephan; Ehrhardt, Christina

    2016-01-01

    Infection with influenza A viruses (IAV) provokes activation of cellular defence mechanisms contributing to the innate immune and inflammatory response. In this process the cyclooxygenase-2 (COX-2) plays an important role in the induction of prostaglandin-dependent inflammation. While it has been reported that COX-2 is induced upon IAV infection, in the present study we observed a down-regulation at later stages of infection suggesting a tight regulation of COX-2 by IAV. Our data indicate the pattern-recognition receptor RIG-I as mediator of the initial IAV-induced COX-2 synthesis. Nonetheless, during on-going IAV replication substantial suppression of COX-2 mRNA and protein synthesis could be detected, accompanied by a decrease in mRNA half-life. Interestingly, COX-2 mRNA stability was not only imbalanced by IAV replication but also by stimulation of cells with viral RNA. Our results reveal tristetraprolin (TTP), which is known to bind COX-2 mRNA and promote its rapid degradation, as regulator of COX-2 expression in IAV infection. During IAV replication and viral RNA accumulation TTP mRNA synthesis was induced, resulting in reduced COX-2 levels. Accordingly, the down-regulation of TTP resulted in increased COX-2 protein expression after IAV infection. These findings indicate a novel IAV-regulated cellular mechanism, contributing to the repression of host defence and therefore facilitating viral replication. PMID:27265729

  17. Differences in expression of retinal pigment epithelium mRNA between normal canines

    PubMed Central

    2004-01-01

    Abstract A reference database of differences in mRNA expression in normal healthy canine retinal pigment epithelium (RPE) has been established. This database identifies non-informative differences in mRNA expression that can be used in screening canine RPE for mutations associated with clinical effects on vision. Complementary DNA (cDNA) pools were prepared from mRNA harvested from RPE, amplified by PCR, and used in a subtractive hybridization protocol (representational differential analysis) to identify differences in RPE mRNA expression between canines. The effect of relatedness of the test canines on the frequency of occurrence of differences was evaluated by using 2 unrelated canines for comparison with 2 female sibling canines of blue heeler/bull terrier lineage. Differentially expressed cDNA species were cloned, sequenced, and identified by comparison to public database entries. The most frequently observed differentially expressed sequence from the unrelated canine comparison was cDNA with 21 base pairs (bp) identical to the human epithelial membrane protein 1 gene (present in 8 of 20 clones). Different clones from the same-sex sibling RPE contained repetitions of several short sequence motifs including the human epithelial membrane protein 1 (4 of 25 clones). Other prevalent differences between sibling RPE included sequences similar to a chicken genetic marker sequence motif (5 of 25), and 6 clones with homology to porcine major histocompatibility loci. In addition to identifying several repetitively occurring, noninformative, differentially expressed RPE mRNA species, the findings confirm that fewer differences occurred between siblings, highlighting the importance of using closely related subjects in representational difference analysis studies. PMID:15352545

  18. The utility of protein and mRNA correlation

    SciTech Connect

    Payne, Samuel H.

    2015-01-01

    Transcriptomic, proteomic and metabolomic measurements are revolutionizing the way we model and predict cellular behavior, and multi-omic comparisons are being published with increased regularity. Some have expected a trivial and predictable correlation between mRNA and protein; however the manifest complexity of biological regulation suggests a more nuanced relationship. Indeed, observing this lack of strict correlation provides clues for new research topics, and has the potential for transformative biological insight.

  19. mRNA Distribution and Heterologous Expression of Orphan Cytochrome P450 20A1

    PubMed Central

    Stark, Katarina; Wu, Zhong-Liu; Bartleson, Cheryl J.; Guengerich, F. Peter

    2015-01-01

    Cytochrome P450 (P450) 20A1 is one of the so-called “orphan” P450s without assigned biological function. mRNA expression was detected in human liver and extrahepatic expression was noted in several human brain regions, including substantia nigra, hippocampus, and amygdala, using conventional polymerase chain reaction and RNA dot blot analysis. Adult human liver contained 3-fold higher overall mRNA levels than whole brain, although specific regions (i.e., hippocampus and substantia nigra) exhibited higher mRNA expression levels than liver. Orthologous full-length and truncated transcripts of P450 20A1 were transcribed and sequenced from rat liver, heart, and brain. In rat, the concentrations of full-length transcripts were 3–4 fold higher in brain and heart than liver. In situ hybridization of rat whole brain sections showed a similar mRNA expression pattern as observed for human P450 20A1, indicating expression in substantia nigra, hippocampus, and amygdala. A number of N-terminal modifications of the codon-optimized human P450 20A1 sequence were prepared and expressed in Escherichia coli, and two of the truncated derivatives showed characteristic P450 spectra (200–280 nmol P450/l). Although the recombinant enzyme system oxidized NADPH, no catalytic activity was observed with the heterologously expressed protein when a number of potential steroids and biogenic amines were surveyed as potential substrates. The function of P450 20A1 remains unknown; however, the sites of mRNA expression in human brain and the conservation among species may suggest possible neurophysiological function. PMID:18541694

  20. MRNA expression of genes regulating lipid metabolism in ringed seals (Pusa hispida) from differently polluted areas.

    PubMed

    Castelli, Martina Galatea; Rusten, Marte; Goksøyr, Anders; Routti, Heli

    2014-01-01

    There is a growing concern about the ability of persistent organic pollutants (POPs) to influence lipid metabolism. Although POPs are found at high concentrations in some populations of marine mammals, for example in the ringed seal (Pusa hispida) from the Baltic Sea, little is known about the effects of POPs on their lipid metabolism. An optimal regulation of lipid metabolism is crucial for ringed seals during the fasting/molting season. This is a physiologically stressful period, during which they rely on the energy stored in their fat reserves. The mRNA expression levels for seven genes involved in lipid metabolism were analyzed in liver and/or blubber tissue from molting ringed seals from the polluted Baltic Sea and a less polluted reference location, Svalbard (Norway). mRNA expression of genes encoding peroxisome proliferator-activated receptors (PPAR) α and γ and their target genes acyl-coenzyme A oxidase 1 (ACOX1) and cluster of differentiation 36 (CD36) were analyzed in liver. mRNA expression level of genes encoding PPARβ, PPARγ and their target genes encoding fatty acid binding protein 4 (FABP4) and adiponectin (ADIPOQ) were measured in inner and middle blubber layers. In addition, we evaluated the influence of molting status on hepatic mRNA expression of genes encoding PPARs and their target genes in ringed seals from Svalbard. Our results show higher mRNA expression of genes encoding hepatic PPARγ and adipose PPARβ, FABP4, and ADIPOQ in the Baltic seals compared to the Svalbard seals. A positive relationship between mRNA expressions of genes encoding hepatic PPARγ, adipose FABP4, adipose ADIPOQ and ΣPOP concentrations was observed. These findings suggest that lipid metabolism may be affected by contaminant exposure in the Baltic population. mRNA expression of genes encoding PPARβ, PPARγ, FABP4 and ADIPOQ were similar between the mid and inner adipose layer. Hepatic mRNA expression of genes encoding PPARα and PPARγ was higher in the pre

  1. Sequence and expression of ferredoxin mRNA in barley

    SciTech Connect

    Zielinski, R.; Funder, P.M.; Ling, V. )

    1990-05-01

    We have isolated and structurally characterized a full-length cDNA clone encoding ferredoxin from a {lambda}gt10 cDNA library prepared from barley leaf mRNA. The ferredoxin clone (pBFD-1) was fused head-to-head with a partial-length cDNA clone encoding calmodulin, and was fortuitously isolated by screening the library with a calmodulin-specific oligonucleotide probe. The mRNA sequence from which pBFD-1 was derived is expressed exclusively in the leaf tissues of 7-d old barley seedlings. Barley pre-ferredoxin has a predicted size of 15.3 kDal, of which 4.6 kDal are accounted for by the transit peptide. The polypeptide encoded by pBFD-1 is identical to wheat ferredoxin, and shares slightly more amino acid sequence similarity with spinach ferredoxin I than with ferredoxin II. Ferredoxin mRNA levels are rapidly increased 10-fold by white light in etiolated barley leaves.

  2. Antisense oligodeoxynucleotides targeted to MAG mRNA profoundly alter BP and PLP mRNA expression in differentiating oligodendrocytes: a caution.

    PubMed

    Laszkiewicz, I; Wiggins, R C; Konat, G W

    1999-09-01

    The applicability of antisense technology to suppress the expression of myelin associated glycoprotein (MAG) in cultured oligodendrocytes was evaluated. Differentiating oligodendrocyte precursor cells obtained by the shake-off method were exposed to nine unmodified antisense oligodeoxynucleotides (ODNs) targeted to the first seven exons of MAG mRNA. After four days, steady-state levels of MAG, proteolipid protein (PLP) and basic protein (BP) mRNAs were determined by Northern blot analysis. Only ODN annealing to 599-618 nt of the MAG mRNA (the junction of exon 5 and 6) resulted in a significant, 75% decrease in the MAG mRNA level. Unexpectedly, six other anti-MAG ODNs which had no significant effect on the MAG message, greatly increased the level of BP mRNA. The highest upregulation of approximately 12 fold was observed with ODN annealing to 139-168 nt (junction of exon 3 and 4). On the other hand, the 997-1016 ODN decreased the levels of BP and PLP messages by 70-80%. The 599-618 ODN also decreased the PLP mRNA by 85%. The results demonstrate that antisense ODNs targeted to one gene may profoundly alter the expression of other genes, and hence, complicate functional analysis of the targeted protein.

  3. Expression and autoregulation of transforming growth factor beta receptor mRNA in small-cell lung cancer cell lines.

    PubMed Central

    Nørgaard, P.; Spang-Thomsen, M.; Poulsen, H. S.

    1996-01-01

    In small-cell lung cancer cell lines resistance to growth inhibition by transforming growth factor (TGF)-beta 1, was previously shown to correlate with lack of TGF-beta receptor I (RI) and II (RII) proteins. To further investigate the role of these receptors, the expression of mRNA for RI, RII and beta-glycan (RIII) was examined. The results showed that loss of RII mRNA correlated with TGF-beta 1 resistance. In contrast, RI-and beta-glycan mRNA was expressed by all cell lines, including those lacking expression of these proteins. According to Southern blot analysis, the loss of type II mRNA was not due to gross structural changes in the gene. The effect of TGF-beta 1 on expression of TGF-beta receptor mRNA (receptor autoregulation) was examined by quantitative Northern blotting in four cell lines with different expression of TGF-beta receptor proteins. In two cell lines expressing all three TGF-beta receptor proteins beta-glycan mRNA was rapidly down-regulated and this effect was sustained throughout the 24 h observation period. RI and RII mRNAs were slightly increased 24 h after treatment. In one cell line sensitive to growth inhibition by TGF-beta, 1 but lacking beta-glycan expression, and one cell line expressing only beta-glycan and thus TGF-beta 1 -resistant, no autoregulation of mRNA of either TGF-beta receptor was demonstrated. The results suggest that TGF-beta 1 regulates the expression of its receptors, in particular beta-glycan, and that this effect is dependent on co-expression of beta-glycan, RI and RII. Images Figure 1 Figure 2 Figure 4 PMID:8624260

  4. Increased 8-hydroxy-2'-deoxyguanosine in plasma and decreased mRNA expression of human 8-oxoguanine DNA glycosylase 1, anti-oxidant enzymes, mitochondrial biogenesis-related proteins and glycolytic enzymes in leucocytes in patients with systemic lupus erythematosus.

    PubMed

    Lee, H-T; Lin, C-S; Lee, C-S; Tsai, C-Y; Wei, Y-H

    2014-04-01

    We measured plasma levels of the oxidative DNA damage marker 8-hydroxy-2'-deoxyguanosine (8-OHdG) and leucocyte mRNA expression levels of the genes encoding the 8-OHdG repair enzyme human 8-oxoguanine DNA glycosylase 1 (hOGG1), the anti-oxidant enzymes copper/zinc superoxide dismutase (Cu/ZnSOD), manganese superoxide dismutase (MnSOD), catalase, glutathione peroxidase-1 (GPx-1), GPx-4, glutathione reductase (GR) and glutathione synthetase (GS), the mitochondrial biogenesis-related proteins mtDNA-encoded ND 1 polypeptide (ND1), ND6, ATPase 6, mitochondrial transcription factor A (Tfam), nuclear respiratory factor 1(NRF-1), pyruvate dehydrogenase E1 component alpha subunit (PDHA1), pyruvate dehydrogenase kinase isoenzyme 1 (PDK-1) and hypoxia inducible factor-1α (HIF-1α) and the glycolytic enzymes hexokinase-II (HK-II), glucose 6-phosphate isomerase (GPI), phosphofructokinase (PFK), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and lactate dehydrogenase A (LDHa). We analysed their relevance to oxidative damage in 85 systemic lupus erythematosus (SLE) patients, four complicated SLE patients undergoing rituximab treatment and 45 healthy individuals. SLE patients had higher plasma 8-OHdG levels (P < 0·01) but lower leucocyte expression of the genes encoding hOGG1(P < 0·01), anti-oxidant enzymes (P < 0·05), mitochondrial biogenesis-related proteins (P < 0·05) and glycolytic enzymes (P < 0·05) than healthy individuals. The increase in plasma 8-OHdG was correlated positively with the elevation of leucocyte expression of the genes encoding hOGG1 (P < 0·05), anti-oxidant enzymes (P < 0·05), several mitochondrial biogenesis-related proteins (P < 0·05) and glycolytic enzymes (P < 0·05) in lupus patients. The patients, whose leucocyte mtDNA harboured D310 heteroplasmy, exhibited a positive correlation between the mtDNA copy number and expression of ND1, ND6 and ATPase 6 (P < 0·05) and a negative correlation between mt

  5. Moisturizers change the mRNA expression of enzymes synthesizing skin barrier lipids.

    PubMed

    Buraczewska, Izabela; Berne, Berit; Lindberg, Magnus; Lodén, Marie; Törmä, Hans

    2009-09-01

    In a previous study, 7-week treatment of normal human skin with two test moisturizers, Complex cream and Hydrocarbon cream, was shown to affect mRNA expression of certain genes involved in keratinocyte differentiation. Moreover, the treatment altered transepidermal water loss (TEWL) in opposite directions. In the present study, the mRNA expression of genes important for formation of barrier lipids, i.e., cholesterol, free fatty acids and ceramides, was examined. Treatment with Hydrocarbon cream, which increased TEWL, also elevated the gene expression of GBA, SPTLC2, SMPD1, ALOX12B, ALOXE3, and HMGCS1. In addition, the expression of PPARG was decreased. On the other hand, Complex cream, which decreased TEWL, induced only the expression of PPARG, although not confirmed at the protein level. Furthermore, in the untreated skin, a correlation between the mRNA expression of PPARG and ACACB, and TEWL was found, suggesting that these genes are important for the skin barrier homeostasis. The observed changes further demonstrate that long-term treatment with certain moisturizers may induce dysfunctional skin barrier, and as a consequence several signaling pathways are altered.

  6. Gastrointestinal hormone mRNA expression in human colonic adenocarcinomas, hepatic metastases and cell lines

    PubMed Central

    Monges, G; Biagini, P; Cantaloube, J F; De Micco, P; Parriaux, D; Seitz, J F; Delpero, J R; Hassoun, J

    1996-01-01

    Aims—(1) To investigate the expression of the four main hormones of the digestive tract by performing reverse transcription polymerase chain reaction (RT-PCR) on a series of samples, comprising tumoral and healthy colonic tissues, hepatic metastases and colonic cell line samples; and (2) to study the patterns of labelling obtained with serological and morphological markers. Methods—After extraction and reverse transcription, gastrin, somatostatin, cholecystokinin (CCK) and transforming growth factor α (TGFα) mRNAs were detected by PCR and nested PCR using specific primers. The corresponding proteins were detected by immunohistochemistry. Results—The cell lines expressed all four mRNAs. Gastrin mRNA was present in most tumoral and metastatic samples, while the somatostatin transcript was detected in all samples and was frequently overexpressed in the normal colon. TGFα mRNA was expressed systematically in tumours of the right and transverse colon, but not in those located in the left colon; the expression of CCK mRNA was systematically absent in the left colon. Conclusions—The data presented here shed some light on the transcriptional events involved in the production of the various hormones present in the gastrointestinal tract, in both healthy and tumoral tissues. The various mRNAs expressed in cell lines are therefore not systematically expressed in the human pathology. Images PMID:16696065

  7. Circulating resistin protein and mRNA concentrations and clinical severity of coronary artery disease

    PubMed Central

    Sopic, Miron; Spasojevic-Kalimanovska, Vesna; Kalimanovska-Ostric, Dimitra; Andjelkovic, Kristina; Jelic-Ivanovic, Zorana

    2015-01-01

    Introduction Previous studies have implicated a strong link between circulating plasma resistin and coronary artery disease (CAD). The aim of this study was to evaluate the differences in peripheral blood mononuclear cells (PBMC) resistin mRNA and its plasma protein concentrations between the patients with CAD of different clinical severity. Material and methods This study included 33 healthy subjects as the control group (CG) and 77 patients requiring coronary angiography. Of the latter 30 was CAD negative whereas 47 were CAD positive [18 with stable angina pectoris (SAP) and 29 with acute coronary syndrome (ACS)]. Circulating resistin was measured by ELISA; PBMC resistin mRNA was determined by real-time PCR. Results Resistin protein was significantly higher in the ACS group compared to the CG (P = 0.001) and the CAD negative group (P = 0.018). Resistin mRNA expression did not vary across the study groups, despite the positive correlation seen with plasma resistin (ρ = 0.305, P = 0.008). In patients, plasma resistin and PBMC resistin mRNA negatively correlated with HDL-C (ρ = -0.404, P < 0.001 and ρ = -0.257, P = 0.032, respectively). Furthermore, the highest plasma resistin tertile showed the lowest HDL-C (P = 0.006). Plasma resistin was positively associated with serum creatinine (ρ = 0.353, P = 0.002). Conclusion Significant increase of plasma resistin in patients with ACS compared to CG and CAD negative patients was observed. Despite no change in PBMC resistin mRNA in different disease conditions a positive association between resistin mRNA and resistin plasma protein was evident. Both plasma resistin and PBMC resistin mRNA were negatively associated with plasma HDL-C, and plasma resistin positively with serum creatinine. PMID:26110037

  8. Protein expression-yeast.

    PubMed

    Nielsen, Klaus H

    2014-01-01

    Yeast is an excellent system for the expression of recombinant eukaryotic proteins. Both endogenous and heterologous proteins can be overexpressed in yeast (Phan et al., 2001; Ton and Rao, 2004). Because yeast is easy to manipulate genetically, a strain can be optimized for the expression of a specific protein. Many eukaryotic proteins contain posttranslational modifications that can be performed in yeast but not in bacterial expression systems. In comparison with mammalian cell culture expression systems, growing yeast is both faster and less expensive, and large-scale cultures can be performed using fermentation. While several different yeast expression systems exist, this chapter focuses on the budding yeast Saccharomyces cerevisiae and will briefly describe some options to consider when selecting vectors and tags to be used for protein expression. Throughout this chapter, the expression and purification of yeast eIF3 is shown as an example alongside a general scheme outline.

  9. Induction of human spermine oxidase SMO(PAOh1) is regulated at the levels of new mRNA synthesis, mRNA stabilization and newly synthesized protein.

    PubMed

    Wang, Yanlin; Hacker, Amy; Murray-Stewart, Tracy; Fleischer, Jennifer G; Woster, Patrick M; Casero, Robert A

    2005-03-15

    The oxidation of polyamines induced by antitumour polyamine analogues has been associated with tumour response to specific agents. The human spermine oxidase, SMO(PAOh1), is one enzyme that may play a direct role in the cellular response to the antitumour polyamine analogues. In the present study, the induction of SMO(PAOh1) enzyme activity by CPENSpm [N1-ethyl-N11-(cyclopropyl)methyl-4,8,diazaundecane] is demonstrated to be a result of newly synthesized mRNA and protein. Inhibition of new RNA synthesis by actinomycin D inhibits both the appearance of SMO(PAOh1) mRNA and enzyme activity. Similarly, inhibition of newly synthesized protein with cycloheximide prevents analogue-induced enzyme activity. Half-life determinations indicate that stabilization of SMO(PAOh1) protein does not play a significant role in analogue-induced activity. However, half-life experiments using actinomycin D indicate that CPENSpm treatment not only increases mRNA expression, but also leads to a significant increase in mRNA half-life (17.1 and 8.8 h for CPENSpm-treated cells and control respectively). Using reporter constructs encompassing the SMO(PAOh1) promoter region, a 30-90% increase in transcription is observed after exposure to CPENSpm. The present results are consistent with the hypothesis that analogue-induced expression of SMO(PAOh1) is a result of increased transcription and stabilization of SMO(PAOh1) mRNA, leading to increased protein production and enzyme activity. These data indicate that the major level of control of SMO(PAOh1) expression in response to polyamine analogues exposure is at the level of mRNA.

  10. Cistanches Herba aqueous extract affecting serum BGP and TRAP and bone marrow Smad1 mRNA, Smad5 mRNA, TGF-β1 mRNA and TIEG1 mRNA expression levels in osteoporosis disease.

    PubMed

    Liang, Hai-Dong; Yu, Fang; Tong, Zhi-Hong; Zhang, Hong-Quan; Liang, Wu

    2013-02-01

    We studied molecular mechanism of Cistanches Herba aqueous extract (CHAE) in ovariectomized (OVX) rats, as an experimental model of postmenopausal osteoporosis. Female rats were either sham-operated or bilaterally OVX; and at 60 days postoperatively. The OVX group (n = 8) received an ovariectomy and treatment with normal saline for 90 days commencing from 20th post ovariectomy day. The ovariectomized +CHAE (OVX + CHAE) group (n = 8) received an ovariectomy and were treated with Cistanches Herba aqueous extract of 100 mg/kg body weight daily for 90 days commencing from 22nd post ovariectomy day. The ovariectomy +CHAE (OVX + CHAE) group (n = 8) received an ovariectomy, and were treated with the of 200 mg/kg body weight daily for 90 days commencing from 20th post ovariectomy day. Serum BGP and TRAP, E2, FSH and LH level, bone marrow Smad1, Smad5, TGF-β1 and TIEG1 mRNA expression levels were examined. Results showed that serum BGP and TRAP, FSH and LH levels were significantly increased, whereas E2, Smad1, Smad5, TGF-β1 and TIEG1 mRNA and proteins expression levels were significantly decreased in OVX rats compared to sham rats. 90 days of CHAE treatment could significantly decrease serum BGP and TRAP, FSH and LH levels, and increase E2, Smad1, Smad5, TGF-β1 and TIEG1 mRNA and proteins expression levels in OVX rats. It can be concluded that CHAE play its protective effect against OVX-induced bone degeneration partly by regulating some bone metabolism related genes, e.g. Smad1, Smad5, TGF-β1 and TIEG1.

  11. Induction of cyclooxygenase-2 mRNA and protein following transient focal ischemia in the rat brain.

    PubMed

    Planas, A M; Soriano, M A; Rodríguez-Farré, E; Ferrer, I

    1995-11-24

    Expression of cyclooxygenase-2 (cox-2) mRNA and inducible heat-shock protein-70 (hsp-70) mRNA was studied with in situ hybridization techniques at 30 min and 4 h following 1 h transient middle cerebral artery (MCA) occlusion in the rat brain. In addition, immunoreactivity for cox-2 was studied after 8 h of reperfusion. Induction of hsp-70 and cox-2 mRNA was found in the brain side ipsilateral to MCA occlusion. Hsp-70 mRNA was induced in the parietal cortex and striatum within the territory of the occluded MCA. Induction of cox-2 mRNA was particularly seen in cortical layer II in the brain side ipsilateral to MCA occlusion. At 30 min of reperfusion, areas showing cox-2 mRNA induction included the cingulate and frontal cortices located perifocally to the areas showing hsp-70 mRNA induction, and the piriform cortex. At 4 h of reperfusion, induction of cox-2 mRNA was seen within the parietal cortex. At 8 h of reperfusion, immunoreactivity for cox-2 was mainly seen in the ipsilateral cortex. These results demonstrate that transient focal ischemia induces the expression of cox-2 mRNA and protein in discrete areas of the rat brain during reperfusion, which might lead to local increases of arachidonic acid metabolism.

  12. Regulation of the growth hormone (GH) receptor and GH-binding protein mRNA

    SciTech Connect

    Kaji, Hidesuke; Ohashi, Shin-Ichirou; Abe, Hiromi; Chihara, Kazuo

    1994-12-31

    In fasting rats, a transient increase in growth hormone-binding protein (GHBP) mRNA levels was observed after 1 day, in muscle, heart, and liver, but not in fat tissues. The liver GH receptor (GHR) mRNA level was significantly increased after 1 day (but not after 5 days) of bovine GH (bGH) treatment in fed rats. Both the liver GHR mRNA level and the net increment of plasma IGF-I markedly decreased after 5 days of bGH administration in fasting rats. These findings suggest that GHR and GHBP mRNAs in the liver are expressed in a different way and that the expression of GHBP mRNA is regulated differently between tissues, at least in rats. The results also suggest that refractoriness to GH in a sustained fasting state might be beneficial in preventing anabolic effects of GH. In humans, GHR mRNA in lymphocytes, from subjects with either GH-deficiency or acromegaly, could be detected by the reverse transcription-polymerase chain reaction method. In one patient with partial GH insensitivity, a heterozygous missense mutation (P561T) was identified in the cytoplasmic domain of GHR. 15 refs., 4 figs.

  13. The Role of Neuropeptide Y mRNA Expression Level in Distinguishing Different Types of Depression

    PubMed Central

    Yue, Yingying; Jiang, Haitang; Yin, Yingying; Zhang, Yuqun; Liang, Jinfeng; Li, Shenghua; Wang, Jun; Lu, Jianxin; Geng, Deqin; Wu, Aiqin; Yuan, Yonggui

    2016-01-01

    Previous studies demonstrate that the protein of neuropeptide Y (NPY) is abnormal in depression patients, but the changes of NPY in different types of depression are unclear. This study was aimed to examine protein and mRNA expression levels of NPY in 159 cases with four groups including post-stroke depression (PSD) group, stroke without depression (Non-PSD) group, major depressive disorder (MDD) group and normal control (NC) group. The protein and gene expression analysis were performed by enzyme-linked immunosorbent assay (ELISA) and quantitative polymerase chain reaction-based methods. One way analysis of variance (ANOVA), chi-square tests and nonparametric test were used to evaluate general characteristics, clinical and biological materials. In order to explore the role of NPY in different types of depression, the partial correlations, binary logistic regression analysis and receiver operating characteristic (ROC) curve were calculated for PSD and MDD groups. There are significant differences of NPY protein (Fdf(3) = 5.167, P = 0.002) and mRNA expression levels (χKruskal2-Wallis, df(3) = 20.541, P < 0.001) among four groups. Bonferroni multiple comparisons found that the NPY protein was significantly decreased in PSD (FBonferroni = −7.133, P = 0.002) and Non-PSD group (FBonferroni = −5.612, P = 0.018) compared with NC group. However, contrasted with MDD group, the mRNA expression was increased in PSD and Non-PSD group by nonparametric test (all P < 0.05). In binary logistic analyses, NPY mRNA expression was independent predictors of PSD (odds ratio: 1.452, 95% CI, 1.081–1.951, P = 0.013). The ROC curve showed NPY mRNA had a general prognostic accuracy (area under the curve: 0.766, 95% CI, 0.656–0.876, P < 0.001). This is the first study to explore the distinguishing function of NPY in different types of depression. It will provide help in the identification of different subtypes of depression. PMID:28082897

  14. The Role of Neuropeptide Y mRNA Expression Level in Distinguishing Different Types of Depression.

    PubMed

    Yue, Yingying; Jiang, Haitang; Yin, Yingying; Zhang, Yuqun; Liang, Jinfeng; Li, Shenghua; Wang, Jun; Lu, Jianxin; Geng, Deqin; Wu, Aiqin; Yuan, Yonggui

    2016-01-01

    Previous studies demonstrate that the protein of neuropeptide Y (NPY) is abnormal in depression patients, but the changes of NPY in different types of depression are unclear. This study was aimed to examine protein and mRNA expression levels of NPY in 159 cases with four groups including post-stroke depression (PSD) group, stroke without depression (Non-PSD) group, major depressive disorder (MDD) group and normal control (NC) group. The protein and gene expression analysis were performed by enzyme-linked immunosorbent assay (ELISA) and quantitative polymerase chain reaction-based methods. One way analysis of variance (ANOVA), chi-square tests and nonparametric test were used to evaluate general characteristics, clinical and biological materials. In order to explore the role of NPY in different types of depression, the partial correlations, binary logistic regression analysis and receiver operating characteristic (ROC) curve were calculated for PSD and MDD groups. There are significant differences of NPY protein (Fdf(3) = 5.167, P = 0.002) and mRNA expression levels ([Formula: see text] = 20.541, P < 0.001) among four groups. Bonferroni multiple comparisons found that the NPY protein was significantly decreased in PSD (FBonferroni = -7.133, P = 0.002) and Non-PSD group (FBonferroni = -5.612, P = 0.018) compared with NC group. However, contrasted with MDD group, the mRNA expression was increased in PSD and Non-PSD group by nonparametric test (all P < 0.05). In binary logistic analyses, NPY mRNA expression was independent predictors of PSD (odds ratio: 1.452, 95% CI, 1.081-1.951, P = 0.013). The ROC curve showed NPY mRNA had a general prognostic accuracy (area under the curve: 0.766, 95% CI, 0.656-0.876, P < 0.001). This is the first study to explore the distinguishing function of NPY in different types of depression. It will provide help in the identification of different subtypes of depression.

  15. Mycobacterium tuberculosis ESAT6 and CPF10 Induce Adenosine Deaminase 2 mRNA Expression in Monocyte-Derived Macrophages

    PubMed Central

    Bae, Mi Jung; Ryu, Suyeon; Kim, Ha-Jeong; Cha, Seung Ick

    2017-01-01

    Background Delayed hypersensitivity plays a large role in the pathogenesis of tuberculous pleural effusion (TPE). Macrophages infected with live Mycobacterium tuberculosis (MTB) increase the levels of adenosine deaminase2 (ADA2) in the pleural fluid of TPE patients. However, it is as yet unclear whether ADA2 can be produced by macrophages when challenged with MTB antigens alone. This study therefore evaluated the levels of ADA2 mRNA expression, using monocyte-derived macrophages (MDMs) stimulated with MTB antigens. Methods Purified monocytes from the peripheral blood mononuclear cells of healthy volunteers were differentiated into macrophages using granulocyte-macrophage colony-stimulating factor (GM-CSF) or macrophage colony-stimulating factor (M-CSF). The MDMs were stimulated with early secretory antigenic target protein 6 (ESAT6) and culture filtrate protein 10 (CFP10). The mRNA expression levels for the cat eye syndrome chromosome region, candidate 1 (CECR1) gene encoding ADA2 were then measured. Results CECR1 mRNA expression levels were significantly higher in MDMs stimulated with ESAT6 and CFP10, than in the unstimulated MDMs. When stimulated with ESAT6, M-CSF-treated MDMs showed more pronounced CECR1 mRNA expression than GM-CSF-treated MDMs. Interferon-γ decreased the ESAT6- and CFP10-induced CECR1 mRNA expression in MDMs. CECR1 mRNA expression levels were positively correlated with mRNA expression of tumor necrosis factor α and interleukin 10, respectively. Conclusion ADA2 mRNA expression increased when MDMs were stimulated with MTB antigens alone. This partly indicates that pleural fluid ADA levels could increase in patients with culture-negative TPE. Our results may be helpful in improving the understanding of TPE pathogenesis. PMID:28119750

  16. Identification of a Functionally Distinct Truncated BDNF mRNA Splice Variant and Protein in Trachemys scripta elegans

    PubMed Central

    Ambigapathy, Ganesh; Zheng, Zhaoqing; Li, Wei; Keifer, Joyce

    2013-01-01

    Brain-derived neurotrophic factor (BDNF) has a diverse functional role and complex pattern of gene expression. Alternative splicing of mRNA transcripts leads to further diversity of mRNAs and protein isoforms. Here, we describe the regulation of BDNF mRNA transcripts in an in vitro model of eyeblink classical conditioning and a unique transcript that forms a functionally distinct truncated BDNF protein isoform. Nine different mRNA transcripts from the BDNF gene of the pond turtle Trachemys scripta elegans (tBDNF) are selectively regulated during classical conditioning: exon I mRNA transcripts show no change, exon II transcripts are downregulated, while exon III transcripts are upregulated. One unique transcript that codes from exon II, tBDNF2a, contains a 40 base pair deletion in the protein coding exon that generates a truncated tBDNF protein. The truncated transcript and protein are expressed in the naïve untrained state and are fully repressed during conditioning when full-length mature tBDNF is expressed, thereby having an alternate pattern of expression in conditioning. Truncated BDNF is not restricted to turtles as a truncated mRNA splice variant has been described for the human BDNF gene. Further studies are required to determine the ubiquity of truncated BDNF alternative splice variants across species and the mechanisms of regulation and function of this newly recognized BDNF protein. PMID:23825634

  17. FKBP5, SERT and COMT mRNA expressions in the peripheral leukocytes during menstruation cycle in healthy reproductive females.

    PubMed

    Kinouchi, Sawako; Iga, Jun-Ichi; Ueno, Shu-Ichi; Yamauchi, Ken; Numata, Shusuke; Song, Hongwei; Sumitani, Satsuki; Shibuya-Tayoshi, Sumiko; Haku, Mari; Yasui, Toshiyuki; Irahara, Minoru; Morita, Kyoko; Rokutan, Kazuhito; Ohmori, Tetsuro

    2008-03-21

    There have been several evidences that the mRNA expressions in the peripheral leukocytes may indicate not only physical but also psychological states. The purpose of this study is whether the mRNA expressional changes in the leukocytes are related to the mental states across the menstrual cycle in reproductive healthy female subjects. Thirty-eight female subjects (22.4+/-1.4 year-old) were participated in this study at three menstruation cycle periods (menstrual, follicular and luteal phase). The FKBP5 (FK506-binding protein gene), SERT (serotonin transporter gene) and COMT (catechol-o-methyltransferase gene) mRNA expressions in the leukocytes were determined with hormonal data. The psychological changes were assessed with self-rating hospital anxiety and depression scale (HADS). Only one thirds of subjects (n=12) had regular menstrual cycles during the experiment. So we analyzed the data from these 12 subjects. The anxiety score of each subject was changed across the menstrual cycle (Friedman test: P<0.05). The FKBP5 mRNA expression was significantly lower in the follicular phase than in the other phases but no changes were seen in either SERT or COMT mRNA expressions among the phases. In conclusion, there are differences of HADS anxiety score and FKBP5 mRNA expression in the leukocytes across the menstrual cycle but there is no correlation between anxiety scores and FKBP5 mRNA.

  18. Cloning and expression analysis of prohibitin mRNA in canine mammary tumors

    PubMed Central

    MATSUYAMA, Satoshi; NAKANO, Yuko; NAKAMURA, Mieko; YAMAMOTO, Ryohei; SHIMADA, Terumasa; OHASHI, Fumihito; KUBO, Kihei

    2014-01-01

    Prohibitin is an antiproliferative protein that is a product of a putative tumor suppressor gene. However, there is little information on prohibitins in companion animals. In this study, we cloned canine prohibitin mRNA using RT-PCR and 3′-RACE (Rapid Amplification of cDNA Ends). The sequence was well conserved compared with those of other mammals, including human. The deduced amino acid sequence translated from the open reading frame completely corresponded to the human sequence. Canine prohibitin mRNA was expressed in all normal mammary and tumor samples examined. These results suggest that this protein plays a vital role in cell growth mechanisms and may be related to the occurrence of canine mammary tumors. PMID:25312047

  19. Genome-wide analysis of microRNA and mRNA expression signatures in cancer

    PubMed Central

    Li, Ming-hui; Fu, Sheng-bo; Xiao, Hua-sheng

    2015-01-01

    Cancer is an extremely diverse and complex disease that results from various genetic and epigenetic changes such as DNA copy-number variations, mutations, and aberrant mRNA and/or protein expression caused by abnormal transcriptional regulation. The expression profiles of certain microRNAs (miRNAs) and messenger RNAs (mRNAs) are closely related to cancer progression stages. In the past few decades, DNA microarray and next-generation sequencing techniques have been widely applied to identify miRNA and mRNA signatures for cancers on a genome-wide scale and have provided meaningful insights into cancer diagnosis, prognosis and personalized medicine. In this review, we summarize the progress in genome-wide analysis of miRNAs and mRNAs as cancer biomarkers, highlighting their diagnostic and prognostic roles. PMID:26299954

  20. Analysis of xanthine dehydrogenase mRNA levels in mutants affecting the expression of the rosy locus.

    PubMed Central

    Covington, M; Fleenor, D; Devlin, R B

    1984-01-01

    Xanthine dehydrogenase (XDH) mRNA levels were measured in a number of mutants and natural variants affecting XDH gene expression. Two variants, ry+4 and ry+10, contain cis-acting elements which map to a region flanking the 5' end of the XDH gene. Ry+4, which has 2-3 times more XDH protein than a wild type strain, has 3.2 times more XDH mRNA. Ry+10 has 50% of the wild type XDH level and 54% of the wild type XDH mRNA level. Three rosy mutants which map within the structural gene were also examined. Two of these had little if any XDH mRNA, but the third mutant had 1.3 times more XDH mRNA than wild type flies. Another mutant, ry2 , which contains no XDH protein and has a 9KB transposable element inserted into the XDH gene, has normal levels of XDH mRNA transcripts which are also the same size as those found in the wild type strain. Changes in XDH mRNA levels were measured during Drosophila development and found to parallel changes in the amount of XDH protein. In addition, there were no large changes in the size of XDH mRNA during development. Images PMID:6588363

  1. Tristetraprolin (TTP): Interactions with mRNA and proteins, and current thoughts on mechanisms of action

    PubMed Central

    Brooks, Seth A.; Blackshear, Perry J.

