Sample records for protein phase behavior

  1. A comparative study of monoclonal antibodies. 1. Phase behavior and protein-protein interactions

    PubMed Central

    Lewus, Rachael A.; Levy, Nicholas E.; Lenhoff, Abraham M.; Sandler, Stanley I.

    2018-01-01

    Protein phase behavior is involved in numerous aspects of downstream processing, either by design as in crystallization or precipitation processes, or as an undesired effect, such as aggregation. This work explores the phase behavior of eight monoclonal antibodies (mAbs) that exhibit liquid-liquid separation, aggregation, gelation, and crystallization. The phase behavior has been studied systematically as a function of a number of factors, including solution composition and pH, in order to explore the degree of variability among different antibodies. Comparisons of the locations of phase boundaries show consistent trends as a function of solution composition; however, changing the solution pH has different effects on each of the antibodies studied. Furthermore, the types of dense phases formed varied among the antibodies. Protein-protein interactions, as reflected by values of the osmotic second virial coefficient, are used to correlate the phase behavior. The primary findings are that values of the osmotic second virial coefficient are useful for correlating phase boundary locations, though there is appreciable variability among the antibodies in the apparent strengths of the intrinsic protein-protein attraction manifested. However, the osmotic second virial coefficient does not provide a clear basis to predict the type of dense phase likely to result under a given set of solution conditions. PMID:25378269

  2. Phase Behavior of an Intact Monoclonal Antibody

    PubMed Central

    Ahamed, Tangir; Esteban, Beatriz N. A.; Ottens, Marcel; van Dedem, Gijs W. K.; van der Wielen, Luuk A. M.; Bisschops, Marc A. T.; Lee, Albert; Pham, Christine; Thömmes, Jörg

    2007-01-01

    Understanding protein phase behavior is important for purification, storage, and stable formulation of protein drugs in the biopharmaceutical industry. Glycoproteins, such as monoclonal antibodies (MAbs) are the most abundant biopharmaceuticals and probably the most difficult to crystallize among water-soluble proteins. This study explores the possibility of correlating osmotic second virial coefficient (B22) with the phase behavior of an intact MAb, which has so far proved impossible to crystallize. The phase diagram of the MAb is presented as a function of the concentration of different classes of precipitants, i.e., NaCl, (NH4)2SO4, and polyethylene glycol. All these precipitants show a similar behavior of decreasing solubility with increasing precipitant concentration. B22 values were also measured as a function of the concentration of the different precipitants by self-interaction chromatography and correlated with the phase diagrams. Correlating phase diagrams with B22 data provides useful information not only for a fundamental understanding of the phase behavior of MAbs, but also for understanding the reason why certain proteins are extremely difficult to crystallize. The scaling of the phase diagram in B22 units also supports the existence of a universal phase diagram of a complex glycoprotein when it is recast in a protein interaction parameter. PMID:17449660

  3. Convergence of Artificial Protein Polymers and Intrinsically Disordered Proteins.

    PubMed

    Dzuricky, Michael; Roberts, Stefan; Chilkoti, Ashutosh

    2018-05-01

    A flurry of research in recent years has revealed the molecular origins of many membraneless organelles to be the liquid phase separation of intrinsically disordered proteins (IDPs). Consequently, protein disorder has emerged as an important driver of intracellular compartmentalization by providing specialized microenvironments chemically distinct from the surrounding medium. Though the importance of protein disorder and its relationship to intracellular phase behavior are clear, a detailed understanding of how such phase behavior can be predicted and controlled remains elusive. While research in IDPs has largely focused on the implications of structural disorder on cellular function and disease, another field, that of artificial protein polymers, has focused on the de novo design of protein polymers with controllable material properties. A subset of these polymers, specifically those derived from structural proteins such as elastin and resilin, are also disordered sequences that undergo liquid-liquid phase separation. This phase separation has been used in a variety of biomedical applications, and researchers studying these polymers have developed methods to precisely characterize and tune their phase behavior. Despite their disparate origins, both fields are complementary as they study the phase behavior of intrinsically disordered polypeptides. This Perspective hopes to stimulate collaborative efforts by highlighting the similarities between these two fields and by providing examples of how such collaboration could be mutually beneficial.

  4. Size-dependent interaction of silica nanoparticles with lysozyme and bovine serum albumin proteins

    NASA Astrophysics Data System (ADS)

    Yadav, Indresh; Aswal, Vinod K.; Kohlbrecher, Joachim

    2016-05-01

    The interaction of three different sized (diameter 10, 18, and 28 nm) anionic silica nanoparticles with two model proteins—cationic lysozyme [molecular weight (MW) 14.7 kDa)] and anionic bovine serum albumin (BSA) (MW 66.4 kDa) has been studied by UV-vis spectroscopy, dynamic light scattering (DLS), and small-angle neutron scattering (SANS). The adsorption behavior of proteins on the nanoparticles, measured by UV-vis spectroscopy, is found to be very different for lysozyme and BSA. Lysozyme adsorbs strongly on the nanoparticles and shows exponential behavior as a function of lysozyme concentration irrespective of the nanoparticle size. The total amount of adsorbed lysozyme, as governed by the surface-to-volume ratio, increases on lowering the size of the nanoparticles for a fixed volume fraction of the nanoparticles. On the other hand, BSA does not show any adsorption for all the different sizes of the nanoparticles. Despite having different interactions, both proteins induce similar phase behavior where the nanoparticle-protein system transforms from one phase (clear) to two phase (turbid) as a function of protein concentration. The phase behavior is modified towards the lower concentrations for both proteins with increasing the nanoparticle size. DLS suggests that the phase behavior arises as a result of the nanoparticles' aggregation on the addition of proteins. The size-dependent modifications in the interaction potential, responsible for the phase behavior, have been determined by SANS data as modeled using the two-Yukawa potential accounting for the repulsive and attractive interactions in the systems. The protein-induced interaction between the nanoparticles is found to be short-range attraction for lysozyme and long-range attraction for BSA. The magnitude of attractive interaction irrespective of protein type is enhanced with increase in the size of the nanoparticles. The total (attractive+repulsive) potential leading to two-phase formation is found to be more attractive for larger sized nanoparticles. The nanoparticle aggregates are characterized by mass fractal.

  5. Influence of macromolecular precipitants on phase behavior of monoclonal antibodies.

    PubMed

    Rakel, Natalie; Galm, Lara; Bauer, Katharina Christin; Hubbuch, Juergen

    2015-01-01

    For the successful application of protein crystallization as a downstream step, a profound knowledge of protein phase behavior in solutions is needed. Therefore, a systematic screening was conducted to analyze the influence of macromolecular precipitants in the form of polyethylene glycol (PEG). First, the influence of molecular weight and concentration of PEG at different pH-values were investigated and analyzed in three-dimensional (3-D) phase diagrams to find appropriate conditions in terms of a fast kinetic and crystal size for downstream processing. In comparison to the use of salts as precipitant, PEG was more suitable to obtain compact 3-D crystals over a broad range of conditions, whereby the molecular weight of PEG is, besides the pH-value, the most important parameter. Second, osmotic second virial coefficients as parameters for protein interactions are experimentally determined with static light scattering to gain a deep insight view in the phase behavior on a molecular basis. The PEG-protein solutions were analyzed as a pseudo-one-compartment system. As the precipitant is also a macromolecule, the new approach of analyzing cross-interactions between the protein and the macromolecule PEG in form of the osmotic second cross-virial coefficient (B23 ) was applied. Both parameters help to understand the protein phase behavior. However, a predictive description of protein phase behavior for systems consisting of monoclonal antibodies and PEG as precipitant is not possible, as kinetic phenomena and concentration dependencies were not taken into account. © 2014 American Institute of Chemical Engineers.

  6. Advances in Understanding Stimulus Responsive Phase Behavior of Intrinsically Disordered Protein Polymers.

    PubMed

    Ruff, Kiersten M; Roberts, Stefan; Chilkoti, Ashutosh; Pappu, Rohit V

    2018-06-24

    Proteins and synthetic polymers can undergo phase transitions in response to changes to intensive solution parameters such as temperature, proton chemical potentials (pH), and hydrostatic pressure. For proteins and protein-based polymers, the information required for stimulus responsive phase transitions is encoded in their amino acid sequence. Here, we review some of the key physical principles that govern the phase transitions of archetypal intrinsically disordered protein polymers (IDPPs). These are disordered proteins with highly repetitive amino acid sequences. Advances in recombinant technologies have enabled the design and synthesis of protein sequences of a variety of sequence complexities and lengths. We summarize insights that have been gleaned from the design and characterization of IDPPs that undergo thermo-responsive phase transitions and build on these insights to present a general framework for IDPPs with pH and pressure responsive phase behavior. In doing so, we connect the stimulus responsive phase behavior of IDPPs with repetitive sequences to the coil-to-globule transitions that these sequences undergo at the single chain level in response to changes in stimuli. The proposed framework and ongoing studies of stimulus responsive phase behavior of designed IDPPs have direct implications in bioengineering, where designing sequences with bespoke material properties broadens the spectrum of applications, and in biology and medicine for understanding the sequence-specific driving forces for the formation of protein-based membraneless organelles as well as biological matrices that act as scaffolds for cells and mediators of cell-to-cell communication. Copyright © 2018. Published by Elsevier Ltd.

  7. Liquid crystalline phase behavior of protein fibers in water: experiments versus theory.

    PubMed

    Jung, Jin-Mi; Mezzenga, Raffaele

    2010-01-05

    We have developed a new method allowing the study of the thermodynamic phase behavior of mesoscopic colloidal systems consisting of amyloid protein fibers in water, obtained by heat denaturation and aggregation of beta-lactoglobulin, a dairy protein. The fibers have a cross section of about 5.2 nm and two groups of polydisperse contour lengths: (i) long fibers of 1-20 microm, showing semiflexible behavior, and (ii) short rods of 100-200 nm long, obtained by cutting the long fibers via high-pressure homogenization. At pH 2 without salt, these fibers are highly charged and stable in water. We have studied the isotropic-nematic phase transition for both systems and compared our results with the theoretical values predicted by Onsager's theory. The experimentally measured isotropic-nematic phase transition was found to occur at 0.4% and at 3% for the long and short fibers, respectively. For both systems, this phase transition occurs at concentrations more than 1 order of magnitude lower than what is expected based on Onsager's theory. Moreover, at low enough pH, no intermediate biphasic region was observed between the isotropic phase and the nematic phase. The phase diagrams of both systems (pH vs concentration) showed similar, yet complex and rich, phase behavior. We discuss the possible physical fundamentals ruling the phase diagram as well as the discrepancy we observe for the isotropic-nematic phase transition between our experimental results and the predicted theoretical results. Our work highlights that systems formed by water-amyloid protein fibers are way too complex to be understood based solely on Onsager's theories. Experimental results are revisited in terms of the Flory's theory (1956) for suspensions of rods, which allows accounting for rod-solvent hydrophobic interactions. This theoretical approach allows explaining, on a semiquantitative basis, most of the discrepancies observed between the experimental results and Onsager's predictions. The sources of protein fibers complex colloidal behavior are analyzed and discussed at length.

  8. What are the structural features that drive partitioning of proteins in aqueous two-phase systems?

    PubMed

    Wu, Zhonghua; Hu, Gang; Wang, Kui; Zaslavsky, Boris Yu; Kurgan, Lukasz; Uversky, Vladimir N

    2017-01-01

    Protein partitioning in aqueous two-phase systems (ATPSs) represents a convenient, inexpensive, and easy to scale-up protein separation technique. Since partition behavior of a protein dramatically depends on an ATPS composition, it would be highly beneficial to have reliable means for (even qualitative) prediction of partitioning of a target protein under different conditions. Our aim was to understand which structural features of proteins contribute to partitioning of a query protein in a given ATPS. We undertook a systematic empirical analysis of relations between 57 numerical structural descriptors derived from the corresponding amino acid sequences and crystal structures of 10 well-characterized proteins and the partition behavior of these proteins in 29 different ATPSs. This analysis revealed that just a few structural characteristics of proteins can accurately determine behavior of these proteins in a given ATPS. However, partition behavior of proteins in different ATPSs relies on different structural features. In other words, we could not find a unique set of protein structural features derived from their crystal structures that could be used for the description of the protein partition behavior of all proteins in all ATPSs analyzed in this study. We likely need to gain better insight into relationships between protein-solvent interactions and protein structure peculiarities, in particular given limitations of the used here crystal structures, to be able to construct a model that accurately predicts protein partition behavior across all ATPSs. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Computational and theoretical studies of globular proteins

    NASA Astrophysics Data System (ADS)

    Pagan, Daniel L.

    Protein crystallization is often achieved in experiment through a trial and error approach. To date, there exists a dearth of theoretical understanding of the initial conditions necessary to promote crystallization. While a better understanding of crystallization will help to create good crystals suitable for structure analysis, it will also allow us to prevent the onset of certain diseases. The core of this thesis is to model and, ultimately, understand the phase behavior of protein particles in solution. Toward this goal, we calculate the fluid-fluid coexistence curve in the vicinity of the metastable critical point of the modified Lennard-Jones potential, where it has been shown that nucleation is increased by many orders of magnitude. We use finite-size scaling techniques and grand canonical Monte Carlo simulation methods. This has allowed us to pinpoint the critical point and subcritical region with high accuracy in spite of the critical fluctuations that hinder sampling using other Monte Carlo techniques. We also attempt to model the phase behavior of the gamma-crystallins, mutations of which have been linked to genetic cataracts. The complete phase behavior of the square well potential at the ranges of attraction lambda = 1.15 and lambda = 1.25 is calculated and compared with that of the gammaII-crystallin. The role of solvent is also important in the crystallization process and affects the phase behavior of proteins in solution. We study a model that accounts for the contribution of the solvent free-energy to the free-energy of globular proteins. This model allows us to model phase behavior that includes solvent.

  10. RNA buffers the phase separation behavior of prion-like RNA binding proteins.

    PubMed

    Maharana, Shovamayee; Wang, Jie; Papadopoulos, Dimitrios K; Richter, Doris; Pozniakovsky, Andrey; Poser, Ina; Bickle, Marc; Rizk, Sandra; Guillén-Boixet, Jordina; Franzmann, Titus M; Jahnel, Marcus; Marrone, Lara; Chang, Young-Tae; Sterneckert, Jared; Tomancak, Pavel; Hyman, Anthony A; Alberti, Simon

    2018-05-25

    Prion-like RNA binding proteins (RBPs) such as TDP43 and FUS are largely soluble in the nucleus but form solid pathological aggregates when mislocalized to the cytoplasm. What keeps these proteins soluble in the nucleus and promotes aggregation in the cytoplasm is still unknown. We report here that RNA critically regulates the phase behavior of prion-like RBPs. Low RNA/protein ratios promote phase separation into liquid droplets, whereas high ratios prevent droplet formation in vitro. Reduction of nuclear RNA levels or genetic ablation of RNA binding causes excessive phase separation and the formation of cytotoxic solid-like assemblies in cells. We propose that the nucleus is a buffered system in which high RNA concentrations keep RBPs soluble. Changes in RNA levels or RNA binding abilities of RBPs cause aberrant phase transitions. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  11. Determination of protein phase diagrams by microbatch experiments: exploring the influence of precipitants and pH.

    PubMed

    Baumgartner, Kai; Galm, Lara; Nötzold, Juliane; Sigloch, Heike; Morgenstern, Josefine; Schleining, Kristina; Suhm, Susanna; Oelmeier, Stefan A; Hubbuch, Jürgen

    2015-02-01

    Knowledge of protein phase behavior is essential for downstream process design in the biopharmaceutical industry. Proteins can either be soluble, crystalline or precipitated. Additionally liquid-liquid phase separation, gelation and skin formation can occur. A method to generate phase diagrams in high throughput on an automated liquid handling station in microbatch scale was developed. For lysozyme from chicken egg white, human lysozyme, glucose oxidase and glucose isomerase phase diagrams were generated at four different pH values – pH 3, 5, 7 and 9. Sodium chloride, ammonium sulfate, polyethylene glycol 300 and polyethylene glycol 1000 were used as precipitants. Crystallizing conditions could be found for lysozyme from chicken egg white using sodium chloride, for human lysozyme using sodium chloride or ammonium sulfate and glucose isomerase using ammonium sulfate. PEG caused destabilization of human lysozyme and glucose oxidase solutions or a balance of stabilizing and destabilizing effects for glucose isomerase near the isoelectric point. This work presents a systematic generation and extensive study of phase diagrams of proteins. Thus, it adds to the general understanding of protein behavior in liquid formulation and presents a convenient methodology applicable to any protein solution. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Models of globular proteins in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Wentzel, Nathaniel James

    Protein crystallization is a continuing area of research. Currently, there is no universal theory for the conditions required to crystallize proteins. A better understanding of protein crystallization will be helpful in determining protein structure and preventing and treating certain diseases. In this thesis, we will extend the understanding of globular proteins in aqueous solutions by analyzing various models for protein interactions. Experiments have shown that the liquid-liquid phase separation curves for lysozyme in solution with salt depend on salt type and salt concentration. We analyze a simple square well model for this system whose well depth depends on salt type and salt concentration, to determine the phase coexistence surfaces from experimental data. The surfaces, calculated from a single Monte Carlo simulation and a simple scaling argument, are shown as a function of temperature, salt concentration and protein concentration for two typical salts. Urate Oxidase from Asperigillus flavus is a protein used for studying the effects of polymers on the crystallization of large proteins. Experiments have determined some aspects of the phase diagram. We use Monte Carlo techniques and perturbation theory to predict the phase diagram for a model of urate oxidase in solution with PEG. The model used includes an electrostatic interaction, van der Waals attraction, and a polymerinduced depletion interaction. The results agree quantitatively with experiments. Anisotropy plays a role in globular protein interactions, including the formation of hemoglobin fibers in sickle cell disease. Also, the solvent conditions have been shown to play a strong role in the phase behavior of some aqueous protein solutions. Each has previously been treated separately in theoretical studies. Here we propose and analyze a simple, combined model that treats both anisotropy and solvent effects. We find that this model qualitatively explains some phase behavior, including the existence of a lower critical point under certain conditions.

  13. Analysis of Lipid Phase Behavior and Protein Conformational Changes in Nanolipoprotein Particles upon Entrapment in Sol–Gel-Derived Silica

    PubMed Central

    2015-01-01

    The entrapment of nanolipoprotein particles (NLPs) and liposomes in transparent, nanoporous silica gel derived from the precursor tetramethylorthosilicate was investigated. NLPs are discoidal patches of lipid bilayer that are belted by amphiphilic scaffold proteins and have an average thickness of 5 nm. The NLPs in this work had a diameter of roughly 15 nm and utilized membrane scaffold protein (MSP), a genetically altered variant of apolipoprotein A-I. Liposomes have previously been examined inside of silica sol–gels and have been shown to exhibit instability. This is attributed to their size (∼150 nm) and altered structure and constrained lipid dynamics upon entrapment within the nanometer-scale pores (5–50 nm) of the silica gel. By contrast, the dimensional match of NLPs with the intrinsic pore sizes of silica gel opens the possibility for their entrapment without disruption. Here we demonstrate that NLPs are more compatible with the nanometer-scale size of the porous environment by analysis of lipid phase behavior via fluorescence anisotropy and analysis of scaffold protein secondary structure via circular dichroism spectroscopy. Our results showed that the lipid phase behavior of NLPs entrapped inside of silica gel display closer resemblance to its solution behavior, more so than liposomes, and that the MSP in the NLPs maintain the high degree of α-helix secondary structure associated with functional protein–lipid interactions after entrapment. We also examined the effects of residual methanol on lipid phase behavior and the size of NLPs and found that it exerts different influences in solution and in silica gel; unlike in free solution, silica entrapment may be inhibiting NLP size increase and/or aggregation. These findings set precedence for a bioinorganic hybrid nanomaterial that could incorporate functional integral membrane proteins. PMID:25062385

  14. Insertion and self-diffusion of a monotopic protein, the Aquifex aeolicus sulfide quinone reductase, in supported lipid bilayers.

    PubMed

    Harb, Frédéric; Prunetti, Laurence; Giudici-Orticoni, Marie-Thérèse; Guiral, Marianne; Tinland, Bernard

    2015-10-01

    Monotopic proteins constitute a class of membrane proteins that bind tightly to cell membranes, but do not span them. We present a FRAPP (Fluorescence Recovery After Patterned Photobleaching) study of the dynamics of a bacterial monotopic protein, SQR (sulfide quinone oxidoreductase) from the thermophilic bacteria Aquifex aeolicus, inserted into two different types of lipid bilayers (EggPC: L-α-phosphatidylcholine (Egg, Chicken) and DMPC: 1,2-dimyristoyl-sn-glycero-3-phosphocholine) supported on two different types of support (mica or glass). It sheds light on the behavior of a monotopic protein inside the bilayer. The insertion of SQR is more efficient when the bilayer is in the fluid phase than in the gel phase. We observed diffusion of the protein, with no immobile fraction, and deduced from the diffusion coefficient measurements that the resulting inserted object is the same whatever the incubation conditions, i.e. homogeneous in terms of oligomerization state. As expected, the diffusion coefficient of the SQR is smaller in the gel phase than in the fluid phase. In the supported lipid bilayer, the diffusion coefficient of the SQR is smaller than the diffusion coefficient of phospholipids in both gel and fluid phase. SQR shows a diffusion behavior different from the transmembrane protein α-hemolysin, and consistent with its monotopic character. Preliminary experiments in the presence of the substrate of SQR, DecylUbiquinone, an analogue of quinone, component of transmembrane electrons transport systems of eukaryotic and prokaryotic organisms, have been carried out. Finally, we studied the behavior of SQR, in terms of insertion and diffusion, in bilayers formed with lipids from Aquifex aeolicus. All the conclusions that we have found in the biomimetic systems applied to the biological system.

  15. Improved light-induced cell detachment on rutile TiO₂ nanodot films.

    PubMed

    Cheng, Kui; Sun, Yu; Wan, Hongping; Wang, Xiaozhao; Weng, Wenjian; Lin, Jun; Wang, Huiming

    2015-10-01

    Anatase TiO2 nanodot films have been found to be able to release cells under light illumination with excellent efficiency and safety. In the present study, we investigated the effects of rutile contents in TiO2 nanodot films on such light induced cell detachment behavior. The results showed that TiO2 nanodot films with different contents of rutile phase have been prepared successfully. The content of rutile phase increased with the increase in calcination temperature. All films possessed good cell adhesion but there was a decrease in cell proliferation with the increasing content of rutile phase. Single cell detachment assay showed that the films with high rutile contents (calcined at 900°C and 1100°C) showed better cell detachment performance. That was ascribed to the changes of the secondary structure of extracellular proteins adsorbed on the nanodot surface after ultraviolet (365 nm, UV365) illumination. In addition, cell sheets detached through UV365 illumination maintained high activity and could be further used in tissue engineering. The present work showed that the existence of rutile phase is helpful in cell detachment behavior and it could be utilized to optimize light-induced cell detachment behavior. This work discovers that the presence of rutile phase in TiO2 nanodot films could improve the light-induced cell detachment behavior, although rutile phase is inferior to anatase phase on light induced superhydrophilicity. That strongly supported that the behaviors of adsorbed proteins are crucial in acquiring cell sheet with light illumination. In fact, the state and behavior of adsorbed protein greatly affect the interaction between biomaterials and living cells. Therefore, we consider this work is not only important in harvesting cells or cell sheets through light illumination, but also helpful in further understanding of interaction between biomaterials and cells. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Phase Transitions in Antibody Solutions: from Pharmaceuticals to Human Disease

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Lomakin, Aleksey; Benedek, George; Dana Farber Cancer Institute Collaboration; Amgen Inc. Collaboration

    2014-03-01

    Antibodies are very important proteins. Natural antibodies play essential role in the immune system of human body. Pharmaceutical antibodies are used as drugs. Antibodies are also indispensable tools in biomedical research and diagnostics. Recently, a number of observations of phase transitions of pharmaceutical antibodies have been reported. These phase transitions are undesirable from the perspective of colloid stability of drug solutions in processing and storage, but can be used for protein purification, X-ray crystallography, and improving pharmokinetics of drugs. Phase transitions of antibodies can also take place in human body, particularly in multiple myeloma patients who overproduce monoclonal antibodies. These antibodies, in some cases, crystallize at body temperature and cause severe complications called cryoglobulinemia. I will present the results of our current studies on phase transitions of both pharmaceutical antibodies and cryoglobulinemia-associated antibodies. These studies have shown that different antibodies have different propensity to undergo phase transitions, but their phase behavior has universal features which are remarkably different from those of spherical proteins. I will discuss how studies of phase behavior can be useful in assessing colloid stability of pharmaceutical antibodies and in early diagnostics of cryoglobulinemia, as well as general implications of the fact that some antibodies can precipitate at physiological conditions.

  17. Patterns of protein–protein interactions in salt solutions and implications for protein crystallization

    PubMed Central

    Dumetz, André C.; Snellinger-O'Brien, Ann M.; Kaler, Eric W.; Lenhoff, Abraham M.

    2007-01-01

    The second osmotic virial coefficients of seven proteins—ovalbumin, ribonuclease A, bovine serum albumin, α-lactalbumin, myoglobin, cytochrome c, and catalase—were measured in salt solutions. Comparison of the interaction trends in terms of the dimensionless second virial coefficient b2 shows that, at low salt concentrations, protein–protein interactions can be either attractive or repulsive, possibly due to the anisotropy of the protein charge distribution. At high salt concentrations, the behavior depends on the salt: In sodium chloride, protein interactions generally show little salt dependence up to very high salt concentrations, whereas in ammonium sulfate, proteins show a sharp drop in b2 with increasing salt concentration beyond a particular threshold. The experimental phase behavior of the proteins corroborates these observations in that precipitation always follows the drop in b2. When the proteins crystallize, they do so at slightly lower salt concentrations than seen for precipitation. The b2 measurements were extended to other salts for ovalbumin and catalase. The trends follow the Hofmeister series, and the effect of the salt can be interpreted as a water-mediated effect between the protein and salt molecules. The b2 trends quantify protein–protein interactions and provide some understanding of the corresponding phase behavior. The results explain both why ammonium sulfate is among the best crystallization agents, as well as some of the difficulties that can be encountered in protein crystallization. PMID:17766383

  18. Liquid-liquid phase separation causes high turbidity and pressure during low pH elution process in Protein A chromatography.

    PubMed

    Luo, Haibin; Lee, Nacole; Wang, Xiangyang; Li, Yuling; Schmelzer, Albert; Hunter, Alan K; Pabst, Timothy; Wang, William K

    2017-03-10

    Turbid elution pools and high column back pressure are common during elution of monoclonal antibodies (mAbs) by acidic pH in Protein A chromatography. This phenomenon has been historically attributed to acid-induced precipitation of incorrectly folded or pH-sensitive mAbs and host cell proteins (HCPs). In this work, we propose a new mechanism that may account for some observations of elution turbidity in Protein A chromatography. We report several examples of turbidity and high column back pressure occurring transiently under a short course of neutral conditions during Protein A elution. A systematic study of three mAbs displaying this behavior revealed phase separation characterized by liquid drops under certain conditions including neutral pH, low ionic strength, and high protein concentration. These liquid droplets caused solution turbidity and exhibited extremely high viscosity, resulting in high column back pressure. We found out that the droplets were formed through liquid-liquid phase separation (LLPS) as a result of protein self-association. We also found multiple factors, including pH, temperature, ionic strength, and protein concentration can affect LLPS behaviors. Careful selection of process parameters during protein A elution, including temperature, flow rate, buffer, and salt can inhibit formation of a dense liquid phase, reducing both turbidity (by 90%) and column back pressure (below 20 pounds per square inch). These findings provide both mechanistic insight and practical mitigation strategies for Protein A chromatography induced LLPS. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  19. Effects of ammonium sulfate and sodium chloride concentration on PEG/protein liquid-liquid phase separation.

    PubMed

    Dumetz, André C; Lewus, Rachael A; Lenhoff, Abraham M; Kaler, Eric W

    2008-09-16

    When added to protein solutions, poly(ethylene glycol) (PEG) creates an effective attraction between protein molecules due to depletion forces. This effect has been widely used to crystallize proteins, and PEG is among the most successful crystallization agents in current use. However, PEG is almost always used in combination with a salt at either low or relatively high concentrations. Here the effects of sodium chloride and ammonium sulfate concentration on PEG 8000/ovalbumin liquid-liquid (L-L) phase separation are investigated. At low salt the L-L phase separation occurs at decreasing protein concentration with increasing salt concentration, presumably due to repulsive electrostatic interactions between proteins. At high salt concentration, the behavior depends on the nature of the salt. Sodium chloride has little effect on the L-L phase separation, but ammonium sulfate decreases the protein concentration at which the L-L phase separation occurs. This trend is attributed to the effects of critical fluctuations on depletion forces. The implications of these results for designing solution conditions optimal for protein crystallization are discussed.

  20. Effects of Detergent β-Octylglucoside and Phosphate Salt Solutions on Phase Behavior of Monoolein Mesophases

    PubMed Central

    Khvostichenko, Daria S.; Ng, Johnathan J.D.; Perry, Sarah L.; Menon, Monisha; Kenis, Paul J.A.

    2013-01-01

    Using small-angle x-ray scattering (SAXS), we investigated the phase behavior of mesophases of monoolein (MO) mixed with additives commonly used for the crystallization of membrane proteins from lipidic mesophases. In particular, we examined the effect of sodium and potassium phosphate salts and the detergent β-octylglucoside (βOG) over a wide range of compositions relevant for the crystallization of membrane proteins in lipidic mesophases. We studied two types of systems: 1), ternary mixtures of MO with salt solutions above the hydration boundary; and 2), quaternary mixtures of MO with βOG and salt solutions over a wide range of hydration conditions. All quaternary mixtures showed highly regular lyotropic phase behavior with the same sequence of phases (Lα, Ia3d, and Pn3m) as MO/water mixtures at similar temperatures. The effects of additives in quaternary systems agreed qualitatively with those found in ternary mixtures in which only one additive is present. However, quantitative differences in the effects of additives on the lattice parameters of fully hydrated mesophases were found between ternary and quaternary mixtures. We discuss the implications of these findings for mechanistic investigations of membrane protein crystallization in lipidic mesophases and for studies of the suitability of precipitants for mesophase-based crystallization methods. PMID:24138861

  1. Phase Behavior of Patchy Spheroidal Fluids.

    NASA Astrophysics Data System (ADS)

    Carpency, Thienbao

    We employ Gibbs-ensemble Monte Carlo computer simulation to assess the impact of shape anisotropy and particle interaction anisotropy on the phase behavior of a colloidal (or, by extension, protein) fluid comprising patchy ellipsoidal particles, with an emphasis on critical behavior. More specifically, we obtain the fluid-fluid equilibrium phase diagram of hard prolate ellipsoids having Kern-Frenkel surface patches under a variety of conditions and study the critical behavior of these fluids as a function of particle shape parameters. It is found that the dependence of the critical temperature on aspect ratio for particles having the same volume can be described approximately in terms of patch solid angles. In addition, ordering in the fluid that is associated with particle elongation is also found to be an important factor in dictating phase behavior. The G. Harold & Leila Y. Mathers Foundation.

  2. A magnetic-dependent protein corona of tailor-made superparamagnetic iron oxides alters their biological behaviors

    NASA Astrophysics Data System (ADS)

    Liu, Ziyao; Zhan, Xiaohui; Yang, Minggang; Yang, Qi; Xu, Xianghui; Lan, Fang; Wu, Yao; Gu, Zhongwei

    2016-03-01

    In recent years, it is becoming increasingly evident that once nanoparticles come into contact with biological fluids, a protein corona surely forms and critically affects the biological behaviors of nanoparticles. Herein, we investigate whether the formation of protein corona on the surface of superparamagnetic iron oxides (SPIOs) is influenced by static magnetic field. Under static magnetic field, there is no obvious variation in the total amount of protein adsorption, but the proportion of adsorbed proteins significantly changes. Noticeably, certain proteins including apolipoproteins, complement system proteins and acute phase proteins, increase in the protein corona of SPIOs in the magnetic field. More importantly, the magnetic-dependent protein corona of SPIOs enhances the cellular uptake of SPIOs into the normal cell line (3T3 cells) and tumor cell line (HepG2 cells), due to increased adsorption of apolipoprotein. In addition, SPIOs with the magnetic-dependent protein corona cause high cytotoxicity to 3T3 cells and HepG2 cells. This work discloses that superparamagnetism as a key feature of SPIOs affects the composition of protein corona to a large extent, which further alters the biological behaviors of SPIOs.In recent years, it is becoming increasingly evident that once nanoparticles come into contact with biological fluids, a protein corona surely forms and critically affects the biological behaviors of nanoparticles. Herein, we investigate whether the formation of protein corona on the surface of superparamagnetic iron oxides (SPIOs) is influenced by static magnetic field. Under static magnetic field, there is no obvious variation in the total amount of protein adsorption, but the proportion of adsorbed proteins significantly changes. Noticeably, certain proteins including apolipoproteins, complement system proteins and acute phase proteins, increase in the protein corona of SPIOs in the magnetic field. More importantly, the magnetic-dependent protein corona of SPIOs enhances the cellular uptake of SPIOs into the normal cell line (3T3 cells) and tumor cell line (HepG2 cells), due to increased adsorption of apolipoprotein. In addition, SPIOs with the magnetic-dependent protein corona cause high cytotoxicity to 3T3 cells and HepG2 cells. This work discloses that superparamagnetism as a key feature of SPIOs affects the composition of protein corona to a large extent, which further alters the biological behaviors of SPIOs. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08447d

  3. Experimental Program to Stimulate Competitive Research (EPSCoR)

    NASA Technical Reports Server (NTRS)

    Dingerson, Michael R.

    1997-01-01

    Report includes: (1) CLUSTER: "Studies in Macromolecular Behavior in Microgravity Environment": The Role of Protein Oligomers in Protein Crystallization; Phase Separation Phenomena in Microgravity; Traveling Front Polymerizations; Investigating Mechanisms Affecting Phase Transition Response and Changes in Thermal Transport Properties in ER-Fluids under Normal and Microgravity Conditions. (2) CLUSTER: "Computational/Parallel Processing Studies": Flows in Local Chemical Equilibrium; A Computational Method for Solving Very Large Problems; Modeling of Cavitating Flows.

  4. Using SANS with Contrast-Matched Lipid Bicontinuous Cubic Phases To Determine the Location of Encapsulated Peptides, Proteins, and Other Biomolecules.

    PubMed

    van 't Hag, Leonie; de Campo, Liliana; Garvey, Christopher J; Feast, George C; Leung, Anna E; Yepuri, Nageshwar Rao; Knott, Robert; Greaves, Tamar L; Tran, Nhiem; Gras, Sally L; Drummond, Calum J; Conn, Charlotte E

    2016-07-21

    An understanding of the location of peptides, proteins, and other biomolecules within the bicontinuous cubic phase is crucial for understanding and evolving biological and biomedical applications of these hybrid biomolecule-lipid materials, including during in meso crystallization and drug delivery. While theoretical modeling has indicated that proteins and additive lipids might phase separate locally and adopt a preferred location in the cubic phase, this has never been experimentally confirmed. We have demonstrated that perfectly contrast-matched cubic phases in D2O can be studied using small-angle neutron scattering by mixing fully deuterated and hydrogenated lipid at an appropriate ratio. The model transmembrane peptide WALP21 showed no preferential location in the membrane of the diamond cubic phase of phytanoyl monoethanolamide and was not incorporated in the gyroid cubic phase. While deuteration had a small effect on the phase behavior of the cubic phase forming lipids, the changes did not significantly affect our results.

  5. Structure and Interaction in the pH-Dependent Phase Behavior of Nanoparticle-Protein Systems.

    PubMed

    Yadav, Indresh; Kumar, Sugam; Aswal, Vinod K; Kohlbrecher, Joachim

    2017-02-07

    The pH-dependent structure and interaction of anionic silica nanoparticles (diameter 18 nm) with two globular model proteins, lysozyme and bovine serum albumin (BSA), have been studied. Cationic lysozyme adsorbs strongly on the nanoparticles, and the adsorption follows exponential growth as a function of lysozyme concentration, where the saturation value increases as pH approaches the isoelectric point (IEP) of lysozyme. By contrast, irrespective of pH, anionic BSA does not show any adsorption. Despite having a different nature of interactions, both proteins render a similar phase behavior where nanoparticle-protein systems transform from being one-phase (clear) to two-phase (turbid) above a critical protein concentration (CPC). The measurements have been carried out for a fixed concentration of silica nanoparticles (1 wt %) with varying protein concentrations (0-5 wt %). The CPC is found to be much higher for BSA than for lysozyme and increases for lysozyme but decreases for BSA as pH approaches their respective IEPs. The structure and interaction in these systems have been examined using dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The effective hydrodynamic size of the nanoparticles measured using DLS increases with protein concentration and is related to the aggregation of the nanoparticles above the CPC. The propensity of the nanoparticles to aggregate is suppressed for lysozyme and enhanced for BSA as pH approached their respective IEPs. This behavior is understood from SANS data through the interaction potential determined by the interplay of electrostatic repulsion with a short-range attraction for lysozyme and long-range attraction for BSA. The nanoparticle aggregation is caused by charge neutralization by the oppositely charged lysozyme and through depletion for similarly charged BSA. Lysozyme-mediated attractive interaction decreases as pH approaches the IEP because of a decrease in the charge on the protein. In the case of BSA, a decrease in the BSA-BSA repulsion enhances the depletion attraction between the nanoparticles as pH is shifted toward the IEP. The morphology of the nanoparticle aggregates is found to be mass fractal.

  6. Modifications in structure and interaction of nanoparticle-protein-surfactant complexes in electrolyte solution

    NASA Astrophysics Data System (ADS)

    Mehan, Sumit; Kumar, S.; Aswal, V. K.; Schweins, R.

    2016-05-01

    SANS experiments of three-component system of anionic silica nanoparticles, anionic BSA protein and anionic SDS surfactants have been carried out without and with electrolyte in aqueous solution. In both the cases, the interaction of surfactant with protein results in formation of bead-necklace structure of protein-surfactant complexes in solution. These protein-surfactant complexes interact very differently with nanoparticles in absence and presence of electrolyte. In absence of electrolyte, nanoparticles remain in dispersed phase in solution, whereas with the addition of electrolyte the nanoparticles fractal aggregates are formed. SANS describes the phase behavior to be governed by competition of electrostatic and depletion interactions among the components solution.

  7. Accounting for host cell protein behavior in anion-exchange chromatography.

    PubMed

    Swanson, Ryan K; Xu, Ruo; Nettleton, Daniel S; Glatz, Charles E

    2016-11-01

    Host cell proteins (HCP) are a problematic set of impurities in downstream processing (DSP) as they behave most similarly to the target protein during separation. Approaching DSP with the knowledge of HCP separation behavior would be beneficial for the production of high purity recombinant biologics. Therefore, this work was aimed at characterizing the separation behavior of complex mixtures of HCP during a commonly used method: anion-exchange chromatography (AEX). An additional goal was to evaluate the performance of a statistical methodology, based on the characterization data, as a tool for predicting protein separation behavior. Aqueous two-phase partitioning followed by two-dimensional electrophoresis provided data on the three physicochemical properties most commonly exploited during DSP for each HCP: pI (isoelectric point), molecular weight, and surface hydrophobicity. The protein separation behaviors of two alternative expression host extracts (corn germ and E. coli) were characterized. A multivariate random forest (MVRF) statistical methodology was then applied to the database of characterized proteins creating a tool for predicting the AEX behavior of a mixture of proteins. The accuracy of the MVRF method was determined by calculating a root mean squared error value for each database. This measure never exceeded a value of 0.045 (fraction of protein populating each of the multiple separation fractions) for AEX. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1453-1463, 2016. © 2016 American Institute of Chemical Engineers.

  8. Dynamics of nanoparticle-protein corona complex formation: analytical results from population balance equations.

    PubMed

    Darabi Sahneh, Faryad; Scoglio, Caterina; Riviere, Jim

    2013-01-01

    Nanoparticle-protein corona complex formation involves absorption of protein molecules onto nanoparticle surfaces in a physiological environment. Understanding the corona formation process is crucial in predicting nanoparticle behavior in biological systems, including applications of nanotoxicology and development of nano drug delivery platforms. This paper extends the modeling work in to derive a mathematical model describing the dynamics of nanoparticle corona complex formation from population balance equations. We apply nonlinear dynamics techniques to derive analytical results for the composition of nanoparticle-protein corona complex, and validate our results through numerical simulations. The model presented in this paper exhibits two phases of corona complex dynamics. In the first phase, proteins rapidly bind to the free surface of nanoparticles, leading to a metastable composition. During the second phase, continuous association and dissociation of protein molecules with nanoparticles slowly changes the composition of the corona complex. Given sufficient time, composition of the corona complex reaches an equilibrium state of stable composition. We find analytical approximate formulae for metastable and stable compositions of corona complex. Our formulae are very well-structured to clearly identify important parameters determining corona composition. The dynamics of biocorona formation constitute vital aspect of interactions between nanoparticles and living organisms. Our results further understanding of these dynamics through quantitation of experimental conditions, modeling results for in vitro systems to better predict behavior for in vivo systems. One potential application would involve a single cell culture medium related to a complex protein medium, such as blood or tissue fluid.

  9. A G protein-coupled receptor, groom-of-PDF, is required for PDF neuron action in circadian behavior.

    PubMed

    Lear, Bridget C; Merrill, C Elaine; Lin, Jui-Ming; Schroeder, Analyne; Zhang, Luoying; Allada, Ravi

    2005-10-20

    The neuropeptide Pigment-Dispersing Factor (PDF) plays a critical role in mediating circadian control of behavior in Drosophila. Here we identify mutants (groom-of-PDF; gop) that display phase-advanced evening activity and poor free-running rhythmicity, phenocopying pdf mutants. In gop mutants, a spontaneous retrotransposon disrupts a coding exon of a G protein-coupled receptor, CG13758. Disruption of the receptor is accompanied by phase-advanced oscillations of the core clock protein PERIOD. Moreover, effects on circadian timing induced by perturbation of PDF neurons require gop. Yet PDF oscillations themselves remain robust in gop mutants, suggesting that GOP acts downstream of PDF. gop is expressed most strongly in the dorsal brain in regions that lie in proximity to PDF-containing nerve terminals. Taken together, these studies implicate GOP as a PDF receptor in Drosophila.

  10. Protein Folding Mechanism of the Dimeric AmphiphysinII/Bin1 N-BAR Domain

    PubMed Central

    Gruber, Tobias; Balbach, Jochen

    2015-01-01

    The human AmphyphisinII/Bin1 N-BAR domain belongs to the BAR domain superfamily, whose members sense and generate membrane curvatures. The N-BAR domain is a 57 kDa homodimeric protein comprising a six helix bundle. Here we report the protein folding mechanism of this protein as a representative of this protein superfamily. The concentration dependent thermodynamic stability was studied by urea equilibrium transition curves followed by fluorescence and far-UV CD spectroscopy. Kinetic unfolding and refolding experiments, including rapid double and triple mixing techniques, allowed to unravel the complex folding behavior of N-BAR. The equilibrium unfolding transition curve can be described by a two-state process, while the folding kinetics show four refolding phases, an additional burst reaction and two unfolding phases. All fast refolding phases show a rollover in the chevron plot but only one of these phases depends on the protein concentration reporting the dimerization step. Secondary structure formation occurs during the three fast refolding phases. The slowest phase can be assigned to a proline isomerization. All kinetic experiments were also followed by fluorescence anisotropy detection to verify the assignment of the dimerization step to the respective folding phase. Based on these experiments we propose for N-BAR two parallel folding pathways towards the homodimeric native state depending on the proline conformation in the unfolded state. PMID:26368922

  11. Protein solubility modeling

    NASA Technical Reports Server (NTRS)

    Agena, S. M.; Pusey, M. L.; Bogle, I. D.

    1999-01-01

    A thermodynamic framework (UNIQUAC model with temperature dependent parameters) is applied to model the salt-induced protein crystallization equilibrium, i.e., protein solubility. The framework introduces a term for the solubility product describing protein transfer between the liquid and solid phase and a term for the solution behavior describing deviation from ideal solution. Protein solubility is modeled as a function of salt concentration and temperature for a four-component system consisting of a protein, pseudo solvent (water and buffer), cation, and anion (salt). Two different systems, lysozyme with sodium chloride and concanavalin A with ammonium sulfate, are investigated. Comparison of the modeled and experimental protein solubility data results in an average root mean square deviation of 5.8%, demonstrating that the model closely follows the experimental behavior. Model calculations and model parameters are reviewed to examine the model and protein crystallization process. Copyright 1999 John Wiley & Sons, Inc.

  12. Theory of nematic order with aggregate dehydration for reversibly assembling proteins in concentrated solutions: Application to sickle-cell hemoglobin polymers

    NASA Astrophysics Data System (ADS)

    Hentschke, Reinhard; Herzfeld, Judith

    1991-06-01

    The reversible association of globular protein molecules in concentrated solution leads to highly polydisperse fibers, e.g., actin filaments, microtubules, and sickle-cell hemoglobin fibers. At high concentrations, excluded-volume interactions between the fibers lead to spontaneous alignment analogous to that in simple lyotropic liquid crystals. However, the phase behavior of reversibly associating proteins is complicated by the threefold coupling between the growth, alignment, and hydration of the fibers. In protein systems aggregates contain substantial solvent, which may cause them to swell or shrink, depending on osmotic stress. Extending previous work, we present a model for the equilibrium phase behavior of the above-noted protein systems in terms of simple intra- and interaggregate interactions, combined with equilibration of fiber-incorporated solvent with the bulk solvent. Specifically, we compare our model results to recent osmotic pressure data for sickle-cell hemoglobin and find excellent agreement. This comparison shows that particle interactions sufficient to cause alignment are also sufficient to squeeze significant amounts of solvent out of protein fibers. In addition, the model is in accord with findings from independent sedimentation and birefringence studies on sickle-cell hemoglobin.

  13. Fluorescence, polarized fluorescence, and Brewster angle microscopy of palmitic acid and lung surfactant protein B monolayers.

    PubMed Central

    Lipp, M M; Lee, K Y; Waring, A; Zasadzinski, J A

    1997-01-01

    Fluorescence, polarized fluorescence, and Brewster angle microscopy reveal that human lung surfactant protein SP-B and its amino terminus (SP-B[1-25]) alter the phase behavior of palmitic acid monolayers by inhibiting the formation of condensed phases and creating a new fluid protein-rich phase. This fluid phase forms a network that separates condensed phase domains at coexistence and persists to high surface pressures. The network changes the monolayer collapse mechanism from heterogeneous nucleation/growth and fracturing processes to a more homogeneous process through isolating individual condensed phase domains. This results in higher surface pressures at collapse, and monolayers easier to respread on expansion, factors essential to the in vivo function of lung surfactant. The network is stabilized by a low-line tension between the coexisting phases, as confirmed by the observation of extended linear domains, or "stripe" phases, and a Gouy-Chapman analysis of protein-containing monolayers. Comparison of isotherm data and observed morphologies of monolayers containing SP-B(1-25) with those containing the full SP-B sequence show that the shortened peptide retains most of the native activity of the full-length protein, which may lead to cheaper and more effective synthetic replacement formulations. Images FIGURE 1 FIGURE 3 FIGURE 4 FIGURE 6 FIGURE 7 FIGURE 8 FIGURE 9 FIGURE 10 PMID:9168053

  14. Dynamics of Nanoparticle-Protein Corona Complex Formation: Analytical Results from Population Balance Equations

    PubMed Central

    Darabi Sahneh, Faryad; Scoglio, Caterina; Riviere, Jim

    2013-01-01

    Background Nanoparticle-protein corona complex formation involves absorption of protein molecules onto nanoparticle surfaces in a physiological environment. Understanding the corona formation process is crucial in predicting nanoparticle behavior in biological systems, including applications of nanotoxicology and development of nano drug delivery platforms. Method This paper extends the modeling work in to derive a mathematical model describing the dynamics of nanoparticle corona complex formation from population balance equations. We apply nonlinear dynamics techniques to derive analytical results for the composition of nanoparticle-protein corona complex, and validate our results through numerical simulations. Results The model presented in this paper exhibits two phases of corona complex dynamics. In the first phase, proteins rapidly bind to the free surface of nanoparticles, leading to a metastable composition. During the second phase, continuous association and dissociation of protein molecules with nanoparticles slowly changes the composition of the corona complex. Given sufficient time, composition of the corona complex reaches an equilibrium state of stable composition. We find analytical approximate formulae for metastable and stable compositions of corona complex. Our formulae are very well-structured to clearly identify important parameters determining corona composition. Conclusion The dynamics of biocorona formation constitute vital aspect of interactions between nanoparticles and living organisms. Our results further understanding of these dynamics through quantitation of experimental conditions, modeling results for in vitro systems to better predict behavior for in vivo systems. One potential application would involve a single cell culture medium related to a complex protein medium, such as blood or tissue fluid. PMID:23741371

  15. Dynamically monitoring the gene expression of dual fluorophore in the cell cycle with quantitative spectrum analysis

    NASA Astrophysics Data System (ADS)

    Lee, Ja-Yun; Wu, Tzong-Yuan; Hsu, I.-Jen

    2008-04-01

    The cloning and transcription techniques on gene cloned fluorescent proteins have been widely used in many applications. They have been used as reporters of some conditions in a series of reactions. However, it is usually difficult to monitor the specific target with the exactly number of proteins during the process in turbid media, especially at micrometer scales. We successfully revealed an alternative way to monitor the cell cycle behavior and quantitatively analyzed the target cells with green and red fluorescent proteins (GFP and RFP) during different phases of the cell cycle by quantitatively analyzing its behavior and also monitoring its spatial distribution.

  16. Competing dynamic phases of active polymer networks

    NASA Astrophysics Data System (ADS)

    Freedman, Simon; Banerjee, Shiladitya; Dinner, Aaron R.

    Recent experiments on in-vitro reconstituted assemblies of F-actin, myosin-II motors, and cross-linking proteins show that tuning local network properties can changes the fundamental biomechanical behavior of the system. For example, by varying cross-linker density and actin bundle rigidity, one can switch between contractile networks useful for reshaping cells, polarity sorted networks ideal for directed molecular transport, and frustrated networks with robust structural properties. To efficiently investigate the dynamic phases of actomyosin networks, we developed a coarse grained non-equilibrium molecular dynamics simulation of model semiflexible filaments, molecular motors, and cross-linkers with phenomenologically defined interactions. The simulation's accuracy was verified by benchmarking the mechanical properties of its individual components and collective behavior against experimental results at the molecular and network scales. By adjusting the model's parameters, we can reproduce the qualitative phases observed in experiment and predict the protein characteristics where phase crossovers could occur in collective network dynamics. Our model provides a framework for understanding cells' multiple uses of actomyosin networks and their applicability in materials research. Supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  17. Monoolein Lipid Phases as Incorporation and Enrichment Materials for Membrane Protein Crystallization

    PubMed Central

    Wallace, Ellen; Dranow, David; Laible, Philip D.; Christensen, Jeff; Nollert, Peter

    2011-01-01

    The crystallization of membrane proteins in amphiphile-rich materials such as lipidic cubic phases is an established methodology in many structural biology laboratories. The standard procedure employed with this methodology requires the generation of a highly viscous lipidic material by mixing lipid, for instance monoolein, with a solution of the detergent solubilized membrane protein. This preparation is often carried out with specialized mixing tools that allow handling of the highly viscous materials while minimizing dead volume to save precious membrane protein sample. The processes that occur during the initial mixing of the lipid with the membrane protein are not well understood. Here we show that the formation of the lipidic phases and the incorporation of the membrane protein into such materials can be separated experimentally. Specifically, we have investigated the effect of different initial monoolein-based lipid phase states on the crystallization behavior of the colored photosynthetic reaction center from Rhodobacter sphaeroides. We find that the detergent solubilized photosynthetic reaction center spontaneously inserts into and concentrates in the lipid matrix without any mixing, and that the initial lipid material phase state is irrelevant for productive crystallization. A substantial in-situ enrichment of the membrane protein to concentration levels that are otherwise unobtainable occurs in a thin layer on the surface of the lipidic material. These results have important practical applications and hence we suggest a simplified protocol for membrane protein crystallization within amphiphile rich materials, eliminating any specialized mixing tools to prepare crystallization experiments within lipidic cubic phases. Furthermore, by virtue of sampling a membrane protein concentration gradient within a single crystallization experiment, this crystallization technique is more robust and increases the efficiency of identifying productive crystallization parameters. Finally, we provide a model that explains the incorporation of the membrane protein from solution into the lipid phase via a portal lamellar phase. PMID:21909395

  18. Enzymatically structured emulsions in simulated gastrointestinal environment: impact on interfacial proteolysis and diffusion in intestinal mucus.

    PubMed

    Macierzanka, Adam; Böttger, Franziska; Rigby, Neil M; Lille, Martina; Poutanen, Kaisa; Mills, E N Clare; Mackie, Alan R

    2012-12-18

    Fundamental knowledge of physicochemical interactions in the gastrointestinal environment is required in order to support rational designing of protein-stabilized colloidal food and pharmaceutical delivery systems with controlled behavior. In this paper, we report on the colloidal behavior of emulsions stabilized with the milk protein sodium caseinate (Na-Cas), and exposed to conditions simulating the human upper gastrointestinal tract. In particular, we looked at how the kinetics of proteolysis was affected by adsorption to an oil-water interface in emulsion and whether the proteolysis and the emulsion stability could be manipulated by enzymatic structuring of the interface. After cross-linking with the enzyme transglutaminase, the protein was digested with use of an in vitro model of gastro-duodenal proteolysis in the presence or absence of physiologically relevant surfactants (phosphatidylcholine, PC; bile salts, BS). Significant differences were found between the rates of digestion of Na-Cas cross-linked in emulsion (adsorbed protein) and in solution. In emulsion, the digestion of a population of polypeptides of M(r) ca. 50-100 kDa was significantly retarded through the gastric digestion. The persistent interfacial polypeptides maintained the original emulsion droplet size and prevented the system from phase separating. Rapid pepsinolysis of adsorbed, non-cross-linked Na-Cas and its displacement by PC led to emulsion destabilization. These results suggest that structuring of emulsions by enzymatic cross-linking of the interfacial protein may affect the phase behavior of emulsion in the stomach and the gastric digestion rate in vivo. Measurements of ζ-potential revealed that BS displaced the remaining protein from the oil droplets during the simulated duodenal phase of digestion. Diffusion of the postdigestion emulsion droplets through ex vivo porcine intestinal mucus was only significant in the presence of BS due to the high negative charge these biosurfactants imparted to the droplets. This implies that the electrostatic repulsion produced can prevent the droplets from being trapped by the mucus matrix and facilitate their transport across the small intestine mucosal barrier.

  19. Shotgun proteomic monitoring of Clostridium acetobutylicum during stationary phase of butanol fermentation using xylose and comparison with the exponential phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivagnanam, Kumaran; Raghavan, Vijaya G. S.; Shah, Manesh B

    2012-01-01

    Economically viable production of solvents through acetone butanol ethanol (ABE) fermentation requires a detailed understanding of Clostridium acetobutylicum. This study focuses on the proteomic profiling of C. acetobutylicum ATCC 824 from the stationary phase of ABE fermentation using xylose and compares with the exponential growth by shotgun proteomics approach. Comparative proteomic analysis revealed 22.9% of the C. acetobutylicum genome and 18.6% was found to be common in both exponential and stationary phases. The proteomic profile of C. acetobutylicum changed during the ABE fermentation such that 17 proteins were significantly differentially expressed between the two phases. Specifically, the expression of fivemore » proteins namely, CAC2873, CAP0164, CAP0165, CAC3298, and CAC1742 involved in the solvent production pathway were found to be significantly lower in the stationary phase compared to the exponential growth. Similarly, the expression of fucose isomerase (CAC2610), xylulose kinase (CAC2612), and a putative uncharacterized protein (CAC2611) involved in the xylose utilization pathway were also significantly lower in the stationary phase. These findings provide an insight into the metabolic behavior of C. acetobutylicum between different phases of ABE fermentation using xylose.« less

  20. Modelling the crystallization of the globular proteins

    NASA Astrophysics Data System (ADS)

    Shiryayev, Andrey S.

    Crystallization of globular proteins has become a very important subject in recent yearn. However there is still no understanding of the particular conditions that lead to the crystallization. Since nucleation of a crystalline droplet is the critical step toward the formation of the solid phase from the supersaturated solution, this is the focus of current studies. In this work we use different approaches to investigate the collective behavior of a system of globular proteins. Especially we focused on the models which have a metastable critical point, because this reflects the properties of solutions of globular proteins. The first approach is a continuum model of globular proteins. This model was first presented by Talanquer and Oxtoby and is based on the van der Waals theory. The model can have either a stable or a metastable critical point. For the system with the metastable critical point we studied the behavior of the free energy barrier to nucleation; we found that along particular pathways the barrier to nucleation has a minimim around the critical point. As well, the number of molecules in the critical cluster was found to diverge as one approaches the critical point, though most of the molecules are in the fluid tail of the droplet. Our results are an extension of earlier work [17, 7]. The properties of the solvent affect the behavior of the solution. In our second approach, we proposed a model that takes into account the contribution of the solvent free energy to the free energy of the globular proteins. We show that one can map the phase diagram of a repulsive hard core plus attractive square well interacting system to the same system particles in the solvent environment. In particular we show that this leads to phase diagrams with upper critical points, lower critical points and even closed loops with both upper and lower critical points, similar to the one found before [10]. For systems with interaction different from the square well, in the presence of the solvent this mapping procedure can be a first approximation to understand the phase diagram. The final part of this work is dedicated to the behavior of sickle hemoglobin. While the fluid behavior of the HbS molecules can be approximately explained by the uniform interparticle potential, this model fails to describe the polymerization process and the particular structure of fibers. We develop an anisotropic "patchy" model to describe some features of the HbS polymerization process. To determine the degree of polymerization of the system a "patchy" order parameter was defined. Monte Carlo simulations for the simple two-patch model was performed and reveal the possibility of obtaining chains that can be considered as one dimensional crystals.

  1. Competition between monomeric and dimeric crystals in schematic models for globular proteins.

    PubMed

    Fusco, Diana; Charbonneau, Patrick

    2014-07-17

    Advances in experimental techniques and in theoretical models have improved our understanding of protein crystallization. However, they have also left open questions regarding the protein phase behavior and self-assembly kinetics, such as why (nearly) identical crystallization conditions can sometimes result in the formation of different crystal forms. Here, we develop a patchy particle model with competing sets of patches that provides a microscopic explanation of this phenomenon. We identify different regimes in which one or two crystal forms can coexist with a low-density fluid. Using analytical approximations, we extend our findings to different crystal phases, providing a general framework for treating protein crystallization when multiple crystal forms compete. Our results also suggest different experimental routes for targeting a specific crystal form, and for reducing the dynamical competition between the two forms, thus facilitating protein crystal assembly.

  2. The Effect of Solution Thermal History on Chicken Egg White Lysozyme Nucleation

    NASA Technical Reports Server (NTRS)

    Burke, Michael W.; Judge, Russell A.; Pusey, Marc L.

    2001-01-01

    Proteins are highly flexible molecules and often exhibit defined conformational changes in response to changes in the ambient temperature. Chicken egg white lysozyme has been previously shown to undergo an apparent structural change when warmed above the tetragonal/orthorhombic phase transition temperature. This is reflected by a change in the habit of the tetragonal and orthorhombic crystals so formed. In this study, we show that possible conformational changes induced by heating are stable and apparently non-reversible by simple cooling. Exposure of protein solutions to temperatures above the phase change transition temperature, before combining with precipitant solution to begin crystallization, reduces final crystal numbers. Protein that is briefly warmed to 37 C, then cooled shows no sign of reversal to the unheated nucleation behavior even after storage for four weeks at 4 C. The change in nucleation behavior of tetragonal lysozyme crystals, attributed to a structural shift, occurs faster the greater the exposure to temperature above the equi-solubility point for the two phases. Heating for 2 hours at 48 C reduces crystal numbers by 20 fold in comparison to the same solution heated for the same time at 30 C. Thermal treatment of solutions is therefore a possible tool to reduce crystal numbers and increase crystal size. The effects of a protein's previous thermal history are now shown to be a potentially critical factor in subsequent macromolecule crystal nucleation and growth studies.

  3. The Effect of Solution Thermal History on Chicken Egg White Lysozyme Nucleation

    NASA Technical Reports Server (NTRS)

    Burke, Michael W.; Judge, Russell A.; Pusey, Marc L.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Proteins are highly flexible molecules and often exhibit defined conformational changes in response to changes in the ambient temperature. Chicken egg white lysozyme has been previously shown to undergo an apparent structural change when warmed above the tetragonal/orthorhombic phase transition temperature. This is reflected by a change in the habit of the tetragonal and orthorhombic crystals so formed. In this study we show that possible conformational changes induced by heating are stable and apparently non- reversible by simple cooling. Exposure of protein solutions to temperatures above the phase change transition temperature, before combining with precipitant solution to begin crystallization, reduces final crystal numbers. Protein that is briefly warmed to 37 C, then cooled shows no sign of reversal to the unheated nucleation behavior even after storage for 4 weeks at 4 C. The change in nucleation behavior of tetragonal lysozyme crystals, attributed to a structural shift, occurs faster the greater the exposure to temperature above the equi-solubility point for the two phases. Heating for 2 h at 48 C reduces crystal numbers by 20 fold in comparison to the same solution heated for the same time at 30 C. Thermal treatment of solutions is therefore a possible tool to reduce crystal numbers and increase crystal size. The effects of a protein's previous thermal history are now shown to be a potentially critical factor in subsequent macromolecule crystal nucleation and growth studies.

  4. Photodissociation of conformer-selected ubiquitin ions reveals site-specific cis/trans isomerization of proline peptide bonds.

    PubMed

    Warnke, Stephan; Baldauf, Carsten; Bowers, Michael T; Pagel, Kevin; von Helden, Gert

    2014-07-23

    Ultraviolet photodissociation (UVPD) of gas-phase proteins has attracted increased attention in recent years. This growing interest is largely based on the fact that, in contrast to slow heating techniques such as collision induced dissociation (CID), the cleavage propensity after absorption of UV light is distributed over the entire protein sequence, which can lead to a very high sequence coverage as required in typical top-down proteomics applications. However, in the gas phase, proteins can adopt a multitude of distinct and sometimes coexisting conformations, and it is not clear how this three-dimensional structure affects the UVPD fragmentation behavior. Using ion mobility-UVPD-mass spectrometry in conjunction with molecular dynamics simulations, we provide the first experimental evidence that UVPD is sensitive to the higher order structure of gas-phase proteins. Distinct UVPD spectra were obtained for different extended conformations of 11(+) ubiquitin ions. Assignment of the fragments showed that the majority of differences arise from cis/trans isomerization of one particular proline peptide bond. Seen from a broader perspective, these data highlight the potential of UVPD to be used for the structural analysis of proteins in the gas phase.

  5. Microtubules as platforms for probing liquid-liquid phase separation in cells: application to RNA-binding proteins.

    PubMed

    Maucuer, Alexandre; Desforges, Bénédicte; Joshi, Vandana; Boca, Mirela; Kretov, Dmitry; Hamon, Loic; Bouhss, Ahmed; Curmi, Patrick A; Pastré, David

    2018-05-04

    Liquid-liquid phase separation enables compartmentalization of biomolecules in cells, notably RNA and associated proteins in the nucleus. Besides critical functions in RNA processing, there is a major interest in deciphering the molecular mechanisms of compartmentalization orchestrated by RNA-binding proteins such as TDP-43 and FUS due to their link to neuron diseases. However, tools for probing compartmentalization in cells are lacking. Here we developed a method to analyze the mixing:demixing of two different phases in a cellular context. The principle is the following: mRNA-binding proteins are confined on microtubules and quantitative parameters defining their spatial segregation are measured along the microtubule network. Through this approach, we found that four mRNA binding proteins, HuR, G3BP1, TDP-43 and FUS form mRNA-rich liquid-like compartments on microtubules. TDP-43 is partly miscible with FUS but immiscible with either HuR or G3BP1. We also demonstrate that mRNA is essential to capture the mixing:demixing behavior of RNA-binding proteins in cells. Altogether we show that microtubules can be used as platforms to understand the mechanisms underlying liquid-liquid phase separation and their deregulation in human diseases. © 2018. Published by The Company of Biologists Ltd.

  6. Effects of low urea concentrations on protein-water interactions.

    PubMed

    Ferreira, Luisa A; Povarova, Olga I; Stepanenko, Olga V; Sulatskaya, Anna I; Madeira, Pedro P; Kuznetsova, Irina M; Turoverov, Konstantin K; Uversky, Vladimir N; Zaslavsky, Boris Y

    2017-01-01

    Solvent properties of aqueous media (dipolarity/polarizability, hydrogen bond donor acidity, and hydrogen bond acceptor basicity) were measured in the coexisting phases of Dextran-PEG aqueous two-phase systems (ATPSs) containing .5 and 2.0 M urea. The differences between the electrostatic and hydrophobic properties of the phases in the ATPSs were quantified by analysis of partitioning of the homologous series of sodium salts of dinitrophenylated amino acids with aliphatic alkyl side chains. Furthermore, partitioning of eleven different proteins in the ATPSs was studied. The analysis of protein partition behavior in a set of ATPSs with protective osmolytes (sorbitol, sucrose, trehalose, and TMAO) at the concentration of .5 M, in osmolyte-free ATPS, and in ATPSs with .5 or 2.0 M urea in terms of the solvent properties of the phases was performed. The results show unambiguously that even at the urea concentration of .5 M, this denaturant affects partitioning of all proteins (except concanavalin A) through direct urea-protein interactions and via its effect on the solvent properties of the media. The direct urea-protein interactions seem to prevail over the urea effects on the solvent properties of water at the concentration of .5 M urea and appear to be completely dominant at 2.0 M urea concentration.

  7. Multivalent-Ion-Activated Protein Adsorption Reflecting Bulk Reentrant Behavior.

    PubMed

    Fries, Madeleine R; Stopper, Daniel; Braun, Michal K; Hinderhofer, Alexander; Zhang, Fajun; Jacobs, Robert M J; Skoda, Maximilian W A; Hansen-Goos, Hendrik; Roth, Roland; Schreiber, Frank

    2017-12-01

    Protein adsorption at the solid-liquid interface is an important phenomenon that often can be observed as a first step in biological processes. Despite its inherent importance, still relatively little is known about the underlying microscopic mechanisms. Here, using multivalent ions, we demonstrate the control of the interactions and the corresponding adsorption of net-negatively charged proteins (bovine serum albumin) at a solid-liquid interface. This is demonstrated by ellipsometry and corroborated by neutron reflectivity and quartz-crystal microbalance experiments. We show that the reentrant condensation observed within the rich bulk phase behavior of the system featuring a nonmonotonic dependence of the second virial coefficient on salt concentration c_{s} is reflected in an intriguing way in the protein adsorption d(c_{s}) at the interface. Our findings are successfully described and understood by a model of ion-activated patchy interactions within the framework of the classical density functional theory. In addition to the general challenge of connecting bulk and interface behavior, our work has implications for, inter alia, nucleation at interfaces.

  8. Multivalent-Ion-Activated Protein Adsorption Reflecting Bulk Reentrant Behavior

    NASA Astrophysics Data System (ADS)

    Fries, Madeleine R.; Stopper, Daniel; Braun, Michal K.; Hinderhofer, Alexander; Zhang, Fajun; Jacobs, Robert M. J.; Skoda, Maximilian W. A.; Hansen-Goos, Hendrik; Roth, Roland; Schreiber, Frank

    2017-12-01

    Protein adsorption at the solid-liquid interface is an important phenomenon that often can be observed as a first step in biological processes. Despite its inherent importance, still relatively little is known about the underlying microscopic mechanisms. Here, using multivalent ions, we demonstrate the control of the interactions and the corresponding adsorption of net-negatively charged proteins (bovine serum albumin) at a solid-liquid interface. This is demonstrated by ellipsometry and corroborated by neutron reflectivity and quartz-crystal microbalance experiments. We show that the reentrant condensation observed within the rich bulk phase behavior of the system featuring a nonmonotonic dependence of the second virial coefficient on salt concentration cs is reflected in an intriguing way in the protein adsorption d (cs) at the interface. Our findings are successfully described and understood by a model of ion-activated patchy interactions within the framework of the classical density functional theory. In addition to the general challenge of connecting bulk and interface behavior, our work has implications for, inter alia, nucleation at interfaces.

  9. Dietary experience modifies horses' feeding behavior and selection patterns of three macronutrient rich diets.

    PubMed

    Redgate, S E; Cooper, J J; Hall, S; Eady, P; Harris, P A

    2014-04-01

    Choice feeding is often used to investigate an animal's nutritional requirements and dietary preferences. A problem with this approach is that animals with long gut transit times, such as the horse, may find it difficult to associate a chosen food with its nutritional consequence when alternative foods are presented simultaneously. One solution is to present foods singly for a period of time before a simultaneous choice session to allow the development of learned associations. This method was used to determine if horse's voluntary intake and feeding behavior was influenced by the macronutrient composition of the diet. Seven stabled horses, maintained on a low intensity exercise regimen, were allowed, on an ad libitum basis, haylage and 3 isocaloric forage based diets that were rich in 1 of 3 macronutrients (protein, lipid, and hydrolyzable carbohydrate). Initially, diets were presented as a 3-way choice for 5 d (self-selection a [SSa]), then singly (monadic phase) with exposure to each diet for 2 separate periods of 3 d each, and finally again as a choice for 5 d (self-selection b [SSb]). The total amount of trial diet offered differed with trial phase, with 2 to 2.5% of BW during SSa and the monadic phase, increasing to ad libitum access during SSb. To control differences in the total amount of trial diet offered, 2 measurements of voluntary intake were taken at 4 and 22 h postpresentation. Daily macronutrient and energy intakes were estimated from proximate analysis of the trial diets and batches of haylage fed. Feeding behavior was observed over a single 4-h period during both self-selection phases. Horses showed no initial preference after 4 h for any 1 diet during SSa. Following the monadic phase, horses demonstrated a preference for the protein and hydrolyzable carbohydrate rich diets over the lipid rich diet (P < 0.001). Dietary experience modified foraging behavior as the total number of visits to the diets decreased during SSb (P < 0.005). Analysis of 24 -h macronutrient consumption showed that protein and hydrolyzable carbohydrate intake increased during SSb, whereas lipid intake remained constant over both self-selection phases (P < 0.001). These data indicate for perhaps the first time that horses can respond to dietary macronutrient content and that single presentations during choice studies facilitates expression of dietary preferences.

  10. A novel stationary phase derivatized from hydrophilic gigaporous polystyrene-based microspheres for high-speed protein chromatography.

    PubMed

    Qu, Jian-Bo; Wan, Xing-Zhong; Zhai, Yan-Qin; Zhou, Wei-Qing; Su, Zhi-Guo; Ma, Guang-Hui

    2009-09-11

    Using agarose coated gigaporous polystyrene microspheres as a base support, a novel anion exchanger (DEAE-AP) has been developed after functionalization with diethylaminoethyl chloride. The gigaporous structure, static adsorption behavior, and chromatographic properties of DEAE-AP medium were characterized and compared with those of commercially available resin DEAE Sepharose Fast Flow (DEAE-FF). The results implied that there existed some through pores in DEAE-AP microspheres, which effectively reduced resistance to stagnant mobile phase mass transfer by inducing convective flow of mobile phase in the gigapores of medium. As a consequence, the column packed with DEAE-AP exhibited low column backpressure, high column efficiency, high dynamic binding capacity and high protein resolution at high flow velocity up to 2600cm/h. In conclusion, all the results suggested that the gigaporous absorbent is promising for high-speed protein chromatography.

  11. Effect of Detergents on the Thermal Behavior of Elastin-like Polypeptides

    PubMed Central

    Thapa, Arjun; Han, Wei; Simons, Robin H.; Chilkoti, Ashutosh; Chi, Eva Y.; López, Gabriel P.

    2012-01-01

    Elastin-like polypeptide (ELP) fusions have been designed to allow large scale, non-chromatographic purification of many soluble proteins using the inverse transition cycling (ITC) method; however, the sensitivity of the aqueous lower critical solubility phase transition temperature (Tt) of ELPs to the addition of cosolutes, including detergents, may be a potential hindrance in purification of proteins with surface hydrophobicity in such a manner. To identify detergents that are known to solubilize such proteins (e.g., membrane proteins) and that have little effect on the Tt of the ELP, we screened a number of detergents with respect to their effects on the Tt and secondary structures of a model ELP (denoted here as ELP180). We found that mild detergents (e.g., DDM, Triton-X100, and CHAPS) do not alter the phase transition behavior or structure (as probed by circular dichroism) of ELP180. This result is in contrast to previous studies that showed a strong effect of other detergents (e.g., SDS) on the Ttof ELPs. Our results clearly indicate that mild detergents do not preclude ITC-based separation of ELPs, and thus that ELP fusions may prove to be useful in the purification of detergent-solubilized recombinant hydrophobic proteins, including membrane proteins, which are otherwise notoriously difficult to extract and purify by conventional separation methods (e.g., chromatography). PMID:23097230

  12. Thermotropic liquid crystals from biomacromolecules

    PubMed Central

    Liu, Kai; Chen, Dong; Marcozzi, Alessio; Zheng, Lifei; Su, Juanjuan; Pesce, Diego; Zajaczkowski, Wojciech; Kolbe, Anke; Pisula, Wojciech; Müllen, Klaus; Clark, Noel A.; Herrmann, Andreas

    2014-01-01

    Complexation of biomacromolecules (e.g., nucleic acids, proteins, or viruses) with surfactants containing flexible alkyl tails, followed by dehydration, is shown to be a simple generic method for the production of thermotropic liquid crystals. The anhydrous smectic phases that result exhibit biomacromolecular sublayers intercalated between aliphatic hydrocarbon sublayers at or near room temperature. Both this and low transition temperatures to other phases enable the study and application of thermotropic liquid crystal phase behavior without thermal degradation of the biomolecular components. PMID:25512508

  13. Dynamics of the Glycophorin A Dimer in Membranes of Native-Like Composition Uncovered by Coarse-Grained Molecular Dynamics Simulations.

    PubMed

    Flinner, Nadine; Schleiff, Enrico

    2015-01-01

    Membranes are central for cells as borders to the environment or intracellular organelle definition. They are composed of and harbor different molecules like various lipid species and sterols, and they are generally crowded with proteins. The membrane system is very dynamic and components show lateral, rotational and translational diffusion. The consequence of the latter is that phase separation can occur in membranes in vivo and in vitro. It was documented that molecular dynamics simulations of an idealized plasma membrane model result in formation of membrane areas where either saturated lipids and cholesterol (liquid-ordered character, Lo) or unsaturated lipids (liquid-disordered character, Ld) were enriched. Furthermore, current discussions favor the idea that proteins are sorted into the liquid-disordered phase of model membranes, but experimental support for the behavior of isolated proteins in native membranes is sparse. To gain insight into the protein behavior we built a model of the red blood cell membrane with integrated glycophorin A dimer. The sorting and the dynamics of the dimer were subsequently explored by coarse-grained molecular dynamics simulations. In addition, we inspected the impact of lipid head groups and the presence of cholesterol within the membrane on the dynamics of the dimer within the membrane. We observed that cholesterol is important for the formation of membrane areas with Lo and Ld character. Moreover, it is an important factor for the reproduction of the dynamic behavior of the protein found in its native environment. The protein dimer was exclusively sorted into the domain of Ld character in the model red blood cell plasma membrane. Therefore, we present structural information on the glycophorin A dimer distribution in the plasma membrane in the absence of other factors like e.g. lipid anchors in a coarse grain resolution.

  14. A mutant (‘lab strain’) of the hyperthermophilic archaeon Pyrococcus furiosus, lacking flagella, has unusual growth physiology

    DOE PAGES

    Lewis, Derrick L.; Notey, Jaspreet S.; Chandrayan, Sanjeev K.; ...

    2014-12-04

    In this paper, a mutant (‘lab strain’) of the hyperthermophilic archaeon Pyrococcus furiosus DSM3638 exhibited an extended exponential phase and atypical cell aggregation behavior. Genomic DNA from the mutant culture was sequenced and compared to wild-type (WT) DSM3638, revealing 145 genes with one or more insertions, deletions, or substitutions (12 silent, 33 amino acid substitutions, and 100 frame shifts). Approximately, half of the mutated genes were transposases or hypothetical proteins. The WT transcriptome revealed numerous changes in amino acid and pyrimidine biosynthesis pathways coincidental with growth phase transitions, unlike the mutant whose transcriptome reflected the observed prolonged exponential phase. Targetedmore » gene deletions, based on frame-shifted ORFs in the mutant genome, in a genetically tractable strain of P. furiosus (COM1) could not generate the extended exponential phase behavior observed for the mutant. For example, a putative radical SAM family protein (PF2064) was the most highly up-regulated ORF (>25-fold) in the WT between exponential and stationary phase, although this ORF was unresponsive in the mutant; deletion of this gene in P. furiosus COM1 resulted in no apparent phenotype. On the other hand, frame-shifting mutations in the mutant genome negatively impacted transcription of a flagellar biosynthesis operon (PF0329-PF0338).Consequently, cells in the mutant culture lacked flagella and, unlike the WT, showed minimal evidence of exopolysaccharide-based cell aggregation in post-exponential phase. Finally, electron microscopy of PF0331-PF0337 deletions in P. furiosus COM1 showed that absence of flagella impacted normal cell aggregation behavior and, furthermore, indicated that flagella play a key role, beyond motility, in the growth physiology of P. furiosus.« less

  15. A mutant (‘lab strain’) of the hyperthermophilic archaeon Pyrococcus furiosus, lacking flagella, has unusual growth physiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Derrick L.; Notey, Jaspreet S.; Chandrayan, Sanjeev K.

    In this paper, a mutant (‘lab strain’) of the hyperthermophilic archaeon Pyrococcus furiosus DSM3638 exhibited an extended exponential phase and atypical cell aggregation behavior. Genomic DNA from the mutant culture was sequenced and compared to wild-type (WT) DSM3638, revealing 145 genes with one or more insertions, deletions, or substitutions (12 silent, 33 amino acid substitutions, and 100 frame shifts). Approximately, half of the mutated genes were transposases or hypothetical proteins. The WT transcriptome revealed numerous changes in amino acid and pyrimidine biosynthesis pathways coincidental with growth phase transitions, unlike the mutant whose transcriptome reflected the observed prolonged exponential phase. Targetedmore » gene deletions, based on frame-shifted ORFs in the mutant genome, in a genetically tractable strain of P. furiosus (COM1) could not generate the extended exponential phase behavior observed for the mutant. For example, a putative radical SAM family protein (PF2064) was the most highly up-regulated ORF (>25-fold) in the WT between exponential and stationary phase, although this ORF was unresponsive in the mutant; deletion of this gene in P. furiosus COM1 resulted in no apparent phenotype. On the other hand, frame-shifting mutations in the mutant genome negatively impacted transcription of a flagellar biosynthesis operon (PF0329-PF0338).Consequently, cells in the mutant culture lacked flagella and, unlike the WT, showed minimal evidence of exopolysaccharide-based cell aggregation in post-exponential phase. Finally, electron microscopy of PF0331-PF0337 deletions in P. furiosus COM1 showed that absence of flagella impacted normal cell aggregation behavior and, furthermore, indicated that flagella play a key role, beyond motility, in the growth physiology of P. furiosus.« less

  16. Polymer-induced phase separation and crystallization in immunoglobulin G solutions.

    PubMed

    Li, Jianguo; Rajagopalan, Raj; Jiang, Jianwen

    2008-05-28

    We study the effects of the size of polymer additives and ionic strength on the phase behavior of a nonglobular protein-immunoglobulin G (IgG)-by using a simple four-site model to mimic the shape of IgG. The interaction potential between the protein molecules consists of a Derjaguin-Landau-Verwey-Overbeek-type colloidal potential and an Asakura-Oosawa depletion potential arising from the addition of polymer. Liquid-liquid equilibria and fluid-solid equilibria are calculated by using the Gibbs ensemble Monte Carlo technique and the Gibbs-Duhem integration (GDI) method, respectively. Absolute Helmholtz energy is also calculated to get an initial coexisting point as required by GDI. The results reveal a nonmonotonic dependence of the critical polymer concentration rho(PEG) (*) (i.e., the minimum polymer concentration needed to induce liquid-liquid phase separation) on the polymer-to-protein size ratio q (equivalently, the range of the polymer-induced depletion interaction potential). We have developed a simple equation for estimating the minimum amount of polymer needed to induce the liquid-liquid phase separation and show that rho(PEG) (*) approximately [q(1+q)(3)]. The results also show that the liquid-liquid phase separation is metastable for low-molecular weight polymers (q=0.2) but stable at large molecular weights (q=1.0), thereby indicating that small sizes of polymer are required for protein crystallization. The simulation results provide practical guidelines for the selection of polymer size and ionic strength for protein phase separation and crystallization.

  17. Coherent Behavior and the Bound State of Water and K+ Imply Another Model of Bioenergetics: Negative Entropy Instead of High-energy Bonds

    PubMed Central

    Jaeken, Laurent; Vasilievich Matveev, Vladimir

    2012-01-01

    Observations of coherent cellular behavior cannot be integrated into widely accepted membrane (pump) theory (MT) and its steady state energetics because of the thermal noise of assumed ordinary cell water and freely soluble cytoplasmic K+. However, Ling disproved MT and proposed an alternative based on coherence, showing that rest (R) and action (A) are two different phases of protoplasm with different energy levels. The R-state is a coherent metastable low-entropy state as water and K+ are bound to unfolded proteins. The A-state is the higher-entropy state because water and K+ are free. The R-to-A phase transition is regarded as a mechanism to release energy for biological work, replacing the classical concept of high-energy bonds. Subsequent inactivation during the endergonic A-to-R phase transition needs an input of metabolic energy to restore the low entropy R-state. Matveev’s native aggregation hypothesis allows to integrate the energetic details of globular proteins into this view. PMID:23264833

  18. Elucidating the weak protein-protein interaction mechanisms behind the liquid-liquid phase separation of a mAb solution by different types of additives.

    PubMed

    Wu, Guoliang; Wang, Shujing; Tian, Zhou; Zhang, Ning; Sheng, Han; Dai, Weiguo; Qian, Feng

    2017-11-01

    Liquid-liquid phase separation (LLPS) has long been observed during the physical stability investigation of therapeutic protein formulations. The buffer conditions and the presence of various excipients are thought to play important roles in the formulation development of monoclonal antibodies (mAbs). In this study, the effects of several small-molecule excipients (histidine, alanine, glycine, sodium phosphate, sodium chloride, sorbitol and sucrose) with diverse physical-chemical properties on LLPS of a model IgG1 (JM2) solutions were investigated by multiple techniques, including UV-vis spectroscopy, circular dichroism, differential scanning calorimetry/fluorimetry, size exclusion chromatography and dynamic light scattering. The LLPS of JM2 was confirmed to be a thermodynamic equilibrium process with no structural changes or irreversible aggregation of proteins. Phase diagrams of various JM2 formulations were constructed, suggesting that the phase behavior of JM2 was dependent on the solution pH, ionic strength and the presence of other excipients such as glycine, alanine, sorbitol and sucrose. Furthermore, we demonstrated that for this mAb, the interaction parameter (k D ) determined at low protein concentration appeared to be a good predictor for the occurrence of LLPS at high concentration. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Alcohol--Induced Polyelectrolyte-Surfactant Complex Coacervate Systems: Characterization and Applications in Enzyme and Protein Extraction

    NASA Astrophysics Data System (ADS)

    Nejati Moshtaghin, Mahboubeh

    The focus of this thesis is to achieve a better understanding of the newly discovered surfactant-polyelectrolyte complex coacervate (SPCC) systems induced by fluoroalcohol/acid as well as short chain aliphatic alcohol; and to elucidate their applications in extraction and enrichment of proteins and enzyme. We have discovered that fluoroalcohols and --acids induce complex coacervation and phase separation in the aqueous mixtures of oppositely charged anionic polyelectrolytes; specifically, sodium salts of polyacrylic acid and polymethacrylic acid and cationic surfactant (cetyltrimethylammonium bromide, CTAB) over a broad range of concentrations of mole fractions of the oppositely charged amphiphiles. Accordingly, these new classes of coacervators will significantly broaden the scope and facilitate engineering of new coacervate phases. Toward these goals, we have inspected the formation of surfactant-polyelectrolyte complex coacervates in the presence of fluoroalcohols namely hexafluoroisopropanol (HFIP) and Trifluoroethanol (TFE). Furthermore, the extent of coacervation as a function of concentrations the system components, and charge ratios of the oppositely charged amphiphiles has been investigated. Polyelectrolytes are considered to be milder reagents, as compared to surfactants, regarding proteins denaturation. This highlights the importance of a detailed investigation of the efficiency of our coacervate systems for extraction and preconcentration of proteins and enzymes, especially, when the biological activity of the extracted proteins needs to be maintained based on the objectives mentioned above, the results of the investigations have been organized in four chapters. In Chapter II, the phase behavior of the FA-SPCC will be investigated. The objective is to examine the phase behavior and phase properties with respect to the extent of coacervation in different solution conditions. In particular, the effects of different solution variables such as concentration of FA, oppositely charged amphiphiles (surfactant-polyelectrolyte), and the charge ratio of the surfactant-polyelectrolyte on the extent of coacervation have been investigated. Furthermore, the chemical composition of each phase formed in the coacervate system was determined as a function of HFIP percentage. Phase diagrams of HFIP-PMA-CTAB and 2-propanol-PMA-CTAB were studied. The phase separation occurs over a wide range of polyelectrolyte, surfactant and alcohol concentration. In addition, a study of the dependence of coacervate volume on phase composition in different system (as defined by concentrations and mole charge ratio of amphihiles and alcohols) provided useful insight about possible underlying interactions and mechanisms. It has been concluded that neutralization favors coacervation in both systems. However, according to the compositional analysis of both HFIP and 2-propanol SPCC system, it seems that coacervation mechanisms are different. In Chapter III the properties of 2-propanol--SPCC, with analogous surfactant (CTAB) and polyelectrolyte (PMA) used in Chapter II, will be investigated. In particular, we are interested in examining the difference between the phase separation characteristics of the coacervates induced by 2-propanol and HFIP as coacervator. For this purpose, the phase behavior and the chemical composition of the phases will be analyzed as a function of 2-propanol and constituents concentrations. Chapter IV contains results of our investigations on the activity of a model enzyme (Trypsin) in 2-propanol- and FA-induced SPCC system. These investigations will facilitate understanding whether the aliphatic alcohol, AA- and FA-induced SPCC system denature the model enzymes. Such investigations also help in evaluation of the applicability of the coacervate systems developed in this work in proteomics where the proteolytic activity of enzymes is used for protein digestion. Finally, in Chapter V, the efficiency of the coacervate system (2-propanol-induced-PMA-CTAB) for extraction of cytochrome c, as a model protein, will be investigated.

  20. Size effects of solvent molecules on the phase behavior and effective interaction of colloidal systems with the bridging attraction.

    PubMed

    Chen, Jie; Wang, Xuewu; Kline, Steven R; Liu, Yun

    2016-11-16

    There has been much recent research interest towards understanding the phase behavior of colloidal systems interacting with a bridging attraction, where the small solvent particles and large solute colloidal particles can be reversibly associated with each other. These systems show interesting phase behavior compared to the more widely studied depletion attraction systems. Here, we use Baxter's two-component sticky hard sphere model with a Percus-Yevick closure to solve the Ornstein-Zernike equation and study the size effect on colloidal systems with bridging attractions. The spinodal decomposition regions, percolation transition boundaries and binodal regions are systematically investigated as a function of the relative size of the small solvent and large solute particles as well as the attraction strength between the small and large particles. In the phase space determined by the concentrations of small and large particles, the spinodal and binodal regions form isolated islands. The locations and shapes of the spinodal and binodal regions sensitively depend on the relative size of the small and large particles and the attraction strength between them. The percolation region shrinks by decreasing the size ratio, while the binodal region slightly expands with the decrease of the size ratio. Our results are very important in understanding the phase behavior for a bridging attraction colloidal system, a model system that provides insight into oppositely charged colloidal systems, protein phase behavior, and colloidal gelation mechanisms.

  1. Protein and Peptide Gas-phase Structure Investigation Using Collision Cross Section Measurements and Hydrogen Deuterium Exchange

    NASA Astrophysics Data System (ADS)

    Khakinejad, Mahdiar

    Protein and peptide gas-phase structure analysis provides the opportunity to study these species outside of their explicit environment where the interaction network with surrounding molecules makes the analysis difficult [1]. Although gas-phase structure analysis offers a unique opportunity to study the intrinsic behavior of these biomolecules [2-4], proteins and peptides exhibit very low vapor pressures [2]. Peptide and protein ions can be rendered in the gas-phase using electrospray ionization (ESI) [5]. There is a growing body of literature that shows proteins and peptides can maintain solution structures during the process of ESI and these structures can persist for a few hundred milliseconds [6-9]. Techniques for monitoring gas-phase protein and peptide ion structures are categorized as physical probes and chemical probes. Collision cross section (CCS) measurement, being a physical probe, is a powerful method to investigate gas-phase structure size [3, 7, 10-15]; however, CCS values alone do not establish a one to one relation with structure(i.e., the CCS value is an orientationally averaged value [15-18]. Here we propose the utility of gas-phase hydrogen deuterium exchange (HDX) as a second criterion of structure elucidation. The proposed approach incudes extensive MD simulations to sample biomolecular ion conformation space with the production of numerous, random in-silico structures. Subsequently a CCS can be calculated for these structures and theoretical CCS values are compared with experimental values to produce a pool of candidate structures. Utilizing a chemical reaction model based on the gas-phase HDX mechanism, the HDX kinetics behavior of these candidate structures are predicted and compared to experimental results to nominate the best in-silico structures which match (chemically and physically) with experimental observations. For the predictive approach to succeed, an extensive technique and method development is essential. To combine CCS measurements and gas-phase HDX studies at the amino acid residue level, for the first time a drift tube is connected to a linear ion trap (LIT) with electron transfer dissociation (ETD) capability[19, 20]. In this manner CCS and per-residue deuterium uptake measurements for a model peptide carried out successfully[19]. In this study, the gas-phase conformations of electrosprayed ions of the model peptide KKDDDDIIKIIK have been examined. Using ion structures obtained from molecular dynamics (MD) simulation and considering charge-site/exchange-site density the level of the maximum total deuterium uptake for the gas-phase ions is explained. Also a new hydrogen accessibility scoring (HAS) model that includes two distance calculations (charge site to carbonyl group and carbonyl group to exchange site) is applied to the in-silico structures to describe the expected HDX behavior for these structures. Further investigation to improve the accuracy of the model is accomplished by a "per-residue" HDX kinetics study of the model peptide [21]. In this study, the ion residence time and the deuterium uptake of each residue is measured at different partial pressures of D2O. Subsequently the contribution each residue to the overall HDX rate of the intact peptide ion is calculated. These rate contributions of the residues exhibit a better fit to HAS than their maximum deuterium uptake. Proteins and peptides with very frequent acidic residue in their sequence provide very poor signal levels when employing positive polarity ESI. Also, the comparison of protonated and deprotonated ions of these biomolecules offers the potential to provide a better structural characterization [22]. Per-residue deuterium uptake values resulting from collision-induced dissociation (CID) of the model peptide KKDDDDIIKIIK were used to investigated the degree of hydrogen deuterium scrambling for deprotonated ions [23]. Remarkably, limited isotopic scrambling was observed in this study of this small model peptide. This data and the per-residue deuterium uptake of the triply-protonated model peptide Acetyl-PAAAAKAAAAKAAAAKAAAAK are exploited to propose a lemma to allocate protonation and deprotonation sites for peptide ions in the gas-phase. Insulin ions, as a small protein model system, are examined to investigate the relation of the maximum deuterium uptake value for each insulin chain to the exposed surface area of each insulin subunit [22]. The results show that the methodology can be applied on the protein complexes to provide information about the exposed surface area of each subunit.

  2. Adsorption behavior of proteins on temperature-responsive resins.

    PubMed

    Poplewska, Izabela; Muca, Renata; Strachota, Adam; Piątkowski, Wojciech; Antos, Dorota

    2014-01-10

    The adsorption behavior of proteins on thermo-responsible resins based on poly(N-isopropylacrylamide) and its copolymer containing an anionic co-monomer has been investigated. The influence of the polymer composition, i.e., the content of the co-monomer and crosslinker on the thermo-sensitivity of the protein adsorption has been quantified. The properties of ungrafted polymer as well grafted onto the agarose matrix have been analyzed and compared. Batch and dynamic (column) experiments have been performed to measure the adsorption equilibrium of proteins and to quantify the phase transition process. As model proteins lysozyme, lactoferrin, α-chymotrypsinogen A and ovalbumin have been used. The adsorption process was found to be governed by ionic interactions between the negatively charged surface of resin and the protein, which enabled separation of proteins differing in electrostatic charge. The interactions enhanced with increase of temperature. Decrease of temperature facilitated desorption of proteins and reduced the salt usage in the desorption buffer. Grafted polymers exhibited markedly higher mechanical stability and, however, weaker temperature response compared to the ungrafted ones. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Elastin-like polypeptides: Therapeutic applications for an emerging class of nanomedicines.

    PubMed

    Despanie, Jordan; Dhandhukia, Jugal P; Hamm-Alvarez, Sarah F; MacKay, J Andrew

    2016-10-28

    Elastin-like polypeptides (ELPs) constitute a genetically engineered class of 'protein polymers' derived from human tropoelastin. They exhibit a reversible phase separation whereby samples remain soluble below a transition temperature (T t ) but form amorphous coacervates above T t . Their phase behavior has many possible applications in purification, sensing, activation, and nanoassembly. As humanized polypeptides, they are non-immunogenic, substrates for proteolytic biodegradation, and can be decorated with pharmacologically active peptides, proteins, and small molecules. Recombinant synthesis additionally allows precise control over ELP architecture and molecular weight, resulting in protein polymers with uniform physicochemical properties suited to the design of multifunctional biologics. As such, ELPs have been employed for various uses including as anti-cancer agents, ocular drug delivery vehicles, and protein trafficking modulators. This review aims to offer the reader a catalogue of ELPs, their various applications, and potential for commercialization across a broad spectrum of fields. Copyright © 2015. Published by Elsevier B.V.

  4. The mechanical properties of phase separated protein droplets

    NASA Astrophysics Data System (ADS)

    Jawerth, Louise; Ijavi, Mahdiye; Patel, Avinash; Saha, Shambaditya; Jülicher, Frank; Hyman, Anthony

    In vivo, numerous proteins associate into liquid compartments by de-mixing from the surrounding solution, similar to oil molecules in water. Many of these proteins and their corresponding liquid compartments play a crucial role in important biological processes, for instance germ line specification in C. elegans or in neurodegenerative diseases such as Amyotrophic lateral sclerosis (ALS). However, despite their importance, very little is known about the physical properties of the resulting droplets as well as the physical mechanisms that control their phase separation from solution. To gain a deeper understanding of these aspects, we study a few such proteins in vitro. When these proteins are purified and added to a physiological buffer, they phase separate into droplets ranging in size from a few to tens of microns with liquid-like behavior similar to their physiological counterparts. By attaching small beads to the surface of the droplets, we can deform the droplets by manipulating the beads directly using optical tweezers. By measuring the force required to deform the droplets we determine their surface tension, elasticity and viscosity as well as the frequency response of these properties. We also measure these properties using passive micro-rheology.

  5. Tuning a High Transmission Ion Guide to Prevent Gas-Phase Proton Exchange During H/D Exchange MS Analysis.

    PubMed

    Guttman, Miklos; Wales, Thomas E; Whittington, Dale; Engen, John R; Brown, Jeffery M; Lee, Kelly K

    2016-04-01

    Hydrogen/deuterium exchange (HDX) mass spectrometry (MS) for protein structural analysis has been adopted for many purposes, including biopharmaceutical development. One of the benefits of examining amide proton exchange by mass spectrometry is that it can readily resolve different exchange regimes, as evidenced by either binomial or bimodal isotope patterns. By careful analysis of the isotope pattern during exchange, more insight can be obtained on protein behavior in solution. However, one must be sure that any observed bimodal isotope patterns are not artifacts of analysis and are reflective of the true behavior in solution. Sample carryover and certain stationary phases are known as potential sources of bimodal artifacts. Here, we describe an additional undocumented source of deuterium loss resulting in artificial bimodal patterns for certain highly charged peptides. We demonstrate that this phenomenon is predominantly due to gas-phase proton exchange between peptides and bulk solvent within the initial stages of high-transmission conjoined ion guides. Minor adjustments of the ion guide settings, as reported here, eliminate the phenomenon without sacrificing signal intensity. Such gas-phase deuterium loss should be appreciated for all HDX-MS studies using such ion optics, even for routine studies not focused on interpreting bimodal spectra. Graphical Abstract ᅟ.

  6. Protein instability toward organic solvent/water emulsification: implications for protein microencapsulation into microspheres.

    PubMed

    Sah, H

    1999-01-01

    The objective of this study was to investigate the behavior of three proteins at an organic solvent/water interface. To simulate the first microencapsulation step of a water-in-oil-in-water emulsion technique, a water-in-oil emulsion was prepared by emulsifying an aqueous protein solution in either methylene chloride or ethyl acetate. Phase separation was then followed to collect protein samples from the aqueous phase and the organic solvent/water interface. Their properties were assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and size exclusion-HPLC. Bovine serum albumin was relatively unharmed during emulsification, compared to other proteins such as ovalbumin and lysozyme. In particular, the methylene chloride treatment on ovalbumin led to the formation of a large quantity of water-insoluble, solid-like aggregates and changes in the composition of monomeric and dimeric ovalbumin species. With regard to the question of ovalbumin recovery, only 9.74 approximately 37.72% of the used ovalbumin was present in the aqueous phases after emulsification. Similar penchant was noted with lysozyme. Water-insoluble aggregates brought with by emulsification were found to be covalently bound. Interestingly, less emulsification-induced denaturing effects were observed with ethyl acetate. Our study clearly demonstrated the emulsification-induced adverse events that were detrimental to the integrity of proteins and the importance of preserving protein stability toward microencapsulation.

  7. Interrogating Spatio-Mechanical EphA2 Signaling in Cancer

    DTIC Science & Technology

    2012-03-01

    and membrane phase structure modulation by protein binding”, Martin B. Forstner, Chanel K. Lee, Atul N. Parikh, and Jay T. Groves. PMID: 17117874 55...Continuation Format Page anchored proteins and their behavior in supported lipid bilayers", Margot G. Paulick, Amber R. Wise, Martin B. Forstner, Jay T... Martin B. Forstner, Jay T. Groves and Carolyn R. Bertozzi. PMC: 2154431 67. Current Opinion in Immunology, 2007, 19, 6, 722 - 727: "Interrogating

  8. Geometric Universality in Brain Allosteric Protein Dynamics: Complex Hydrophobic Transformation Predicts Mutual Recognition by Polypeptides and Proteins,

    DTIC Science & Technology

    1986-10-01

    organic acids using the Hammett equation , has been called the hydrophobic effect.’ Water adjusts its geometry to maximize the number of intact hydrogen...understanding both structural stability with respect to the underlying equations (not initial values) and phase transitions in these dynamical hierarchies...for quantitative characterization. Although the complicated behavior is gen- erated by deterministic equations , its description in entropies leads to

  9. Comparison of protein and energy supplementation to mineral supplementation on feeding behavior of grazing cattle during the rainy to the dry season transition.

    PubMed

    Brandão, Rita Kelly Couto; de Carvalho, Gleidson Giordano Pinto; Silva, Robério Rodrigues; Dias, Daniel Lucas Santos; Mendes, Fabrício Bacelar Lima; Lins, Túlio Otávio Jardim D'Almeida; Filho, George Abreu; de Souza, Sinvaldo Oliveira; Barroso, Daniele Soares; de Almeida Rufino, Luana Marta; Tosto, Manuela Silva Libânio

    2016-01-01

    The aim of this study was to evaluate the effects of protein-energy or mineral supplementation on the ingestive behavior of dairy steers on pasture in the post-weaning phase during the rainy to dry season transition. Twenty-two ½ Holstein-Zebu dairy steers with an average initial body weight of 234 ± 16 kg were distributed into a completely randomized design into two groups: protein-energy supplementation and mineral supplementation offered ad libitum. The steers receiving protein-energy supplementation showed higher (P < 0.05) intake of dry matter (DM) and neutral detergent fiber (NDF) than those fed diets composed of mineral salt only. In addition, the animals that received protein-energy supplementation had longer period in grazing and spent on average more time per period eating at the trough (P < 0.05), however no significant differences were observed in the time per period in rumination and time per period in idle (P > 0.05). The supply of protein-energy supplement does not change the feeding behavior, except for an increase in the time spent feeding at the trough. The intake of protein-energy supplement improved the of DM and NDF feed efficiencies in grazing cattle during the rainy to the dry season transition.

  10. Promiscuous interactions and protein disaggregases determine the material state of stress-inducible RNP granules

    PubMed Central

    Kroschwald, Sonja; Maharana, Shovamayee; Mateju, Daniel; Malinovska, Liliana; Nüske, Elisabeth; Poser, Ina; Richter, Doris; Alberti, Simon

    2015-01-01

    RNA-protein (RNP) granules have been proposed to assemble by forming solid RNA/protein aggregates or through phase separation into a liquid RNA/protein phase. Which model describes RNP granules in living cells is still unclear. In this study, we analyze P bodies in budding yeast and find that they have liquid-like properties. Surprisingly, yeast stress granules adopt a different material state, which is reminiscent of solid protein aggregates and controlled by protein disaggregases. By using an assay to ectopically nucleate RNP granules, we further establish that RNP granule formation does not depend on amyloid-like aggregation but rather involves many promiscuous interactions. Finally, we show that stress granules have different properties in mammalian cells, where they show liquid-like behavior. Thus, we propose that the material state of RNP granules is flexible and that the solid state of yeast stress granules is an adaptation to extreme environments, made possible by the presence of a powerful disaggregation machine. DOI: http://dx.doi.org/10.7554/eLife.06807.001 PMID:26238190

  11. Thermodynamic nonequilibrium phase change behavior and thermal properties of biological solutions for cryobiology applications.

    PubMed

    Han, Bumsoo; Bischof, John C

    2004-04-01

    Understanding the phase change behavior of biomaterials during freezing/thawing including their thermal properties at low temperatures is essential to design and improve cryobiology applications such as cryopreservation and cryosurgery. However, knowledge of phase change behavior and thermal properties of various biomaterials is still incomplete, especially at cryogenic temperatures (< or = -40 degrees C). Moreover, in these applications, chemicals are often added to improve their outcome, which can result in significant variation in the phase change behavior and thermal properties from those of the original biomaterials. These chemical additives include cryoprotective agents (CPAs), antifreeze protein (AFP), or cryosurgical adjuvants like sodium chloride (NaCl). In the present study, phase change behavior and thermal properties of saline solutions--either water-NaCl or phosphate buffered saline (PBS)--with various chemical additives were investigated. The chemical additives studied are glycerol and raffinose as CPAs, an AFP (Type III, molecular weight = 6500), and NaCl as a cryosurgical adjuvant. The phase change behavior was investigated using a differential scanning calorimeter (DSC) and a cryomicroscope. The specific and latent heat of these solutions were also measured with the DSC. The saline solutions have two distinct phase changes--water/ice and eutectic phase changes. During freezing, eutectic solidification of both water-NaCl and PBS are significantly supercooled below their thermodynamic equilibrium eutectic temperatures. However, their melting temperatures are close to thermodynamic equilibrium during thawing. These eutectic phase changes disappear when even a small amount (0.1 M glycerol) of CPA was added, but they are still observed after the addition of an AFP. The specific heats of these solutions are close to that of ice at very low temperatures (< or = -100 degrees C) regardless of the additives, but they increase between -100 degrees C and -30 degrees C with the addition of CPAs. The amount of latent heat, which is evaluated with sample weight, generally decreases with the addition of the additives, but can be normalized to approximately 300 J/g based on the weight of water which participates in the phase change. This illustrates that thermal properties, especially latent heat, of a biomaterial should be evaluated based on the understanding of its phase change behavior. The results of the present study are discussed in the context of the implications for cryobiology applications.