    2013-01-01

    Changes in mRNA stability and translation are critical control points in the regulation of gene expression, particularly genes encoding growth factors, inflammatory mediators, and proto-oncogenes. Adenosine and uridine (AU)-rich elements (ARE), often located in the 3′ untranslated regions (3′UTR) of mRNAs, are known to target transcripts for rapid decay. They are also involved in the regulation of mRNA stability and translation in response to extracellular cues. This review focuses on one of the best characterized ARE binding proteins, tristetraprolin (TTP), the founding member of a small family of CCCH tandem zinc finger proteins. In this survey, we have reviewed the current status of TTP interactions with mRNA and proteins, and discussed current thinking about TTP's mechanism of action to promote mRNA decay. We also review the proposed regulation of TTP's functions by phosphorylation. Finally, we have discussed emerging evidence for TTP operating as a translational regulator. PMID:23428348

  2. Hypoxia-induced gene expression results from selective mRNA partitioning to the endoplasmic reticulum

    PubMed Central

    Staudacher, Jonas J.; Naarmann-de Vries, Isabel S.; Ujvari, Stefanie J.; Klinger, Bertram; Kasim, Mumtaz; Benko, Edgar; Ostareck-Lederer, Antje; Ostareck, Dirk H.; Bondke Persson, Anja; Lorenzen, Stephan; Meier, Jochen C.; Blüthgen, Nils; Persson, Pontus B.; Henrion-Caude, Alexandra; Mrowka, Ralf; Fähling, Michael

    2015-01-01

    Protein synthesis is a primary energy-consuming process in the cell. Therefore, under hypoxic conditions, rapid inhibition of global mRNA translation represents a major protective strategy to maintain energy metabolism. How some mRNAs, especially those that encode crucial survival factors, continue to be efficiently translated in hypoxia is not completely understood. By comparing specific transcript levels in ribonucleoprotein complexes, cytoplasmic polysomes and endoplasmic reticulum (ER)-bound ribosomes, we show that the synthesis of proteins encoded by hypoxia marker genes is favoured at the ER in hypoxia. Gene expression profiling revealed that transcripts particularly increased by the HIF-1 transcription factor network show hypoxia-induced enrichment at the ER. We found that mRNAs favourably translated at the ER have higher conservation scores for both the 5′- and 3′-untranslated regions (UTRs) and contain less upstream initiation codons (uAUGs), indicating the significance of these sequence elements for sustained mRNA translation under hypoxic conditions. Furthermore, we found enrichment of specific cis-elements in mRNA 5′- as well as 3′-UTRs that mediate transcript localization to the ER in hypoxia. We conclude that transcriptome partitioning between the cytoplasm and the ER permits selective mRNA translation under conditions of energy shortage. PMID:25753659

  3. mRNA expression profile of serotonin receptor subtypes and distribution of serotonergic terminations in marmoset brain

    PubMed Central

    Shukla, Rammohan; Watakabe, Akiya; Yamamori, Tetsuo

    2014-01-01

    To better understand serotonin function in the primate brain, we examined the mRNA expression patterns of all the 13 members of the serotonin receptor (5HTR) family, by in situ hybridization (ISH) and the distribution of serotonergic terminations by serotonin transporter (SERT) protein immunohistochemical analysis. Ten of the 13 5HTRs showed significant mRNA expressions in the marmoset brain. Our study shows several new features of the organization of serotonergic systems in the marmoset brain. (1) The thalamus expressed only a limited number of receptor subtypes compared with the cortex, hippocampus, and other subcortical regions. (2) In the cortex, there are layer-selective and area-selective mRNA expressions of 5HTRs. (3) Highly localized mRNA expressions of 5HT1F and 5HT3A were observed. (4) There was a conspicuous overlap of the mRNA expressions of receptor subtypes known to have somatodendritic localization of receptor proteins with dense serotonergic terminations in the visual cortex, the central lateral (CL) nucleus of the thalamus, the presubiculum, and the medial mammillary nucleus of the hypothalamus. This suggests a high correlation between serotonin availability and receptor expression at these locations. (5) The 5HTRs show differences in mRNA expression pattern between the marmoset and mouse cortices whereas the patterns of both the species were much similar in the hippocampus. We discuss the possible roles of 5HTRs in the marmoset brain revealed by the analysis of their overall mRNA expression patterns. PMID:24904298

  4. Nutritional control of mRNA isoform expression during developmental arrest and recovery in C. elegans.

    PubMed

    Maxwell, Colin S; Antoshechkin, Igor; Kurhanewicz, Nicole; Belsky, Jason A; Baugh, L Ryan

    2012-10-01

    Nutrient availability profoundly influences gene expression. Many animal genes encode multiple transcript isoforms, yet the effect of nutrient availability on transcript isoform expression has not been studied in genome-wide fashion. When Caenorhabditis elegans larvae hatch without food, they arrest development in the first larval stage (L1 arrest). Starved larvae can survive L1 arrest for weeks, but growth and post-embryonic development are rapidly initiated in response to feeding. We used RNA-seq to characterize the transcriptome during L1 arrest and over time after feeding. Twenty-seven percent of detectable protein-coding genes were differentially expressed during recovery from L1 arrest, with the majority of changes initiating within the first hour, demonstrating widespread, acute effects of nutrient availability on gene expression. We used two independent approaches to track expression of individual exons and mRNA isoforms, and we connected changes in expression to functional consequences by mining a variety of databases. These two approaches identified an overlapping set of genes with alternative isoform expression, and they converged on common functional patterns. Genes affecting mRNA splicing and translation are regulated by alternative isoform expression, revealing post-transcriptional consequences of nutrient availability on gene regulation. We also found that phosphorylation sites are often alternatively expressed, revealing a common mode by which alternative isoform expression modifies protein function and signal transduction. Our results detail rich changes in C. elegans gene expression as larvae initiate growth and post-embryonic development, and they provide an excellent resource for ongoing investigation of transcriptional regulation and developmental physiology.

  5. Apigenin prevents UVB-induced cyclooxygenase 2 expression: coupled mRNA stabilization and translational inhibition.

    PubMed

    Tong, Xin; Van Dross, Rukiyah T; Abu-Yousif, Adnan; Morrison, Aubrey R; Pelling, Jill C

    2007-01-01

    Cyclooxygenase 2 (COX-2) is a key enzyme in the conversion of arachidonic acid to prostaglandins, and COX-2 overexpression plays an important role in carcinogenesis. Exposure to UVB strongly increased COX-2 protein expression in mouse 308 keratinocytes, and this induction was inhibited by apigenin, a nonmutagenic bioflavonoid that has been shown to prevent mouse skin carcinogenesis induced by both chemical carcinogens and UV exposure. Our previous study suggested that one pathway by which apigenin inhibits UV-induced and basal COX-2 expression is through modulation of USF transcriptional activity in the 5' upstream region of the COX-2 gene. Here, we found that apigenin treatment also increased COX-2 mRNA stability, and the inhibitory effect of apigenin on UVB-induced luciferase reporter gene activity was dependent on the AU-rich element of the COX-2 3'-untranslated region. Furthermore, we identified two RNA-binding proteins, HuR and the T-cell-restricted intracellular antigen 1-related protein (TIAR), which were associated with endogenous COX-2 mRNA in 308 keratinocytes, and apigenin treatment increased their localization to cell cytoplasm. More importantly, reduction of HuR levels by small interfering RNA inhibited apigenin-mediated stabilization of COX-2 mRNA. Cells expressing reduced TIAR showed marked resistance to apigenin's ability to inhibit UVB-induced COX-2 expression. Taken together, these results indicate that in addition to transcriptional regulation, another mechanism by which apigenin prevents COX-2 expression is through mediating TIAR suppression of translation.

  6. Variations in mRNA and protein levels of Ikaros family members in pediatric T cell acute lymphoblastic leukemia

    PubMed Central

    Mitchell, Julie L.

    2016-01-01

    Background Pediatric T cell acute lymphoblastic leukemia (T-ALL) is a highly heterogeneous disease in which the cells share phenotypic characteristics with normal human thymocytes. The Ikaros family of transcription factors includes five members that are required for normal T cell development and are implicated in leukemogenesis. The goal of this work was to correlate the pattern of expression of Ikaros family members with the phenotype of the T-ALL cells. Methods We obtained twenty-four samples from pediatric T-ALL patients and used multi-parameter flow cytometry to characterize each sample, comparing the phenotype of the leukemic cells with normal human thymocytes. Then, we defined the expression levels of each Ikaros family member to determine whether the mRNA levels or splicing or protein levels were similar to the normal patterns seen during human T cell development. Results Multi-parameter analysis of the phenotype of T-ALL cells revealed that each patient’s cells were unique and could not be readily correlated with stages of T cell development. Similarly, the pattern of Ikaros expression varied among patients. In most patients, Ikaros mRNA was the dominant family member expressed, but some patients’ cells contained mostly Helios, Aiolos, or Eos mRNA. Despite that most patients had elevated mRNA levels of Ikaros family members and unique patterns of mRNA splicing, most patients had significantly reduced protein levels of Ikaros and Aiolos. Conclusions Our analysis of the cell phenotype and Ikaros expression levels in T-ALL cells revealed the extent of heterogeneity among patients. While it is rarely possible to trace leukemic cells to their developmental origin, we found distinct patterns of Ikaros family mRNA levels in groups of patients. Further, mRNA and protein levels of Ikaros and Aiolos did not correlate, indicating that mRNA and protein levels are regulated via distinct mechanisms. PMID:27826566

  7. TP53 and ATM mRNA expression in skin and skeletal muscle after low-level laser exposure.

    PubMed

    Guedes de Almeida, Luciana; Silva Sergio, Luiz Philippe da; de Paoli, Flavia; Mencalha, Andre Luiz; da Fonseca, Adenilson de Souza

    2017-02-16

    Low-level lasers are widespread in regenerative medicine, but the molecular mechanisms involved in their biological effects are not fully understood, particularly those on DNA stability. Therefore, this study aimed to investigate mRNA expression of genes related to DNA genomic stability in skin and skeletal muscle tissue from Wistar rats exposed to low-level red and infrared lasers. For this, TP53 (Tumor Protein 53) and ATM (Ataxia Telangiectasia Mutated gene) mRNA expressions were evaluated by real-time quantitative PCR (RT-qPCR) technique 24 hours after low-level red and infrared laser exposure. Our data showed that relative TP53 mRNA expression was not significantly altered in both tissues exposed to lasers. For ATM, relative mRNA expression in skin tissue was not significantly altered, but in muscle tissue, laser exposure increased relative ATM mRNA expression. Low-level red and infrared laser radiations alter ATM mRNA expression related to DNA stability in skeletal muscle tissue.

  8. Anesthesia for Euthanasia Influences mRNA Expression in Healthy Mice and after Traumatic Brain Injury

    PubMed Central

    Staib-Lasarzik, Irina; Kriege, Oliver; Timaru-Kast, Ralph; Pieter, Dana; Werner, Christian; Engelhard, Kristin

    2014-01-01

    Abstract Tissue sampling for gene expression analysis is usually performed under general anesthesia. Anesthetics are known to modulate hemodynamics, receptor-mediated signaling cascades, and outcome parameters. The present study determined the influence of anesthetic paradigms typically used for euthanization and tissue sampling on cerebral mRNA expression in mice. Naïve mice and animals with acute traumatic brain injury induced by controlled cortical impact (CCI) were randomized to the following euthanasia protocols (n=10–11/group): no anesthesia (NA), 1 min of 4 vol% isoflurane in room air (ISO), 3 min of a combination of 5 mg/kg midazolam, 0.05 mg/kg fentanyl, and 0.5 mg/kg medetomidine intraperitoneally (COMB), or 3 min of 360 mg/kg chloral hydrate intraperitoneally (CH). mRNA expression of actin-1-related gene (Act1), FBJ murine osteosarcoma viral oncogene homolog B (FosB), tumor necrosis factor alpha (TNFα), heat shock protein beta-1 (HspB1), interleukin (IL)-6, tight junction protein 1 (ZO-1), IL-1ß, cyclophilin A, micro RNA 497 (miR497), and small cajal body-specific RNA 17 were determined by real-time polymerase chain reaction (PCR) in hippocampus samples. In naïve animals, Act1 expression was downregulated in the CH group compared with NA. FosB expression was downregulated in COMB and CH groups compared with NA. CCI reduced Act1 and FosB expression, whereas HspB1 and TNFα expression increased. After CCI, HspB1 expression was significantly higher in ISO, COMB, and CH groups, and TNFα expression was elevated in ISO and COMB groups. MiR497, IL-6, and IL-1ß were upregulated after CCI but not affected by anesthetics. Effects were independent of absolute mRNA copy numbers. The data demonstrate that a few minutes of anesthesia before tissue sampling are sufficient to induce immediate mRNA changes, which seem to predominate in the early-regulated gene cluster. Anesthesia-related effects on gene expression might explain limited

  9. Anesthesia for euthanasia influences mRNA expression in healthy mice and after traumatic brain injury.

    PubMed

    Staib-Lasarzik, Irina; Kriege, Oliver; Timaru-Kast, Ralph; Pieter, Dana; Werner, Christian; Engelhard, Kristin; Thal, Serge C

    2014-10-01

    Tissue sampling for gene expression analysis is usually performed under general anesthesia. Anesthetics are known to modulate hemodynamics, receptor-mediated signaling cascades, and outcome parameters. The present study determined the influence of anesthetic paradigms typically used for euthanization and tissue sampling on cerebral mRNA expression in mice. Naïve mice and animals with acute traumatic brain injury induced by controlled cortical impact (CCI) were randomized to the following euthanasia protocols (n=10-11/group): no anesthesia (NA), 1 min of 4 vol% isoflurane in room air (ISO), 3 min of a combination of 5 mg/kg midazolam, 0.05 mg/kg fentanyl, and 0.5 mg/kg medetomidine intraperitoneally (COMB), or 3 min of 360 mg/kg chloral hydrate intraperitoneally (CH). mRNA expression of actin-1-related gene (Act1), FBJ murine osteosarcoma viral oncogene homolog B (FosB), tumor necrosis factor alpha (TNFα), heat shock protein beta-1 (HspB1), interleukin (IL)-6, tight junction protein 1 (ZO-1), IL-1ß, cyclophilin A, micro RNA 497 (miR497), and small cajal body-specific RNA 17 were determined by real-time polymerase chain reaction (PCR) in hippocampus samples. In naïve animals, Act1 expression was downregulated in the CH group compared with NA. FosB expression was downregulated in COMB and CH groups compared with NA. CCI reduced Act1 and FosB expression, whereas HspB1 and TNFα expression increased. After CCI, HspB1 expression was significantly higher in ISO, COMB, and CH groups, and TNFα expression was elevated in ISO and COMB groups. MiR497, IL-6, and IL-1ß were upregulated after CCI but not affected by anesthetics. Effects were independent of absolute mRNA copy numbers. The data demonstrate that a few minutes of anesthesia before tissue sampling are sufficient to induce immediate mRNA changes, which seem to predominate in the early-regulated gene cluster. Anesthesia-related effects on gene expression might explain limited reproduciblity of real

  10. Highest trkB mRNA expression in the entorhinal cortex among hippocampal subregions in the adult rat: contrasting pattern with BDNF mRNA expression.

    PubMed

    Tokuyama, W; Hashimoto, T; Li, Y X; Okuno, H; Miyashita, Y

    1998-11-20

    Brain-derived neurotrophic factor (BDNF) and its receptor, TrkB, regulate synaptic functions in the hippocampus of the adult rodent. In previous studies, in situ hybridization methods have been used to evaluate regional differences in BDNF and trkB mRNA expression levels in hippocampal subregions. However, these studies have failed to reach consensus regarding the regional differences in the mRNA expression levels. In the present study, we quantitated mRNA expression levels using two different methods, ribonuclease protection assays and a quantitative reverse-transcription polymerase chain reaction technique, in four hippocampal subregions: the entorhinal cortex, dentate gyrus (DG), CA3 and CA1. These two methods yielded the same results. We found that BDNF and trkB mRNA expression levels did not covary in the four subregions. BDNF and full length trkB (trkB FL) mRNA in the entorhinal cortex and the DG show contrasting expression patterns. The expression level of BDNF mRNA was highest in the DG among the hippocampal subregions and low in the entorhinal cortex and the CA1, whereas the trkB FL mRNA expression level was highest in the entorhinal cortex, low in the DG and lowest in the CA3. These results suggest regional differences in BDNF/TrkB signaling for maintenance and modifiability of neuronal connections in the hippocampal formation.

  11. Robust Transgene Expression from Bicistronic mRNA in the Green Alga Chlamydomonas reinhardtii

    PubMed Central

    Onishi, Masayuki; Pringle, John R.

    2016-01-01

    The unicellular green alga Chlamydomonas reinhardtii is a model organism that provides an opportunity to understand the evolution and functional biology of the lineage that includes the land plants, as well as aspects of the fundamental core biology conserved throughout the eukaryotic phylogeny. Although many tools are available to facilitate genetic, molecular biological, biochemical, and cell biological studies in Chlamydomonas, expression of unselected transgenes of interest (GOIs) has been challenging. In most methods used previously, the GOI and a selectable marker are expressed from two separate mRNAs, so that their concomitant expression is not guaranteed. In this study, we developed constructs that allow expression of an upstream GOI and downstream selectable marker from a single bicistronic mRNA. Although this approach in other systems has typically required a translation-enhancing element such as an internal ribosome entry site for the downstream marker, we found that a short stretch of unstructured junction sequence was sufficient to obtain adequate expression of the downstream gene, presumably through post-termination reinitiation. With this system, we obtained robust expression of both endogenous and heterologous GOIs, including fluorescent proteins and tagged fusion proteins, in the vast majority of transformants, thus eliminating the need for tedious secondary screening for GOI-expressing transformants. This improved efficiency should greatly facilitate a variety of genetic and cell-biological studies in Chlamydomonas and also enable new applications such as expression-based screens and large-scale production of foreign proteins. PMID:27770025

  12. Combining miRNA and mRNA Expression Profiles in Wilms Tumor Subtypes

    PubMed Central

    Ludwig, Nicole; Werner, Tamara V.; Backes, Christina; Trampert, Patrick; Gessler, Manfred; Keller, Andreas; Lenhof, Hans-Peter; Graf, Norbert; Meese, Eckart

    2016-01-01

    Wilms tumor (WT) is the most common childhood renal cancer. Recent findings of mutations in microRNA (miRNA) processing proteins suggest a pivotal role of miRNAs in WT genesis. We performed miRNA expression profiling of 36 WTs of different subtypes and four normal kidney tissues using microarrays. Additionally, we determined the gene expression profile of 28 of these tumors to identify potentially correlated target genes and affected pathways. We identified 85 miRNAs and 2107 messenger RNAs (mRNA) differentially expressed in blastemal WT, and 266 miRNAs and 1267 mRNAs differentially expressed in regressive subtype. The hierarchical clustering of the samples, using either the miRNA or mRNA profile, showed the clear separation of WT from normal kidney samples, but the miRNA pattern yielded better separation of WT subtypes. A correlation analysis of the deregulated miRNA and mRNAs identified 13,026 miRNA/mRNA pairs with inversely correlated expression, of which 2844 are potential interactions of miRNA and their predicted mRNA targets. We found significant upregulation of miRNAs-183, -301a/b and -335 for the blastemal subtype, and miRNAs-181b, -223 and -630 for the regressive subtype. We found marked deregulation of miRNAs regulating epithelial to mesenchymal transition, especially in the blastemal subtype, and miRNAs influencing chemosensitivity, especially in regressive subtypes. Further research is needed to assess the influence of preoperative chemotherapy and tumor infiltrating lymphocytes on the miRNA and mRNA patterns in WT. PMID:27043538

  13. Amyloid precursor protein mRNA levels in Alzheimer's disease brain.

    PubMed

    Preece, Paul; Virley, David J; Costandi, Moheb; Coombes, Robert; Moss, Stephen J; Mudge, Anne W; Jazin, Elena; Cairns, Nigel J

    2004-03-17

    Insoluble beta-amyloid deposits in Alzheimer's disease (AD) brain are proteolytically derived from the membrane bound amyloid precursor protein (APP). The APP gene is differentially spliced to produce isoforms that can be classified into those containing a Kunitz-type serine protease inhibitor domain (K(+), APP(751), APP(770), APRP(365) and APRP(563)), and those without (K(-), APP(695) and APP(714)). Given the hypothesis that Abeta is a result of aberrant catabolism of APP, differential expression of mRNA isoforms containing protease inhibitors might play an active role in the pathology of AD. We took 513 cerebral cortex samples from 90 AD and 81 control brains and quantified the mRNA isoforms of APP with TaqMan real-time RT-PCR. After adjustment for age at death, brain pH and gender we found a change in the ratio of KPI(+) to KPI(-) mRNA isoforms of APP. Three separate probes, designed to recognise only KPI(+) mRNA species, gave increases of between 28% and 50% in AD brains relative to controls (p=0.002). There was no change in the mRNA levels of KPI-(APP 695) (p=0.898). Therefore, whilst KPI-mRNA levels remained stable the KPI(+) species increased specifically in the AD brains.

  14. Regulation of mRNA abundance in activated T lymphocytes: identification of mRNA species affected by the inhibition of protein synthesis.

    PubMed Central

    Coleclough, C; Kuhn, L; Lefkovits, I

    1990-01-01

    Inhibition of protein synthesis has often been observed to increase the concentration of mRNAs that encode proteins associated with the regulation of cell division. As two-dimensional gel electrophoresis permits the simultaneous monitoring of individual elements in large populations of gene products, we have used this technique to assess the effect of cycloheximide treatment on the mRNA complement of activated mouse T cells in an objective fashion. Two-dimensional gels of proteins generated by cell-free translation of mRNA from T-cell blasts display about 400 spots; only 5 of these are reproducibly enhanced by cycloheximide treatment and about 4 are diminished. The cDNA cloning vector lambda jac allows analysis of large arrays of molecular clones by cell-free expression, and we have used it in a sibling selection scheme to isolate a clone of one of the prominently induced mRNA species, which we refer to as chx1. chx1 mRNA concentration is increased by cycloheximide treatment of activated B cells, as well as T cells, and it is rapidly and transiently induced, in a cycloheximide-enhanced manner, upon serum stimulation of resting 3T3 fibroblastoid cells. The chx1 protein is hydrophilic, is slightly basic, and has patches of homology with the Jun-D gene product. The chx1 gene is remarkable in its lack of detectable introns and of strong bias against CpG dinucleotides. Images PMID:2308934

  15. Decline in c-myc mRNA expression but not the induction of c-fos mRNA expression is associated with differentiation of SH-SY5Y human neuroblastoma cells

    SciTech Connect

    Jalava, A.M.; Heikkilae, J.E.; Akerman, K.E.O. )

    1988-11-01

    The induction of differentiation in SH-SY5Y human neuroblastoma cells with 12-O-tetradecanoylphorbol-13-acetate (TPA) is accompanied by a rapid and a transient expression of c-fos mRNA and a down-regulation of c-myc RNA. The TPA-induced expression of c-fos mRNA was inhibited by H-7, a specific inhibitor of protein kinase C (PK-C). Dioctanoylglycerol (DiC{sub 8}) failed to induce differentiation of SH-SY5Y cells or to down-regulate c-myc mRNA but it did induce the expression of c-fos mRNA. Treatment of IMR-32 human neuroblastoma cells with TPA did not cause differentiation although c-fos mRNA was induced. Since PK-C in SH-SY5Y cells was activated by both TPA and DiC{sub 8} it is suggested that the activation of PK-C alone is not sufficient to induce differentiation in SH-SY5Y cells. The down-regulation of c-myc mRNA rather than the induction of c-fos mRNA seems to be associated with differentiation process in SH-SY5Y cells.

  16. An intronic RNA structure modulates expression of the mRNA biogenesis factor Sus1.

    PubMed

    AbuQattam, Ali; Gallego, José; Rodríguez-Navarro, Susana

    2016-01-01

    Sus1 is a conserved protein involved in chromatin remodeling and mRNA biogenesis. Unlike most yeast genes, the SUS1 pre-mRNA of Saccharomyces cerevisiae contains two introns and is alternatively spliced, retaining one or both introns in response to changes in environmental conditions. SUS1 splicing may allow the cell to control Sus1 expression, but the mechanisms that regulate this process remain unknown. Using in silico analyses together with NMR spectroscopy, gel electrophoresis, and UV thermal denaturation experiments, we show that the downstream intron (I2) of SUS1 forms a weakly stable, 37-nucleotide stem-loop structure containing the branch site near its apical loop and the 3' splice site after the stem terminus. A cellular assay revealed that two of four mutants containing altered I2 structures had significantly impaired SUS1 expression. Semiquantitative RT-PCR experiments indicated that all mutants accumulated unspliced SUS1 pre-mRNA and/or induced distorted levels of fully spliced mRNA relative to wild type. Concomitantly, Sus1 cellular functions in histone H2B deubiquitination and mRNA export were affected in I2 hairpin mutants that inhibited splicing. This work demonstrates that I2 structure is relevant for SUS1 expression, and that this effect is likely exerted through modulation of splicing.

  17. An intronic RNA structure modulates expression of the mRNA biogenesis factor Sus1

    PubMed Central

    AbuQattam, Ali; Gallego, José; Rodríguez-Navarro, Susana

    2016-01-01

    Sus1 is a conserved protein involved in chromatin remodeling and mRNA biogenesis. Unlike most yeast genes, the SUS1 pre-mRNA of Saccharomyces cerevisiae contains two introns and is alternatively spliced, retaining one or both introns in response to changes in environmental conditions. SUS1 splicing may allow the cell to control Sus1 expression, but the mechanisms that regulate this process remain unknown. Using in silico analyses together with NMR spectroscopy, gel electrophoresis, and UV thermal denaturation experiments, we show that the downstream intron (I2) of SUS1 forms a weakly stable, 37-nucleotide stem–loop structure containing the branch site near its apical loop and the 3′ splice site after the stem terminus. A cellular assay revealed that two of four mutants containing altered I2 structures had significantly impaired SUS1 expression. Semiquantitative RT-PCR experiments indicated that all mutants accumulated unspliced SUS1 pre-mRNA and/or induced distorted levels of fully spliced mRNA relative to wild type. Concomitantly, Sus1 cellular functions in histone H2B deubiquitination and mRNA export were affected in I2 hairpin mutants that inhibited splicing. This work demonstrates that I2 structure is relevant for SUS1 expression, and that this effect is likely exerted through modulation of splicing. PMID:26546116

  18. Co-evolution of Bacterial Ribosomal Protein S15 with Diverse mRNA Regulatory Structures.

    PubMed

    Slinger, Betty L; Newman, Hunter; Lee, Younghan; Pei, Shermin; Meyer, Michelle M

    2015-12-01

    RNA-protein interactions are critical in many biological processes, yet how such interactions affect the evolution of both partners is still unknown. RNA and protein structures are impacted very differently by mechanisms of genomic change. While most protein families are identifiable at the nucleotide level across large phylogenetic distances, RNA families display far less nucleotide similarity and are often only shared by closely related bacterial species. Ribosomal protein S15 has two RNA binding functions. First, it is a ribosomal protein responsible for organizing the rRNA during ribosome assembly. Second, in many bacterial species S15 also interacts with a structured portion of its own transcript to negatively regulate gene expression. While the first interaction is conserved in most bacteria, the second is not. Four distinct mRNA structures interact with S15 to enable regulation, each of which appears to be independently derived in different groups of bacteria. With the goal of understanding how protein-binding specificity may influence the evolution of such RNA regulatory structures, we examine whether examples of these mRNA structures are able to interact with, and regulate in response to, S15 homologs from organisms containing distinct mRNA structures. We find that despite their shared RNA binding function in the rRNA, S15 homologs have distinct RNA recognition profiles. We present a model to explain the specificity patterns observed, and support this model by with further mutagenesis. After analyzing the patterns of conservation for the S15 protein coding sequences, we also identified amino acid changes that alter the binding specificity of an S15 homolog. In this work we demonstrate that homologous RNA-binding proteins have different specificity profiles, and minor changes to amino acid sequences, or to RNA structural motifs, can have large impacts on RNA-protein recognition.

  19. Co-evolution of Bacterial Ribosomal Protein S15 with Diverse mRNA Regulatory Structures

    PubMed Central

    Slinger, Betty L.; Newman, Hunter; Lee, Younghan; Pei, Shermin; Meyer, Michelle M.

    2015-01-01

    RNA-protein interactions are critical in many biological processes, yet how such interactions affect the evolution of both partners is still unknown. RNA and protein structures are impacted very differently by mechanisms of genomic change. While most protein families are identifiable at the nucleotide level across large phylogenetic distances, RNA families display far less nucleotide similarity and are often only shared by closely related bacterial species. Ribosomal protein S15 has two RNA binding functions. First, it is a ribosomal protein responsible for organizing the rRNA during ribosome assembly. Second, in many bacterial species S15 also interacts with a structured portion of its own transcript to negatively regulate gene expression. While the first interaction is conserved in most bacteria, the second is not. Four distinct mRNA structures interact with S15 to enable regulation, each of which appears to be independently derived in different groups of bacteria. With the goal of understanding how protein-binding specificity may influence the evolution of such RNA regulatory structures, we examine whether examples of these mRNA structures are able to interact with, and regulate in response to, S15 homologs from organisms containing distinct mRNA structures. We find that despite their shared RNA binding function in the rRNA, S15 homologs have distinct RNA recognition profiles. We present a model to explain the specificity patterns observed, and support this model by with further mutagenesis. After analyzing the patterns of conservation for the S15 protein coding sequences, we also identified amino acid changes that alter the binding specificity of an S15 homolog. In this work we demonstrate that homologous RNA-binding proteins have different specificity profiles, and minor changes to amino acid sequences, or to RNA structural motifs, can have large impacts on RNA-protein recognition. PMID:26675164

  20. A Herpesvirus Protein Selectively Inhibits Cellular mRNA Nuclear Export.

    PubMed

    Gong, Danyang; Kim, Yong Hoon; Xiao, Yuchen; Du, Yushen; Xie, Yafang; Lee, Kevin K; Feng, Jun; Farhat, Nisar; Zhao, Dawei; Shu, Sara; Dai, Xinghong; Chanda, Sumit K; Rana, Tariq M; Krogan, Nevan J; Sun, Ren; Wu, Ting-Ting

    2016-11-09

    Nuclear mRNA export is highly regulated to ensure accurate cellular gene expression. Viral inhibition of cellular mRNA export can enhance viral access to the cellular translation machinery and prevent anti-viral protein production but is generally thought to be nonselective. We report that ORF10 of Kaposi's sarcoma-associated herpesvirus (KSHV), a nuclear DNA virus, inhibits mRNA export in a transcript-selective manner to control cellular gene expression. Nuclear export inhibition by ORF10 requires an interaction with an RNA export factor, Rae1. Genome-wide analysis reveals a subset of cellular mRNAs whose nuclear export is blocked by ORF10 with the 3' UTRs of ORF10-targeted transcripts conferring sensitivity to export inhibition. The ORF10-Rae1 interaction is important for the virus to express viral genes and produce infectious virions. These results suggest that a nuclear DNA virus can selectively interfere with RNA export to restrict host gene expression for optimal replication.

  1. Cytoplasmic-nuclear shuttling of the urokinase mRNA binding protein regulates message stability.

    PubMed

    Shetty, Sreerama

    2002-08-01

    Treatment of small airway epithelial (SAEC) cells or lung epithelial (Beas2B) cells with TNF-alpha or PMA induces urokinase-type plasminogen activator (uPA) expression. Treatment of these cells with TNF-alpha, PMA or cycloheximide but not TGF-beta increased steady-state expression of uPAmRNA. TNF-alpha, PMA or cycloheximide caused 8-10 fold extensions of the uPAmRNA half-life in SAEC or Beas2B cells treated with DRB, a transcriptional inhibitor. These findings suggest that uPA gene expression involves a post-transcriptional regulatory mechanism. Using gel mobility shift and UV cross-linking assays, we identified a 30 kDa uPA mRNA binding protein (uPA mRNABp) that selectively binds to a 66 nt protein binding fragment of uPA mRNA containing regulatory information for message stabilization. Binding of cytoplasmic uPA mRNABp to uPA mRNA was abolished after treatment with TNF-alpha but not TGF-beta. In addition, we found the accumulation of 30 kDa uPAmRNABp in the nuclear extracts of TNF-alpha but not TGF-beta treated cells. The uPA mRNABp starts moving to the nucleus from the cytoplasmic compartment as early as three hours after TNF-alpha treatment. Complete translocation is achieved between 12-24 h, which coincides with the maximal expression of uPA protein effected by cytokine stimulation. Treatment of Beas2B cells with NaF inhibited TNF-alpha-mediated translocation of uPA mRNABp from the cytoplasm to the nucleus and concomitant inhibition of uPA expression. TNF-alpha stabilizes uPA mRNA by translocating the uPA mRNABp from the cytoplasm to the nucleus. Our results demonstrate a novel mechanism governing uPA mRNA stability through shuttling of uPA mRNABp between the nucleus and cytoplasm. This newly identified pathway may have evolved to regulate uPA-mediated functions of the lung epithelium in inflamation or neoplasia.

  2. Isoeugenol destabilizes IL-8 mRNA expression in THP-1 cells through induction of the negative regulator of mRNA stability tristetraprolin.

    PubMed

    Galbiati, Valentina; Carne, Alice; Mitjans, Montserrat; Galli, Corrado Lodovico; Marinovich, Marina; Corsini, Emanuela

    2012-02-01

    We previously demonstrated in the human promyelocytic cell line THP-1 that all allergens tested, with the exception of the prohapten isoeugenol, induced a dose-related release of interleukin-8 (IL-8). In the present study, we investigated whether this abnormal behavior was regulated by the AU-rich element-binding proteins HuR and tristetraprolin (TTP) or by the downstream molecule suppressor of cytokine signaling (SOCS)-3. The contact allergens isoeugenol, diethylmaleate (DEM), and 2,4-dinitrochlorobenzene (DNCB), and the irritant salicylic acid were used as reference compounds. Chemicals were used at concentrations that induced a 20% decrease in cell viability as assessed by propidium iodide staining, namely 100 μg/ml (0.61 mM) for isoeugenol, 100 μg/ml (0.58 mM) for DEM, 3 μg/ml (14.8 μM) for DNCB, and 250 μg/ml (1.81 mM) for salicylic acid. Time course experiments of IL-8 mRNA expression and assessment of IL-8 mRNA half-life, indicated a decreased IL-8 mRNA stability in isoeugenol-treated cells. We could demonstrate that a combination and regulation of HuR and TTP following exposure to contact allergens resulted in a different modulation of IL-8 mRNA half-life and release. The increased expression of TTP in THP-1 cells treated with isoeugenol results in destabilization of the IL-8 mRNA, which can account for the lack of IL-8 release. In contrast, the strong allergen DNCB failing to up-regulate TTP, while inducing HuR, resulted in longer IL-8 mRNA half-life and protein release. SOCS-3 was induced only in isoeugenol-treated cells; however, its modulation did not rescue the lack of IL-8 release, indicating that it is unlikely to be involved in the lack of IL-8 production. Finally, the destabilization effect of isoeugenol on IL-8 mRNA expression together with SOCS-3 expression resulted in an anti-inflammatory effect, as demonstrated by the ability of isoeugenol to modulate LPS or ionomycin-induced cytokine release.

  3. MRNA and miRNA expression patterns associated to pathways linked to metal mixture health effects.

    PubMed

    Martínez-Pacheco, M; Hidalgo-Miranda, A; Romero-Córdoba, S; Valverde, M; Rojas, E

    2014-01-10

    Metals are a threat to human health by increasing disease risk. Experimental data have linked altered miRNA expression with exposure to some metals. MiRNAs comprise a large family of non-coding single-stranded molecules that primarily function to negatively regulate gene expression post-transcriptionally. Although several human populations are exposed to low concentrations of As, Cd and Pb as a mixture, most toxicology research focuses on the individual effects that these metals exert. Thus, this study aims to evaluate global miRNA and mRNA expression changes induced by a metal mixture containing NaAsO2, CdCl2, Pb(C2H3O2)2·3H2O and to predict possible metal-associated disease development under these conditions. Our results show that this metal mixture results in a miRNA expression profile that may be responsible for the mRNA expression changes observed under experimental conditions in which coding proteins are involved in cellular processes, including cell death, growth and proliferation related to the metal-associated inflammatory response and cancer.

  4. Reduction of polyhedrin mRNA and protein expression levels in Sf9 and Hi5 cell lines, but not in Sf21 cells, infected with Autographa californica multiple nucleopolyhedrovirus fp25k mutants.

    PubMed

    Cheng, Xin-Hua; Hillman, Christopher C; Zhang, Chuan-Xi; Cheng, Xiao-Wen

    2013-01-01

    During cell infection, the fp25k gene of baculoviruses frequently mutates, producing the few polyhedra (FP) per cell phenotype with reduced polyhedrin (polh) expression levels compared with wild-type baculoviruses. Here we report that the fp25k gene of the model baculovirus, Autographa californica multiple nucleopolyhedrovirus (AcMNPV), contains two hypermutable seven-adenine (A7) mononucleotide repeats (MNRs) that were mutated to A8 MNRs and a TTAA site that had host DNA insertions, producing fp25k mutants during Sf21 cell infection. The FP phenotype in Sf9 and Hi5 cells was more pronounced than in Sf21 cells. AcMNPV fp25k mutants produced similar levels of polyhedra or enhanced GFP, which were both under the control of the AcMNPV polh promoter for expression, in Sf21 cells but lower levels in Sf9 and Hi5 cells compared with AcMNPV with an intact fp25k gene. This correlated with the polh mRNA levels detected in each cell line. The majority of Sf21 cells infected with fp25 mutants showed high polh promoter-mediated GFP expression levels. Two cell lines subcloned from Sf21 cells that were infected with fp25k mutants showed different GFP expression levels. Furthermore, a small proportion of Hi5 cells infected with fp25k mutants showed higher production of polyhedra and GFP expression than the rest, and the latter was not correlated with increased m.o.i. Therefore, these data suggest that AcMNPV polh promoter-mediated gene expression activities differ in the three cell lines and are influenced by different cells within the cell line.

  5. Expression of synaptophysin and its mRNA in bovine corpus lutea during different stages of pregnancy.

    PubMed

    Zhang, Wenhua; Chen, Shulin; Wang, Zhonghui; Tang, Caiyan; Meng, Xia; Li, Feihu; Zhao, Shanting

    2013-06-01

    In order to investigate the expression of mRNA and protein for synaptophysin (SYP) in bovine corpus luteum (CL) during different stages of pregnancy, we chose Holstein cows during various pregnancy stages. The CL was divided into two parts, then immunohistochemical streptavidin-perosidase and RT-PCR were used to determine the levels of protein and mRNA for SYP respectively. SYP immunoreactive products mainly located in large luteal cells; much less or no immunoreactivity was found in small luteal cells. The expression levels of SYP were different in various stages of pregnancy. In the CL of mid pregnancy, the levels of protein and mRNA for SYP were both significantly higher than those in early and late stage of pregnancy (P<0.05). After parturition, compared with late stage of pregnancy, the protein level of SYP decreased (P<0.05), but its mRNA increased (P<0.05). In conclusion, SYP has the strongest expression in mid stage of pregnancy, and its regular expression in bovine CL indicates that SYP may play important roles in maintaining the function of bovine CL and in the regulation of production.