  12. Dynamics of the Glycophorin A Dimer in Membranes of Native-Like Composition Uncovered by Coarse-Grained Molecular Dynamics Simulations

    PubMed Central

    Flinner, Nadine; Schleiff, Enrico

    2015-01-01

    Membranes are central for cells as borders to the environment or intracellular organelle definition. They are composed of and harbor different molecules like various lipid species and sterols, and they are generally crowded with proteins. The membrane system is very dynamic and components show lateral, rotational and translational diffusion. The consequence of the latter is that phase separation can occur in membranes in vivo and in vitro. It was documented that molecular dynamics simulations of an idealized plasma membrane model result in formation of membrane areas where either saturated lipids and cholesterol (liquid-ordered character, Lo) or unsaturated lipids (liquid-disordered character, Ld) were enriched. Furthermore, current discussions favor the idea that proteins are sorted into the liquid-disordered phase of model membranes, but experimental support for the behavior of isolated proteins in native membranes is sparse. To gain insight into the protein behavior we built a model of the red blood cell membrane with integrated glycophorin A dimer. The sorting and the dynamics of the dimer were subsequently explored by coarse-grained molecular dynamics simulations. In addition, we inspected the impact of lipid head groups and the presence of cholesterol within the membrane on the dynamics of the dimer within the membrane. We observed that cholesterol is important for the formation of membrane areas with Lo and Ld character. Moreover, it is an important factor for the reproduction of the dynamic behavior of the protein found in its native environment. The protein dimer was exclusively sorted into the domain of Ld character in the model red blood cell plasma membrane. Therefore, we present structural information on the glycophorin A dimer distribution in the plasma membrane in the absence of other factors like e.g. lipid anchors in a coarse grain resolution. PMID:26222139

  13. Neuroprotective Effects of Peptides during Ischemic Preconditioning.

    PubMed

    Zarubina, I V; Shabanov, P D

    2016-02-01

    Experiments on rats showed that neurospecific protein preparations reduce the severity of neurological deficit, restore the structure of individual behavior of the animals with different hypoxia tolerance, and exert antioxidant action during chronic ischemic damage to the brain unfolding during the early and late phases of ischemic preconditioning.

  14. Independent active and thermodynamic processes govern the nucleolus assembly in vivo

    PubMed Central

    Falahati, Hanieh; Wieschaus, Eric

    2017-01-01

    Membraneless organelles play a central role in the organization of protoplasm by concentrating macromolecules, which allows efficient cellular processes. Recent studies have shown that, in vitro, certain components in such organelles can assemble through phase separation. Inside the cell, however, such organelles are multicomponent, with numerous intermolecular interactions that can potentially affect the demixing properties of individual components. In addition, the organelles themselves are inherently active, and it is not clear how the active, energy-consuming processes that occur constantly within such organelles affect the phase separation behavior of the constituent macromolecules. Here, we examine the phase separation model for the formation of membraneless organelles in vivo by assessing the two features that collectively distinguish it from active assembly, namely temperature dependence and reversibility. We use a microfluidic device that allows accurate and rapid manipulation of temperature and examine the quantitative dynamics by which six different nucleolar proteins assemble into the nucleoli of Drosophila melanogaster embryos. Our results indicate that, although phase separation is the main mode of recruitment for four of the studied proteins, the assembly of the other two is irreversible and enhanced at higher temperatures, behaviors indicative of active recruitment to the nucleolus. These two subsets of components differ in their requirements for ribosomal DNA; the two actively assembling components fail to assemble in the absence of ribosomal DNA, whereas the thermodynamically driven components assemble but lose temporal and spatial precision. PMID:28115706

  15. Carotenoids buffer the acute phase response on fever, sickness behavior and rapid bill color change in zebra finches.

    PubMed

    George, Deanna B; Schneider, Brent C; McGraw, Kevin J; Ardia, Daniel R

    2017-08-15

    Carotenoids are finite resources that animals can allocate to self-maintenance, attractiveness or reproduction. Here we test how carotenoids affect the acute phase response (APR), an intense rapid systemic response characterized by fever, sickness behavior and production of acute phase proteins, which serves to reduce pathogen persistence. We conducted a 2×2 factorial design experiment in captive adult male and female zebra finches ( Taeniopygia guttata ) to determine the effects of carotenoid supplementation on the intensity of the APR. We measured changes in feeding rate, activity level and body temperature of the birds. We found that, relative to unsupplemented controls, carotenoid-supplemented birds exhibited less severe reductions in feeding and activity, smaller increases in body temperature and lower circulating levels of haptoglobin (an acute phase protein) 24 h after inducing an APR. Among supplemented individuals, those with higher blood carotenoid levels exhibited a lower reduction in activity rate after 24 h. Forty-eight hours after APR induction, birds exhibited a significant decrease in plasma carotenoid levels and a decrease in bill hue, with less reduction in hue in carotenoid-supplemented individuals. These results demonstrate that carotenoids can alleviate several important behavioral and physiological effects of an APR and that bill color can change rapidly following induction of the costly APR immune defense. In particular, immune activation may have caused birds to preferentially draw down carotenoids from the bloodstream, ostensibly for use in health. Rapid bill color changes over a 48-h period support growing evidence that bills may serve as short-term signals of health and condition. © 2017. Published by The Company of Biologists Ltd.

  16. Osmotic second virial cross-coefficient measurements for binary combination of lysozyme, ovalbumin, and α-amylase in salt solutions.

    PubMed

    Mehta, Chirag M; White, Edward T; Litster, James D

    2013-01-01

    Interactions measurement is a valuable tool to predict equilibrium phase separation of a desired protein in the presence of unwanted macromolecules. In this study, cross-interactions were measured as the osmotic second virial cross-coefficients (B23 ) for the three binary protein systems involving lysozyme, ovalbumin, and α-amylase in salt solutions (sodium chloride and ammonium sulfate). They were correlated with solubility for the binary protein mixtures. The cross-interaction behavior at different salt concentrations was interpreted by either electrostatic or hydrophobic interaction forces. At low salt concentrations, the protein surface charge dominates cross-interaction behavior as a function of pH. With added ovalbumin, the lysozyme solubility decreased linearly at low salt concentration in sodium chloride and increased at high salt concentration in ammonium sulfate. The B23 value was found to be proportional to the slope of the lysozyme solubility against ovalbumin concentration and the correlation was explained by preferential interaction theory. © 2013 American Institute of Chemical Engineers.

  17. Thermodynamic compatibility and interactions between Speckled Sugar bean protein and xanthan gum for production of multilayer O/W emulsion.

    PubMed

    Rahmati, Nazanin Fatemeh; Koocheki, Arash; Varidi, Mehdi; Kadkhodaee, Rassoul

    2018-03-01

    Thermodynamic compatibility and probable interactions between Speckled Sugar been protein (SSBP) and xanthan gum for production of multilayer O/W emulsion (30% oil) were investigated. Different interactions were observed between SSBP and xanthan at different pH (3-7) including electrostatic interactions and hydrogen bonding. These interactions were predominant at pH 3. When low xanthan gum concentration (0.1%) was used, phase separation and complex coacervation observed at this pH (negative effect of interactions). However, at pH 5, only 0.1% xanthan was enough to drastically reduce non-dissolved protein and its precipitation which normally occurs at this pH. In addition, incompatibility or segregative phase behavior which normally occurs when protein and polysaccharide have same charges was not observed (positive effects of interactions). Protein-gum interactions influenced emulsion properties (zeta potential, particle size, PDI, rheology, emulsion capacity, heat stability and creaming rate). Interactions had considerable influence on emulsion shelf life and produced completely stable emulsions at all pH values. Results confirmed that SSBP-xanthan gum mixture has a high potential for production of multilayer emulsions.

  18. Protein structural dynamics at the gas/water interface examined by hydrogen exchange mass spectrometry.

    PubMed

    Xiao, Yiming; Konermann, Lars

    2015-08-01

    Gas/water interfaces (such as air bubbles or foam) are detrimental to the stability of proteins, often causing aggregation. This represents a potential problem for industrial processes, for example, the production and handling of protein drugs. Proteins possess surfactant-like properties, resulting in a high affinity for gas/water interfaces. The tendency of previously buried nonpolar residues to maximize contact with the gas phase can cause significant structural distortion. Most earlier studies in this area employed spectroscopic tools that could only provide limited information. Here we use hydrogen/deuterium exchange (HDX) mass spectrometry (MS) for probing the conformational dynamics of the model protein myoglobin (Mb) in the presence of N(2) bubbles. HDX/MS relies on the principle that unfolded and/or highly dynamic regions undergo faster deuteration than tightly folded segments. In bubble-free solution Mb displays EX2 behavior, reflecting the occurrence of short-lived excursions to partially unfolded conformers. A dramatically different behavior is seen in the presence of N(2) bubbles; EX2 dynamics still take place, but in addition the protein shows EX1 behavior. The latter results from interconversion of the native state with conformers that are globally unfolded and long-lived. These unfolded species likely correspond to Mb that is adsorbed to the surface of gas bubbles. N(2) sparging also induces aggregation. To explain the observed behavior we propose a simple model, that is, "semi-unfolded" ↔ "native" ↔ "globally unfolded" → "aggregated". This model quantitatively reproduces the experimentally observed kinetics. To the best of our knowledge, the current study marks the first exploration of surface denaturation phenomena by HDX/MS. © 2015 The Protein Society.

  19. Temperature-Induced Protein Release from Water-in-Oil-in-Water Double Emulsions

    PubMed Central

    Rojas, Edith C.; Staton, Jennifer A.; John, Vijay T.; Papadopoulos, Kyriakos D.

    2009-01-01

    A model water-in-oil-in-water (W1/O/W2) double emulsion was prepared by a two-step emulsification procedure and subsequently subjected to temperature changes that caused the oil phase to freeze and thaw while the two aqueous phases remained liquid. Our previous work on individual double-emulsion globules1 demonstrated that crystallizing the oil phase (O) preserves stability, while subsequent thawing triggers coalescence of the droplets of the internal aqueous phase (W1) with the external aqueous phase (W2), termed external coalescence. Activation of this instability mechanism led to instant release of fluorescently tagged bovine serum albumin (fluorescein isothiocyanate (FITC)-BSA) from the W1 droplets and into W2. These results motivated us to apply the proposed temperature-induced globule-breakage mechanism to bulk double emulsions. As expected, no phase separation of the emulsion occurred if stored at temperatures below 18 °C (freezing point of the model oil n-hexadecane), whereas oil thawing readily caused instability. Crucial variables were identified during experimentation, and found to greatly influence the behavior of bulk double emulsions following freeze-thaw cycling. Adjustment of these variables accounted for a more efficient release of the encapsulated protein. PMID:18543998

  20. Theory and applications of refractive index-based optical microscopy to measure protein mass transfer in spherical adsorbent particles.

    PubMed

    Bankston, Theresa E; Stone, Melani C; Carta, Giorgio

    2008-04-25

    This work provides the theoretical foundation and a range of practical application examples of a recently developed method to measure protein mass transfer in adsorbent particles using refractive index-based optical microscopy. A ray-theoretic approach is first used to predict the behavior of light traveling through a particle during transient protein adsorption. When the protein concentration gradient in the particle is sharp, resulting in a steep refractive index gradient, the rays bend and intersect, thereby concentrating light in a sharp ring that marks the position of the adsorption front. This behavior is observed when mass transfer is dominated by pore diffusion and the adsorption isotherm is highly favorable. Applications to protein cation-exchange, hydrophobic interaction, and affinity adsorption are then considered using, as examples, the three commercial, agarose-based stationary phases SP-Sepharose-FF, Butyl Sepharose 4FF, and MabSelect. In all three cases, the method provides results that are consistent with measurements based on batch adsorption and previously published data confirming its utility for the determination of protein mass transfer kinetics under a broad range of practically relevant conditions.

  1. Strong resetting of the mammalian clock by constant light followed by constant darkness

    PubMed Central

    Chen, Rongmin; Seo, Dong-oh; Bell, Elijah; von Gall, Charlotte; Lee, Choogon

    2008-01-01

    The mammalian molecular circadian clock in the suprachiasmatic nuclei (SCN) regulates locomotor activity rhythms as well as clocks in peripheral tissues (Reppert and Weaver, 2002; Ko and Takahashi, 2006). Constant light (LL) can induce behavioral and physiological arrhythmicity, by desynchronizing clock cells in the SCN (Ohta et al., 2005). We examined how the disordered clock cells resynchronize by probing the molecular clock and measuring behavior in mice transferred from LL to constant darkness (DD). The circadian locomotor activity rhythms disrupted in LL become robustly rhythmic again from the beginning of DD, and the starting phase of the rhythm in DD is specific, not random, suggesting that the desynchronized clock cells are quickly reset in an unconventional manner by the L:D transition. By measuring mPERIOD protein rhythms, we showed that the SCN and peripheral tissue clocks quickly become rhythmic again in phase with the behavioral rhythms. We propose that this resetting mechanism may be different from conventional phase shifting, which involves light-induction of Period genes (Albrecht et al., 1997; Shearman et al., 1997; Shigeyoshi et al., 1997). Using our functional insights, we could shift the circadian phase of locomotor activity rhythms by 12 hours using a 15-hour LL treatment: essentially producing phase reversal by a single light pulse, a feat that has not been reported previously in wild-type mice and that has potential clinical utility. PMID:19005049

  2. A modified Poisson-Boltzmann equation applied to protein adsorption.

    PubMed

    Gama, Marlon de Souza; Santos, Mirella Simões; Lima, Eduardo Rocha de Almeida; Tavares, Frederico Wanderley; Barreto, Amaro Gomes Barreto

    2018-01-05

    Ion-exchange chromatography has been widely used as a standard process in purification and analysis of protein, based on the electrostatic interaction between the protein and the stationary phase. Through the years, several approaches are used to improve the thermodynamic description of colloidal particle-surface interaction systems, however there are still a lot of gaps specifically when describing the behavior of protein adsorption. Here, we present an improved methodology for predicting the adsorption equilibrium constant by solving the modified Poisson-Boltzmann (PB) equation in bispherical coordinates. By including dispersion interactions between ions and protein, and between ions and surface, the modified PB equation used can describe the Hofmeister effects. We solve the modified Poisson-Boltzmann equation to calculate the protein-surface potential of mean force, treated as spherical colloid-plate system, as a function of process variables. From the potential of mean force, the Henry constants of adsorption, for different proteins and surfaces, are calculated as a function of pH, salt concentration, salt type, and temperature. The obtained Henry constants are compared with experimental data for several isotherms showing excellent agreement. We have also performed a sensitivity analysis to verify the behavior of different kind of salts and the Hofmeister effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Mated Drosophila melanogaster females consume more amino acids during the dark phase

    PubMed Central

    Uchizono, Shun; Tabuki, Yumi; Kawaguchi, Natsumi; Tanimura, Teiichi; Itoh, Taichi Q.

    2017-01-01

    To maintain homeostasis, animals must ingest appropriate quantities, determined by their internal nutritional state, of suitable nutrients. In the fruit fly Drosophila melanogaster, an amino acid deficit induces a specific appetite for amino acids and thus results in their increased consumption. Although multiple processes of physiology, metabolism, and behavior are under circadian control in many organisms, it is unclear whether the circadian clock also modulates such motivated behavior driven by an internal need. Differences in levels of amino acid consumption by flies between the light and dark phases of the day:night cycle were examined using a capillary feeder assay following amino acid deprivation. Female flies exhibited increased consumption of amino acids during the dark phase compared with the light phase. Investigation of mutants lacking a functional period gene (per0), a well-characterized clock gene in Drosophila, found no difference between the light and dark phases in amino acid consumption by per0 flies. Furthermore, increased consumption of amino acids during the dark phase was observed in mated but not in virgin females, which strongly suggested that mating is involved in the rhythmic modulation of amino acid intake. Egg production, which is induced by mating, did not affect the rhythmic change in amino acid consumption, although egg-laying behavior showed a per0-dependent change in rhythm. Elevated consumption of amino acids during the dark phase was partly induced by the action of a seminal protein, sex peptide (SP), on the sex peptide receptor (SPR) in females. Moreover, we showed that the increased consumption of amino acids during the dark phase is induced in mated females independently of their internal level of amino acids. These results suggest that a post-mating SP/SPR signal elevates amino acid consumption during the dark phase via the circadian clock. PMID:28241073

  4. Mated Drosophila melanogaster females consume more amino acids during the dark phase.

    PubMed

    Uchizono, Shun; Tabuki, Yumi; Kawaguchi, Natsumi; Tanimura, Teiichi; Itoh, Taichi Q

    2017-01-01

    To maintain homeostasis, animals must ingest appropriate quantities, determined by their internal nutritional state, of suitable nutrients. In the fruit fly Drosophila melanogaster, an amino acid deficit induces a specific appetite for amino acids and thus results in their increased consumption. Although multiple processes of physiology, metabolism, and behavior are under circadian control in many organisms, it is unclear whether the circadian clock also modulates such motivated behavior driven by an internal need. Differences in levels of amino acid consumption by flies between the light and dark phases of the day:night cycle were examined using a capillary feeder assay following amino acid deprivation. Female flies exhibited increased consumption of amino acids during the dark phase compared with the light phase. Investigation of mutants lacking a functional period gene (per0), a well-characterized clock gene in Drosophila, found no difference between the light and dark phases in amino acid consumption by per0 flies. Furthermore, increased consumption of amino acids during the dark phase was observed in mated but not in virgin females, which strongly suggested that mating is involved in the rhythmic modulation of amino acid intake. Egg production, which is induced by mating, did not affect the rhythmic change in amino acid consumption, although egg-laying behavior showed a per0-dependent change in rhythm. Elevated consumption of amino acids during the dark phase was partly induced by the action of a seminal protein, sex peptide (SP), on the sex peptide receptor (SPR) in females. Moreover, we showed that the increased consumption of amino acids during the dark phase is induced in mated females independently of their internal level of amino acids. These results suggest that a post-mating SP/SPR signal elevates amino acid consumption during the dark phase via the circadian clock.

  5. Mechanical critical phenomena and the elastic response of fiber networks

    NASA Astrophysics Data System (ADS)

    Mackintosh, Fred

    The mechanics of cells and tissues are largely governed by scaffolds of filamentous proteins that make up the cytoskeleton, as well as extracellular matrices. Evidence is emerging that such networks can exhibit rich mechanical phase behavior. A classic example of a mechanical phase transition was identified by Maxwell for macroscopic engineering structures: networks of struts or springs exhibit a continuous, second-order phase transition at the isostatic point, where the number of constraints imposed by connectivity just equals the number of mechanical degrees of freedom. We present recent theoretical predictions and experimental evidence for mechanical phase transitions in in both synthetic and biopolymer networks. We show, in particular, excellent quantitative agreement between the mechanics of collagen matrices and the predictions of a strain-controlled phase transition in sub-isostatic networks.

  6. Improved Accuracy of Low Affinity Protein-Ligand Equilibrium Dissociation Constants Directly Determined by Electrospray Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Jaquillard, Lucie; Saab, Fabienne; Schoentgen, Françoise; Cadene, Martine

    2012-05-01

    There is continued interest in the determination by ESI-MS of equilibrium dissociation constants (KD) that accurately reflect the affinity of a protein-ligand complex in solution. Issues in the measurement of KD are compounded in the case of low affinity complexes. Here we present a KD measurement method and corresponding mathematical model dealing with both gas-phase dissociation (GPD) and aggregation. To this end, a rational mathematical correction of GPD (fsat) is combined with the development of an experimental protocol to deal with gas-phase aggregation. A guide to apply the method to noncovalent protein-ligand systems according to their kinetic behavior is provided. The approach is validated by comparing the KD values determined by this method with in-solution KD literature values. The influence of the type of molecular interactions and instrumental setup on fsat is examined as a first step towards a fine dissection of factors affecting GPD. The method can be reliably applied to a wide array of low affinity systems without the need for a reference ligand or protein.

  7. Entrainment of a Bacterial Synthetic Gene Oscillator through Proteolytic Queueing.

    PubMed

    Butzin, Nicholas C; Hochendoner, Philip; Ogle, Curtis T; Mather, William H

    2017-03-17

    Internal chemical oscillators (chemical clocks) direct the behavior of numerous biological systems, and maintenance of a given period and phase among many such oscillators may be important for their proper function. However, both environmental variability and fundamental molecular noise can cause biochemical oscillators to lose coherence. One solution to maintaining coherence is entrainment, where an external signal provides a cue that resets the phase of the oscillators. In this work, we study the entrainment of gene networks by a queueing interaction established by competition between proteins for a common proteolytic pathway. Principles of queueing entrainment are investigated for an established synthetic oscillator in Escherichia coli. We first explore this theoretically using a standard chemical reaction network model and a map-based model, both of which suggest that queueing entrainment can be achieved through pulsatile production of an additional protein competing for a common degradation pathway with the oscillator proteins. We then use a combination of microfluidics and fluorescence microscopy to verify that pulse trains modulating the production rate of a fluorescent protein targeted to the same protease (ClpXP) as the synthetic oscillator can entrain the oscillator.

  8. Anomalous Dynamics of Water Confined in Protein-Protein and Protein-DNA Interfaces.

    PubMed

    Chong, Song-Ho; Ham, Sihyun

    2016-10-06

    Confined water often exhibits anomalous properties not observable in the bulk phase. Although water in hydrophobic confinement has been the focus of intense investigation, the behavior of water confined between hydrophilic surfaces, which are more frequently found in biological systems, has not been fully explored. Here, we investigate using molecular dynamics simulations dynamical properties of the water confined in hydrophilic protein-protein and protein-DNA interfaces. We find that the interfacial water exhibits glassy slow relaxations even at 300 K. In particular, the rotational dynamics show a logarithmic decay that was observed in glass-forming liquids at deeply supercooled states. We argue that such slow water dynamics are indeed induced by the hydrophilic binding surfaces, which is in opposition to the picture that the hydration water slaves protein motions. Our results will significantly impact the view on the role of water in biomolecular interactions.

  9. CSL encodes a leucine-rich-repeat protein implicated in red/violet light signaling to the circadian clock in Chlamydomonas

    PubMed Central

    Kinoshita, Ayumi; Niwa, Yoshimi; Onai, Kiyoshi; Fukuzawa, Hideya; Ishiura, Masahiro

    2017-01-01

    The green alga Chlamydomonas reinhardtii shows various light responses in behavior and physiology. One such photoresponse is the circadian clock, which can be reset by external light signals to entrain its oscillation to daily environmental cycles. In a previous report, we suggested that a light-induced degradation of the clock protein ROC15 is a trigger to reset the circadian clock in Chlamydomonas. However, light signaling pathways of this process remained unclear. Here, we screened for mutants that show abnormal ROC15 diurnal rhythms, including the light-induced protein degradation at dawn, using a luciferase fusion reporter. In one mutant, ROC15 degradation and phase resetting of the circadian clock by light were impaired. Interestingly, the impairments were observed in response to red and violet light, but not to blue light. We revealed that an uncharacterized gene encoding a protein similar to RAS-signaling-related leucine-rich repeat (LRR) proteins is responsible for the mutant phenotypes. Our results indicate that a previously uncharacterized red/violet light signaling pathway is involved in the phase resetting of circadian clock in Chlamydomonas. PMID:28333924

  10. Application Of Empirical Phase Diagrams For Multidimensional Data Visualization Of High Throughput Microbatch Crystallization Experiments.

    PubMed

    Klijn, Marieke E; Hubbuch, Jürgen

    2018-04-27

    Protein phase diagrams are a tool to investigate cause and consequence of solution conditions on protein phase behavior. The effects are scored according to aggregation morphologies such as crystals or amorphous precipitates. Solution conditions affect morphological features, such as crystal size, as well as kinetic features, such as crystal growth time. Common used data visualization techniques include individual line graphs or symbols-based phase diagrams. These techniques have limitations in terms of handling large datasets, comprehensiveness or completeness. To eliminate these limitations, morphological and kinetic features obtained from crystallization images generated with high throughput microbatch experiments have been visualized with radar charts in combination with the empirical phase diagram (EPD) method. Morphological features (crystal size, shape, and number, as well as precipitate size) and kinetic features (crystal and precipitate onset and growth time) are extracted for 768 solutions with varying chicken egg white lysozyme concentration, salt type, ionic strength and pH. Image-based aggregation morphology and kinetic features were compiled into a single and easily interpretable figure, thereby showing that the EPD method can support high throughput crystallization experiments in its data amount as well as its data complexity. Copyright © 2018. Published by Elsevier Inc.

  11. Expression and purification of mouse peptide ESP4 in Escherichia coli.

    PubMed

    Hirakane, Makoto; Taniguchi, Masahiro; Yoshinaga, Sosuke; Misumi, Shogo; Terasawa, Hiroaki

    2014-04-01

    Pheromones are species-specific chemical signals that regulate a wide range of social and sexual behaviors in many animals. In mice, the male-specific peptide ESP1 (exocrine gland-secreting peptide 1) is secreted into tear fluids and enhances female sexual receptive behavior. ESP1 belongs to the ESP family, a multigene family with 38 genes in mice. ESP1 shares the highest homology with ESP4. ESP1 is expressed in the extraorbital lacrimal gland, whereas ESP4 is expressed in some exocrine glands. Thus, ESP4 is expected to have a function that has not been elucidated yet. Large amounts of the purified ESP4 protein are required for structural and biochemical studies. Here we present an expression and purification scheme for the recombinant ESP4 protein. The N-terminally histidine-tagged ESP4 fusion protein was expressed in Escherichia coli as inclusion bodies, which were solubilized and purified by nickel affinity chromatography. The histidine tag was cleaved with thrombin and removed by a second nickel affinity chromatography step. The ESP4 protein was isolated with high purity by reversed-phase chromatography. For NMR analyses, we prepared a stable isotope-labeled ESP4 protein. Three repeated freeze-drying steps after the reversed-phase chromatography were required, to remove a volatile contaminating compound and to obtain an NMR spectrum with a homogeneous line shape. AMS-modification and far-UV CD spectroscopic analyses suggested that ESP4 has an intramolecular disulfide bridge and a helical structure, respectively. The present study provides a powerful tool for structural and biochemical studies of ESP4, leading toward the elucidation of the roles of the ESP family members. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Systematic interpolation method predicts protein chromatographic elution with salt gradients, pH gradients and combined salt/pH gradients.

    PubMed

    Creasy, Arch; Barker, Gregory; Carta, Giorgio

    2017-03-01

    A methodology is presented to predict protein elution behavior from an ion exchange column using both individual or combined pH and salt gradients based on high-throughput batch isotherm data. The buffer compositions are first optimized to generate linear pH gradients from pH 5.5 to 7 with defined concentrations of sodium chloride. Next, high-throughput batch isotherm data are collected for a monoclonal antibody on the cation exchange resin POROS XS over a range of protein concentrations, salt concentrations, and solution pH. Finally, a previously developed empirical interpolation (EI) method is extended to describe protein binding as a function of the protein and salt concentration and solution pH without using an explicit isotherm model. The interpolated isotherm data are then used with a lumped kinetic model to predict the protein elution behavior. Experimental results obtained for laboratory scale columns show excellent agreement with the predicted elution curves for both individual or combined pH and salt gradients at protein loads up to 45 mg/mL of column. Numerical studies show that the model predictions are robust as long as the isotherm data cover the range of mobile phase compositions where the protein actually elutes from the column. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Spectroscopic Analysis of 10MAG/LDAO Reverse Micelles to Determine Characteristic Properties and Behavioral Extrema

    NASA Astrophysics Data System (ADS)

    Berg, Joshua; Mawson, Cara; Norris, Zach; Nucci, Nathaniel

    Reverse micelles are spontaneously organizing complexes of surfactant that encapsulate a nanoscale pool of water in a bulk non-polar solvent. Reverse micelle (RM) mixtures have a wide range of applications, including biophysical investigation of protein systems. A new RM mixture composed of decyl-1-monoglycerol (10MAG) and lauryldimethylammonium-N-oxide (LDAO) was recently described. This mixture has the potential to prove more widely applicable for use of RMs in applications that involve encapsulation of macromolecules, yet little is known about the phase behavior or size of reverse micelles created by this mixture. Data describing such behaviors for this mixture are presented here. We have used dynamic light scattering (DLS) and fluorescence spectroscopy to investigate the size and partitioning behavior of RMs in varying mixtures of 10MAG, LDAO, water, pentane, and hexanol. These data demonstrate that the 10MAG/LDAO RM mixture exhibits markedly different phase and RM size behavior than that of commonly used RM surfactant mixtures. The implications of these findings for use of the 10MAG/LDAO mix for RM applications will also be addressed. Funding provided by Rowan University.

  14. Impact of non-ideal analyte behavior on the separation of protein aggregates by asymmetric flow field-flow fractionation.

    PubMed

    Boll, Björn; Josse, Lena; Heubach, Anja; Hochenauer, Sophie; Finkler, Christof; Huwyler, Jörg; Koulov, Atanas V

    2018-04-25

    Asymmetric flow field-flow fractionation is a valuable tool for the characterization of protein aggregates in biotechnology owing to its broad size range and unique separation principle. However, in practice asymmetric flow field-flow fractionation is non-trivial to use due to the major deviations from theory and the influence on separation by various factors that are not fully understood. Here we report methods to assess the non-ideal effects that influence asymmetric flow field-flow fractionation separation and for the first time identify experimentally the main factors that impact it. Furthermore, we propose new approaches to minimize such non-ideal behavior, showing that by adjusting the mobile phase composition (pH and ionic strength) the resolution of asymmetric flow field-flow fractionation separation can be drastically improved. Additionally, we propose a best practice method for new proteins. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. Study of wheat protein based materials

    NASA Astrophysics Data System (ADS)

    Ye, Peng

    Wheat gluten is a naturally occurring protein polymer. It is produced in abundance by the agricultural industry, is biodegradable and very inexpensive (less than $0.50/lb). It has unique viscoelastic properties, which makes it a promising alternative to synthetic plastics. The unplasticized wheat gluten is, however, brittle. Plasticizers such as glycerol are commonly used to give flexibility to the articles made of wheat gluten but with the penalty of greatly reduced stiffness. Former work showed that the brittleness of wheat gluten can also be improved by modifying it with a tri-thiol additive with no penalty of reduced stiffness. However, the cost of the customer designed tri-thiol additive was very high and it was unlikely to make a cost effective material from such an expensive additive. Here we designed a new, inexpensive thiol additive called SHPVA. It was synthesized from polyvinyl alcohol (PVA) through a simple esterification reaction. The mechanical data of the molded wheat gluten/SHPVA material indicated that wheat gluten was toughened by SHPVA. As a control, the wheat gluten/PVA material showed no improvement compared with wheat gluten itself. Several techniques have been used to characterize this novel protein/polymer blend. Differential scanning calorimetric (DSC) study showed two phases in both wheat gluten/PVA and wheat gluten/SHPVA material. However, scanning electron microscope (SEM) pictures indicated that PVA was macroscopically separated from wheat gluten, while wheat gluten/SHPVA had a homogeneous look. The phase image from the atomic force microscope (AFM) gave interesting contrast based on the difference in the mechanical properties of these two phases. The biodegradation behavior of these protein/polymer blends was examined in soil. SHPVA was not degraded in the time period of the experiment. Wheat gluten/SHPVA degraded slower than wheat gluten. We also developed some other interesting material systems based on wheat gluten, including the wheat gluten/basalt composite and wheat gluten/clay composite materials. Their mechanical properties and biodegradation behaviors were determined.

  16. Reverse Micelle Mediated synthesis of Calcium Phosphate Nanocarriers for Controlled Release of Bovine Serum Albumin (BSA)

    PubMed Central

    Dasgupta, Sudip; Bandyopadhyay, Amit; Bose, Susmita

    2010-01-01

    Calcium phosphate (CaP) nanoparticle with calcium to phosphorus (Ca:P) molar ratio of 1.5:1 were synthesized using reverse micro emulsion. Ca(NO3)2.4H2O and H3PO4 were used as aqueous phase, cyclohexane as organic phase, and poly(oxyethylene)12 nonylphenol ether (NP-12) as surfactant. Depending on calcination temperature between 600 and 800 °C, CaP nanoparticle showed different phases calcium deficient hydroxyapatite (CDHA) and β-tricalcium phosphate (β-TCP), particle size between 48 and 69 nm, the BET specific average surface area between 73 m2/g and 57 m2/g. Bovine serum albumin (BSA) was used as a model protein to study loading and release behavior. Adsorptive property of BSA was investigated with the change in BET surface area of these nanoparticle and the pH of the suspension. At pH 7.5, maximum amount of BSA was adsorbed onto CaP nanoparticle. The release kinetics of BSA showed a gradual time dependent increase at pH 4.0 and 6.0 buffer solutions. However, the amount of released protein was significantly smaller at pH 7.2. BSA release rate also varied depending on the presence of different phases of CaPs in the system, β-TCP or CDHA. These results suggest that BSA protein release rate can be controlled by changing particle size, surface area and phase composition of CaP nanocarriers. PMID:19435617

  17. Measuring in vitro biotransformation rates of super hydrophobic chemicals in rat liver s9 fractions using thin-film sorbent-phase dosing.

    PubMed

    Lee, Yung-Shan; Otton, S Victoria; Campbell, David A; Moore, Margo M; Kennedy, Chris J; Gobas, Frank A P C

    2012-01-03

    Methods for rapid and cost-effective assessment of the biotransformation potential of very hydrophobic and potentially bioaccumulative chemicals in mammals are urgently needed for the ongoing global evaluation of the environmental behavior of commercial chemicals. We developed and tested a novel solvent-free, thin-film sorbent-phase in vitro dosing system to measure the in vitro biotransformation rates of very hydrophobic chemicals in male Sprague-Dawley rat liver S9 homogenates and compared the rates to those measured by conventional solvent-delivery dosing. The thin-film sorbent-phase dosing system using ethylene vinyl acetate coated vials was developed to eliminate the incomplete dissolution of very hydrophobic substances in largely aqueous liver homogenates, to determine biotransformation rates at low substrate concentrations, to measure the unbound fraction of substrate in solution, and to simplify chemical analysis by avoiding the difficult extraction of test chemicals from complex biological matrices. Biotransformation rates using sorbent-phase dosing were 2-fold greater than those measured using solvent-delivery dosing. Unbound concentrations of very hydrophobic test chemicals were found to decline with increasing S9 and protein concentrations, causing measured biotransformation rates to be independent of S9 or protein concentrations. The results emphasize the importance of specifying both protein content and unbound substrate fraction in the measurement and reporting of in vitro biotransformation rates of very hydrophobic substances, which can be achieved in a thin-film sorbent-phase dosing system.

  18. Molecular mechanisms mediating a deficit in recall of fear extinction in adult mice exposed to cocaine in utero.

    PubMed

    Kabir, Zeeba D; Katzman, Aaron C; Kosofsky, Barry E

    2013-01-01

    Prenatal cocaine exposure has been shown to alter cognitive processes of exposed individuals, presumed to be a result of long-lasting molecular alterations in the brain. In adult prenatal cocaine exposed (PCOC) mice we have identified a deficit in recall of fear extinction, a behavior that is dependent on the medial prefrontal cortex (mPFC) and the hippocampus. While we observed no change in the constitutive expression of brain derived neurotrophic factor (BDNF) protein and mRNA in the mPFC and hippocampus of adult PCOC mice, we observed blunted BDNF signaling in the mPFC of adult PCOC mice after fear extinction compared to the control animals. Specifically, during the consolidation phase of the extinction memory, we observed a decrease in BDNF protein and it's phospho-TrkB receptor expression. Interestingly, at this same time point there was a significant increase in total Bdnf mRNA levels in the mPFC of PCOC mice as compared with controls. In the Bdnf gene, we identified decreased constitutive binding of the transcription factors, MeCP2 and P-CREB at the promoters of Bdnf exons I and IV in the mPFC of PCOC mice, that unlike control mice remained unchanged when measured during the behavior. Finally, bilateral infusion of recombinant BDNF protein into the infralimbic subdivision of the mPFC during the consolidation phase of the extinction memory rescued the behavioral deficit in PCOC mice. In conclusion, these findings extend our knowledge of the neurobiologic impact of prenatal cocaine exposure on the mPFC of mice, which may lead to improved clinical recognition and treatment of exposed individuals.

  19. In Vitro Self-Assembly of the Light Harvesting Pigment-Protein LH2 Revealed by Ultrafast Spectroscopy and Electron Microscopy

    PubMed Central

    Schubert, Axel; Stenstam, Anna; Beenken, Wichard J. D.; Herek, Jennifer L.; Cogdell, Richard; Pullerits, Tõnu; Sundström, Villy

    2004-01-01

    Controlled ensemble formation of protein-surfactant systems provides a fundamental concept for the realization of nanoscale devices with self-organizing capability. In this context, spectroscopic monitoring of pigment-containing proteins yields detailed structural information. Here we have studied the association behavior of the bacterial light-harvesting protein LH2 from Rhodobacter spheroides in an n,n-dimethyldodecylamine-n-oxide/water environment. Time-resolved studies of the excitation annihilation yielded information about aggregate sizes and packing of the protein complexes therein. The results are compared to transmission electron microscopy images of instantaneously frozen samples. Our data indicate the manifestation of different phases, which are discussed with respect to the thermodynamic equilibrium in ternary protein-surfactant-water systems. Accordingly, by varying the concentration the formation of different types of aggregates can be controlled. Conditions for the appearance of isolated LH2 complexes are defined. PMID:15041674

  20. Motifs for molecular recognition exploiting hydrophobic enclosure in protein-ligand binding.

    PubMed

    Young, Tom; Abel, Robert; Kim, Byungchan; Berne, Bruce J; Friesner, Richard A

    2007-01-16

    The thermodynamic properties and phase behavior of water in confined regions can vary significantly from that observed in the bulk. This is particularly true for systems in which the confinement is on the molecular-length scale. In this study, we use molecular dynamics simulations and a powerful solvent analysis technique based on inhomogenous solvation theory to investigate the properties of water molecules that solvate the confined regions of protein active sites. Our simulations and analysis indicate that the solvation of protein active sites that are characterized by hydrophobic enclosure and correlated hydrogen bonds induce atypical entropic and enthalpic penalties of hydration. These penalties apparently stabilize the protein-ligand complex with respect to the independently solvated ligand and protein, which leads to enhanced binding affinities. Our analysis elucidates several challenging cases, including the super affinity of the streptavidin-biotin system.

  1. F-box protein FBXL2 targets cyclin D2 for ubiquitination and degradation to inhibit leukemic cell proliferation

    PubMed Central

    Chen, Bill B.; Glasser, Jennifer R.; Coon, Tiffany A.; Zou, Chunbin; Miller, Hannah L.; Fenton, Moon; McDyer, John F.; Boyiadzis, Michael

    2012-01-01

    Hematologic maligancies exhibit a growth advantage by up-regulation of components within the molecular apparatus involved in cell-cycle progression. The SCF (Skip-Cullin1-F-box protein) E3 ligase family provides homeostatic feedback control of cell division by mediating ubiquitination and degradation of cell-cycle proteins. By screening several previously undescribed E3 ligase components, we describe the behavior of a relatively new SCF subunit, termed FBXL2, that ubiquitinates and destabilizes cyclin D2 protein leading to G0 phase arrest and apoptosis in leukemic and B-lymphoblastoid cell lines. FBXL2 expression was strongly suppressed, and yet cyclin D2 protein levels were robustly expressed in acute myelogenous leukemia (AML) and acute lymphoblastic leukemia (ALL) patient samples. Depletion of endogenous FBXL2 stabilized cyclin D2 levels, whereas ectopically expressed FBXL2 decreased cyclin D2 lifespan. FBXL2 did not bind a phosphodegron within its substrate, which is typical of other F-box proteins, but uniquely targeted a calmodulin-binding signature within cyclin D2 to facilitate its polyubiquitination. Calmodulin competes with the F-box protein for access to this motif where it bound and protected cyclin D2 from FBXL2. Calmodulin reversed FBXL2-induced G0 phase arrest and attenuated FBXL2-induced apoptosis of lymphoblastoid cells. These results suggest an antiproliferative effect of SCFFBXL2 in lymphoproliferative malignancies. PMID:22323446

  2. Predicting protein instability in sustained protein delivery systems using spectral-phase interference.

    PubMed

    Seidel, Nina; Sitterberg, Johannes; Vornholt, Wolfgang; Bakowsky, Udo; Keusgen, Michael; Kissel, Thomas

    2012-02-01

    Biodegradable and non-biodegradable polymers represent promising materials for sustained protein delivery systems. However, structural protein instabilities due to interactions with the polymer surface are often observed. Aim of the present study was to analyze and predict these instabilities by determination of adsorption pattern and extent via biomolecular interaction analysis. A new optical method based on spectral-phase interference successfully demonstrated its suitability for this new application scope. It was characterized in terms of sensitivity, reproducibility and dynamic range using bovine serum albumin (BSA) as model compound. For protein-polymer interaction studies, materials with different wettabilities and zeta potential were selected and successfully applied on the sensor chip: Glass, poly(styrene), poly(lactic acid), poly(lactic-co-glycolic acid), and poly(ethylene carbonate). Concentration dependent adsorption curves revealed two principal adsorption patterns based on the connection between BSA spreading and supply rate. This connection was stronger influenced by polymer hydrophobicity than surface charge. Association, dissociation and binding rate constants in the range from 0.15 to 34.19 × 10(-6) M were obtained. Atomic force microscopy images of the films before and after adsorption confirmed the previous elaborated model. Poly(ethylene carbonate) emerged as highly promising biomaterial for protein delivery due to its favorable adsorption behavior based on low polymer-protein interactions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Identification of a "glycine-loop"-like coiled structure in the 34 AA Pro,Gly,Met repeat domain of the biomineral-associated protein, PM27.

    PubMed

    Wustman, Brandon A; Santos, Rudolpho; Zhang, Bo; Evans, John Spencer

    2002-12-05

    Fracture resistance in biomineralized structures has been linked to the presence of proteins, some of which possess sequences that are associated with elastic behavior. One such protein superfamily, the Pro,Gly-rich sea urchin intracrystalline spicule matrix proteins, form protein-protein supramolecular assemblies that modify the microstructure and fracture-resistant properties of the calcium carbonate mineral phase within embryonic sea urchin spicules and adult sea urchin spines. In this report, we detail the identification of a repetitive keratin-like "glycine-loop"- or coil-like structure within the 34-AA (AA: amino acid) N-terminal domain, (PGMG)(8)PG, of the spicule matrix protein, PM27. The identification of this repetitive structural motif was accomplished using two capped model peptides: a 9-AA sequence, GPGMGPGMG, and a 34-AA peptide representing the entire motif. Using CD, NMR spectrometry, and molecular dynamics simulated annealing/minimization simulations, we have determined that the 9-AA model peptide adopts a loop-like structure at pH 7.4. The structure of the 34-AA polypeptide resembles a coil structure consisting of repeating loop motifs that do not exhibit long-range ordering. Given that loop structures have been associated with protein elastic behavior and protein motion, it is plausible that the 34-AA Pro,Gly,Met repeat sequence motif in PM27 represents a putative elastic or mobile domain. Copyright 2002 Wiley Periodicals, Inc.

  4. Instantaneous Normal Modes and the Protein Glass Transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulz, Roland; Krishnan, Marimuthu; Daidone, Isabella

    2009-01-01

    In the instantaneous normal mode method, normal mode analysis is performed at instantaneous configurations of a condensed-phase system, leading to modes with negative eigenvalues. These negative modes provide a means of characterizing local anharmonicities of the potential energy surface. Here, we apply instantaneous normal mode to analyze temperature-dependent diffusive dynamics in molecular dynamics simulations of a small protein (a scorpion toxin). Those characteristics of the negative modes are determined that correlate with the dynamical (or glass) transition behavior of the protein, as manifested as an increase in the gradient with T of the average atomic mean-square displacement at ~ 220more » K. The number of negative eigenvalues shows no transition with temperature. Further, although filtering the negative modes to retain only those with eigenvectors corresponding to double-well potentials does reveal a transition in the hydration water, again, no transition in the protein is seen. However, additional filtering of the protein double-well modes, so as to retain only those that, on energy minimization, escape to different regions of configurational space, finally leads to clear protein dynamical transition behavior. Partial minimization of instantaneous configurations is also found to remove nondiffusive imaginary modes. In summary, examination of the form of negative instantaneous normal modes is shown to furnish a physical picture of local diffusive dynamics accompanying the protein glass transition.« less

  5. Instantaneous Normal Modes and the Protein Glass Transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultz, Roland; Krishnan, Marimuthu; Daidone, Isabella

    2009-01-01

    In the instantaneous normal mode method, normal mode analysis is performed at instantaneous configurations of a condensed-phase system, leading to modes with negative eigenvalues. These negative modes provide a means of characterizing local anharmonicities of the potential energy surface. Here, we apply instantaneous normal mode to analyze temperature-dependent diffusive dynamics in molecular dynamics simulations of a small protein (a scorpion toxin). Those characteristics of the negative modes are determined that correlate with the dynamical (or glass) transition behavior of the protein, as manifested as an increase in the gradient with T of the average atomic mean-square displacement at 220 K.more » The number of negative eigenvalues shows no transition with temperature. Further, although filtering the negative modes to retain only those with eigenvectors corresponding to double-well potentials does reveal a transition in the hydration water, again, no transition in the protein is seen. However, additional filtering of the protein double-well modes, so as to retain only those that, on energy minimization, escape to different regions of configurational space, finally leads to clear protein dynamical transition behavior. Partial minimization of instantaneous configurations is also found to remove nondiffusive imaginary modes. In summary, examination of the form of negative instantaneous normal modes is shown to furnish a physical picture of local diffusive dynamics accompanying the protein glass transition.« less

  6. GIRK Channels Mediate the Nonphotic Effects of Exogenous Melatonin

    PubMed Central

    Hablitz, Lauren M.; Molzof, Hylton E.; Abrahamsson, Kathryn E.; Cooper, Joanna M.; Prosser, Rebecca A.

    2015-01-01

    Melatonin supplementation has been used as a therapeutic agent for several diseases, yet little is known about the underlying mechanisms by which melatonin synchronizes circadian rhythms. G-protein signaling plays a large role in melatonin-induced phase shifts of locomotor behavior and melatonin receptors activate G-protein-coupled inwardly rectifying potassium (GIRK) channels in Xenopus oocytes. The present study tested the hypothesis that melatonin influences circadian phase and electrical activity within the central clock in the suprachiasmatic nucleus (SCN) through GIRK channel activation. Unlike wild-type littermates, GIRK2 knock-out (KO) mice failed to phase advance wheel-running behavior in response to 3 d subcutaneous injections of melatonin in the late day. Moreover, in vitro phase resetting of the SCN circadian clock by melatonin was blocked by coadministration of a GIRK channel antagonist tertiapin-q (TPQ). Loose-patch electrophysiological recordings of SCN neurons revealed a significant reduction in the average action potential rate in response to melatonin. This effect was lost in SCN slices treated with TPQ and SCN slices from GIRK2 KO mice. The melatonin-induced suppression of firing rate corresponded with an increased inward current that was blocked by TPQ. Finally, application of ramelteon, a potent melatonin receptor agonist, significantly decreased firing rate and increased inward current within SCN neurons in a GIRK-dependent manner. These results are the first to show that GIRK channels are necessary for the effects of melatonin and ramelteon within the SCN. This study suggests that GIRK channels may be an alternative therapeutic target for diseases with evidence of circadian disruption, including aberrant melatonin signaling. SIGNIFICANCE STATEMENT Despite the widespread use of melatonin supplementation for the treatment of sleep disruption and other neurological diseases such as epilepsy and depression, no studies have elucidated the molecular mechanisms linking melatonin-induced changes in neuronal activity to its therapeutic effects. Here, we used behavioral and electrophysiological techniques to address this scientific gap. Our results show that melatonin and ramelteon, a potent and clinically relevant melatonin receptor agonist, significantly affect the neurophysiological function of suprachiasmatic nucleus neurons through activation of G-protein-coupled inwardly rectifying potassium (GIRK) channels. Given the importance of GIRK channels for neuronal excitability (with >600 publications on these channels to date), our study should generate broad interest from neuroscientists in fields such as epilepsy, addiction, and cognition. PMID:26558769

  7. Influence of structure properties on protein-protein interactions-QSAR modeling of changes in diffusion coefficients.

    PubMed

    Bauer, Katharina Christin; Hämmerling, Frank; Kittelmann, Jörg; Dürr, Cathrin; Görlich, Fabian; Hubbuch, Jürgen

    2017-04-01

    Information about protein-protein interactions provides valuable knowledge about the phase behavior of protein solutions during the biopharmaceutical production process. Up to date it is possible to capture their overall impact by an experimentally determined potential of mean force. For the description of this potential, the second virial coefficient B22, the diffusion interaction parameter kD, the storage modulus G', or the diffusion coefficient D is applied. In silico methods do not only have the potential to predict these parameters, but also to provide deeper understanding of the molecular origin of the protein-protein interactions by correlating the data to the protein's three-dimensional structure. This methodology furthermore allows a lower sample consumption and less experimental effort. Of all in silico methods, QSAR modeling, which correlates the properties of the molecule's structure with the experimental behavior, seems to be particularly suitable for this purpose. To verify this, the study reported here dealt with the determination of a QSAR model for the diffusion coefficient of proteins. This model consisted of diffusion coefficients for six different model proteins at various pH values and NaCl concentrations. The generated QSAR model showed a good correlation between experimental and predicted data with a coefficient of determination R2 = 0.9 and a good predictability for an external test set with R2 = 0.91. The information about the properties affecting protein-protein interactions present in solution was in agreement with experiment and theory. Furthermore, the model was able to give a more detailed picture of the protein properties influencing the diffusion coefficient and the acting protein-protein interactions. Biotechnol. Bioeng. 2017;114: 821-831. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Phase behavior of the modified-Yukawa fluid and its sticky limit.

    PubMed

    Schöll-Paschinger, Elisabeth; Valadez-Pérez, Néstor E; Benavides, Ana L; Castañeda-Priego, Ramón

    2013-11-14

    Simple model systems with short-range attractive potentials have turned out to play a crucial role in determining theoretically the phase behavior of proteins or colloids. However, as pointed out by D. Gazzillo [J. Chem. Phys. 134, 124504 (2011)], one of these widely used model potentials, namely, the attractive hard-core Yukawa potential, shows an unphysical behavior when one approaches its sticky limit, since the second virial coefficient is diverging. However, it is exactly this second virial coefficient that is typically used to depict the experimental phase diagram for a large variety of complex fluids and that, in addition, plays an important role in the Noro-Frenkel scaling law [J. Chem. Phys. 113, 2941 (2000)], which is thus not applicable to the Yukawa fluid. To overcome this deficiency of the attractive Yukawa potential, D. Gazzillo has proposed the so-called modified hard-core attractive Yukawa fluid, which allows one to correctly obtain the second and third virial coefficients of adhesive hard-spheres starting from a system with an attractive logarithmic Yukawa-like interaction. In this work we present liquid-vapor coexistence curves for this system and investigate its behavior close to the sticky limit. Results have been obtained with the self-consistent Ornstein-Zernike approximation (SCOZA) for values of the reduced inverse screening length parameter up to 18. The accuracy of SCOZA has been assessed by comparison with Monte Carlo simulations.

  9. Control and measurement of the phase behavior of aqueous solutions using microfluidics

    PubMed Central

    Shim, Jung-uk; Cristobal, Galder; Link, Darren R.; Thorsen, Todd; Jia, Yanwei; Piattelli, Katie; Fraden, Seth

    2008-01-01

    A microfluidic device denoted the Phase Chip has been designed to measure and manipulate the phase diagram of multi-component fluid mixtures. The Phase Chip exploits the permeation of water through poly(dimethylsiloxane) (PDMS) in order to controllably vary the concentration of solutes in aqueous nanoliter volume microdrops stored in wells. The permeation of water in the Phase Chip is modeled using the diffusion equation and good agreement between experiment and theory is obtained. The Phase Chip operates by first creating drops of the water/solute mixture whose composition varies sequentially. Next, drops are transported down channels and guided into storage wells using surface tension forces. Finally, the solute concentration of each stored drop is simultaneously varied and measured. Two applications of the Phase Chip are presented. First, the phase diagram of a polymer/salt mixture is measured on-chip and validated off-chip and second, protein crystallization rates are enhanced through the manipulation of the kinetics of nucleation and growth. PMID:17580868

  10. Differential effects of PER2 phosphorylation: molecular basis for the human familial advanced sleep phase syndrome (FASPS).

    PubMed

    Vanselow, Katja; Vanselow, Jens T; Westermark, Pål O; Reischl, Silke; Maier, Bert; Korte, Thomas; Herrmann, Andreas; Herzel, Hanspeter; Schlosser, Andreas; Kramer, Achim

    2006-10-01

    PERIOD (PER) proteins are central components within the mammalian circadian oscillator, and are believed to form a negative feedback complex that inhibits their own transcription at a particular circadian phase. Phosphorylation of PER proteins regulates their stability as well as their subcellular localization. In a systematic screen, we have identified 21 phosphorylated residues of mPER2 including Ser 659, which is mutated in patients suffering from familial advanced sleep phase syndrome (FASPS). When expressing FASPS-mutated mPER2 in oscillating fibroblasts, we can phenocopy the short period and advanced phase of FASPS patients' behavior. We show that phosphorylation at Ser 659 results in nuclear retention and stabilization of mPER2, whereas phosphorylation at other sites leads to mPER2 degradation. To conceptualize our findings, we use mathematical modeling and predict that differential PER phosphorylation events can result in opposite period phenotypes. Indeed, interference with specific aspects of mPER2 phosphorylation leads to either short or long periods in oscillating fibroblasts. This concept explains not only the FASPS phenotype, but also the effect of the tau mutation in hamster as well as the doubletime mutants (dbtS and dbtL ) in Drosophila.

  11. Macroscopic domain formation during cooling in the platelet plasma membrane: an issue of low cholesterol content

    PubMed Central

    Bali, Rachna; Savino, Laura; Ramirez, Diego A.; Tsvetkova, Nelly M.; Bagatolli, Luis; Tablin, Fern; Crowe, John H.; Leidy, Chad

    2009-01-01

    There has been ample debate on whether cell membranes can present macroscopic lipid domains as predicted by three-component phase diagrams obtained by fluorescence microscopy. Several groups have argued that membrane proteins and interactions with the cytoskeleton inhibit the formation of large domains. In contrast, some polarizable cells do show large regions with qualitative differences in lipid fluidity. It is important to ask more precisely, based on the current phase diagrams, under what conditions would large domains be expected to form in cells. In this work we study the thermotropic phase behavior of the platelet plasma membrane by FTIR, and compare it to a POPC/Sphingomyelin/Cholesterol model representing the outer leaflet composition. We find that this model closely reflects the platelet phase behavior. Previous work has shown that the platelet plasma membrane presents inhomogeneous distribution of DiI18:0 at 24°C, but not at 37°C, which suggests the formation of macroscopic lipid domains at low temperatures. We show by fluorescence microscopy, and by comparison with published phase diagrams, that the outer leaflet model system enters the macroscopic domain region only at the lower temperature. In addition, the low cholesterol content in platelets (~15 mol %), appears to be crucial for the formation of large domains during cooling. PMID:19341703

  12. Mixtures of charged colloid and neutral polymer: Influence of electrostatic interactions on demixing and interfacial tension

    NASA Astrophysics Data System (ADS)

    Denton, Alan R.; Schmidt, Matthias

    2005-06-01

    The equilibrium phase behavior of a binary mixture of charged colloids and neutral, nonadsorbing polymers is studied within free-volume theory. A model mixture of charged hard-sphere macroions and ideal, coarse-grained, effective-sphere polymers is mapped first onto a binary hard-sphere mixture with nonadditive diameters and then onto an effective Asakura-Oosawa model [S. Asakura and F. Oosawa, J. Chem. Phys. 22, 1255 (1954)]. The effective model is defined by a single dimensionless parameter—the ratio of the polymer diameter to the effective colloid diameter. For high salt-to-counterion concentration ratios, a free-volume approximation for the free energy is used to compute the fluid phase diagram, which describes demixing into colloid-rich (liquid) and colloid-poor (vapor) phases. Increasing the range of electrostatic interactions shifts the demixing binodal toward higher polymer concentration, stabilizing the mixture. The enhanced stability is attributed to a weakening of polymer depletion-induced attraction between electrostatically repelling macroions. Comparison with predictions of density-functional theory reveals a corresponding increase in the liquid-vapor interfacial tension. The predicted trends in phase stability are consistent with observed behavior of protein-polysaccharide mixtures in food colloids.

  13. Solubility of lysozyme in the presence of aqueous chloride salts: common-ion effect and its role on solubility and crystal thermodynamics.

    PubMed

    Annunziata, Onofrio; Payne, Andrew; Wang, Ying

    2008-10-08

    Understanding protein solubility is important for a rational design of the conditions of protein crystallization. We report measurements of lysozyme solubility in aqueous solutions as a function of NaCl, KCl, and NH4Cl concentrations at 25 degrees C and pH 4.5. Our solubility results are directly compared to preferential-interaction coefficients of these ternary solutions determined in the same experimental conditions by ternary diffusion. This comparison has provided new important insight on the dependence of protein solubility on salt concentration. We remark that the dependence of the preferential-interaction coefficient as a function of salt concentration is substantially shaped by the common-ion effect. This effect plays a crucial role also on the observed behavior of lysozyme solubility. We find that the dependence of solubility on salt type and concentration strongly correlates with the corresponding dependence of the preferential-interaction coefficient. Examination of both preferential-interaction coefficients and second virial coefficients has allowed us to demonstrate that the solubility dependence on salt concentration is substantially affected by the corresponding change of protein chemical potential in the crystalline phase. We propose a simple model for the crystalline phase based on salt partitioning between solution and the hydrated protein crystal. A novel solubility equation is reported that quantitatively explains the observed experimental dependence of protein solubility on salt concentration.

  14. Gas-Phase Dopant-Induced Conformational Changes Monitored with Transversal Modulation Ion Mobility Spectrometry.

    PubMed

    Meyer, Nicole Andrea; Root, Katharina; Zenobi, Renato; Vidal-de-Miguel, Guillermo

    2016-02-16

    The potential of a Transversal Modulation Ion Mobility Spectrometry (TMIMS) instrument for protein analysis applications has been evaluated. The Collision Cross Section (CCS) of cytochrome c measured with the TMIMS is in agreement with values reported in the literature. Additionally, it enables tandem IMS-IMS prefiltration in dry gas and in vapor doped gas. The chemical specificity of the different dopants enables interesting studies on the structure of proteins as CCS changed strongly depending on the specific dopant. Hexane produced an unexpectedly high CCS shift, which can be utilized to evaluate the exposure of hydrophobic parts of the protein. Alcohols produced higher shifts with a dual behavior: an increase in CCS due to vapor uptake at specific absorption sites, followed by a linear shift typical for unspecific and unstable vapor uptake. The molten globule +8 shows a very specific transition. Initially, its CCS follows the trend of the compact folded states, and then it rapidly increases to the levels of the unfolded states. This strong variation suggests that the +8 charge state undergoes a dopant-induced conformational change. Interestingly, more sterically demanding alcohols seem to unfold the protein more effectively also in the gas phase. This study shows the capabilities of the TMIMS device for protein analysis and how tandem IMS-IMS with dopants could provide better understanding of the conformational changes of proteins.

  15. Imaging viscoelastic properties of live cells by AFM: power-law rheology on the nanoscale.

    PubMed

    Hecht, Fabian M; Rheinlaender, Johannes; Schierbaum, Nicolas; Goldmann, Wolfgang H; Fabry, Ben; Schäffer, Tilman E

    2015-06-21

    We developed force clamp force mapping (FCFM), an atomic force microscopy (AFM) technique for measuring the viscoelastic creep behavior of live cells with sub-micrometer spatial resolution. FCFM combines force-distance curves with an added force clamp phase during tip-sample contact. From the creep behavior measured during the force clamp phase, quantitative viscoelastic sample properties are extracted. We validate FCFM on soft polyacrylamide gels. We find that the creep behavior of living cells conforms to a power-law material model. By recording short (50-60 ms) force clamp measurements in rapid succession, we generate, for the first time, two-dimensional maps of power-law exponent and modulus scaling parameter. Although these maps reveal large spatial variations of both parameters across the cell surface, we obtain robust mean values from the several hundreds of measurements performed on each cell. Measurements on mouse embryonic fibroblasts show that the mean power-law exponents and the mean modulus scaling parameters differ greatly among individual cells, but both parameters are highly correlated: stiffer cells consistently show a smaller power-law exponent. This correlation allows us to distinguish between wild-type cells and cells that lack vinculin, a dominant protein of the focal adhesion complex, even though the mean values of viscoelastic properties between wildtype and knockout cells did not differ significantly. Therefore, FCFM spatially resolves viscoelastic sample properties and can uncover subtle mechanical signatures of proteins in living cells.

  16. Reverse micelle-mediated synthesis of calcium phosphate nanocarriers for controlled release of bovine serum albumin.

    PubMed

    Dasgupta, Sudip; Bandyopadhyay, Amit; Bose, Susmita

    2009-10-01

    Calcium phosphate (CaP) nanoparticles with a calcium to phosphorus (Ca:P) molar ratio of 1.5:1 were synthesized using reverse microemulsion. Ca(NO(3))(2).4H(2)O and H(3)PO(4) were used as the aqueous phase, cyclohexane as the organic phase and poly(oxyethylene)(12) nonylphenol ether (NP-12) as the surfactant. Depending on the calcination temperature between 600 and 800 degrees C, CaP nanoparticle showed different phases of calcium-deficient hydroxyapatite (CDHA) and beta-tricalcium phosphate (beta-TCP), particle size between 48 and 69 nm, and a BET specific average surface area between 73 and 57 m(2)g(-1). Bovine serum albumin (BSA) was used as a model protein to study loading and release behavior. The adsorptive property of BSA was investigated by the change in BET surface area of these nanoparticles and the pH of the suspension. At pH 7.5, the maximum amount of BSA was adsorbed onto CaP nanoparticle. The release kinetics of BSA showed a gradual time-dependent increase in pH 4.0 and 6.0 buffer solutions. However, the amount of protein released was significantly smaller at pH 7.2. The BSA release rate also varied depending on the presence of different phases of CaPs in the system, beta-TCP or CDHA. These results suggest that the BSA protein release rate can be controlled by changing the particle size, surface area and phase composition of the CaP nanocarriers.

  17. Reorganization of lipid domain distribution in giant unilamellar vesicles upon immobilization with different membrane tethers.

    PubMed

    Sarmento, M J; Prieto, M; Fernandes, Fábio

    2012-11-01

    Characterization of phase coexistence in biologically relevant lipid mixtures is often carried out through confocal microscopy of giant unilamellar lipid vesicles (GUVs), loaded with fluorescent membrane probes. This last analysis is generally limited to the vesicle hemisphere further away from the coverslip, in order to avoid artifacts induced by the interaction with the solid surface, and immobilization of vesicles is in many cases required in order to carry out intensity, lifetime or single-molecule based microscopy. This is generally achieved through the use of membrane tethers adhering to a coverslip surface. Here, we aimed to determine whether GUV immobilization through membrane tethers induces changes in lipid domain distribution within liposomes displaying coexistence of lipid lamellar phases. Confocal imaging and a Förster resonance energy transfer (FRET) methodology showed that biotinylated phospholipids present significantly different membrane phase partition behavior upon protein binding, depending on the presence or absence of a linker between the lipid headgroup and the biotinyl moiety. Membrane phases enriched in a membrane tether displayed in some cases a dramatically increased affinity for the immobilization surface, effectively driving sorting of lipid domains to the adherent membrane area, and in some cases complete sequestering of a lipid phase to the interaction surface was observed. On the light of these results, we conclude that tethering of lipid membranes to protein surfaces has the potential to drastically reorganize the distribution of lipid domains, and this reorganization is solely dictated by the partition properties of the protein-tether complex. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Effect of glycerol and dimethyl sulfoxide on the phase behavior of lysozyme: Theory and experiments

    NASA Astrophysics Data System (ADS)

    Gögelein, Christoph; Wagner, Dana; Cardinaux, Frédéric; Nägele, Gerhard; Egelhaaf, Stefan U.

    2012-01-01

    Salt, glycerol, and dimethyl sulfoxide (DMSO) are used to modify the properties of protein solutions. We experimentally determined the effect of these additives on the phase behavior of lysozyme solutions. Upon the addition of glycerol and DMSO, the fluid-solid transition and the gas-liquid coexistence curve (binodal) shift to lower temperatures and the gap between them increases. The experimentally observed trends are consistent with our theoretical predictions based on the thermodynamic perturbation theory and the Derjaguin-Landau-Verwey-Overbeek model for the lysozyme-lysozyme pair interactions. The values of the parameters describing the interactions, namely the refractive indices, dielectric constants, Hamaker constant and cut-off length, are extracted from literature or are experimentally determined by independent experiments, including static light scattering, to determine the second virial coefficient. We observe that both, glycerol and DMSO, render the potential more repulsive, while sodium chloride reduces the repulsion.

  19. Massive cellular disruption occurs during early imbibition of Cuphea seeds containing crystallized triacylglycerols.

    PubMed

    Volk, Gayle M; Crane, Jennifer; Caspersen, Ann M; Hill, Lisa M; Gardner, Candice; Walters, Christina

    2006-11-01

    The transition from anhydrobiotic to hydrated state occurs during early imbibition of seeds and is lethal if lipid reserves in seeds are crystalline. Low temperatures crystallize lipids during seed storage. We examine the nature of cellular damage observed in seeds of Cuphea wrightii and C. lanceolata that differ in triacylglycerol composition and phase behavior. Intracellular structure, observed using transmission electron microscopy, is profoundly and irreversibly perturbed if seeds with crystalline triacylglycerols are imbibed briefly. A brief heat treatment that melts triacylglycerols before imbibition prevents the loss of cell integrity; however, residual effects of cold treatments in C. wrightii cells are reflected by the apparent coalescence of protein and oil bodies. The timing and temperature dependence of cellular changes suggest that damage arises via a physical mechanism, perhaps as a result of shifts in hydrophobic and hydrophilic interactions when triacylglycerols undergo phase changes. Stabilizers of oil body structure such as oleosins that rely on a balance of physical forces may become ineffective when triacylglycerols crystallize. Recent observations linking poor oil body stability and poor seed storage behavior are potentially explained by the phase behavior of the storage lipids. These findings directly impact the feasibility of preserving genetic resources from some tropical and subtropical species.

  20. Entropic Anomaly Observed in Lipid Polymorphisms Induced by Surfactant Peptide SP-B(1-25).

    PubMed

    Tran, Nhi; Kurian, Justin; Bhatt, Avni; McKenna, Robert; Long, Joanna R

    2017-10-05

    The N-terminal 25 amino-acid residues of pulmonary surfactant protein B (SP-B 1-25 ) induces unusual lipid polymorphisms in a model lipid system, 4:1 DPPC/POPG, mirroring the lipid composition of native pulmonary surfactant. It is widely suggested that SP-B 1-25 -induced lipid polymorphisms within the alveolar aqueous subphase provide a structural platform for rapid lipid adsorption to the air-water interface. Here, we characterize in detail the phase behavior of DPPC and POPG in hydrated lipid assemblies containing therapeutic levels of SP-B 1-25 using 2 H and 31 P solid state NMR spectroscopy. The appearance of a previously observed isotropic lipid phase is found to be highly dependent on the thermal cycling of the samples. Slow heating of frozen samples leads to phase separation of DPPC into a lamellar phase whereas POPG lipids interact with the peptide to form an isotropic phase at physiologic temperature. Rapid heating of frozen samples to room temperature leads to strongly isotropic phase behavior for both DPPC and POPG lipids, with DPPC in exchange between isotropic and interdigitated phases. 31 P T 2 relaxation times confirm the isotropic phase to be consistent with a lipid cubic phase. The observed phases exhibit thermal stability up to physiologic temperature (37 °C) and are consistent with the formation of a ripple phase containing a large number of peptide-induced membrane structural defects enabling rapid transit of lipids between lipid lamellae. The coexistance of a lipid cubic phase with interdigitated lipids suggests a specific role for the highly conserved N-terminus of SP-B in stabilizing this unusual lipid polymorphism.

  1. Small regulatory RNA-induced growth rate heterogeneity of Bacillus subtilis.

    PubMed

    Mars, Ruben A T; Nicolas, Pierre; Ciccolini, Mariano; Reilman, Ewoud; Reder, Alexander; Schaffer, Marc; Mäder, Ulrike; Völker, Uwe; van Dijl, Jan Maarten; Denham, Emma L

    2015-03-01

    Isogenic bacterial populations can consist of cells displaying heterogeneous physiological traits. Small regulatory RNAs (sRNAs) could affect this heterogeneity since they act by fine-tuning mRNA or protein levels to coordinate the appropriate cellular behavior. Here we show that the sRNA RnaC/S1022 from the Gram-positive bacterium Bacillus subtilis can suppress exponential growth by modulation of the transcriptional regulator AbrB. Specifically, the post-transcriptional abrB-RnaC/S1022 interaction allows B. subtilis to increase the cell-to-cell variation in AbrB protein levels, despite strong negative autoregulation of the abrB promoter. This behavior is consistent with existing mathematical models of sRNA action, thus suggesting that induction of protein expression noise could be a new general aspect of sRNA regulation. Importantly, we show that the sRNA-induced diversity in AbrB levels generates heterogeneity in growth rates during the exponential growth phase. Based on these findings, we hypothesize that the resulting subpopulations of fast- and slow-growing B. subtilis cells reflect a bet-hedging strategy for enhanced survival of unfavorable conditions.

  2. Pf155/RESA protein influences the dynamic microcirculatory behavior of ring-stage Plasmodium falciparum infected red blood cells

    PubMed Central

    Diez-Silva, Monica; Park, YongKeun; Huang, Sha; Bow, Hansen; Mercereau-Puijalon, Odile; Deplaine, Guillaume; Lavazec, Catherine; Perrot, Sylvie; Bonnefoy, Serge; Feld, Michael S.; Han, Jongyoon; Dao, Ming; Suresh, Subra

    2012-01-01

    Proteins exported by Plasmodium falciparum to the red blood cell (RBC) membrane modify the structural properties of the parasitized RBC (Pf-RBC). Although quasi-static single cell assays show reduced ring-stage Pf-RBCs deformability, the parameters influencing their microcirculatory behavior remain unexplored. Here, we study the dynamic properties of ring-stage Pf-RBCs and the role of the parasite protein Pf155/Ring-Infected Erythrocyte Surface Antigen (RESA). Diffraction phase microscopy revealed RESA-driven decreased Pf-RBCs membrane fluctuations. Microfluidic experiments showed a RESA-dependent reduction in the Pf-RBCs transit velocity, which was potentiated at febrile temperature. In a microspheres filtration system, incubation at febrile temperature impaired traversal of RESA-expressing Pf-RBCs. These results show that RESA influences ring-stage Pf-RBCs microcirculation, an effect that is fever-enhanced. This is the first identification of a parasite factor influencing the dynamic circulation of young asexual Pf-RBCs in physiologically relevant conditions, offering novel possibilities for interventions to reduce parasite survival and pathogenesis in its human host. PMID:22937223

  3. Pf155/RESA protein influences the dynamic microcirculatory behavior of ring-stage Plasmodium falciparum infected red blood cells

    NASA Astrophysics Data System (ADS)

    Diez-Silva, Monica; Park, Yongkeun; Huang, Sha; Bow, Hansen; Mercereau-Puijalon, Odile; Deplaine, Guillaume; Lavazec, Catherine; Perrot, Sylvie; Bonnefoy, Serge; Feld, Michael S.; Han, Jongyoon; Dao, Ming; Suresh, Subra

    2012-08-01

    Proteins exported by Plasmodium falciparum to the red blood cell (RBC) membrane modify the structural properties of the parasitized RBC (Pf-RBC). Although quasi-static single cell assays show reduced ring-stage Pf-RBCs deformability, the parameters influencing their microcirculatory behavior remain unexplored. Here, we study the dynamic properties of ring-stage Pf-RBCs and the role of the parasite protein Pf155/Ring-Infected Erythrocyte Surface Antigen (RESA). Diffraction phase microscopy revealed RESA-driven decreased Pf-RBCs membrane fluctuations. Microfluidic experiments showed a RESA-dependent reduction in the Pf-RBCs transit velocity, which was potentiated at febrile temperature. In a microspheres filtration system, incubation at febrile temperature impaired traversal of RESA-expressing Pf-RBCs. These results show that RESA influences ring-stage Pf-RBCs microcirculation, an effect that is fever-enhanced. This is the first identification of a parasite factor influencing the dynamic circulation of young asexual Pf-RBCs in physiologically relevant conditions, offering novel possibilities for interventions to reduce parasite survival and pathogenesis in its human host.

  4. Circadian phase-dependent effect of nitric oxide on L-type voltage-gated calcium channels in avian cone photoreceptors

    PubMed Central

    Ko, Michael L.; Shi, Liheng; Huang, Cathy Chia-Yu; Grushin, Kirill; Park, So-Young; Ko, Gladys Y.-P.

    2014-01-01

    Nitric oxide (NO) plays an important role in phase-shifting of circadian neuronal activities in the suprachiasmatic nucleus and circadian behavior activity rhythms. In the retina, NO production is increased in a light-dependent manner. While endogenous circadian oscillators in retinal photoreceptors regulate their physiological states, it is not clear whether NO also participates in the circadian regulation of photoreceptors. In the present study, we demonstrate that NO is involved in the circadian phase-dependent regulation of L-type voltage-gated calcium channels (L-VGCCs). In chick cone photoreceptors, the L-VGCCα1 subunit expression and the maximal L-VGCC currents are higher at night, and both Ras-MAPK (mitogen-activated protein kinase)-Erk (extracellular-signal-regulated kinase) and Ras-phosphatidylinositol 3 kinase (PI3K)-protein kinase B (Akt) are part of the circadian output pathways regulating L-VGCCs. The NO-cGMP-protein kinase G (PKG) pathway decreases L-VGCCα1 subunit expression and L-VGCC currents at night, but not during the day, and exogenous NO donor or cGMP decreases the phosphorylation of Erk and Akt at night. The protein expression of neural NO synthase (nNOS) is also under circadian control, with both nNOS and NO production being higher during the day. Taken together, NO/cGMP/PKG signaling is involved as part of the circadian output pathway to regulate L-VGCCs in cone photoreceptors. PMID:23895452

  5. Refolding of laccase from Trametes versicolor using aqueous two phase systems: Effect of different additives.

    PubMed

    Sánchez-Trasviña, Calef; Mayolo-Deloisa, Karla; González-Valdez, José; Rito-Palomares, Marco

    2017-07-21

    Protein refolding is a strategy used to obtain active forms of proteins from inclusion bodies. On its part, laccase is an enzyme with potential for different biotechnological applications but there are few reports regarding its refolding which in many cases is considered inefficient due to the poor obtained refolding yields. Aqueous Two-Phase Systems (ATPS) have been used for the refolding of proteins getting acceptable recovery percentages since PEG presents capacity to avoid protein aggregation. In this work, 48 PEG-phosphate ATPS were analyzed to study the impact of different parameters (i.e. tie line length (TLL), volume ratio (V R ) and PEG molecular weight) upon the recovery and refolding of laccase. Additionally, since laccase is a metalloprotein, the use of additives (individually and in mixture) was studied with the aim of favoring refolding. Results showed that laccase presents a high affinity for the PEG-rich phase obtaining recovery values of up to 90%. Such affinity increases with increasing TLL and decreases when PEG molecular weight and V R increase. In denatured state, this PEG-rich phase affinity decreases drastically. However, the use of additives such as l-cysteine, glutathione oxidized, cysteamine and Cu +2 was critical in improving refolding yield values up to 100%. The best conditions for the refolding of laccase were obtained using the PEG 400gmol -1 , TLL 45% w/w, V R 3 ATPS and a mixture of 2.5mM cysteamine with 1mM Cu +2 . To our knowledge, this is the first time that the use of additives and the behavior of the mixture of such additives to enhance refolding performance in ATPS is reported. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Drug-target residence time--a case for G protein-coupled receptors.

    PubMed

    Guo, Dong; Hillger, Julia M; IJzerman, Adriaan P; Heitman, Laura H

    2014-07-01

    A vast number of marketed drugs act on G protein-coupled receptors (GPCRs), the most successful category of drug targets to date. These drugs usually possess high target affinity and selectivity, and such combined features have been the driving force in the early phases of drug discovery. However, attrition has also been high. Many investigational new drugs eventually fail in clinical trials due to a demonstrated lack of efficacy. A retrospective assessment of successfully launched drugs revealed that their beneficial effects in patients may be attributed to their long drug-target residence times (RTs). Likewise, for some other GPCR drugs short RT could be beneficial to reduce the potential for on-target side effects. Hence, the compounds' kinetics behavior might in fact be the guiding principle to obtain a desired and durable effect in vivo. We therefore propose that drug-target RT should be taken into account as an additional parameter in the lead selection and optimization process. This should ultimately lead to an increased number of candidate drugs moving to the preclinical development phase and on to the market. This review contains examples of the kinetics behavior of GPCR ligands with improved in vivo efficacy and summarizes methods for assessing drug-target RT. © 2014 Wiley Periodicals, Inc.

  7. Altered temporal patterns of anxiety in aged and amyloid precursor protein (APP) transgenic mice.

    PubMed

    Bedrosian, Tracy A; Herring, Kamillya L; Weil, Zachary M; Nelson, Randy J

    2011-07-12

    Both normal aging and dementia are associated with dysregulation of the biological clock, which contributes to disrupted circadian organization of physiology and behavior. Diminished circadian organization in conjunction with the loss of cholinergic input to the cortex likely contributes to impaired cognition and behavior. One especially notable and relatively common circadian disturbance among the aged is "sundowning syndrome," which is characterized by exacerbated anxiety, agitation, locomotor activity, and delirium during the hours before bedtime. Sundowning has been reported in both dementia patients and cognitively intact elderly individuals living in institutions; however, little is known about temporal patterns in anxiety and agitation, and the neurobiological basis of these rhythms remains unspecified. In the present study, we explored the diurnal pattern of anxiety-like behavior in aged and amyloid precursor protein (APP) transgenic mice. We then attempted to treat the observed behavioral disturbances in the aged mice using chronic nightly melatonin treatment. Finally, we tested the hypothesis that time-of-day differences in acetylcholinesterase and choline acetyltransferase expression and general neuronal activation (i.e., c-Fos expression) coincide with the behavioral symptoms. Our results show a temporal pattern of anxiety-like behavior that emerges in elderly mice. This behavioral pattern coincides with elevated locomotor activity relative to adult mice near the end of the dark phase, and with time-dependent changes in basal forebrain acetylcholinesterase expression. Transgenic APP mice show a similar behavioral phenomenon that is not observed among age-matched wild-type mice. These results may have useful applications to the study and treatment of age- and dementia-related circadian behavioral disturbances, namely, sundowning syndrome.

  8. Short- and long-term memory are modulated by multiple isoforms of the fragile X mental retardation protein.

    PubMed

    Banerjee, Paromita; Schoenfeld, Brian P; Bell, Aaron J; Choi, Catherine H; Bradley, Michael P; Hinchey, Paul; Kollaros, Maria; Park, Jae H; McBride, Sean M J; Dockendorff, Thomas C

    2010-05-12

    The diversity of protein isoforms arising from alternative splicing is thought to modulate fine-tuning of synaptic plasticity. Fragile X mental retardation protein (FMRP), a neuronal RNA binding protein, exists in isoforms as a result of alternative splicing, but the contribution of these isoforms to neural plasticity are not well understood. We show that two isoforms of Drosophila melanogaster FMRP (dFMR1) have differential roles in mediating neural development and behavior functions conferred by the dfmr1 gene. These isoforms differ in the presence of a protein interaction module that is related to prion domains and is functionally conserved between FMRPs. Expression of both isoforms is necessary for optimal performance in tests of short- and long-term memory of courtship training. The presence or absence of the protein interaction domain may govern the types of ribonucleoprotein (RNP) complexes dFMR1 assembles into, with different RNPs regulating gene expression in a manner necessary for establishing distinct phases of memory formation.

  9. Phase Transitions in Model Active Systems

    NASA Astrophysics Data System (ADS)

    Redner, Gabriel S.

    The amazing collective behaviors of active systems such as bird flocks, schools of fish, and colonies of microorganisms have long amazed scientists and laypeople alike. Understanding the physics of such systems is challenging due to their far-from-equilibrium dynamics, as well as the extreme diversity in their ingredients, relevant time- and length-scales, and emergent phenomenology. To make progress, one can categorize active systems by the symmetries of their constituent particles, as well as how activity is expressed. In this work, we examine two categories of active systems, and explore their phase behavior in detail. First, we study systems of self-propelled spherical particles moving in two dimensions. Despite the absence of an aligning interaction, this system displays complex emergent dynamics, including phase separation into a dense active solid and dilute gas. Using simulations and analytic modeling, we quantify the phase diagram and separation kinetics. We show that this nonequilibrium phase transition is analogous to an equilibrium vapor-liquid system, with binodal and spinodal curves and a critical point. We also characterize the dense active solid phase, a unique material which exhibits the structural signatures of a crystalline solid near the crystal-hexatic transition point, as well as anomalous dynamics including superdiffusive motion on intermediate timescales. We also explore the role of interparticle attraction in this system. We demonstrate that attraction drastically changes the phase diagram, which contains two distinct phase-separated regions and is reentrant as a function of propulsion speed. We interpret this complex situation with a simple kinetic model, which builds from the observed microdynamics of individual particles to a full description of the macroscopic phase behavior. We also study active nematics, liquid crystals driven out of equilibrium by energy-dissipating active stresses. The equilibrium nematic state is unstable in these materials, leading to beautiful and surprising behaviors including the spontaneous generation of topological defect pairs which stream through the system and later annihilate, yielding a complex, seemingly chaotic dynamical steady-state. Here, we describe the emergence of order from this chaos in the form of previously unknown broken-symmetry phases in which the topological defects themselves undergo orientational ordering. We have identified these defect-ordered phases in two realizations of an active nematic: first, a suspension of extensile bundles of microtubules and molecular motor proteins, and second, a computational model of extending hard rods. We will describe the defect-stabilized phases that manifest in these systems, our current understanding of their origins, and discuss whether such phases may be a general feature of extensile active nematics.

  10. Rapid measurement of protein osmotic second virial coefficients by self-interaction chromatography.

    PubMed Central

    Tessier, Peter M; Lenhoff, Abraham M; Sandler, Stanley I

    2002-01-01

    Weak protein interactions are often characterized in terms of the osmotic second virial coefficient (B(22)), which has been shown to correlate with protein phase behavior, such as crystallization. Traditional methods for measuring B(22), such as static light scattering, are too expensive in terms of both time and protein to allow extensive exploration of the effects of solution conditions on B(22). In this work we have measured protein interactions using self-interaction chromatography, in which protein is immobilized on chromatographic particles and the retention of the same protein is measured in isocratic elution. The relative retention of the protein reflects the average protein interactions, which we have related to the second virial coefficient via statistical mechanics. We obtain quantitative agreement between virial coefficients measured by self-interaction chromatography and traditional characterization methods for both lysozyme and chymotrypsinogen over a wide range of pH and ionic strengths, yet self-interaction chromatography requires at least an order of magnitude less time and protein than other methods. The method thus holds significant promise for the characterization of protein interactions requiring only commonly available laboratory equipment, little specialized expertise, and relatively small investments of both time and protein. PMID:11867474

  11. Mistimed food intake and sleep alters 24-hour time-of-day patterns of the human plasma proteome.

    PubMed

    Depner, Christopher M; Melanson, Edward L; McHill, Andrew W; Wright, Kenneth P

    2018-06-05

    Proteomics holds great promise for understanding human physiology, developing health biomarkers, and precision medicine. However, how much the plasma proteome varies with time of day and is regulated by the master circadian suprachiasmatic nucleus brain clock, assessed here by the melatonin rhythm, is largely unknown. Here, we assessed 24-h time-of-day patterns of human plasma proteins in six healthy men during daytime food intake and nighttime sleep in phase with the endogenous circadian clock (i.e., circadian alignment) versus daytime sleep and nighttime food intake out of phase with the endogenous circadian clock (i.e., circadian misalignment induced by simulated nightshift work). We identified 24-h time-of-day patterns in 573 of 1,129 proteins analyzed, with 30 proteins showing strong regulation by the circadian cycle. Relative to circadian alignment, the average abundance and/or 24-h time-of-day patterns of 127 proteins were altered during circadian misalignment. Altered proteins were associated with biological pathways involved in immune function, metabolism, and cancer. Of the 30 circadian-regulated proteins, the majority peaked between 1400 hours and 2100 hours, and these 30 proteins were associated with basic pathways involved in extracellular matrix organization, tyrosine kinase signaling, and signaling by receptor tyrosine-protein kinase erbB-2. Furthermore, circadian misalignment altered multiple proteins known to regulate glucose homeostasis and/or energy metabolism, with implications for altered metabolic physiology. Our findings demonstrate the circadian clock, the behavioral wake-sleep/food intake-fasting cycle, and interactions between these processes regulate 24-h time-of-day patterns of human plasma proteins and help identify mechanisms of circadian misalignment that may contribute to metabolic dysregulation.

  12. Water Holding as Determinant for the Elastically Stored Energy in Protein-Based Gels.

    PubMed

    Pouvreau, Laurice; van Wijlen, Emke; Klok, Jan; Urbonaite, Vaida; Munialo, Claire D; de Jongh, Harmen H J

    2016-04-01

    To evaluate the importance of the water holding capacity for the elastically stored energy of protein gels, a range of gels were created from proteins from different origin (plant: pea and soy proteins, and animal: whey, blood plasma, egg white proteins, and ovalbumin) varying in network morphology set by the protein concentration, pH, ionic strength, or the presence of specific ions. The results showed that the observed positive and linear relation between water holding (WH) and elastically stored energy (RE) is generic for globular protein gels studied. The slopes of this relation are comparable for all globular protein gels (except for soy protein gels) whereas the intercept is close to 0 for most of the systems except for ovalbumin and egg white gels. The slope and intercept obtained allows one to predict the impact of tuning WH, by gel morphology or network stiffness, on the mechanical deformation of the protein-based gel. Addition of charged polysaccharides to a protein system leads to a deviation from the linear relation between WH and RE and this deviation coincides with a change in phase behavior. © 2016 Institute of Food Technologists®

  13. Interaction of fibrinogen and albumin with titanium dioxide nanoparticles of different crystalline phases

    NASA Astrophysics Data System (ADS)

    Marucco, Arianna; Fenoglio, Ivana; Turci, Francesco; Fubini, Bice

    2013-04-01

    TiO2 nanoparticles (NPs) are contained in different kinds of industrial products including paints, self-cleaning glasses, sunscreens. TiO2 is also employed in photocatalysis and it has been proposed for waste water treatment. Micrometric TiO2 is generally considered a safe material, while there is concern on the possible health effects of nanometric titania. Due to their small size NPs may migrate within the human body possibly entering in the blood stream. Therefore studies on the interaction of NPs with plasma proteins are needed. In fact, the interaction with proteins is believed to ultimately influences the NPs biological fate. Fibrinogen and albumin are two of the most abundant plasma proteins. They are involved in several important physiological functions. Furthermore, fibrinogen is known to trigger platelet adhesion and inflammation. For these reasons the study of the interaction between these protein and nanoparticles is an important step toward the understanding of the behavior of NPs in the body. In this study we investigated the interaction of albumin and fibrinogen with TiO2 nanoparticles of different crystal phases (rutile and anatase) using an integrated set of techniques. The amount of adsorbed fibrinogen and albumin for each TiO2 surface was investigated by using the bicinchoninic acid assay (BCA). The variation of the surface charge of the NP-protein conjugates respect to the naked NPs was used to indirectly estimate both surface coverage and reversibility of the adsorption upon dilution. Surface charge was monitored by measuring the ζ potential with a conventional electrophoretic light scattering (ELS) system. The extent of protein deformation was evaluated by Raman Spectroscopy. We found that both proteins adsorb irreversibly against electrostatic repulsion, likely undergoing conformational changes or selective orientation upon adsorption. The size of primary particles and the particles aggregation rather than the crystal phase modulate the affinity of fibrinogen for the TiO2 surfaces.

  14. An X-ray transparent microfluidic platform for screening of the phase behavior of lipidic mesophases

    PubMed Central

    Khvostichenko, Daria S.; Kondrashkina, Elena; Perry, Sarah L.; Pawate, Ashtamurthy S.; Brister, Keith

    2013-01-01

    Lipidic mesophases are a class of highly ordered soft materials that form when certain lipids are mixed with water. Understanding the relationship between the composition and the microstructure of mesophases is necessary for fundamental studies of self-assembly in amphiphilic systems and for applications, such as crystallization of membrane proteins. However, the laborious formulation protocol for highly viscous mesophases and the large amounts of material required for sample formulation are significant obstacles in such studies. Here we report a microfluidic platform that facilitates investigations of the phase behavior of mesophases by reducing sample consumption, and automating and parallelizing sample formulation. The mesophases were formulated on-chip using less than 40 nL of material per sample and their microstructure was analyzed in situ using small-angle X-ray scattering (SAXS). The 220 μm-thick X-ray compatible platform was comprised of thin polydimethylsiloxane (PDMS) layers sandwiched between cyclic olefin copolymer (COC) sheets. Uniform mesophases were prepared using an active on-chip mixing strategy coupled with periodic cooling of the sample to reduce the viscosity. We validated the platform by preparing and analyzing mesophases of lipid monoolein (MO) mixed with aqueous solutions of different concentrations of β-octylglucoside (βOG), a detergent frequently used in membrane protein crystallization. Four samples were prepared in parallel on chip, by first metering and automatically diluting βOG to obtain detergent solutions of different concentration, then metering MO, and finally mixing by actuation of pneumatic valves. Integration of detergent dilution and subsequent mixing significantly reduced the number of manual steps needed for sample preparation. Three different types of mesophases typical for monoolein were successfully identified in SAXS data from on-chip samples. Microstructural parameters of identical samples formulated in different chips showed excellent agreement. Phase behavior observed on-chip corresponded well with that of samples prepared via the traditional coupled-syringe method (“off-chip”) using 300-fold larger amount of material, further validating the utility of the microfluidic platform for on-chip characterization of mesophase behavior. PMID:23882463

  15. Morphology of molecular soy protein fractions in binary composite gels.

    PubMed

    Kasapis, Stefan; Tay, Sok Li

    2009-08-04

    We investigate the structural properties of gels of binary mixtures of the three major soy protein fractions: 11S, 7S, and 2S. Gels are formed at 25 degrees C in the presence of glucono-delta-lactone and studied using a combination of dynamic rheology and scanning electron microscopy. The theological data was then modeled using a blending-law approach that yields insights into the solvent distribution between the gelled protein fractions and first-order reaction kinetics that follow the gelation process of the single fractions and their mixtures. Gelled mixtures of 11S and 7S yielded enhanced network strength with increasing solid content; in these gels, 50% more solvent partitioned into the 11S phase as compared to that in the 7S phase. In contrast, the addition of small-molecular-weight counterpart 2S to either 11S or 7S results in a catastrophic drop in the values of the overall strength of the mixture. The unexpected phase behavior has been rationalized on the basis of the high water-holding capacity of 2S; 450% more solvent partitions preferentially into the 2S phase as compared to that in the 11S phase. As the concentration of 2S is increased relative to that of 11S or 7S, it becomes the dominant phase and entraps the polymeric segments of 11S (or 7S), thus preventing them from becoming the structural knots of the gel. In addition to the solvent distribution in the gel, the rates of gelation differ markedly between 11S and 2S (with the 11S rate of gelation being up to 2 orders of magnitude greater); a fixed 11S concentration, the rate of gelation decreases with increasing amounts of 2S, further confirming that the latter essentially becomes the dominant phase in the composite gel.

  16. Sorting of amphiphile membrane components in curvature and composition gradients

    NASA Astrophysics Data System (ADS)

    Tian, Aiwei

    Phase and shape heterogeneities in biomembranes are of functional importance. However, it is difficult to elucidate the roles membrane heterogeneities play in maintaining cellular function due to the complexity of biomembranes. Therefore, investigations of phase behavior and composition/curvature coupling in lipid and polymer model membranes offer some advantages. In this thesis, phase properties in lipid and polymer giant vesicles were studied. Line tension at the fluid/fluid phase boundary of giant lipid unilamellar vesicles was determined directly by micropipette aspiration, and found to be composition-dependent. Dynamics of calcium-induced domains within polyanionic vesicles subject to chemical stimuli were investigated, which revealed the strength of molecular interaction and suggested applications in triggered delivery. In addition, curvature sorting of lipids and proteins was examined. Lipid membrane tethers were pulled from giant unilamellar vesicles using two micropipettes and a bead. Tether radius can be controlled and measured in this system. By examining fluorescence intensity of labeled molecules as a function of curvature, we found that DiI dyes (lipid analogues with spontaneous curvatures) had no curvature preference down to radii of 10 nm. Theoretical calculation predicted that the distribution of small lipids was dominated by entropy instead of bending energy. However protein Cholera toxin subunit B was efficiently sorted away from the high positive curvature due to its negative spontaneous curvature. Bending stiffness was determined to decrease as curvature increased in homogeneous membranes with ternary lipid mixtures near a critical consulate point, revealing the strong preferential intermolecular interactions of such mixtures. In addition, diffusion controlled domain growth was observed in tethers pulled from phase-separated vesicles, which provides a new dynamic sorting principle for lipids and proteins in curvature gradients.

  17. Phase Transition in Biopolymer Hydrogels Based on Glycine (g), Valine (v), Proline (p), and Isoleucine (i)

    NASA Astrophysics Data System (ADS)

    Lee, Jonghwi; Urry, Dan W.; Macosko, Christopher W.

    2000-03-01

    Selectively modified elastic protein-based polymers demonstrate diverse energy conversions by means of the control of a phase transition resulting from the sensitivity to stimuli of the hydrophobic association. Among these polymers, poly(GVGVP), poly(GVGIP) and analogues of poly(GVGVP) containing carboxylic acid or amino functional groups as side chains were cross-linked and their swelling behavior was studied. Regardless of cross-linking method, reversible phase transitions can be observed in the swelling of all cross-linked polymers by changing temperature and pH, where relevant. Decreased cross-link density leads to increased swelling ratio as the transition becomes more pronounced. Fibers, chemically cross-linked after formation, exhibit anisotropic dimensional changes on changing the temperature. Gamma-irradiation cross-linked poly(GVGVP) exhibited a more distinct phase transition than modified poly(GVGVP) with ion pairs between side chains, which were partially converted to amide cross-links.

  18. Influence of charge and flexibility on smectic phase formation in filamentous virus suspensions

    NASA Astrophysics Data System (ADS)

    Purdy, Kirstin R.; Fraden, Seth

    2007-07-01

    We present experimental measurements of the cholesteric-smectic phase transition of suspensions of charged semiflexible rods as a function of rod flexibility and surface charge. The rod particles consist of the bacteriophage M13 and closely related mutants, which are structurally identical to M13, but vary either in contour length and therefore ratio of persistence length to contour length, or surface charge. Surface charge is altered in two ways; by changing solution pH and by comparing M13 with fd virus, a virus which differs from M13 only by the substitution of a single charged amino acid for a neutral one per viral coat protein. Phase diagrams are measured as a function of particle length, particle charge, and ionic strength. The experimental results are compared with existing theoretical predictions for the phase behavior of flexible rods and charged rods.

  19. Molecular features determining different partitioning patterns of papain and bromelain in aqueous two-phase systems.

    PubMed

    Rocha, Maria Victoria; Nerli, Bibiana Beatriz

    2013-10-01

    The partitioning patterns of papain (PAP) and bromelain (BR), two well-known cysteine-proteases, in polyethyleneglycol/sodium citrate aqueous two-phase systems (ATPSs) were determined. Polyethyleneglycols of different molecular weight (600, 1000, 2000, 4600 and 8000) were assayed. Thermodynamic characterization of partitioning process, spectroscopy measurements and computational calculations of protein surface properties were also carried out in order to explain their differential partitioning behavior. PAP was observed to be displaced to the salt-enriched phase in all the assayed systems with partition coefficients (KpPAP) values between 0.2 and 0.9, while BR exhibited a high affinity for the polymer phase in systems formed by PEGs of low molecular weight (600 and 1000) with partition coefficients (KpBR) values close to 3. KpBR values resulted higher than KpPAP in all the cases. This difference could be assigned neither to the charge nor to the size of the partitioned biomolecules since PAP and BR possess similar molecular weight (23,000) and isoelectric point (9.60). The presence of highly exposed tryptophans and positively charged residues (Lys, Arg and His) in BR molecule would be responsible for a charge transfer interaction between PEG and the protein and, therefore, the uneven distribution of BR in these systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Viscoelastic properties of soy protein isolate - pectin blends: Richer than those of a simple composite material.

    PubMed

    Dekkers, Birgit L; Boom, Remko M; van der Goot, Atze Jan

    2018-05-01

    Concentrated soy protein isolate (SPI) - pectin blends acquire fibrous textures by shear-induced structuring while heating. The objective of this study was to determine the viscoelastic properties of concentrated SPI-pectin blends under similar conditions as during shear-induced structuring, and after cooling. A closed cavity rheometer was used to measure these properties under these conditions. At 140 °C, SPI and pectin had both a lower G* than the blend of the two and also showed a different behavior in time. Hence, the viscoelastic properties of the blend are richer than those of a simple composite material with stable physical phase properties. In addition, the G' pectin was much lower compared with the G' SPI and G' SPI-pectin upon cooling, confirming that pectin formed a weak dispersed phase. The results can be explained by considering that the viscoelastic properties of the blend are influenced by thermal degradation of the pectin phase. This degradation leads to: i) release of galacturonic acid, ii) lowering of the pH, and iii) water redistribution from the SPI towards the pectin phase. The relative importance of those effects are evaluated. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Nonlinear Surface Dilatational Rheology and Foaming Behavior of Protein and Protein Fibrillar Aggregates in the Presence of Natural Surfactant.

    PubMed

    Wan, Zhili; Yang, Xiaoquan; Sagis, Leonard M C

    2016-04-19

    The surface and foaming properties of native soy glycinin (11S) and its heat-induced fibrillar aggregates, in the presence of natural surfactant steviol glycoside (STE), were investigated and compared at pH 7.0 to determine the impact of protein structure modification on protein-surfactant interfacial interactions. The adsorption at, and nonlinear dilatational rheological behavior of, the air-water interface were studied by combining drop shape analysis tensiometry, ellipsometry, and large-amplitude oscillatory dilatational rheology. Lissajous plots of surface pressure versus deformation were used to analyze the surface rheological response in terms of interfacial microstructure. The heat treatment generates a mixture of long fibrils and unconverted peptides. The presence of small peptides in 11S fibril samples resulted in a faster adsorption kinetics than that of native 11S. The addition of STE affected the adsorption of 11S significantly, whereas no apparent effect on the adsorption of the 11S fibril-peptide system was observed. The rheological response of interfaces stabilized by 11S-STE mixtures also differed significantly from the response for 11S fibril-peptide-STE mixtures. For 11S, the STE reduces the degree of strain hardening in extension and increases strain hardening in compression, suggesting the interfacial structure may change from a surface gel to a mixed phase of protein patches and STE domains. The foams generated from the mixtures displayed comparable foam stability to that of pure 11S. For 11S fibril-peptide mixtures STE only significantly affects the response in extension, where the degree of strain softening is decreased compared to the pure fibril-peptide system. The foam stability of the fibril-peptide system was significantly reduced by STE. These findings indicate that fibrillization of globular proteins could be a potential strategy to modify the complex surface and foaming behaviors of protein-surfactant mixtures.

  2. Coherent infrared emission from myoglobin crystals: An electric field measurement

    PubMed Central

    Groot, Marie-Louise; Vos, Marten H.; Schlichting, Ilme; van Mourik, Frank; Joffre, Manuel; Lambry, Jean-Christophe; Martin, Jean-Louis

    2002-01-01

    We introduce coherent infrared emission interferometry as a χ(2) vibrational spectroscopy technique and apply it to studying the initial dynamics upon photoactivation of myoglobin (Mb). By impulsive excitation (using 11-fs pulses) of a Mb crystal, vibrations that couple to the optical excitation are set in motion coherently. Because of the order in the crystal lattice the coherent oscillations of the different proteins in the crystal that are associated with charge motions give rise to a macroscopic burst of directional multi-teraHertz radiation. This radiation can be detected in a phase-sensitive way by heterodyning with a broad-band reference field. In this way both amplitude and phase of the different vibrations can be obtained. We detected radiation in the 1,000–1,500 cm−1 frequency region, which contains modes sensitive to the structure of the heme macrocycle, as well as peripheral protein modes. Both in carbonmonoxy-Mb and aquomet-Mb we observed emission from six modes, which were assigned to heme vibrations. The phase factors of the modes contributing to the protein electric field show a remarkable consistency, taking on values that indicate that the dipoles are created “emitting” at t = 0, as one would expect for impulsively activated modes. The few deviations from this behavior in Mb-CO we propose are the result of these modes being sensitive to the photodissociation process and severely disrupted by it. PMID:11818575

  3. Magnolol causes alterations in the cell cycle in androgen insensitive human prostate cancer cells in vitro by affecting expression of key cell cycle regulatory proteins.

    PubMed

    McKeown, Brendan T; McDougall, Luke; Catalli, Adriana; Hurta, Robert A R

    2014-01-01

    Prostate cancer, one of the most common cancers in the Western world, affects many men worldwide. This study investigated the effects of magnolol, a compound found in the roots and bark of the magnolia tree Magnolia officinalis, on the behavior of 2 androgen insensitive human prostate cancer cell lines, DU145 and PC3, in vitro. Magnolol, in a 24-h exposure at 40 and 80 μM, was found to be cytotoxic to cells. Magnolol also affected cell cycle progression of DU145 and PC3 cells, resulting in alterations to the cell cycle and subsequently decreasing the proportion of cells entering the G2/M-phase of the cell cycle. Magnolol inhibited the expression of cell cycle regulatory proteins including cyclins A, B1, D1, and E, as well as CDK2 and CDK4. Protein expression levels of pRBp107 decreased and pRBp130 protein expression levels increased in response to magnolol exposure, whereas p16(INK4a), p21, and p27 protein expression levels were apparently unchanged post 24-h exposure. Magnolol exposure at 6 h did increase p27 protein expression levels. This study has demonstrated that magnolol can alter the behavior of androgen insensitive human prostate cancer cells in vitro and suggests that magnolol may have potential as a novel anti-prostate cancer agent.