  6. The vitamin D receptor localization and mRNA expression in ram testis and epididymis.

    PubMed

    Jin, Hui; Huang, Yang; Jin, Guang; Xue, Yanrong; Qin, Xiaowei; Yao, Xiaolei; Yue, Wenbing

    2015-02-01

    The objectives of present study were to investigate the presence of vitamin D receptor (VDR) in testis and epididymis of ram by polymerase chain reaction (PCR), to locate VDR in testis and epididymis by immunohistochemistry and to compare difference of VDR expression between testis and epididymis before and after sexual maturation by Real time-PCR and Western blot. The results showed that VDR exists in the testis and epididymis of ram while VDR protein in testis and epididymis was localized in Leydig cells, spermatogonial stem cells, spermatocytes, Sertoli cells and principal cells. For the adult ram, the amounts of VDR mRNA and VDR protein were less (p < 0.01) in testis than compared with caput, corpus and cauda epididymis. For prepubertal ram, the result showed the same trend (p < 0.01). However, the expression levels of VDR mRNA and VDR protein in caput, corpus, cauda epididymis and testis showed no significant difference (p > 0.05) between adult and prepubertal. In conclusion, VDR exists in testis and epididymis of ram, suggesting 1α,25-(OH)(2)VD(3) may play a role in ram reproduction.

  7. Keratin14 mRNA expression in human pneumocytes during quiescence, repair and disease

    PubMed Central

    Confalonieri, Marco; Buratti, Emanuele; Grassi, Gabriele; Bussani, Rossana; Chilosi, Marco; Farra, Rossella; Abrami, Michela; Stuani, Cristiana; Salton, Francesco; Ficial, Miriam; Confalonieri, Paola; Zandonà, Lorenzo; Romano, Maurizio

    2017-01-01

    The lung alveoli slowly self-renew pneumocytes, but their facultative regeneration capacity is rapidly efficient after an injury, so fibrosis infrequently occurs. We recently observed Keratin 14 (KRT14) expression during diffuse alveolar damage (DAD), but not in controls. We wonder if KRT14 may be a marker of pneumocyte transition from quiescence to regeneration. Quantitative PCR and Western blot analyses highlighted the presence of KRT14 (mRNA and protein) only in human lung samples with DAD or interstitial lung disease (ILD). In the exponentially growing cell lines A549 and H441, the mRNA and protein levels of KRT14 peaked at day one after cell seeding and decreased at day two, opposite to what observed for the proliferation marker E2F1. The inverse relation of KRT14 versus E2F1 expression holds true also for other proliferative markers, such as cyclin E1 and cyclin D1. Of interest, we also found that E2F1 silencing caused cell cycle arrest and increased KRT14 expression, whilst E2F1 stimulation induced cell cycle progression and decreased KRT14. KRT14 also increased in proliferative pneumocytes (HPAEpiC) just before transdifferentiation. Overall, our results suggest that KRT14 is a viable biomarker of pneumocyte activation, and repair/regeneration. The involvement of KRT14 in regenerative process may suggest a novel pharmaceutical target to accelerate lung repair. PMID:28199407

  8. Analysis of the sequence and embryonic expression of chicken neurofibromin mRNA.

    PubMed

    Schafer, G L; Ciment, G; Stocker, K M; Baizer, L

    1993-04-01

    Neurofibromatosis type 1 (NF1) is a common inherited disorder that primarily affects tissues derived from the neural crest. Recent identification and characterization of the human NF1 gene has revealed that it encodes a protein (now called neurofibromin) that is similar in sequence to the ras-GTPase activator protein (or ras-GAP), suggesting that neurofibromin may be a component of cellular signal transduction pathways regulating cellular proliferation and/or differentiation. To initiate investigations on the role of the NF1 gene product in embryonic development, we have isolated a partial cDNA for chicken neurofibromin. Sequence analysis reveals that the predicted amino acid sequence is highly conserved between chick and human. The chicken cDNA hybridizes to a 12.5-kb transcript on RNA blots, a mol wt similar to that reported for the human and murine mRNAs. Ribonuclease protection assays indicate that NF1 mRNA is expressed in a variety of tissues in the chick embryo; this is confirmed by in situ hybridization analysis. NF1 mRNA expression is detectable as early as embryonic stage 18 in the neural plate. This pattern of expression may suggest a role for neurofibromin during normal development, including that of the nervous system.

  9. Distinct prognostic values of S100 mRNA expression in breast cancer

    PubMed Central

    Zhang, Shizhen; Wang, Zhen; Liu, Weiwei; Lei, Rui; Shan, Jinlan; Li, Ling; Wang, Xiaochen

    2017-01-01

    S100 family genes encode low molecular weight, acidic-Ca2+ binding proteins implicating in a wide spectrum of biological processes. S100 family contains at least 20 members, most of which are frequently dysregulated in human malignancies including breast cancer. However, the prognostic roles of each individual S100, especially the mRNA level, in breast cancer patients remain elusive. In the current study, we used “The Kaplan-Meier plotter” (KM plotter) database to investigate the prognostic values of S100 mRNA expression in breast cancer. Our results indicated that high mRNA expression of S100A8, S100A9, S100A11 and S100P were found to be significantly correlated to worse outcome, while S100A1 and S100A6 were associated with better prognosis in all breast cancer patients. We further assessed the prognostic value of S100 in different intrinsic subtypes and clinicopathological features of breast cancer. The associated results will elucidate the role of S100 in breast cancer and may further lead the research to explore the S100-targeting reagents for treating breast cancer patients. PMID:28051137

  10. Combinatorial analysis of mRNA expression patterns in mouse embryos using hybridization chain reaction.

    PubMed

    Huss, David; Choi, Harry M T; Readhead, Carol; Fraser, Scott E; Pierce, Niles A; Lansford, Rusty

    2015-03-02

    Multiplexed fluorescent hybridization chain reaction (HCR) and advanced imaging techniques can be used to evaluate combinatorial gene expression patterns in whole mouse embryos with unprecedented spatial resolution. Using HCR, DNA probes complementary to mRNA targets trigger chain reactions in which metastable fluorophore-labeled DNA HCR hairpins self-assemble into tethered fluorescent amplification polymers. Each target mRNA is detected by a probe set containing one or more DNA probes, with each probe carrying two HCR initiators. For multiplexed experiments, probe sets for different target mRNAs carry orthogonal initiators that trigger orthogonal DNA HCR amplification cascades labeled by spectrally distinct fluorophores. As a result, in situ amplification is performed for all targets simultaneously, and the duration of the experiment is independent of the number of target mRNAs. We have used multiplexed fluorescent in situ HCR and advanced imaging technologies to address questions of cell heterogeneity and tissue complexity in craniofacial patterning and anterior neural development. In the sample protocol presented here, we detect three different mRNA targets: Tg(egfp), encoding the enhanced green fluorescent protein (GFP) transgene (typically used as a control); Twist1, encoding a transcription factor involved in cell lineage determination and differentiation; and Pax2, encoding a transcription factor expressed in the mid-hindbrain region of the mouse embryo.

  11. 5-lipoxygenase mRNA and protein isoforms.

    PubMed

    Ochs, Meike J; Suess, Beatrix; Steinhilber, Dieter

    2014-01-01

    5-Lipoxygenase (5-LO) catalyses the two initial steps in the biosynthesis of leukotrienes, a group of inflammatory lipid mediators derived from arachidonic acid. An increased level of leukotrienes is associated with chronic inflammatory diseases such as asthma or atherosclerosis. In this MiniReview, we focus on recent findings regarding alternative splice variants of 5-LO with a special emphasis on two potential protein isoforms expressed in human B-lymphocytes which might be of interest as new drug targets.

  12. Constitutive Activation of the G-Protein Subunit G[alpha]s within Forebrain Neurons Causes PKA-Dependent Alterations in Fear Conditioning and Cortical "Arc" mRNA Expression

    ERIC Educational Resources Information Center

    Kelly, Michele P.; Cheung, York-Fong; Favilla, Christopher; Siegel, Steven J.; Kanes, Stephen J.; Houslay, Miles D.; Abel, Ted

    2008-01-01

    Memory formation requires cAMP signaling; thus, this cascade has been of great interest in the search for cognitive enhancers. Given that medications are administered long-term, we determined the effects of chronically increasing cAMP synthesis in the brain by expressing a constitutively active isoform of the G-protein subunit G[alpha]s…

  13. Increases in CYP3A Expression and Glucocorticoid-Inducibility in Liver of Rats Fed Soy Protein Isolate (SPI) Involves Post-Transcriptional Effects on mRNA Processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We analyzed a time course of dexamethasone (DEX)-induction at PND25 and PND60 in male and female rats fed soy protein isolate (SPI) or casein (CAS) based AIN93G diets throughout development to examine molecular mechanisms underlying increased CYP3A expression and inducibility after SPI-feeding. At ...

  14. Squid Giant Axon Contains Neurofilament Protein mRNA but does not Synthesize Neurofilament Proteins.

    PubMed

    Gainer, Harold; House, Shirley; Kim, Dong Sun; Chin, Hemin; Pant, Harish C

    2017-04-01

    When isolated squid giant axons are incubated in radioactive amino acids, abundant newly synthesized proteins are found in the axoplasm. These proteins are translated in the adaxonal Schwann cells and subsequently transferred into the giant axon. The question as to whether any de novo protein synthesis occurs in the giant axon itself is difficult to resolve because the small contribution of the proteins possibly synthesized intra-axonally is not easily distinguished from the large amounts of the proteins being supplied from the Schwann cells. In this paper, we reexamine this issue by studying the synthesis of endogenous neurofilament (NF) proteins in the axon. Our laboratory previously showed that NF mRNA and protein are present in the squid giant axon, but not in the surrounding adaxonal glia. Therefore, if the isolated squid axon could be shown to contain newly synthesized NF protein de novo, it could not arise from the adaxonal glia. The results of experiments in this paper show that abundant 3H-labeled NF protein is synthesized in the squid giant fiber lobe containing the giant axon's neuronal cell bodies, but despite the presence of NF mRNA in the giant axon no labeled NF protein is detected in the giant axon. This lends support to the glia-axon protein transfer hypothesis which posits that the squid giant axon obtains newly synthesized protein by Schwann cell transfer and not through intra-axonal protein synthesis, and further suggests that the NF mRNA in the axon is in a translationally repressed state.

  15. Expression of APOBEC3B mRNA in Primary Breast Cancer of Japanese Women

    PubMed Central

    Tokunaga, Eriko; Yamashita, Nami; Tanaka, Kimihiro; Inoue, Yuka; Akiyoshi, Sayuri; Saeki, Hiroshi; Oki, Eiji; Kitao, Hiroyuki; Maehara, Yoshihiko

    2016-01-01

    Recent studies have identified the apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3B (APOBEC3B) as a source of mutations in various malignancies. APOBEC3B is overexpressed in several human cancer types, including breast cancer. In this study, we analyzed APOBEC3B mRNA expression in 305 primary breast cancers of Japanese women using quantitative reverse transcription-PCR, and investigated the relationships between the APOBEC3B mRNA expression and clinicopathological characteristics, prognosis, and TP53 mutations. The expression of APOBEC3B mRNA was detected in 277 tumors and not detected in 28 tumors. High APOBEC3B mRNA expression was significantly correlated with ER- and PR-negativity, high grade and high Ki67 index. The APOBEC3B mRNA expression was highest in the triple-negative and lowest in the hormone receptor-positive/HER2-negative subtypes. The TP53 gene was more frequently mutated in the tumors with high APOBEC3B mRNA expression. High APOBEC3B mRNA expression was significantly associated with poor recurrence-free survival in all cases and the ER-positive cases. These findings were almost consistent with the previous reports from the Western countries. In conclusion, high APOBEC3B mRNA expression was related to the aggressive phenotypes of breast cancer, high frequency of TP53 mutation and poor prognosis, especially in ER-positive tumors. PMID:27977754

  16. Alternative splicing of the mRNA encoding the human cholesteryl ester transfer protein

    SciTech Connect

    Inazu, Akihiro; Quinet, E.M.; Suke Wang; Brown, M.L.; Stevenson, S.; Barr, M.L.; Moulin, P.; Tall, A.R. )

    1992-03-03

    The plasma cholesteryl ester transfer protein (CETP) is known to facilitate the transfer of lipids between plasma lipoproteins. The human CETP gene is a complex locus encompassing 16 exons. The CETP mRNA is found in liver and small intestine as well as in a variety of peripheral tissues. While the CETP cDNA from human adipose tissue was being cloned, a variant CETP cDNA was discovered which excluded the complete sequence encoded by exon 9, but which was otherwise identical to the full-length CETP cDNA, suggesting modification of the CETP gene transcript by an alternative RNA splicing mechanism. RNase protection analysis of tissue RNA confirmed the presence of exon 9 deleted transcripts and showed that they represented a variable proportion of the total CETP mRNA in various human tissues including adipose tissue (25%), liver (33%), and spleen (46%). Transient expression of the exon 9 deleted cDNA in COS cells or stable expression in CHO cells showed that the protein encoded by the alternatively spliced transcript was inactive in neutral lipid transfer, smaller, and poorly secreted compared to the protein derived from the full-length cDNA. Endo H digestion suggested that the inactive, cell-associated protein was present within the endoplasmic reticulum. The experiments show that the expression of the human CETP gene is modified by alternative splicing of the ninth exon, in a tissue-specific fashion. The function of alternative splicing is unknown but could serve to produce a protein with a function other than plasma neutral lipid transfer, or as an on-off switch to regulate the local concentration of biologically active protein.

  17. Feline Calicivirus Can Tolerate Gross Changes of Its Minor Capsid Protein Expression Levels Induced by Changing Translation Reinitiation Frequency or Use of a Separate VP2-Coding mRNA

    PubMed Central

    Meyers, Gregor

    2014-01-01

    Caliciviruses use reinitiation of translation governed by a ‘termination upstream ribosomal binding site’ (TURBS) for expression of their minor capsid protein VP2. Mutation analysis allowed to identify sequences surrounding the translational start/stop site of the feline calicivirus (FCV) that fine tune reinitiation frequency. A selection of these changes was introduced into the infectious FCV cDNA clone to check the influence of altered VP2 levels on virus replication. In addition, full length constructs were established that displayed a conformation, in which VP2 expression occurred under control of a duplicated subgenomic promoter. Viable viruses recovered from such constructs revealed a rather broad range of VP2 expression levels but comparable growth kinetics showing that caliciviruses can tolerate gross changes of the VP2 expression level. PMID:25007260

  18. V kappa gene family in (Glu60 Ala30 Tyr10)n (GAT)-specific antibodies that express CGAT (or pGAT) public idiotypic specificities. Protein and mRNA sequencing of eight monoclonal V kappa chains

    PubMed Central

    1983-01-01

    A large proportion of (Glu60 Ala30 Tyr10)n (GAT)-specific antibodies expresses public idiotypic specificities, termed CGAT (or pGAT), that require the presence of both the heavy and the light chains in order to be expressed. We report in this paper the complete sequence of eight V kappa regions pertaining to eight anti-GAT monoclonal antibodies derived from three strains of mice: BALB/c, DBA/2, and C57BL/6. The methodology used a combination of NH2-terminal amino acid and mRNA nucleotide sequencing. All eight sequences analyzed, although highly homologous and all pertaining to the same V kappa 1 subgroup, allowed definition of three germline genes that are likely to be present in all three strains of mice and also in NZB. It seems likely, however, that any given strain may not necessarily use all three genes for making anti-GAT antibodies. The search for structural correlates of idiotypes could not be framed in a simple picture, but our data suggest that similar idiotopes may result from different interacting primary structures, leading to structural homologies that should be visualized at three-dimensional level. PMID:6415205

  19. Spaceflight has compartment- and gene-specific effects on mRNA levels for bone matrix proteins in rat femur

    NASA Technical Reports Server (NTRS)

    Evans, G. L.; Morey-Holton, E.; Turner, R. T.

    1998-01-01

    In the present study, we evaluated the possibility that the abnormal bone matrix produced during spaceflight may be associated with reduced expression of bone matrix protein genes. To test this possibility, we investigated the effects of a 14-day spaceflight (SLS-2 experiment) on steady-state mRNA levels for glyceraldehyde-3-phosphate dehydrogenase (GAPDH), osteocalcin, osteonectin, and prepro-alpha(1) subunit of type I collagen in the major bone compartments of rat femur. There were pronounced site-specific differences in the steady-state levels of expression of the mRNAs for the three bone matrix proteins and GAPDH in normal weight-bearing rats, and these relationships were altered after spaceflight. Specifically, spaceflight resulted in decreases in mRNA levels for GAPDH (decreased in proximal metaphysis), osteocalcin (decreased in proximal metaphysis), osteonectin (decreased in proximal and distal metaphysis), and collagen (decreased in proximal and distal metaphysis) compared with ground controls. There were no changes in mRNA levels for matrix proteins or GAPDH in the shaft and distal epiphysis. These results demonstrate that spaceflight leads to site- and gene-specific decreases in mRNA levels for bone matrix proteins. These findings are consistent with the hypothesis that spaceflight-induced decreases in bone formation are caused by concomitant decreases in expression of genes for bone matrix proteins.

  20. Changes in surfactant protein A mRNA levels in a rat model of insulin-treated diabetic pregnancy.

    PubMed

    Moglia, B B; Phelps, D S

    1996-02-01

    Maternal diabetes during pregnancy is associated with increased risk of neonatal respiratory distress syndrome (RDS). Previous studies using rat models for the diabetic pregnancy have documented decreased amounts of surfactant protein mRNA in the lungs of fetuses. In this study, we measured fetal lung surfactant-associated protein A (SP-A) mRNA from diabetic rats treated with insulin by daily injection or osmotic pump. Lungs were taken from fetuses on gestational d 20, and RNA was isolated and subjected to Northern blotting and densitometry to quantify SP-A mRNA. Fetal lung SP-A mRNA from untreated diabetic pregnancies was 34 +/- 2.9% of control. Insulin treatment increased levels to 55 +/- 4.2% of control values. Fetal lung SP-A mRNA levels were affected by the timing, length, and effectiveness of insulin treatment. Although levels from all treatment groups were still less than control values, insulin treatment during the last 5 or 10 d of pregnancy resulted in a substantial increase in SP-A mRNA levels over those of from untreated diabetic pregnancies. However, fetuses from the group with insulin treatment for the entire pregnancy showed decreases in fetal SP-A mRNA levels. Although the mechanism(s) responsible for the effects of diabetes and its treatment on fetal SP-A expression remain unclear, it appears unlikely that hyperglycemia is the principal cause.

  1. Cyclic AMP and AKAP-mediated targeting of protein kinase A regulates lactate dehydrogenase subunit A mRNA stability.

    PubMed

    Jungmann, Richard A; Kiryukhina, Olga

    2005-07-01

    Expression of the lactate dehydrogenase A subunit (ldh-A) gene is controlled through transcriptional as well as post-transcriptional mechanisms. Both mechanisms involve activation of protein kinase A (PKA) into its subunits and subsequent phosphorylation and activation of several key regulatory factors. In rat C6 glioma cells, post-transcriptional gene regulation occurs through PKA-mediated stabilization of LDH-A mRNA and subsequent increase of intracellular LDH-A mRNA levels. Previous studies have demonstrated a cAMP-stabilizing region (CSR) located in the LDH-A 3'-untranslated region which, in combination with several phosphorylated CSR-binding proteins (CSR-BP), regulates the PKA-mediated stabilization of LDH-A mRNA. However, the mechanistic details of interaction of CSR with proteins as they pertain to mRNA stabilization by PKA are so far largely unknown. In this study we tested the hypothesis that ribosomal protein extracts (RSW) from glioma cells contain PKA regulatory (RII) and catalytic (C) subunits that, in combination with a protein kinase A anchoring protein (AKAP 95) and CSR-BPs participate in forming CSR-protein complexes that are responsible for mRNA stability regulation. To demonstrate the importance of CSR-protein complex formation, the PKA subunits and AKAP 95 were removed from the RSW by immunoprecipitation, and the antigen-deleted RSW were subjected to CSR binding analysis using gel mobility shift and UV cross-linking. It was shown that AKAP 95 as well as RII formed a direct linkage with CSR during CSR-protein complex formation. In contrast, the catalytic subunit formed part of the CSR-protein complex but did not bind to CSR directly in a covalent linkage. To determine whether formation of CSR complexes that included C, RII, and AKAP 95 constituted a functional event and was necessary for mRNA stabilization, cell-free decay reactions were carried out with RSW extracts, and the kinetics of decay of LDH-A mRNA was determined. Depletion of PKA

  2. Propionate induces mRNA expression of gluconeogenic genes in bovine calf hepatocytes.

    PubMed

    Zhang, Qian; Koser, Stephanie L; Donkin, Shawn S

    2016-05-01

    Hepatocytes monolayers from neonatal calves were used to determine the responses of the cytosolic phosphoenolpyruvate carboxykinase (PCK1) mRNA expression to propionate and direct hormonal cues including cyclic AMP (cAMP), dexamethasone, and insulin. The responses of other key gluconeogenic genes, including mitochondrial phosphoenolpyruvate carboxykinase (PCK2), pyruvate carboxylase (PC), and glucose-6-phosphotase (G6PC), were also measured. Expression of PCK1 was linearly induced with increasing propionate concentrations in media and 2.5 mM propionate increased PCK1 mRNA at 3 and 6h of incubation; however, the induction disappeared at 12 and 24 h. The induction of PCK1 mRNA by propionate was mimicked by 1 mM cAMP, or in combination with 5 µM dexamethasone, but not by dexamethasone alone. The induction of PCK1 mRNA by propionate or cAMP was eliminated by addition of 100 nM insulin. Additionally, expression of PCK2 and PC mRNA was also induced by propionate in a concentration-dependent manner. Consistent with PCK1, propionate-stimulated PCK2 and PC mRNA expression was inhibited by insulin. Expression of G6PC mRNA was neither affected by propionate nor cAMP, dexamethasone, insulin, or their combinations. These findings demonstrate that propionate can directly regulate its own metabolism in bovine calf hepatocytes through upregulation of PCK1, PCK2, and PC mRNA expression.

  3. Bioinspired Nanocomplex for Spatiotemporal Imaging of Sequential mRNA Expression in Differentiating Neural Stem Cells

    PubMed Central

    2015-01-01

    Messenger RNA plays a pivotal role in regulating cellular activities. The expression dynamics of specific mRNA contains substantial information on the intracellular milieu. Unlike the imaging of stationary mRNAs, real-time intracellular imaging of the dynamics of mRNA expression is of great value for investigating mRNA biology and exploring specific cellular cascades. In addition to advanced imaging methods, timely extracellular stimulation is another key factor in regulating the mRNA expression repertoire. The integration of effective stimulation and imaging into a single robust system would significantly improve stimulation efficiency and imaging accuracy, producing fewer unwanted artifacts. In this study, we developed a multifunctional nanocomplex to enable self-activating and spatiotemporal imaging of the dynamics of mRNA sequential expression during the neural stem cell differentiation process. This nanocomplex showed improved enzymatic stability, fast recognition kinetics, and high specificity. With a mechanism regulated by endogenous cell machinery, this nanocomplex realized the successive stimulating motif release and the dynamic imaging of chronological mRNA expression during neural stem cell differentiation without the use of transgenetic manipulation. The dynamic imaging montage of mRNA expression ultimately facilitated genetic heterogeneity analysis. In vivo lateral ventricle injection of this nanocomplex enabled endogenous neural stem cell activation and labeling at their specific differentiation stages. This nanocomplex is highly amenable as an alternative tool to explore the dynamics of intricate mRNA activities in various physiological and pathological conditions. PMID:25494492

  4. Imipramine induces brain-derived neurotrophic factor mRNA expression in cultured astrocytes.

    PubMed

    Takano, Katsura; Yamasaki, Hiroshi; Kawabe, Kenji; Moriyama, Mitsuaki; Nakamura, Yoichi

    2012-01-01

    Depression is one of the most prevalent and livelihood-threatening forms of mental illnesses and the neural circuitry underlying depression remains incompletely understood. Recent studies suggest that the neuronal plasticity involved with brain-derived neurotrophic factor (BDNF) plays an important role in the recovery from depression. Some antidepressants are reported to induce BDNF expression in vivo; however, the mechanisms have been considered solely in neurons and not fully elucidated. In the present study, we evaluated the effects of imipramine, a classic tricyclic antidepressant drug, on BDNF expression in cultured rat brain astrocytes. Imipramine dose-dependently increased BDNF mRNA expression in astrocytes. The imipramine-induced BDNF increase was suppressed with inhibitors for protein kinase A (PKA) or MEK/ERK. Moreover, imipramine exposure activated transcription factor cAMP response element binding protein (CREB) in a dose-dependent manner. These results suggested that imipramine induced BDNF expression through CREB activation via PKA and/or ERK pathways. Imipramine treatment in depression might exert antidepressant action through BDNF production from astrocytes, and glial BDNF expression might be a target of developing novel antidepressants.

  5. Ustilago maydis natural antisense transcript expression alters mRNA stability and pathogenesis

    PubMed Central

    Donaldson, Michael E; Saville, Barry J

    2013-01-01

    Ustilago maydis infection of Zea mays leads to the production of thick-walled diploid teliospores that are the dispersal agent for this pathogen. Transcriptome analyses of this model biotrophic basidiomycete fungus identified natural antisense transcripts (NATs) complementary to 247 open reading frames. The U. maydis NAT cDNAs were fully sequenced and annotated. Strand-specific RT-PCR screens confirmed expression and identified NATs preferentially expressed in the teliospore. Targeted screens revealed four U. maydis NATs that are conserved in a related fungus. Expression of NATs in haploid cells, where they are not naturally occurring, resulted in increased steady-state levels of some complementary mRNAs. The expression of one NAT, as-um02151, in haploid cells resulted in a twofold increase in complementary mRNA levels, the formation of sense–antisense double-stranded RNAs, and unchanged Um02151 protein levels. This led to a model for NAT function in the maintenance and expression of stored teliospore mRNAs. In testing this model by deletion of the regulatory region, it was determined that alteration in NAT expression resulted in decreased pathogenesis in both cob and seedling infections. This annotation and functional analysis supports multiple roles for U. maydis NATs in controlling gene expression and influencing pathogenesis. PMID:23650872

  6. Fucoxanthin regulates adipocytokine mRNA expression in white adipose tissue of diabetic/obese KK-Ay mice.

    PubMed

    Hosokawa, Masashi; Miyashita, Tatsuya; Nishikawa, Sho; Emi, Shingo; Tsukui, Takayuki; Beppu, Fumiaki; Okada, Tomoko; Miyashita, Kazuo

    2010-12-01

    Fucoxanthin, a marine carotenoid found in edible brown seaweeds, attenuates white adipose tissue (WAT) weight gain and hyperglycemia in diabetic/obese KK-A(y) mice, although it does not affect these parameters in lean C57BL/6J mice. In perigonadal and mesenteric WATs of KK-A(y) mice fed fucoxanthin, mRNA expression levels of monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-α (TNF-α), which are considered to induce insulin resistance, were markedly reduced compared to control mice. In contrast to KK-A(y) mice, fucoxanthin did not alter MCP-1 and TNF-α mRNA expression levels in the WAT of lean C57BL/6J mice. Interleukin-6 (IL-6) and plasminogen activator inhibitor-1 mRNA expression levels in WAT were also decreased by fucoxanthin in KK-A(y) mice. In differentiating 3T3-F442A adipocytes, fucoxanthinol, which is a fucoxanthin metabolite found in WAT, attenuated TNF-α-induced MCP-1 and IL-6 mRNA overexpression and protein secretion into the culture medium. In addition, fucoxanthinol decreased TNF-α, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) mRNA expression in RAW264.7 macrophage-like cells stimulated by palmitic acid. These findings indicate that fucoxanthin regulates mRNA expression of inflammatory adipocytokines involved in insulin resistance, iNOS, and COX-2 in WAT and has specific effects on diabetic/obese KK-A(y) mice, but not on lean C57BL/6J mice.

  7. IMP1, an mRNA binding protein that reduces the metastatic potential of breast cancer in a mouse model

    PubMed Central

    Nwokafor, Chiso U.; Sellers, Rani S.; Singer, Robert H.

    2016-01-01

    Cells that are able to localize β-actin mRNA efficiently have decreased metastatic potential. Invasive carcinoma cells derived from primary mammary tumors have reduced levels of an RNA binding protein IMP1/ZBP1/IGF2BP1, required for β-actin mRNA localization. We showed previously that in human breast carcinoma cells in vitro, this protein suppresses invasion. In this work we examined whether its re-expression can suppress breast cancer metastasis in a breast cancer mouse model. We developed a mouse conditionally expressing IMP1-GFP (hereinafter referred to as the IMP1 transgene) specifically in the mammary gland of a PYMT breast cancer mouse. We found that mice conditionally expressing the IMP1 transgene showed little or no metastases to the lungs from the primary tumor in contrast to PYMT mice not expressing IMP1, which uniformly develop metastases at an early stage. PMID:27655671

  8. Role of mRNA structure in the control of protein folding

    PubMed Central

    Faure, Guilhem; Ogurtsov, Aleksey Y.; Shabalina, Svetlana A.; Koonin, Eugene V.

    2016-01-01

    Specific structures in mRNA modulate translation rate and thus can affect protein folding. Using the protein structures from two eukaryotes and three prokaryotes, we explore the connections between the protein compactness, inferred from solvent accessibility, and mRNA structure, inferred from mRNA folding energy (ΔG). In both prokaryotes and eukaryotes, the ΔG value of the most stable 30 nucleotide segment of the mRNA (ΔGmin) strongly, positively correlates with protein solvent accessibility. Thus, mRNAs containing exceptionally stable secondary structure elements typically encode compact proteins. The correlations between ΔG and protein compactness are much more pronounced in predicted ordered parts of proteins compared to the predicted disordered parts, indicative of an important role of mRNA secondary structure elements in the control of protein folding. Additionally, ΔG correlates with the mRNA length and the evolutionary rate of synonymous positions. The correlations are partially independent and were used to construct multiple regression models which explain about half of the variance of protein solvent accessibility. These findings suggest a model in which the mRNA structure, particularly exceptionally stable RNA structural elements, act as gauges of protein co-translational folding by reducing ribosome speed when the nascent peptide needs time to form and optimize the core structure. PMID:27466388

  9. Sequences of the 5' portion of the human c-sis gene: characterization of the transcriptional promoter and regulation of expression of the protein product by 5' untranslated mRNA sequences.

    PubMed Central

    Ratner, L; Thielan, B; Collins, T

    1987-01-01

    The c-sis gene encodes the B polypeptide chain of platelet-derived growth factor (PDGF), and is expressed in a number of normal and pathological conditions. In order to study the control of synthesis of the human c-sis product, we have initiated a study of two regions of this genetic locus which regulate transcription and translation. A clone of the 5' portion of the gene was obtained which included 1361 nucleotides upstream of the RNA initiation site. Transcriptional promoter activity of this region was demonstrated in normal and transformed cells using a plasmid with the sequences upstream of the c-sis RNA initiation site fused to an indicator gene, chloramphenicol acetyl transferase. Experiments were also performed to identify other possible regulatory regions of the c-sis gene. These data demonstrated that a portion of the c-sis first exon encoding the 5' untranslated region of the c-sis mRNA inhibited synthesis of the PDGF B product in vitro. These results define regions of the c-sis gene whose activity may be important in the regulation of transcription and translation under normal conditions and in the pathogenesis several human diseases. Images PMID:3627977

  10. The mRNA expression profile of metabolic genes relative to MHC isoform pattern in human skeletal muscles.

    PubMed

    Plomgaard, Peter; Penkowa, Milena; Leick, Lotte; Pedersen, Bente K; Saltin, Bengt; Pilegaard, Henriette

    2006-09-01

    The metabolic profile of rodent muscle is generally reflected in the myosin heavy chain (MHC) fiber-type composition. The present study was conducted to test the hypothesis that metabolic gene expression is not tightly coupled with MHC fiber-type composition for all genes in human skeletal muscle. Triceps brachii, vastus lateralis quadriceps, and soleus muscle biopsies were obtained from normally physically active, healthy, young male volunteers, because these muscles are characterized by different fiber-type compositions. As expected, citrate synthase and 3-hydroxyacyl dehydrogenase activity was more than twofold higher in soleus and vastus than in triceps. Contrary, phosphofructokinase and total lactate dehydrogenase (LDH) activity was approximately three- and twofold higher in triceps than in both soleus and vastus. Expression of metabolic genes was assessed by determining the mRNA content of a broad range of metabolic genes. The triceps muscle had two- to fivefold higher MHC IIa, phosphofructokinase, and LDH A mRNA content and two- to fourfold lower MHC I, lipoprotein lipase, CD36, hormone-sensitive lipase, and LDH B and hexokinase II mRNA than vastus lateralis or soleus. Interestingly, such mRNA differences were not evident for any of the genes encoding mitochondrial oxidative proteins, 3-hydroxyacyl dehydrogenase, carnitine palmitoyl transferase I, citrate synthase, alpha-ketogluterate dehydrogenase, and cytochrome c, nor for the transcriptional regulators peroxisome proliferator activator receptor gamma coactivator-1alpha, forkhead box O1, or peroxisome proliferator activator receptor-alpha. Thus the mRNA expression of genes encoding mitochondrial proteins and transcriptional regulators does not seem to be fiber type specific as the genes encoding glycolytic and lipid metabolism genes, which suggests that basal mRNA regulation of genes encoding mitochondrial proteins does not match the wide differences in mitochondrial content of these muscles.

  11. COX-2 mRNA expression in esophageal squamous cell carcinoma (ESCC) and effect by NSAID.

    PubMed

    Liu, X; Li, P; Zhang, S-T; You, H; Jia, J-D; Yu, Z-L

    2008-01-01

    To investigate cyclooxygenase-2 (COX-2) mRNA expression in human esophageal squamous cell carcinoma and the effect of a non-steroidal anti-inflammatory drug (NSAID) on it, in order to explore the mechanism of COX-2 in esophageal squamous cell carcinoma (ESCC) carcinogenesis and the ability of NSAID to prevent or treat ESCC. Frozen specimens of human ESCC and adjacent normal esophageal squamous epithelium pairs (n = 22) were examined for COX-2 mRNA expression by reverse-transcription polymerase chain reaction (RT-PCR). After incubation with aspirin (a non-selective COX inhibitor) or Nimesulide (a selective COX-2 inhibitor), the proliferation status of two human esophageal squamous cancer cell lines, EC-9706 and EC-109, was quantified by 3-(4,5-dimethyl-thiazol-2yl)-2,5-diphenyltetrazolium bromide assay. The expression of COX-2 mRNA in these cells was detected by RT-PCR. COX-2 mRNA was expressed in 12 of 22 (54.5%) ESCC tissue samples, but it was undetectable in all the specimens of adjacent normal esophageal squamous epithelium COX-2 mRNA expression. Both aspirin (5-20 mmol/L) and Nimesulide (0.1-0.8 mmol/L) inhibited EC-9706 cell line proliferation and suppressed its COX-2 mRNA expression dose-dependently. However, only aspirin (5-20 mmol/L) could inhibit proliferation in the EC-109 cell line and suppress COX-2 mRNA expression. Nimesulide (0.1-0.8 mmol/L) could neither inhibit EC-109 cell growth nor suppress COX-2 mRNA expression. COX-2 mRNA expression is a frequent phenomenon in human ESCC tissue samples and plays an important role in the carcinogenesis of ESCC. NSAID may be useful in the chemoprevention and therapy of human ESCC and its effects are likely to be mediated by modulating COX-2 activity.

  12. Cavernous nerve injury elicits GAP-43 mRNA expression but not regeneration of injured pelvic ganglion neurons.

    PubMed

    Kato, Ryuichi; Kiryu-Seo, Sumiko; Sato, Yoshikazu; Hisasue, Shinichi; Tsukamoto, Taiji; Kiyama, Hiroshi

    2003-10-03

    Recovery of erectile dysfunction after cavernous nerve injury takes a long period. To elucidate this mechanism, unilateral cavernous nerve of male rat was cut, and the expression level of a nerve regeneration marker, the growth associated protein-43 (GAP-43) mRNA was evaluated by in situ hybridization and RT-PCR. While GAP-43 mRNA expression was transiently increased in the injured neurons of the major pelvic ganglion (MPG) at 7 days after nerve injury, continuous increase of GAP-43 mRNA was observed in the contralateral MPG from 7 days to 6 months after the nerve injury. Histochemical double-labeling studies for either neuronal NOS (nNOS) or tyrosine hydroxylase (TH) and the GAP-43 mRNA expression demonstrated that in injured MPG the transient up-regulation of GAP-43 mRNA was mainly seen in nNOS negative and/or TH positive neurons, suggesting non-parasympathetic post-ganglionic neurons, and also demonstrated that in contralateral MPG GAP-43 mRNA positive neurons were gradually increased in nNOS positive but TH negative neurons, suggesting parasympathetic post-ganglionic neurons. When a retrograde tracer Fluorogold (FG) was injected into the penile crus 7 days before histological experiments, FG-positive neurons were, if any, hardly seen in nNOS-positive neurons of the injured MPG for at least 6 months, whereas numerous FG-positive cells were seen in nNOS-positive neurons of the contralateral MPG. These results suggest that post-ganglionic projecting neurons of the intact side, which express increased GAP-43 mRNA, would be most likely to contribute to the recovery of the erectile function after unilateral cavernous nerve injury possibly by a plastic change such as nerve sprouting.

  13. Expression of cytokine mRNA in lentivirus-induced arthritis.

    PubMed Central

    Lechner, F.; Vogt, H. R.; Seow, H. F.; Bertoni, G.; Cheevers, W. P.; von Bodungen, U.; Zurbriggen, A.; Peterhans, E.

    1997-01-01

    Infection of goats with the lentivirus caprine arthritis encephalitis virus (CAEV) leads to persistent infection and development of chronic arthritis. We analyzed the expression of cytokines and viral RNA in the joints of goats at early time points after experimental infection with CAEV and in those of animals suffering from chronic arthritis as a result of natural infection. In situ hybridization experiments showed that the pattern of cytokine expression in caprine arthritis was similar to that found in rheumatoid arthritis (RA), with a few cells expressing the lymphocyte-derived cytokines interferon (IFN)-gamma and interleukin (IL)-2 and rather more cells expressing monocyte chemoattractant protein (MCP)-1, IL-6, and tumor necrosis factor (TNF)-alpha. IFN-gamma mRNA expression in experimentally infected joints peaked at day 12 and was mostly detected in areas containing viral RNA. At later time points, no IFN-gamma- or virus-expressing cells were found in inflamed joints but both were again detected in goats with severe arthritis. Interestingly, at the clinical stage of arthritis reflecting the chronic stage of infection, the inflammatory lesion was found to be immunologically compartmentalized. Humoral immune responses and cell-mediated immune responses appeared to concurrently occur in distinct areas of the synovial membrane. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9327739

  14. Dietary glycerol for quail: association between productive performance and COX III mRNA expression.

    PubMed

    Silva, S C C; Gasparino, E; Batista, E; Tanamati, F; Vesco, A P D; Lala, B; de Oliveira, D P

    2016-05-25

    This study was carry out to evaluate mRNA expression of mitochondrial cytochrome c oxidase III in the Pectoralis superficialis muscle of 28-day-old quails fed diets containing 0, 8, and 12% glycerol. Total RNA was extracted (N = 10) and cDNA was amplified using specifics primers for qRT-PCR. Feed efficiency and feed intake were evaluated. COX III mRNA expression in breast muscle was higher in the group fed with 12% glycerol (0.863 AU); no differences were observed in the expression of this gene between the muscle of animals fed diets without glycerol (0.357 AU) and 8% glycerol (0.415 AU). Quails that showed greater COX III mRNA expression also showed the lowest feed efficiency. These results show that there is a difference in COX III mRNA expression in breast muscle of 28-day-old quail fed diets different concentrations of glycerol.

  15. A case of cervical cancer expressed three mRNA variant of Hyaluronan-mediated motility receptor

    PubMed Central

    Villegas-Ruíz, Vanessa; Salcedo, Mauricio; Zentella-Dehesa, Alejandro; de Oca, Edén V Montes; Román-Basaure, Edgar; Mantilla-Morales, Alejandra; Dávila-Borja, Víctor M; Juárez-Méndez, Sergio

    2014-01-01

    Cervical cancer is the second malignancy in Mexico, little is known about the prognostic factors associated with this disease. Several cellular components are important in their transformation and progression. Alternative mRNA splice is an important mechanism for generating protein diversity, nevertheless, in cancer unknown mRNA diversity is expressed. Hyaluronan-mediated motility receptor (HMMR, RHAMM, CD168) is a family member of proteins, hyaluronan acid dependent, and has been associated with different malignant processes such as: angiogenesis, cell invasiveness, proliferation, metastasis and poor outcome in some tumors. In the present study we identified expression of HMMR in cervical cancer by means of RT-PCR and sequencing. Our results indicate co-expression of two HMMR variants in all samples, and one case expressed three alternative HMMR splice transcripts. These results showed the heterogeneity of mRNA transcripts of HMMR that could express in cancer and the expression of HMMR could be marker of malignancy in CC. PMID:24966934

  16. Transcription Expression and Clinical Significance of Dishevelled-3 mRNA and δ-Catenin mRNA in Pleural Effusions from Patients with Lung Cancer

    PubMed Central

    Li, Xiao-Yan; Liu, Shu-Li; Cha, Na; Zhao, Yu-Jie; Wang, Shao-Cheng; Li, Wei-Nan; Wang, En-Hua; Wu, Guang-Ping

    2012-01-01

    Objective. To evaluate diagnostic utility of Dishevelled-3 (DVL-3) mRNA and δ-catenin mRNA expression in pleural effusions of patients with lung cancer. Methods. DVL-3 mRNA and δ-catenin mRNA levels were assessed by performing RT-PCR on pleural effusion specimens from patients with lung cancer (n = 75) and with lung benign disease (n = 51). Results. The expressions of DVL-3 mRNA and δ-catenin mRNA were significantly higher in malignant than in benign lung disease (P < 0.01) and were obviously higher than cytology in adenocarcinoma (P < 0.01). In single use, DVL-3 mRNA had the highest specificity (94.1%) and PPV (95.7%), whereas δ-catenin mRNA had the highest sensitivity (92.0%) and NPV (88.5%). When combinations of markers were evaluated together, DVL-3 mRNA and δ-catenin mRNA gave a high-diagnostic performance: sensitivity of 100.0%, NPV of 100.0%, and accuracy of 96.0%, respectively. Conclusion. As molecular markers of detecting pleural micrometastasis, DVL-3 mRNA and δ-catenin mRNA are helpful to diagnose the cancer cells in pleural effusions of patients with lung cancer. PMID:22461838

  17. Upregulation of neuronal nitric oxide synthase mRNA and protein in adrenal medulla of water-deprived rats.

    PubMed

    Lai, Feng-Jie; Huang, Shiue-Shin; Hsieh, Ming-Chia; Hsin, Shih-Chie; Wu, Chin-Han; Hsin, Ya-Chieh; Shin, Shyi-Jang

    2005-01-01

    Experiments were performed to investigate whether adrenal neuronal nitric oxide synthase (nNOS) mRNA and protein expression are responsive to alterations in body volume. Using an RT-PCR technique, the relative quantities of nNOS mRNA as well as the tyrosine hydroxylase and phenylethanolamine N-methyltransferase mRNA in the adrenals of water-deprived rats significantly increased from 12 hr to 4 days. In situ hybridization and immunohistochemical study showed that water deprivation activated nNOS mRNA and protein expression in the adrenal medulla. Four days after water deprivation, nNOS protein expression determined by Western blot significantly increased in the adrenal gland. Our results are the first to demonstrate that nNOS syntheses in the adrenal medulla are markedly increased in water-deprived rats. This study also indicates that the upregulation of nNOS synthesis of the adrenal medulla is associated with the activation of adrenal medullary function in the face of volume depletion.

  18. Triptolide inhibits COX-2 expression by regulating mRNA stability in TNF-{alpha}-treated A549 cells

    SciTech Connect

    Sun, Lixin; Zhang, Shuang; Jiang, Zhenzhou; Huang, Xin; Wang, Tao; Huang, Xiao; Li, Han; Zhang, Luyong

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer Triptolide inhibited COX-2 expression and the half-life of COX-2 mRNA is decreased. Black-Right-Pointing-Pointer The HuR protein shuttling from nucleus to cytoplasm is inhibited by triptolide. Black-Right-Pointing-Pointer Triptolide inhibited 3 Prime -UTR fluorescence reporter gene activity. Black-Right-Pointing-Pointer COX-2 mRNA binding to HuR is decreased by triptolide in pull-down experiments. -- Abstract: Cyclooxygenase-2 (COX-2) over-expression is frequently associated with human non-small-cell lung cancer (NSCLC) and involved in tumor proliferation, invasion, angiogenesis and resistance to apoptosis. In the present study, the effects of triptolide on COX-2 expression in A549 cells were investigated and triptolide was found to inhibit TNF-{alpha}-induced COX-2 expression. In our further studies, it was found that triptolide decreased the half-life of COX-2 mRNA dramatically and that it inhibited 3 Prime -untranslated region (3 Prime -UTR) fluorescence reporter gene activity. Meanwhile, triptolide inhibited the HuR shuttling from nucleus to cytoplasm. After triptolide treatment, decreased COX-2 mRNA in pull-down experiments with anti-HuR antibodies was observed, indicating that the decreased cytoplasmic HuR is responsible for the decreased COX-2 mRNA. Taken together, our results provided evidence for the first time that triptolide inhibited COX-2 expression by COX-2 mRNA stability modulation and post-transcriptional regulation. These results provide a novel mechanism of action for triptolide which may be important in the treatment of lung cancer.

  19. Reduced beta 2-microglobulin mRNA levels in transgenic mice expressing a designed hammerhead ribozyme.

    PubMed Central

    Larsson, S; Hotchkiss, G; Andäng, M; Nyholm, T; Inzunza, J; Jansson, I; Ahrlund-Richter, L

    1994-01-01

    We have generated three artificial hammerhead ribozymes, denoted 'Rz-b', 'Rz-c' and 'Rz-d', with different specificities for exon II of the mouse beta-2-microglobulin (beta 2M) mRNA. In this study we tested for ribozyme mediated reduction of beta 2M mRNA in a cell line and in transgenic mice. Transfections of either of the Rz-b, Rz-c or Rz-d plasmids into a mouse cell-line (NIH/3T3) revealed reductions of beta 2M mRNA substrate in each case. Ribozyme expression in individual transfected clones was accompanied with an up to 80% reduction of beta 2M mRNA levels. Rz-c was selected for a transgenic study. Seven Rz-c transgenic founder animals were identified from which three ribozyme expressing families were established and analysed. Expression of the ribozyme transgene was tested for and detected in lung, kidney and spleen. Expression was accompanied with reduction of the beta 2M mRNA levels of heterozygous (Rz+/-) animals compared to non-transgenic litter mates. The effect was most pronounced in lung with more than 90% beta 2M mRNA reduction in individual mice. In summary, expression of our ribozymes in a cell free system, in a cell-line and in transgenic mice were all accompanied with reductions of beta 2M mRNA levels. Images PMID:8036151

  20. Maternal overnutrition enhances mRNA expression of adipogenic markers and collagen deposition in skeletal muscle of beef cattle fetuses.

    PubMed

    Duarte, M S; Gionbelli, M P; Paulino, P V R; Serão, N V L; Nascimento, C S; Botelho, M E; Martins, T S; Filho, S C V; Dodson, M V; Guimarães, S E F; Du, M

    2014-09-01

    Twenty-four pregnant Nellore cows were randomly assigned into 2 feeding level groups (control [CTL]; fed 1.0 times the maintenance requirement; n = 12; and overnourished [ON]; fed at 1.5 times the maintenance requirement; n = 12) to evaluate effects of maternal overnutrition on fetal skeletal muscle development. Cows were slaughtered at 135, 190, and 240 d of gestation and samples of fetal LM were collected for analysis of mRNA expression analysis and for histological evaluation of collagen content and number of muscle cells. There was no interaction between gestational period and maternal nutrition for the variables evaluated (P > 0.05). The mRNA expression of Cadherin-associated protein, β 1 (β-catenin) tended to be greater in fetuses from ON cows (P = 0.08), while myogenic differentiation 1 (MyoD; P = 0.56), myogenin (MyoG; P = 0.70), and the number of muscle cells (P = 0.90) were not affected by maternal overnutrition. Gestational period did not affect the mRNA expression of β-catenin (P = 0.60) and MyoG (P = 0.21). The mRNA expression of MyoD tended to increase with days of gestation (P = 0.06). The mRNA expression of zinc finger protein 423 (Zfp423; P < 0.0001), C/EBPα (P = 0.01), and PPARγ (P < 0.0001) were enhanced in ON fetuses. No effects of days of gestation were observed for mRNA expression of Zfp423 (P = 0.75) and C/EBPα (P = 0.48). The mRNA expression of PPARγ in fetuses at 190 d of gestation tended to be greater than those at 135 and 240 d of gestation (P = 0.06). The mRNA expression of transforming growth factor β (TGF-β; P < 0.0001), collagen type III, α I (COL3A1; P < 0.0001), and collagen content (P = 0.01) were increased in ON fetuses. Gestational period did not affect the mRNA expression of collagen type I, α I (COL1A1; P = 0.65). The mRNA expression of COL3A1 (P = 0.09) in fetuses at 190 d of gestation tended to be greater than fetuses at 135 and 240 d of gestation. The mRNA expression of TGF-β in fetuses at 190 d of gestation was

  1. Translational control of beta2-adrenergic receptor mRNA by T-cell-restricted intracellular antigen-related protein.

    PubMed

    Kandasamy, Karthikeyan; Joseph, Kusumam; Subramaniam, Kothandharaman; Raymond, John R; Tholanikunnel, Baby G

    2005-01-21

    Cellular expression of the beta(2)-adrenergic receptor (beta(2)-AR) is suppressed at the translational level by 3'-untranslated region (UTR) sequences. To test the possible role of 3'-UTR-binding proteins in translational suppression of beta(2)-AR mRNA, we expressed the full-length 3'-UTR or the adenylate/uridylate-rich (A+U-rich element (ARE)) RNA from the 3'-UTR sequences of beta(2)-AR in cell lines that endogenously express this receptor. Reversal of beta(2)-adrenergic receptor translational repression by retroviral expression of 3'-UTR sequences suggested that ARE RNA-binding proteins are involved in translational suppression of beta(2)-adrenergic receptor expression. Using a 20-nucleotide ARE RNA from the receptor 3'-UTR as an affinity ligand, we purified the proteins that bind to these sequences. T-cell-restricted intracellular antigen-related protein (TIAR) was one of the strongly bound proteins identified by this method. UV-catalyzed cross-linking experiments using in vitro transcribed 3'-UTR RNA and glutathione S-transferase-TIAR demonstrated multiple binding sites for this protein on beta(2)-AR 3'-UTR sequences. The distal 340-nucleotide region of the 3'-UTR was identified as a target RNA motif for TIAR binding by both RNA gel shift analysis and immunoprecipitation experiments. Overexpression of TIAR resulted in suppression of receptor protein synthesis and a significant shift in endogenously expressed beta(2)-AR mRNA toward low molecular weight fractions in sucrose gradient polysome fractionation. Taken together, our results provide the first evidence for translational control of beta(2)-AR mRNA by TIAR.

  2. Astrocyte cultures derived from human brain tissue express angiotensinogen mRNA

    SciTech Connect

    Milsted, A.; Barna, B.P.; Ransohoff, R.M.; Brosnihan, K.B.; Ferrario, C.M. )

    1990-08-01

    The authors have identified human cultured cell lines that are useful for studying angiotensinogen gene expression and its regulation in the central nervous system. A model cell system of human central nervous system origin expressing angiotensinogen has not previously been available. Expression of angiotensinogen mRNA appears to be a basal property of noninduced human astrocytes, since astrocytic cell lines derived from human glioblastomas or nonneoplastic human brain tissue invariably produced angiotensinogen mRNA. In situ hybridization histochemistry revealed that angiotensinogen mRNA production was not limited to a subpopulation of astrocytes because >99% of cells in these cultures contained angiotensinogen mRNA. These cell lines will be useful in studies of the molecular mechanisms controlling angiotensin synthesis and the role of biologically active angiotensin in the human brain by allowing the authors to examine regulation of expression of the renin-angiotensin system in human astrocyte cultures.

  3. Hypoxia may increase rat insulin mRNA levels by promoting binding of the polypyrimidine tract-binding protein (PTB) to the pyrimidine-rich insulin mRNA 3'-untranslated region.

    PubMed Central

    Tillmar, Linda; Welsh, Nils

    2002-01-01

    BACKGROUND: Recent reports identify the 3'-UTR of insulin mRNA as crucial for control of insulin messenger stability. This region contains a pyrimidine-rich sequence, which is similar to the hypoxia-responsive mRNA-stabilizing element of tyrosine hydroxylase. This study aimed to determine whether hypoxia affects insulin mRNA levels. MATERIALS AND METHODS: Rat islets were incubated at normoxic or hypoxic conditions and with or without hydrogen peroxide and a nitric oxide donor. Insulin mRNA was determined by Northern hybridization. Islet homogenates were used for electrophoretic mobility shift assay with an RNA-oligonucleotide, corresponding to the pyrimidine-rich sequence of the 3'-UTR of rat insulin I mRNA. The expression of reporter gene mRNA, in islets transfected with reporter gene constructs containing the wild-type or mutated insulin mRNA pyrimidine-rich sequences, was measured by semiquantitive RT-PCR. RESULTS: Insulin mRNA was increased in response to hypoxia. This was paralleled by increased binding of the polypyrimidine tract-binding protein (PTB) to the pyrimidine-rich sequence of the 3'-UTR of insulin mRNA, which was counteracted by hydrogen peroxide. The reporter gene mRNA level containing the wild-type binding site was not increased in response to hypoxia, but mutation of the site resulted in a destabilization of the mRNA. CONCLUSIONS: The complete understanding of different diabetic conditions requires the elucidation of mechanisms that control insulin gene expression. Our data show that hypoxia may increase insulin mRNA levels by promoting the binding of PTB to the insulin mRNA 3'-UTR. Hydrogen peroxide abolishes the hypoxic effect indicating involvement of reactive oxygen species and/or the redox potential in the oxygen-signaling pathway. PMID:12359957

  4. cAMP analogs and their metabolites enhance TREK-1 mRNA and K+ current expression in adrenocortical cells.

    PubMed

    Enyeart, Judith A; Liu, Haiyan; Enyeart, John J

    2010-03-01

    bTREK-1 K(+) channels set the resting membrane potential of bovine adrenal zona fasciculata (AZF) cells and function pivotally in the physiology of cortisol secretion. Adrenocorticotropic hormone controls the function and expression of bTREK-1 channels through signaling mechanisms that may involve cAMP and downstream effectors including protein kinase A (PKA) and exchange protein 2 directly activated by cAMP (Epac2). Using patch-clamp and Northern blot analysis, we explored the regulation of bTREK-1 mRNA and K(+) current expression by cAMP analogs and several of their putative metabolites in bovine AZF cells. At concentrations sufficient to activate both PKA and Epac2, 8-bromoadenosine-cAMP enhanced the expression of both bTREK-1 mRNA and K(+) current. N(6)-Benzoyladenosine-cAMP, which activates PKA but not Epac, also enhanced the expression of bTREK-1 mRNA and K(+) current measured at times from 24 to 96 h. An Epac-selective cAMP analog, 8-(4-chlorophenylthio)-2'-O-methyl-cAMP (8CPT-2'-OMe-cAMP), potently stimulated bTREK-1 mRNA and K(+) current expression, whereas the nonhydrolyzable Epac activator 8-(4-chlorophenylthio)-2'-O-methyl-cAMP, Sp-isomer was ineffective. Metabolites of 8CPT-2'-OMe-cAMP, including 8-(4-chlorophenylthio)-2'-O-methyladenosine-5'-O-monophosphate and 8CPT-2'-OMe-adenosine, promoted the expression of bTREK-1 transcripts and ion current with a temporal pattern, potency, and effectiveness resembling that of the parent compound. Likewise, at low concentrations, 8-(4-chlorophenylthio)-cAMP (8CPT-cAMP; 30 microM) but not its nonhydrolyzable analog 8-(4-chlorophenylthio)-cAMP, Sp-isomer, enhanced the expression of bTREK-1 mRNA and current. 8CPT-cAMP metabolites, including 8CPT-adenosine and 8CPT-adenine, also increased bTREK-1 expression. These results indicate that cAMP increases the expression of bTREK-1 mRNA and K(+) current through a cAMP-dependent but Epac2-independent mechanism. They further demonstrate that one or more metabolites of 8

  5. The Rabies Virus L Protein Catalyzes mRNA Capping with GDP Polyribonucleotidyltransferase Activity.

    PubMed

    Ogino, Minako; Ito, Naoto; Sugiyama, Makoto; Ogino, Tomoaki

    2016-05-21

    The large (L) protein of rabies virus (RABV) plays multiple enzymatic roles in viral RNA synthesis and processing. However, none of its putative enzymatic activities have been directly demonstrated in vitro. In this study, we expressed and purified a recombinant form of the RABV L protein and verified its guanosine 5'-triphosphatase and GDP polyribonucleotidyltransferase (PRNTase) activities, which are essential for viral mRNA cap formation by the unconventional mechanism. The RABV L protein capped 5'-triphosphorylated but not 5'-diphosphorylated RABV mRNA-start sequences, 5'-AACA(C/U), with GDP to generate the 5'-terminal cap structure G(5')ppp(5')A. The 5'-AAC sequence in the substrate RNAs was found to be strictly essential for RNA capping with the RABV L protein. Furthermore, site-directed mutagenesis showed that some conserved amino acid residues (G1112, T1170, W1201, H1241, R1242, F1285, and Q1286) in the PRNTase motifs A to E of the RABV L protein are required for cap formation. These findings suggest that the putative PRNTase domain in the RABV L protein catalyzes the rhabdovirus-specific capping reaction involving covalent catalysis of the pRNA transfer to GDP, thus offering this domain as a target for developing anti-viral agents.

  6. The Rabies Virus L Protein Catalyzes mRNA Capping with GDP Polyribonucleotidyltransferase Activity

    PubMed Central

    Ogino, Minako; Ito, Naoto; Sugiyama, Makoto; Ogino, Tomoaki

    2016-01-01

    The large (L) protein of rabies virus (RABV) plays multiple enzymatic roles in viral RNA synthesis and processing. However, none of its putative enzymatic activities have been directly demonstrated in vitro. In this study, we expressed and purified a recombinant form of the RABV L protein and verified its guanosine 5′-triphosphatase and GDP polyribonucleotidyltransferase (PRNTase) activities, which are essential for viral mRNA cap formation by the unconventional mechanism. The RABV L protein capped 5′-triphosphorylated but not 5′-diphosphorylated RABV mRNA-start sequences, 5′-AACA(C/U), with GDP to generate the 5′-terminal cap structure G(5′)ppp(5′)A. The 5′-AAC sequence in the substrate RNAs was found to be strictly essential for RNA capping with the RABV L protein. Furthermore, site-directed mutagenesis showed that some conserved amino acid residues (G1112, T1170, W1201, H1241, R1242, F1285, and Q1286) in the PRNTase motifs A to E of the RABV L protein are required for cap formation. These findings suggest that the putative PRNTase domain in the RABV L protein catalyzes the rhabdovirus-specific capping reaction involving covalent catalysis of the pRNA transfer to GDP, thus offering this domain as a target for developing anti-viral agents. PMID:27213429

  7. FLT3-ITD and MLL-PTD influence the expression of MDR-1, MRP-1, and BCRP mRNA but not LRP mRNA assessed with RQ-PCR method in adult acute myeloid leukemia.

    PubMed

    Nasilowska-Adamska, Barbara; Solarska, Iwona; Paluszewska, Monika; Malinowska, Iwona; Jedrzejczak, Wieslaw W; Warzocha, Krzysztof

    2014-04-01

    Fms-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) and mixed-lineage leukemia gene-partial tandem duplication (MLL-PTD) are aberrations associated with leukemia which indicate unsatisfactory prognosis. Downstream regulatory targets of FLT3-ITD and MLL-PTD are not well defined. We have analyzed the expression of MDR-1, multidrug resistant protein-1 (MRP-1), breast cancer resistance protein (BCRP), and lung resistance protein (LRP) messenger RNA (mRNA) in relation to the mutational status of FLT3-ITD and MLL-PTD in 185 acute myeloid leukemia (AML) adult patients. The real-time quantitative polymerase chain reaction method was performed to assess the expression of the MDR-1, MRP-1, BCRP, and LRP mRNA, and the results were presented as coefficients calculated using an intermediate method according to Pfaffl's rule. Significantly higher expressions of MDR-1 mRNA were found in patients who did not harbor FLT3-ITD (0.20 vs. 0.05; p = 0.0001) and MRP-1 mRNA in patients with this mutation (0.96 vs. 0.70; p = 0.002) and of BCRP mRNA in patients with MLL-PTD (0.61 vs. 0.38; p = 0.03). In univariate analysis, the high expression of MDR-1 mRNA (≥0.1317) negatively influenced the outcome of induction therapy (p = 0.05), whereas the high expression of BCRP mRNA (≥1.1487) was associated with a high relapse rate (RR) (p = 0.013). We found that the high expression of MDR-1 (≥0.1317), MRP-1 (≥0.8409), and BCRP mRNA (≥1.1487) significantly influenced disease-free survival (DFS; p = 0.059, 0.032, and 0.009, respectively) and overall survival (0.048, 0.014, and 0.059, respectively). Moreover, a high expression of BCRP mRNA (≥1.1487) proved to be an independent prognostic factor for RR (p = 0.01) and DFS (p = 0.002) in multivariate analysis. The significant correlation between the expression of MDR-1, MRP-1, and BCRP mRNA and FLT3-ITD or MLL-PTD in AML patients requires further investigation.

  8. Changes in mRNA expression of arcuate nucleus appetite-regulating peptides during lactation in rats.

    PubMed

    Suzuki, Yoshihiro; Nakahara, Keiko; Maruyama, Keisuke; Okame, Rieko; Ensho, Takuya; Inoue, Yoshiyuki; Murakami, Noboru

    2014-04-01

    The contribution of hypothalamic appetite-regulating peptides to further hyperphagia accompanying the course of lactation in rats was investigated by using PCR array and real-time PCR. Furthermore, changes in the mRNA expression for appetite-regulating peptides in the hypothalamic arcuate nucleus (ARC) were analyzed at all stages of pregnancy and lactation, and also after weaning. Food intake was significantly higher during pregnancy, lactation, and after weaning than during non-lactation periods. During lactation, ARC expression of mRNAs for agouti-related protein (AgRP) and peptide YY was increased, whereas that of mRNAs for proopiomelanocortin (POMC) and cholecystokinin (CCK) was decreased, in comparison with non-lactation periods. The increase in AgRP mRNA expression during lactation was especially marked. The plasma level of leptin was significantly decreased during the course of lactation, whereas that of acyl-ghrelin was unchanged. In addition, food intake was negatively correlated with the plasma leptin level during lactation. This study has clarified synchronous changes in the expression of many appetite-regulating peptides in ARC of rats during lactation. Our results suggest that hyperphagia during lactation in rats is caused by decreases in POMC and CCK expression and increases in AgRP expression in ARC, the latter being most notable. Together with the decrease in the blood leptin level, such changes in mRNA expression may explain the further hyperphagia accompanying the course of lactation.

  9. Regulation of adeno-associated virus gene expression in 293 cells: control of mRNA abundance and translation

    SciTech Connect

    Trempe, J.P.; Carter, B.J.

    1988-01-01

    The authors studied the effects of the adeno-associated virus (AAV) rep gene on the control of gene expression from the AAV p/sub 40/ promoter in 293 cells in the absence of an adenovirus coinfection. AAV vectors containing the chloramphenicol acetyltransferase (cat) gene were used to measure the levels of cat expression and steady-state mRNA from p/sub 40/. When the rep gene was present in cis or in trans, cat expression from p/sub 40/ was decreased 3- to 10-fold, but there was a 2- to 10-fold increase in the level of p/sub 40/ mRNA. Conversely, cat expression increased and the p/sub 40/ mRNA level decreased in the absence of the rep gene. Both wild-type and carboxyl-terminal truncated Rep proteins were capable of eliciting both effects. These data suggest two roles for the pleiotropic AAV rep gene: as a translational inhibitor and as a positive regulator of p/sub 40/ mRNA levels. They also provide additional evidence for a cis-acting negative regulatory region which decreases RNA from the AAV p/sub 5/ promoter in a fashion independent of rep.

  10. The up-regulation of ferritin expression using a small-molecule ligand to the native mRNA

    PubMed Central

    Tibodeau, Jennifer D.; Fox, Paige M.; Ropp, Patricia A.; Theil, Elizabeth C.; Thorp, H. Holden

    2006-01-01

    The binding of small molecules to distinctive three-dimensional structures in mRNA provides a new dimension in RNA control, previously limited to the targeting of secondary structures with antisense and RNA interference; such targeting can modulate mRNA function and rates of protein biosynthesis. Small molecules that selectively bind the iron-responsive element (IRE), a specific three-dimensional structure in the noncoding region of the ferritin mRNA model that is recognized by the iron-regulatory protein repressor, were identified by using chemical footprinting. The assay used involved an oxoruthenium(IV) complex that oxidizes guanine bases in RNA sequences. Small molecules that blocked oxidation of guanines in the internal loop region were expected to selectively increase the rate of ferritin synthesis, because the internal loop region of the ferritin IRE is distinctive from those of other IREs. The natural product yohimbine was found (based on gel mobility shifts) to block cleavage of the internal loop RNA site by >50% and seemed to inhibit protein binding. In the presence of yohimbine, the rate of biosynthesis of ferritin in a cell-free expression system (rabbit reticulocyte lysate) increased by 40%. Assignment of the IRE–yohimbine interaction as the origin of this effect was supported by a similar increase in synthesis of luciferase protein in a chimera of the IRE and luciferase gene. The identification of a small, drug-like molecule that recognizes a naturally occurring three-dimensional mRNA structure and regulates protein biosynthesis rates raises the possibility that small molecules can regulate protein biosynthesis by selectively binding to mRNA. PMID:16381820

  11. Amphotericin B severely affects expression and activity of the endothelial constitutive nitric oxide synthase involving altered mRNA stability

    PubMed Central

    Suschek, Christoph Viktor; Bonmann, Eckhard; Kleinert, Hartmut; Wenzel, Michael; Mahotka, Csaba; Kolb, Hubert; Förstermann, Ulrich; Gerharz, Claus-Dieter; Kolb-Bachofen, Victoria

    2000-01-01

    The therapeutic use of the antifungal drug amphotericin B (AmB) is limited due to severe side effects like glomerular vasoconstriction and risk of renal failure during AmB administration. As nitric oxide (NO) has substantial functions in renal autoregulation, we have determined the effects of AmB on endothelial constitutive NO synthase (ecNOS) expression and activity in human and rat endothelial cell cultures.AmB used at concentrations of 0.6 to 1.25 μg ml−1 led to increases in ecNOS mRNA and protein expression as well as NO production. This was the result of an increased ecNOS mRNA half-life. In contrast, incubation of cells with higher albeit subtoxic concentrations of AmB (2.5–5.0 μg ml−1) resulted in a decrease or respectively in completely abolished ecNOS mRNA and protein expression with a strongly reduced or inhibited ecNOS activity, due to a decrease of ecNOS mRNA half-life. None of the AmB concentrations affected promoter activity as found with a reporter gene construct stably transfected into ECV304 cells.Thus, our experiments show a concentration-dependent biphasic effect of AmB on expression and activity of ecNOS, an effect best explained by AmB influencing ecNOS mRNA stability. In view of the known renal accumulation of this drug the results reported here could help to elucidate its renal toxicity. PMID:11015297

  12. Localization and differential regulation of angiotensinogen mRNA expression in the vessel wall.

    PubMed Central

    Naftilan, A J; Zuo, W M; Inglefinger, J; Ryan, T J; Pratt, R E; Dzau, V J

    1991-01-01

    Recent data demonstrate the existence of a vascular renin angiotensin system. In this study we examine the localization of angiotensinogen mRNA in the blood vessel wall of two rat strains, the Wistar and Wistar Kyoto (WKY), as well as the regulation of vascular angiotensinogen mRNA expression by dietary sodium. Northern blot analysis and in situ hybridization histochemistry demonstrate that in both strains angiotensinogen mRNA is detected in the aortic medial smooth muscle layer as well as the periaortic fat. In WKY rats fed a 1.6% sodium diet, angiotensinogen mRNA concentration is 2.6-fold higher in the periaortic fat than in the smooth muscle, as analyzed by quantitative slot blot hybridization. Angiotensinogen mRNA expression in the medial smooth muscle layer is sodium regulated. After 5 d of a low (0.02%) sodium diet, smooth muscle angiotensinogen mRNA levels increase 3.2-fold (P less than 0.005) as compared with the 1.6% sodium diet. In contrast, angiotensinogen mRNA level in the periaortic fat is not influenced by sodium diet. In summary, our data demonstrate regional (smooth muscle vs. periaortic fat) differential regulation of angiotensinogen mRNA levels in the blood vessel wall by sodium. This regional differential regulation by sodium may have important physiological implications. Images PMID:2010543

  13. Amyloid precursor protein mRNA levels in the mononuclear blood cells of Alzheimer's and Down's patients.

    PubMed

    Buckland, P; Tidmarsh, S; Spurlock, G; Kaiser, F; Yates, M; O'Mahony, G; McGuffin, P

    1993-06-01

    Amyloid precursor protein (APP) is expressed by many non-neural tissues and it is possible that over-expression of the APP gene in non-neural tissue is responsible for the deposition of amyloid beta-protein in the brain and elsewhere. One possible source of beta-protein is circulating mononuclear blood cells which have previously been shown to express APP. To test this hypothesis, RNA was isolated from the mononuclear blood cells of patients suffering from Alzheimer's disease (n = 27), Down's syndrome (n = 13), senile dementia non-Alzheimer type (n = 14) and from normal individuals (n = 48). The relative abundance of mRNA coding for different splicing variants of the amyloid precursor protein (APP) mRNA was measured using multiprobe oligonucleotide solution hybridisation (MOSH). There was no significant difference in APP mRNA levels between any of the groups. This indicates that Alzheimer's disease is not characterised by an increase in production of APP in circulating mononuclear blood cells.

  14. Brain region specific alterations in the protein and mRNA levels of protein kinase A subunits in the post-mortem brain of teenage suicide victims.

    PubMed

    Pandey, Ghanshyam N; Dwivedi, Yogesh; Ren, Xinguo; Rizavi, Hooriyah S; Mondal, Amal C; Shukla, Pradeep K; Conley, Robert R

    2005-08-01

    Protein kinase A (PKA), a critical component of the adenylyl cyclase signaling system, phosphorylates crucial proteins and has been implicated in the pathophysiology of depression and suicide. The objective of the study was to examine if changes in PKA activity or in the protein and messenger RNA (mRNA) expression of any of its subunits are related to the pathophysiology of teenage suicide. We determined PKA activity and the protein and mRNA expression of different subunits of PKA in cytosol and membrane fractions obtained from the prefrontal cortex, (PFC) hippocampus, and nucleus accumbens (NA) of post-mortem brain from 17 teenage suicide victims and 17 nonpsychiatric control subjects. PKA activity was significantly decreased in the PFC but not the hippocampus of teenage suicide victims as compared with controls. However, the protein and mRNA expression of only two PKA subunits, that is, PKA RIalpha and PKA RIbeta, but not any other subunits were significantly decreased in both membrane and cytosol fractions of the PFC and protein expression of RIalpha and RIbeta in the NA of teenage suicide victims as compared to controls. A decrease in protein and mRNA expression of two specific PKA subunits may be associated with the pathogenesis of teenage suicide, and this decrease may be brain region specific, which may be related to the specific behavioral functions associated with these brain areas. Whether these changes in PKA subunits are related to suicidal behavior or are a result of suicide or are specific to suicide is not clear at this point.

  15. Inducible Control of mRNA transport using reprogrammable RNA-binding proteins.

    PubMed

    Abil, Zhanar; Gumy, Laura F; Zhao, Huimin; Hoogenraad, Casper C

    2017-03-06

    Localization of mRNA is important in a number of cellular processes such as embryogenesis, cellular motility, polarity, and a variety of neurological processes. A synthetic device that controls cellular mRNA localization would facilitate investigations on the significance of mRNA localization in cellular function and allow an additional level of controlling gene expression. In this work, we developed the PUF (Puilio and FBF homology domain) -assisted Localization of RNA (PULR) system, which utilizes a eukaryotic cell's cytoskeletal transport machinery to re-position mRNA within a cell. Depending on the cellular motor used, we show ligand-dependent transport of mRNA towards either pole of the microtubular network of cultured cells. In addition, implementation of the re-programmable PUF domain allowed the transport of untagged endogenous mRNA in primary neurons.

  16. Amphiphysin I but not dynamin I nor synaptojanin mRNA expression increased after repeated methamphetamine administration in the rat cerebrum and cerebellum.

    PubMed

    Hamamura, Mitsuko; Okouchi, Jiro; Ozawa, Hidetoshi; Kimuro, Yoshihiko; Iwaki, Akiko; Fukumaki, Yasuyuki

    2013-07-01

    Dopamine increases/decreases synaptic vesicle recycling and in schizophrenia the proteins/mRNA is decreased. We isolated cDNA clone, similar to amphiphysin 1 (vesicle protein) mRNA from the neocortex of rats injected repeatedly with methamphetamine using polymerase chain reaction (PCR) differential display. This clone is highly homologous to the 3' region of the human amphiphysin gene. PCR extension study using a primer specific for the rat amphiphysin 1 gene and a primer located within the clone revealed that it is the 3' UTR region of the rat amphiphysin 1 gene. Furthermore, in situ hybridization revealed that amphiphysin 1 mRNA is expressed in the cerebrum, medial thalamus, hippocampus and cerebellum. In the cerebellum, amphiphysin mRNA expression was confined to upper granule cell layer. Repeated methamphetamine administration increased amphiphysin I mRNA expression in both anterior part of the cerebrum, and the cerebellum. However, the repeated administration did not alter mRNA expression of the other vesicle proteins, synaptotagmin I, synapsin I, synaptojanin and dynamin I, we conclude that the repeated administration selectively increased amphiphysin 1 mRNA expression. Thus, amphiphysin 1 does not work as synaptic recycling, but it is suggested, as a part of pathogenesis of brain tissue injury (under Ca²⁺ and Mg²⁺ devoid environment) in repeated methamphetamine-injected states, the gene regulate actin-asssembly, learning, cell stress signaling and cell polarity.

  17. Hypothalamic expression of NPY mRNA, vasopressin mRNA and CRF mRNA in response to food restriction and central administration of the orexigenic peptide GHRP-6.

    PubMed

    Johnstone, Louise E; Srisawat, Rungrudee; Kumarnsit, Ekkasit; Leng, Gareth

    2005-03-01

    In this study, we examined the effects of restricted feeding and of central administration of an orexigenic ghrelin agonist GHRP-6 on peptide mRNA expression in the hypothalamus. We compared rats fed ad libitum with rats that were allowed food for only 2?h every day, and treated with a continuous chronic i.c.v. infusion of GHRP-6 or vehicle. Ad libitum fed rats exposed to GHRP-6 increased their food intake and body weight over 6 days, but, at the end of this period, neuropeptide Y mRNA expression in the arcuate nucleus was not different to that in control rats. By contrast, expression of neuropeptide Y mRNA in the arcuate nucleus was elevated in food-restricted rats, consistent with the interpretation that increased expression reflects increased hunger. However, neuropeptide Y mRNA expression was no greater in food-restricted rats infused with GHRP-6 than in food-restricted rats infused with vehicle; thus if the drive to eat was stronger in rats infused with GHRP-6, this was not reflected by higher levels of neuropeptide Y mRNA expression. Expression of vasopressin mRNA and corticotrophin releasing factor (CRF) mRNA in the paraventricular nucleus (PVN) was not changed by food restriction. GHRP-6 infusion increased CRF mRNA expression in ad libitum rats only.

  18. Statin myalgia is not associated with reduced muscle strength, mass or protein turnover in older male volunteers, but is allied with a slowing of time to peak power output, insulin resistance and differential muscle mRNA expression

    PubMed Central

    Mallinson, Joanne E.; Marimuthu, Kanagaraj; Murton, Andrew; Selby, Anna; Smith, Kenneth; Constantin‐Teodosiu, Dumitru; Rennie, Michael J.