  4. Impact of additives on the formation of protein aggregates and viscosity in concentrated protein solutions.

    PubMed

    Bauer, Katharina Christin; Suhm, Susanna; Wöll, Anna Katharina; Hubbuch, Jürgen

    2017-01-10

    In concentrated protein solutions attractive protein interactions may not only cause the formation of undesired aggregates but also of gel-like networks with elevated viscosity. To guarantee stable biopharmaceutical processes and safe formulations, both phenomenons have to be avoided as these may hinder regular processing steps. This work screens the impact of additives on both phase behavior and viscosity of concentrated protein solutions. For this purpose, additives known for stabilizing proteins in solution or modulating the dynamic viscosity were selected. These additives were PEG 300, PEG 1000, glycerol, glycine, NaCl and ArgHCl. Concentrated lysozyme and glucose oxidase solutions at pH 3 and 9 served as model systems. Fourier-transformed-infrared spectroscopy was chosen to determine the conformational stability of selected protein samples. Influencing protein interactions, the impact of additives was strongly dependent on pH. Of all additives investigated, glycine was the only one that maintained protein conformational and colloidal stability while decreasing the dynamic viscosity. Low concentrations of NaCl showed the same effect, but increasing concentrations resulted in visible protein aggregation. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Acute Phase Proteins and Their Role in Periodontitis: A Review

    PubMed Central

    Moogala, Srinivas; Boggarapu, Shalini; Pesala, Divya Sai; Palagi, Firoz Babu

    2015-01-01

    Acute phase proteins are a class of proteins whose plasma concentration increase (positive acute phase proteins) or decrease (negative acute phase proteins) in response to inflammation. This response is called as the acute phase reaction, also called as acute phase response, which occurs approximately 90 minutes after the onset of a systemic inflammatory reaction. In Periodontitis endotoxins released from gram negative organisms present in the sub gingival plaque samples interact with Toll- like receptors (TLR) that are expressed on the surface of Polymorphonuclear leucocytes (PMNs) and monocytes which are in abundance in periodontal inflammation. The complex formed due to interaction of Endotoxins and TLR activates the Signal transduction pathway in both innate and adaptive immunity resulting in production of Cytokines that co- ordinate the local and systemic inflammatory response. The pro inflammatory cytokines originating at the diseased site activates the liver cells to produce acute phase proteins as a part of non specific response. The production of Acute phase proteins is regulated to a great extent by Cytokines such as IL-1, IL-6, IL-8, TNF-α and to a lesser extent by Glucocorticoid hormones. These proteins bind to bacteria leading to activation of complement proteins that destroys pathogenic organisms. Studies have shown that levels of acute phase proteins are increased in otherwise healthy adults with poor periodontal status. This article highlights about the synthesis, structure, types and function of acute phase proteins and the associated relation of acute phase proteins in Periodontitis. PMID:26674303

  6. Composition, phase behavior and thermal stability of natural edible fat from rambutan (Nephelium lappaceum L.) seed.

    PubMed

    Solís-Fuentes, Julio A; Camey-Ortíz, Guadalupe; Hernández-Medel, María del Rosario; Pérez-Mendoza, Francisco; Durán-de-Bazúa, Carmen

    2010-01-01

    In this paper, the chemical composition, the main physicochemical properties, phase behavior and thermal stability of rambutan (Nephelium lappaceum L.) seed fat were studied. These results showed that the almond-like decorticated seed represents 6.1% of the wet weight fruit and is: 1.22% ash, 7.80% protein, 11.6% crude fiber, 46% carbohydrates, and 33.4% fat (d.b.). The main fatty acids in the drupe fat were 40.3% oleic, 34.5% arachidic, 6.1% palmitic, 7.1% stearic, 6.3% gondoic, and 2.9% behenic; the refraction, saponification and iodine values were 1.468, 186, and 47.0, respectively. The phase behavior analysis showed relatively simple crystallization and melting profiles: crystallization showed three well-differentiated groups of triglycerides around maximum peaks at +30.8, +15.6 and -18.1 degrees C; the fat-melting curve had a range between -14.5 and +51.8 degrees C with a fusion enthalpy of 124.3 J/g. The thermal stability analyzed in an inert atmosphere of N(2) and in a normal oxidizing atmosphere, showed that in the latter, fat decomposition begins at 237.3 degrees C and concludes at 529 degrees C, with three stages of decomposition. According to these results, rambutan seed fat has physicochemical and thermal characteristics that may become interesting for specific applications in several segments of the food industry.

  7. Localization and expression of MreB in Vibrio parahaemolyticus under different stresses.

    PubMed

    Chiu, Shen-Wen; Chen, Shau-Yan; Wong, Hin-chung

    2008-11-01

    MreB, the homolog of eukaryotic actin, may play a vital role when prokaryotes cope with stress by altering their spatial organization, including their morphology, subcellular architecture, and localization of macromolecules. This study investigates the behavior of MreB in Vibrio parahaemolyticus under various stresses. The behavior of MreB was probed using a yellow fluorescent protein-MreB conjugate in merodiploid strain SC9. Under normal growth conditions, MreB formed helical filaments in exponential-phase cells. The shape of starved or stationary-phase cells changed from rods to small spheroids. The cells differentiated into the viable but nonculturable (VBNC) state with small spherical cells via a "swelling-waning" process. In all cases, drastic remodeling of the MreB cytoskeleton was observed. MreB helices typically were loosened and fragmented into short filaments, arcs, and spots in bacteria under these stresses. The disintegrated MreB exhibited a strong tendency to attach to the cytoplasmic membrane. The expression of mreB generally declined in bacteria in the stationary phase and under starvation but was upregulated during the initial periods of cold shock and VBNC state differentiation and decreased afterwards. Our findings demonstrated the behavior of MreB in the morphological changes of V. parahaemolyticus under intrinsic or extrinsic stresses and may have important implications for studying the cellular stress response and aging.

  8. Widening and diversifying the proteome capture by combinatorial peptide ligand libraries via Alcian Blue dye binding.

    PubMed

    Candiano, Giovanni; Santucci, Laura; Petretto, Andrea; Lavarello, Chiara; Inglese, Elvira; Bruschi, Maurizio; Ghiggeri, Gian Marco; Boschetti, Egisto; Righetti, Pier Giorgio

    2015-01-01

    Combinatorial peptide ligand libraries (CPLLs) tend to bind complex molecules such as dyes due to their aromatic, heterocyclic, hydrophobic, and ionic nature that may affect the protein capture specificity. In this experimental work Alcian Blue 8GX, a positively charged phthalocyanine dye well-known to bind to glycoproteins and to glucosaminoglycans, was adsorbed on a chemically modified CPLL solid phase, and the behavior of the resulting conjugate was then investigated. The control and dye-adsorbed beads were used to harvest the human urinary proteome at physiological pH, this resulting in a grand total of 1151 gene products identified after the capture. Although the Alcian Blue-modified CPLL incremented the total protein capture by 115 species, it particularly enriched some families among the harvested proteins, such as glycoproteins and nucleotide-binding proteins. This study teaches that it is possible, via the two combined harvest mechanisms, to drive the CPLL capture toward the enrichment of specific protein categories.

  9. Interconnectivity of macroporous molecularly imprinted polymers fabricated by hydroxyapatite-stabilized Pickering high internal phase emulsions-hydrogels for the selective recognition of protein.

    PubMed

    Sun, Yanhua; Li, Yuqing; Xu, Jiangfeng; Huang, Ling; Qiu, Tianyun; Zhong, Shian

    2017-07-01

    Hydroxyapatite hybridized molecularly imprinted polydopamine polymers with selective recognition of bovine hemoglobin (BHb) were successfully prepared via Pickering oil-in-water high internal phase emulsions-hydrogels and molecularly imprinting technique. The emulsions were stabilized by hydroxyapatite of which the wettability was modified by 3-methacryloxypropyltrimethoxysilane. The materials were characterized by SEM, IR and TGA. The results showed that the BHb imprinted polymers based on Pickering hydrogels (Hydro-MIPs) possess macropores ranging from 20μm to 50μm, and their large numbers of amino groups and hydroxyl groups result in a favorable adsorption capacity for BHb. The maximum adsorption capacity of Hydro-MIPs for BHb was 438mg/g, 3.27 times more than that of the non-imprinted polymers (Hydro-NIPs). The results indicated that Hydro-MIPs possessing well-defined hierarchical porous structures exhibited outstanding recognition behavior towards the target protein molecules. This work provided a promising alternative method for the fabrication of polymer materials with tunable and interconnected pores structures for the separation and purification of protein in vitro. Copyright © 2017. Published by Elsevier B.V.

  10. Analysis of the Hippocampal Proteome in ME7 Prion Disease Reveals a Predominant Astrocytic Signature and Highlights the Brain-restricted Production of Clusterin in Chronic Neurodegeneration*

    PubMed Central

    Asuni, Ayodeji A.; Gray, Bryony; Bailey, Joanne; Skipp, Paul; Perry, V. Hugh; O'Connor, Vincent

    2014-01-01

    Prion diseases are characterized by accumulation of misfolded protein, gliosis, synaptic dysfunction, and ultimately neuronal loss. This sequence, mirroring key features of Alzheimer disease, is modeled well in ME7 prion disease. We used iTRAQTM/mass spectrometry to compare the hippocampal proteome in control and late-stage ME7 animals. The observed changes associated with reactive glia highlighted some specific proteins that dominate the proteome in late-stage disease. Four of the up-regulated proteins (GFAP, high affinity glutamate transporter (EAAT-2), apo-J (Clusterin), and peroxiredoxin-6) are selectively expressed in astrocytes, but astrocyte proliferation does not contribute to their up-regulation. The known functional role of these proteins suggests this response acts against protein misfolding, excitotoxicity, and neurotoxic reactive oxygen species. A recent convergence of genome-wide association studies and the peripheral measurement of circulating levels of acute phase proteins have focused attention on Clusterin as a modifier of late-stage Alzheimer disease and a biomarker for advanced neurodegeneration. Since ME7 animals allow independent measurement of acute phase proteins in the brain and circulation, we extended our investigation to address whether changes in the brain proteome are detectable in blood. We found no difference in the circulating levels of Clusterin in late-stage prion disease when animals will show behavioral decline, accumulation of misfolded protein, and dramatic synaptic and neuronal loss. This does not preclude an important role of Clusterin in late-stage disease, but it cautions against the assumption that brain levels provide a surrogate peripheral measure for the progression of brain degeneration. PMID:24366862

  11. Proteomics of light-harvesting proteins in different plant species. Analysis and comparison by liquid chromatography-electrospray ionization mass spectrometry. Photosystem I.

    PubMed

    Zolla, Lello; Rinalducci, Sara; Timperio, Anna Maria; Huber, Christian G

    2002-12-01

    The light-harvesting proteins (Lhca) of photosystem I (PSI) from four monocot and five dicot species were extracted from plant material, separated by reversed-phase high-performance liquid chromatography (HPLC) and subsequently identified on the basis of their intact molecular masses upon on-line hyphenation with electrospray ionization mass spectrometry. Although their migration behavior in gel electrophoresis was very similar, the elution times among the four antenna types in reversed-phase-HPLC differed significantly, even more than those observed for the light-harvesting proteins of photosystem II. Identification of proteins is based on the good agreement between the measured intact molecular masses and the values calculated on the basis of their nucleotide-derived amino acid sequences, which makes the intact molecular masses applicable as intact mass tags. These values match excellently for Arabidopsis, most probably because of the availability of high-quality DNA sequence data. In all species examined, the four antennae eluted in the same order, namely Lhca1 > Lhca3 > Lhca4 > Lhca2. These characteristic patterns enabled an unequivocal assignment of the proteins in preparations from different species. Interestingly, in all species examined, Lhca1 and Lhca2 were present in two or three isoforms. A fifth antenna protein, corresponding to the Lhca6 gene, was found in tomato (Lycopersicon esculentum). However PSI showed a lower heterogeneity than photosystem II. In most plant species, Lhca2 and Lhca4 proteins are the most abundant PSI antenna proteins. The HPLC method used in this study was found to be highly reproducible, and the chromatograms may serve as a highly confident fingerprint for comparison within a single and among different species for future studies of the PSI antenna.

  12. Creep anomaly in electrospun fibers made of globular proteins

    NASA Astrophysics Data System (ADS)

    Regev, Omri; Arinstein, Arkadii; Zussman, Eyal

    2013-12-01

    The anomalous responses of electrospun nanofibers and film fabricated of unfolded bovine serum albumin (BSA) under constant stress (creep) is observed. In contrast to typical creep behavior of viscoelastic materials demonstrating (after immediate elastic response) a time-dependent elongation, in case of low applied stresses (<1 MPa) the immediate elastic response of BSA samples is followed by gradual contraction up to 2%. Under higher stresses (2-6 MPa) the contraction phase changes into elongation; and in case of stresses above 7 MPa only elongation was observed, with no initial contraction. The anomalous creep behavior was not observed when the BSA samples were subjected to additional creep cycles independently on the stress level. The above anomaly, which was not observed before either for viscoelastic solids or for polymers, is related to specific protein features, namely, to the ability to fold. We hypothesize that the phenomenon is caused by folding of BSA macromolecules into dry molten globule states, feasible after cross-linked bonds break up, resulting from the applied external force.

  13. New insights about flocculation process in sodium caseinate-stabilized emulsions.

    PubMed

    Huck-Iriart, Cristián; Montes-de-Oca-Ávalos, Juan; Herrera, María Lidia; Candal, Roberto Jorge; Pinto-de-Oliveira, Cristiano Luis; Linares-Torriani, Iris

    2016-11-01

    Flocculation process was studied in emulsions formulated with 10wt.% sunflower oil, 2, 5 or 7.5wt.% NaCas, and with or without addition of sucrose (0, 5, 10, 15, 20 or 30wt.%). Two different processing conditions were used to prepare emulsions: ultraturrax homogenization or further homogenization by ultrasound. Emulsions with droplets with diameters above (coarse) or below (fine) 1μm were obtained. Emulsions were analyzed for droplet size distribution by static light scattering (SLS), stability by Turbiscan, and structure by confocal laser scanning microscopy (CLSM) and small angle X-ray scattering (SAXS). SAXS data were fitted by a theoretical model that considered a system composed of poly dispersed spheres with repulsive interaction and presence of aggregates. Flocculation behavior was caused by the self-assembly properties of NaCas, but the process was more closely related to interfacial protein content than micelles concentration in the aqueous phase. The results indicated that casein aggregation was strongly affected by disaccharide addition, hydrophobic interaction of the emulsion droplets, and interactions among interfacial protein molecules. The structural changes detected in the protein micelles in different environments allowed understanding the macroscopic physical behavior observed in concentrated NaCas emulsions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Lipid dip-pen nanolithography on self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Gavutis, Martynas; Navikas, Vytautas; Rakickas, Tomas; Vaitekonis, Šarūnas; Valiokas, Ramūnas

    2016-02-01

    Dip-pen nanolithography (DPN) with lipids as an ink enables functional micro/nanopatterning on different substrates at high process speeds. However, only a few studies have addressed the influence of the physicochemical properties of the surface on the structure and phase behavior of DPN-printed lipid assemblies. Therefore, by combining the scanning probe and optical imaging techniques in this work we have analyzed lipid microdomain formation on the self-assembled monolayers (SAMs) on gold as well-defined model surfaces that displayed hydrophilic (protein-repellent) or hydrophobic (protein-adhesive) characteristics. We have found that on the tri(ethylene glycol)-terminated SAM the lipid ink transfer was fast (~10-1 μm3 s-1), quasi-linear and it yielded unstable, sparsely packed lipid microspots. Contrary to this, on the methyl-terminated SAM the lipid transfer was ~20 times slower, nonlinear, and the obtained stable dots of ~1 μm in diameter consisted of lipid multilayers. Our comparative analysis indicated that the measured lipid transfer was consistent with the previously reported so-called polymer transfer model (Felts et al 2012, Nanotechnology 23 215301). Further on, by employing the observed distinct contrast in the DPN ink behavior we constructed confined lipid microdomains on pre-patterned SAMs, in which the lipids assembled either into monolayer or multilamellar phases. Such microdomains can be further utilized for lipid membrane mimetics in microarray and lab-on-a-chip device formats.

  15. Differential partition of virulent Aeromonas salmonicida and attenuated derivatives possessing specific cell surface alterations in polymer aqueous-phase systems

    NASA Technical Reports Server (NTRS)

    Van Alstine, J. M.; Trust, T. J.; Brooks, D. E.

    1986-01-01

    Two-polymer aqueous-phase systems in which partitioning of biological matter between the phases occurs according to surface properties such as hydrophobicity, charge, and lipid composition are used to compare the surface properties of strains of the fish pathogen Aeromonas salmonicida. The differential ability of strains to produce a surface protein array crucial to their virulence, the A layer, and to produce smooth lipopolysaccharide is found to be important in the partitioning behavior of Aeromonas salmonicida. The presence of the A layer is shown to decrease the surface hydrophilicity of the pathogen, and to increase specifically its surface affinity for fatty acid esters of polyethylene glycol. The method has application to the analysis of surface properties crucial to bacterial virulence, and to the selection of strains and mutants with specific surface characteristics.

  16. ROLE OF NEUROTRANSMITTERS AND PROTEIN SYNTHESIS IN SHORT- AND LONG-TERM MEMORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, E.L.; Rosenzweig, M.R.; Flood, J.F.

    1978-10-01

    Anisomycin is an effective inhibitor of cerebral protein synthesis in mice and is also an effective amnestic agent for both passive and active behavioral tasks. From use of anisomycin in combination with a variety of stimulant and depressant drugs, we conclude that the level of arousal following acquisition plays an important role in determining the duration and the rate of the biosynthetic phase of memory formation. While we have interpreted the experiments with anisomycin as evidence for an essential role of protein in memory storage, others have suggested that side effects of inhibitors of protein synthesis on catecholamine metabolism aremore » the main cause of amnesia. Several experiments were therefore done to compare the effects of anisemycin and catecholamine inhibitors on memory. We conclude that anisomycin's principal amnestic mechanism does not involve inhibition of the catecholamine system. The results strengthen our conclusion that protein synthesis is an essential component for longterm memory trace formation. Also, it is suggested that proteins synthesized in the neuronal cell body are used, in conjunction with other molecules, to produce permanent and semi-permanent anatomical changes.« less

  17. 'All-solid-state' electrochemistry of a protein-confined polymer electrolyte film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parthasarathy, Meera; Pillai, Vijayamohanan K.; Mulla, Imtiaz S.

    2007-12-07

    Interfacial redox behavior of a heme protein (hemoglobin) confined in a solid polymer electrolyte membrane, Nafion (a perfluoro sulfonic acid ionomer) is investigated using a unique 'all-solid-state' electrochemical methodology. The supple phase-separated structure of the polymer electrolyte membrane, with hydrophilic pools containing solvated protons and water molecules, is found to preserve the incorporated protein in its active form even in the solid-state, using UV-visible, Fluorescence (of Tryptophan and Tyrosine residues) and DRIFT (diffuse reflectance infrared Fourier transform) spectroscopy. More specifically, solid-state cyclic voltammetry and electrochemical impedance of the protein-incorporated polymer films reveal that the Fe{sup 2+}-form of the entrapped proteinmore » is found to bind molecular oxygen more strongly than the native protein. In the 'all-solid-state' methodology, as there is no need to dip the protein-modified electrode in a liquid electrolyte (like the conventional electrochemical methods), it offers an easier means to study a number of proteins in a variety of polymer matrices (even biomimetic assemblies). In addition, the results of the present investigation could find interesting application in a variety of research disciplines, in addition to its fundamental scientific interest, including protein biotechnology, pharmaceutical and biomimetic chemistry.« less

  18. Effects of tethering a multistate folding protein to a surface

    NASA Astrophysics Data System (ADS)

    Wei, Shuai; Knotts, Thomas A.

    2011-05-01

    Protein/surface interactions are important in a variety of fields and devices, yet fundamental understanding of the relevant phenomena remains fragmented due to resolution limitations of experimental techniques. Molecular simulation has provided useful answers, but such studies have focused on proteins that fold through a two-state process. This study uses simulation to show how surfaces can affect proteins which fold through a multistate process by investigating the folding mechanism of lysozyme (PDB ID: 7LZM). The results demonstrate that in the bulk 7LZM folds through a process with four stable states: the folded state, the unfolded state, and two stable intermediates. The folding mechanism remains the same when the protein is tethered to a surface at most residues; however, in one case the folding mechanism changes in such a way as to eliminate one of the intermediates. An analysis of the molecular configurations shows that tethering at this site is advantageous for protein arrays because the active site is both presented to the bulk phase and stabilized. Taken as a whole, the results offer hope that rational design of protein arrays is possible once the behavior of the protein on the surface is ascertained.

  19. Energy and enthalpy distribution functions for a few physical systems.

    PubMed

    Wu, K L; Wei, J H; Lai, S K; Okabe, Y

    2007-08-02

    The present work is devoted to extracting the energy or enthalpy distribution function of a physical system from the moments of the distribution using the maximum entropy method. This distribution theory has the salient traits that it utilizes only the experimental thermodynamic data. The calculated distribution functions provide invaluable insight into the state or phase behavior of the physical systems under study. As concrete evidence, we demonstrate the elegance of the distribution theory by studying first a test case of a two-dimensional six-state Potts model for which simulation results are available for comparison, then the biphasic behavior of the binary alloy Na-K whose excess heat capacity, experimentally observed to fall in a narrow temperature range, has yet to be clarified theoretically, and finally, the thermally induced state behavior of a collection of 16 proteins.

  20. Sequence heuristics to encode phase behaviour in intrinsically disordered protein polymers

    PubMed Central

    Quiroz, Felipe García; Chilkoti, Ashutosh

    2015-01-01

    Proteins and synthetic polymers that undergo aqueous phase transitions mediate self-assembly in nature and in man-made material systems. Yet little is known about how the phase behaviour of a protein is encoded in its amino acid sequence. Here, by synthesizing intrinsically disordered, repeat proteins to test motifs that we hypothesized would encode phase behaviour, we show that the proteins can be designed to exhibit tunable lower or upper critical solution temperature (LCST and UCST, respectively) transitions in physiological solutions. We also show that mutation of key residues at the repeat level abolishes phase behaviour or encodes an orthogonal transition. Furthermore, we provide heuristics to identify, at the proteome level, proteins that might exhibit phase behaviour and to design novel protein polymers consisting of biologically active peptide repeats that exhibit LCST or UCST transitions. These findings set the foundation for the prediction and encoding of phase behaviour at the sequence level. PMID:26390327

  1. Charge Mediated Compaction and Rearrangement of Gas-Phase Proteins: A Case Study Considering Two Proteins at Opposing Ends of the Structure-Disorder Continuum

    NASA Astrophysics Data System (ADS)

    Jhingree, Jacquelyn R.; Bellina, Bruno; Pacholarz, Kamila J.; Barran, Perdita E.

    2017-07-01

    Charge reduction in the gas phase provides a direct means of manipulating protein charge state, and when coupled to ion mobility mass spectrometry (IM-MS), it is possible to monitor the effect of charge on protein conformation in the absence of solution. Use of the electron transfer reagent 1,3-dicyanobenzene, coupled with IM-MS, allows us to monitor the effect of charge reduction on the conformation of two proteins deliberately chosen from opposite sides of the order to disorder continuum: bovine pancreatic trypsin inhibitor (BPTI) and beta casein. The ordered BPTI presents compact conformers for each of three charge states accompanied by narrow collision cross-section distributions (TWCCSDN2→He). Upon reduction of BPTI, irrespective of precursor charge state, the TWCCSN2→He decreases to a similar distribution as found for the nESI generated ion of identical charge. The behavior of beta casein upon charge reduction is more complex. It presents over a wide charge state range (9-28), and intermediate charge states (13-18) have broad TWCCSDN2→He with multiple conformations, where both compaction and rearrangement are seen. Further, we see that the TWCCSDN2→He of the latter charge states are even affected by the presence of radical anions. Overall, we conclude that the flexible nature of some proteins result in broad conformational distributions comprised of many families, even for single charge states, and the barrier between different states can be easily overcome by an alteration of the net charge.

  2. Charge pattern matching as a ‘fuzzy’ mode of molecular recognition for the functional phase separations of intrinsically disordered proteins

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Hsuan; Brady, Jacob P.; Forman-Kay, Julie D.; Chan, Hue Sun

    2017-11-01

    Biologically functional liquid-liquid phase separation of intrinsically disordered proteins (IDPs) is driven by interactions encoded by their amino acid sequences. Little is currently known about the molecular recognition mechanisms for distributing different IDP sequences into various cellular membraneless compartments. Pertinent physics was addressed recently by applying random-phase-approximation (RPA) polymer theory to electrostatics, which is a major energetic component governing IDP phase properties. RPA accounts for charge patterns and thus has advantages over Flory-Huggins (FH) and Overbeek-Voorn mean-field theories. To make progress toward deciphering the phase behaviors of multiple IDP sequences, the RPA formulation for one IDP species plus solvent is hereby extended to treat polyampholyte solutions containing two IDP species plus solvent. The new formulation generally allows for binary coexistence of two phases, each containing a different set of volume fractions ({φ }1,{φ }2) for the two different IDP sequences. The asymmetry between the two predicted coexisting phases with regard to their {φ }1/{φ }2 ratios for the two sequences increases with increasing mismatch between their charge patterns. This finding points to a multivalent, stochastic, ‘fuzzy’ mode of molecular recognition that helps populate various IDP sequences differentially into separate phase compartments. An intuitive illustration of this trend is provided by FH models, whereby a hypothetical case of ternary coexistence is also explored. Augmentations of the present RPA theory with a relative permittivity {ɛ }{{r}}(φ ) that depends on IDP volume fraction φ ={φ }1+{φ }2 lead to higher propensities to phase separate, in line with the case with one IDP species we studied previously. Notably, the cooperative, phase-separation-enhancing effects predicted by the prescriptions for {ɛ }{{r}}(φ ) we deem physically plausible are much more prominent than that entailed by common effective medium approximations based on Maxwell Garnett and Bruggeman mixing formulas. Ramifications of our findings on further theoretical development for IDP phase separation are discussed.

  3. Improvements in recall and food choices using a graphical method to deliver information of select nutrients.

    PubMed

    Pratt, Nathan S; Ellison, Brenna D; Benjamin, Aaron S; Nakamura, Manabu T

    2016-01-01

    Consumers have difficulty using nutrition information. We hypothesized that graphically delivering information of select nutrients relative to a target would allow individuals to process information in time-constrained settings more effectively than numerical information. Objectives of the study were to determine the efficacy of the graphical method in (1) improving memory of nutrient information and (2) improving consumer purchasing behavior in a restaurant. Values of fiber and protein per calorie were 2-dimensionally plotted alongside a target box. First, a randomized cued recall experiment was conducted (n=63). Recall accuracy of nutrition information improved by up to 43% when shown graphically instead of numerically. Second, the impact of graphical nutrition signposting on diner choices was tested in a cafeteria. Saturated fat and sodium information was also presented using color coding. Nutrient content of meals (n=362) was compared between 3 signposting phases: graphical, nutrition facts panels (NFP), or no nutrition label. Graphical signposting improved nutrient content of purchases in the intended direction, whereas NFP had no effect compared with the baseline. Calories ordered from total meals, entrées, and sides were significantly less during graphical signposting than no-label and NFP periods. For total meal and entrées, protein per calorie purchased was significantly higher and saturated fat significantly lower during graphical signposting than the other phases. Graphical signposting remained a predictor of calories and protein per calorie purchased in regression modeling. These findings demonstrate that graphically presenting nutrition information makes that information more available for decision making and influences behavior change in a realistic setting. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Sieve element occlusion provides resistance against Aphis gossypii in TGR-1551 melons.

    PubMed

    Peng, Hsuan-Chieh; Walker, Gregory P

    2018-05-30

    Feeding behavior and plant response to feeding were studied for the aphid Aphis gossypii (Glover) on susceptible and resistant melons (cv. Iroquois and TGR-1551, respectively). Average phloem phase bout duration on TGR-1551 was <7% of the duration on Iroquois. Sixty-seven percent of aphids on TGR-1551 never produced a phloem phase that attained ingestion (EPG waveform E2) in contrast to only 7% of aphids on Iroquois. Average bout duration of waveform E2 (scored as zero if phloem phase did not attain E2) on TGR-1551 was <3% of the duration on Iroquois. Conversely, average bout duration of EPG waveform E1 (sieve element salivation) was 2.8 times greater on TGR-1551 than on Iroquois. In a second experiment, liquid nitrogen was used to rapidly cryofix leaves and aphids within a few minutes after the aphids penetrated a sieve element. Phloem near the penetration site was then examined by confocal laser scanning microscopy. Ninety-six percent of penetrated sieve elements were occluded by protein in TGR-1551 in contrast to only 28% in Iroquois. Usually in TGR-1551, occlusion was also observed in nearby non-penetrated sieve elements. Next, a calcium channel blocker, trivalent lanthanum, was used to prevent phloem occlusion in TGR-1551, and A. gossypii feeding behavior and the plant's phloem response were compared between lanthanum-treated and control TGR-1551. Lanthanum treatment eliminated the sieve element protein occlusion response and the aphids readily ingested phloem sap from treated plants. This study provides strong evidence that phloem occlusion is a mechanism for resistance against A. gossypii in TGR-1551. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Effects of a free-choice high-fat high-sugar diet on brain PER2 and BMAL1 protein expression in mice.

    PubMed

    Blancas-Velazquez, Aurea; la Fleur, Susanne E; Mendoza, Jorge

    2017-10-01

    The suprachiasmatic nucleus (SCN) times the daily rhythms of behavioral processes including feeding. Beyond the SCN, the hypothalamic arcuate nucleus (ARC), involved in feeding regulation and metabolism, and the epithalamic lateral habenula (LHb), implicated in reward processing, show circadian rhythmic activity. These brain oscillators are functionally coupled to coordinate the daily rhythm of food intake. In rats, a free choice high-fat high-sugar (fcHFHS) diet leads to a rapid increase of calorie intake and body weight gain. Interestingly, under a fcHFHS condition, rats ingest a similar amount of sugar during day time (rest phase) as during night time (active phase), but keep the rhythmic intake of regular chow-food. The out of phase between feeding patterns of regular (chow) and highly rewarding food (sugar) may involve alterations of brain circadian oscillators regulating feeding. Here, we report that the fcHFHS diet is a successful model to induce calorie intake, body weight gain and fat tissue accumulation in mice, extending its effectiveness as previously reported in rats. Moreover, we observed that whereas in the SCN the day-night difference in the PER2 clock protein expression was similar between chow-fed and fcHFHS-fed animals, in the LHb, this day-night difference was altered in fcHFHS-exposed animals compared to control chow mice. These findings confirm previous observations in rats showing disrupted daily patterns of feeding behavior under a fcHFHS diet exposure, and extend our insights on the effects of the diet on circadian gene expression in brain clocks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The effects of ceftriaxone on cue-primed reinstatement of cocaine-seeking in male and female rats: estrous cycle effects on behavior and protein expression in the nucleus accumbens

    PubMed Central

    Hamor, Peter U.; Schwendt, Marek; Knackstedt, Lori A.

    2018-01-01

    Rationale Effective pharmacological treatments to prevent cocaine relapse remain elusive. In male rats, ceftriaxone attenuates the reinstatement of cocaine-seeking while increasing glutamate transporter-1 (GLT-1) and xCT expression in the nucleus accumbens core (NAc). Despite reported sex differences in cocaine relapse, these effects have not yet been confirmed in female rats. Objective We investigated the effects of ceftriaxone on cue-primed reinstatement and cocaine-induced alterations in glutamatergic proteins in the NAc of female rats. Potential interactions between estrous phase and treatment were also assessed. Method Male and female rats self-administered cocaine in the presence of discrete cues for 12 days, followed by 2–3 weeks of extinction. Ceftriaxone or vehicle was administered daily for a minimum of 6 days immediately preceding a cue-primed reinstatement test. Results Total cocaine intake was greater in females than in males, but reinstatement behavior was similar. Ceftriaxone attenuated reinstatement in both sexes and was accompanied by increased expression of GLT-1a and xCT in the NAc. However, ceftriaxone attenuated reinstatement only when females were tested during met-, di-, and proestrus phases and not during estrus. A significant increase in AMPA receptor subunit GluA1 surface expression was also observed during estrus, potentially influencing reinstatement. Conclusion These findings extend the beneficial effects of ceftriaxone on persistent cocaine-seeking from males to females, increasing its potential as a pharmacological treatment for preventing relapse. The effects of estrus on GluA1 expression and reinstatement observed here indicate that females may need additional interventions during some phases of the menstrual cycle. PMID:29197981

  7. Decreasing Global Transcript Levels over Time Suggest that Phytoplasma Cells Enter Stationary Phase during Plant and Insect Colonization

    PubMed Central

    Pacifico, D.; Galetto, L.; Rashidi, M.; Abbà, S.; Palmano, S.; Firrao, G.; Bosco, D.

    2015-01-01

    To highlight different transcriptional behaviors of the phytoplasma in the plant and animal host, expression of 14 genes of “Candidatus Phytoplasma asteris,” chrysanthemum yellows strain, was investigated at different times following the infection of a plant host (Arabidopsis thaliana) and two insect vector species (Macrosteles quadripunctulatus and Euscelidius variegatus). Target genes were selected among those encoding antigenic membrane proteins, membrane transporters, secreted proteins, and general enzymes. Transcripts were detected for all analyzed genes in the three hosts; in particular, those encoding the antigenic membrane protein Amp, elements of the mechanosensitive channel, and two of the four secreted proteins (SAP54 and TENGU) were highly accumulated, suggesting that they play important roles in phytoplasma physiology during the infection cycle. Most transcripts were present at higher abundance in the plant host than in the insect hosts. Generally, transcript levels of the selected genes decreased significantly during infection of A. thaliana and M. quadripunctulatus but were more constant in E. variegatus. Such decreases may be explained by the fact that only a fraction of the phytoplasma population was transcribing, while the remaining part was aging to a stationary phase. This strategy might improve long-term survival, thereby increasing the likelihood that the pathogen may be acquired by a vector and/or inoculated to a healthy plant. PMID:25636844

  8. Unique surface adsorption behaviors of serum proteins on chemically uniform and alternating surfaces

    NASA Astrophysics Data System (ADS)

    Song, Sheng

    With increasing interests of studying proteins adsorption on the surfaces with nanoscale features in biomedical field, it is crucial to have fundamental understandings on how the proteins are adsorbed on such a surface and what factors contribute to the driving forces of adsorption. Besides, exploring more available nanoscale templates would greatly offer more possibilities one could design surface bio-detection methods with favorable protein-surface interactions. Thus, to fulfill the purpose, the work in this dissertation has been made into three major sections. First, to probe the intermediate states which possibly exist between stable and unstable phases described in mean-field theory diagram, a solvent vapor annealing method is chosen to slowly induce the copolymer polystyrene-block-polyvinylpyridine (PS-b-PVP)'s both blocks undergoing micro-phase separations from initial spherical nanodomains into terminal cylindrical nanodomains. During this process, real time atomic force microscopy (AFM) has been conducted to capture other six intermediate states with different morphologies on the polymeric film surfaces. Secondly, upon recognizing each intermediate state, the solution of immunoglobulin gamma (IgG) proteins has been deposited on the surface and been rinsed off with buffer solution before the protein-bounded surface is imaged by AFM. It has been found IgG showing a strong adsorption preference on PS over P4VP block. Among all the six intermediate states, the proteins are almost exclusively adsorbed on PS nanodomains regardless the concentration and deposition time. Thirdly, a trinodular shape protein fibrinogen (Fg) is selected for investigating how geometry and surface charge of proteins would interplay with cylindrical nanodomains on a surface developed from Polystyrene -block-Poly-(methyl methacrylate) PS-b-PMMA. Also, Fg adsorptions on chemically homogeneous surfaces are included here to have a better contrast of showing how much difference it can make by using it on a nanoscale surface. Interestingly, higher concentration of protein solution promotes the occurrences of single phase packed Fg on the PS domain. The densely packed network has formed where each Fg keeps its main body in PS domain and leaves its two alpha C chains on nearby PMMA domain. We believe this conformation and orientation would maximize both the hydrophobic and electrostatic interactions between Fg and the underlying surface.

  9. Degradation properties of protein and carbohydrate during sludge anaerobic digestion.

    PubMed

    Yang, Guang; Zhang, Panyue; Zhang, Guangming; Wang, Yuanyuan; Yang, Anqi

    2015-09-01

    Degradation of protein and carbohydrate is vital for sludge anaerobic digestion performance. However, few studies focused on degradation properties of protein and carbohydrate. This study investigated detailed degradation properties of sludge protein and carbohydrate in order to gain insight into organics removal during anaerobic digestion. Results showed that carbohydrate was more efficiently degraded than protein and was degraded prior to protein. The final removal efficiencies of carbohydrate and protein were 49.7% and 32.2%, respectively. The first 3 days were a lag phase for protein degradation since rapid carbohydrate degradation in this phase led to repression of protease formation. Kinetics results showed that, after initial lag phase, protein degradation followed the first-order kinetic with rate constants of 0.0197 and 0.0018 d(-1) during later rapid degradation phase and slow degradation phase, respectively. Carbohydrate degradation also followed the first-order kinetics with a rate constant of 0.007 d(-1) after initial quick degradation phase. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Function, structure, and stability of enzymes confined in agarose gels.

    PubMed

    Kunkel, Jeffrey; Asuri, Prashanth

    2014-01-01

    Research over the past few decades has attempted to answer how proteins behave in molecularly confined or crowded environments when compared to dilute buffer solutions. This information is vital to understanding in vivo protein behavior, as the average spacing between macromolecules in the cell cytosol is much smaller than the size of the macromolecules themselves. In our study, we attempt to address this question using three structurally and functionally different model enzymes encapsulated in agarose gels of different porosities. Our studies reveal that under standard buffer conditions, the initial reaction rates of the agarose-encapsulated enzymes are lower than that of the solution phase enzymes. However, the encapsulated enzymes retain a higher percentage of their activity in the presence of denaturants. Moreover, the concentration of agarose used for encapsulation had a significant effect on the enzyme functional stability; enzymes encapsulated in higher percentages of agarose were more stable than the enzymes encapsulated in lower percentages of agarose. Similar results were observed through structural measurements of enzyme denaturation using an 8-anilinonaphthalene-1-sulfonic acid fluorescence assay. Our work demonstrates the utility of hydrogels to study protein behavior in highly confined environments similar to those present in vivo; furthermore, the enhanced stability of gel-encapsulated enzymes may find use in the delivery of therapeutic proteins, as well as the design of novel strategies for biohybrid medical devices.

  11. High Intratumoral Stromal Content Defines Reactive Breast Cancer as a Low-risk Breast Cancer Subtype | Office of Cancer Genomics

    Cancer.gov

    Improved biomarker tests are required to minimize overdiagnosis and overtreatment of breast cancers. A number of pathologic criteria have been established to differentiate indolent or aggressive behavior, such as Nottingham grade of cancer cells. However, the effects of the tumor microenvironment on patient outcomes have not been integrated into pathologic criteria. In the current study, the Reactive subtype of breast cancer, identified by reverse-phase protein arrays, was demonstrated to indicate a favorable outcome.

  12. Phase Behavior of Salt-Free Polyelectrolyte Gel-Surfactant Systems.

    PubMed

    Andersson, Martin; Hansson, Per

    2017-06-22

    Ionic surfactants tend to collapse the outer parts of polyelectrolyte gels, forming shells that can be used to encapsulate other species including protein and peptide drugs. In this paper, the aqueous phase behavior of covalently cross-linked polyacrylate networks containing sodium ions and dodecyltrimethylammonium ions as counterions is investigated by means of swelling isotherms, dye staining, small-angle X-ray scattering, and confocal Raman spectroscopy. The equilibrium state is approached by letting the networks absorb pure water. With an increasing fraction of surfactant ions, the state of the water-saturated gels is found to change from being swollen and monophasic, via multiphasic states, to collapsed and monophasic. The multiphasic gels have a swollen, micelle-lean core surrounded by a collapsed, micelle-rich shell, or a collapsed phase forming a spheroidal inner shell separating two micelle-lean parts. It is shown that the transition between monophasic and core-shell states can be induced by variation of the osmotic pressure and variation of the charge of the micelles by forming mixed micelles with the nonionic surfactant octaethyleneglycol monododecylether. The experimental data are compared with theoretical predictions of a model derived earlier. In the calculations, the collapsed shell is assumed to be homogeneous, an approximation introduced here and shown to be excellent for a wide range of compositions. The theoretical results highlight the electrostatic and hydrophobic driving forces behind phase separation.

  13. Rate-Dependent Behavior of the Amorphous Phase of Spider Dragline Silk

    PubMed Central

    Patil, Sandeep P.; Markert, Bernd; Gräter, Frauke

    2014-01-01

    The time-dependent stress-strain behavior of spider dragline silk was already observed decades ago, and has been attributed to the disordered sequences in silk proteins, which compose the soft amorphous matrix. However, the actual molecular origin and magnitude of internal friction within the amorphous matrix has remained inaccessible, because experimentally decomposing the mechanical response of the amorphous matrix from the embedded crystalline units is challenging. Here, we used atomistic molecular dynamics simulations to obtain friction forces for the relative sliding of peptide chains of Araneus diadematus spider silk within bundles of these chains as a representative unit of the amorphous matrix in silk fibers. We computed the friction coefficient and coefficient of viscosity of the amorphous phase to be in the order of 10−6 Ns/m and 104 Ns/m2, respectively, by extrapolating our simulation data to the viscous limit. Finally, we used a finite element method for the amorphous phase, solely based on parameters derived from molecular dynamics simulations including the newly determined coefficient of viscosity. With this model the time scales of stress relaxation, creep, and hysteresis were assessed, and found to be in line with the macroscopic time-dependent response of silk fibers. Our results suggest the amorphous phase to be the primary source of viscosity in silk and open up the avenue for finite element method studies of silk fiber mechanics including viscous effects. PMID:24896131

  14. Daily cycling of nitric oxide synthase (NOS) in the hippocampus of pigeons (C. livia)

    PubMed Central

    2013-01-01

    Background Nitric oxide synthase (NOS) is essential for the synthesis of nitric oxide (NO), a non-conventional neurotransmitter with an important role in synaptic plasticity underlying processes of hippocampus-dependent memory and in the regulation of biological clocks and circadian rhythms. Many studies have shown that both the NOS cytosolic protein content and its enzymatic activity present a circadian variation in different regions of the rodent brain, including the hippocampus. The present study investigated the daily variation of NOS enzymatic activity and the cytosolic content of nNOS in the hippocampus of pigeons. Results Adult pigeons kept under a skeleton photoperiod were assigned to six different groups. Homogenates of the hippocampus obtained at six different times-of-day were used for NOS analyses. Both iNOS activity and nNOS cytosolic protein concentrations were highest during the subjective light phase and lowest in the subjective dark phase of the circadian period. ANOVA showed significant time differences for iNOS enzymatic activity (p < 0.05) and for nNOS protein content (p < 0.05) in the hippocampus. A significant daily rhythm for both iNOS and nNOS was confirmed by analysis with the Cosinor method (p < 0.05). The present findings indicate that the enzymatic activity of iNOS and content of nNOS protein in the hippocampus of pigeons exhibit a daily rhythm, with acrophase values occurring during the behavioral activity phase. Conclusions The data corroborate the reports on circadian variation of NOS in the mammalian hippocampus and can be considered indicative of a dynamic interaction between hippocampus-dependent processes and circadian clock mechanisms. PMID:24176048

  15. Therapeutic Antibody Engineering To Improve Viscosity and Phase Separation Guided by Crystal Structure.

    PubMed

    Chow, Chi-Kin; Allan, Barrett W; Chai, Qing; Atwell, Shane; Lu, Jirong

    2016-03-07

    Antibodies at high concentrations often reveal unanticipated biophysical properties suboptimal for therapeutic development. The purpose of this work was to explore the use of point mutations based on crystal structure information to improve antibody physical properties such as viscosity and phase separation (LLPS) at high concentrations. An IgG4 monoclonal antibody (Mab4) that exhibited high viscosity and phase separation at high concentration was used as a model system. Guided by the crystal structure, four CDR point mutants were made to evaluate the role of hydrophobic and charge interactions on solution behavior. Surprisingly and unpredictably, two of the charge mutants, R33G and N35E, showed a reduction in viscosity and a lower propensity to form LLPS at high concentration compared to the wild-type (WT), while a third charge mutant S28K showed an increased propensity to form LLPS compared to the WT. A fourth mutant, F102H, had reduced hydrophobicity, but unchanged viscosity and phase separation behavior. We further evaluated the correlation of various biophysical measurements including second virial coefficient (A2), interaction parameter (kD), weight-average molecular weight (WAMW), and hydrodynamic diameters (DH), at relatively low protein concentration (4 to 15 mg/mL) to physical properties, such as viscosity and liquid-liquid phase separation (LLPS), at high concentration. Surprisingly, kD measured using dynamic light scattering (DLS) at low antibody concentration correlated better with viscosity and phase separation than did A2 for Mab4. Our results suggest that the high viscosity and phase separation observed at high concentration for Mab4 are mainly driven by charge and not hydrophobicity.

  16. Interactions between acidified dispersions of milk proteins and dextran or dextran sulfate.

    PubMed

    Pachekrepapol, U; Horne, D S; Lucey, J A

    2014-09-01

    Polysaccharides are often used to stabilize cultured milk products, although the nature of these interactions is not entirely clear. The objective of this study was to investigate phase behavior of milk protein dispersions with added dextran (DX; molecular weight = 2 × 10(6) Da) or dextran sulfate (DS; molecular weight = 1.4 × 10(6) Da) as examples of uncharged and charged polysaccharides, respectively. Reconstituted skim milk (5-20% milk solids, wt/wt) was acidified to pH 4.4, 4.6, 4.8, or 4.9 at approximately 0°C (to inhibit gelation) by addition of 3 N HCl. Dextran or DS was added to acidified milk samples to give concentrations of 0 to 2% (wt/wt) and 0 to 1% (wt/wt) polysaccharide, respectively. Milk samples were observed for possible phase separation after storage at 0°C for 1 and 24h. Possible gelation of these systems was determined by using dynamic oscillatory rheology. The type of interactions between caseins and DX or DS was probed by determining the total carbohydrate analysis of supernatants from phase-separated samples. At 5.0 to 7.5% milk solids, phase separation of milk samples occurred after 24h even without DX or DS addition, due to destabilization of caseins in these acidic conditions, and a stabilizing effect was observed when 0.7 or 1.0% DS was added. At higher milk solids content, phase separation was not observed without DX or DS addition. Similar results were observed at all pH levels. Gelation occurred in samples containing high milk solids (≥10%) with the addition of 1.0 to 2.0% DX or 0.4 to 1.0% DS. Based on carbohydrate analysis of supernatants, we believe that DX interacted with milk proteins through a type of depletion flocculation mechanism, whereas DS appeared to interact via electrostatic-type interactions with milk proteins. This study helps to explain how uncharged and charged stabilizers influence the texture of cultured dairy products. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Fragile X Mental Retardation Protein Is Required to Maintain Visual Conditioning-Induced Behavioral Plasticity by Limiting Local Protein Synthesis

    PubMed Central

    Liu, Han-Hsuan

    2016-01-01

    Fragile X mental retardation protein (FMRP) is thought to regulate neuronal plasticity by limiting dendritic protein synthesis, but direct demonstration of a requirement for FMRP control of local protein synthesis during behavioral plasticity is lacking. Here we tested whether FMRP knockdown in Xenopus optic tectum affects local protein synthesis in vivo and whether FMRP knockdown affects protein synthesis-dependent visual avoidance behavioral plasticity. We tagged newly synthesized proteins by incorporation of the noncanonical amino acid azidohomoalanine and visualized them with fluorescent noncanonical amino acid tagging (FUNCAT). Visual conditioning and FMRP knockdown produce similar increases in FUNCAT in tectal neuropil. Induction of visual conditioning-dependent behavioral plasticity occurs normally in FMRP knockdown animals, but plasticity degrades over 24 h. These results indicate that FMRP affects visual conditioning-induced local protein synthesis and is required to maintain the visual conditioning-induced behavioral plasticity. SIGNIFICANCE STATEMENT Fragile X syndrome (FXS) is the most common form of inherited intellectual disability. Exaggerated dendritic protein synthesis resulting from loss of fragile X mental retardation protein (FMRP) is thought to underlie cognitive deficits in FXS, but no direct evidence has demonstrated that FMRP-regulated dendritic protein synthesis affects behavioral plasticity in intact animals. Xenopus tadpoles exhibit a visual avoidance behavior that improves with visual conditioning in a protein synthesis-dependent manner. We showed that FMRP knockdown and visual conditioning dramatically increase protein synthesis in neuronal processes. Furthermore, induction of visual conditioning-dependent behavioral plasticity occurs normally after FMRP knockdown, but performance rapidly deteriorated in the absence of FMRP. These studies show that FMRP negatively regulates local protein synthesis and is required to maintain visual conditioning-induced behavioral plasticity in vivo. PMID:27383604

  18. Fragile X Mental Retardation Protein Is Required to Maintain Visual Conditioning-Induced Behavioral Plasticity by Limiting Local Protein Synthesis.

    PubMed

    Liu, Han-Hsuan; Cline, Hollis T

    2016-07-06

    Fragile X mental retardation protein (FMRP) is thought to regulate neuronal plasticity by limiting dendritic protein synthesis, but direct demonstration of a requirement for FMRP control of local protein synthesis during behavioral plasticity is lacking. Here we tested whether FMRP knockdown in Xenopus optic tectum affects local protein synthesis in vivo and whether FMRP knockdown affects protein synthesis-dependent visual avoidance behavioral plasticity. We tagged newly synthesized proteins by incorporation of the noncanonical amino acid azidohomoalanine and visualized them with fluorescent noncanonical amino acid tagging (FUNCAT). Visual conditioning and FMRP knockdown produce similar increases in FUNCAT in tectal neuropil. Induction of visual conditioning-dependent behavioral plasticity occurs normally in FMRP knockdown animals, but plasticity degrades over 24 h. These results indicate that FMRP affects visual conditioning-induced local protein synthesis and is required to maintain the visual conditioning-induced behavioral plasticity. Fragile X syndrome (FXS) is the most common form of inherited intellectual disability. Exaggerated dendritic protein synthesis resulting from loss of fragile X mental retardation protein (FMRP) is thought to underlie cognitive deficits in FXS, but no direct evidence has demonstrated that FMRP-regulated dendritic protein synthesis affects behavioral plasticity in intact animals. Xenopus tadpoles exhibit a visual avoidance behavior that improves with visual conditioning in a protein synthesis-dependent manner. We showed that FMRP knockdown and visual conditioning dramatically increase protein synthesis in neuronal processes. Furthermore, induction of visual conditioning-dependent behavioral plasticity occurs normally after FMRP knockdown, but performance rapidly deteriorated in the absence of FMRP. These studies show that FMRP negatively regulates local protein synthesis and is required to maintain visual conditioning-induced behavioral plasticity in vivo. Copyright © 2016 the authors 0270-6474/16/367325-15$15.00/0.

  19. Using Clickers to Increase On-Task Behaviors of Middle School Students with Behavior Problems

    ERIC Educational Resources Information Center

    Xin, Joy F.; Johnson, Mary L.