    2015-01-01

    Key points Statins cause muscle‐specific side effects, most commonly muscle aches/weakness (myalgia), particularly in older people. Furthermore, evidence has linked statin use to increased risk of type 2 diabetes. However, the mechanisms involved are unknown.This is the first study to measure muscle protein turnover rates and insulin sensitivity in statin myalgic volunteers and age‐matched, non‐statin users under controlled fasting and fed conditions using gold standard methods.We demonstrate in older people that chronic statin myalgia is not associated with deficits in muscle strength and lean mass or the dysregulation of muscle protein turnover compared to non‐statin users. Furthermore, there were no between‐group differences in blood or muscle inflammatory markers.Statin users did, however, show blunting of muscle power output at the onset of dynamic exercise, increased abdominal adiposity, whole body and leg insulin resistance, and clear differential expression of muscle genes linked to mitochondrial dysfunction and apoptosis, which warrant further investigation. Abstract Statins are associated with muscle myalgia and myopathy, which probably reduce habitual physical activity. This is particularly relevant to older people who are less active, sarcopaenic and at increased risk of statin myalgia. We hypothesised that statin myalgia would be allied to impaired strength and work capacity in older people, and determined whether differences aligned with divergences in lean mass, protein turnover, insulin sensitivity and the molecular regulation of these processes. Knee extensor strength and work output during 30 maximal isokinetic contractions were assessed in healthy male volunteers, nine with no statin use (control 70.4 ± 0.7 years) and nine with statin myalgia (71.5 ± 0.9 years). Whole body and leg glucose disposal, muscle myofibrillar protein synthesis (MPS) and leg protein breakdown (LPB) were measured during fasting (≈5 mU l−1 insulin

  19. Plakophilins 1 and 3 Bind to FXR1 and Thereby Influence the mRNA Stability of Desmosomal Proteins

    PubMed Central

    Fischer-Kešo, Regina; Breuninger, Sonja; Hofmann, Sarah; Henn, Manuela; Röhrig, Theresa; Ströbel, Philipp; Stoecklin, Georg

    2014-01-01

    Plakophilins 1 and 3 (PKP1/3) are members of the arm repeat family of catenin proteins and serve as structural components of desmosomes, which are important for cell-cell-adhesion. In addition, PKP1/3 occur as soluble proteins outside desmosomes, yet their role in the cytoplasm is not known. We found that cytoplasmic PKP1/3 coprecipitated with the RNA-binding proteins FXR1, G3BP, PABPC1, and UPF1, and these PKP1/3 complexes also comprised desmoplakin and PKP2 mRNAs. Moreover, we showed that the interaction of PKP1/3 with G3BP, PABPC1, and UPF1 but not with FXR1 was RNase sensitive. To address the cytoplasmic function of PKP1/3, we performed gain-and-loss-of-function studies. Both PKP1 and PKP3 knockdown cell lines showed reduced protein and mRNA levels for desmoplakin and PKP2. Whereas global rates of translation were unaffected, desmoplakin and PKP2 mRNA were destabilized. Furthermore, binding of PKP1/3 to FXR1 was RNA independent, and both PKP3 and FXR1 stabilized PKP2 mRNA. Our results demonstrate that cytoplasmic PKP1/3 are components of mRNA ribonucleoprotein particles and act as posttranscriptional regulators of gene expression. PMID:25225333

  20. The RNA-binding protein HuR regulates DNA methylation through stabilization of DNMT3b mRNA.

    PubMed

    López de Silanes, Isabel; Gorospe, Myriam; Taniguchi, Hiroaki; Abdelmohsen, Kotb; Srikantan, Subramanya; Alaminos, Miguel; Berdasco, María; Urdinguio, Rocío G; Fraga, Mario F; Jacinto, Filipe V; Esteller, Manel

    2009-05-01

    The molecular basis underlying the aberrant DNA-methylation patterns in human cancer is largely unknown. Altered DNA methyltransferase (DNMT) activity is believed to contribute, as DNMT expression levels increase during tumorigenesis. Here, we present evidence that the expression of DNMT3b is post-transcriptionally regulated by HuR, an RNA-binding protein that stabilizes and/or modulates the translation of target mRNAs. The presence of a putative HuR-recognition motif in the DNMT3b 3'UTR prompted studies to investigate if this transcript associated with HuR. The interaction between HuR and DNMT3b mRNA was studied by immunoprecipitation of endogenous HuR ribonucleoprotein complexes followed by RT-qPCR detection of DNMT3b mRNA, and by in vitro pulldown of biotinylated DNMT3b RNAs followed by western blotting detection of HuR. These studies revealed that binding of HuR stabilized the DNMT3b mRNA and increased DNMT3b expression. Unexpectedly, cisplatin treatment triggered the dissociation of the [HuR-DNMT3b mRNA] complex, in turn promoting DNMT3b mRNA decay, decreasing DNMT3b abundance, and lowering the methylation of repeated sequences and global DNA methylation. In summary, our data identify DNMT3b mRNA as a novel HuR target, present evidence that HuR affects DNMT3b expression levels post-transcriptionally, and reveal the functional consequences of the HuR-regulated DNMT3b upon DNA methylation patterns.

  1. Evolutionary Conservation and Diversification of Puf RNA Binding Proteins and Their mRNA Targets.

    PubMed

    Hogan, Gregory J; Brown, Patrick O; Herschlag, Daniel

    2015-01-01

    chain (ETC) complex I as well as hundreds of other mRNAs with nonmitochondrial functions. The many concerted and conserved changes in the RNA targets of Puf proteins strongly support an extensive role of RNA binding proteins in coordinating gene expression, as originally proposed by Keene. Rewiring of Puf-coordinated mRNA targets and transcriptional control of the same genes occurred at different points in evolution, suggesting that there have been distinct adaptations via RNA binding proteins and transcription factors. The changes in Puf targets and in the Puf proteins indicate an integral involvement of RNA binding proteins and their RNA targets in the adaptation, reprogramming, and function of gene expression.

  2. Evolutionary Conservation and Diversification of Puf RNA Binding Proteins and Their mRNA Targets

    PubMed Central

    Hogan, Gregory J.; Brown, Patrick O.; Herschlag, Daniel

    2015-01-01

    chain (ETC) complex I as well as hundreds of other mRNAs with nonmitochondrial functions. The many concerted and conserved changes in the RNA targets of Puf proteins strongly support an extensive role of RNA binding proteins in coordinating gene expression, as originally proposed by Keene. Rewiring of Puf-coordinated mRNA targets and transcriptional control of the same genes occurred at different points in evolution, suggesting that there have been distinct adaptations via RNA binding proteins and transcription factors. The changes in Puf targets and in the Puf proteins indicate an integral involvement of RNA binding proteins and their RNA targets in the adaptation, reprogramming, and function of gene expression. PMID:26587879

  3. Rat long-chain acyl-CoA synthetase mRNA, protein, and activity vary in tissue distribution and in response to diet.

    PubMed

    Mashek, Douglas G; Li, Lei O; Coleman, Rosalind A

    2006-09-01

    Distinct isoforms of long-chain acyl-CoA synthetases (ACSLs) may partition fatty acids toward specific metabolic cellular pathways. For each of the five members of the rat ACSL family, we analyzed tissue mRNA distributions, and we correlated the mRNA, protein, and activity of ACSL1 and ACSL4 after fasting and refeeding a 69% sucrose diet. Not only did quantitative real-time PCR analyses reveal unique tissue expression patterns for each ACSL isoform, but expression varied markedly in different adipose depots. Fasting increased ACSL4 mRNA abundance in liver, muscle, and gonadal and inguinal adipose tissues, and refeeding decreased ACSL4 mRNA. A similar pattern was observed for ACSL1, but both fasting and refeeding decreased ACSL1 mRNA in gonadal adipose. Fasting also decreased ACSL3 and ACSL5 mRNAs in liver and ACSL6 mRNA in muscle. Surprisingly, in nearly every tissue measured, the effects of fasting and refeeding on the mRNA abundance of ACSL1 and ACSL4 were discordant with changes in protein abundance. These data suggest that the individual ACSL isoforms are distinctly regulated across tissues and show that mRNA expression may not provide useful information about isoform function. They further suggest that translational or posttranslational modifications are likely to contribute to the regulation of ACSL isoforms.

  4. Myoglobin expression: early induction and subsequent modulation of myoglobin and myoglobin mRNA during myogenesis.

    PubMed Central

    Weller, P A; Price, M; Isenberg, H; Edwards, Y H; Jeffreys, A J

    1986-01-01

    We showed that myoglobin gene transcription and the appearance of myoglobin occur very early in myogenesis, in both humans and mice. In contrast to the contractile protein genes, there is a subsequent increase of 50- to 100-fold in myoglobin mRNA and protein levels during later muscle development. Myoglobin and myoglobin mRNA are present at elevated levels in fetal heart and are also detectable at low levels in adult smooth muscle. The absolute level of myoglobin mRNA in highly myoglobinized seal muscle is very high [2.8% of the total population of poly(A)+ RNAs]. Levels of myoglobin in seal skeletal muscle and in various human muscle types appear to be determined by the size of the myoglobin mRNA pool. In contrast, low levels of myoglobin in mouse skeletal muscle are not apparently correlated with low levels of myoglobin mRNA. As expected from the early appearance of myoglobin mRNA in embryonic skeletal muscle, both rat and mouse embryonic myoblasts accumulate myoglobin mRNA on fusion and differentiation in vitro. Images PMID:3796609

  5. Transforming Growth Factor β1 (TGF-β1) Activates Hepcidin mRNA Expression in Hepatocytes.

    PubMed

    Chen, Simeng; Feng, Teng; Vujić Spasić, Maja; Altamura, Sandro; Breitkopf-Heinlein, Katja; Altenöder, Jutta; Weiss, Thomas S; Dooley, Steven; Muckenthaler, Martina U

    2016-06-17

    The hepatic hormone hepcidin is the master regulator of systemic iron homeostasis. Its expression level is adjusted to alterations in iron levels, inflammatory cues, and iron requirements for erythropoiesis. Bone morphogenetic protein 6 (BMP6) contributes to the iron-dependent control of hepcidin. In addition, TGF-β1 may stimulate hepcidin mRNA expression in murine hepatocytes and human leukocytes. However, receptors and downstream signaling proteins involved in TGF-β1-induced hepcidin expression are still unclear. Here we show that TGF-β1 treatment of mouse and human hepatocytes, as well as ectopic expression of TGF-β1 in mice, increases hepcidin mRNA levels. The hepcidin response to TGF-β1 depends on functional TGF-β1 type I receptor (ALK5) and TGF-β1 type II receptor (TβRII) and is mediated by a noncanonical mechanism that involves Smad1/5/8 phosphorylation. Interestingly, increasing availability of canonical Smad2/3 decreases TGF-β1-induced hepcidin regulation, whereas the BMP6-hepcidin signal was enhanced, indicating a signaling component stoichiometry-dependent cross-talk between the two pathways. Although ALK2/3-dependent hepcidin activation by BMP6 can be modulated by each of the three hemochromatosis-associated proteins: HJV (hemojuvelin), HFE (hemochromatosis protein), and TfR2 (transferrin receptor 2), these proteins do not control the ALK5-mediated hepcidin response to TGF-β1. TGF-β1 mRNA levels are increased in mouse models of iron overload, indicating that TGF-β1 may contribute to hepcidin synthesis under these conditions. In conclusion, these data demonstrate that a complex regulatory network involving TGF-β1 and BMP6 may control the sensing of systemic and/or hepatic iron levels.

  6. Sodium regulation of angiotensinogen mRNA expression in rat kidney cortex and medulla.

    PubMed Central

    Ingelfinger, J R; Pratt, R E; Ellison, K; Dzau, V J

    1986-01-01

    Rat liver angiotensinogen cDNA (pRang 3) and mouse renin cDNA (pDD-1D2) were used to identify angiotensinogen and renin mRNA sequences in rat kidney cortex and medulla in rats on high and low salt diet. Angiotensinogen mRNA sequences were present in renal cortex and medulla in apparently equal proportions, whereas renin mRNA sequences were found primarily in renal cortex. Average relative signal of rat liver to whole kidney angiotensinogen mRNA was 100:3. Densitometric analysis of Northern blots demonstrated that renal cortical angiotensinogen mRNA concentrations increased 3.5-fold (P less than 0.001) and medulla, 1.5-fold (P less than 0.005) on low sodium compared with high sodium diet, whereas renal cortex renin mRNA levels increased 6.8-fold (P less than 0.0005). Dietary sodium did not significantly influence liver angiotensinogen mRNA levels. These findings provide evidence for sodium regulation of renal renin and angiotensinogen mRNA expressions, which supports potential existence of an intrarenally regulated RAS and suggest that different factors regulate renal and hepatic angiotensinogen. Images PMID:3533999

  7. Programmed cell death 4 protein (Pdcd4) and homeodomain-interacting protein kinase 2 (Hipk2) antagonistically control translation of Hipk2 mRNA.

    PubMed

    Ohnheiser, Johanna; Ferlemann, Eva; Haas, Astrid; Müller, Jan P; Werwein, Eugen; Fehler, Olesja; Biyanee, Abhiruchi; Klempnauer, Karl-Heinz

    2015-07-01

    The tumor suppressor protein programmed cell death 4 (Pdcd4) is a highly conserved RNA-binding protein that inhibits the translation of specific mRNAs. Here, we have identified the homeobox-interacting protein kinase-2 (Hipk2) mRNA as a novel translational target of Pdcd4. Unlike most other protein kinases Hipk2 is constitutively active after being synthesized by the ribosome and its expression and activity are thought to be mainly controlled by modulation of the half-life of the kinase. Our work provides the first evidence that Hipk2 expression is also controlled on the level of translation. We show that Hipk2 stimulates the translation of its own mRNA and that Pdcd4 suppresses the translation of Hipk2 mRNA by interfering with this auto-regulatory feedback mechanism. We also show that the translation of the related kinase Hipk1 is controlled by a similar feedback loop and that Hipk2 also stimulates the translation of Hipk1 mRNA. Taken together, our work describes a novel mechanism of translational suppression by Pdcd4 and shows for the first time that Hipk2 controls its own synthesis by an auto-regulatory feedback mechanism. Furthermore, the effect of Hipk2 on the translation of Hipk1 RNA suggests that Hipk2 and Pdcd4 can act in similar manner to control the translation of other mRNAs.

  8. [The expression of human telomerase reverse transcriptase mRNA and its significance in acute leukemia].

    PubMed

    Meng, Xiao-Li; Lin, Mao-Fang; Jin, Jie

    2003-02-01

    To investigate the expression of hTERT mRNA in bone marrow mononuclear cells (MNCs) from acute leukemia patients, the method of semi-quntitative RT-PCR was used to examine the expression of hTERT mRNA in marrow MNCs, and the telomerase activity of marrow MNCs was determined with the method of TRAP-PCR-ELISA by using a commercial kit. The results indicated that the expression of hTERT mRNA of marrow MNCs in 30 untreated AL patients was markedly higher than that in 12 CR cases (0.71 +/- 0.34 vs 0.43 +/- 0.25, P < 0.05) and 6 normal volunteers (0.71 +/- 0.34 vs 0.22 +/- 0.21, P < 0.01), respectively. Telomerase activity of marrow MNCs in 30 untreated AL patients was significantly higher than that in 12 CR cases (0.235 +/- 0.395 vs 0.012 +/- 0.015, P = 0.007). Moreover, there was a positive correlation between the hTERT mRNA synthesis and telomerase activity in AL cells (r = 0.421, P < 0.01). The pencentage of blast cells in marrow smear of the untreated AL patients was positively correlated with both the expression of hTERT mRNA and the telomerase activity of bone marrow MNCs (r = 0.457, P < 0.05 and r = 0.411, P < 0.05), respectively. It is concluded that the expression of hTERT mRNA in bone marrow MNCs from untreated AL patients was correlated with their telomerase activity. It is suggested that the expression of hTERT mRNA leukemic cells indicates their higher proliferation ability.

  9. Expression of a streptomycete leaderless mRNA encoding chloramphenicol acetyltransferase in Escherichia coli.

    PubMed Central

    Wu, C J; Janssen, G R

    1997-01-01

    The chloramphenicol acetyltransferase (cat) gene from Streptomyces acrimycini encodes a leaderless mRNA. Expression of the cat coding sequence as a leaderless mRNA from a modified lac promoter resulted in chloramphenicol resistance in Escherichia coli. Transcript mapping with nuclease S1 confirmed that the 5' end of the cat message initiated at the A of the AUG translational start codon. Site-directed mutagenesis of the lac promoter or the cat start codon abolished chloramphenicol resistance, indicating that E. coli initiated translation at the 5' terminal AUG of the cat leaderless mRNA. Addition of 5'-AUGC-3' to the 5' end of the cat mRNA resulted in translation occurring also from the reading frame defined by the added AUG triplet, suggesting that a 5'-terminal start codon is an important recognition feature for initiation and establishing reading frame during translation of leaderless mRNA. Addition of an untranslated leader and Shine-Dalgarno sequence to the cat coding sequence increased cat expression in a cat:lacZ fusion; however, the level of expression was significantly lower than when a fragment of the bacteriophage lambda cI gene, also encoding a leaderless mRNA, was fused to lacZ. These results indicate that in the absence of an untranslated leader and Shine-Dalgarno sequence, the streptomycete cat mRNA is translated by E. coli; however, the cat translation signals, or other features of the cat mRNA, provide for only a low level of expression in E. coli. PMID:9352935

  10. Neuropeptide Y mRNA expression levels following chronic olanzapine, clozapine and haloperidol administration in rats.

    PubMed

    Huang, X-F; Deng, Chao; Zavitsanou, Katerina

    2006-06-01

    Using quantitative in situ hybridization, this study examined regional changes in rat brain mRNA levels encoding neuropeptide Y (NPY) following olanzapine, clozapine and haloperidol administration (1.2, 1.5 and 2.0 mg/kg, oral) for 36 days. The NPY mRNA expression levels and patterns were examined after the last drug administration at both time points enabling the measurement of immediate effect at 2h and the effects after 48 h of drug administration. It was found that all these drugs had an immediate effect on NPY mRNA expression, while virtually all these changes normalized 48 h after the drug treatments. A similarity in altered NPY mRNA expression patterns was seen between the olanzapine and clozapine groups; however, haloperidol was very different. Olanzapine and clozapine administration decreased NPY mRNA levels in the nucleus accumbens, striatum and anterior cingulate cortex (from -60% to -77%, p<0.05). Haloperidol decreased NPY mRNA expression in the amygdala and hippocampus (-69%, -64%, p<0.05). In the lateral septal nucleus, NPY mRNA levels significantly decreased in the olanzapine group (-66%, p<0.05), a trend toward a decrease was observed in the clozapine group, and no change was found in the haloperidol treated group. These results suggest that the different effects of atypical and typical antipsychotics on NPY systems may reflect the neural chemical mechanisms responsible for the differences between these drugs in their effects in treating positive and negative symptoms of schizophrenia. The immediate decrease of NPY mRNA levels suggests an immediate reduction of NPY biosynthesis in response to these drugs.

  11. The Csr system regulates genome-wide mRNA stability and transcription and thus gene expression in Escherichia coli.

    PubMed

    Esquerré, Thomas; Bouvier, Marie; Turlan, Catherine; Carpousis, Agamemnon J; Girbal, Laurence; Cocaign-Bousquet, Muriel

    2016-04-26

    Bacterial adaptation requires large-scale regulation of gene expression. We have performed a genome-wide analysis of the Csr system, which regulates many important cellular functions. The Csr system is involved in post-transcriptional regulation, but a role in transcriptional regulation has also been suggested. Two proteins, an RNA-binding protein CsrA and an atypical signaling protein CsrD, participate in the Csr system. Genome-wide transcript stabilities and levels were compared in wildtype E. coli (MG1655) and isogenic mutant strains deficient in CsrA or CsrD activity demonstrating for the first time that CsrA and CsrD are global negative and positive regulators of transcription, respectively. The role of CsrA in transcription regulation may be indirect due to the 4.6-fold increase in csrD mRNA concentration in the CsrA deficient strain. Transcriptional action of CsrA and CsrD on a few genes was validated by transcriptional fusions. In addition to an effect on transcription, CsrA stabilizes thousands of mRNAs. This is the first demonstration that CsrA is a global positive regulator of mRNA stability. For one hundred genes, we predict that direct control of mRNA stability by CsrA might contribute to metabolic adaptation by regulating expression of genes involved in carbon metabolism and transport independently of transcriptional regulation.

  12. Chtop (Chromatin target of Prmt1) auto-regulates its expression level via intron retention and nonsense-mediated decay of its own mRNA

    PubMed Central

    Izumikawa, Keiichi; Yoshikawa, Harunori; Ishikawa, Hideaki; Nobe, Yuko; Yamauchi, Yoshio; Philipsen, Sjaak; Simpson, Richard J; Isobe, Toshiaki; Takahashi, Nobuhiro

    2016-01-01

    Chtop (chromatin target of Prmt1) regulates various aspects of gene expression including transcription and mRNA export. Despite these important functions, the regulatory mechanism underlying Chtop expression remains undetermined. Using Chtop-expressing human cell lines, we demonstrate that Chtop expression is controlled via an autoregulatory negative feedback loop whereby Chtop binds its own mRNA to retain intron 2 during splicing; a premature termination codon present at the 5′ end of intron 2 leads to nonsense-mediated decay of the mRNA. We also show that Chtop interacts with exon 2 of Chtop mRNA via its arginine-glycine-rich (RG) domain, and with intron 2 via its N-terminal (N1) domain; both are required for retention of intron 2. In addition, we show that hnRNP H accelerates intron 2 splicing of Chtop mRNA in a manner dependent on Chtop expression level, suggesting that Chtop and hnRNP H regulate intron 2 retention of Chtop mRNA antagonistically. Thus, the present study provides a novel molecular mechanism by which mRNA and protein levels are constitutively regulated by intron retention. PMID:27683223

  13. Cytochrome P450IA mRNA expression in feral Hudson River tomcod

    SciTech Connect

    Kreamer, G.L.; Squibb, K.; Gioeli, D.; Garte, S.J.; Wirgin, I. )

    1991-06-01

    The authors sought to determine if levels of cytochrome P450IA gene expression are environmentally induced in feral populations of Hudson River tomcod, a cancer prone fish, and whether laboratory exposure of tomcod to artificially spiked and naturally contaminated Hudson sediments can elicit a significant response. Using Northern blot analysis, they found levels of P450IA mRNA in tomcod collected from two Hudson River sites higher than those in tomcod from a river in Maine. Depuration of environmentally induced Hudson tomcod P450IA mRNA was rapid, with an initial detectable decline in P450 gene expression by 8 hr and basal levels reached by 5 days. Intraperitoneal injection of {beta}-napthoflavone in depurated Hudson tomcod resulted in a 15-fold induction of P450 gene expression within 26 hr. Exposure of depurated Hudson tomcod to natural sediment spiked with two PAHs resulted in a 7-fold induction of P450 gene expression. Exposure of depurated tomcod to sediment from a contaminated Hudson site also resulted in a 7- to 15-fold induction of P450IA mRNA expression. Northern blot analysis revealed a second polymorphic cytochrome P450IA mRNA band in some tomcod which was also detected by Southern blot analysis. Induction of cytochrome P450IA mRNA in Atlantic tomcod may provide a sensitive biomarker of environmentally relevant concentrations of some pollutants in the Hudson and other northeastern tidal rivers.

  14. The mRNA expression of SATB1 and SATB2 in human breast cancer

    PubMed Central

    Patani, Neill; Jiang, Wen; Mansel, Robert; Newbold, Robert; Mokbel, Kefah

    2009-01-01

    Background SATB1 is a nuclear protein that has been recently reported to be a 'genome organizer' which delineates specific epigenetic modifications at target gene loci, directly up-regulating metastasis-associated genes while down-regulating tumor-suppressor genes. In this study, the level of mRNA expression of SATB1 and SATB2 were assessed in normal and malignant breast tissue in a cohort of women with breast cancer and correlated to conventional clinico-pathological parameters. Materials and methods Breast cancer tissues (n = 115) and normal background tissues (n = 31) were collected immediately after excision during surgery. Following RNA extraction, reverse transcription was carried out and transcript levels were determined using real-time quantitative PCR and normalized against β-actin expression. Transcript levels within the breast cancer specimens were compared to the normal background tissues and analyzed against TNM stage, nodal involvement, tumour grade and clinical outcome over a 10 year follow-up period. Results The levels of SATB1 were higher in malignant compared with normal breast tissue (p = 0.0167). SATB1 expression increased with increasing TNM stage (TNM1 vs. TNM2 p = 0.0264), increasing tumour grade (grade1 vs. grade 3 p = 0.017; grade 2 vs. grade 3 p = 0.0437; grade 1 vs. grade 2&3 p = 0.021) and Nottingham Prognostic Index (NPI) (NPI-1 vs. NPI-3 p = 0.0614; NPI-2 vs. NPI-3 p = 0.0495). Transcript levels were associated with oestrogen receptor (ER) positivity (ER(-) vs. ER(+) p = 0.046). SABT1 expression was also significantly correlated with downstream regulated genes IL-4 and MAF-1 (Pearson's correlation coefficient r = 0.21 and r = 0.162) and SATB2 (r = 0.506). After a median follow up of 10 years, there was a trend for higher SATB1 expression to be associated with shorter overall survival (OS). Higher levels of SATB2 were also found in malignant compared to background tissue (p = 0.049). SATB2 expression increased with increasing tumour

  15. Voltage-Gated Na+ Channel Isoforms and Their mRNA Expression Levels and Protein Abundance in Three Electric Organs and the Skeletal Muscle of the Electric Eel Electrophorus electricus

    PubMed Central

    Hiong, Kum C.; Boo, Mel V.; Wong, Wai P.; Chew, Shit F.

    2016-01-01

    This study aimed to obtain the coding cDNA sequences of voltage-gated Na+ channel (scn) α-subunit (scna) and β-subunit (scnb) isoforms from, and to quantify their transcript levels in, the main electric organ (EO), Hunter’s EO, Sach’s EO and the skeletal muscle (SM) of the electric eel, Electrophorus electricus, which can generate both high and low voltage electric organ discharges (EODs). The full coding sequences of two scna (scn4aa and scn4ab) and three scnb (scn1b, scn2b and scn4b) were identified for the first time (except scn4aa) in E. electricus. In adult fish, the scn4aa transcript level was the highest in the main EO and the lowest in the Sach’s EO, indicating that it might play an important role in generating high voltage EODs. For scn4ab/Scn4ab, the transcript and protein levels were unexpectedly high in the EOs, with expression levels in the main EO and the Hunter’s EO comparable to those of scn4aa. As the key domains affecting the properties of the channel were mostly conserved between Scn4aa and Scn4ab, Scn4ab might play a role in electrogenesis. Concerning scnb, the transcript level of scn4b was much higher than those of scn1b and scn2b in the EOs and the SM. While the transcript level of scn4b was the highest in the main EO, protein abundance of Scn4b was the highest in the SM. Taken together, it is unlikely that Scna could function independently to generate EODs in the EOs as previously suggested. It is probable that different combinations of Scn4aa/Scn4ab and various Scnb isoforms in the three EOs account for the differences in EODs produced in E. electricus. In general, the transcript levels of various scn isoforms in the EOs and the SM were much higher in adult than in juvenile, and the three EOs of the juvenile fish could be functionally indistinct. PMID:27907137

  16. Docosahexaenoic acid increases cellular adiponectin mRNA and secreted adiponectin protein, as well as PPARγ mRNA, in 3T3-L1 adipocytes.

    PubMed

    Oster, Richard T; Tishinsky, Justine M; Yuan, Zongfei; Robinson, Lindsay E

    2010-12-01

    Adiponectin, a protein secreted from adipose tissue, has been shown to have anti-diabetic and anti-inflammatory effects, but its regulation is not completely understood. Long-chain n-3 fatty acids eicosapentaenoic acid (20:5n-3; EPA) and docosahexaenoic acid (22:6n-3; DHA) may be involved in adiponectin regulation as they are potential ligands for peroxisome proliferator-activated receptor-γ (PPARγ), a key transcription factor for the adiponectin gene. To examine this, 3T3-L1 adipocytes were incubated with 125 µmol·L-1 EPA, DHA, palmitic, or oleic acids complexed to albumin, or with albumin alone (control) for 24 h. Adipocytes were also incubated for 24 h with EPA and DHA plus bisphenol-A-diglycidyl ether (BADGE), a PPARγ antagonist. Both EPA and DHA increased (p < 0.05) secreted adiponectin concentration compared with the control (44% and 102%, respectively), but did not affect cellular adiponectin protein content. Incubation with BADGE and DHA inhibited increases in secreted adiponectin protein, suggesting that DHA may act through a PPARγ-dependent mechanism. However, BADGE had no effect on EPA-induced increases in secreted adiponectin protein. Only DHA enhanced (p < 0.05) PPARγ and adiponectin mRNA expression compared wtih the control. Our results demonstrate that DHA increases cellular adiponectin mRNA and secreted adiponectin protein in 3T3-L1 adipocytes, possibly by a mechanism involving PPARγ. Moreover, DHA increased adiponectin concentration to a greater extent (40% more, p < 0.05) compared with EPA, emphasizing the need to consider the independent actions of EPA and DHA in adipocytes.

  17. Chemokines mRNA expression in relation to the Macrophage Migration Inhibitory Factor (MIF) mRNA and Vascular Endothelial Growth Factor (VEGF) mRNA expression in the microenvironment of endometrial cancer tissue and normal endometrium: a pilot study.

    PubMed

    Giannice, Raffaella; Erreni, Marco; Allavena, Paola; Buscaglia, Mauro; Tozzi, Roberto

    2013-11-01

    Tumor microenvironment inflammatory cells play a major role in cancer progression. Among these, the Tumor Associated Macrophages (TAMs) infiltration depends on the kind of chemokine, cytokines and growth factors secreted by the tumor cells and by the stroma in response to the cancer invasion. TAMs have been found to promote anti-tumor response in early stages and to stimulate neovascularization and metastases in advanced disease. In the microenvironment chemo-attractants of many human cancers, MIF and VEGF correlate with an increased TAMs recruitment. In addition, MIF enhances tumor cells metastases by modulating the immune responses and by promoting the angiogenesis related to VEGF. On the contrary the inhibition of MIF can lead to cell cycle arrest and apoptosis. Some chemokines (e.g. CXCL12, CXCL11, CXCL8) and their receptors, thanks to their ability to modulate migration and proliferation, are involved in the angiogenetic process. In this study we compared the expression of MIF mRNA with VEGF mRNA expression and with mRNA expression of other chemokines related to neo-angiogenesis, such as CXCL12, CXCL11, CXCL8 and CXCR4, in human endometrial cancer tissue (EC) and normal endometrium (NE). Fresh samples of EC tissue and NE were extracted from 15 patients with FIGO stage I-III undergoing primary surgery. Some of the tissue was sent for histology and part of it was treated with RNA later and stored at -80°C. Four patients dropped out. A significant up-regulation of MIF mRNA in EC tissue versus NE samples (P=0.01) was observed in all 11 patients. The MIF mRNA over-expression was coincident with a VEGF mRNA overexpression in 54% of patients (P=NS). MIF mRNA was inversely related to CXCL12 mRNA expression (P=0.01). MIF over-expression was significantly related to low grading G1-2 (P=0.01), endometrial type I (P=0.05), no lymphovascular spaces invasion (P=0.01) and 3years DFS (P=0.01). As reported in previous studies on patients with breast cancer, our data suggest

  18. Poly(rC) binding proteins mediate poliovirus mRNA stability.

    PubMed Central

    Murray, K E; Roberts, A W; Barton, D J

    2001-01-01

    The 5'-terminal 88 nt of poliovirus RNA fold into a cloverleaf RNA structure and form ribonucleoprotein complexes with poly(rC) binding proteins (PCBPs; AV Gamarnik, R Andino, RNA, 1997, 3:882-892; TB Parsley, JS Towner, LB Blyn, E Ehrenfeld, BL Semler, RNA, 1997, 3:1124-1134). To determine the functional role of these ribonucleoprotein complexes in poliovirus replication, HeLa S10 translation-replication reactions were used to quantitatively assay poliovirus mRNA stability, poliovirus mRNA translation, and poliovirus negative-strand RNA synthesis. Ribohomopoly(C) RNA competitor rendered wild-type poliovirus mRNA unstable in these reactions. A 5'-terminal 7-methylguanosine cap prevented the degradation of wild-type poliovirus mRNA in the presence of ribohomopoly(C) competitor. Ribohomopoly(A), -(G), and -(U) did not adversely affect poliovirus mRNA stability. Ribohomopoly(C) competitor RNA inhibited the translation of poliovirus mRNA but did not inhibit poliovirus negative-strand RNA synthesis when poliovirus replication proteins were provided in trans using a chimeric helper mRNA possessing the hepatitis C virus IRES. A C24A mutation prevented UV crosslinking of PCBPs to 5' cloverleaf RNA and rendered poliovirus mRNA unstable. A 5'-terminal 7-methylguanosine cap blocked the degradation of C24A mutant poliovirus mRNA. The C24A mutation did not inhibit the translation of poliovirus mRNA nor diminish viral negative-strand RNA synthesis relative to wild-type RNA. These data support the conclusion that poly(rC) binding protein(s) mediate the stability of poliovirus mRNA by binding to the 5'-terminal cloverleaf structure of poliovirus mRNA. Because of the general conservation of 5' cloverleaf RNA sequences among picornaviruses, including C24 in loop b of the cloverleaf, we suggest that viral mRNA stability of polioviruses, coxsackieviruses, echoviruses, and rhinoviruses is mediated by interactions between PCBPs and 5' cloverleaf RNA. PMID:11497431

  19. OPIATE EXPOSURE AND WITHDRAWAL DYNAMICALLY REGULATE mRNA EXPRESSION IN THE SEROTONERGIC DORSAL RAPHE NUCLEUS

    PubMed Central

    Lunden, Jason; Kirby, Lynn G.

    2013-01-01

    Previous results from our lab suggest that hypofunctioning of the serotonergic (5-HT) dorsal raphe nucleus (DRN) is involved in stress-induced opiate reinstatement. To further investigate the effects of morphine dependence and withdrawal on the 5-HT DRN system, we measured gene expression at the level of mRNA in the DRN during a model of morphine dependence, withdrawal and post withdrawal stress exposure in rats. Morphine pellets were implanted for 72h and then either removed or animals were injected with naloxone to produce spontaneous or precipitated withdrawal, respectively. Animals exposed to these conditions exhibited withdrawal symptoms including weight loss, wet dog shakes and jumping behavior. Gene expression for brain-derived neurotrophic factor (BDNF), TrkB, corticotrophin releasing-factor (CRF)-R1, CRF-R2, GABAA-α1, μ-opioid receptor (MOR), 5-HT1A, tryptophan hydroxylase2 and the 5-HT transporter was then measured using quantitative real-time PCR at multiple time-points across the model of morphine exposure, withdrawal and post withdrawal stress. Expression levels of BDNF, TrkB and CRF-R1 mRNA were decreased during both morphine exposure and following seven days of withdrawal. CRF-R2 mRNA expression was elevated after seven days of withdrawal. 5-HT1A receptor mRNA expression was decreased following 3 hours of morphine exposure, while TPH2 mRNA expression was decreased after seven days of withdrawal with swim stress. There were no changes in the expression of GABAA-α1, MOR or 5-HT transporter mRNA. Collectively these results suggest that alterations in neurotrophin support, CRF-dependent stress signaling, 5-HT synthesis and release may underlie 5-HT DRN hypofunction that can potentially lead to stress-induced opiate relapse. PMID:24055683

  20. A Candida albicans gene expressed in Saccharomyces cerevisiae results in a distinct pattern of mRNA processing.

    PubMed

    Iborra, A; Sentandreu, R; Gozalbo, D

    1996-09-01

    Two plasmids (derived from YCplac22 and YEplac112) carrying a Candida albicans gene (including the 5' non-coding promoter sequences) coding for a 30 kDa membrane-bound protein, were used to transform Saccharomyces cerevisiae cells. A 30 kDa protein was immunodetected by Western blot in the membrane fraction of transformants. Northern analysis showed the presence of three mRNA species (of about 1.1, 0.7 and 0.5 kb) hybridizing with the C. albicans gene as a probe. The same result was obtained using the 5' and 3' regions of the gene as probes, whereas only a 1.1 kb mRNA was found in C. albicans and none was detected in S. cerevisiae control transformants. Thus, heterologous expression of this gene in S. cerevisiae results in a distinct pattern of mRNA processing, either due to the location on plasmid vectors and/or to differences in the mRNA processing systems in the two microorganisms.

  1. SR proteins are NXF1 adaptors that link alternative RNA processing to mRNA export.

    PubMed

    Müller-McNicoll, Michaela; Botti, Valentina; de Jesus Domingues, Antonio M; Brandl, Holger; Schwich, Oliver D; Steiner, Michaela C; Curk, Tomaz; Poser, Ina; Zarnack, Kathi; Neugebauer, Karla M

    2016-03-01

    Nuclear export factor 1 (NXF1) exports mRNA to the cytoplasm after recruitment to mRNA by specific adaptor proteins. How and why cells use numerous different export adaptors is poorly understood. Here we critically evaluate members of the SR protein family (SRSF1-7) for their potential to act as NXF1 adaptors that couple pre-mRNA processing to mRNA export. Consistent with this proposal, >1000 endogenous mRNAs required individual SR proteins for nuclear export in vivo. To address the mechanism, transcriptome-wide RNA-binding profiles of NXF1 and SRSF1-7 were determined in parallel by individual-nucleotide-resolution UV cross-linking and immunoprecipitation (iCLIP). Quantitative comparisons of RNA-binding sites showed that NXF1 and SR proteins bind mRNA targets at adjacent sites, indicative of cobinding. SRSF3 emerged as the most potent NXF1 adaptor, conferring sequence specificity to RNA binding by NXF1 in last exons. Interestingly, SRSF3 and SRSF7 were shown to bind different sites in last exons and regulate 3' untranslated region length in an opposing manner. Both SRSF3 and SRSF7 promoted NXF1 recruitment to mRNA. Thus, SRSF3 and SRSF7 couple alternative splicing and polyadenylation to NXF1-mediated mRNA export, thereby controlling the cytoplasmic abundance of transcripts with alternative 3' ends.

  2. Biological analysis of chronic lymphocytic leukemia: integration of mRNA and microRNA expression profiles.

    PubMed

    Dong, L; Bi, K H; Huang, N; Chen, C Y

    2016-01-08

    Chronic lymphocytic leukemia (CLL) is a disease that involves progressive accumulation of nonfunctioning lymphocytes and has a low cure rate. There is an urgent requirement to determine the molecular mechanism underlying this disease in order to improve the early diagnosis and treatment of CLL. In this study, genes differentially expressed between CLL samples and age-matched controls were identified using microRNA (miRNA) and mRNA expression profiles. Differentially expressed (DE) miRNA targets were predicted by combining five algorithms. Common genes were obtained on overlapping the DE mRNA and DE miRNA targets. Then, network and module analyses were performed. A total of 239 miRNA targets were predicted and 357 DE mRNAs were obtained. On intersecting miRNA targets and DE mRNAs, 33 common genes were obtained. The protein-protein interaction network and module analysis identified several crucial genes and modules that might be associated with the development of CLL. These DE mRNAs were significantly enriched in the hematopoietic cell lineage (P = 2.58E-4), mitogen-activated protein kinase signaling pathway (P = 0.0025), and leukocyte transendothelial migration pathway (P = 0.0026). Thus, we conducted biological analysis on integration of DE mRNAs and DE miRNAs in CLL, determined gene expression patterns, and screened out several important genes that might be related to CLL.

  3. Role of a redox-based methylation switch in mRNA life cycle (pre- and post-transcriptional maturation) and protein turnover: implications in neurological disorders.

    PubMed

    Trivedi, Malav S; Deth, Richard C

    2012-01-01

    Homeostatic synaptic scaling in response to neuronal stimulus or activation, and due to changes in cellular niche, is an important phenomenon for memory consolidation, retrieval, and other similar cognitive functions (Turrigiano and Nelson, 2004). Neurological disorders and cognitive disabilities in autism, Rett syndrome, schizophrenia, dementia, etc., are strongly correlated to alterations in protein expression (both synaptic and cytoplasmic; Cajigas et al., 2010). This correlation suggests that efficient temporal regulation of synaptic protein expression is important for synaptic plasticity. In addition, equilibrium between mRNA processing, protein translation, and protein turnover is a critical sensor/trigger for recording synaptic information, normal cognition, and behavior (Cajigas et al., 2010). Thus a regulatory switch, which controls the lifespan, maturation, and processing of mRNA, might influence cognition and adaptive behavior. Here, we propose a two part novel hypothesis that methylation might act as this suggested coordinating switch to critically regulate mRNA maturation at (1) the pre-transcription level, by regulating precursor-RNA processing into mRNA, via other non-coding RNAs and their influence on splicing phenomenon, and (2) the post-transcription level by modulating the regulatory functions of ribonucleoproteins and RNA binding proteins in mRNA translation, dendritic translocation as well as protein synthesis and synaptic turnover. DNA methylation changes are well recognized and highly correlated to gene expression levels as well as, learning and memory; however, RNA methylation changes are recently characterized and yet their functional implications are not established. This review article provides some insight on the intriguing consequences of changes in methylation levels on mRNA life-cycle. We also suggest that, since methylation is under the control of glutathione anti-oxidant levels (Lertratanangkoon et al., 1997), the redox status of

  4. Purification and characterization of mRNA cap-binding protein from Drosophila melanogaster embryos.

    PubMed Central

    Maroto, F G; Sierra, J M

    1989-01-01

    A protein with specific affinity for the mRNA cap structure was purified both from the postribosomal supernatant and from the ribosomal high-salt wash of Drosophila melanogaster embryos by m7GTP-Sepharose chromatography. This protein had an apparent molecular mass of 35 kilodaltons (kDa) in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, a size very different from those of the cap-binding proteins that have been characterized thus far. Drosophila 35-kDa cap-binding protein (CBP) could also be isolated from the ribosomal high-salt wash as part of a salt-stable protein complex consisting of polypeptides of 35, 72, and 140 to 180 kDa. Polyclonal antibodies against Drosophila 35-kDa CBP neither reacted with eucaryotic initiation factor 4E from rabbit reticulocytes nor affected mRNA translation in a rabbit reticulocyte cell-free system. However, in a cell-free system from Drosophila embryos, mRNA translation was specifically inhibited by these antibodies. The requirement of 35-kDa CBP for mRNA translation in Drosophila was diminished under ionic conditions in which the importance of mRNA cap structure recognition was reduced. Despite the structural differences between Drosophila 35-kDa CBP and mammalian initiation factor 4E, both proteins were functionally interchangeable in the in vitro translation system from Drosophila embryos. Images PMID:2501660

  5. mRNA expression profiling of neonatal rats after 16-day spaceflight

    NASA Astrophysics Data System (ADS)

    Miyake, M.; Ijiri, K.

    Some studies pointed out that postnatal development is the key to realize generation change of mammalians in space. For example, functional changes and hypoplasia in some organs after spaceflight during postnatal development were reported. Though profiling mRNA expression is useful to evaluate what happened in animals, these studies after spaceflight are limited to specific organs for understanding the relationship between phenotype and gene. The organ-wide analysis of mRNA expression is important to evaluate the condition of each animal, and it can find new phenomenon and help precise understanding for effect induced by spaceflight. In this experiment, we analyzed mRNA expression of liver, spleen and intestine in neonatal rats after 16-day spaceflight by Space Shuttle Columbia (STS-90).

  6. Detection of MDR1 mRNA expression with optimized gold nanoparticle beacon

    NASA Astrophysics Data System (ADS)

    Zhou, Qiumei; Qian, Zhiyu; Gu, Yueqing

    2016-03-01

    MDR1 (multidrug resistance gene) mRNA expression is a promising biomarker for the prediction of doxorubicin resistance in clinic. However, the traditional technical process in clinic is complicated and cannot perform the real-time detection mRNA in living single cells. In this study, the expression of MDR1 mRNA was analyzed based on optimized gold nanoparticle beacon in tumor cells. Firstly, gold nanoparticle (AuNP) was modified by thiol-PEG, and the MDR1 beacon sequence was screened and optimized using a BLAST bioinformatics strategy. Then, optimized MDR1 molecular beacons were characterized by transmission electron microscope, UV-vis and fluorescence spectroscopies. The cytotoxicity of MDR1 molecular beacon on L-02, K562 and K562/Adr cells were investigated by MTT assay, suggesting that MDR1 molecular beacon was low inherent cytotoxicity. Dark field microscope was used to investigate the cellular uptake of hDAuNP beacon assisted with ultrasound. Finally, laser scanning confocal microscope images showed that there was a significant difference in MDR1 mRNA expression in K562 and K562/Adr cells, which was consistent with the results of q-PCR measurement. In summary, optimized MDR1 molecular beacon designed in this study is a reliable strategy for detection MDR1 mRNA expression in living tumor cells, and will be a promising strategy for in guiding patient treatment and management in individualized medication.

  7. Unique expression features of cancer-type organic anion transporting polypeptide 1B3 mRNA expression in human colon and lung cancers

    PubMed Central

    2014-01-01

    Background We have previously identified the cancer-type organic anion transporting polypeptide 1B3 (Ct-OATP1B3) mRNA in several human colon and lung cancer tissues. Ct-OATP1B3 is a variant of the liver-type OATP1B3 (Lt-OATP1B3) mRNA, which is a hepatocyte plasma membrane transporter with broad substrate specificity. However, in cancer tissues, both the detailed characteristics of Ct-OATP1B3 mRNA expression and its biological functions remain unclear. With this point in mind, we sought to characterize Ct-OATP1B3 mRNA expression in colon and lung cancer tissues. In addition, we attempted to obtain functional implication of Ct-OATP1B3 in cancer cells. Methods Matched pairs of cancer and normal tissues were collected from 39 colon cancer and 28 lung cancer patients. The OATP1B3 mRNA expression levels in each of these tissues were separately determined by quantitative real-time polymerase chain reaction. Mann–Whitney U test and Fisher’s exact test were used in statistical analysis. The Ct-OATP1B3 functional expression in colon cancer cells was then examined by Western blotting and transport analyses. Results Ct-OATP1B3 mRNA, but not Lt-OATP1B3 mRNA, was abundantly expressed in colon cancer tissues at a higher detection frequency (87.2%) than that of the adjacent normal tissues (2.6%). Furthermore, it was found that Ct-OATP1B3 mRNA expression was often detected in early colon cancer stages (88.9%, n = 18), and that its expression was associated with well-differentiated colon cancer statuses. On the other hand, Ct-OATP1B3 mRNA also showed a predominant and cancer-associated expression profile in lung tissues, although at frequencies and expression levels that were lower than those obtained from colon cancer. As for attempts to clarify the Ct-OATP1B3 functions, neither protein expression nor transport activity could be observed in any of the cell lines examined. Conclusions Based on the unique characteristics of the Ct-OATP1B3 mRNA expression profile identified in

  8. Leptospira Protein Expression During Infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We are characterizing protein expression in vivo during experimental leptospirosis using immunofluorescence microscopy. Coding regions for several proteins were identified through analysis of Leptospira interrogans serovar Copenhageni and L. borgpetersenii serovar Hardjo genomes. In addition, codi...

  9. microRNA expression in autonomous thyroid adenomas: Correlation with mRNA regulation.

    PubMed

    Floor, Sébastien L; Trésallet, Christophe; Hébrant, Aline; Desbuleux, Alice; Libert, Frédérick; Hoang, Catherine; Capello, Matteo; Andry, Guy; van Staveren, Wilma C G; Maenhaut, Carine

    2015-08-15

    The objective of the study was to identify the deregulated miRNA in autonomous adenoma and to correlate the data with mRNA regulation. Seven autonomous adenoma with adjacent healthy thyroid tissues were investigated. Twelve miRNAs were downregulated and one was upregulated in the tumors. Combining bioinformatic mRNA target prediction and microarray data on mRNA regulations allowed to identify mRNA targets of our deregulated miRNAs. A large enrichment in mRNA encoding proteins involved in extracellular matrix organization and different phosphodiesterases were identified among these putative targets. The direct interaction between miR-101-3p and miR-144-3p and PDE4D mRNA was experimentally validated. The global miRNA profiles were not greatly modified, confirming the definition of these tumors as minimal deviation tumors. These results support a role for miRNA in the regulation of extracellular matrix proteins and tissue remodeling occurring during tumor development, and in the important negative feedback of the cAMP pathway, which limits the consequences of its constitutive activation in these tumors.

  10. Role of the C terminus of Lassa virus L protein in viral mRNA synthesis.

    PubMed

    Lehmann, Maria; Pahlmann, Meike; Jérôme, Hanna; Busch, Carola; Lelke, Michaela; Günther, Stephan

    2014-08-01

    The N terminus of arenavirus L protein contains an endonuclease presumably involved in "cap snatching." Here, we employed the Lassa virus replicon system to map other L protein sites that might be involved in this mechanism. Residues Phe-1979, Arg-2018, Phe-2071, Asp-2106, Trp-2173, Tyr-2179, Arg-2200, and Arg-2204 were important for viral mRNA synthesis but dispensable for genome replication. Thus, the C terminus of L protein is involved in the mRNA synthesis process, potentially by mediating cap binding.

  11. Novel Protein-Protein Contacts Facilitate mRNA 3'-Processing Signal Recognition by Rna15 and Hrp1.

    SciTech Connect

    Leeper, Thomas C; Qu, Xiangping; Lu, Connie; Moore, Claire; Varani, Gabriele

    2010-06-19

    Precise 3'-end processing of mRNA is essential for correct gene expression, yet in yeast, 3'-processing signals consist of multiple ambiguous sequence elements. Two neighboring elements upstream of the cleavage site are particularly important for the accuracy (positioning element) and efficiency (efficiency element) of 3'-processing and are recognized by the RNAbinding proteins Rna15 and Hrp1, respectively. In vivo, these interactions are strengthened by the scaffolding protein Rna14 that stabilizes their association. The NMR structure of the 34 -kDa ternary complex of the RNA recognition motif (RRM) domains of Hrp1 and Rna15 bound to this pair of RNA elements was determined by residual dipolar coupling and paramagnetic relaxation experiments. It reveals how each of the proteins binds to RNA and introduces a novel class of protein–protein contact in regions of previously unknown function. These interdomain contacts had previously been overlooked in other multi-RRM structures, although a careful analysis suggests that they may be frequently present. Mutations in the regions of these contacts disrupt 3'-end processing, suggesting that they may structurally organize the ribonucleoprotein complexes responsible for RNA processing.

  12. mRNA and Protein levels of rat pancreas specific protein disulphide isomerase are downregulated during Hyperglycemia.

    PubMed

    Gupta, Rajani; Bhar, Kaushik; Sen, Nandini; Bhowmick, Debajit; Mukhopadhyay, Satinath; Panda, Koustubh; Siddhanta, Anirban

    2016-02-01

    Diabetes (Type I and Type II) which affects nearly every organ in the body is a multi-factorial non-communicable disorder. Hyperglycemia is the most characteristic feature of this disease. Loss of beta cells is common in both types of diabetes whose detailed cellular and molecular mechanisms are yet to be elucidated. As this disease is complex, identification of specific biomarkers for its early detection, management and devising new therapies is challenging. Based on the fact that functionally defective proteins provide the biochemical basis for many diseases, in this study, we tried to identify differentially expressed proteins during hyperglycemia. For that, hyperglycemia was induced in overnight fasted rats by intra-peritoneal injection of streptozotocin (STZ). The pancreas was isolated from control and treated rats for subsequent analyses. The 2D-gel electrophoresis followed by MALDI-TOF-MS-MS analyses revealed several up- and down-regulated proteins in hyperglycemic rat pancreas including the downregulation of a pancreas specific isoform of protein disulphide isomerase a2 (Pdia2).This observation was validated by western blot. Quantitative PCR experiments showed that the level of Pdia2 mRNA is also proportionally reduced in hyperglycemic pancreas.

  13. Regional induction of c-fos and heat shock protein-72 mRNA following fluid-percussion brain injury in the rat

    SciTech Connect

    Raghupathi, R.; Welsh, F.A.; Gennarelli, T.A.

    1995-05-01

    To evaluate the cellular response to traumatic brain injury, the expression of mRNA for c-fos and the 72-kDa heat shock protein (hsp72) was determined using in situ hybridization following lateral fluid-percussion injury (2.2-2.4 atm) in rat brain. At 2 h after injury, induction of c-fos mRNA was restricted to regions of the cortex surrounding the contusion area. An increase in c-fos mRNA, but not hsp72 mRNA, was observed bilaterally in the CA{sub 3} subfield of the hippocampus and the granule cells of the dentate gyrus and in the thalamus ipsilateral to the impact site. By 6 h, increased expression of c-fos mRNA was observed only in the corpus callosum on the impact side; hsp72 mRNA persisted in the deep cortical layers and upper layers of the subcortical white matter below the site of maximal injury. By 24 h, both c-fos and hsp72 mRNA had returned to control levels in all regions of the brain. These results demonstrate that lateral fluid-percussion brain injury triggers regionally and temporally specific expression of c-fos and hsp72 mRNA, which may be suggestive of differential neurochemical alterations in neurons and glia following experimental brain injury. 33 refs., 3 figs., 1 tab.

  14. A genome-wide survey demonstrates widespread non-linear mRNA in expressed sequences from multiple species

    PubMed Central

    Dixon, Richard J.; Eperon, Ian C.; Hall, Laurence; Samani, Nilesh J.

    2005-01-01

    We describe here the results of the first genome-wide survey of candidate exon repetition events in expressed sequences from human, mouse, rat, chicken, zebrafish and fly. Exon repetition is a rare event, reported in <10 genes, in which one or more exons is tandemly duplicated in mRNA but not in the gene. To identify candidates, we analysed database sequences for mRNA transcripts in which the order of the spliced exons does not follow the linear genomic order of the individual gene [events we term rearrangements or repetition in exon order (RREO)]. Using a computational approach, we have identified 245 genes in mammals that produce RREO events. RREO in mRNA occurs predominantly in the coding regions of genes. However, exon 1 is never involved. Analysis of the open reading frames suggests that this process may increase protein diversity and regulate protein expression via nonsense-mediated RNA decay. The sizes of the exons and introns involved around these events suggest a gene model structure that may facilitate non-linear splicing. These findings imply that RREO affects a significant subset of genes within a genome and suggests that non-linear information encoded within the genomes of complex organisms could contribute to phenotypic variation. PMID:16237125

  15. Expression and stability of c-sis mRNA in human glioblastoma cells

    SciTech Connect

    Press, R.D.; Samols, D.; Goldthwait, D.A.

    1988-07-26

    The production of platelet-derived growth factor like (PDGF-like) material by glioblastomas may be involved in the conversion of normal cells to tumor cells. In an investigation of this problem, the authors have examined some of the properties of the platelet-derived growth factor B-chain mRNA (c-sis mRNA) by a sensitive and quantitative RNA-RNA solution hybridization method. In 5 out of 8 human glioblastoma cell lines, c-sis mRNA was present, and in the line with the highest level, there were approximately 4-10 molecules per cell. The half-lives of the c-sis mRNA in two glioblastoma cell lines were 2.6 and 3.4 h, while in human umbilical vein endothelial (HUVE) and bladder carcinoma (T24) cells they were 1.6 and 2.5 h, respectively. Inhibiting protein synthesis produced no significant alteration of the c-sis mRNA half-lives in the glioblastoma or HUVE cells. The A-U-rich sequence at the 3' end of the c-sis mRNA therefore does not appear to affect the mRNA stability in the presence of cycloheximide as it does in other transcripts. The similarity of the c-sis mRNA half-lives in normal and tumor cells suggests that regulation of stability of c-sis mRNA is not a major factor in tumorigenesis in the glioblastoma cell lines examined.

  16. Sequence analysis of bone morphogenetic protein receptor type II mRNA from ascitic and nonascitic commercial broilers.

    PubMed

    Cisar, C R; Balog, J M; Anthony, N B; Donoghue, A M

    2003-10-01

    Ascites syndrome, also known as pulmonary hypertension syndrome (PHS), is a common metabolic disorder in rapidly growing meat-type chickens. Environmental factors, such as cold, altitude, and diet, play significant roles in development of the disease, but there is also an important genetic component to PHS susceptibility. The human disease familial primary pulmonary hypertension (FPPH) is similar to PHS in broilers both genetically and physiologically. Several recent studies have shown that mutations in the bone morphogenetic protein receptor type II (BMPR2) gene are a cause of FPPH in humans. To determine whether mutations in the chicken BMPR2 gene play a similar role in PHS susceptibility, BMPR-II mRNA from ascitic and nonascitic commercial broilers were sequenced and compared with the published Leghorn chicken BMPR-II mRNA sequence. Fourteen single nucleotide polymorphisms (SNP) were identified in the commercial broiler BMPR-II mRNA. No mutations unique to ascites-susceptible broilers were present in the coding, 5' untranslated or 3' untranslated regions of BMPR-II mRNA. The twelve SNP present within the coding region of BMPR-II mRNA were synonymous substitutions and did not alter the BMPR-II protein sequence. In addition, analysis of BMPR2 gene expression by reverse transcriptase-PCR indicated that there were no differences in BMPR-II mRNA levels in ascitic and nonascitic birds. Therefore, it appears unlikely that mutations in the BMPR2 gene were responsible for susceptibility to PHS in these commercial broilers.

  17. Alcoholics have more Tryptophan Hydroxylase 2 mRNA and Protein in the Dorsal and Median Raphe Nuclei

    PubMed Central

    Bach, Helene; Arango, Victoria; Kassir, Suham A.; Tsaava, Tea; Dwork, Andrew J.; Mann, J. John; Underwood, Mark D.

    2014-01-01

    Background Chronic alcohol use depletes brain serotonin (5-HT), yet we previously found more tryptophan hydroxylase 2 (TPH2), the rate-limiting biosynthetic enzyme for 5-HT, in the dorsal raphe nucleus (DRN) of alcoholics. We sought to determine whether the increase in amount of TPH2 enzyme is associated with more TPH2 mRNA gene expression in the DRN of a new cohort of alcoholics and controls. Methods TPH2 mRNA and protein were measured by in situ hybridization and immunoautoradiography, respectively, in the DRN and median raphe nucleus (MRN) of ageand sex- matched pairs (n=16) of alcoholics and non-psychiatric controls. Alcohol use disorder (AUD) diagnosis and medical, psychiatric and family histories were obtained by psychological autopsy. Age and sex were covariates in the analyses. Results TPH2 mRNA in alcoholics was greater in the DRN and MRN compared to controls (DRN: Controls: 3.6±1.6, Alcoholics: 4.8±1.8 nCi/mg of tissue, F= 4.106, p=0.02; MRN: Controls: 2.6±1.2, Alcoholics: 3.5±1.1 nCi/mg of tissue, F=3.96, p=0.024). The difference in TPH2 mRNA was present in all DRN subnuclei (DRd: 135%, DRif: 139%, DRv: 135%, DRvl: 136% percent of control p<0.05) except the caudal subnucleus. Alcoholics also had more TPH2 protein in the DRN and MRN than controls (DRN: Controls: 265±47, Alcoholics: 318±47 μCi/g, F=8.72, p=0.001; MRN: Controls: 253±33, Alcoholics: 345±39 μCi/g, F=7.78, p=0.001). There is a positive correlation between TPH2 protein and mRNA expression in the DRN (r=0.815, p<0.001), suggesting that the higher amount of TPH2 protein is due to an increase in TPH2 gene expression. Conclusions These findings suggest that greater TPH2 gene expression is the basis for more TPH2 protein in the DRN and MRN in alcoholics. PMID:24942188

  18. Deregulated expression of VHL mRNA variants in papillary thyroid cancer.

    PubMed

    Baldini, Enke; Tuccilli, Chiara; Arlot-Bonnemains, Yannick; Chesnel, Frank; Sorrenti, Salvatore; De Vito, Corrado; Catania, Antonio; D'Armiento, Eleonora; Antonelli, Alessandro; Fallahi, Poupak; Watutantrige-Fernando, Sara; Tartaglia, Francesco; Barollo, Susi; Mian, Caterina; Bononi, Marco; Arceri, Stefano; Mascagni, Domenico; Vergine, Massimo; Pironi, Daniele; Monti, Massimo; Filippini, Angelo; Ulisse, Salvatore

    2017-03-05

    Recent findings demonstrated that a subset of papillary thyroid cancers (PTCs) is characterized by reduced expression of the von Hippel-Lindau (VHL) tumor suppressor gene, and that lowest levels associated with more aggressive PTCs. In the present study, the levels of the two VHL mRNA splicing variants, VHL-213 (V1) and VHL-172 (V2), were measured in a series of 96 PTC and corresponding normal matched tissues by means of quantitative RT-PCR. Variations in the mRNA levels were correlated with patients' clinicopathological parameters and disease-free interval (DFI). The analysis of VHL mRNA in tumor tissues, compared to normal matched tissues, revealed that its expression was either up- or down-regulated in the majority of PTC. In particular, V1 and V2 mRNA levels were altered, respectively, in 78 (81.3%) and 65 (67.7%) out of the 96 PTCs analyzed. A significant positive correlation between the two mRNA variants was observed (p < 0.001). Univariate analysis documented the lack of association between each variant and clinicopathological parameters such as age, tumor size, histology, TNM stage, lymph node metastases, and BRAF mutational status. However, a strong correlation was found between altered V1 or V2 mRNA levels and DFI. Multivariate regression analysis indicated higher V1 mRNA values, along with lymph node metastases at diagnosis, as independent prognostic factors predicting DFI. In conclusion, the data reported demonstrate that VHL gene expression is deregulated in the majority of PTC tissues. Of particular interest is the apparent protective role exerted by VHL transcripts against PTC recurrences.

  19. Altered expression of hyaluronan synthase and hyaluronidase mRNA may affect hyaluronic acid distribution in keloid disease compared with normal skin.

    PubMed

    Sidgwick, Gary P; Iqbal, Syed A; Bayat, Ardeshir

    2013-05-01

    Keloid disease (KD) is a fibroproliferative disorder characterised partly by an altered extracellular matrix (ECM) profile. In fetal scarring, hyaluronic acid (HA) expression is increased, but is reduced in KD tissue compared with normal skin (NS). The expression of Hyaluronan Synthase (HAS) and hyaluronidase (HYAL) in KD and NS tissue were investigated for the first time using a range of techniques. Hyaluronan synthase and HYAL mRNA expression were significantly increased in NS tissue compared with KD tissue (P < 0.05). Immunohistological analysis of tissue indicated an accumulation of HAS and HYAL protein expression in KD compared with NS due to the thicker epidermis. No differences were observed in mRNA or protein expression in KD and NS fibroblasts. Reduced expression of HAS and HYAL may alter HA synthesis, degradation and accumulation in KD. Better understanding of the role of HA in KD may lead to novel therapeutic approaches to address the resulting ECM imbalance.

  20. A circadian neuropeptide PDF in the honeybee, Apis mellifera: cDNA cloning and expression of mRNA.

    PubMed

    Sumiyoshi, Miho; Sato, Seiji; Takeda, Yukimasa; Sumida, Kazunori; Koga, Keita; Itoh, Tsunao; Nakagawa, Hiroyuki; Shimohigashi, Yasuyuki; Shimohigashi, Miki

    2011-12-01

    Pigment-dispersing factor (PDF) is a pacemaker hormone regulating the locomotor rhythm in insects. In the present study, we cloned the cDNAs encoding the Apis PDF precursor protein, and found that there are at least seven different pdf mRNAs yielded by an alternative splicing site and five alternative polyadenylation sites in the 5'UTR and 3'UTR regions. The amino acid sequence of Apis PDF peptide has a characteristic novel amino acid residue, aspargine (Asn), at position 17. Quantitative real-time PCR of total and 5'UTR insertion-type pdf mRNAs revealed, for the first time, that the expression levels change in a circadian manner with a distinct trough at the beginning of night in LD conditions, and at the subjective night under DD conditions. In contrast, the expression level of 5'UTR deletion-type pdf mRNAs was about half of that of the insertion type, and the expression profile failed to show a circadian rhythm. As the expression profile of the total pdf mRNA exhibited a circadian rhythm, transcription regulated at the promoter region was supposed to be controlled by some of the clock components. Whole mount in situ hybridization revealed that 14 lateral neurons at the frontal margin of the optic lobe express these mRNA isoforms. PDF expressing cells examined with a newly produced antibody raised against Apis PDF were also found to have a dense supply of axon terminals in the optic lobes and the central brain.

  1. Angiotensinase C mRNA and Protein Downregulations Are Involved in Ethanol-Deteriorated Left Ventricular Systolic Dysfunction in Spontaneously Hypertensive Rats

    PubMed Central

    Liu, Jinyao; Hakucho, Ayako; Fujimiya, Tatsuya

    2015-01-01

    The influences of angiotensinase C on ethanol-induced left ventricular (LV) systolic function were assessed in spontaneously hypertensive rats (SHRs). SHRs were fed by a liquid diet with or without ethanol for 49 days. The normotensive Wistar Kyoto rats (WKY) were fed by the liquid diet without ethanol and used as control. We evaluated LV systolic function, angiotensinase C mRNA and protein expressions, activation of the renin-angiotensin system (RAS), and the gene expressions of LV collagen (Col) III a1 and matrix metalloproteinases- (MMP-) 9. Compared to the WKY, LV systolic dysfunction (expressed by decreased fractional shortening and ejection fraction) was observed in the SHRs before ethanol treatment and further deteriorated by ethanol treatment. In the ethanol-treated SHRs, the following were observed: downregulations of angiotensinase C mRNA and protein, increased RAS activity with low collagen production as evidenced by angiotensin II and angiotensin type 1 receptor (AT1R) protein upregulation, AT1aR mRNA downregulation, and an MMP-9 mRNA expression upregulation trend with the downregulation of Col III a1 mRNA expression in LV. We conclude that chronic ethanol regimen is sufficient to promote the enhanced RAS activity-induced decrease in the production of cardiac collagen via downregulated angiotensinase C, leading to the further deterioration of LV systolic dysfunction in SHRs. PMID:26509155

  2. CYP1A mRNA expression in redeye mullets (Liza haematocheila) from Bohai Bay, China.

    PubMed

    An, Lihui; Hu, Jianying; Yang, Min; Zheng, Binghui; Wei, An; Shang, Jingjing; Zhao, Xingru

    2011-04-01

    Induction of cytochrome P4501A (CYP1A) has been used as a biomarker in fish for monitoring aromatic and organic contaminants. In this study, a partial of CYP1A gene in redeye mullet (Liza haematocheila) was isolated and sequenced, and then a real-time quantitative reverse-transcription polymerase chain reaction assay was developed for quantification of CYP1A mRNA normalized to β-actin. The developed method was applied to detect CYP1A mRNA expression in redeye mullets collected from Nandaihe (reference site) and Dashentang (impacted site) in Bohai Bay, China. CYP1A mRNA expression values were significantly elevated in redeye mullets from Dashentang compared to a reference site--Nandaihe, which was correlated with the contents of different environmentally relevant pollutants in tissues, particularly with PCBs and PBDEs.

  3. Evaluation of CTX-M steady-state mRNA, mRNA half-life and protein production in various STs of Escherichia coli

    PubMed Central

    Geyer, Chelsie N.; Fowler, Randal C.; Johnson, James R.; Johnston, Brian; Weissman, Scott J.; Hawkey, Peter; Hanson, Nancy D.

    2016-01-01

    Objectives High levels of β-lactamase production can impact treatment with a β-lactam/β-lactamase inhibitor combination. Goals of this study were to: (i) compare the mRNA and protein levels of CTX-M-15- and CTX-M-14-producing Escherichia coli from 18 different STs and 10 different phylotypes; (ii) evaluate the mRNA half-lives and establish a role for chromosomal- and/or plasmid-encoded factors; and (iii) evaluate the zones of inhibition for piperacillin/tazobactam and ceftolozane/tazobactam. Methods Disc diffusion was used to establish zone size. RNA analysis was accomplished using real-time RT–PCR and CTX-M protein levels were evaluated by immunoblotting. Clinical isolates, transformants and transconjugants were used to evaluate mRNA half-lives. Results mRNA levels of CTX-M-15 were up to 165-fold higher compared with CTX-M-14. CTX-M-15 protein levels were 2–48-fold less than their respective transcript levels, while CTX-M-14 protein production was comparable to the observed transcript levels. Nineteen of 25 E. coli (76%) had extended CTX-M-15 mRNA half-lives of 5–15 min and 16 (100%) CTX-M-14 isolates had mRNA half-lives of <2–3 min. Transformants had mRNA half-lives of <2 min for both CTX-M-type transcripts, while transconjugant mRNA half-lives corresponded to the half-life of the donor. Ceftolozane/tazobactam zone sizes were ≥19 mm, while piperacillin/tazobactam zone sizes were ≥17 mm. Conclusions CTX-M-15 mRNA and protein production did not correlate. Neither E. coli ST nor phylotype influenced the variability observed for CTX-M-15 mRNA or protein produced. mRNA half-life is controlled by a plasmid-encoded factor and may influence mRNA transcript levels, but not protein levels. PMID:26612874

  4. Knockdown of PKD1 in normal human epidermal keratinocytes increases mRNA expression of keratin 10 and involucrin: early markers of keratinocyte differentiation.

    PubMed

    Ivanova, Petya; Atanasova, Ganka; Poumay, Yves; Mitev, Vanyo

    2008-03-01

    Subconfluent normal human keratinocytes exhibit autonomous (autocrine growth factor driven) proliferation and express the specific markers for keratinocyte proliferation K5 (keratin 5) and K14 (keratin 14). Utilizing this model the effects of PKD1 (Protein kinase D1) knockdown on activation of differentiation was studied. siRNA approach was applied to achieve specific knockdown of PKD1 and the mRNA levels of different keratinocyte markers -- K14 and PCNA (markers of basal proliferating keratinocytes), involucrin and K10 (early differentiation markers) were analyzed. Treatment of cultured keratinocytes with siRNA for PKD1 resulted in reduction of mRNA levels of PKD1, altered cell phenotype and promotion of keratinocyte differentiation, demonstrated by increased expression of involucrin and K10 mRNAs. No significant changes in K14 mRNA expression levels were detected, but the expression of PCNA mRNA was markedly diminished. This study was the first to show that mRNA expression of PKD1 in subconfluent normal human keratinocytes is very low, the PKD1 mRNA levels were more than 8-fold lower than the same ones in hTert keratinocytes. These findings suggest antidifferentiative role of PKD1 in normal human keratinocytes, contrary to the prodiferentiative role of PKD1 in human hTert keratinocytes. We came to the conclusion that there are differences between transduction pathways involving PKD1 in primary human keratinocyte cultures and these in immortalized hTert keratinocytes.

  5. Identification of the proteins in direct contact with duck globin mRNA.

    PubMed

    Lockard, R E

    1987-07-27

    Proteins in direct contact with translationally active and repressed duck globin mRNA were determined by irradiating blood or lysates with ultraviolet light. Cross-linked proteins from polyribosomes and free mRNP particles were 14C-labeled by reductive methylation and identified on SDS-polyacrylamide gels upon autoradiography. Results indicate that ten cross-linked proteins are common to both polysomal and free mRNP, however, a 44 kDa protein appears to be specific for repressed mRNP particles. Furthermore, the notable lack of cross-linked proteins in the 20-30 kDa range in free mRNP supports the view that the characteristic low molecular mass 'prosomal' proteins, previously found associated with translationally repressed duck globin free mRNP [(1984) EMBO J. 3, 29-34], do not interact directly with the mRNA molecule.

  6. An integrated analysis of differential miRNA and mRNA expressions in human gallstones.

    PubMed

    Yang, Bin; Liu, Bin; Bi, Pinduan; Wu, Tao; Wang, Qiang; Zhang, Jie

    2015-04-01

    Gallstone disease, including cholesterol precipitation in bile, increased bile salt hydrophobicity and gallbladder inflammation. Here, we investigated miRNA and mRNA involved in the formation of gallstones, and explored the molecular mechanisms in the development of gallstones. Differentially expressed 17 miRNAs and 525 mRNA were identified based on Illumina sequencing from gallbladder mucosa of patients with or without gallstones, and were validated by randomly selected 6 miRNAs and 8 genes using quantitative RT-PCR. 114 miRNA target genes were identified, whose functions and regulating pathways were related to gallstones. The differentially expressed genes were enriched upon lipoprotein binding and some metabolic pathways, and differentially expressed miRNAs enriched upon ABC transportation and cancer related pathways. A molecular regulatory network consisting of 17 differentially expressed miRNAs, inclusive of their target genes, was constructed. miR-210 and its potential target gene ATP11A were found to be differentially expressed in both miRNA and mRNA profiles. ATP11A was a direct target of miR-210, which was predicted to regulate the ABC-transporters pathway. The expression levels of ATP11A in the gallstone showed inverse correlation with miR-210 expression, and up-regulation of miR-210 could reduce ATP11A expression in HGBEC. This is the first report that indicates the existence of differences in miRNA and mRNA expression in patients with or without gallstones. Our data shed light on further investigating the mechanisms of gallstone formation.

  7. The influence of eccentric exercise on mRNA expression of skeletal muscle regulators.

    PubMed

    Jensky, Nicole E; Sims, Jennifer K; Rice, Judd C; Dreyer, Hans C; Schroeder, E Todd

    2007-11-01

    To evaluate change in myostatin, follistatin, MyoD and SGT mRNA gene expression using eccentric exercise to study mechanisms of skeletal muscle hypertrophy. Young (28+/-5 years) and older (68+/-6 years) men participated in a bout of maximal single-leg eccentric knee extension on an isokinetic dynamometer at 60 degrees /s: six sets, 12-16 maximal eccentric repetitions. Muscle biopsies of the vastus lateralis were obtained from the dominant leg before exercise and 24 h after exercise. Paired t tests were used to compare change (pre versus post-exercise) for normalized gene expression in all variables. Independent t tests were performed to test group differences (young vs. older). A probability level of PmRNA expression in young subjects 24 h after eccentric exercise. Similarly, we did not observe significant change in myostatin (-3.83+/-8.8; P=0.23), follistatin (-2.66+/-5.2; P=0.17), MyoD (-0.13+/-3.1; P=0.90), or SGT (-1.6+/-3.5; P=0.19) mRNA expression in older subjects. Furthermore, the non-significant changes in mRNA expression were not different between young and older subjects, P>0.23 for all variables. Our data suggests that a single bout of maximal eccentric exercise does not alter myostatin, follistatin, MyoD or SGT mRNA gene expression in young or older subjects.

  8. Determination of the henipavirus phosphoprotein gene mRNA editing frequencies and detection of the C, V and W proteins of Nipah virus in virus-infected cells.

    PubMed

    Lo, Michael K; Harcourt, Brian H; Mungall, Bruce A; Tamin, Azaibi; Peeples, Mark E; Bellini, William J; Rota, Paul A

    2009-02-01

    The henipaviruses, Nipah virus (NiV) and Hendra virus (HeV), are highly pathogenic zoonotic paramyxoviruses. Like many other paramyxoviruses, henipaviruses employ a process of co-transcriptional mRNA editing during transcription of the phosphoprotein (P) gene to generate additional mRNAs encoding the V and W proteins. The C protein is translated from the P mRNA, but in an alternate reading frame. Sequence analysis of multiple, cloned mRNAs showed that the mRNA editing frequencies of the P genes of the henipaviruses are higher than those reported for other paramyxoviruses. Antisera to synthetic peptides from the P, V, W and C proteins of NiV were generated to study their expression in infected cells. All proteins were detected in both infected cells and purified virions. In infected cells, the W protein was detected in the nucleus while P, V and C were found in the cytoplasm.

  9. Selecting Reliable mRNA Expression Measurements Across Platforms Improves Downstream Analysis

    PubMed Central

    Tong, Pan; Diao, Lixia; Shen, Li; Li, Lerong; Heymach, John Victor; Girard, Luc; Minna, John D.; Coombes, Kevin R.; Byers, Lauren Averett; Wang, Jing

    2016-01-01

    With increasing use of publicly available gene expression data sets, the quality of the expression data is a critical issue for downstream analysis, gene signature development, and cross-validation of data sets. Thus, identifying reliable expression measurements by leveraging multiple mRNA expression platforms is an important analytical task. In this study, we propose a statistical framework for selecting reliable measurements between platforms by modeling the correlations of mRNA expression levels using a beta-mixture model. The model-based selection provides an effective and objective way to separate good probes from probes with low quality, thereby improving the efficiency and accuracy of the analysis. The proposed method can be used to compare two microarray technologies or microarray and RNA sequencing measurements. We tested the approach in two matched profiling data sets, using microarray gene expression measurements from the same samples profiled on both Affymetrix and Illumina platforms. We also applied the algorithm to mRNA expression data to compare Affymetrix microarray data with RNA sequencing measurements. The algorithm successfully identified probes/genes with reliable measurements. Removing the unreliable measurements resulted in significant improvements for gene signature development and functional annotations. PMID:27199546

  10. Expression of RANTES mRNA in skin lesions of feline eosinophilic plaque.

    PubMed

    Kimura, Tomoe; Kano, Rui; Maeda, Sadatoshi; Tsujimoto, Hajime; Nagata, Masahiko; Hasegawa, Atsuhiko

    2003-10-01

    One of the mechanisms of eosinophil infiltration is its induction by chemoattractants such as regulated upon activation, normal T-expressed and secreted (RANTES) which is a cysteine-cysteine chemokine that mediates chemotaxis and activation of eosinophils in humans and mice. Skin lesions of feline eosinophilic plaque are characterized by a predominant infiltration of eosinophils. The mechanism(s) of eosinophilic infiltration in the skin and/or mucosa of cats is unknown. It is possible that RANTES is involved. To investigate the presence of RANTES in the skin of cats with eosinophilic plaques and nonaffected skin, we cloned and sequenced the full-length feline RANTES cDNA gene, in order to determine whether it is present in the skin of cats with eosinophilic plaques and/or if it is present in normal adjacent skin. We were able to document the the expression of RANTES mRNAs in skin with feline eosinophilic plaque as well as in normal cat skin. The full-length cDNA sequence of the RANTES gene (742 bp) contained a single open reading frame of 276 bp encoding a protein of 92 amino acids. The amino acid sequence of feline RANTES shared 67 and 74% sequence identity with that of bovine and mouse RANTES genes, respectively. RT-PCR analysis on RANTES mRNA in the skin of cats with eosinophilic plaque revealed that its expression was higher in the eosinophilic plaque skin lesions than in the normal skin. The result suggested that RANTES might play a role to induce eosinophil infiltration in feline eosinophilic plaque lesions.