    2015-01-01

    This study examined the effect of using a remote device, a Clicker, on the on-task behavior of middle school students with behavior problems. Five students with behavior problems participated in the study. A single-subject research design with ABAB (phase A: baseline 1, phase B: intervention 1, phase A: baseline 2, phase B: intervention 2) phases…

  20. Characterization of cross-linked cellulosic ion-exchange adsorbents: 2. Protein sorption and transport.

    PubMed

    Angelo, James M; Cvetkovic, Aleksandar; Gantier, Rene; Lenhoff, Abraham M

    2016-03-18

    Adsorption behavior in the HyperCel family of cellulosic ion-exchange materials (Pall Corporation) was characterized using methods to assess, quantitatively and qualitatively, the dynamics of protein uptake as well as static adsorption as a function of ionic strength and protein concentration using several model proteins. The three exchangers studied all presented relatively high adsorptive capacities under low ionic strength conditions, comparable to commercially available resins containing polymer functionalization aimed at increasing that particular characteristic. The strong cation- and anion-exchange moieties showed higher sensitivity to increasing salt concentrations, but protein affinity on the salt-tolerant STAR AX HyperCel exchanger remained strong at ionic strengths normally used in downstream processing to elute material fully during ion-exchange chromatography. Very high uptake rates were observed in both batch kinetics experiments and time-series confocal laser scanning microscopy, suggesting low intraparticle transport resistances relative to external film resistance, even at higher bulk protein concentrations where the opposite is typically observed. Electron microscopy imaging of protein adsorbed phases provided additional insight into particle structure that could not be resolved in previous work on the bare resins. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Self-organization of glucose oxidase-polymer surfactant nanoconstructs in solvent-free soft solids and liquids.

    PubMed

    Sharma, Kamendra P; Zhang, Yixiong; Thomas, Michael R; Brogan, Alex P S; Perriman, Adam W; Mann, Stephen

    2014-10-02

    An anisotropic glucose oxidase-polymer surfactant nanoconjugate is synthesized and shown to exhibit complex temperature-dependent phase behavior in the solvent-free state. At close to room temperature, the nanoconjugate crystallizes as a mesolamellar soft solid with an expanded interlayer spacing of ca. 12 nm and interchain correlation lengths consistent with alkyl tail-tail and PEO-PEO ordering. The soft solid displays a birefringent spherulitic texture and melts at 40 °C to produce a solvent-free liquid protein without loss of enzyme secondary structure. The nanoconjugate melt exhibits a birefringent dendritic texture below the conformation transition temperature (Tc) of glucose oxidase (58 °C) and retains interchain PEO-PEO ordering. Our results indicate that the shape anisotropy of the protein-polymer surfactant globular building block plays a key role in directing mesolamellar formation in the solvent-free solid and suggests that the microstructure observed in the solvent-free liquid protein below Tc is associated with restrictions in the intramolecular motions of the protein core of the nanoconjugate.

  2. Complex coacervation of supercharged proteins with polyelectrolytes.

    PubMed

    Obermeyer, Allie C; Mills, Carolyn E; Dong, Xue-Hui; Flores, Romeo J; Olsen, Bradley D

    2016-04-21

    Complexation of proteins with polyelectrolytes or block copolymers can lead to phase separation to generate a coacervate phase or self-assembly of coacervate core micelles. However, many proteins do not coacervate at conditions near neutral pH and physiological ionic strength. Here, protein supercharging is used to systematically explore the effect of protein charge on the complex coacervation with polycations. Four model proteins were anionically supercharged to varying degrees as quantified by mass spectrometry. Proteins phase separated with strong polycations when the ratio of negatively charged residues to positively charged residues on the protein (α) was greater than 1.1-1.2. Efficient partitioning of the protein into the coacervate phase required larger α (1.5-2.0). The preferred charge ratio for coacervation was shifted away from charge symmetry for three of the four model proteins and indicated an excess of positive charge in the coacervate phase. The composition of protein and polymer in the coacervate phase was determined using fluorescently labeled components, revealing that several of the coacervates likely have both induced charging and a macromolecular charge imbalance. The model proteins were also encapsulated in complex coacervate core micelles and micelles formed when the protein charge ratio α was greater than 1.3-1.4. Small angle neutron scattering and transmission electron microscopy showed that the micelles were spherical. The stability of the coacervate phase in both the bulk and micelles improved to increased ionic strength as the net charge on the protein increased. The micelles were also stable to dehydration and elevated temperatures.

  3. Concentration-dependent changes in apparent diffusion coefficients as indicator for colloidal stability of protein solutions.

    PubMed

    Bauer, Katharina Christin; Göbel, Mathias; Schwab, Marie-Luise; Schermeyer, Marie-Therese; Hubbuch, Jürgen

    2016-09-10

    The colloidal stability of a protein solution during downstream processing, formulation, and storage is a key issue for the biopharmaceutical production process. Thus, knowledge about colloidal solution characteristics, such as the tendency to form aggregates or high viscosity, at various processing conditions is of interest. This work correlates changes in the apparent diffusion coefficient as a parameter of protein interactions with observed protein aggregation and dynamic viscosity of the respective protein samples. For this purpose, the diffusion coefficient, the protein phase behavior, and the dynamic viscosity in various systems containing the model proteins α-lactalbumin, lysozyme, and glucose oxidase were studied. Each of these experiments revealed a wide range of variations in protein interactions depending on protein type, protein concentration, pH, and the NaCl concentration. All these variations showed to be mirrored by changes in the apparent diffusion coefficient in the respective samples. Whereas stable samples with relatively low viscosity showed an almost linear dependence, the deviation from the concentration-dependent linearity indicated both an increase in the sample viscosity and probability of protein aggregation. This deviation of the apparent diffusion coefficient from concentration-dependent linearity was independent of protein type and solution properties for this study. Thus, this single parameter shows the potential to act as a prognostic tool for colloidal stability of protein solutions. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Joining forces: the interface of gravitropism and plastid protein import.

    PubMed

    Stanga, John; Baldwin, Katherine; Masson, Patrick H

    2009-10-01

    In flowering plants, gravity perception appears to involve the sedimentation of starch-filled plastids, called amyloplasts, within specialized cells (the statocytes) of shoots (endodermal cells) and roots (columella cells). Unfortunately, how the physical information derived from amyloplast sedimentation is converted into a biochemical signal that promotes organ gravitropic curvature remains largely unknown. Recent results suggest an involvement of the Translocon of the Outer Envelope of (Chloro)plastids (TOC) in early phases of gravity signal transduction within the statocytes. This review summarizes our current knowledge of the molecular mechanisms that govern gravity signal transduction in flowering plants and summarizes models that attempt to explain the contribution of TOC proteins in this important behavioral plant growth response to its mechanical environment.

  5. Self-assembled multicompartment liquid crystalline lipid carriers for protein, peptide, and nucleic acid drug delivery.

    PubMed

    Angelova, Angelina; Angelov, Borislav; Mutafchieva, Rada; Lesieur, Sylviane; Couvreur, Patrick

    2011-02-15

    Lipids and lipopolymers self-assembled into biocompatible nano- and mesostructured functional materials offer many potential applications in medicine and diagnostics. In this Account, we demonstrate how high-resolution structural investigations of bicontinuous cubic templates made from lyotropic thermosensitive liquid-crystalline (LC) materials have initiated the development of innovative lipidopolymeric self-assembled nanocarriers. Such structures have tunable nanochannel sizes, morphologies, and hierarchical inner organizations and provide potential vehicles for the predictable loading and release of therapeutic proteins, peptides, or nucleic acids. This Account shows that structural studies of swelling of bicontinuous cubic lipid/water phases are essential for overcoming the nanoscale constraints for encapsulation of large therapeutic molecules in multicompartment lipid carriers. For the systems described here, we have employed time-resolved small-angle X-ray scattering (SAXS) and high-resolution freeze-fracture electronic microscopy (FF-EM) to study the morphology and the dynamic topological transitions of these nanostructured multicomponent amphiphilic assemblies. Quasi-elastic light scattering and circular dichroism spectroscopy can provide additional information at the nanoscale about the behavior of lipid/protein self-assemblies under conditions that approximate physiological hydration. We wanted to generalize these findings to control the stability and the hydration of the water nanochannels in liquid-crystalline lipid nanovehicles and confine therapeutic biomolecules within these structures. Therefore we analyzed the influence of amphiphilic and soluble additives (e.g. poly(ethylene glycol)monooleate (MO-PEG), octyl glucoside (OG), proteins) on the nanochannels' size in a diamond (D)-type bicontinuous cubic phase of the lipid glycerol monooleate (MO). At body temperature, we can stabilize long-living swollen states, corresponding to a diamond cubic phase with large water channels. Time-resolved X-ray diffraction (XRD) scans allowed us to detect metastable intermediate and coexisting structures and monitor the temperature-induced phase sequences of mixed systems containing glycerol monooleate, a soluble protein macromolecule, and an interfacial curvature modulating agent. These observed states correspond to the stages of the growth of the nanofluidic channel network. With the application of a thermal stimulus, the system becomes progressively more ordered into a double-diamond cubic lattice formed by a bicontinuous lipid membrane. High-resolution freeze-fracture electronic microscopy indicates that nanodomains are induced by the inclusion of proteins into nanopockets of the supramolecular cubosomic assemblies. These results contribute to the understanding of the structure and dynamics of functionalized self-assembled lipid nanosystems during stimuli-triggered LC phase transformations.

  6. Spatiotemporal behavior of nuclear cyclophilin B indicates a role in RNA transcription.

    PubMed

    Dieriks, Birger; Van Oostveldt, Patrick

    2012-06-01

    Cyclophilin B (CypB) is an ubiquitously expressed protein, which performs several intra- and extracellular functions. Despite its abundant use as a household protein, little is known about its exact cellular localization and dynamics. In the present study we show that endogenous CypB localizes in one of two distinct compartments, either within the endoplasmic reticulum (ER) or inside the nucleus, accumulating in the fibrillar centers of the nucleoli. By means of a genetic deletion screen, we identified a minimal nucleolar localization signal for efficient relocation to the nucleoli. Within the fibrillar centers, CypB colocalized with RNA polymerase, upstream binding factor-1 (UBF), fibrillarin and dyskerin (DCK1). Even after chemical disruption of the nucleoli, a strong interaction with these proteins remained. Using live cell imaging, we showed a persistent colocalization of CypB with proteins involved in the ribosome biogenesis during the transcriptionally more active phases of the cell cycle. Supported by in silico data, our observations suggest that CypB interacts with these proteins and is involved in ribosome biogenesis and RNA transcription.

  7. Dramatically stabilizing multiprotein complex structure in the absence of bulk water using tuned Hofmeister salts.

    PubMed

    Han, Linjie; Hyung, Suk-Joon; Ruotolo, Brandon T

    2013-01-01

    The role that water plays in the salt-based stabilization of proteins is central to our understanding of protein biophysics. Ion hydration and the ability of ions to alter water surface tension are typically invoked, along with direct ion-protein binding, to describe Hofmeister stabilization phenomena observed for proteins experimentally, but the relative influence of these forces has been extraordinarily difficult to measure directly. Recently, we have used gas-phase measurements of proteins and large multiprotein complexes, using a combination of innovative ion mobility (IM) and mass spectrometry (MS) techniques, to assess the ability of bound cations and anions to stabilize protein ions in the absence of the solvation forces described above. Our previous work has studied a broad set of 12 anions bound to a range of proteins and protein complexes, and while primarily motivated by the analytical challenges surrounding the gas-phase measurement of solution-phase relevant protein structures, our work has also lead to a detailed physical mechanism of anion-protein complex stabilization in the absence of bulk solvent. Our more-recent work has screened a similarly-broad set of cations for their ability to stabilize gas-phase protein structure, and we have discovered surprising differences between the operative mechanisms for cations and anions in gas-phase protein stabilization. In both cases, cations and anions affect protein stabilization in the absence of solvent in a manner that is generally reversed relative to their ability to stabilize the same proteins in solution. In addition, our evidence suggests that the relative solution-phase binding affinity of the anions and cations studied here is preserved in our gas-phase measurements, allowing us to study the influence of such interactions in detail. In this report, we collect and summarize such gas-phase measurements to distill a generalized picture of salt-based protein stabilization in the absence of bulk water. Further, we communicate our most recent efforts to study the combined effects of stabilizing cations and anions on gas-phase proteins, and identify those salts that bear anion/cation pairs having the strongest stabilizing influence on protein structures

  8. Dynamic Mass Transfer of Hemoglobin at the Aqueous/Ionic-Liquid Interface Monitored with Liquid Core Optical Waveguide.

    PubMed

    Chen, Xuwei; Yang, Xu; Zeng, Wanying; Wang, Jianhua

    2015-08-04

    Protein transfer from aqueous medium into ionic liquid is an important approach for the isolation of proteins of interest from complex biological samples. We hereby report a solid-cladding/liquid-core/liquid-cladding sandwich optical waveguide system for the purpose of monitoring the dynamic mass-transfer behaviors of hemoglobin (Hb) at the aqueous/ionic liquid interface. The optical waveguide system is fabricated by using a hydrophobic IL (1,3-dibutylimidazolium hexafluorophosphate, BBimPF6) as the core, and protein solution as one of the cladding layer. UV-vis spectra are recorded with a CCD spectrophotometer via optical fibers. The recorded spectra suggest that the mass transfer of Hb molecules between the aqueous and ionic liquid media involve accumulation of Hb on the aqueous/IL interface followed by dynamic extraction/transfer of Hb into the ionic liquid phase. A part of Hb molecules remain at the interface even after the accomplishment of the extraction/transfer process. Further investigations indicate that the mass transfer of Hb from aqueous medium into the ionic liquid phase is mainly driven by the coordination interaction between heme group of Hb and the cationic moiety of ionic liquid, for example, imidazolium cation in this particular case. In addition, hydrophobic interactions also contribute to the transfer of Hb.

  9. Phospholipid Diffusion Coefficients of Cushioned Model Membranes determined via Z-Scan Fluorescence Correlation Spectroscopy

    PubMed Central

    Sterling, Sarah M.; Allgeyer, Edward S.; Fick, Jörg; Prudovsky, Igor; Mason, Michael D.; Neivandt, David J.

    2013-01-01

    Model cellular membranes enable the study of biological processes in a controlled environment and reduce the traditional challenges associated with live or fixed cell studies. However, model membrane systems based on the air/water or oil/solution interface do not allow for incorporation of transmembrane proteins, or for the study of protein transport mechanisms. Conversely, a phospholipid bilayer deposited via the Langmuir-Blodgett/Langmuir Schaefer method on a hydrogel layer is potentially an effective mimic of the cross-section of a biological membrane, and facilitates both protein incorporation and transport studies. Prior to application, however, such membranes must be fully characterized, particularly with respect to the phospholipid bilayer phase transition temperature. Here we present a detailed characterization of the phase transition temperature of the inner and outer leaflets of a chitosan supported model membrane system. Specifically, the lateral diffusion coefficient of each individual leaflet has been determined as a function of temperature. Measurements were performed utilizing z-scan fluorescence correlation spectroscopy (FCS), a technique that yields calibration-free diffusion information. Analysis via the method of Wawrezinieck and coworkers, revealed that phospholipid diffusion changes from raft-like to free diffusion as the temperature is increased; an insight into the dynamic behavior of hydrogel supported membranes not previously reported. PMID:23705855

  10. Measurement of serum amyloid A1 (SAA1), a major isotype of acute phase SAA.

    PubMed

    Xu, Yuanyuan; Yamada, Toshiyuki; Satoh, Takahiko; Okuda, Yasuaki

    2006-01-01

    Serum amyloid A (SAA), a plasma precursor of reactive amyloid deposits, is a multigene product. SAA1 and SAA2, with primary structures that are 93% identical (98 of 104 amino acids), behave as acute phase proteins, as demonstrated by their increasing levels in plasma. Heretofore, it has been understood that SAA1 predominates and functions as an isotype in plasma. However, accurate measurements differentiating the two isotypes have not been reported. In this study, using monoclonal antibodies specific for SAA1, we developed an enzyme-linked immunosorbent assay (ELISA) for SAA1. The levels and ratios of SAA1 in total SAA (TSAA) were investigated in healthy subjects and patients with rheumatoid arthritis (RA). The SAA1/TSAA ratio was 74 +/- 12% and 77 +/- 12% in healthy subjects and RA patients, respectively. In RA patients, the ratios were not influenced by SAA1 genotype, which has been proposed to affect plasma SAA values. The kinetics of SAA1 in inflamed patients undergoing hemodialysis was found to be parallel with total SAA and C-reactive protein. Finally, this study confirmed that SAA1 is a major isotype of acute phase SAA and may determine total SAA values. This specific assay could be used in the evaluation of SAA behavior in several clinical conditions.

  11. Continuous monitoring of enzymatic activity within native electrophoresis gels: Application to mitochondrial oxidative phosphorylation complexes

    PubMed Central

    Covian, Raul; Chess, David; Balaban, Robert S.

    2012-01-01

    Native gel electrophoresis allows the separation of very small amounts of protein complexes while retaining aspects of their activity. In-gel enzymatic assays are usually performed by using reaction-dependent deposition of chromophores or light scattering precipitates quantified at fixed time points after gel removal and fixation, limiting the ability to analyze enzyme reaction kinetics. Herein, we describe a custom reaction chamber with reaction media recirculation and filtering and an imaging system that permits the continuous monitoring of in-gel enzymatic activity even in the presence of turbidity. Images were continuously collected using time-lapse high resolution digital imaging, and processing routines were developed to obtain kinetic traces of the in-gel activities and analyze reaction time courses. This system also permitted the evaluation of enzymatic activity topology within the protein bands of the gel. This approach was used to analyze the reaction kinetics of two mitochondrial complexes in native gels. Complex IV kinetics showed a short initial linear phase where catalytic rates could be calculated, whereas Complex V activity revealed a significant lag phase followed by two linear phases. The utility of monitoring the entire kinetic behavior of these reactions in native gels, as well as the general application of this approach, is discussed. PMID:22975200

  12. The prion-like domain of FUS is multiphosphorylated following DNA damage without altering nuclear localization.

    PubMed

    Rhoads, Shannon N; Monahan, Zachary T; Yee, Debra S; Leung, Andrew Y; Newcombe, Cameron G; O'Meally, Robert N; Cole, Robert N; Shewmaker, Frank P

    2018-06-13

    FUS is an abundant, predominantly nuclear protein involved in RNA processing. Under various conditions, FUS functionally associates with RNA and other macromolecules to form distinct, reversible phase-separated liquid structures. Persistence of the phase-separated state and increased cytoplasmic localization are both hypothesized to predispose FUS to irreversible aggregation, which is a pathological hallmark of subtypes of amyotrophic lateral sclerosis and frontotemporal dementia. We previously showed that phosphorylation of FUS's prion-like domain suppressed phase separation and toxic aggregation, proportionally to the number of added phosphates. However, phosphorylation of FUS's prion-like domain was previously reported to promote its cytoplasmic localization, potentially favoring pathological behavior. Here, we used mass spectrometry and human cell models to further identify phosphorylation sites within FUS's prion-like domain, specifically following DNA-damaging stress. In total, 28 putative sites have been identified, about half of which are DNA-dependent protein kinase (DNA-PK) consensus sites. Custom antibodies were developed to confirm the phosphorylation of two of these sites (Ser26 and Ser30). Both sites were usually phosphorylated in a sub-population of cellular FUS following a variety of DNA-damaging stresses, but not necessarily equally or simultaneously. Importantly, we found DNA-PK-dependent multi-phosphorylation of FUS's prion-like domain does not cause cytoplasmic localization.

  13. Continuous monitoring of enzymatic activity within native electrophoresis gels: application to mitochondrial oxidative phosphorylation complexes.

    PubMed

    Covian, Raul; Chess, David; Balaban, Robert S

    2012-12-01

    Native gel electrophoresis allows the separation of very small amounts of protein complexes while retaining aspects of their activity. In-gel enzymatic assays are usually performed by using reaction-dependent deposition of chromophores or light-scattering precipitates quantified at fixed time points after gel removal and fixation, limiting the ability to analyze the enzyme reaction kinetics. Herein, we describe a custom reaction chamber with reaction medium recirculation and filtering and an imaging system that permits the continuous monitoring of in-gel enzymatic activity even in the presence of turbidity. Images were continuously collected using time-lapse high-resolution digital imaging, and processing routines were developed to obtain kinetic traces of the in-gel activities and analyze reaction time courses. This system also permitted the evaluation of enzymatic activity topology within the protein bands of the gel. This approach was used to analyze the reaction kinetics of two mitochondrial complexes in native gels. Complex IV kinetics showed a short initial linear phase in which catalytic rates could be calculated, whereas Complex V activity revealed a significant lag phase followed by two linear phases. The utility of monitoring the entire kinetic behavior of these reactions in native gels, as well as the general application of this approach, is discussed. Published by Elsevier Inc.

  14. Development of a tuned interfacial force field parameter set for the simulation of protein adsorption to silica glass.

    PubMed

    Snyder, James A; Abramyan, Tigran; Yancey, Jeremy A; Thyparambil, Aby A; Wei, Yang; Stuart, Steven J; Latour, Robert A

    2012-12-01

    Adsorption free energies for eight host-guest peptides (TGTG-X-GTGT, with X = N, D, G, K, F, T, W, and V) on two different silica surfaces [quartz (100) and silica glass] were calculated using umbrella sampling and replica exchange molecular dynamics and compared with experimental values determined by atomic force microscopy. Using the CHARMM force field, adsorption free energies were found to be overestimated (i.e., too strongly adsorbing) by about 5-9 kcal/mol compared to the experimental data for both types of silica surfaces. Peptide adsorption behavior for the silica glass surface was then adjusted using a modified version of the CHARMM program, which we call dual force-field CHARMM, which allows separate sets of nonbonded parameters (i.e., partial charge and Lennard-Jones parameters) to be used to represent intra-phase and inter-phase interactions within a given molecular system. Using this program, interfacial force field (IFF) parameters for the peptide-silica glass systems were corrected to obtain adsorption free energies within about 0.5 kcal/mol of their respective experimental values, while IFF tuning for the quartz (100) surface remains for future work. The tuned IFF parameter set for silica glass will subsequently be used for simulations of protein adsorption behavior on silica glass with greater confidence in the balance between relative adsorption affinities of amino acid residues and the aqueous solution for the silica glass surface.

  15. Development of a Tuned Interfacial Force Field Parameter Set for the Simulation of Protein Adsorption to Silica Glass

    PubMed Central

    Snyder, James A.; Abramyan, Tigran; Yancey, Jeremy A.; Thyparambil, Aby A.; Wei, Yang; Stuart, Steven J.; Latour, Robert A.

    2012-01-01

    Adsorption free energies for eight host–guest peptides (TGTG-X-GTGT, with X = N, D, G, K, F, T, W, and V) on two different silica surfaces [quartz (100) and silica glass] were calculated using umbrella sampling and replica exchange molecular dynamics and compared with experimental values determined by atomic force microscopy. Using the CHARMM force field, adsorption free energies were found to be overestimated (i.e., too strongly adsorbing) by about 5–9 kcal/mol compared to the experimental data for both types of silica surfaces. Peptide adsorption behavior for the silica glass surface was then adjusted using a modified version of the CHARMM program, which we call dual force-field CHARMM, which allows separate sets of nonbonded parameters (i.e., partial charge and Lennard-Jones parameters) to be used to represent intra-phase and inter-phase interactions within a given molecular system. Using this program, interfacial force field (IFF) parameters for the peptide-silica glass systems were corrected to obtain adsorption free energies within about 0.5 kcal/mol of their respective experimental values, while IFF tuning for the quartz (100) surface remains for future work. The tuned IFF parameter set for silica glass will subsequently be used for simulations of protein adsorption behavior on silica glass with greater confidence in the balance between relative adsorption affinities of amino acid residues and the aqueous solution for the silica glass surface. PMID:22941539

  16. The adaptor protein CrkII regulates IGF-1-induced biological behaviors of pancreatic ductal adenocarcinoma.

    PubMed

    Liu, Rui; Wang, Qing; Xu, Guangying; Li, Kexin; Zhou, Lingli; Xu, Baofeng

    2016-01-01

    Recently, the adaptor protein CrkII has been proved to function in initiating signals for proliferation and invasion in some malignancies. However, the specific mechanisms underlying insulin-like growth factor 1 (IGF-1)-CrkII signaling-induced proliferation of pancreatic ductal adenocarcinoma (PDAC) were not unraveled. In this work, PDAC tissues and cell lines were subjected to in vitro and in vivo assays. Our findings showed that CrkII was abundantly expressed in PDAC tissues and closely correlated with tumor-node-metastasis (TNM) stage and invasion. When cells were subjected to si-CrkII, si-CrkII inhibited IGF-1-mediated PDAC cell growth. In vitro, we demonstrated the upregulation of CrkII, p-Erk1/2, and p-Akt occurring in IGF-1-treated PDAC cells. Conversely, si-CrkII affected upregulation of CrkII, p-Erk1/2, and p-Akt. In addition, cell cycle and in vivo assay identified that knockdown of CrkII inhibited the entry of G1 into S phase and the increase of PDAC tumor weight. In conclusion, CrkII mediates IGF-1 signaling and further balanced PDAC biological behaviors via Erk1/2 and Akt pathway, which indicates that CrkII gene and protein may act as an effective target for the treatment of PDAC.

  17. Application of advanced sampling and analysis methods to predict the structure of adsorbed protein on a material surface

    PubMed Central

    Abramyan, Tigran M.; Hyde-Volpe, David L.; Stuart, Steven J.; Latour, Robert A.

    2017-01-01

    The use of standard molecular dynamics simulation methods to predict the interactions of a protein with a material surface have the inherent limitations of lacking the ability to determine the most likely conformations and orientations of the adsorbed protein on the surface and to determine the level of convergence attained by the simulation. In addition, standard mixing rules are typically applied to combine the nonbonded force field parameters of the solution and solid phases the system to represent interfacial behavior without validation. As a means to circumvent these problems, the authors demonstrate the application of an efficient advanced sampling method (TIGER2A) for the simulation of the adsorption of hen egg-white lysozyme on a crystalline (110) high-density polyethylene surface plane. Simulations are conducted to generate a Boltzmann-weighted ensemble of sampled states using force field parameters that were validated to represent interfacial behavior for this system. The resulting ensembles of sampled states were then analyzed using an in-house-developed cluster analysis method to predict the most probable orientations and conformations of the protein on the surface based on the amount of sampling performed, from which free energy differences between the adsorbed states were able to be calculated. In addition, by conducting two independent sets of TIGER2A simulations combined with cluster analyses, the authors demonstrate a method to estimate the degree of convergence achieved for a given amount of sampling. The results from these simulations demonstrate that these methods enable the most probable orientations and conformations of an adsorbed protein to be predicted and that the use of our validated interfacial force field parameter set provides closer agreement to available experimental results compared to using standard CHARMM force field parameterization to represent molecular behavior at the interface. PMID:28514864

  18. Butyrylcholinesterase for protection from organophosphorus poisons; catalytic complexities and hysteretic behavior

    PubMed Central

    Masson, Patrick; Lockridge, Oksana

    2009-01-01

    Butyrylcholinesterase is a promiscuous enzyme that displays complex kinetic behavior. It is toxicologically important because it detoxifies organophosphorus poisons (OP) by making a covalent bond with the OP. The OP and the butyrylcholinesterase are both inactivated in the process. Inactivation of butyrylcholinesterase has no adverse effects. However inactivation of acetylcholinesterase in nerve synapses can be lethal. OP-inhibited butyrylcholinesterase and acetylcholinesterase can be reactivated with oximes provided the OP has not aged. Strategies for preventing the toxicity of OP include a) treatment with an OP scavenger, b) reaction of nonaged enzyme with oximes, c) reactivation of aged enzyme, d) slowing down aging with peripheral site ligands, and e) design of mutants that rapidly hydrolyze OP. Option (a) has progressed through phase I clinical trials with human butyrylcholinesterase. Option (b) is in routine clinical use. The others are at the basic research level. Butyrylcholinesterase displays complex kinetic behavior including activation by positively charged esters, ability to hydrolyze amides, and a lag time (hysteresis) preceding hydrolysis of benzoylcholine and N-methyl indoxyl acetate. Mass spectrometry has identified new OP binding motifs on tyrosine and lysine in proteins that have no active site serine. It is proposed, but not yet proven, that low dose exposure involves OP modification of proteins that have no active site serine. PMID:20004171

  19. Pharmaceutical Perspective on Opalescence and Liquid-Liquid Phase Separation in Protein Solutions.

    PubMed

    Raut, Ashlesha S; Kalonia, Devendra S

    2016-05-02

    Opalescence in protein solutions reduces aesthetic appeal of a formulation and can be an indicator of the presence of aggregates or precursor to phase separation in solution signifying reduced product stability. Liquid-liquid phase separation of a protein solution into a protein-rich and a protein-poor phase has been well-documented for globular proteins and recently observed for monoclonal antibody solutions, resulting in physical instability of the formulation. The present review discusses opalescence and liquid-liquid phase separation (LLPS) for therapeutic protein formulations. A brief discussion on theoretical concepts based on thermodynamics, kinetics, and light scattering is presented. This review also discusses theoretical concepts behind intense light scattering in the vicinity of the critical point termed as "critical opalescence". Both opalescence and LLPS are affected by the formulation factors including pH, ionic strength, protein concentration, temperature, and excipients. Literature reports for the effect of these formulation factors on attractive protein-protein interactions in solution as assessed by the second virial coefficient (B2) and the cloud-point temperature (Tcloud) measurements are also presented. The review also highlights pharmaceutical implications of LLPS in protein solutions.

  20. Crowding-Induced Mixing Behavior of Lipid Bilayers: Examination of Mixing Energy, Phase, Packing Geometry, and Reversibility.

    PubMed

    Zeno, Wade F; Rystov, Alice; Sasaki, Darryl Y; Risbud, Subhash H; Longo, Marjorie L

    2016-05-10

    In an effort to develop a general thermodynamic model from first-principles to describe the mixing behavior of lipid membranes, we examined lipid mixing induced by targeted binding of small (Green Fluorescent Protein (GFP)) and large (nanolipoprotein particles (NLPs)) structures to specific phases of phase-separated lipid bilayers. Phases were targeted by incorporation of phase-partitioning iminodiacetic acid (IDA)-functionalized lipids into ternary lipid mixtures consisting of DPPC, DOPC, and cholesterol. GFP and NLPs, containing histidine tags, bound the IDA portion of these lipids via a metal, Cu(2+), chelating mechanism. In giant unilamellar vesicles (GUVs), GFP and NLPs bound to the Lo domains of bilayers containing DPIDA, and bound to the Ld region of bilayers containing DOIDA. At sufficiently large concentrations of DPIDA or DOIDA, lipid mixing was induced by bound GFP and NLPs. The validity of the thermodynamic model was confirmed when it was found that the statistical mixing distribution as a function of crowding energy for smaller GFP and larger NLPs collapsed to the same trend line for each GUV composition. Moreover, results of this analysis show that the free energy of mixing for a ternary lipid bilayer consisting of DOPC, DPPC, and cholesterol varied from 7.9 × 10(-22) to 1.5 × 10(-20) J/lipid at the compositions observed, decreasing as the relative cholesterol concentration was increased. It was discovered that there appears to be a maximum packing density, and associated maximum crowding pressure, of the NLPs, suggestive of circular packing. A similarity in mixing induced by NLP1 and NLP3 despite large difference in projected areas was analytically consistent with monovalent (one histidine tag) versus divalent (two histidine tags) surface interactions, respectively. In addition to GUVs, binding and induced mixing behavior of NLPs was also observed on planar, supported lipid multibilayers. The mixing process was reversible, with Lo domains reappearing after addition of EDTA for NLP removal.

  1. Crowding-induced mixing behavior of lipid bilayers: Examination of mixing energy, phase, packing geometry, and reversibility

    DOE PAGES

    Zeno, Wade F.; Rystov, Alice; Sasaki, Darryl Y.; ...

    2016-04-20

    In an effort to develop a general thermodynamic model from first-principles to describe the mixing behavior of lipid membranes, we examined lipid mixing induced by targeted binding of small (Green Fluorescent Protein (GFP)) and large (nanolipoprotein particles (NLPs)) structures to specific phases of phase-separated lipid bilayers. Phases were targeted by incorporation of phase-partitioning iminodiacetic acid (IDA)-functionalized lipids into ternary lipid mixtures consisting of DPPC, DOPC, and cholesterol. GFP and NLPs, containing histidine tags, bound the IDA portion of these lipids via a metal, Cu 2+, chelating mechanism. In giant unilamellar vesicles (GUVs), GFP and NLPs bound to the Lo domainsmore » of bilayers containing DPIDA, and bound to the Ld region of bilayers containing DOIDA. At sufficiently large concentrations of DPIDA or DOIDA, lipid mixing was induced by bound GFP and NLPs. The validity of the thermodynamic model was confirmed when it was found that the statistical mixing distribution as a function of crowding energy for smaller GFP and larger NLPs collapsed to the same trend line for each GUV composition. Moreover, results of this analysis show that the free energy of mixing for a ternary lipid bilayer consisting of DOPC, DPPC, and cholesterol varied from 7.9 × 10 –22 to 1.5 × 10 –20 J/lipid at the compositions observed, decreasing as the relative cholesterol concentration was increased. It was discovered that there appears to be a maximum packing density, and associated maximum crowding pressure, of the NLPs, suggestive of circular packing. A similarity in mixing induced by NLP1 and NLP3 despite large difference in projected areas was analytically consistent with monovalent (one histidine tag) versus divalent (two histidine tags) surface interactions, respectively. In addition to GUVs, binding and induced mixing behavior of NLPs was also observed on planar, supported lipid multibilayers. Furthermore, the mixing process was reversible, with Lo domains reappearing after addition of EDTA for NLP removal.« less

  2. Crowding-induced mixing behavior of lipid bilayers: Examination of mixing energy, phase, packing geometry, and reversibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeno, Wade F.; Rystov, Alice; Sasaki, Darryl Y.

    In an effort to develop a general thermodynamic model from first-principles to describe the mixing behavior of lipid membranes, we examined lipid mixing induced by targeted binding of small (Green Fluorescent Protein (GFP)) and large (nanolipoprotein particles (NLPs)) structures to specific phases of phase-separated lipid bilayers. Phases were targeted by incorporation of phase-partitioning iminodiacetic acid (IDA)-functionalized lipids into ternary lipid mixtures consisting of DPPC, DOPC, and cholesterol. GFP and NLPs, containing histidine tags, bound the IDA portion of these lipids via a metal, Cu 2+, chelating mechanism. In giant unilamellar vesicles (GUVs), GFP and NLPs bound to the Lo domainsmore » of bilayers containing DPIDA, and bound to the Ld region of bilayers containing DOIDA. At sufficiently large concentrations of DPIDA or DOIDA, lipid mixing was induced by bound GFP and NLPs. The validity of the thermodynamic model was confirmed when it was found that the statistical mixing distribution as a function of crowding energy for smaller GFP and larger NLPs collapsed to the same trend line for each GUV composition. Moreover, results of this analysis show that the free energy of mixing for a ternary lipid bilayer consisting of DOPC, DPPC, and cholesterol varied from 7.9 × 10 –22 to 1.5 × 10 –20 J/lipid at the compositions observed, decreasing as the relative cholesterol concentration was increased. It was discovered that there appears to be a maximum packing density, and associated maximum crowding pressure, of the NLPs, suggestive of circular packing. A similarity in mixing induced by NLP1 and NLP3 despite large difference in projected areas was analytically consistent with monovalent (one histidine tag) versus divalent (two histidine tags) surface interactions, respectively. In addition to GUVs, binding and induced mixing behavior of NLPs was also observed on planar, supported lipid multibilayers. Furthermore, the mixing process was reversible, with Lo domains reappearing after addition of EDTA for NLP removal.« less

  3. Evaluation of Multi-tRNA Synthetase Complex by Multiple Reaction Monitoring Mass Spectrometry Coupled with Size Exclusion Chromatography

    PubMed Central

    Kim, Jun Seok; Lee, Cheolju

    2015-01-01

    Eight aminoacyl-tRNA synthetases (M, K, Q, D, R, I, EP and LARS) and three auxiliary proteins (AIMP1, 2 and 3) are known to form a multi-tRNA synthetase complex (MSC) in mammalian cells. We combined size exclusion chromatography (SEC) with reversed-phase liquid chromatography multiple reaction monitoring mass spectrometry (RPLC-MRM-MS) to characterize MSC components and free ARS proteins in human embryonic kidney (HEK 293T) cells. Crude cell extract and affinity-purified proteins were fractionated by SEC in non-denaturing state and ARSs were monitored in each fraction by MRM-MS. The eleven MSC components appeared mostly in earlier SEC fractions demonstrating their participation in complex formation. TARSL2 and AIMP2-DX2, despite their low abundance, were co-purified with KARS and detected in the SEC fractions, where MSC appeared. Moreover, other large complex-forming ARS proteins, such as VARS and FARS, were detected in earlier fractions. The MRM-MS results were further confirmed by western blot analysis. Our study demonstrates usefulness of combined SEC-MRM analysis for the characterization of protein complexes and in understanding the behavior of minor isoforms or variant proteins. PMID:26544075

  4. Evaluation of Multi-tRNA Synthetase Complex by Multiple Reaction Monitoring Mass Spectrometry Coupled with Size Exclusion Chromatography.

    PubMed

    Park, Seong-Jun; Ahn, Hee-Sung; Kim, Jun Seok; Lee, Cheolju

    2015-01-01

    Eight aminoacyl-tRNA synthetases (M, K, Q, D, R, I, EP and LARS) and three auxiliary proteins (AIMP1, 2 and 3) are known to form a multi-tRNA synthetase complex (MSC) in mammalian cells. We combined size exclusion chromatography (SEC) with reversed-phase liquid chromatography multiple reaction monitoring mass spectrometry (RPLC-MRM-MS) to characterize MSC components and free ARS proteins in human embryonic kidney (HEK 293T) cells. Crude cell extract and affinity-purified proteins were fractionated by SEC in non-denaturing state and ARSs were monitored in each fraction by MRM-MS. The eleven MSC components appeared mostly in earlier SEC fractions demonstrating their participation in complex formation. TARSL2 and AIMP2-DX2, despite their low abundance, were co-purified with KARS and detected in the SEC fractions, where MSC appeared. Moreover, other large complex-forming ARS proteins, such as VARS and FARS, were detected in earlier fractions. The MRM-MS results were further confirmed by western blot analysis. Our study demonstrates usefulness of combined SEC-MRM analysis for the characterization of protein complexes and in understanding the behavior of minor isoforms or variant proteins.

  5. [The relationship between the abnormal behavior and serum C-reactive protein in children with obstructive sleep apnea-hypopnea syndrome].

    PubMed

    Wang, Yan; Li, Yanzhong; Wang, Xin

    2009-12-01

    To explore the pathogenesis of abnormal behavior in children with obstructive sleep apnea-hypopnea syndrome (OSAHS). The behavioral problems and C-reactive protein were measured in 40 children with OSAHS and 30 children with habitual snoring who underwent overnight Polysomnography, 40 cases of healthy children for the control group. The ratio of abnormal behavior in OSAHS and habitual snoring children was significantly higher than that of the healthy control group, while no significant difference between the two groups. The content of C-reactive protein in OSAHS children (4.24 mg/L) was significantly higher than habitual snoring (2.76 mg/L) and healthy control group (1.27 mg/L); in habitual snoring children C-reactive protein was higher than in healthy control group. The content of serum C-reactive protein in OSAHS children accompanied by abnormal behavior (4.63 mg/L) was significantly higher than that without abnormal behavior (3.23 mg/L). The content of serum C-reactive protein content in habitual snoring children accompanied by abnormal behavior (3.63 mg/L) was significantly higher than that without abnormal behavior (1.76 mg/L). OSAHS and habitual snoring children have more behavior problems. C-reactive protein levels are higher in children with OSAHS and habitual snoring, and the levels of C-reactive protein are related to the abnormal behavior in these children.

  6. The origin of and conditions for clustering in fluids with competing interactions

    NASA Astrophysics Data System (ADS)

    Jadrich, Ryan; Bollinger, Jonathan; Truskett, Thomas

    2015-03-01

    Fluids with competing short-range attractions and long-range repulsions exhibit a rich phase behavior characterized by intermediate range order (IRO), as quantified via the static structure factor. This phase behavior includes cluster formation depending upon density-controlled packing effects and the magnitude and range of the attractive and repulsive interactions. Such model systems mimic (to zeroth order) screened, charge-stabilized, aqueous colloidal dispersions of, e.g., proteins. We employ molecular dynamics simulations and integral equation theory to elucidate a more fundamental microscopic explanation for IRO-driven clustering. A simple criterion is identified that indicates when dynamic, amorphous clustering emerges in a polydisperse system, namely when the Ornstein-Zernike thermal correlation length in the system exceeds the repulsive potential tail range. Remarkably, this criterion also appears tightly correlated to crystalline cluster formation in a monodisperse system. Our new gauge is compared to another phenomenological condition for clustering which is when the IRO peak magnitude exceeds ~ 2.7. Ramifications of crystalline versus amorphous clustering are discussed and potential ways of using our new measure in experiment are put forward.

  7. Liquid-Liquid Phase Separation in a Dual Variable Domain Immunoglobulin Protein Solution: Effect of Formulation Factors and Protein-Protein Interactions.

    PubMed

    Raut, Ashlesha S; Kalonia, Devendra S

    2015-09-08

    Dual variable domain immunoglobulin proteins (DVD-Ig proteins) are large molecules (MW ∼ 200 kDa) with increased asymmetry because of their extended Y-like shape, which results in increased formulation challenges. Liquid-liquid phase separation (LLPS) of protein solutions into protein-rich and protein-poor phases reduces solution stability at intermediate concentrations and lower temperatures, and is a serious concern in formulation development as therapeutic proteins are generally stored at refrigerated conditions. In the current work, LLPS was studied for a DVD-Ig protein molecule as a function of solution conditions by measuring solution opalescence. LLPS of the protein was confirmed by equilibrium studies and by visually observing under microscope. The protein does not undergo any structural change after phase separation. Protein-protein interactions were measured by light scattering (kD) and Tcloud (temperature that marks the onset of phase separation). There is a good agreement between kD measured in dilute solution with Tcloud measured in the critical concentration range. Results indicate that the increased complexity of the molecule (with respect to size, shape, and charge distribution on the molecule) increases contribution of specific and nonspecific interactions in solution, which are affected by formulation factors, resulting in LLPS for DVD-Ig protein.

  8. Global dynamics of the Escherichia coli proteome and phosphoproteome during growth in minimal medium.

    PubMed

    Soares, Nelson C; Spät, Philipp; Krug, Karsten; Macek, Boris

    2013-06-07

    Recent phosphoproteomics studies have generated relatively large data sets of bacterial proteins phosphorylated on serine, threonine, and tyrosine, implicating this type of phosphorylation in the regulation of vital processes of a bacterial cell; however, most phosphoproteomics studies in bacteria were so far qualitative. Here we applied stable isotope labeling by amino acids in cell culture (SILAC) to perform a quantitative analysis of proteome and phosphoproteome dynamics of Escherichia coli during five distinct phases of growth in the minimal medium. Combining two triple-SILAC experiments, we detected a total of 2118 proteins and quantified relative dynamics of 1984 proteins in all measured phases of growth, including 570 proteins associated with cell wall and membrane. In the phosphoproteomic experiment, we detected 150 Ser/Thr/Tyr phosphorylation events, of which 108 were localized to a specific amino acid residue and 76 were quantified in all phases of growth. Clustering analysis of SILAC ratios revealed distinct sets of coregulated proteins for each analyzed phase of growth and overrepresentation of membrane proteins in transition between exponential and stationary phases. The proteomics data indicated that proteins related to stress response typically associated with the stationary phase, including RpoS-dependent proteins, had increasing levels already during earlier phases of growth. Application of SILAC enabled us to measure median occupancies of phosphorylation sites, which were generally low (<12%). Interestingly, the phosphoproteome analysis showed a global increase of protein phosphorylation levels in the late stationary phase, pointing to a likely role of this modification in later phases of growth.

  9. Undernutrition, the Acute Phase Response to Infection, and Its Effects on Micronutrient Status Indicators12

    PubMed Central

    Bresnahan, Kara A.; Tanumihardjo, Sherry A.

    2014-01-01

    Infection and undernutrition are prevalent in developing countries and demonstrate a synergistic relation. Undernutrition increases infection-related morbidity and mortality. The acute phase response (APR) is an innate, systemic inflammatory reaction to a wide array of disruptions in a host’s homeostasis, including infection. Released from immune cells in response to deleterious stimuli, proinflammatory cytokines act on distant tissues to induce behavioral (e.g., anorexia, weakness, and fatigue) and systemic effects of the APR. Cytokines act to increase energy and protein requirements to manifest fever and support hepatic acute phase protein (APP) production. Blood concentrations of glucose and lipid are augmented to provide energy to immune cells in response to cytokines. Additionally, infection decreases intestinal absorption of nutrients and can cause direct loss of micronutrients. Traditional indicators of iron, zinc, and vitamin A status are altered during the APR, leading to inaccurate estimations of deficiency in populations with a high or unknown prevalence of infection. Blood concentrations of APPs can be measured in nutrition interventions to assess the time stage and severity of infection and correct for the APR; however, standardized cutoffs for nutrition applications are needed. Protein-energy malnutrition leads to increased gut permeability to pathogens, abnormal immune cell populations, and impaired APP response. Micronutrient deficiencies cause specific immune impairments that affect both innate and adaptive responses. This review describes the antagonistic interaction between the APR and nutritional status and emphasizes the need for integrated interventions to address undernutrition and to reduce disease burden in developing countries. PMID:25398733

  10. Local Crystalline Structure in an Amorphous Protein Dense Phase

    PubMed Central

    Greene, Daniel G.; Modla, Shannon; Wagner, Norman J.; Sandler, Stanley I.; Lenhoff, Abraham M.

    2015-01-01

    Proteins exhibit a variety of dense phases ranging from gels, aggregates, and precipitates to crystalline phases and dense liquids. Although the structure of the crystalline phase is known in atomistic detail, little attention has been paid to noncrystalline protein dense phases, and in many cases the structures of these phases are assumed to be fully amorphous. In this work, we used small-angle neutron scattering, electron microscopy, and electron tomography to measure the structure of ovalbumin precipitate particles salted out with ammonium sulfate. We found that the ovalbumin phase-separates into core-shell particles with a core radius of ∼2 μm and shell thickness of ∼0.5 μm. Within this shell region, nanostructures comprised of crystallites of ovalbumin self-assemble into a well-defined bicontinuous network with branches ∼12 nm thick. These results demonstrate that the protein gel is comprised in part of nanocrystalline protein. PMID:26488663

  11. High-performance liquid chromatography as a technique to determine protein adsorption onto hydrophilic/hydrophobic surfaces.

    PubMed

    Huang, Tongtong; Anselme, Karine; Sarrailh, Segolene; Ponche, Arnaud

    2016-01-30

    The purpose of this study is to evaluate the potential of simple high performance liquid chromatography (HPLC) setup for quantification of adsorbed proteins on various type of plane substrates with limited area (<3 cm(2)). Protein quantification was investigated with a liquid chromatography chain equipped with a size exclusion column or a reversed-phase column. By evaluating the validation of the method according to guidelines of the International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH), all the results obtained by HPLC were reliable. By simple adsorption test at the contact of hydrophilic (glass) and hydrophobic (polydimethylsiloxane: PDMS) surfaces, kinetics of adsorption were determined and amounts of adsorbed bovine serum albumin, myoglobin and lysozyme were obtained: as expected for each protein, the amount adsorbed at the plateau on glass (between 0.15 μg/cm(2) and 0.4 μg/cm(2)) is lower than for hydrophobic PDMS surfaces (between 0.45 μg/cm(2) and 0.8 μg/cm(2)). These results were consistent with bicinchoninic acid protein determination. According to ICH guidelines, both Reversed Phase and Size Exclusion HPLC can be validated for quantification of adsorbed protein. However, we consider the size exclusion approach more interesting in this field because additional informations can be obtained for aggregative proteins. Indeed, monomer, dimer and oligomer of bovine serum albumin (BSA) were observed in the chromatogram. On increasing the temperature, we found a decrease of peak intensity of bovine serum albumin as well as the fraction of dimer and oligomer after contact with PDMS and glass surface. As the surface can act as a denaturation parameter, these informations can have a huge impact on the elucidation of the interfacial behavior of protein and in particular for aggregation processes in pharmaceutical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Lipid monolayer structure and interactions in the presence of peptides and proteins

    NASA Astrophysics Data System (ADS)

    Freites, Juan Alfredo

    Structural aspects of two simple model systems, protein-lipid monolayer and peptide-lipid monolayer, were studied by experimental and computer simulation techniques. In both cases, both the choice of system and the approach employed to studying it, were motivated by specific biological problems. The interaction of annexin A1 with monolayers of dipalmitoylphosphatidylcholine (DPPC) was studied by fluorescence microscopy as a function of lipid monolayer phase and pH. It was shown that the annexin A1-DPPC interaction depends strongly on both the domain structure and phase behavior of the DPPC monolayer, and only weakly on the subphase pH. Annexin A1 was found to be line-active, adsorbing preferentially at phase boundaries. Also, annexin A1 was found to form networks in the presence of a domain structure in the lipid monolayer. Molecular dynamics simulations were carried out on a model system composed of a surfactant protein B peptide, SP-B1--25, and a monolayer of hexadecanoic acid. A detailed structural characterization was performed as a function of the lipid monolayer specic area. It was found that the peptide remains inserted in the monolayer up to values of specific area corresponding to an untilted condensed phase of the pure hexadecanoic acid monolayer. The system remains stable by altering the conformational order of both the anionic lipid monolayer and the peptide secondary structure, and effectively constitutes a unique disordered lipid-peptide monolayer phase. Two elements appear to be key for the constitution of this phase: an electrostatic interaction between the cationic residues of the peptide with the anionic headgroups of the lipids, and an exclusion of the aromatic residues on the hydrophobic end of the peptide from the hydrophilic and aqueous regions of the system. A direct comparison between molecular dynamics simulations and laboratory experiments was performed for hexadecanoic acid monolayer systems. In order to simulate specific points on the surface pressure vs. area isotherm, an algorithm for the control of surface pressure was developed based on previous work by Martyna, Tobias and Klein. The algorithm was implemented and tested with the hexadecanoic acid monolayer system.

  13. Drosophila TIM binds importin α1, and acts as an adapter to transport PER to the nucleus.

    PubMed

    Jang, A Reum; Moravcevic, Katarina; Saez, Lino; Young, Michael W; Sehgal, Amita

    2015-02-01

    Regulated nuclear entry of clock proteins is a conserved feature of eukaryotic circadian clocks and serves to separate the phase of mRNA activation from mRNA repression in the molecular feedback loop. In Drosophila, nuclear entry of the clock proteins, PERIOD (PER) and TIMELESS (TIM), is tightly controlled, and impairments of this process produce profound behavioral phenotypes. We report here that nuclear entry of PER-TIM in clock cells, and consequently behavioral rhythms, require a specific member of a classic nuclear import pathway, Importin α1 (IMPα1). In addition to IMPα1, rhythmic behavior and nuclear expression of PER-TIM require a specific nuclear pore protein, Nup153, and Ran-GTPase. IMPα1 can also drive rapid and efficient nuclear expression of TIM and PER in cultured cells, although the effect on PER is mediated by TIM. Mapping of interaction domains between IMPα1 and TIM/PER suggests that TIM is the primary cargo for the importin machinery. This is supported by attenuated interaction of IMPα1 with TIM carrying a mutation previously shown to prevent nuclear entry of TIM and PER. TIM is detected at the nuclear envelope, and computational modeling suggests that it contains HEAT-ARM repeats typically found in karyopherins, consistent with its role as a co-transporter for PER. These findings suggest that although PER is the major timekeeper of the clock, TIM is the primary target of nuclear import mechanisms. Thus, the circadian clock uses specific components of the importin pathway with a novel twist in that TIM serves a karyopherin-like role for PER.

  14. Rate-dependent behavior of the amorphous phase of spider dragline silk.

    PubMed

    Patil, Sandeep P; Markert, Bernd; Gräter, Frauke

    2014-06-03

    The time-dependent stress-strain behavior of spider dragline silk was already observed decades ago, and has been attributed to the disordered sequences in silk proteins, which compose the soft amorphous matrix. However, the actual molecular origin and magnitude of internal friction within the amorphous matrix has remained inaccessible, because experimentally decomposing the mechanical response of the amorphous matrix from the embedded crystalline units is challenging. Here, we used atomistic molecular dynamics simulations to obtain friction forces for the relative sliding of peptide chains of Araneus diadematus spider silk within bundles of these chains as a representative unit of the amorphous matrix in silk fibers. We computed the friction coefficient and coefficient of viscosity of the amorphous phase to be in the order of 10(-6) Ns/m and 10(4) Ns/m(2), respectively, by extrapolating our simulation data to the viscous limit. Finally, we used a finite element method for the amorphous phase, solely based on parameters derived from molecular dynamics simulations including the newly determined coefficient of viscosity. With this model the time scales of stress relaxation, creep, and hysteresis were assessed, and found to be in line with the macroscopic time-dependent response of silk fibers. Our results suggest the amorphous phase to be the primary source of viscosity in silk and open up the avenue for finite element method studies of silk fiber mechanics including viscous effects. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. Effect of Excipients on Liquid-Liquid Phase Separation and Aggregation in Dual Variable Domain Immunoglobulin Protein Solutions.

    PubMed

    Raut, Ashlesha S; Kalonia, Devendra S

    2016-03-07

    Liquid-liquid phase separation (LLPS) and aggregation can reduce the physical stability of therapeutic protein formulations. On undergoing LLPS, the protein-rich phase can promote aggregation during storage due to high concentration of the protein. Effect of different excipients on aggregation in protein solution is well documented; however data on the effect of excipients on LLPS is scarce in the literature. In this study, the effect of four excipients (PEG 400, Tween 80, sucrose, and hydroxypropyl beta-cyclodextrin (HPβCD)) on liquid-liquid phase separation and aggregation in a dual variable domain immunoglobulin protein solution was investigated. Sucrose suppressed both LLPS and aggregation, Tween 80 had no effect on either, and PEG 400 increased LLPS and aggregation. Attractive protein-protein interactions and liquid-liquid phase separation decreased with increasing concentration of HPβCD, indicating its specific binding to the protein. However, HPβCD had no effect on the formation of soluble aggregates and fragments in this study. LLPS and aggregation are highly temperature dependent; at low temperature protein exhibits LLPS, at high temperature protein exhibits aggregation, and at an intermediate temperature both phenomena occur simultaneously depending on the solution conditions.

  16. Phase-locking behavior in a high-frequency gymnotiform weakly electric fish, Adontosternarchus.

    PubMed

    Kawasaki, Masashi; Leonard, John

    2017-02-01

    An apteronotid weakly electric fish, Adontosternarchus, emits high-frequency electric organ discharges (700-1500 Hz) which are stable in frequency if no other fish or artificial signals are present. When encountered with an artificial signal of higher frequency than the fish's discharge, the fish raised its discharge frequency and eventually matched its own frequency to that of the artificial signal. At this moment, phase locking was observed, where the timing of the fish's discharge was precisely stabilized at a particular phase of the artificial signal over a long period of time (up to minutes) with microsecond precision. Analyses of the phase-locking behaviors revealed that the phase values of the artificial stimulus at which the fish stabilizes the phase of its own discharge (called lock-in phases) have three populations between -180° and +180°. During the frequency rise and the phase-locking behavior, the electrosensory system is exposed to the mixture of feedback signals from its electric organ discharges and the artificial signal. Since the signal mixture modulates in both amplitude and phase, we explored whether amplitude or phase information participated in driving the phase-locking behavior, using a numerical model. The model which incorporates only amplitude information well predicted the three populations of lock-in phases. When phase information was removed from the electrosensory stimulus, phase-locking behavior was still observed. These results suggest that phase-locking behavior of Adontosternarchus requires amplitude information but not phase information available in the electrosensory stimulus.

  17. Modeling phase separation in mixtures of intrinsically-disordered proteins

    NASA Astrophysics Data System (ADS)

    Gu, Chad; Zilman, Anton

    Phase separation in a pure or mixed solution of intrinsically-disordered proteins (IDPs) and its role in various biological processes has generated interest from the theoretical biophysics community. Phase separation of IDPs has been implicated in the formation of membrane-less organelles such as nucleoli, as well as in a mechanism of selectivity in transport through the nuclear pore complex. Based on a lattice model of polymers, we study the phase diagram of IDPs in a mixture and describe the selective exclusion of soluble proteins from the dense-phase IDP aggregates. The model captures the essential behaviour of phase separation by a minimal set of coarse-grained parameters, corresponding to the average monomer-monomer and monomer-protein attraction strength, as well as the protein-to-monomer size ratio. Contrary to the intuition that strong monomer-monomer interaction increases exclusion of soluble proteins from the dense IDP aggregates, our model predicts that the concentration of soluble proteins in the aggregate phase as a function of monomer-monomer attraction is non-monotonic. We corroborate the predictions of the lattice model using Langevin dynamics simulations of grafted polymers in planar and cylindrical geometries, mimicking various in-vivo and in-vitro conditions.

  18. Towards a Model of Cold Denaturation of Proteins

    NASA Astrophysics Data System (ADS)

    Sanchez, Isaac

    2010-10-01

    Proteins/enzymes can undergo cold denaturation or cold deactivation. In the active or natured state, a protein exists in a unique folded/ordered state. In the deactivated (denatured) state, a protein unfolds and exists in a disordered expanded state. This protein folding/unfolding or order/disorder transition can be triggered by a temperature change. What seems paradoxical is that the active (ordered) state can be induced by heating, or equivalently, the disordered inactive state can be induced by cooling. This is equivalent to an Ising spin model passing from a disordered array of spins to an ordered array by increasing temperature! Hydrogels and their corresponding polyelectrolyte chains behave similarly, i.e., the swollen disordered state can be induced by cooling while the more ordered collapsed or globular state is induced by heating (an entropically driven phase transition). In a living cell at the physiological temperature of 37 C, activation and deactivation of proteins is triggered by local environmental changes in pH, salinity, etc. The important physics is that the denaturation temperature can be moved up or down relative to 37 C by these stimuli. Moving the transition temperature up can destabilize the active protein while moving it down leads to stabilization. An analytical polymer model will be described that exhibits cold denaturation behavior.

  19. Pi-Pi contacts are an overlooked protein feature relevant to phase separation

    PubMed Central

    Vernon, Robert McCoy; Chong, Paul Andrew; Tsang, Brian; Kim, Tae Hun; Bah, Alaji; Farber, Patrick; Lin, Hong

    2018-01-01

    Protein phase separation is implicated in formation of membraneless organelles, signaling puncta and the nuclear pore. Multivalent interactions of modular binding domains and their target motifs can drive phase separation. However, forces promoting the more common phase separation of intrinsically disordered regions are less understood, with suggested roles for multivalent cation-pi, pi-pi, and charge interactions and the hydrophobic effect. Known phase-separating proteins are enriched in pi-orbital containing residues and thus we analyzed pi-interactions in folded proteins. We found that pi-pi interactions involving non-aromatic groups are widespread, underestimated by force-fields used in structure calculations and correlated with solvation and lack of regular secondary structure, properties associated with disordered regions. We present a phase separation predictive algorithm based on pi interaction frequency, highlighting proteins involved in biomaterials and RNA processing. PMID:29424691

  20. Partitioning of Organic Ions to Muscle Protein: Experimental Data, Modeling, and Implications for in Vivo Distribution of Organic Ions.

    PubMed

    Henneberger, Luise; Goss, Kai-Uwe; Endo, Satoshi

    2016-07-05

    The in vivo partitioning behavior of ionogenic organic chemicals (IOCs) is of paramount importance for their toxicokinetics and bioaccumulation. Among other proteins, structural proteins including muscle proteins could be an important sorption phase for IOCs, because of their high quantity in the human and other animals' body and their polar nature. Binding data for IOCs to structural proteins are, however, severely limited. Therefore, in this study muscle protein-water partition coefficients (KMP/w) of 51 systematically selected organic anions and cations were determined experimentally. A comparison of the measured KMP/w with bovine serum albumin (BSA)-water partition coefficients showed that anionic chemicals sorb more strongly to BSA than to muscle protein (by up to 3.5 orders of magnitude), while cations sorb similarly to both proteins. Sorption isotherms of selected IOCs to muscle protein are linear (i.e., KMP/w is concentration independent), and KMP/w is only marginally influenced by pH value and salt concentration. Using the obtained data set of KMP/w a polyparameter linear free energy relationship (PP-LFER) model was established. The derived equation fits the data well (R(2) = 0.89, RMSE = 0.29). Finally, it was demonstrated that the in vitro measured KMP/w values of this study have the potential to be used to evaluate tissue-plasma partitioning of IOCs in vivo.

  1. G2 phase-specific proteins of HeLa cells.

    PubMed Central

    Al-Bader, A A; Orengo, A; Rao, P N

    1978-01-01

    The objective of this study was to determine if HeLa cells irreversibly arrested in G2 phase of the cell cycle by a brief exposure to a nitrosourea compound were deficient in certain proteins when compared with G2-synchronized cells. Total cellular proteins of G2-synchronized, G2-arrested, and S phase-synchronized cells were compared by two-dimensional polyacrylamide gel electrophoresis. The S phase cells differed from the G2-synchronized and G2-arrested cells by the absence of about 35 and 25 protein spots, respectively, of a total of nearly 150. At least nine protein spots in the molecular weight range of 4--5 X 10(4) that were present in the G2-synchronized cells were absent in both the G2-arrested and the S phase cells. Thus, these studies suggest that the missing proteins are probably necessary for the transition of cells from G2 phase to mitosis. Supplying the missing proteins to the G2-arrested cells by fusion with G2-synchronized cells facilitated the entry of the former into mitosis. Images PMID:282623

  2. Phase behavior of ternary polymer brushes

    DOE PAGES

    Simocko, Chester K.; Frischknecht, Amalie L.; Huber, Dale L.

    2016-01-07

    Ternary polymer brushes consisting of polystyrene, poly(methyl methacrylate), and poly(4-vinylpyridine) have been synthesized. These brushes laterally phase separate into several distinct phases and can be tailored by altering the relative polymer composition. Self-consistent field theory has been used to predict the phase diagram and model both the horizontal and vertical phase behavior of the polymer brushes. As a result, all phase behaviors observed experimentally correlate well with the theoretical model.

  3. The Lunacy of It All: Lunar Phases and Human Behavior.

    ERIC Educational Resources Information Center

    Rotton, James; Kelly, Ivan W.

    1986-01-01

    Discusses the relationship between aberrant human behavior and phases of the moon. Reviews media influence, myth, superstition and pseudoscience. Examines studies purporting to have found relationships between moon phases and behavior. (JM)

  4. The temporal analysis of yeast exponential phase using shotgun proteomics as a fermentation monitoring technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Eric L.; Orsat, Valerie; Shah, Manesh B

    2012-01-01

    System biology and bioprocess technology can be better understood using shotgun proteomics as a monitoring system during the fermentation. We demonstrated a shotgun proteomic method to monitor the temporal yeast proteome in early, middle and late exponential phases. Our study identified a total of 1389 proteins combining all 2D-LC-MS/MS runs. The temporal Saccharomyces cerevisiae proteome was enriched with proteolysis, radical detoxification, translation, one-carbon metabolism, glycolysis and TCA cycle. Heat shock proteins and proteins associated with oxidative stress response were found throughout the exponential phase. The most abundant proteins observed were translation elongation factors, ribosomal proteins, chaperones and glycolytic enzymes. Themore » high abundance of the H-protein of the glycine decarboxylase complex (Gcv3p) indicated the availability of glycine in the environment. We observed differentially expressed proteins and the induced proteins at mid-exponential phase were involved in ribosome biogenesis, mitochondria DNA binding/replication and transcriptional activator. Induction of tryptophan synthase (Trp5p) indicated the abundance of tryptophan during the fermentation. As fermentation progressed toward late exponential phase, a decrease in cell proliferation was implied from the repression of ribosomal proteins, transcription coactivators, methionine aminopeptidase and translation-associated proteins.« less

  5. Apparent growth phase-dependent phosphorylation of malonyl coenzyme A:acyl carrier protein transacylase (MCAT), a major fatty acid synthase II component in Mycobacterium bovis BCG.

    PubMed

    Sinha, Indrajit; Boon, Calvin; Dick, Thomas

    2003-10-10

    Probing protein extracts from exponentially growing and stationary phase cultures of Mycobacterium bovis BCG with anti-phospho amino acid antibodies revealed a 31-kDa anti-phospho threonine antibody-reactive protein specific to growing culture. The corresponding protein was purified via two-dimensional gel electrophoresis and identified via mass spectrometry to be malonyl coenzyme A:acyl carrier protein transacylase (MCAT), a component of the fatty acid biosynthetic pathway. MCAT tagged with histidine reacted with anti-phospho threonine antibody and was positive in an in-gel chemical assay for phospho proteins. Analysis of the growth phase dependence of MCAT-His phosphorylation and protein levels showed that phosphorylated MCAT-His can be detected only in growing culture. In contrast, MCAT-His protein level was growth phase-independent. These results suggest that MCAT may be a substrate of a protein kinase and phosphatase, and that aspects of fatty acid synthesis in tubercle bacilli are regulated by protein phosphorylation.

  6. Effect of Lipid-Based Nanostructure on Protein Encapsulation within the Membrane Bilayer Mimetic Lipidic Cubic Phase Using Transmembrane and Lipo-proteins from the Beta-Barrel Assembly Machinery.

    PubMed

    van 't Hag, Leonie; Shen, Hsin-Hui; Lin, Tsung-Wu; Gras, Sally L; Drummond, Calum J; Conn, Charlotte E

    2016-11-29

    A fundamental understanding of the effect of amphiphilic protein encapsulation on the nanostructure of the bicontinuous cubic phase is crucial to progressing biomedical and biological applications of these hybrid protein-lipid materials, including as drug delivery vehicles, as biosensors, biofuel cells and for in meso crystallization. The relationship between the lipid nanomaterial and the encapsulated protein, however, remains poorly understood. In this study, we investigated the effect of incorporating the five transmembrane and lipo-proteins which make up the β-barrel assembly machinery from Gram-negative bacteria within a series of bicontinuous cubic phases. The transmembrane β-barrel BamA caused an increase in lattice parameter of the cubic phase upon encapsulation. By contrast, the mainly hydrophilic lipo-proteins BamB-E caused the cubic phase lattice parameters to decrease, despite their large size relative to the diameter of the cubic phase water channels. Analysis of the primary amino acid sequence was used to rationalize this effect, based on specific interactions between aromatic amino acids within the proteins and the polar-apolar interface. Other factors that were found to have an effect were lateral bilayer pressure and rigidity within the lipid bilayer, water channel diameter, and size and structure of the lipo-proteins. The data presented suggest that hydrophilic bioactive molecules can be selectively encapsulated within the cubic phase by using a lipid anchor or aromatic amino acids, for drug delivery or biosensing applications.

  7. Kinetics of phase transition in protein solutions on microscopic and mesoscopic length scales

    NASA Astrophysics Data System (ADS)

    Filobelo, Luis F.

    2005-11-01

    Phase transformations in solutions of macromolecules are fundamental for all living things, and of great importance in science and industry. For instance, insulin is biosynthesized in the beta cells of the pancreas and stored in crystalline form, which protects it form cleavage, until it is needed. Certain diseases such as Alzheimer, sickle cell anemia, and eye cataract are produced by the polymerization of protein molecules, which loose their functionality after the phase transition. Additionally, separation operations in manufacturing of pharmaceuticals can be eliminated if the crystals produced have a narrow size distribution. The nucleation and growth of crystals can be adequately controlled only if the mechanisms that govern these processes are well understood. Here we have investigated several facets of the kinetics controlling the behavior of phase transition in protein solutions. We performed experiments to determine the homogenous nucleation rate for lysozyme and insulin crystals and the contribution of heterogeneously nucleated crystals. In the first segment of this work we discuss the existence of a solution-to-crystal spinodal boundary derived from these determinations, and showed that the formation of crystalline nuclei from solution occur in two steps for lysozyme: the formation of quasi-droplets of a disordered intermediate, followed by the nucleation of ordered crystalline embryos within these droplets in which the rate of each step depends on a respective free energy barrier and on the growth rate of its near-critical clusters. We addressed experimentally the relative significance of the free-energy barriers and the kinetic factors for the nucleation of crystals from solution. Using dynamic and static light scattering along with differential refractometry, we also characterized the appearance of dense liquid droplets and the magnitude of the second osmotic virial coefficient B2 for insulin in both aqueous solution and in solution containing 15% (v/v) acetone and found that B2 was consistently lower for the acetone-containing insulin solutions, indicating stronger net attraction between insulin molecules. Since both conditions are inductive of crystallization, we conclude that the higher values of B 2 in acetone-free solutions reflect the presence of a repulsive maximum at intermediate separations in the intermolecular interaction potential, likely due to water structuring around the insulin molecules. We also found that the classic nucleation theory, in which fluctuations along one order parameters such as density are required for the phase transition to occur, applies to insulin. After establishing the rate-limiting role of kinetics in phase transitions, we characterized the temperature dependence of viscosity of protein solution in a wide range of concentrations. We found timescales dependence for lysozyme, suggesting that the probing beads move about local regions in short times, and through loosely bound networks in between local regions during longer times. We fitted our results to the Free Volume Theory and found that it does not apply at low protein concentrations. Finally, we found that hemoglobin undergoes aggregation in solution, which yields increased nucleation rates as the protein ages.

  8. Pi-Pi contacts are an overlooked protein feature relevant to phase separation.

    PubMed

    Vernon, Robert McCoy; Chong, Paul Andrew; Tsang, Brian; Kim, Tae Hun; Bah, Alaji; Farber, Patrick; Lin, Hong; Forman-Kay, Julie Deborah

    2018-02-09

    Protein phase separation is implicated in formation of membraneless organelles, signaling puncta and the nuclear pore. Multivalent interactions of modular binding domains and their target motifs can drive phase separation. However, forces promoting the more common phase separation of intrinsically disordered regions are less understood, with suggested roles for multivalent cation-pi, pi-pi, and charge interactions and the hydrophobic effect. Known phase-separating proteins are enriched in pi-orbital containing residues and thus we analyzed pi-interactions in folded proteins. We found that pi-pi interactions involving non-aromatic groups are widespread, underestimated by force-fields used in structure calculations and correlated with solvation and lack of regular secondary structure, properties associated with disordered regions. We present a phase separation predictive algorithm based on pi interaction frequency, highlighting proteins involved in biomaterials and RNA processing. © 2018, Vernon et al.

  9. Conserved interdomain linker promotes phase separation of the multivalent adaptor protein Nck

    PubMed Central

    Banjade, Sudeep; Wu, Qiong; Mittal, Anuradha; Peeples, William B.; Pappu, Rohit V.; Rosen, Michael K.

    2015-01-01

    The organization of membranes, the cytosol, and the nucleus of eukaryotic cells can be controlled through phase separation of lipids, proteins, and nucleic acids. Collective interactions of multivalent molecules mediated by modular binding domains can induce gelation and phase separation in several cytosolic and membrane-associated systems. The adaptor protein Nck has three SRC-homology 3 (SH3) domains that bind multiple proline-rich segments in the actin regulatory protein neuronal Wiskott-Aldrich syndrome protein (N-WASP) and an SH2 domain that binds to multiple phosphotyrosine sites in the adhesion protein nephrin, leading to phase separation. Here, we show that the 50-residue linker between the first two SH3 domains of Nck enhances phase separation of Nck/N-WASP/nephrin assemblies. Two linear motifs within this element, as well as its overall positively charged character, are important for this effect. The linker increases the driving force for self-assembly of Nck, likely through weak interactions with the second SH3 domain, and this effect appears to promote phase separation. The linker sequence is highly conserved, suggesting that the sequence determinants of the driving forces for phase separation may be generally important to Nck functions. Our studies demonstrate that linker regions between modular domains can contribute to the driving forces for self-assembly and phase separation of multivalent proteins. PMID:26553976

  10. Proteomics Analysis of Lactobacillus casei Zhang, a New Probiotic Bacterium Isolated from Traditional Home-made Koumiss in Inner Mongolia of China*

    PubMed Central

    Wu, Rina; Wang, Weiwei; Yu, Dongliang; Zhang, Wenyi; Li, Yan; Sun, Zhihong; Wu, Junrui; Meng, He; Zhang, Heping

    2009-01-01

    Lactobacillus casei Zhang, isolated from traditional home-made koumiss in Inner Mongolia of China, was considered as a new probiotic bacterium by probiotic selection tests. We carried out a proteomics study to identify and characterize proteins expressed by L. casei Zhang in the exponential phase and stationary phase. Cytosolic proteins of the strain cultivated in de Man, Rogosa, and Sharpe broth were resolved by two-dimensional gel electrophoresis using pH 4–7 linear gradients. The number of protein spots quantified from the gels was 487 ± 21 (exponential phase) and 494 ± 13 (stationary phase) among which a total of 131 spots were identified by MALDI-TOF/MS and/or MALDI-TOF/TOF according to significant growth phase-related differences or high expression intensity proteins. Accompanied by the cluster of orthologous groups (COG), codon adaptation index (CAI), and GRAVY value analysis, the study provided a very first insight into the profile of protein expression as a reference map of L. casei. Forty-seven spots were also found in the study that showed statistically significant differences between exponential phase and stationary phase. Thirty-three of the spots increased at least 2.5-fold in the stationary phase in comparison with the exponential phase, including 19 protein spots (e.g. Hsp20, DnaK, GroEL, LuxS, pyruvate kinase, and GalU) whose intensity up-shifted above 3.0-fold. Transcriptional profiles were conducted to confirm several important differentially expressed proteins by using real time quantitative PCR. The analysis suggests that the differentially expressed proteins were mainly categorized as stress response proteins and key components of central and intermediary metabolism, indicating that these proteins might play a potential important role for the adaptation to the surroundings, especially the accumulation of lactic acid in the course of growth, and the physiological processes in bacteria cell. PMID:19508964

  11. Mitigation of reversible self-association and viscosity in a human IgG1 monoclonal antibody by rational, structure-guided Fv engineering

    PubMed Central

    Geoghegan, James C.; Fleming, Ryan; Damschroder, Melissa; Bishop, Steven M.; Sathish, Hasige A.; Esfandiary, Reza

    2016-01-01

    ABSTRACT Undesired solution behaviors such as reversible self-association (RSA), high viscosity, and liquid-liquid phase separation can introduce substantial challenges during development of monoclonal antibody formulations. Although a global mechanistic understanding of RSA (i.e., native and reversible protein-protein interactions) is sufficient to develop robust formulation controls, its mitigation via protein engineering requires knowledge of the sites of protein-protein interactions. In the study reported here, we coupled our previous hydrogen-deuterium exchange mass spectrometry findings with structural modeling and in vitro screening to identify the residues responsible for RSA of a model IgG1 monoclonal antibody (mAb-C), and rationally engineered variants with improved solution properties (i.e., reduced RSA and viscosity). Our data show that mutation of either solvent-exposed aromatic residues within the heavy and light chain variable regions or buried residues within the heavy chain/light chain interface can significantly mitigate RSA and viscosity by reducing the IgG's surface hydrophobicity. The engineering strategy described here highlights the utility of integrating complementary experimental and in silico methods to identify mutations that can improve developability, in particular, high concentration solution properties, of candidate therapeutic antibodies. PMID:27050875

  12. Yolk-Shell Porous Microspheres of Calcium Phosphate Prepared by Using Calcium L-Lactate and Adenosine 5'-Triphosphate Disodium Salt: Application in Protein/Drug Delivery.

    PubMed

    Ding, Guan-Jun; Zhu, Ying-Jie; Qi, Chao; Sun, Tuan-Wei; Wu, Jin; Chen, Feng

    2015-06-26

    A facile and environmentally friendly approach has been developed to prepare yolk-shell porous microspheres of calcium phosphate by using calcium L-lactate pentahydrate (CL) as the calcium source and adenosine 5'-triphosphate disodium salt (ATP) as the phosphate source through the microwave-assisted hydrothermal method. The effects of the concentration of CL, the microwave hydrothermal temperature, and the time on the morphology and crystal phase of the product are investigated. The possible formation mechanism of yolk-shell porous microspheres of calcium phosphate is proposed. Hemoglobin from bovine red cells (Hb) and ibuprofen (IBU) are used to explore the application potential of yolk-shell porous microspheres of calcium phosphate in protein/drug loading and delivery. The experimental results indicate that the as-prepared yolk-shell porous microspheres of calcium phosphate have relatively high protein/drug loading capacity, sustained protein/drug release, favorable pH-responsive release behavior, and a high biocompatibility in the cytotoxicity test. Therefore, the yolk-shell porous microspheres of calcium phosphate have promising applications in various biomedical fields such as protein/drug delivery. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Effect of pressure on secondary structure of proteins under ultra high pressure liquid chromatographic conditions.

    PubMed

    Makarov, Alexey; LoBrutto, Rosario; Karpinski, Paul

    2013-11-29

    There are several spectroscopic techniques such as IR and CD, that allow for analyzing protein secondary structure in solution. However, a majority of these techniques require using purified protein, concentrated enough in the solution, to produce a relevant spectrum. Fundamental principles for the usage of reversed-phase ultra high pressure liquid chromatography (UHPLC) as an alternative technique to study protein secondary structures in solution were investigated. Several "model" proteins, as well as several small ionizable and neutral molecules, were used for these studies. The studies were conducted with UHPLC in isocratic mode, using premixed mobile phases at constant flow rate and temperature. The pressure was modified by a backpressure regulator from about 6000psi to about 12,000psi. It was found that when using a mobile phase composition at which proteins were fully denatured (loss of alpha-helix secondary structure), the retention factors of the proteins increased upon pressure increase in the same manner as non-proteins. When using a mobile phase composition in which proteins were not fully denatured, it was observed that the retention factors of the proteins displayed a much steeper (by one order of magnitude) increase in retention upon pressure increase. It was concluded that in a mobile phase in which the protein is not initially fully denatured, the increase of pressure may facilitate the folding back of the protein to its native state (alpha-helix secondary structure). The impact of different mobile phase compositions on the denaturation of the proteins was studied using CD (Circular Dichroism). Moreover, the effect of flow rate on retention of proteins and small molecules was studied at constant pressure on the different pore size silicas and the impact of internal frictional heating was evaluated. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Life Stage-specific Proteomes of Legionella pneumophila Reveal a Highly Differential Abundance of Virulence-associated Dot/Icm effectors*

    PubMed Central

    Aurass, Philipp; Gerlach, Thomas; Becher, Dörte; Voigt, Birgit; Karste, Susanne; Bernhardt, Jörg; Riedel, Katharina; Hecker, Michael; Flieger, Antje

    2016-01-01

    Major differences in the transcriptional program underlying the phenotypic switch between exponential and post-exponential growth of Legionella pneumophila were formerly described characterizing important alterations in infection capacity. Additionally, a third state is known where the bacteria transform in a viable but nonculturable state under stress, such as starvation. We here describe phase-related proteomic changes in exponential phase (E), postexponential phase (PE) bacteria, and unculturable microcosms (UNC) containing viable but nonculturable state cells, and identify phase-specific proteins. We present data on different bacterial subproteomes of E and PE, such as soluble whole cell proteins, outer membrane-associated proteins, and extracellular proteins. In total, 1368 different proteins were identified, 922 were quantified and 397 showed differential abundance in E/PE. The quantified subproteomes of soluble whole cell proteins, outer membrane-associated proteins, and extracellular proteins; 841, 55, and 77 proteins, respectively, were visualized in Voronoi treemaps. 95 proteins were quantified exclusively in E, such as cell division proteins MreC, FtsN, FtsA, and ZipA; 33 exclusively in PE, such as motility-related proteins of flagellum biogenesis FlgE, FlgK, and FliA; and 9 exclusively in unculturable microcosms soluble whole cell proteins, such as hypothetical, as well as transport/binding-, and metabolism-related proteins. A high frequency of differentially abundant or phase-exclusive proteins was observed among the 91 quantified effectors of the major virulence-associated protein secretion system Dot/Icm (> 60%). 24 were E-exclusive, such as LepA/B, YlfA, MavG, Lpg2271, and 13 were PE-exclusive, such as RalF, VipD, Lem10. The growth phase-related specific abundance of a subset of Dot/Icm virulence effectors was confirmed by means of Western blotting. We therefore conclude that many effectors are predominantly abundant at either E or PE which suggests their phase specific function. The distinct temporal or spatial presence of such proteins might have important implications for functional assignments in the future or for use as life-stage specific markers for pathogen analysis. PMID:26545400

  15. Characterization of auxin-binding proteins from zucchini plasma membrane

    NASA Technical Reports Server (NTRS)

    Hicks, G. R.; Rice, M. S.; Lomax, T. L.

    1993-01-01

    We have previously identified two auxin-binding polypeptides in plasma membrane (PM) preparations from zucchini (Cucurbita pepo L.) (Hicks et al. 1989, Proc. Natl. Acad. Sci. USA 86, 4948-4952). These polypeptides have molecular weights of 40 kDa and 42 kDa and label specifically with the photoaffinity auxin analog 5-N3-7-3H-IAA (azido-IAA). Azido-IAA permits both the covalent and radioactive tagging of auxin-binding proteins and has allowed us to characterize further the 40-kDa and 42-kDa polypeptides, including the nature of their attachment to the PM, their relationship to each other, and their potential function. The azido-IAA-labeled polypeptides remain in the pelleted membrane fraction following high-salt and detergent washes, which indicates a tight and possibly integral association with the PM. Two-dimensional electrophoresis of partially purified azido-IAA-labeled protein demonstrates that, in addition to the major isoforms of the 40-kDa and 42-kDa polypeptides, which possess isoelectric points (pIs) of 8.2 and 7.2, respectively, several less abundant isoforms that display unique pIs are apparent at both molecular masses. Tryptic and chymotryptic digestion of the auxin-binding proteins indicates that the 40-kDa and 42-kDa polypeptides are closely related or are modifications of the same polypeptide. Phase extraction with the nonionic detergent Triton X-114 results in partitioning of the azido-IAA-labeled polypeptides into the aqueous (hydrophilic) phase. This apparently paradoxical behavior is also exhibited by certain integral membrane proteins that aggregate to form channels. The results of gel filtration indicate that the auxin-binding proteins do indeed aggregate strongly and that the polypeptides associate to form a dimer or multimeric complex in vivo. These characteristics are consistent with the hypothesis that the 40-kDa and 42-kDa polypeptides are subunits of a multimeric integral membrane protein which has an auxin-binding site, and which may possess transporter or channel function.

  16. Characterization of auxin-binding proteins from zucchini plasma membrane.

    PubMed

    Hicks, G R; Rice, M S; Lomax, T L

    1993-01-01

    We have previously identified two auxin-binding polypeptides in plasma membrane (PM) preparations from zucchini (Cucurbita pepo L.) (Hicks et al. 1989, Proc. Natl. Acad. Sci. USA 86, 4948-4952). These polypeptides have molecular weights of 40 kDa and 42 kDa and label specifically with the photoaffinity auxin analog 5-N3-7-3H-IAA (azido-IAA). Azido-IAA permits both the covalent and radioactive tagging of auxin-binding proteins and has allowed us to characterize further the 40-kDa and 42-kDa polypeptides, including the nature of their attachment to the PM, their relationship to each other, and their potential function. The azido-IAA-labeled polypeptides remain in the pelleted membrane fraction following high-salt and detergent washes, which indicates a tight and possibly integral association with the PM. Two-dimensional electrophoresis of partially purified azido-IAA-labeled protein demonstrates that, in addition to the major isoforms of the 40-kDa and 42-kDa polypeptides, which possess isoelectric points (pIs) of 8.2 and 7.2, respectively, several less abundant isoforms that display unique pIs are apparent at both molecular masses. Tryptic and chymotryptic digestion of the auxin-binding proteins indicates that the 40-kDa and 42-kDa polypeptides are closely related or are modifications of the same polypeptide. Phase extraction with the nonionic detergent Triton X-114 results in partitioning of the azido-IAA-labeled polypeptides into the aqueous (hydrophilic) phase. This apparently paradoxical behavior is also exhibited by certain integral membrane proteins that aggregate to form channels. The results of gel filtration indicate that the auxin-binding proteins do indeed aggregate strongly and that the polypeptides associate to form a dimer or multimeric complex in vivo. These characteristics are consistent with the hypothesis that the 40-kDa and 42-kDa polypeptides are subunits of a multimeric integral membrane protein which has an auxin-binding site, and which may possess transporter or channel function.

  17. Heterogeneity of Arabinogalactan-Proteins on the Plasma Membrane of Rose Cells.

    PubMed Central

    Serpe, M. D.; Nothnagel, E. A.

    1996-01-01

    Arabinogalactan-proteins (AGPs) have been purified from the plasma membrane of suspension-cultured Paul's Scarlet rose (Rosa sp.) cells. The two most abundant and homogeneous plasma membrane AGP fractions were named plasma membrane AGP1 (PM-AGP1) and plasma membrane AGP2 (PM-AGP2) and had apparent molecular masses of 140 and 217 kD, respectively. Both PM-AGP1 and PM-AGP2 had [beta]-(1-3)-, [beta]-(1,6)-, and [beta]-(1,3,6)-galactopyranosyl residues, predominantly terminal [alpha]-arabinofuranosyl residues, and (1,4)- and terminal glucuronopyranosyl residues. The protein moieties of PM-AGP1 and PM-AGP2 were both rich in hydroxyproline, alanine, and serine, but differed in the abundance of hydroxyproline, which was 1.6 times higher in PM-AGP2 than in PM-AGP1. Another difference was the overall protein content, which was 3.7% (w/w) in PM-AGP1 and 15% in PM-AGP2. As judged by their behavior on reverse-phase chromatography, PM-AGP1 and PM-AGP2 were not more hydrophobic than AGPs from the cell wall or culture medium. In contrast, a minor plasma membrane AGP fraction eluted later on reverse-phase chromatography and was more negatively charged at pH 5 than either PM-AGP1 or PM-AGP2. The more negatively charged fraction contained molecules with a glycosyl composition characteristic of AGPs and included at least two different macromolecules. The results of this investigation indicate that Rosa plasma membrane contains at least four distinct AGPs or AGP-like molecules. These molecules differed from each other in size, charge, hydrophobicity, amino-acyl composition, and/or protein content. PMID:12226444

  18. TTK/hMPS1 Is an Attractive Therapeutic Target for Triple-Negative Breast Cancer

    PubMed Central

    Maire, Virginie; Baldeyron, Céline; Richardson, Marion; Tesson, Bruno; Vincent-Salomon, Anne; Gravier, Eléonore; Marty-Prouvost, Bérengère; De Koning, Leanne; Rigaill, Guillem; Dumont, Aurélie; Gentien, David; Barillot, Emmanuel; Roman-Roman, Sergio; Depil, Stéphane; Cruzalegui, Francisco; Pierré, Alain; Tucker, Gordon C.; Dubois, Thierry

    2013-01-01

    Triple-negative breast cancer (TNBC) represents a subgroup of breast cancers (BC) associated with the most aggressive clinical behavior. No targeted therapy is currently available for the treatment of patients with TNBC. In order to discover potential therapeutic targets, we searched for protein kinases that are overexpressed in human TNBC biopsies and whose silencing in TNBC cell lines causes cell death. A cohort including human BC biopsies obtained at Institut Curie as well as normal tissues has been analyzed at a gene-expression level. The data revealed that the human protein kinase monopolar spindle 1 (hMPS1), also known as TTK and involved in mitotic checkpoint, is specifically overexpressed in TNBC, compared to the other BC subgroups and healthy tissues. We confirmed by immunohistochemistry and reverse phase protein array that TNBC expressed higher levels of TTK protein compared to the other BC subgroups. We then determined the biological effects of TTK depletion by RNA interference, through analyses of tumorigenic capacity and cell viability in different human TNBC cell lines. We found that RNAi-mediated depletion of TTK in various TNBC cell lines severely compromised their viability and their ability to form colonies in an anchorage-independent manner. Moreover, we observed that TTK silencing led to an increase in H2AX phosphorylation, activation of caspases 3/7, sub-G1 cell population accumulation and high annexin V staining, as well as to a decrease in G1 phase cell population and an increased aneuploidy. Altogether, these data indicate that TTK depletion in TNBC cells induces apoptosis. These results point out TTK as a protein kinase overexpressed in TNBC that may represent an attractive therapeutic target specifically for this poor prognosis associated subgroup of breast cancer. PMID:23700430

  19. Electrostatics of cysteine residues in proteins: Parameterization and validation of a simple model

    PubMed Central

    Salsbury, Freddie R.; Poole, Leslie B.; Fetrow, Jacquelyn S.

    2013-01-01

    One of the most popular and simple models for the calculation of pKas from a protein structure is the semi-macroscopic electrostatic model MEAD. This model requires empirical parameters for each residue to calculate pKas. Analysis of current, widely used empirical parameters for cysteine residues showed that they did not reproduce expected cysteine pKas; thus, we set out to identify parameters consistent with the CHARMM27 force field that capture both the behavior of typical cysteines in proteins and the behavior of cysteines which have perturbed pKas. The new parameters were validated in three ways: (1) calculation across a large set of typical cysteines in proteins (where the calculations are expected to reproduce expected ensemble behavior); (2) calculation across a set of perturbed cysteines in proteins (where the calculations are expected to reproduce the shifted ensemble behavior); and (3) comparison to experimentally determined pKa values (where the calculation should reproduce the pKa within experimental error). Both the general behavior of cysteines in proteins and the perturbed pKa in some proteins can be predicted reasonably well using the newly determined empirical parameters within the MEAD model for protein electrostatics. This study provides the first general analysis of the electrostatics of cysteines in proteins, with specific attention paid to capturing both the behavior of typical cysteines in a protein and the behavior of cysteines whose pKa should be shifted, and validation of force field parameters for cysteine residues. PMID:22777874

  20. Differential Efficacy of Ketamine in the Acute versus Chronic Stages of Complex Regional Pain Syndrome in Mice

    PubMed Central

    Tajerian, Maral; Leu, David; Yang, Phillip; Huang, Ting Ting; Kingery, Wade S; Clark, J David

    2015-01-01

    Background Complex regional pain syndrome (CRPS) is a painful, disabling and often chronic condition, where many patients transition from an acute phase with prominent peripheral neurogenic inflammation to a chronic phase with evident central nervous system (CNS) changes. Ketamine is a centrally-acting agent believed to work through blockade of N-methyl-D-aspartate (NMDA) receptors and is being increasingly used for the treatment of refractory CRPS, although the basis for the drug’s effects and efficacy at different stages of the syndrome remain unclear. Methods We used a mouse model of CRPS (n=8–12/group) involving tibia fracture/cast immobilization to test the efficacy of ketamine (2 mg/kg/day; 7 days) or vehicle infusion during acute (3weeks [3w] post-fracture) and chronic (7w post-fracture) stages. Results Acute phase fracture mice displayed elevated limb temperature, edema and nociceptive sensitization that were not reduced by ketamine. Fracture mice treated with ketamine during the chronic phase showed reduced nociceptive sensitization that persisted beyond completion of the infusion. During this chronic phase, ketamine also reduced latent nociceptive sensitization and improved motor function at 18 weeks post-fracture. No side effects of the infusions were identified. These behavioral changes were associated with altered spinal astrocyte activation and expression of pain-related proteins including NMDA receptor 2b (NR2b), Ca2+/calmodulin-dependent protein kinase ii (CaMK2), and brain-derived neurotrophic factor (BNDF). Conclusions Collectively, these results demonstrate that ketamine is efficacious in the chronic, but not acute stages of CRPS, suggesting that the centrally-acting drug is relatively ineffective in early CRPS when peripheral mechanisms are more critical for supporting nociceptive sensitization. PMID:26492479

  1. On Mechanical Transitions in Biologically Motivated Soft Matter Systems

    NASA Astrophysics Data System (ADS)

    Fogle, Craig

    The notion of phase transitions as a characterization of a change in physical properties pervades modern physics. Such abrupt and fundamental changes in the behavior of physical systems are evident in condensed matter system and also occur in nuclear and subatomic settings. While this concept is less prevalent in the field of biology, recent advances have pointed to its relevance in a number of settings. Recent studies have modeled both the cell cycle and cancer as phase transition in physical systems. In this dissertation we construct simplified models for two biological systems. As described by those models, both systems exhibit phase transitions. The first model is inspired by the shape transition in the nuclei of neutrophils during differentiation. During differentiation the nucleus transitions from spherical to a shape often described as "beads on a string." As a simplified model of this system, we investigate the spherical-to-wrinkled transition in an elastic core bounded to a fluid shell system. We find that this model exhibits a first-order phase transition, and the shape that minimizes the energy of the system scales as (micror3/kappa). . The second system studied is motivated by the dynamics of globular proteins. These proteins may undergoes conformational changes with large displacements relative to their size. Transitions between conformational states are not possible if the dynamics are governed strictly by linear elasticity. We construct a model consisting of an predominantly elastic region near the energetic minimum of the system and a non-linear softening of the system at a critical displacement. We find that this simple model displays very rich dynamics include a sharp dynamical phase transition and driving-force-dependent symmetry breaking.

  2. Hypoxia induces a phase transition within a kinase signaling network in cancer cells.

    PubMed

    Wei, Wei; Shi, Qihui; Remacle, Francoise; Qin, Lidong; Shackelford, David B; Shin, Young Shik; Mischel, Paul S; Levine, R D; Heath, James R

    2013-04-09

    Hypoxia is a near-universal feature of cancer, promoting glycolysis, cellular proliferation, and angiogenesis. The molecular mechanisms of hypoxic signaling have been intensively studied, but the impact of changes in oxygen partial pressure (pO2) on the state of signaling networks is less clear. In a glioblastoma multiforme (GBM) cancer cell model, we examined the response of signaling networks to targeted pathway inhibition between 21% and 1% pO2. We used a microchip technology that facilitates quantification of a panel of functional proteins from statistical numbers of single cells. We find that near 1.5% pO2, the signaling network associated with mammalian target of rapamycin (mTOR) complex 1 (mTORC1)--a critical component of hypoxic signaling and a compelling cancer drug target--is deregulated in a manner such that it will be unresponsive to mTOR kinase inhibitors near 1.5% pO2, but will respond at higher or lower pO2 values. These predictions were validated through experiments on bulk GBM cell line cultures and on neurosphere cultures of a human-origin GBM xenograft tumor. We attempt to understand this behavior through the use of a quantitative version of Le Chatelier's principle, as well as through a steady-state kinetic model of protein interactions, both of which indicate that hypoxia can influence mTORC1 signaling as a switch. The Le Chatelier approach also indicates that this switch may be thought of as a type of phase transition. Our analysis indicates that certain biologically complex cell behaviors may be understood using fundamental, thermodynamics-motivated principles.

  3. Bounded noise induced first-order phase transitions in a baseline non-spatial model of gene transcription

    NASA Astrophysics Data System (ADS)

    d'Onofrio, Alberto; Caravagna, Giulio; de Franciscis, Sebastiano

    2018-02-01

    In this work we consider, from a statistical mechanics point of view, the effects of bounded stochastic perturbations of the protein decay rate for a bistable biomolecular network module. Namely, we consider the perturbations of the protein decay/binding rate constant (DBRC) in a circuit modeling the positive feedback of a transcription factor (TF) on its own synthesis. The DBRC models both the spontaneous degradation of the TF and its linking to other unknown biomolecular factors or drugs. We show that bounded perturbations of the DBRC preserve the positivity of the parameter value (and also its limited variation), and induce effects of interest. First, the noise amplitude induces a first-order phase transition. This is of interest since the system in study has neither spatial components nor it is composed by multiple interacting networks. In particular, we observe that the system passes from two to a unique stochastic attractor, and vice-versa. This behavior is different from noise-induced transitions (also termed phenomenological bifurcations), where a unique stochastic attractor changes its shape depending on the values of a parameter. Moreover, we observe irreversible jumps as a consequence of the above-mentioned phase transition. We show that the illustrated mechanism holds for general models with the same deterministic hysteresis bifurcation structure. Finally, we illustrate the possible implications of our findings to the intracellular pharmacodynamics of drugs delivered in continuous infusion.

  4. Phase behavior, rheological characteristics and microstructure of sodium caseinate-Persian gum system.

    PubMed

    Sadeghi, Farzad; Kadkhodaee, Rassoul; Emadzadeh, Bahareh; Phillips, Glyn O

    2018-01-01

    In this study, the phase behavior of sodium caseinate-Persian gum mixtures was investigated. The effect of thermodynamic incompatibility on phase distribution of sodium caseinate fractions as well as the flow behavior and microstructure of the biopolymer mixtures were also studied. The phase diagram clearly demonstrated the dominant effect of Persian gum on the incompatibility of the two biopolymers. SDS-PAGE electrophoresis indicated no selective fractionation of sodium caseinate subunits between equilibrium phases upon de-mixing. The microstructure of mixtures significantly changed depending on their position within the phase diagram. Fitting viscometric data to Cross and Bingham models revealed that the apparent viscosity, relaxation time and shear thinning behavior of the mixtures is greatly influenced by the volume ratio and concentration of the equilibrium phases. There is a strong dependence of the flow behavior of sodium caseinate-Persian gum mixtures on the composition of the equilibrium phases and the corresponding microstructure of the system. Copyright © 2017. Published by Elsevier Ltd.

  5. Cytoskeletal Components Define Protein Location to Membrane Microdomains*

    PubMed Central

    Szymanski, Witold G.; Zauber, Henrik; Erban, Alexander; Gorka, Michal; Wu, Xu Na; Schulze, Waltraud X.

    2015-01-01

    The plasma membrane is an important compartment that undergoes dynamic changes in composition upon external or internal stimuli. The dynamic subcompartmentation of proteins in ordered low-density (DRM) and disordered high-density (DSM) membrane phases is hypothesized to require interactions with cytoskeletal components. Here, we systematically analyzed the effects of actin or tubulin disruption on the distribution of proteins between membrane density phases. We used a proteomic screen to identify candidate proteins with altered submembrane location, followed by biochemical or cell biological characterization in Arabidopsis thaliana. We found that several proteins, such as plasma membrane ATPases, receptor kinases, or remorins resulted in a differential distribution between membrane density phases upon cytoskeletal disruption. Moreover, in most cases, contrasting effects were observed: Disruption of actin filaments largely led to a redistribution of proteins from DRM to DSM membrane fractions while disruption of tubulins resulted in general depletion of proteins from the membranes. We conclude that actin filaments are necessary for dynamic movement of proteins between different membrane phases and that microtubules are not necessarily important for formation of microdomains as such, but rather they may control the protein amount present in the membrane phases. PMID:26091700

  6. Non-ideality by sedimentation velocity of halophilic malate dehydrogenase in complex solvents.

    PubMed Central

    Solovyova, A; Schuck, P; Costenaro, L; Ebel, C

    2001-01-01

    We have investigated the potential of sedimentation velocity analytical ultracentrifugation for the measurement of the second virial coefficients of proteins, with the goal of developing a method that allows efficient screening of different solvent conditions. This may be useful for the study of protein crystallization. Macromolecular concentration distributions were modeled using the Lamm equation with the approximation of linear concentration dependencies of the diffusion constant, D = D(o) (1 + k(D)c), and the reciprocal sedimentation coefficient s = s(o)/(1 + k(s)c). We have studied model distributions for their information content with respect to the particle and its non-ideal behavior, developed a strategy for their analysis by direct boundary modeling, and applied it to data from sedimentation velocity experiments on halophilic malate dehydrogenase in complex aqueous solvents containing sodium chloride and 2-methyl-2,4-pentanediol, including conditions near phase separation. Using global modeling for three sets of data obtained at three different protein concentrations, very good estimates for k(s) and s degrees and also for D degrees and the buoyant molar mass were obtained. It was also possible to obtain good estimates for k(D) and the second virial coefficients. Modeling of sedimentation velocity profiles with the non-ideal Lamm equation appears as a good technique to investigate weak inter-particle interactions in complex solvents and also to extrapolate the ideal behavior of the particle. PMID:11566761

  7. The biomolecular corona of nanoparticles in circulating biological media

    NASA Astrophysics Data System (ADS)

    Pozzi, D.; Caracciolo, G.; Digiacomo, L.; Colapicchioni, V.; Palchetti, S.; Capriotti, A. L.; Cavaliere, C.; Zenezini Chiozzi, R.; Puglisi, A.; Laganà, A.

    2015-08-01

    When nanoparticles come into contact with biological media, they are covered by a biomolecular `corona', which confers a new identity to the particles. In all the studies reported so far nanoparticles are incubated with isolated plasma or serum that are used as a model for protein adsorption. Anyway, bodily fluids are dynamic in nature so the question arises on whether the incubation protocol, i.e. dynamic vs. static incubation, could affect the composition and structure of the biomolecular corona. Here we let multicomponent liposomes interact with fetal bovine serum (FBS) both statically and dynamically, i.e. in contact with circulating FBS (~40 cm s-1). The structure and composition of the liposome-protein corona, as determined by dynamic light scattering, electrophoretic light scattering and liquid chromatography tandem mass spectrometry, were found to be dependent on the incubation protocol. Specifically, following dynamic exposure to FBS, multicomponent liposomes were less enriched in complement proteins and appreciably more enriched in apolipoproteins and acute phase proteins (e.g. alpha-1-antitrypsin and inter-alpha-trypsin inhibitor heavy chain H3) that are involved in relevant interactions between nanoparticles and living systems. Supported by our results, we speculate that efficient predictive modeling of nanoparticle behavior in vivo will require accurate knowledge of nanoparticle-specific protein fingerprints in circulating biological media.When nanoparticles come into contact with biological media, they are covered by a biomolecular `corona', which confers a new identity to the particles. In all the studies reported so far nanoparticles are incubated with isolated plasma or serum that are used as a model for protein adsorption. Anyway, bodily fluids are dynamic in nature so the question arises on whether the incubation protocol, i.e. dynamic vs. static incubation, could affect the composition and structure of the biomolecular corona. Here we let multicomponent liposomes interact with fetal bovine serum (FBS) both statically and dynamically, i.e. in contact with circulating FBS (~40 cm s-1). The structure and composition of the liposome-protein corona, as determined by dynamic light scattering, electrophoretic light scattering and liquid chromatography tandem mass spectrometry, were found to be dependent on the incubation protocol. Specifically, following dynamic exposure to FBS, multicomponent liposomes were less enriched in complement proteins and appreciably more enriched in apolipoproteins and acute phase proteins (e.g. alpha-1-antitrypsin and inter-alpha-trypsin inhibitor heavy chain H3) that are involved in relevant interactions between nanoparticles and living systems. Supported by our results, we speculate that efficient predictive modeling of nanoparticle behavior in vivo will require accurate knowledge of nanoparticle-specific protein fingerprints in circulating biological media. Electronic supplementary information (ESI) available: Table S1: estimation of the corona thickness, sk, of elementary units (liposome-protein corona) clustered in k-fold equilibrium aggregates (t > 15 min). Tables S2 and S3: the full list of the most abundant corona proteins identified on the surface of multicomponent liposomes following dynamic and static incubation with fetal bovine serum. Table S4: the list of the unique proteins bound to MC liposomes following 90 min incubation with FBS under dynamic and static incubation. See DOI: 10.1039/c5nr03701h

  8. Coexistence of Phases in a Protein Heterodimer

    PubMed Central

    Krokhotin, Andrey; Liwo, Adam; Niemi, Antti J.; Scheraga, Harold A.