  11. Isoform-specific regulation of transforming growth factor-β mRNA expression in macrophages in response to adrenoceptor stimulation.

    PubMed

    Yanagawa, Yoshiki; Hiraide, Sachiko; Iizuka, Kenji

    2016-01-01

    Transforming growth factor-beta (TGF-β) is a multifunctional cytokine responsible for both immune regulation and tissue repair. Although TGF-β consists of TGF-β1, -β2, and -β3 in mammals, isoform-selective transcriptional regulation is less well documented in myeloid linage cells such as macrophages. In the present study, the effect of the stress-related catecholamine adrenaline on the expression of TGF-β isoforms in RAW264.7 macrophages and murine bone marrow-derived macrophages was examined. Treatment with adrenaline markedly increased the mRNA expression of TGF-β3 but not of TGF-β1 and -β2. Agonist and antagonist studies indicated that adrenaline-induced TGF-β3 mRNA expression is mediated via β2 -adrenoceptor. Protein kinase A (PKA) inhibitor H89 was found to block an increase in adrenoceptor-mediated TGF-β3 mRNA expression. The membrane-permeable cAMP analog 8-Br-cAMP increased the mRNA expression of TGF-β3 but not of TGF-β1 and -β2. Thus, the β2 -adrenoceptor-mediated cAMP-PKA pathway appears to enhance TGF-β3 mRNA expression in macrophages. Adrenoceptor-mediated TGF-β3 expression by macrophages may influence immune regulation and tissue repair in conditions of stress, during which the sympathetic-nervous system releases catecholamines.

  12. EXPRESSION OF AHR AND ARNT MRNA IN CULTURED HUMAN ENDOMETRIAL EXPLANTS EXPOSED TO TCDD

    EPA Science Inventory

    Expression of AhR and ARNT mRNA in cultured human endometrial explants exposed to TCDD.

    Pitt JA, Feng L, Abbott BD, Schmid J, Batt RE, Costich TG, Koury ST, Bofinger DP.

    Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC 27599, USA.

    Endom...

  13. Expression of cytokines by human astrocytomas following stimulation by C3a and C5a anaphylatoxins: specific increase in interleukin-6 mRNA expression.

    PubMed

    Sayah, S; Ischenko, A M; Zhakhov, A; Bonnard, A S; Fontaine, M

    1999-06-01

    C3a and C5a anaphylatoxins are two proinflammatory peptides generated during complement activation that act through distinct Gi protein-coupled receptors named C3aR and C5aR, respectively. We have demonstrated previously that human astrocytes expressed C3aR and C5aR constitutively and were able to produce a functional complement. In this study, we examined the effect of an anaphylatoxin stimulation on cytokine expression by human astrocyte cell lines. Interleukin (IL)-1beta, IL-6, tumor necrosis factor-alpha, and transforming growth factor-beta mRNA expression was studied by quantitative RT-PCR. Whereas IL-1beta, tumor necrosis factor-alpha, and transforming growth factor-beta mRNA levels remained unchanged, stimulation of astrocytoma cells (T98G, CB193, U118MG) by C3a, C5a, and peptidic C3aR and C5aR agonists induced an increase in the IL-6 mRNA level. The amount of IL-6 was markedly increased at 3 and 6 h and returned to the basal level at 9 h of stimulation. This response was specific, because pretreatment of cells with pertussis toxin or with polyclonal anti-C3aR or anti-C5aR antibodies completely blocked the IL-6 mRNA increase. The IL-6 response was also investigated at the protein level, but IL-6 protein was detected neither in cell lysates nor in supernatants of stimulated cells. The anaphylatoxin-mediated transcriptional activation of IL-6 gene suggests that C3a and C5a could play a role in priming glial cells during the inflammatory process in the brain.

  14. cAMP stimulation of StAR expression and cholesterol metabolism is modulated by co-expression of labile suppressors of transcription and mRNA turnover.

    PubMed

    Jefcoate, Colin R; Lee, Jinwoo; Cherradi, Nadia; Takemori, Hiroshi; Duan, Haichuan

    2011-04-10

    The steroidogenic acute regulatory (StAR) protein is generated in rodents from 1.6 kb and 3.5 kb mRNA formed by alternative polyadenylation. The zinc finger protein, TIS11B (also Znf36L1), is elevated by cAMP in adrenal cells in parallel with StAR mRNA. TIS11b selectively destabilizes the 3.5 kb mRNA through AU-rich sequences at the end of the 3'UTR. siRNA suppression shows that TIS11b surprisingly increases StAR protein and cholesterol metabolism. StAR transcription is directly activated by PKA phosphorylation. cAMP responsive element binding (CREB) protein 1 phosphorylation is a key step leading to recruitment of the co-activator, CREB binding protein (CBP). A second protein, CREB regulated transcription coactivator (TORC/CRTC), enhances this recruitment, but is inhibited by salt inducible kinase (SIK). Basal StAR transcription is constrained through this phosphorylation of TORC. PKA provides an alternative stimulation by phosphorylating SIK, which prevents TORC inactivation. PKA stimulation of StAR nuclear transcripts substantially precedes TORC recruitment to the StAR promoter, which may, therefore, mediate a later step in mRNA production. Inhibition of SIK by staurosporine elevates StAR transcription and TORC recruitment to maximum levels, but without CREB phosphorylation. TORC suppression by SIK evidently limits basal StAR transcription. Staurosporine and cAMP stimulate synergistically. SIK targets the phosphatase, PP2a (activation), and Type 2 histone de-acetylases (inhibition), which may each contribute to suppression. Staurosporine stimulation through SIK inhibition is repeated in cAMP stimulation of many steroidogenic genes regulated by steroidogenic factor 1 (SF-1) and CREB. TIS11b and SIK may combine to attenuate StAR expression when hormonal stimuli decline.

  15. HER-2 and EGFR mRNA Expression and Its Relationship with Versican in Malignant Matrix-Producing Tumors of the Canine Mammary Gland

    PubMed Central

    Damasceno, Karine Araújo; Ferreira, Enio; Estrela-Lima, Alessandra; Gamba, Conrado de Oliveira; Miranda, Fernanda Freitas; Alves, Mariana Rezende; Rocha, Rafael Malagoli; de Barros, André Luís Branco; Cassali, Geovanni Dantas

    2016-01-01

    Versican expression promotes tumor growth by destabilizing focal cell contacts, thus impeding cell adhesion and facilitating cell migration. It not only presents or recruits molecules to the cell surface, but also modulates gene expression levels and coordinates complex signal pathways. Previously, we suggested that the interaction between versican and human epidermal growth factor receptors may be directly associated with tumor aggressiveness. Thus, the expression of EGFR and HER-2 in these neoplasms may contribute to a better understanding of the progression mechanisms in malignant mammary tumors. The purpose of this study was to correlate the gene and protein expressions of EGFR and HER2 by RNA In Situ Hybridization (ISH) and immunohistochemistry (IHC), respectively, and their relationship with the versican expression in carcinomas in mixed tumors and carcinosarcomas of the canine mammary gland. The results revealed that EGFR mRNA expression showed a significant difference between in situ and invasive carcinomatous areas in low and high versican expression groups. Identical results were observed in HER-2 mRNA expression. In immunohistochemistry analysis, neoplasms with low versican expression showed greater EGFR immunostaining in the in situ areas than in invasive areas, even as the group presenting high versican expression displayed greater EGFR and HER-2 staining in in situ areas. Significant EGFR and HER-2 mRNA and protein expressions in in situ carcinomatous sites relative to invasive areas suggest that these molecules play a role during the early stages of tumor progression. PMID:27490467

  16. Maternal low protein diets decrease skeletal muscle growth, PGC-1alpha mRNA expression and mitochondrial oxidative respiration and increase obesity and insulin resistance in obesity prone Sprague-Dawley rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Malnutrition during the fetal growth period followed by postnatal catch-up growth results in obesity and the development of type 2 diabetes (T2D). To determine whether a prenatal low protein diet followed by postnatal high fat diet increases propensity for obesity and T2D in offspring, obese-prone f...

  17. Dexamethasone suppresses iNOS yet induces GTPCH and CAT-2 mRNA expression in rat lungs.

    PubMed

    Skimming, Jeffrey W; Nasiroglu, Omer; Huang, Chun-Jen; Wood, Charles E; Stevens, Bruce R; Haque, Ikram U L; Scumpia, Philip O; Sarcia, Paul J

    2003-08-01

    The in vivo mechanisms by which glucocorticoids inhibit nitric oxide expression await detailed investigation. In cell culture experiments, glucocorticoids have been shown to inhibit inducible nitric oxide synthase (iNOS) formation and activity. Glucocorticoids can inhibit iNOS activity in cultured cells by blocking arginine transport and inhibiting tetrahydrobiopterin biosynthesis. We recently reported that changes in intrapulmonary formation of nitric oxide in endotoxemic rats correspond with changes in transcription of the predominant arginine transporter cationic amino acid transporter (CAT)-2. Realizing that hemorrhagic shock induces nitric oxide overproduction in intact animals, we sought to explore whether glucocorticoids attenuate hemorrhagic shock-induced increases in intrapulmonary nitric oxide formation and whether they might do so by inhibiting the formation of tetrahydrobiopterin, iNOS protein, and CAT-2. We randomly assigned 10 male Sprague-Dawley rats to receive dexamethasone or normal saline. Bleeding the animals to a mean systemic blood pressure of between 40 and 45 mmHg created the hemorrhagic shock. Dexamethasone abrogated the increase in exhaled nitric oxide concentrations caused by hemorrhagic shock. At the end of the experiment, plasma nitrate/nitrite values were lower in the dexamethasone group than in the control group. The iNOS protein concentrations were also lower in the dexamethasone group than in the control group. Dexamethasone decreased the intrapulmonary iNOS mRNA concentrations yet increased both guanosine triphosphate cyclohydrolase I mRNA and CAT-2 mRNA. Our results support the idea that dexamethasone inhibits nitric oxide formation in a manner that is independent of tetrahydrobiopterin and arginine transport yet dependent on downregulation of iNOS mRNA expression.

  18. Himasthla elongata: effect of infection on expression of the LUSTR-like receptor mRNA in common periwinkle haemocytes.

    PubMed

    Gorbushin, A M; Klimovich, A V; Iakovleva, N V

    2009-09-01

    The first mollusc mRNA coding G-protein-coupled transmembrane receptor (GPcapital ES, CyrillicR), homologous to human receptors LUSTR 1 (GPR107) and LUSTR 2 (GPR108), was isolated from haemocytes of common periwinkle Littorina littorea. The analyses showed that the full-length cDNA is 1935 bp long and is predicted to encode a 614 amino acid protein (named Lit-LUSTR) with a calculated molecular mass of 69.6 kDa and theoretical isoelectric point 7.59. Pair-wise comparisons between Lit-LUSTR and LUSTR proteins from human or mouse have approximately 38% identity and 56% similarity. Lit-LUSTR clusters with LUSTR-A sub-family proteins and is a first characterization of proteins containing Lung7TM-R domain in Mollusca. Significant differences were found between the Lit-LUSTR mRNA levels in haemocytes of healthy periwinkles and those naturally infected with the echinostome trematode Himasthla elongata. Down regulated expression of the LUSTR-like receptor caused by infection illustrates modification of the haemocyte receptor system and may be attributed to the previously demonstrated greater numbers of "immature" haemocytes in the circulation of infected snails.

  19. P-selectin mRNA is expressed at a later phase of megakaryocyte maturation than mRNAs for von Willebrand factor and glycoprotein Ib-alpha.

    PubMed

    Schick, P K; Konkle, B A; He, X; Thornton, R D

    1993-05-01

    The assembly of alpha-granules occurs exclusively in megakaryocytes because platelets have limited capacity for the synthesis of macromolecules. Thus far, alpha-granule development in megakaryocytes has been primarily evaluated by ultrastructural studies. The aim of the study was to obtain molecular and biochemical evidence for the expression of selected alpha-granule proteins in megakaryocytes. Guinea pig megakaryocytes were purified and separated into subgroups at different phases of maturation by the Celsep procedure (Schick et al. Blood 1989;73:1801-8). Guinea pig-specific probes for P-selectin, von Willebrand factor (vWF), glycoprotein Ib-alpha (GpIb-alpha), and phosphoglycerate kinase were prepared by using the polymerase chain reaction. By Northern blot analysis, P-selectin messenger ribonucleic acid (mRNA) was primarily expressed in the mature megakaryocyte Celsep subgroup, whereas vWF and GpIb-alpha mRNA were expressed at all phases of megakaryocyte maturation. In situ hybridization confirmed that P-selectin mRNA was primarily expressed at later stages of cytoplasmic maturation: 14% +/- 6.2% of stage I, 35.5% +/- 6.1% of stage II, 72% +/- 5.2% of stage III, and 47.0% +/- 3.3% of stage IV megakaryocytes expressed P-selectin mRNA. Thus, the expression of mRNA for P-selectin appeared to peak in stage III cells. In contrast vWF mRNA was expressed in immature megakaryocytes and persisted throughout megakaryocyte maturation. In situ hybridization did not demonstrate a relationship between the expression of mRNA for P-selectin or vWF with megakaryocyte ploidy.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Increased myogenic repressor Id mRNA and protein levels in hindlimb muscles of aged rats.

    PubMed

    Alway, Stephen E; Degens, Hans; Lowe, Dawn A; Krishnamurthy, Gururaj

    2002-02-01

    The objective of this study was to determine if levels of repressors to myogenic regulatory factors (MRFs) differ between muscles from young adult and aged animals. Total RNA from plantaris, gastrocnemius, and soleus muscles of Fischer 344 x Brown Norway rats aged 9 mo (young adult, n = 10) and 37 mo (aged, n = 10) was reverse transcribed and then amplified by PCR. To obtain a semiquantitative measure of the mRNA levels, PCR signals were normalized to cyclophilin or 18S signals from the corresponding reverse transcription product. Normalization to cyclophilin and 18S gave similar results. The mRNA levels of MyoD and myogenin were approximately 275-650% (P < 0.001) and approximately 500-1,100% (P < 0.001) greater, respectively, in muscles from aged compared with young adults. In contrast, the protein levels were lower in plantaris and gastrocnemius muscles and similar in the soleus muscle of aged vs. young adult rats. Id repressor mRNA levels were approximately 300-900% greater in fast and slow muscles of aged animals (P < or = 0.02), and Mist 1 mRNA was approximately 50% greater in the plantaris and gastrocnemius muscles (P < 0.01). The mRNA level of Twist mRNA was not significantly affected by aging. Id-1, Id-2, and Id-3 protein levels were approximately 17-740% greater (P < 0.05) in hindlimb muscles of aged rats compared with young adult rats. The elevated levels of Id mRNA and protein suggest that MRF repressors may play a role in gene regulation of fast and slow muscles in aged rats.

  1. Effect of copy number and mRNA processing and stabilization on transcript and protein levels from an engineered dual-gene operon.

    PubMed

    Smolke, Christina D; Keasling, Jay D

    2002-05-20

    To study the effect of mRNA stability and DNA copy number on protein production from a dual-gene operon, a synthetic operon containing the reporter genes gfp and lacZ under the control of the araBAD promoter was placed in pMB1-based (approximately 100 copies/cell) and F plasmid-based (approximately 1 copy/cell) vectors. DNA cassettes encoding secondary structures were placed at the 5' and 3' ends of the genes and a putative RNase E site was placed between the two genes. Although the copy number of the pMB1-based vectors was approximately 100-fold greater than the copy number of the F plasmid-based vectors, transcript and protein levels from the pMB1-based vector were not 100-fold greater than from the F plasmid-based vectors. In identical plasmid backbones, different combinations of mRNA control elements were used to alter steady-state levels of transcripts. Control elements that amplified the stability of one coding region relative to another amplified the ratio of protein produced from those transcripts. The effects of mRNA stability control elements were greater at low inducer concentrations, where mRNA levels limit protein production, than at high inducer concentrations. Although we can alter mRNA and protein levels through copy number, induction level, and mRNA stability control elements, some aspect of gene expression remains dependent on inherent characteristics of the coding region.

  2. Interleukin 1 regulates synthesis of amyloid beta-protein precursor mRNA in human endothelial cells.

    PubMed Central

    Goldgaber, D; Harris, H W; Hla, T; Maciag, T; Donnelly, R J; Jacobsen, J S; Vitek, M P; Gajdusek, D C

    1989-01-01

    We have analyzed the modulation of amyloid beta-protein precursor (APP) gene expression in human umbilical vein endothelial cells (HUVEC). The level of the APP mRNA transcripts increased as HUVEC reached confluency. In confluent culture the half-life of the APP mRNA was 4 hr. Treatment of the cells with human-recombinant interleukin 1 (IL-1), phorbol 12-myristate 13-acetate, or heparin-binding growth factor 1 enhanced the expression of APP gene in these cells, but calcium ionophore A23187 and dexamethasone did not. The protein kinase C inhibitor 1-(isoquinolinsulfonyl)-2-methylpiperazine (H7) inhibited IL-1-mediated increase of the level of APP transcripts. To map IL-1-responsive elements of the APP promoter, truncated portions of the APP promoter were fused to the human growth hormone reporter gene. The recombinant plasmids were transfected into mouse neuroblastoma cells, and the cell medium was assayed for the human growth hormone. A 180-base-pair region of the APP promoter located between position -485 and -305 upstream from the transcription start site was necessary for IL-1-mediated induction of the reporter gene. This region contains the upstream transcription factor AP-1 binding site. These results suggest that IL-1 upregulates APP gene expression in HUVEC through a pathway mediated by protein kinase C, utilizing the upstream AP-1 binding site of the APP promoter. Images PMID:2508093

  3. Regulation of bovine pyruvate carboxylase mRNA and promoter expression by thermal stress.

    PubMed

    White, H M; Koser, S L; Donkin, S S

    2012-09-01

    Pyruvate carboxylase (PC) catalyzes the rate-limiting step in gluconeogenesis from lactate and is a determinant of tricarboxylic acid cycle carbon flux. Bovine PC 5' untranslated region (UTR) mRNA variants are the products of a single PC gene containing 3 promoter regions (P3, P2, and P1, 5' to 3') that are responsive to physiological and nutritional stressors. The objective of this study was to determine the direct effects of thermal stress on PC mRNA and gene expression in bovine hepatocyte monolayer cultures, rat hepatoma (H4IIE) cells, and Madin-Darby bovine kidney epithelial (MDBK) cells. Hepatocytes were isolated from 3 Holstein bull calves and used to prepare monolayer cultures. Rat hepatoma cells and MDBK cells were obtained from American Type Culture Collection, Manassas, VA. Beginning 24 h after initial seeding, cells were subjected to either 37°C (control) or 42°C (thermal stress) for 24 h. Treatments were applied in triplicate in a minimum of 3 independent cell preparations. For bovine primary hepatocytes, endogenous expression of bovine PC mRNA increased (P < 0.1) with 24 h of thermal stress (1.31 vs. 2.79 ± 0.49, arbitrary units, control vs. thermal stress, respectively), but there was no change (P ≥ 0.1) in cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C) mRNA expression. Similarly, exposure of MDBK cells to thermal stress increased (P < 0.1) expression of bovine PC mRNA without altering (P ≥ 0.1) PEPCK-C mRNA expression. Conversely, there was no effect (P ≥ 0.1) of thermal stress on endogenous rat PC (0.47 vs. 0.30 ± 0.08, control vs. thermal stress) or PEPCK-C (1.61 vs. 1.20 ± 0.48, arbitrary units, control vs. thermal stress, respectively) mRNA expressions in H4IIE cells. To further investigate the regulation of PC, H4IIE cells were transiently transfected with bovine promoter-luciferase constructs containing either P1, P2, or P3, and exposed to thermal stress for 23 h. Activity of P1 was suppressed (P < 0.1) 5-fold, activity of P2

  4. RNase footprinting of protein binding sites on an mRNA target of small RNAs.

    PubMed

    Peng, Yi; Soper, Toby J; Woodson, Sarah A

    2012-01-01

    Endoribonuclease footprinting is an important technique for probing RNA-protein interactions with single nucleotide resolution. The susceptibility of RNA residues to enzymatic digestion gives information about the RNA secondary structure, the location of protein binding sites, and the effects of protein binding on the RNA structure. Here we present a detailed protocol for using RNase T2, which cleaves single stranded RNA with a preference for A nucleotides, to footprint the protein Hfq on the rpoS mRNA leader. This protocol covers how to form the RNP complex, determine the correct dose of enzyme, footprint the protein, and analyze the cleavage pattern using primer extension.

  5. RNase footprinting of protein binding sites on an mRNA target of small RNAs

    PubMed Central

    Yi, Peng; Soper, Toby J.; Woodson, Sarah A.

    2013-01-01

    Summary Endoribonuclease footprinting is an important technique for probing RNA•protein interactions with single nucleotide resolution. The susceptibility of RNA residues to enzymatic digestion gives information about the RNA secondary structure, the location of protein binding sites, and the effects of protein binding on the RNA structure. Here we present a detailed protocol for using RNase T2, which cleaves single stranded RNA with a preference for A nucleotides, to footprint the protein Hfq on the rpoS mRNA leader. This protocol covers how to form the RNP complex, determine the correct dose of enzyme, footprint the protein, and analyze the cleavage pattern using primer extension. PMID:22736006

  6. Prolonged submaximal exercise induces isoform-specific Na+-K+-ATPase mRNA and protein responses in human skeletal muscle.

    PubMed

    Murphy, K T; Petersen, A C; Goodman, C; Gong, X; Leppik, J A; Garnham, A P; Cameron-Smith, D; Snow, R J; McKenna, M J

    2006-02-01

    This study investigated effects of prolonged submaximal exercise on Na+-K+-ATPase mRNA and protein expression, maximal activity, and content in human skeletal muscle. We also investigated the effects on mRNA expression of the transcription initiator gene, RNA polymerase II (RNAP II), and key genes involved in protein translation, eukaryotic initiation factor-4E (eIF-4E) and 4E-binding protein 1 (4E-BP1). Eleven subjects (6 men, 5 women) cycled at 75.5% (SD 4.8%) peak O2 uptake and continued until fatigue. A vastus lateralis muscle biopsy was taken at rest, fatigue, and 3 and 24 h postexercise. We analyzed muscle for Na+-K+-ATPase alpha1, alpha2, alpha3, beta1, beta2, and beta3, as well for RNAP II, eIF-4E, and 4E-BP1 mRNA expression by real-time RT-PCR and Na+-K+-ATPase isoform protein abundance using immunoblotting. Muscle homogenate maximal Na+-K+-ATPase activity was determined by 3-O-methylfluorescein phosphatase activity and Na+-K+-ATPase content by [3H]ouabain binding. Cycling to fatigue [54.5 (SD 20.6) min] immediately increased alpha3 (P = 0.044) and beta2 mRNA (P = 0.042) by 2.2- and 1.9-fold, respectively, whereas alpha1 mRNA was elevated by 2.0-fold at 24 h postexercise (P = 0.036). A significant time main effect was found for alpha3 protein abundance (P = 0.046). Exercise transiently depressed maximal Na+-K+-ATPase activity (P = 0.004), but Na+-K+-ATPase content was unaltered throughout recovery. Exercise immediately increased RNAP II mRNA by 2.6-fold (P = 0.011) but had no effect on eIF-4E and 4E-BP1 mRNA. Thus a single bout of prolonged submaximal exercise induced isoform-specific Na+-K+-ATPase responses, increasing alpha1, alpha3, and beta2 mRNA but only alpha3 protein expression. Exercise also increased mRNA expression of RNAP II, a gene initiating transcription, but not of eIF-4E and 4E-BP1, key genes initiating protein translation.

  7. Change of dopamine receptor mRNA expression in lymphocyte of schizophrenic patients

    PubMed Central

    Kwak, Yong T; Koo, Min-Seong; Choi, Chul-Hee; Sunwoo, IN

    2001-01-01

    Background Though the dysfunction of central dopaminergic system has been proposed, the etiology or pathogenesis of schizophrenia is still uncertain partly due to limited accessibility to dopamine receptor. The purpose of this study was to define whether or not the easily accessible dopamine receptors of peripheral lymphocytes can be the peripheral markers of schizophrenia. Results 44 drug-medicated schizophrenics for more than 3 years, 28 drug-free schizophrenics for more than 3 months, 15 drug-naïve schizophrenic patients, and 31 healthy persons were enrolled. Sequential reverse transcription and quantitative polymerase chain reaction of the mRNA were used to investigate the expression of D3 and D5 dopamine receptors in peripheral lymphocytes. The gene expression of dopamine receptors was compared in each group. After taking antipsychotics in drug-free and drug-naïve patients, the dopamine receptors of peripheral lymphocytes were sequentially studied 2nd week and 8th week after medication. In drug-free schizophrenics, D3 dopamine receptor mRNA expression of peripheral lymphocytes significantly increased compared to that of controls and drug-medicated schizophrenics, and D5 dopamine receptor mRNA expression increased compared to that of drug-medicated schizophrenics. After taking antipsychotics, mRNA of dopamine receptors peaked at 2nd week, after which it decreases but the level was above baseline one at 8th week. Drug-free and drug-naïve patients were divided into two groups according to dopamine receptor expression before medications, and the group of patients with increased dopamine receptor expression had more severe psychiatric symptoms. Conclusions These results reveal that the molecular biologically-determined dopamine receptors of peripheral lymphocytes are reactive, and that increased expression of dopamine receptor in peripheral lymphocyte has possible clinical significance for subgrouping of schizophrenis. PMID:11252158

  8. Nerve Growth Factor Increases mRNA Levels for the Prion Protein and the β -amyloid Protein Precursor in Developing Hamster Brain

    NASA Astrophysics Data System (ADS)

    Mobley, William C.; Neve, Rachael L.; Prusiner, Stanley B.; McKinley, Michael P.

    1988-12-01

    Deposition of amyloid filaments serves as a pathologic hallmark for some neurodegenerative disorders. The prion protein (PrP) is found in amyloid of animals with scrapie and humans with Creutzfeldt-Jakob disease; the β protein is present in amyloid deposits in Alzheimer disease and Down syndrome patients. These two proteins are derived from precursors that in the brain are expressed primarily in neurons and are membrane bound. We found that gene expression for PrP and the β -protein precursor (β -PP) is regulated in developing hamster brain. Specific brain regions showed distinct patterns of ontogenesis for PrP and β -PP mRNAs. The increases in PrP and β -PP mRNAs in developing basal forebrain coincided with an increase in choline acetyltransferase activity, raising the possibility that these markers might be coordinately controlled in cholinergic neurons and regulated by nerve growth factor (NGF). Injections of NGF into the brains of neonatal hamsters increased both PrP and β -PP mRNA levels. Increased PrP and β -PP mRNA levels induced by NGF were confined to regions that contain NGF-responsive cholinergic neurons and were accompanied by elevations in choline acetyltransferase. It remains to be established whether or not exogenous NGF acts to increase PrP and β -PP gene expression selectively in forebrain cholinergic neurons in the developing hamster and endogenous NGF regulates expression of these genes.

  9. Manganese exposure alters extracellular GABA, GABA receptor and transporter protein and mRNA levels in the developing rat brain.

    PubMed

    Anderson, Joel G; Fordahl, Steve C; Cooney, Paula T; Weaver, Tara L; Colyer, Christa L; Erikson, Keith M

    2008-11-01

    Unlike other essential trace elements (e.g., zinc and iron) it is the toxicity of manganese (Mn) that is more common in human populations than its deficiency. Data suggest alterations in dopamine biology may drive the effects associated with Mn neurotoxicity, though recently gamma-aminobutyric acid (GABA) has been implicated. In addition, iron deficiency (ID), a common nutritional problem, may cause disturbances in neurochemistry by facilitating accumulation of Mn in the brain. Previous data from our lab have shown decreased brain tissue levels of GABA as well as decreased (3)H-GABA uptake in synaptosomes as a result of Mn exposure and ID. These results indicate a possible increase in the concentration of extracellular GABA due to alterations in expression of GABA transport and receptor proteins. In this study weanling-male Sprague-Dawley rats were randomly placed into one of four dietary treatment groups: control (CN; 35mg Fe/kg diet), iron-deficient (ID; 6mg Fe/kg diet), CN with Mn supplementation (via the drinking water; 1g Mn/l) (CNMn), and ID with Mn supplementation (IDMn). Using in vivo microdialysis, an increase in extracellular GABA concentrations in the striatum was observed in response to Mn exposure and ID although correlational analysis reveals that extracellular GABA is related more to extracellular iron levels and not Mn. A diverse effect of Mn exposure and ID was observed in the regions examined via Western blot and RT-PCR analysis, with effects on mRNA and protein expression of GAT-1, GABA(A), and GABA(B) differing between and within the regions examined. For example, Mn exposure reduced GAT-1 protein expression by approximately 50% in the substantia nigra, while increasing mRNA expression approximately four-fold, while in the caudate putamen mRNA expression was decreased with no effect on protein expression. These data suggest that Mn exposure results in an increase in extracellular GABA concentrations via altered expression of transport and

  10. Recombinant protein expression in Nicotiana.

    PubMed

    Matoba, Nobuyuki; Davis, Keith R; Palmer, Kenneth E

    2011-01-01

    Recombinant protein pharmaceuticals are now widely used in treatment of chronic diseases, and several recombinant protein subunit vaccines are approved for human and veterinary use. With growing demand for complex protein pharmaceuticals, such as monoclonal antibodies, manufacturing capacity is becoming limited. There is increasing need for safe, scalable, and economical alternatives to mammalian cell culture-based manufacturing systems, which require substantial capital investment for new manufacturing facilities. Since a seminal paper reporting immunoglobulin expression in transgenic plants was published in 1989, there have been many technological advances in plant expression systems to the present time where production of proteins in leaf tissues of nonfood crops such as Nicotiana species is considered a viable alternative. In particular, transient expression systems derived from recombinant plant viral vectors offer opportunities for rapid expression screening, construct optimization, and expression scale-up. Extraction of recombinant proteins from Nicotiana leaf tissues can be achieved by collection of secreted protein fractions, or from a total protein extract after grinding the leaves with buffer. After separation from solids, the major purification challenge is contamination with elements of the photosynthetic complex, which can be solved by application of a variety of facile and proven strategies. In conclusion, the technologies required for safe, efficient, scalable manufacture of recombinant proteins in Nicotiana leaf tissues have matured to the point where several products have already been tested in phase I clinical trials and will soon be followed by a rich pipeline of recombinant vaccines, microbicides, and therapeutic proteins.

  11. Exploration of the origin and evolution of globular proteins by mRNA display.

    PubMed

    Yanagawa, Hiroshi

    2013-06-04

    The questions of how proteins first appeared on the primitive earth and how they evolved into functional proteins are fundamental. If we can understand the origins and evolution of proteins, we should be able to create novel functional proteins. Evolutionary protein engineering or directed protein evolution has been used to create artificial proteins with novel functions by repeated mutation, selection, and amplification, mimicking Darwinian evolution in the laboratory. For this purpose, display technology, such as mRNA display, to link genotype with phenotype is extremely important. Here I focus on three hypotheses regarding the origin and evolution of proteins. First, Eigen's GNC hypothesis proposes that the early genetic code began from the directionless codons GNC and GNN, where N denotes U, C, A, or G. Second, Ohno's gene duplication theory proposes that gene duplication produces two functionally redundant, paralogous genes, of which one retains the original function, leaving the second free to evolve adaptively. Third, Gilbert's exon shuffling theory proposes that new genes are formed through shuffling of small segments corresponding to exons. I then review various experimental approaches to evolutionary protein engineering using mRNA display, such as the creation of functional proteins from random sequences with limited sets of amino acids, randomly mutated folded proteins, and block-shuffled sequence proteins, and I discuss the results in relation to these three hypotheses.

  12. Epigenetic Regulation of Dopamine Transporter mRNA Expression in Human Neuroblastoma Cells

    PubMed Central

    Green, Ashley L.; Hossain, Muhammad M.; Tee, Siew C.; Zarbl, Helmut; Guo, Grace L.; Richardson, Jason R.

    2016-01-01

    The dopamine transporter (DAT) is a key regulator of dopaminergic neurotransmission. As such, proper regulation of DAT expression is important to maintain homeostasis, and disruption of DAT expression can lead to neurobehavioral dysfunction. Based on genomic features within the promoter of the DAT gene, there is potential for DAT expression to be regulated through epigenetic mechanisms, including DNA methylation and histone acetylation. However, the relative contribution of these mechanisms to DAT expression has not been empirically determined. Using pharmacologic and genetic approaches, we demonstrate that inhibition of DNA methyltransferase (DNMT) activity increased DAT mRNA approximately 1.5–2 fold. This effect was confirmed by siRNA knockdown of DNMT1. Likewise, the histone deacetylase (HDAC) inhibitors valproate and butyrate also increased DAT mRNA expression, but the response was much more robust with expression increasing over tenfold. Genetic knockdown of HDAC1 by siRNA also increased DAT expression, but not to the extent seen with pharmacological inhibition, suggesting additional isoforms of HDAC or other targets may contribute to the observed effect. Together, these data identify the relative contribution of DNMTs and HDACs in regulating expression. These finding may aid in understanding the mechanistic basis for changes in DAT expression in normal and pathophysiological states. PMID:25963949

  13. Expression of SART-1 mRNA in canine squamous cell carcinomas.

    PubMed

    Takaishi, Yumi; Yoshida, Yukari; Nakagaki, Kazuhide; Fujita, Michio; Taniguchi, Akiko; Orima, Hiromitsu

    2008-12-01

    SART-1, a squamous cell carcinoma (SCC) antigen recognized by cytotoxic T lymphocytes, has been useful in human cancer therapy. The SART-1(259) peptide is a potential candidate for vaccine. The present study examined an orthologue of the mRNA coding this peptide in canine SCCs. Specimens were obtained from seven canine patients with SCC, and the mRNA was isolated from the samples. The SART-1 and beta-actin genes were amplified by reverse-transcription polymerase chain reaction, using the isolated mRNA as a template. Canine SART-1 was amplified in six of the seven specimens, while beta-actin was detected in all the samples. In dogs, carcinomas expressing SART-1 could be a target for cytotoxic T lymphocyte mediated immunotherapy.

  14. Enteral glutamine stimulates protein synthesis and decreases ubiquitin mRNA level in human gut mucosa.

    PubMed

    Coëffier, Moïse; Claeyssens, Sophie; Hecketsweiler, Bernadette; Lavoinne, Alain; Ducrotté, Philippe; Déchelotte, Pierre

    2003-08-01

    Effects of glutamine on whole body and intestinal protein synthesis and on intestinal proteolysis were assessed in humans. Two groups of healthy volunteers received in a random order enteral glutamine (0.8 mmol.kg body wt(-1)x h(-1)) compared either to saline or isonitrogenous amino acids. Intravenous [2H5]phenylalanine and [13C]leucine were simultaneously infused. After gas chromatography-mass spectrometry analysis, whole body protein turnover was estimated from traced plasma amino acid fluxes and the fractional synthesis rate (FSR) of gut mucosal protein was calculated from protein and intracellular phenylalanine and leucine enrichments in duodenal biopsies. mRNA levels for ubiquitin, cathepsin D, and m-calpain were analyzed in biopsies by RT-PCR. Glutamine significantly increased mucosal protein FSR compared with saline. Glutamine and amino acids had similar effects on FSR. The mRNA level for ubiquitin was significantly decreased after glutamine infusion compared with saline and amino acids, whereas cathepsin D and m-calpain mRNA levels were not affected. Enteral glutamine stimulates mucosal protein synthesis and may attenuate ubiquitin-dependent proteolysis and thus improve protein balance in human gut.

  15. Embryonic and Postnatal Expression of Aryl Hydrocarbon Receptor mRNA in Mouse Brain

    PubMed Central

    Kimura, Eiki; Tohyama, Chiharu

    2017-01-01

    Aryl hydrocarbon receptor (AhR), a member of the basic helix-loop-helix-Per-Arnt-Sim transcription factor family, plays a critical role in the developing nervous system of invertebrates and vertebrates. Dioxin, a ubiquitous environmental pollutant, avidly binds to this receptor, and maternal exposure to dioxin has been shown to impair higher brain functions and dendritic morphogenesis, possibly via an AhR-dependent mechanism. However, there is little information on AhR expression in the developing mammalian brain. To address this issue, the present study analyzed AhR mRNA expression in the brains of embryonic, juvenile, and adult mice by reverse transcription (RT)-PCR and in situ hybridization. In early brain development (embryonic day 12.5), AhR transcript was detected in the innermost cortical layer. The mRNA was also expressed in the hippocampus, cerebral cortex, cerebellum, olfactory bulb, and rostral migratory stream on embryonic day 18.5, postnatal days 3, 7, and 14, and in 12-week-old (adult) mice. Hippocampal expression was abundant in the CA1 and CA3 pyramidal and dentate gyrus granule cell layers, where expression level of AhR mRNA in 12-week old is higher than that in 7-day old. These results reveal temporal and spatial patterns of AhR mRNA expression in the mouse brain, providing the information that may contribute to the elucidation of the physiologic and toxicologic significance of AhR in the developing brain. PMID:28223923

  16. Does mRNA structure contain genetic information for regulating co-translational protein folding?

    PubMed Central

    Yang, Jian-Rong

    2017-01-01

    Currently many facets of genetic information are illdefined. In particular, how protein folding is genetically regulated has been a long-standing issue for genetics and protein biology. And a generic mechanistic model with supports of genomic data is still lacking. Recent technological advances have enabled much needed genome-wide experiments. While putting the effect of codon optimality on debate, these studies have supplied mounting evidence suggesting a role of mRNA structure in the regulation of protein folding by modulating translational elongation rate. In conjunctions with previous theories, this mechanistic model of protein folding guided by mRNA structure shall expand our understandings of genetic information and offer new insights into various biomedical puzzles. PMID:28271668

  17. Alpha-synuclein mRNA expression in oligodendrocytes in MSA.

    PubMed

    Asi, Yasmine T; Simpson, Julie E; Heath, Paul R; Wharton, Stephen B; Lees, Andrew J; Revesz, Tamas; Houlden, Henry; Holton, Janice L

    2014-06-01

    Multiple system atrophy (MSA) is a progressive neurodegenerative disease presenting clinically with parkinsonian, cerebellar, and autonomic features. α-Synuclein (αsyn), encoded by the gene SNCA, is the main constituent of glial cytoplasmic inclusion (GCI) found in oligodendrocytes in MSA, but the methods of its accumulation have not been established. The aim of this study is to investigate alterations in regional and cellular SNCA mRNA expression in MSA as a possible substrate for GCI formation. Quantitative reverse transcription polymerase chain reaction (qPCR) was performed on postmortem brain samples from 15 MSA, 5 IPD, and 5 control cases to investigate regional expression in the frontal and occipital regions, dorsal putamen, pontine base, and cerebellum. For cellular expression analysis, neurons and oligodendrocytes were isolated by laser-capture microdissection from five MSA and five control cases. SNCA mRNA expression was not significantly different between the MSA, IPD and control cases in all regions (multilevel model, P = 0.14). After adjusting for group effect, the highest expression was found in the occipital cortex while the lowest was in the putamen (multilevel model, P < 0.0001). At the cellular level, MSA oligodendrocytes expressed more SNCA than control oligodendrocytes and expression in MSA neurons was slightly lower than that in controls, however, these results did not reach statistical significance. We have demonstrated regional variations in SNCA expression, which is higher in cortical than subcortical regions. This study is the first to demonstrate SNCA mRNA expression by oligodendrocytes in human postmortem tissue using qPCR and, although not statistically significant, could suggest that this may be increased in MSA compared to controls.

  18. Synchronized expression of retinoid X receptor mRNA with reproductive tract recrudescence in an imposex-susceptible mollusc.

    PubMed

    Sternberg, Robin M; Hotchkiss, Andrew K; Leblanc, Gerald A

    2008-02-15

    The biocide tributyltin (TBT) causes the development of male sex characteristics in females of some molluscan species, a phenomenon known as imposex. Recent evidence suggests that the retinoid X receptor (RXR) participates in TBT-induced imposex. Accordingly, we hypothesized that RXR may contribute to the seasonal development of the male reproductive tract in molluscs and would be expressed in concert with this phenomenon. RXR was cloned and sequenced from an imposex-susceptble species, the eastern mud snail Ilyanassa obsoleta. The DNA-binding domain of the receptor protein was 100 and 97% identical to those of the rock shell Thais clavigera and the freshwater snail Biomphalaria glabrata. The ligand-binding domain was 93 and 92% identicalto the LBD of these two molluscan species, respectively. Phylogenetic analyses revealed that RXR is an ancient nuclear receptor whose origin predates the emergence of the Bilateria. Interestingly, though inexplicably, the molluscan RXRs were more similar to sequences of vertebrate RXRs than to the RXRs of other lophotrochozoan invertebrates. Next, the expression of RXR mRNA levels in the reproductive tract was determined through the reproductive cycle. RXR mRNA levels increased commensurate with reproductive tract recrudescence in both sexes. However, the timing of coordinate recrudescence-RXR expression differed between sexes. Results demonstrate that RXR expression is associated with reproductive tract recrudescence in both sexes; although, the timing of recrudescence may dictate sex-specific development. Retinoid signaling initiated by TBT during an inappropriate time in females may result in imposex.

  19. Acute physiological stress down-regulates mRNA expressions of growth-related genes in coho salmon.

    PubMed

    Nakano, Toshiki; Afonso, Luis O B; Beckman, Brian R; Iwama, George K; Devlin, Robert H

    2013-01-01

    Growth and development in fish are regulated to a major extent by growth-related factors, such as liver-derived insulin-like growth factor (IGF) -1 in response to pituitary-secreted growth hormone (GH) binding to the GH receptor (GHR). Here, we report on the changes in the expressions of gh, ghr, and igf1 genes and the circulating levels of GH and IGF-1 proteins in juvenile coho salmon (Oncorhynchus kisutch) in response to handling as an acute physiological stressor. Plasma GH levels were not significantly different between stressed fish and prestressed control. Plasma IGF-1 concentrations in stressed fish 1.5 h post-stress were the same as in control fish, but levels in stressed fish decreased significantly 16 h post-stress. Real-time quantitative PCR (qPCR) analysis showed that ghr mRNA levels in pituitary, liver, and muscle decreased gradually in response to the stressor. After exposure to stress, hepatic igf1 expression transiently increased, whereas levels decreased 16 h post-stress. On the other hand, the pituitary gh mRNA level did not change in response to the stressor. These observations indicate that expression of gh, ghr, and igf1 responded differently to stress. Our results show that acute physiological stress can mainly down-regulate the expressions of growth-related genes in coho salmon in vivo. This study also suggests that a relationship between the neuroendocrine stress response and growth-related factors exists in fish.

  20. Acute Physiological Stress Down-Regulates mRNA Expressions of Growth-Related Genes in Coho Salmon

    PubMed Central

    Nakano, Toshiki; Afonso, Luis O. B.; Beckman, Brian R.; Iwama, George K.; Devlin, Robert H.

    2013-01-01

    Growth and development in fish are regulated to a major extent by growth-related factors, such as liver-derived insulin-like growth factor (IGF) -1 in response to pituitary-secreted growth hormone (GH) binding to the GH receptor (GHR). Here, we report on the changes in the expressions of gh, ghr, and igf1 genes and the circulating levels of GH and IGF-1 proteins in juvenile coho salmon (Oncorhynchus kisutch) in response to handling as an acute physiological stressor. Plasma GH levels were not significantly different between stressed fish and prestressed control. Plasma IGF-1 concentrations in stressed fish 1.5 h post-stress were the same as in control fish, but levels in stressed fish decreased significantly 16 h post-stress. Real-time quantitative PCR (qPCR) analysis showed that ghr mRNA levels in pituitary, liver, and muscle decreased gradually in response to the stressor. After exposure to stress, hepatic igf1 expression transiently increased, whereas levels decreased 16 h post-stress. On the other hand, the pituitary gh mRNA level did not change in response to the stressor. These observations indicate that expression of gh, ghr, and igf1 responded differently to stress. Our results show that acute physiological stress can mainly down-regulate the expressions of growth-related genes in coho salmon in vivo. This study also suggests that a relationship between the neuroendocrine stress response and growth-related factors exists in fish. PMID:23990952

  1. Assessment of cathepsin mRNA expression and enzymatic activity during early embryonic development in the yellowtail kingfish Seriola lalandi.

    PubMed

    Palomino, Jaime; Herrera, Giannina; Torres-Fuentes, Jorge; Dettleff, Phillip; Patel, Alok; Martínez, Víctor

    2017-02-21

    In pelagic species such as Seriola lalandi, survival of both the eggs and embryos depends on yolk processing during oocyte maturation and embryo development. The main enzymes involved in these processes are the cathepsins, which are essential for the hydration process, acquiring buoyancy and nutrition of the embryo before hatching. This study aimed to investigate the mRNA expression profiles of cathepsins B, D and L (catb, catd and catl) and the activity of these enzymes during early development in S. lalandi. We included previtellogenic oocytes (PO). All three enzymes were highly expressed in PO, but the expression was reduced throughout development. Between PO and recently spawned eggs (E1) the transcript to catb and catd decreased, unlike catl. Cathepsin B activity, showed stable levels between PO until blastula stage (E4). High activities levels of cathepsins D and L were observed in E1 in comparison with later developmental stages. Cathepsin L activity remained constant until E1, consistent with observations in other pelagic spawners, where its participation in a second protolithic cleavage of the yolk proteins, has been proposed for this enzyme. Their profiles of both mRNA expression and enzymatic activity indicate the importance of these enzymes during early development and suggest different roles in egg yolk processing for the hydration process and nutrition in early embryos in this species.

  2. Effects of codon usage versus putative 5'-mRNA structure on the expression of Fusarium solani cutinase in the Escherichia coli cytoplasm.

    PubMed

    Griswold, Karl E; Mahmood, Nadir A; Iverson, Brent L; Georgiou, George

    2003-01-01

    Matching the codon usage of recombinant genes to that of the expression host is a common strategy for increasing the expression of heterologous proteins in bacteria. However, while developing a cytoplasmic expression system for Fusarium solani cutinase in Escherichia coli, we found that altering codons to those preferred by E. coli led to significantly lower expression compared to the wild-type fungal gene, despite the presence of several rare E. coli codons in the fungal sequence. On the other hand, expression in the E. coli periplasm using a bacterial PhoA leader sequence resulted in high levels of expression for both the E. coli optimized and wild-type constructs. Sequence swapping experiments as well as calculations of predicted mRNA secondary structure provided support for the hypothesis that differential cytoplasmic expression of the E. coli optimized versus wild-type cutinase genes is due to differences in 5(') mRNA secondary structures. In particular, our results indicate that increased stability of 5(') mRNA secondary structures in the E. coli optimized transcript prevents efficient translation initiation in the absence of the phoA leader sequence. These results underscore the idea that potential 5(') mRNA secondary structures should be considered along with codon usage when designing a synthetic gene for high level expression in E. coli.

  3. Integrated analysis of microRNA and mRNA expression profiles in HBx-expressing hepatic cells

    PubMed Central

    Chen, Ruo-Chan; Wang, Juan; Kuang, Xu-Yuan; Peng, Fang; Fu, Yong-Ming; Huang, Yan; Li, Ning; Fan, Xue-Gong

    2017-01-01

    AIM To identify the miRNA-mRNA regulatory network in hepatitis B virus X (HBx)-expressing hepatic cells. METHODS A stable HBx-expressing human liver cell line L02 was established. The mRNA and miRNA expression profiles of L02/HBx and L02/pcDNA liver cells were identified by RNA-sequencing analysis. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis was performed to investigate the function of candidate biomarkers, and the relationship between miRNA and mRNA was studied by network analysis. RESULTS Compared with L02/pcDNA cells, 742 unregulated genes and 501 downregulated genes were determined as differentially expressed in L02/HBx cells. Gene ontology analysis suggested that the differentially expressed genes were relevant to different biological processes. Concurrently, 22 differential miRNAs were also determined in L02/HBx cells. Furthermore, integrated analysis of miRNA and mRNA expression profiles identified a core miRNA-mRNA regulatory network that is correlated with the carcinogenic role of HBx. CONCLUSION Collectively, the miRNA-mRNA network-based analysis could be useful to elucidate the potential role of HBx in liver cell malignant transformation and shed light on the underlying molecular mechanism and novel therapy targets for hepatocellular carcinoma. PMID:28348484

  4. The mRNA Decay Pathway Regulates the Expression of the Flo11 Adhesin and Biofilm Formation in Saccharomyces cerevisiae

    PubMed Central

    Lo, Tricia L.; Qu, Yue; Uwamahoro, Nathalie; Quenault, Tara; Beilharz, Traude H.; Traven, Ana

    2012-01-01

    Regulation of the FLO11 adhesin is a model for gene expression control by extracellular signals and developmental switches. We establish that the major mRNA decay pathway regulates FLO11 expression. mRNA deadenylation of transcriptional repressors of FLO11 by the exonuclease Ccr4 keeps their levels low, thereby allowing FLO11 transcription. PMID:22595243

  5. Iron chelation down-regulates dopamine transporter expression by decreasing mRNA stability and increasing endocytosis in N2a cells.

    PubMed

    Hegde, Narasimha V; Jensen, Gordon L; Unger, Erica L

    2011-02-15

    Cell surface expression of the dopamine transporter (DAT) is determined by the relative rates of its internalization and recycling. Changes in the cellular labile iron pool (LIP) affect many cellular mechanisms including those that regulate DAT trafficking. In this study, we analyzed DAT expression and posttranslational modifications in response to changes in cellular iron in transfected neuroblastoma cells (N2a). Iron chelation by desferrioxamine (DFO) altered DAT protein levels by decreasing the stability of DAT mRNA. Increased phosphorylation and ubiquitination of this transporter protein following DFO treatment were also observed. Cellular iron depletion elevated protein levels of the early endosomal marker Rab5. Moreover, confocal microscopy studies showed increased localization of DAT into the endosomal compartment in DFO-treated cells compared to control. Together, these findings suggest that cellular iron depletion regulates DAT expression through reducing mRNA stability as well as an increasing in endocytosis.

  6. Unmasking Upstream Gene Expression Regulators with miRNA-corrected mRNA Data

    PubMed Central

    Bollmann, Stephanie; Bu, Dengpan; Wang, Jiaqi; Bionaz, Massimo

    2015-01-01

    Expressed micro-RNA (miRNA) affects messenger RNA (mRNA) abundance, hindering the accuracy of upstream regulator analysis. Our objective was to provide an algorithm to correct such bias. Large mRNA and miRNA analyses were performed on RNA extracted from bovine liver and mammary tissue. Using four levels of target scores from TargetScan (all miRNA:mRNA target gene pairs or only the top 25%, 50%, or 75%). Using four levels of target scores from TargetScan (all miRNA:mRNA target gene pairs or only the top 25%, 50%, or 75%) and four levels of the magnitude of miRNA effect (ME) on mRNA expression (30%, 50%, 75%, and 83% mRNA reduction), we generated 17 different datasets (including the original dataset). For each dataset, we performed upstream regulator analysis using two bioinformatics tools. We detected an increased effect on the upstream regulator analysis with larger miRNA:mRNA pair bins and higher ME. The miRNA correction allowed identification of several upstream regulators not present in the analysis of the original dataset. Thus, the proposed algorithm improved the prediction of upstream regulators. PMID:27279737

  7. Molecular cloning of the SMAD4 gene and its mRNA expression analysis in ovarian follicles of the Yangzhou goose (Anser cygnoides).

    PubMed

    Huang, Z; Yuan, X; Wang, M; Wu, N; Song, Y; Chen, Y; Zhang, Y; Xu, Q; Chen, G; Zhao, W

    2016-08-01

    Mothers against decapentaplegic homolog 4 (SMAD4) is an important protein in animal reproduction. It plays pivotal roles in cellular pathways, including apoptosis. The expression profile of the SMAD4 gene in goose ovarian follicles has not been reported. In this study, the SMAD4 coding sequence was cloned from the Yangzhou goose. A phylogenetic analysis was performed and mRNA expression was examined in various tissues using quantitative real-time PCR. An alternative splice form of SMAD4, SMAD4-b having 1656 bp, was identified. SMAD4-a mRNA was widely expressed in various healthy tissues, whereas SMAD4-b was very weakly expressed. SMAD4 mRNA in the ovary and oviduct was significantly higher than that in the pituitary and hypothalamus. SMAD4 mRNA expression analysis in hierarchical follicles showed that the level of SMAD4 mRNA was higher in large white follicles and post-ovulatory follicles than in the other follicles. The results indicate that SMAD4 might be involved in the recruitment of hierarchical follicles.

  8. Cytokine mRNA Expression in Lesions in Cats with Chronic Gingivostomatitis

    PubMed Central

    Harley, R.; Helps, C. R.; Harbour, D. A.; Gruffydd-Jones, T. J.; Day, M. J.

    1999-01-01

    Semiquantitative reverse transcription-PCR assays were developed to measure feline interleukin-2 (IL-2), IL-4, IL-5, IL-6, IL-10, and IL-12 (p35 & p40); gamma interferon (IFN-γ); and glyceraldehyde-3-phosphate dehydrogenase mRNA concentrations in biopsies of feline oral mucosa. Biopsies were collected from 30 cats with chronic gingivostomatitis (diseased) prior to each cat receiving one of four treatments. In 23 cases replicate biopsies were collected 3 months after treatment commenced. Biopsies were also analyzed from 11 cats without clinical disease (nondiseased). Expression of IL-2, IL-10, IL-12 (p35 and p40), and IFN-γ was detected in most nondiseased biopsies, while IL-6 was detected in a minority, and IL-4 and IL-5 were both undetectable. Compared to nondiseased cats, the diseased population showed a significant increase in the relative mRNA expression of IL-2, IL-4, IL-6, IL-10, IL-12 (p35 and p40), and IFN-γ. In contrast, IL-5 mRNA expression was unchanged and was only detected in one case. No significant relationship was demonstrable between the change in relative expression of specific cytokine mRNA and the change in clinical severity of the local mucosal lesions over the treatment period. The results demonstrate that the normal feline oral mucosa is biased towards a predominantly (Th) type 1 profile of cytokine expression and that during the development of lesions seen in feline chronic gingivostomatitis there is a shift in the cytokine profile from a type 1 to a mixed type 1 and type 2 response. PMID:10391845

  9. Cytokine mRNA expression in lesions in cats with chronic gingivostomatitis.

    PubMed

    Harley, R; Helps, C R; Harbour, D A; Gruffydd-Jones, T J; Day, M J

    1999-07-01

    Semiquantitative reverse transcription-PCR assays were developed to measure feline interleukin-2 (IL-2), IL-4, IL-5, IL-6, IL-10, and IL-12 (p35 & p40); gamma interferon (IFN-gamma); and glyceraldehyde-3-phosphate dehydrogenase mRNA concentrations in biopsies of feline oral mucosa. Biopsies were collected from 30 cats with chronic gingivostomatitis (diseased) prior to each cat receiving one of four treatments. In 23 cases replicate biopsies were collected 3 months after treatment commenced. Biopsies were also analyzed from 11 cats without clinical disease (nondiseased). Expression of IL-2, IL-10, IL-12 (p35 and p40), and IFN-gamma was detected in most nondiseased biopsies, while IL-6 was detected in a minority, and IL-4 and IL-5 were both undetectable. Compared to nondiseased cats, the diseased population showed a significant increase in the relative mRNA expression of IL-2, IL-4, IL-6, IL-10, IL-12 (p35 and p40), and IFN-gamma. In contrast, IL-5 mRNA expression was unchanged and was only detected in one case. No significant relationship was demonstrable between the change in relative expression of specific cytokine mRNA and the change in clinical severity of the local mucosal lesions over the treatment period. The results demonstrate that the normal feline oral mucosa is biased towards a predominantly (Th) type 1 profile of cytokine expression and that during the development of lesions seen in feline chronic gingivostomatitis there is a shift in the cytokine profile from a type 1 to a mixed type 1 and type 2 response.

  10. Increases in transient receptor potential vanilloid-1 mRNA and protein in primary afferent neurons stimulated by protein kinase C and their possible role in neurogenic inflammation

    PubMed Central

    Xu, Xijin; Wang, Peng; Zou, Xiaoju; Li, Dingge; Fang, Li; Lin, Qing

    2008-01-01

    A recent study by our group demonstrates pharmacologically that the transient receptor potential vanilloid-1 (TRPV1) is activated by intradermal injection of capsaicin to initiate neurogenic inflammation by the release of neuropeptides in the periphery. In this study, expression of TRPV1, phosphorylated protein kinase C (p-PKC) and calcitonin gene-related peptide (CGRP) in dorsal root ganglion (DRG) neurons were visualized using immunofluorescence, real-time PCR and Western blots to examine whether increases in TRPV1 mRNA and protein levels evoked by capsaicin injection are subject to modulation by the activation of PKC and to analyze the role of this process in the pathogenesis of neurogenic inflammation. Capsaicin injection into the hindpaw skin of anesthetized rats evoked increases in the expression of TRPV1, CGRP and p-PKC in mRNA and/or protein levels and in the number of single labeled TRPV1, p-PKC and CGRP neurons in ipsilateral L4–5 DRGs. Co-expressions of TRPV1 with p-PKC and/or CGRP in DRG neurons were also significantly increased after CAP injection. These evoked expressions both at molecular and cellular levels were significantly inhibited after TRPV1 receptors were blocked by 5′-iodoresiniferatoxin (5 μg) or PKC was inhibited by chelerythrine chloride (5 μg). Taken together, these results provide evidence that up-regulation of TRPV1 mRNA and protein levels under inflammatory conditions evoked by capsaicin injection is subject to modulation by the PKC cascade in which increased CGRP level in DRG neurons may be related to the initiation of neurogenic inflammation. Thus, up-regulation of TRPV1 receptors in DRG neurons seems critical for initiating acute neurogenic inflammation. PMID:18752301

  11. Regulation of mRNA expression in drug-sensitive and drug-resistant gastric carcinoma cells is independent of YB-1 expression.

    PubMed

    Kurucz, Reka; Belian, Elisa; Treue, Denise; Lage, Hermann

    2010-02-01

    Y-Box protein 1 (YB-1) is a multifunctional cellular protein expressed in a range of mammalian cells, including human cancer cells. It is involved in the regulation of various genes including cancer-associated genes, but the full range of target genes and regulatory mechanisms have not been fully elucidated. To identify global mRNA expression patterns that are potentially regulated by YB-1, a previously established and well-characterized cell model derived from drug-sensitive (EPG85-257P/tetR/YB-1) and multidrug-resistant (EPG85-257RDB/tetR/YB-1) gastric carcinoma cells in which the expression of YB-1 can be inhibited by tetracycline-dependent activation of the RNA interference (RNAi) pathway, was analyzed by microarray technology. By this approach, various potentially regulated genes encoding members of important cellular pathways such as the Jak/STAT, VEGF and the MAP-kinase signaling pathways were identified. Independent validation of these findings by quantitative real-time reverse transcriptase polymerase chain reaction and Western blot did not confirm these regulatory effects. In conclusion, the findings suggest that YB-1 is not directly involved in the regulation of mRNA expression in drug-sensitive or drug-resistant gastric carcinoma cells.

  12. Molecular localisation of a G-protein mRNA using differential display and in situ hybridization.

    PubMed

    Wilkinson, R; Tscharke, D; Simmons, A

    2000-07-01

    Defining molecular repertoires within virally infected tissues of the nervous system may provide insight into the pathogenesis of, and immunity to, neurotropic viruses. Here we report the application of such a method, namely mRNA differential display (DD), to the identification of mRNAs that are expressed at different levels in herpes simplex virus (HSV) infected nervous tissue from immunocompetent and CD8(+) lymphocyte depleted mice. Small amounts of input RNA can be used by DD, making the method ideal for experiments based on murine sensory ganglia (DRG), which on average yield less than 0.5 microg of total RNA. In the current work, DD facilitated the identification of a mRNA whose abundance in HSV-infected ganglia, based on Northern blot analysis, was reduced in mice depleted of CD8(+) cells. The cloned product of this mRNA was of particular interest to our research as sequence data strongly suggested that it represented the murine homologue of the alpha chain of a G protein termed Golf. This G protein had not previously been reported from dorsal root ganglial tissue. RT-PCR confirmed the presence of Golf in DRG and in situ hybridization studies localised this molecule to primary sensory neurons. These data indicate that DD is sufficiently robust to be applied to the study of virus pathogenesis within the nervous system.

  13. The Drosophila RNA-binding protein HOW controls the stability of dgrasp mRNA in the follicular epithelium

    PubMed Central

    Giuliani, Giuliano; Giuliani, Fabrizio; Volk, Talila; Rabouille, Catherine

    2014-01-01

    Post-transcriptional regulation of RNA stability and localization underlies a wide array of developmental processes, such as axon guidance and epithelial morphogenesis. In Drosophila, ectopic expression of the classically Golgi peripheral protein dGRASP at the plasma membrane is achieved through its mRNA targeting at key developmental time-points, in a process critical to follicular epithelium integrity. However, the trans-acting factors that tightly regulate the spatio-temporal dynamics of dgrasp are unknown. Using an in silico approach, we identified two putative HOW Response Elements (HRE1 and HRE2) within the dgrasp open reading frame for binding to Held Out Wings (HOW), a member of the Signal Transduction and Activation of RNA family of RNA-binding proteins. Using RNA immunoprecipitations, we confirmed this by showing that the short cytoplasmic isoform of HOW binds directly to dgrasp HRE1. Furthermore, HOW loss of function in vivo leads to a significant decrease in dgrasp mRNA levels. We demonstrate that HRE1 protects dgrasp mRNA from cytoplasmic degradation, but does not mediate its targeting. We propose that this binding event promotes the formation of ribonucleoprotein particles that ensure dgrasp stability during transport to the basal plasma membrane, thus enabling the local translation of dgrasp for its roles at non-Golgi locations. PMID:24217913

  14. Posttranscriptional regulation of ribosomal protein S20 and stability of the S20 mRNA species.

    PubMed Central

    Mackie, G A

    1987-01-01

    I have tested whether selective degradation of mRNA for ribosomal protein S20 of Escherichia coli occurs under conditions for which the expression of S20 is regulated posttranscriptionally. Blot hybridization of total RNA extracted from cultures at different times after addition of rifampin has permitted the estimation of relative levels of the two S20 mRNA species and their half-lives. In a strain harboring a plasmid containing the complete gene for S20, including the transcriptional terminator, moderate posttranscriptional repression of S20 synthesis is accompanied by a substantial increase in the half-lives of both S20 mRNAs relative to those in the haploid parental strain. In an otherwise identical strain in which the transcriptional terminator is deleted from the plasmid-borne S20 genes, the half-life of total S20 mRNA declines more than twofold relative to that in the haploid parent. Thus accelerated decay of the mRNAs for ribosomal protein S20 appears to be an artifact of deletion of the transcriptional terminator, rather than a physiologically significant consequence of translational repression. Images PMID:2438268

  15. Rift Valley fever virus NSS gene expression correlates with a defect in nuclear mRNA export.

    PubMed

    Copeland, Anna Maria; Van Deusen, Nicole M; Schmaljohn, Connie S

    2015-12-01

    We investigated the localization of host mRNA during Rift Valley fever virus (RVFV) infection. Fluorescence in situ hybridization revealed that infection with RVFV altered the localization of host mRNA. mRNA accumulated in the nuclei of RVFV-infected but not mock-infected cells. Further, overexpression of the NSS gene, but not the N, GN or NSM genes correlated with mRNA nuclear accumulation. Nuclear accumulation of host mRNA was not observed in cells infected with a strain of RVFV lacking the gene encoding NSS, confirming that expression of NSS is likely responsible for this phenomenon.

  16. PD-L1 Expression by Two Complementary Diagnostic Assays and mRNA In Situ Hybridization in Small Cell Lung Cancer

    PubMed Central

    Yu, Hui; Batenchuk, Cory; Badzio, Andrzej; Boyle, Theresa A.; Czapiewski, Piotr; Chan, Daniel C.; Lu, Xian; Gao, Dexiang; Ellison, Kim; Kowalewski, Ashley A.; Rivard, Christopher J.; Dziadziuszko, Rafal; Zhou, Caicun; Hussein, Maen; Richards, Donald; Wilks, Sharon; Monte, Marc; Edenfield, William; Goldschmidt, Jerome; Page, Ray; Ulrich, Brian; Waterhouse, David; Close, Sandra; Jassem, Jacek; Kulig, Kimary; Hirsch, Fred R.

    2017-01-01

    Introduction Therapeutic antibodies to immune checkpoints show promising results. Programmed death-ligand 1 (PD-L1), an immune checkpoint ligand, blocks the cancer immunity cycle by binding the PD-L1 receptor (programmed death 1). We investigated PD-L1 protein expression and messenger RNA (mRNA) levels in SCLC. Methods PD-L1 protein expression and mRNA levels were determined by immunohistochemistry (IHC) with SP142 and Dako 28-8 PD-L1 antibodies and in situ hybridization in primary tumor tissue microarrays in both tumor cells and tumor-infiltrating immune cells (TIICs) obtained from a limited-disease SCLC cohort of 98 patients. An additional cohort of 96 tumor specimens from patients with extensive-disease SCLC was assessed for PD-L1 protein expression in tumor cells with Dako 28-8 antibody only. Results The overall prevalence of PD-L1 protein expression in tumor cells was 16.5%. In the limited-disease cohort, the prevalences of PD-L1 protein expression in tumor cells with SP142 and Dako 28-8 were 14.7% and 19.4% (tumor proportion score cutoff ≥1%) and PD-L1 mRNA ISH expression was positive in 15.5% of tumor samples. Increased PD-L1 protein/mRNA expression was associated with the presence of more TIICs (p < 0.05). The extensive-disease cohort demonstrated a 14.9% positivity of PD-L1 protein expression in tumor cells with Dako 28-8 antibody. Conclusions A subset of SCLCs is characterized by positive PD-L1 and/or mRNA expression in tumor cells. Higher PD-L1 and mRNA expression correlate with more infiltration of TIICs. The prevalence of PD-L1 in SCLC is lower than that published for NSCLC. The predictive role of PD-L1 expression in SCLC treatment remains to be established. PMID:27639678

  17. Light-regulated protein and mRNA synthesis in root caps of maize

    NASA Technical Reports Server (NTRS)

    Feldman, L. J.; Piechulla, B.; Sun, P. S.

    1988-01-01

    Illumination of maize roots initiates changes in mRNA levels and in the activities of proteins within the root cap. Using Northern analysis we showed a 5-6 fold increase in the levels of three specific mRNAs and a 14-fold increase in plastid mRNA. This increase is rapid, occurring within 30 minutes of illumination. With prolonged periods of darkness following illumination, messages return to levels observed in dark, control caps. For two species of mRNA illumination results in a reduction in message levels. Light-stimulated increases in the levels of specific mRNAs are proportionally greater than are increases in the activities of corresponding proteins. We suggest that the light-stimulated increase in protein activity in root caps may be preceded by and occur as a consequence of enhanced levels of mRNA. Our work suggests that photomorphogenesis in roots could involve changes in the levels of a wide variety of mRNAs within the root cap.

  18. Na+/K+-ATPase α-subunit (nkaα) Isoforms and Their mRNA Expression Levels, Overall Nkaα Protein Abundance, and Kinetic Properties of Nka in the Skeletal Muscle and Three Electric Organs of the Electric Eel, Electrophorus electricus

    PubMed Central

    Hiong, Kum C.; Boo, Mel V.; Choo, Celine Y. L.; Wong, Wai P.; Chew, Shit F.; Ip, Yuen K.

    2015-01-01

    This study aimed to obtain the coding cDNA sequences of Na+/K+-ATPase α (nkaα) isoforms from, and to quantify their mRNA expression in, the skeletal muscle (SM), the main electric organ (EO), the Hunter’s EO and the Sach’s EO of the electric eel, Electrophorus electricus. Four nkaα isoforms (nkaα1c1, nkaα1c2, nkaα2 and nkaα3) were obtained from the SM and the EOs of E. electricus. Based on mRNA expression levels, the major nkaα expressed in the SM and the three EOs of juvenile and adult E. electricus were nkaα1c1 and nkaα2, respectively. Molecular characterization of the deduced Nkaα1c1 and Nkaα2 sequences indicates that they probably have different affinities to Na+ and K+. Western blotting demonstrated that the protein abundance of Nkaα was barely detectable in the SM, but strongly detected in the main and Hunter’s EOs and weakly in the Sach’s EO of juvenile and adult E. electricus. These results corroborate the fact that the main EO and Hunter’s EO have high densities of Na+ channels and produce high voltage discharges while the Sach’s EO produces low voltage discharges. More importantly, there were significant differences in kinetic properties of Nka among the three EOs of juvenile E. electricus. The highest and lowest Vmax of Nka were detected in the main EO and the Sach’s EO, respectively, with the Hunter’s EO having a Vmax value intermediate between the two, indicating that the metabolic costs of EO discharge could be the highest in the main EO. Furthermore, the Nka from the main EO had the lowest Km (or highest affinity) for Na+ and K+ among the three EOs, suggesting that the Nka of the main EO was more effective than those of the other two EOs in maintaining intracellular Na+ and K+ homeostasis and in clearing extracellular K+ after EO discharge. PMID:25793901

  19. Gene expression in scrapie. Cloning of a new scrapie-responsive gene and the identification of increased levels of seven other mRNA transcripts.

    PubMed

    Dandoy-Dron, F; Guillo, F; Benboudjema, L; Deslys, J P; Lasmézas, C; Dormont, D; Tovey, M G; Dron, M

    1998-03-27

    To define genes associated with or responsible for the neurodegenerative changes observed in transmissible spongiform encephalopathies, we analyzed gene expression in scrapie-infected mouse brain using "mRNA differential display." The RNA transcripts of eight genes were increased 3-8-fold in the brains of scrapie-infected animals. Five of these genes have not previously been reported to exhibit increased expression in this disease: cathepsin S, the C1q B-chain of complement, apolipoprotein D, and two previously unidentified genes denominated scrapie-responsive gene (ScRG)-1 and ScRG-2, which are preferentially expressed in brain tissue. Increased expression of the three remaining genes, beta2 microglobulin, F4/80, and metallothionein II, has previously been reported to occur in experimental scrapie. Kinetic analysis revealed a concomitant increase in the levels of ScRG-1, cathepsin S, the C1q B-chain of complement, and beta2 microglobulin mRNA as well as glial fibrillary acidic protein and F4/80 transcripts, markers of astrocytosis and microglial activation, respectively. In contrast, the level of ScRG-2, apolipoprotein D, and metallothionein II mRNA was only increased at the terminal stage of the disease. ScRG-1 mRNA was found to be preferentially expressed in glial cells and to code for a short protein of 47 amino acids with a strong hydrophobic N-terminal region.

  20. Hepatic cytochrome p450-2A and phosphoribosylpyrophosphate synthetase-associated protein mRNA are induced in gerbils after consumption of isoflavone-containing protein.

    PubMed

    Mezei, Orsolya; Chou, Chris N; Kennedy, Kathleen J; Tovar-Palacio, Claudia; Shay, Neil F

    2002-09-01

    Soy intake reduces cholesterol levels, but neither the exact component in soy causing this reduction nor the mechanism by which cholesterol is reduced is known with certainty. In this study, a genetic screen was performed to identify hepatic mRNA in gerbils regulated by soy or soy isoflavones. Gerbils were fed casein, an alcohol-washed soy-based diet (containing low levels of isoflavones), and the soy-based diet supplemented with an isoflavone-containing soy extract. After feeding for 28 d, gerbils were killed, hepatic RNA was isolated, and genes that were differentially expressed in any of the three dietary conditions were identified. Fifteen different mRNA were originally selected, including two mRNA that were studied further and shown to be highly regulated. Messenger RNA levels for both cytochrome P450-2A and phosphoribosylpyrophosphate synthetase-associated protein were up-regulated in a dose-dependent manner when soy replaced casein in the diet at 0, 33, 67 and 100% of original casein levels. A subsequent experiment used purified amino acid mixtures resembling the percentage amino acid composition of soy and casein to ensure that isoflavone-free protein sources could be tested. Using these mixtures, a 2 x 2 x 2 design tested: natural vs. synthetic protein sources, casein- vs. soy-based diets, and isoflavone extract-supplemented or supplement-free diets. This design demonstrated that these two mRNA were again significantly up-regulated more than twofold (P < 0.05) in gerbils fed all diets containing isoflavones. Induction of these two mRNA by soy may be due to the aryl hydrocarbon receptor element in the promoter region of both genes.

  1. Analysis of myosin heavy chain mRNA expression by RT-PCR

    NASA Technical Reports Server (NTRS)

    Wright, C.; Haddad, F.; Qin, A. X.; Baldwin, K. M.

    1997-01-01

    An assay was developed for rapid and sensitive analysis of myosin heavy chain (MHC) mRNA expression in rodent skeletal muscle. Only 2 microg of total RNA were necessary for the simultaneous analysis of relative mRNA expression of six different MHC genes. We designed synthetic DNA fragments as internal standards, which contained the relevant primer sequences for the adult MHC mRNAs type I, IIa, IIx, IIb as well as the embryonic and neonatal MHC mRNAs. A known amount of the synthetic fragment was added to each polymerase chain reaction (PCR) and yielded a product of different size than the amplified MHC mRNA fragment. The ratio of amplified MHC fragment to synthetic fragment allowed us to calculate percentages of the gene expression of the different MHC genes in a given muscle sample. Comparison with the traditional Northern blot analysis demonstrated that our reverse transcriptase-PCR-based assay was reliable, fast, and quantitative over a wide range of relative MHC mRNA expression in a spectrum of adult and neonatal rat skeletal muscles. Furthermore, the high sensitivity of the assay made it very useful when only small quantities of tissue were available. Statistical analysis of the signals for each MHC isoform across the analyzed samples showed a highly significant correlation between the PCR and the Northern signals as Pearson correlation coefficients ranged between 0.77 and 0.96 (P < 0.005). This assay has potential use in analyzing small muscle samples such as biopsies and samples from pre- and/or neonatal stages of development.

  2. Progressive APOBEC3B mRNA expression in distant breast cancer metastases

    PubMed Central

    Dalm, Simone U.; de Weerd, Vanja; Moelans, Cathy B.; ter Hoeve, Natalie; van Diest, Paul J.; Martens, John W. M.; van Deurzen, Carolien H. M.

    2017-01-01

    Background APOBEC3B was recently identified as a gain-of-function enzymatic source of mutagenesis, which may offer novel therapeutic options with molecules that specifically target this enzyme. In primary breast cancer, APOBEC3B mRNA is deregulated in a substantial proportion of cases and its expression is associated with poor prognosis. However, its expression in breast cancer metastases, which are the main causes of breast cancer-related death, remained to be elucidated. Patients and methods RNA was isolated from 55 primary breast cancers and paired metastases, including regional lymph node (N = 20) and distant metastases (N = 35). APOBEC3B mRNA levels were measured by RT-qPCR. Expression levels of the primary tumors and corresponding metastases were compared, including subgroup analysis by estrogen receptor (ER/ESR1) status. Results Overall, APOBEC3B mRNA levels of distant metastases were significantly higher as compared to the corresponding primary breast tumor (P = 0.0015), an effect that was not seen for loco-regional lymph node metastases (P = 0.23). Subgroup analysis by ER-status showed that increased APOBEC3B levels in distant metastases were restricted to metastases arising from ER-positive primary breast cancers (P = 0.002). However, regarding ER-negative primary tumors, only loco-regional lymph node metastases showed increased APOBEC3B expression when compared to the corresponding primary tumor (P = 0.028). Conclusion APOBEC3B mRNA levels are significantly higher in breast cancer metastases as compared to the corresponding ER-positive primary tumors. This suggests a potential role for APOBEC3B in luminal breast cancer progression, and consequently, a promising role for anti-APOBEC3B therapies in advanced stages of this frequent form of breast cancer. PMID:28141868

  3. Effects of EPA and DHA on lipid droplet accumulation and mRNA abundance of PAT proteins in caprine monocytes.

    PubMed

    Lecchi, Cristina; Invernizzi, Guido; Agazzi, Alessandro; Modina, Silvia; Sartorelli, Paola; Savoini, Giovanni; Ceciliani, Fabrizio

    2013-04-01

    The present study investigated the in vitro effects on caprine monocytes of two ω-3 PUFAs, namely eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on lipid droplet formation, an emerging process of fundamental importance in innate immunity regulation. The mRNA abundance of PAT protein family (PLIN1, PLIN2 and PLIN3), involved in the formation and trafficking of the droplets, was also assessed. The effects of EPA and DHA on monocyte apoptosis were studied as well. The number of lipid droplets per cell was found to be dependent on both type and concentration of fatty acid. ω-3 PUFAs upregulated PLIN3 and PLIN2 gene expression, as well as apoptosis rate. The present findings suggest that PUFA might modify innate immune functions of goat monocytes by interfering with the formation of lipid droplets and by upregulating proteins belonging to PAT protein family.

  4. The nuclear RNA binding protein RBP33 influences mRNA and spliced leader RNA abundance in Trypanosoma brucei.

    PubMed

    Cirovic, Olivera; Trikin, Roman; Hoffmann, Anneliese; Doiron, Nicholas; Jakob, Martin; Ochsenreiter, Torsten

    2017-03-01

    RNA recognition motif (RRM) containing proteins are important regulators of gene expression in trypanosomes. Here we expand our current knowledge on the exclusively nuclear localized RRM domain containing protein RBP33 of Trypanosoma brucei. Overexpression of RBP33 leads to a quick growth arrest in G2/M in bloodstream form cells likely due to an overall mRNA- and spliced leader abundance decrease while the ribosoma