    2012-01-01

    A heterodimer consisting of two or more different kinds of proteins can display an enormous number of distinct molecular architectures. The conformational entropy is an essential ingredient in the Helmholtz free energy and, consequently, these heterodimers can have a very complex phase structure. Here, it is proposed that there is a state of proteins, in which the different components of a heterodimer exist in different phases. For this purpose, the structures in the protein data bank (PDB) have been analyzed, with radius of gyration as the order parameter. Two major classes of heterodimers with their protein components coexisting in different phases have been identified. An example is the PDB structure 3DXC. This is a transcriptionally active dimer. One of the components is an isoform of the intra-cellular domain of the Alzheimer-disease related amyloid precursor protein (AICD), and the other is a nuclear multidomain adaptor protein in the Fe65 family. It is concluded from the radius of gyration that neither of the two components in this dimer is in its own collapsed phase, corresponding to a biologically active protein. The UNRES energy function has been utilized to confirm that, if the two components are separated from each other, each of them collapses. The results presented in this work show that heterodimers whose protein components coexist in different phases, can have intriguing physical properties with potentially important biological consequences. PMID:22830730

  9. Effect of interactions for one-dimensional asymmetric exclusion processes under periodic and bath-adapted coupling environment

    NASA Astrophysics Data System (ADS)

    Midha, Tripti; Kolomeisky, Anatoly B.; Gupta, Arvind Kumar

    2018-04-01

    Stimulated by the effect of the nearest neighbor interactions in vehicular traffic and motor proteins, we study a 1D driven lattice gas model, in which the nearest neighbor particle interactions are taken in accordance with the thermodynamic concepts. The non-equilibrium steady-state properties of the system are analyzed under both open and periodic boundary conditions using a combination of cluster mean-field analysis and Monte Carlo simulations. Interestingly, the fundamental diagram of current versus density shows a complex behavior with a unimodal dependence for attractions and weak repulsions that turns into the bimodal behavior for stronger repulsive interactions. Specific details of system-reservoir coupling for the open system have a strong effect on the stationary phases. We produce the steady-state phase diagrams for the bulk-adapted coupling to the reservoir using the minimum and maximum current principles. The strength and nature of interaction energy has a striking influence on the number of stationary phases. We observe that interactions lead to correlations having a strong impact on the system dynamical properties. The correlation between any two sites decays exponentially as the distance between the sites increases. Moreover, they are found to be short-range for repulsions and long-range for attractions. Our results also suggest that repulsions and attractions asymmetrically modify the dynamics of interacting particles in exclusion processes.

  10. Phase equilibria in the lysozyme-ammonium sulfate-water system.

    PubMed

    Moretti, J J; Sandler, S I; Lenhoff, A M

    2000-12-05

    Ternary phase diagrams were measured for lysozyme in ammonium sulfate solutions at pH values of 4 and 8. Lysozyme, ammonium sulfate, and water mass fractions were assayed independently by UV spectroscopy, barium chloride titration, and lyophilization respectively, with mass balances satisfied to within 1%. Protein crystals, flocs, and gels were obtained in different regions of the phase diagrams, and in some cases growth of crystals from the gel phase or from the supernatant after floc removal was observed. These observations, as well as a discontinuity in protein solubility between amorphous floc precipitate and crystal phases, indicate that the crystal phase is the true equilibrium state. The ammonium sulfate was generally found to partition unequally between the supernatant and the dense phase, in disagreement with an assumption often made in protein phase equilibrium studies. The results demonstrate the potential richness of protein phase diagrams as well as the uncertainties resulting from slow equilibration. Copyright 2000 John Wiley & Sons, Inc.

  11. Comprehensive behavioral study and proteomic analyses of CRMP2-deficient mice.

    PubMed

    Nakamura, Haruko; Yamashita, Naoya; Kimura, Ayuko; Kimura, Yayoi; Hirano, Hisashi; Makihara, Hiroko; Kawamoto, Yuko; Jitsuki-Takahashi, Aoi; Yonezaki, Kumiko; Takase, Kenkichi; Miyazaki, Tomoyuki; Nakamura, Fumio; Tanaka, Fumiaki; Goshima, Yoshio

    2016-10-01

    Collapsin response mediator protein 2 (CRMP2) plays a key role in axon guidance, dendritic morphogenesis and cell polarization. CRMP2 is implicated in various neurological and psychiatric disorders. However, in vivo functions of CRMP2 remain unknown. We generated CRMP2 gene-deficient (crmp2 -/- ) mice and examined their behavioral phenotypes. During 24-h home cage monitoring, the activity level during the dark phase of crmp2 -/- mice was significantly higher than that of wild-type (WT) mice. Moreover, the time during the open arm of an elevated plus maze was longer for crmp2 -/- mice than for WT mice. The duration of social interaction was shorter for crmp2 -/- mice than for WT mice. Crmp2 -/- mice also showed mild impaired contextual learning. We then examined the methamphetamine-induced behavioral change of crmp2 -/- mice. Crmp2 -/- mice showed increased methamphetamine-induced ambulatory activity and serotonin release. Crmp2 -/- mice also showed altered expression of proteins involved in GABAergic synapse, glutamatergic synapse and neurotrophin signaling pathways. In addition, SNAP25, RAB18, FABP5, ARF5 and LDHA, which are related genes to schizophrenia and methamphetamine sensitization, are also decreased in crmp2 -/- mice. Our study implies that dysregulation of CRMP2 may be involved in pathophysiology of neuropsychiatric disorders. © 2016 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  12. Designing and defining dynamic protein cage nanoassemblies in solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Y. -T.; Hura, G. L.; Dyer, K. N.

    Central challenges in the design of large and dynamic macromolecular assemblies for synthetic biology lie in developing effective methods for testing design strategies and their outcomes, including comprehensive assessments of solution behavior. Here, we created and validated an advanced design of a 600-kDa protein homododecamer that self-assembles into a symmetric tetrahedral cage. The monomeric unit is composed of a trimerizing apex-forming domain genetically linked to an edge-forming dimerizing domain. Enhancing the crystallographic results, high-throughput small-angle x-ray scattering (SAXS) comprehensively contrasted our modifications under diverse solution conditions. To generate a phase diagram associating structure and assembly, we developed force plots thatmore » measure dissimilarity among multiple SAXS data sets. These new tools, which provided effective feedback on experimental constructs relative to design, have general applicability in analyzing the solution behavior of heterogeneous nanosystems and have been made available as a web-based application. Specifically, our results probed the influence of solution conditions and symmetry on stability and structural adaptability, identifying the dimeric interface as the weak point in the assembly. Force plots comparing SAXS data sets further reveal more complex and controllable behavior in solution than captured by our crystal structures. Lastly, these methods for objectively and comprehensively comparing SAXS profiles for systems critically affected by solvent conditions and structural heterogeneity provide an enabling technology for advancing the design and bioengineering of nanoscale biological materials.« less

  13. Designing and defining dynamic protein cage nanoassemblies in solution

    DOE PAGES

    Lai, Y. -T.; Hura, G. L.; Dyer, K. N.; ...

    2016-12-14

    Central challenges in the design of large and dynamic macromolecular assemblies for synthetic biology lie in developing effective methods for testing design strategies and their outcomes, including comprehensive assessments of solution behavior. Here, we created and validated an advanced design of a 600-kDa protein homododecamer that self-assembles into a symmetric tetrahedral cage. The monomeric unit is composed of a trimerizing apex-forming domain genetically linked to an edge-forming dimerizing domain. Enhancing the crystallographic results, high-throughput small-angle x-ray scattering (SAXS) comprehensively contrasted our modifications under diverse solution conditions. To generate a phase diagram associating structure and assembly, we developed force plots thatmore » measure dissimilarity among multiple SAXS data sets. These new tools, which provided effective feedback on experimental constructs relative to design, have general applicability in analyzing the solution behavior of heterogeneous nanosystems and have been made available as a web-based application. Specifically, our results probed the influence of solution conditions and symmetry on stability and structural adaptability, identifying the dimeric interface as the weak point in the assembly. Force plots comparing SAXS data sets further reveal more complex and controllable behavior in solution than captured by our crystal structures. Lastly, these methods for objectively and comprehensively comparing SAXS profiles for systems critically affected by solvent conditions and structural heterogeneity provide an enabling technology for advancing the design and bioengineering of nanoscale biological materials.« less

  14. Influence of chain length and double bond on the aqueous behavior of choline carboxylate soaps.

    PubMed

    Rengstl, Doris; Diat, Olivier; Klein, Regina; Kunz, Werner

    2013-02-26

    In preceding studies, we demonstrated that choline carboxylates ChC(m) with alkyl chain lengths of m = 12 - 18 are highly water-soluble (for m = 12, soluble up to 93 wt % soap and 0 °C). In addition, choline soaps are featured by an extraordinary lyotropic phase behavior. With decreasing water concentration, the following phases were found: micellar phase (L(1)), discontinuous cubic phase (I(1)' and I(1)"), hexagonal phase (H(1)), bicontinuous cubic phase (V(1)), and lamellar phase (L(α)). The present work is also focused on the lyotropic phase behavior of choline soaps but with shorter alkyl chains or different alkyl chain properties. We have investigated the aqueous phase behavior of choline soaps with C(8) and C(10) chain-lengths (choline octanoate and choline decanoate) and with a C(18) chain-length with a cis-double bond (choline oleate). We found that choline decanoate follows the lyotropic phase behavior of the longer-chain homologues mentioned above. Choline octanoate in water shows no discontinuous cubic phases, but an extended, isotropic micellar solution phase. In addition, choline octanoate is at the limit between a surfactant and a hydrotrope. The double bond in choline oleate leads also to a better solubility in water and a decrease of the solubilization temperature. It also influences the Gaussian curvature of the aggregates which results in a loss of discontinuous cubic phases in the binary phase diagram. The different lyotropic mesophases were identified by the penetration scan technique with polarizing light microscope and visual observations. To clarify the structural behavior small (SAXS) and wide (WAXS) angle X-ray scattering were performed. To further characterize the extended, isotropic micellar solution phase in the binary phase diagram of choline octanoate viscosity and conductivity measurements were also carried out.

  15. Phase behaviors of supramolecular graft copolymers with reversible bonding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xu; Wang, Liquan, E-mail: jlin@ecust.edu.cn, E-mail: lq-wang@ecust.edu.cn; Jiang, Tao

    2013-11-14

    Phase behaviors of supramolecular graft copolymers with reversible bonding interactions were examined by the random-phase approximation and real-space implemented self-consistent field theory. The studied supramolecular graft copolymers consist of two different types of mutually incompatible yet reactive homopolymers, where one homopolymer (backbone) possesses multifunctional groups that allow second homopolymers (grafts) to be placed on. The calculations carried out show that the bonding strength exerts a pronounced effect on the phase behaviors of supramolecular graft copolymers. The length ratio of backbone to graft and the positions of functional groups along the backbone are also of importance to determine the phase behaviors.more » Phase diagrams were constructed at high bonding strength to illustrate this architectural dependence. It was found that the excess unbounded homopolymers swell the phase domains and shift the phase boundaries. The results were finally compared with the available experimental observations, and a well agreement is shown. The present work could, in principle, provide a general understanding of the phase behaviors of supramolecular graft copolymers with reversible bonding.« less

  16. Characterization of Bitumen Micro-Mechanical Behaviors Using AFM, Phase Dynamics Theory and MD Simulation.

    PubMed

    Hou, Yue; Wang, Linbing; Wang, Dawei; Guo, Meng; Liu, Pengfei; Yu, Jianxin

    2017-02-21

    Fundamental understanding of micro-mechanical behaviors in bitumen, including phase separation, micro-friction, micro-abrasion, etc., can help the pavement engineers better understand the bitumen mechanical performances at macroscale. Recent researches show that the microstructure evolution in bitumen will directly affect its surface structure and micro-mechanical performance. In this study, the bitumen microstructure and micro-mechanical behaviors are studied using Atomic Force Microscopy (AFM) experiments, Phase Dynamics Theory and Molecular Dynamics (MD) Simulation. The AFM experiment results show that different phase-structure will occur at the surface of the bitumen samples under certain thermodynamic conditions at microscale. The phenomenon can be explained using the phase dynamics theory, where the effects of stability parameter and temperature on bitumen microstructure and micro-mechanical behavior are studied combined with MD Simulation. Simulation results show that the saturates phase, in contrast to the naphthene aromatics phase, plays a major role in bitumen micro-mechanical behavior. A high stress zone occurs at the interface between the saturates phase and the naphthene aromatics phase, which may form discontinuities that further affect the bitumen frictional performance.

  17. Characterization of Bitumen Micro-Mechanical Behaviors Using AFM, Phase Dynamics Theory and MD Simulation

    PubMed Central

    Hou, Yue; Wang, Linbing; Wang, Dawei; Guo, Meng; Liu, Pengfei; Yu, Jianxin

    2017-01-01

    Fundamental understanding of micro-mechanical behaviors in bitumen, including phase separation, micro-friction, micro-abrasion, etc., can help the pavement engineers better understand the bitumen mechanical performances at macroscale. Recent researches show that the microstructure evolution in bitumen will directly affect its surface structure and micro-mechanical performance. In this study, the bitumen microstructure and micro-mechanical behaviors are studied using Atomic Force Microscopy (AFM) experiments, Phase Dynamics Theory and Molecular Dynamics (MD) Simulation. The AFM experiment results show that different phase-structure will occur at the surface of the bitumen samples under certain thermodynamic conditions at microscale. The phenomenon can be explained using the phase dynamics theory, where the effects of stability parameter and temperature on bitumen microstructure and micro-mechanical behavior are studied combined with MD Simulation. Simulation results show that the saturates phase, in contrast to the naphthene aromatics phase, plays a major role in bitumen micro-mechanical behavior. A high stress zone occurs at the interface between the saturates phase and the naphthene aromatics phase, which may form discontinuities that further affect the bitumen frictional performance. PMID:28772570

  18. Simulations of HIV Capsid Protein Dimerization Reveal the Effect of Chemistry and Topography on the Mechanism of Hydrophobic Protein Association

    PubMed Central

    Yu, Naiyin; Hagan, Michael F.

    2012-01-01

    Recent work has shown that the hydrophobic protein surfaces in aqueous solution sit near a drying transition. The tendency for these surfaces to expel water from their vicinity leads to self-assembly of macromolecular complexes. In this article, we show with a realistic model for a biologically pertinent system how this phenomenon appears at the molecular level. We focus on the association of the C-terminal domain (CA-C) of the human immunodeficiency virus capsid protein. By combining all-atom simulations with specialized sampling techniques, we measure the water density distribution during the approach of two CA-C proteins as a function of separation and amino acid sequence in the interfacial region. The simulations demonstrate that CA-C protein-protein interactions sit at the edge of a dewetting transition and that this mesoscopic manifestation of the underlying liquid-vapor phase transition can be readily manipulated by biology or protein engineering to significantly affect association behavior. Although the wild-type protein remains wet until contact, we identify a set of in silico mutations, in which three hydrophilic amino acids are replaced with nonpolar residues, that leads to dewetting before association. The existence of dewetting depends on the size and relative locations of substituted residues separated by nanometer length scales, indicating long-range cooperativity and a sensitivity to surface topography. These observations identify important details that are missing from descriptions of protein association based on buried hydrophobic surface area. PMID:22995509

  19. Ferroelectric Phase Transformations for Energy Conversion and Storage Applications

    NASA Astrophysics Data System (ADS)

    Jo, Hwan Ryul

    Ferroelectric materials possess a spontaneous polarization and actively respond to external mechanical, electrical, and thermal loads. Due to their coupled behavior, ferroelectric materials are used in products such as sensors, actuators, detectors, and transducers. However, most current applications rely on low-energy conversion that involves low magnitude fields. They utilize the low-field linear properties of ferroelectric materials (piezoelectric, pyroelectric) and do not take full advantage of the large-field nonlinear behavior (irreversible domain wall motion, phase transformations) that can occur in ferroelectric materials. When external fields exceed a certain critical level, a structural transformation of the crystal can occur. These phase transformations are accompanied by a much larger response than the linear piezoelectric and pyroelectric responses, by as much as a multiple of ten times in the magnitude. This makes the non-linear behavior in ferroelectric materials promising for energy harvesting and energy storage technologies which will benefit from large-energy conversion. Yet, the ferroelectric phase transformation behavior under large external fields have been less studied and only a few studies have been directed at utilizing this large material response in applications. This dissertation addresses the development ferroelectric phase transformation-based applications, with particular focus on the materials. Development of the ferroelectric phase transformation-based applications was approached in several steps. First, the phase transformation behavior was fully characterized and understood by measuring the phase transformation responses under mechanical, electrical, thermal, and combined loads. Once the behavior was well characterized, systems level applications were addressed. This required assessing the effect of the phase transformation behavior on system performance. The performance of ferroelectric devices is strongly dependent on material properties and phase transformation behavior which can be tailored by modifying the chemical composition, processing conditions, and the loading history (poling). This results in optimization of system performance by tailoring material properties and phase transformation behavior. This approach applied to three ferroelectric phase transformation-based applications: 1. Ferroelectric energy generation 2. Ferroelectric high-energy storage capacitor 3. Ferroelectric thermal energy harvesting. This dissertation has addressed tuning the large field properties for phase transformation-based systems.

  20. Dynamics of a discrete chain of bi-stable elements: A biomimetic shock absorbing mechanism

    NASA Astrophysics Data System (ADS)

    Cohen, T.; Givli, S.

    2014-03-01

    A biomimetic shock absorbing mechanism, inspired by the bi-stable elongation behavior of the giant protein titin, is examined. A bi-stable element, composed of three mass particles with monotonous interaction forces, is suggested to facilitate an internal degree of freedom of finite mass which contributes significantly to dissipation upon unlocking of an internal link. An essential feature of the suggested element is that it undergoes reversible rapture and therefore retrieves its initial configuration once unloaded. The quasistatic and dynamic behaviors are investigated showing similarity to the common tri-linear bi-stable response, with two steady phases separated by a spinodal region. The dynamic behavior of a chain of elements is also examined, for several loading scenarios, showing that the suggested mechanism serves as an efficient shock absorber in a sub-critical dampening environment, as compared with a simple mass on spring system. Propagation of shock waves and refraction waves in an element chain is observed and the effect of natural imperfections is considered.

  1. Release of Native-like Gaseous Proteins from Electrospray Droplets via the Charged Residue Mechanism: Insights from Molecular Dynamics Simulations.

    PubMed

    McAllister, Robert G; Metwally, Haidy; Sun, Yu; Konermann, Lars

    2015-10-07

    The mechanism whereby gaseous protein ions are released from charged solvent droplets during electrospray ionization (ESI) remains a matter of debate. Also, it is unclear to what extent electrosprayed proteins retain their solution structure. Molecular dynamics (MD) simulations offer insights into the temporal evolution of protein systems. Surprisingly, there have been no all-atom simulations of the protein ESI process to date. The current work closes this gap by investigating the behavior of protein-containing aqueous nanodroplets that carry excess positive charge. We focus on "native ESI", where proteins initially adopt their biologically active solution structures. ESI proceeds while the protein remains entrapped within the droplet. Protein release into the gas phase occurs upon solvent evaporation to dryness. Droplet shrinkage is accompanied by ejection of charge carriers (Na(+) for the conditions chosen here), keeping the droplet at ∼85% of the Rayleigh limit throughout its life cycle. Any remaining charge carriers bind to the protein as the final solvent molecules evaporate. The outcome of these events is largely independent of the initial protein charge and the mode of charge carrier binding. ESI charge states and collision cross sections of the MD structures agree with experimental data. Our results confirm the Rayleigh/charged residue model (CRM). Field emission of excess Na(+) plays an ancillary role by governing the net charge of the shrinking droplet. Models that envision protein ejection from the droplet are not supported. Most nascent CRM ions retain native-like conformations. For unfolded proteins ESI likely proceeds along routes that are different from the native state mechanism explored here.

  2. Flow behavior of mixed-protein incipient gels

    USDA-ARS?s Scientific Manuscript database

    Strong protein gel networks may result from synergistic interactions with other proteins or food materials above that achievable with a single protein alone. We determined varying flow and viscoelastic behavior of calcium caseinate (CC) or whey protein isolate (WPI) mixed with egg albumin (EA), fish...

  3. Anomalistic Self-Assembled Phase Behavior of Block Copolymer Blended with Organic Derivative Depending on Temperature

    DOE PAGES

    Kim, Tae-Hwan; Kim, Eunhye; Do, Changwoo; ...

    2016-08-16

    Amphiphilic Pluronic block copolymers have attracted great attention in a broad spectrum of potential applications due to the excellent phase behaviors in an aqueous solution, and many efforts have been made to investigate their phase behaviors under various external conditions. With a variety of external conditions, however, the closed looplike phase behaviors of a Pluronic block copolymer in an aqueous solution have not been reported yet. Herein, we report the closed looplike (CLL) phase behavior of a Pluronic P65 triblock copolymer blended with an organic derivative, 5-methylsalicylic acid (5mS), in aqueous solution, which is very unique for block copolymers. Asmore » the 5mS concentration increases, the isotropic to ordered phase or back to isotropic phase transition temperature is decreased while the number of closed loops is increased to two. To the best of our knowledge, this is the first demonstration of a CLL phase transition of a Pluronic block copolymer in an aqueous solution, which is readily applicable to optical devices such as optical sensors or optoelectronics, and nanotemplates for a highly ordered superlattice. Additionally, this provides new insight into the understanding on the phase behavior of a Pluronic block copolymer blended with additives.« less

  4. Anomalistic Self-Assembled Phase Behavior of Block Copolymer Blended with Organic Derivative Depending on Temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Tae-Hwan; Kim, Eunhye; Do, Changwoo

    Amphiphilic Pluronic block copolymers have attracted great attention in a broad spectrum of potential applications due to the excellent phase behaviors in an aqueous solution, and many efforts have been made to investigate their phase behaviors under various external conditions. With a variety of external conditions, however, the closed looplike phase behaviors of a Pluronic block copolymer in an aqueous solution have not been reported yet. Herein, we report the closed looplike (CLL) phase behavior of a Pluronic P65 triblock copolymer blended with an organic derivative, 5-methylsalicylic acid (5mS), in aqueous solution, which is very unique for block copolymers. Asmore » the 5mS concentration increases, the isotropic to ordered phase or back to isotropic phase transition temperature is decreased while the number of closed loops is increased to two. To the best of our knowledge, this is the first demonstration of a CLL phase transition of a Pluronic block copolymer in an aqueous solution, which is readily applicable to optical devices such as optical sensors or optoelectronics, and nanotemplates for a highly ordered superlattice. Additionally, this provides new insight into the understanding on the phase behavior of a Pluronic block copolymer blended with additives.« less

  5. CAMELOT: A machine learning approach for coarse-grained simulations of aggregation of block-copolymeric protein sequences

    PubMed Central

    Ruff, Kiersten M.; Harmon, Tyler S.; Pappu, Rohit V.

    2015-01-01

    We report the development and deployment of a coarse-graining method that is well suited for computer simulations of aggregation and phase separation of protein sequences with block-copolymeric architectures. Our algorithm, named CAMELOT for Coarse-grained simulations Aided by MachinE Learning Optimization and Training, leverages information from converged all atom simulations that is used to determine a suitable resolution and parameterize the coarse-grained model. To parameterize a system-specific coarse-grained model, we use a combination of Boltzmann inversion, non-linear regression, and a Gaussian process Bayesian optimization approach. The accuracy of the coarse-grained model is demonstrated through direct comparisons to results from all atom simulations. We demonstrate the utility of our coarse-graining approach using the block-copolymeric sequence from the exon 1 encoded sequence of the huntingtin protein. This sequence comprises of 17 residues from the N-terminal end of huntingtin (N17) followed by a polyglutamine (polyQ) tract. Simulations based on the CAMELOT approach are used to show that the adsorption and unfolding of the wild type N17 and its sequence variants on the surface of polyQ tracts engender a patchy colloid like architecture that promotes the formation of linear aggregates. These results provide a plausible explanation for experimental observations, which show that N17 accelerates the formation of linear aggregates in block-copolymeric N17-polyQ sequences. The CAMELOT approach is versatile and is generalizable for simulating the aggregation and phase behavior of a range of block-copolymeric protein sequences. PMID:26723608

  6. A trough for improved SFG spectroscopy of lipid monolayers.

    PubMed

    Franz, Johannes; van Zadel, Marc-Jan; Weidner, Tobias

    2017-05-01

    Lipid monolayers are indispensable model systems for biological membranes. The main advantage over bilayer model systems is that the surface pressure within the layer can be directly and reliably controlled. The sensitive interplay between surface pressure and temperature determines the molecular order within a model membrane and consequently determines the membrane phase behavior. The lipid phase is of crucial importance for a range of membrane functions such as protein interactions and membrane permeability. A very reliable method to probe the structure of lipid monolayers is sum frequency generation (SFG) vibrational spectroscopy. Not only is SFG extremely surface sensitive but it can also directly access critical parameters such as lipid order and orientation, and it can provide valuable information about protein interactions along with interfacial hydration. However, recent studies have shown that temperature gradients caused by high power laser beams perturb the lipid layers and potentially obscure the spectroscopic results. Here we demonstrate how the local heating problem can be effectively reduced by spatially distributing the laser pulses on the sample surface using a translating Langmuir trough for SFG experiments at lipid monolayers. The efficiency of the trough is illustrated by the detection of enhanced molecular order due to reduced heat load.

  7. A trough for improved SFG spectroscopy of lipid monolayers

    NASA Astrophysics Data System (ADS)

    Franz, Johannes; van Zadel, Marc-Jan; Weidner, Tobias

    2017-05-01

    Lipid monolayers are indispensable model systems for biological membranes. The main advantage over bilayer model systems is that the surface pressure within the layer can be directly and reliably controlled. The sensitive interplay between surface pressure and temperature determines the molecular order within a model membrane and consequently determines the membrane phase behavior. The lipid phase is of crucial importance for a range of membrane functions such as protein interactions and membrane permeability. A very reliable method to probe the structure of lipid monolayers is sum frequency generation (SFG) vibrational spectroscopy. Not only is SFG extremely surface sensitive but it can also directly access critical parameters such as lipid order and orientation, and it can provide valuable information about protein interactions along with interfacial hydration. However, recent studies have shown that temperature gradients caused by high power laser beams perturb the lipid layers and potentially obscure the spectroscopic results. Here we demonstrate how the local heating problem can be effectively reduced by spatially distributing the laser pulses on the sample surface using a translating Langmuir trough for SFG experiments at lipid monolayers. The efficiency of the trough is illustrated by the detection of enhanced molecular order due to reduced heat load.

  8. Electrostatics of cysteine residues in proteins: parameterization and validation of a simple model.

    PubMed

    Salsbury, Freddie R; Poole, Leslie B; Fetrow, Jacquelyn S

    2012-11-01

    One of the most popular and simple models for the calculation of pK(a) s from a protein structure is the semi-macroscopic electrostatic model MEAD. This model requires empirical parameters for each residue to calculate pK(a) s. Analysis of current, widely used empirical parameters for cysteine residues showed that they did not reproduce expected cysteine pK(a) s; thus, we set out to identify parameters consistent with the CHARMM27 force field that capture both the behavior of typical cysteines in proteins and the behavior of cysteines which have perturbed pK(a) s. The new parameters were validated in three ways: (1) calculation across a large set of typical cysteines in proteins (where the calculations are expected to reproduce expected ensemble behavior); (2) calculation across a set of perturbed cysteines in proteins (where the calculations are expected to reproduce the shifted ensemble behavior); and (3) comparison to experimentally determined pK(a) values (where the calculation should reproduce the pK(a) within experimental error). Both the general behavior of cysteines in proteins and the perturbed pK(a) in some proteins can be predicted reasonably well using the newly determined empirical parameters within the MEAD model for protein electrostatics. This study provides the first general analysis of the electrostatics of cysteines in proteins, with specific attention paid to capturing both the behavior of typical cysteines in a protein and the behavior of cysteines whose pK(a) should be shifted, and validation of force field parameters for cysteine residues. Copyright © 2012 Wiley Periodicals, Inc.

  9. Dependence on sphere size of the phase behavior of mixtures of rods and spheres

    NASA Astrophysics Data System (ADS)

    Urakami, Naohito; Imai, Masayuki

    2003-07-01

    By the addition of chondroitin sulfate (Chs) to the aqueous suspension of tobacco mosaic virus (TMV), the aggregation of TMV occurs at very dilute TMV concentration compared with the addition of polyethylene oxide (PEO). The difference of physical behavior between Chs and PEO is the chain conformation in solution. The Chs chain has a semirigid nature, whereas the PEO chain has a flexible nature. In this study, the Chs and PEO chains are simplified to spherical particles having different size, and we use the spherocylinder model for TMV particle. The effect of the sphere size on the phase behaviors in the mixtures of rods and spheres is investigated by Monte Carlo simulations. By the addition of small spheres, the system transforms from the miscible isotropic phase to the miscible nematic phase. On the other hand, by the addition of large spheres, the system changes from the miscible isotropic phase to the immiscible nematic phase through the immiscible isotropic phase. The different phase behaviors between the small and the large spheres originate from the difference of overlapping volume of the depletion zone. In addition, we perform the Monte Carlo simulations in the case that semirigid chains are used as the Chs chain models. The same phase behaviors are observed as the mixtures of rods and large spheres. Thus the sphere model captures the phase behaviors of rod and polymer mixture systems.

  10. Electrical Hyperexcitation of Lateral Ventral Pacemaker Neurons Desynchronizes Downstream Circadian Oscillators in the Fly Circadian Circuit and Induces Multiple Behavioral Periods

    PubMed Central

    Nitabach, Michael N.; Wu, Ying; Sheeba, Vasu; Lemon, William C.; Strumbos, John; Zelensky, Paul K.; White, Benjamin H.; Holmes, Todd C.

    2008-01-01

    Coupling of autonomous cellular oscillators is an essential aspect of circadian clock function but little is known about its circuit requirements. Functional ablation of the pigment-dispersing factor-expressing lateral ventral subset (LNV ) of Drosophila clock neurons abolishes circadian rhythms of locomotor activity. The hypothesis that LNVs synchronize oscillations in downstream clock neurons was tested by rendering the LNVs hyperexcitable via transgenic expression of a low activation threshold voltage-gated sodium channel. When the LNVs are made hyperexcitable, free-running behavioral rhythms decompose into multiple independent superimposed oscillations and the clock protein oscillations in the dorsal neuron 1 and 2 subgroups of clock neurons are phase-shifted. Thus, regulated electrical activity of the LNVs synchronize multiple oscillators in the fly circadian pacemaker circuit. PMID:16407545

  11. Inhibition of AAK1 Kinase as a Novel Therapeutic Approach to Treat Neuropathic Pain

    PubMed Central

    Kostich, Walter; Hamman, Brian D.; Li, Yu-Wen; Naidu, Sreenivasulu; Dandapani, Kumaran; Feng, Jianlin; Easton, Amy; Bourin, Clotilde; Baker, Kevin; Allen, Jason; Savelieva, Katerina; Louis, Justin V.; Dokania, Manoj; Elavazhagan, Saravanan; Vattikundala, Pradeep; Sharma, Vivek; Das, Manish Lal; Shankar, Ganesh; Kumar, Anoop; Holenarsipur, Vinay K.; Gulianello, Michael; Molski, Ted; Brown, Jeffrey M.; Lewis, Martin; Huang, Yanling; Lu, Yifeng; Pieschl, Rick; O’Malley, Kevin; Lippy, Jonathan; Nouraldeen, Amr; Lanthorn, Thomas H.; Ye, Guilan; Wilson, Alan; Balakrishnan, Anand; Denton, Rex; Grace, James E.; Lentz, Kimberley A.; Santone, Kenneth S.; Bi, Yingzhi; Main, Alan; Swaffield, Jon; Carson, Ken; Mandlekar, Sandhya; Vikramadithyan, Reeba K.; Nara, Susheel J.; Dzierba, Carolyn; Bronson, Joanne; Macor, John E.; Zaczek, Robert; Westphal, Ryan; Kiss, Laszlo; Bristow, Linda; Conway, Charles M.

    2016-01-01

    To identify novel targets for neuropathic pain, 3097 mouse knockout lines were tested in acute and persistent pain behavior assays. One of the lines from this screen, which contained a null allele of the adapter protein-2 associated kinase 1 (AAK1) gene, had a normal response in acute pain assays (hot plate, phase I formalin), but a markedly reduced response to persistent pain in phase II formalin. AAK1 knockout mice also failed to develop tactile allodynia following the Chung procedure of spinal nerve ligation (SNL). Based on these findings, potent, small-molecule inhibitors of AAK1 were identified. Studies in mice showed that one such inhibitor, LP-935509, caused a reduced pain response in phase II formalin and reversed fully established pain behavior following the SNL procedure. Further studies showed that the inhibitor also reduced evoked pain responses in the rat chronic constriction injury (CCI) model and the rat streptozotocin model of diabetic peripheral neuropathy. Using a nonbrain-penetrant AAK1 inhibitor and local administration of an AAK1 inhibitor, the relevant pool of AAK1 for antineuropathic action was found to be in the spinal cord. Consistent with these results, AAK1 inhibitors dose-dependently reduced the increased spontaneous neural activity in the spinal cord caused by CCI and blocked the development of windup induced by repeated electrical stimulation of the paw. The mechanism of AAK1 antinociception was further investigated with inhibitors of α2 adrenergic and opioid receptors. These studies showed that α2 adrenergic receptor inhibitors, but not opioid receptor inhibitors, not only prevented AAK1 inhibitor antineuropathic action in behavioral assays, but also blocked the AAK1 inhibitor–induced reduction in spinal neural activity in the rat CCI model. Hence, AAK1 inhibitors are a novel therapeutic approach to neuropathic pain with activity in animal models that is mechanistically linked (behaviorally and electrophysiologically) to α2 adrenergic signaling, a pathway known to be antinociceptive in humans. PMID:27411717

  12. Drosophila TIM Binds Importin α1, and Acts as an Adapter to Transport PER to the Nucleus

    PubMed Central

    Jang, A. Reum; Moravcevic, Katarina; Saez, Lino; Young, Michael W.; Sehgal, Amita

    2015-01-01

    Regulated nuclear entry of clock proteins is a conserved feature of eukaryotic circadian clocks and serves to separate the phase of mRNA activation from mRNA repression in the molecular feedback loop. In Drosophila, nuclear entry of the clock proteins, PERIOD (PER) and TIMELESS (TIM), is tightly controlled, and impairments of this process produce profound behavioral phenotypes. We report here that nuclear entry of PER-TIM in clock cells, and consequently behavioral rhythms, require a specific member of a classic nuclear import pathway, Importin α1 (IMPα1). In addition to IMPα1, rhythmic behavior and nuclear expression of PER-TIM require a specific nuclear pore protein, Nup153, and Ran-GTPase. IMPα1 can also drive rapid and efficient nuclear expression of TIM and PER in cultured cells, although the effect on PER is mediated by TIM. Mapping of interaction domains between IMPα1 and TIM/PER suggests that TIM is the primary cargo for the importin machinery. This is supported by attenuated interaction of IMPα1 with TIM carrying a mutation previously shown to prevent nuclear entry of TIM and PER. TIM is detected at the nuclear envelope, and computational modeling suggests that it contains HEAT-ARM repeats typically found in karyopherins, consistent with its role as a co-transporter for PER. These findings suggest that although PER is the major timekeeper of the clock, TIM is the primary target of nuclear import mechanisms. Thus, the circadian clock uses specific components of the importin pathway with a novel twist in that TIM serves a karyopherin-like role for PER. PMID:25674790

  13. Characterization of bovine serum albumin partitioning behaviors in polymer-salt aqueous two-phase systems.

    PubMed

    Chow, Yin Hui; Yap, Yee Jiun; Tan, Chin Ping; Anuar, Mohd Shamsul; Tejo, Bimo Ario; Show, Pau Loke; Ariff, Arbakariya Bin; Ng, Eng-Poh; Ling, Tau Chuan

    2015-07-01

    In this paper, a linear relationship is proposed relating the natural logarithm of partition coefficient, ln K for protein partitioning in poly (ethylene glycol) (PEG)-phosphate aqueous two-phase system (ATPS) to the square of tie-line length (TLL(2)). This relationship provides good fits (r(2) > 0.98) to the partition of bovine serum albumin (BSA) in PEG (1450 g/mol, 2000 g/mol, 3350 g/mol, and 4000 g/mol)-phosphate ATPS with TLL of 25.0-50.0% (w/w) at pH 7.0. Results also showed that the plot of ln K against pH for BSA partitioning in the ATPS containing 33.0% (w/w) PEG1450 and 8.0% (w/w) phosphate with varied working pH between 6.0 and 9.0 exhibited a linear relationship which is in good agreement (r(2) = 0.94) with the proposed relationship, ln K = α' pH + β'. These results suggested that both the relationships proposed could be applied to correlate and elucidate the partition behavior of biomolecules in the polymer-salt ATPS. The influence of other system parameters on the partition behavior of BSA was also investigated. An optimum BSA yield of 90.80% in the top phase and K of 2.40 was achieved in an ATPS constituted with 33.0% (w/w) PEG 1450 and 8.0% (w/w) phosphate in the presence of 8.5% (w/w) sodium chloride (NaCl) at pH 9.0 for 0.3% (w/w) BSA load. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Stress-Triggered Phase Separation Is an Adaptive, Evolutionarily Tuned Response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riback, Joshua A.; Katanski, Christopher D.; Kear-Scott, Jamie L.

    In eukaryotic cells, diverse stresses trigger coalescence of RNA-binding proteins into stress granules. In vitro, stress-granule-associated proteins can demix to form liquids, hydrogels, and other assemblies lacking fixed stoichiometry. Observing these phenomena has generally required conditions far removed from physiological stresses. We show that poly(A)-binding protein (Pab1 in yeast), a defining marker of stress granules, phase separates and forms hydrogels in vitro upon exposure to physiological stress conditions. Other RNA-binding proteins depend upon low-complexity regions (LCRs) or RNA for phase separation, whereas Pab1’s LCR is not required for demixing, and RNA inhibits it. Based on unique evolutionary patterns, we createmore » LCR mutations, which systematically tune its biophysical properties and Pab1 phase separation in vitro and in vivo. Mutations that impede phase separation reduce organism fitness during prolonged stress. Poly(A)-binding protein thus acts as a physiological stress sensor, exploiting phase separation to precisely mark stress onset, a broadly generalizable mechanism.« less

  15. Interaction of lysozyme protein with different sized silica nanoparticles and their resultant structures

    NASA Astrophysics Data System (ADS)

    Yadav, Indresh; Aswal, V. K.; Kohlbrecher, J.

    2016-05-01

    The interaction of model protein-lysozyme with three different sized anionic silica nanoparticles has been studied by UV-vis spectroscopy, dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The surface area and curvature of the nanoparticles change with size, which significantly influence their interaction with protein. The lysozyme adsorbs on the surface of the nanoparticles due to electrostatic attraction and leads to the phase transformation from one phase (clear) to two-phase (turbid) of the nanoparticle-protein system. The dominance of lysozyme induced short-range attraction over long-range electrostatic repulsion between nanoparticles is responsible for phase transformation and modeled by the two-Yukawa potential. The magnitude of the attractive interaction increases with the size of the nanoparticles as a result the phase transformation commences relatively at lower concentration of lysozyme. The structure of the nanoparticle-protein system in two-phase is characterized by the diffusion limited aggregate type of mass fractal morphology.

  16. Interaction of lysozyme protein with different sized silica nanoparticles and their resultant structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Indresh, E-mail: iykumarindresh288@gmail.com; Aswal, V. K.; Kohlbrecher, J.

    The interaction of model protein-lysozyme with three different sized anionic silica nanoparticles has been studied by UV-vis spectroscopy, dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The surface area and curvature of the nanoparticles change with size, which significantly influence their interaction with protein. The lysozyme adsorbs on the surface of the nanoparticles due to electrostatic attraction and leads to the phase transformation from one phase (clear) to two-phase (turbid) of the nanoparticle-protein system. The dominance of lysozyme induced short-range attraction over long-range electrostatic repulsion between nanoparticles is responsible for phase transformation and modeled by the two-Yukawa potential. Themore » magnitude of the attractive interaction increases with the size of the nanoparticles as a result the phase transformation commences relatively at lower concentration of lysozyme. The structure of the nanoparticle-protein system in two-phase is characterized by the diffusion limited aggregate type of mass fractal morphology.« less

  17. Salt Bridge Rearrangement (SaBRe) Explains the Dissociation Behavior of Noncovalent Complexes

    NASA Astrophysics Data System (ADS)

    Loo, Rachel R. Ogorzalek; Loo, Joseph A.

    2016-06-01

    Native electrospray ionization-mass spectrometry, with gas-phase activation and solution compositions that partially release subcomplexes, can elucidate topologies of macromolecular assemblies. That so much complexity can be preserved in gas-phase assemblies is remarkable, although a long-standing conundrum has been the differences between their gas- and solution-phase decompositions. Collision-induced dissociation of multimeric noncovalent complexes typically distributes products asymmetrically (i.e., by ejecting a single subunit bearing a large percentage of the excess charge). That unexpected behavior has been rationalized as one subunit "unfolding" to depart with more charge. We present an alternative explanation based on heterolytic ion-pair scission and rearrangement, a mechanism that inherently partitions charge asymmetrically. Excessive barriers to dissociation are circumvented in this manner, when local charge rearrangements access a lower-barrier surface. An implication of this ion pair consideration is that stability differences between high- and low-charge state ions usually attributed to Coulomb repulsion may, alternatively, be conveyed by attractive forces from ion pairs (salt bridges) stabilizing low-charge state ions. Should the number of ion pairs be roughly inversely related to charge, symmetric dissociations would be favored from highly charged complexes, as observed. Correlations between a gas-phase protein's size and charge reflect the quantity of restraining ion pairs. Collisionally-facilitated salt bridge rearrangement (SaBRe) may explain unusual size "contractions" seen for some activated, low charge state complexes. That some low-charged multimers preferentially cleave covalent bonds or shed small ions to disrupting noncovalent associations is also explained by greater ion pairing in low charge state complexes.

  18. Salt Bridge Rearrangement (SaBRe) Explains the Dissociation Behavior of Noncovalent Complexes.

    PubMed

    Loo, Rachel R Ogorzalek; Loo, Joseph A

    2016-06-01

    Native electrospray ionization-mass spectrometry, with gas-phase activation and solution compositions that partially release subcomplexes, can elucidate topologies of macromolecular assemblies. That so much complexity can be preserved in gas-phase assemblies is remarkable, although a long-standing conundrum has been the differences between their gas- and solution-phase decompositions. Collision-induced dissociation of multimeric noncovalent complexes typically distributes products asymmetrically (i.e., by ejecting a single subunit bearing a large percentage of the excess charge). That unexpected behavior has been rationalized as one subunit "unfolding" to depart with more charge. We present an alternative explanation based on heterolytic ion-pair scission and rearrangement, a mechanism that inherently partitions charge asymmetrically. Excessive barriers to dissociation are circumvented in this manner, when local charge rearrangements access a lower-barrier surface. An implication of this ion pair consideration is that stability differences between high- and low-charge state ions usually attributed to Coulomb repulsion may, alternatively, be conveyed by attractive forces from ion pairs (salt bridges) stabilizing low-charge state ions. Should the number of ion pairs be roughly inversely related to charge, symmetric dissociations would be favored from highly charged complexes, as observed. Correlations between a gas-phase protein's size and charge reflect the quantity of restraining ion pairs. Collisionally-facilitated salt bridge rearrangement (SaBRe) may explain unusual size "contractions" seen for some activated, low charge state complexes. That some low-charged multimers preferentially cleave covalent bonds or shed small ions to disrupting noncovalent associations is also explained by greater ion pairing in low charge state complexes. Graphical Abstract ᅟ.

  19. Protein phosphorylation differs significantly among ontogenetic phases in Malus seedlings

    PubMed Central

    2014-01-01

    Background Although protein phosphorylation is an important post-translational modification affecting protein function and metabolism, dynamic changes in this process during ontogenesis remain unexplored in woody angiosperms. Methods Phosphorylated proteins from leaves of three apple seedlings at juvenile, adult vegetative and reproductive stages were extracted and subjected to alkaline phosphatase pre-treatment. After separating the proteins by two-dimensional gel electrophoresis and phosphoprotein-specific Pro-Q Diamond staining, differentially expressed phosphoproteins were identified by MALDI-TOF-TOF mass spectrometry. Results A total of 107 phosphorylated protein spots on nine gels (three ontogenetic phases × three seedlings) were identified by MALDI-TOF-TOF mass spectrometry. The 55 spots of ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco) large-chain fragments varied significantly in protein abundance and degree of phosphorylation among ontogenetic phases. Abundances of the 27 spots corresponding to Rubisco activase declined between juvenile and reproductive phases. More extensively, phosphorylated β-tubulin chain spots with lower isoelectric points were most abundant during juvenile and adult vegetative phases. Conclusions Protein phosphorylation varied significantly during vegetative phase change and floral transition in apple seedlings. Most of the observed changes were consistent among seedlings and between hybrid populations. PMID:24904238

  20. A computational investigation of the phase behavior and capillary sublimation of water confined between nanoscale hydrophobic plates

    NASA Astrophysics Data System (ADS)

    Ferguson, Andrew L.; Giovambattista, Nicolás; Rossky, Peter J.; Panagiotopoulos, Athanassios Z.; Debenedetti, Pablo G.

    2012-10-01

    Thin films of water under nanoscopic confinement are prevalent in natural and manufactured materials. To investigate the equilibrium and dynamic behavior of water in such environments, we perform molecular dynamics simulations of water confined between atomistically detailed hydrophobic plates at T = 298 K for pressures (-0.1) ⩽ P ⩽ 1.0 GPa and plate separations of 0.40 ⩽ d ⩽ 0.80 nm. From these simulations, we construct an expanded P-d phase diagram for confined water, and identify and characterize a previously unreported confined monolayer ice morphology. We also study the decompression-induced sublimation of bilayer ice in a d = 0.6 nm slit, employing principal component analysis to synthesize low-dimensional embeddings of the drying trajectories and develop insight into the sublimation mechanism. Drying is observed to proceed by the nucleation of a bridging vapor cavity at one corner of the crystalline slab, followed by expansion of the cavity along two edges of the plates, and the subsequent recession of the remaining promontory of bilayer crystal into the bulk fluid. Our findings have implications for the understanding of diverse phenomena in materials science, nanofluidics, and protein folding and aggregation.

  1. Purification and Identification of Membrane Proteins from Urinary Extracellular Vesicles using Triton X-114 Phase Partitioning.

    PubMed

    Hu, Shuiwang; Musante, Luca; Tataruch, Dorota; Xu, Xiaomeng; Kretz, Oliver; Henry, Michael; Meleady, Paula; Luo, Haihua; Zou, Hequn; Jiang, Yong; Holthofer, Harry

    2018-01-05

    Urinary extracellular vesicles (uEVs) have become a promising source for biomarkers accurately reflecting biochemical changes in kidney and urogenital diseases. Characteristically, uEVs are rich in membrane proteins associated with several cellular functions like adhesion, transport, and signaling. Hence, membrane proteins of uEVs should represent an exciting protein class with unique biological properties. In this study, we utilized uEVs to optimize the Triton X-114 detergent partitioning protocol targeted for membrane proteins and proceeded to their subsequent characterization while eliminating effects of Tamm-Horsfall protein, the most abundant interfering protein in urine. This is the first report aiming to enrich and characterize the integral transmembrane proteins present in human urinary vesicles. First, uEVs were enriched using a "hydrostatic filtration dialysis'' appliance, and then the enriched uEVs and lysates were verified by transmission electron microscopy. After using Triton X-114 phase partitioning, we generated an insoluble pellet fraction and aqueous phase (AP) and detergent phase (DP) fractions and analyzed them with LC-MS/MS. Both in- and off-gel protein digestion methods were used to reveal an increased number of membrane proteins of uEVs. After comparing with the identified proteins without phase separation as in our earlier publication, 199 different proteins were detected in DP. Prediction of transmembrane domains (TMDs) from these protein fractions showed that DP had more TMDs than other groups. The analyses of hydrophobicity revealed that the GRAVY score of DP was much higher than those of the other fractions. Furthermore, the analysis of proteins with lipid anchor revealed that DP proteins had more lipid anchors than other fractions. Additionally, KEGG pathway analysis showed that the DP proteins detected participate in endocytosis and signaling, which is consistent with the expected biological functions of membrane proteins. Finally, results of Western blotting confirmed that the membrane protein bands are found in the DP fraction instead of AP. In conclusion, our study validates the use of Triton X-114 phase partitioning protocol on uEVs for a targeted isolation of membrane proteins and to reduce sample complexity. This method successfully facilitates detection of potential biomarkers and druggable targets in uEVs.

  2. Auditing the Physical Activity and Parkinson Disease Literature Using the Behavioral Epidemiologic Framework.

    PubMed

    Swank, Chad; Shearin, Staci; Cleveland, Samantha; Driver, Simon

    2017-06-01

    Motor and nonmotor symptoms associated with Parkinson disease place individuals at greater risk of sedentary behaviors and comorbidities. Physical activity is one modifiable means of improving health and reducing the risk of morbidity. We applied a behavioral framework to classify existing research on physical activity and Parkinson disease to describe the current evolution and inform knowledge gaps in this area. Research placed in phase 1 establishes links between physical activity and health-related outcomes; phase 2 develops approaches to quantify physical activity behavior; phase 3 identifies factors associated with implementation of physical activity behaviors; phase 4 assesses the effectiveness of interventions to promote activity; and phase 5 disseminates evidence-based recommendations. Peer-reviewed literature was identified by searching PubMed, Google Scholar, and EBSCO-host. We initially identified 287 potential articles. After further review, we excluded 109 articles, leaving 178 included articles. Of these, 75.84% were categorized into phase 1 (n = 135), 10.11% in phase 2 (n = 18), 9.55% into phase 3 (n = 17), 3.37% into phase 4 (n = 6), and 1.12% into phase 5 (n = 2). By applying the behavioral framework to the physical activity literature for people with Parkinson disease, we suggest this area of research is nascent with more than 75% of the literature in phase 1. III. Copyright © 2017 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  3. Systematic framework to evaluate the status of physical activity research for persons with multiple sclerosis.

    PubMed

    Dixon-Ibarra, Alicia; Vanderbom, Kerri; Dugala, Anisia; Driver, Simon

    2014-04-01

    Exploring the current state of health behavior research for individuals with multiple sclerosis is essential to understanding the next steps required to reducing preventable disability. A way to link research to translational health promotion programs is by utilizing the Behavioral Epidemiological Framework, which describes a sequence of phases used to categorize health-related behavioral research. This critical audit of the literature examines the current state of physical activity research for persons with multiple sclerosis by utilizing the proposed Behavioral Epidemiological Framework. After searching MEDLINE, PUBMED, PsycINFO, Google Scholar and several major areas within EBSCOHOST (2000 to present), retrieved articles were categorized according to the framework phases and coding rules. Of 139 articles, 49% were in phase 1 (establishing links between behavior and health), 18% phase 2 (developing methods for measuring behavior), 24% phase 3 (identifying factors influencing behavior and implications for theory), and 9% phase 4 and 5 (evaluating interventions to change behavior and translating research into practice). Emphasis on phase 1 research indicates the field is in its early stages of development. Providing those with multiple sclerosis with necessary tools through health promotion programs is needed to reduce secondary conditions and co-morbidities. Reassessment of the field of physical activity and multiple sclerosis in the future could provide insight into whether the field is evolving over time or remaining stagnant. Published by Elsevier Inc.

  4. Re-entrant phase behavior of a concentrated anionic surfactant system with strongly binding counterions.

    PubMed

    Ghosh, Sajal Kumar; Rathee, Vikram; Krishnaswamy, Rema; Raghunathan, V A; Sood, A K

    2009-08-04

    The phase behavior of the anionic surfactant sodium dodecyl sulfate (SDS) in the presence of the strongly binding counterion p-toluidine hydrochloride (PTHC) has been examined using small-angle X-ray diffraction and polarizing microscopy. A hexagonal-to-lamellar transition on varying the PTHC to SDS molar ratio (alpha) occurs through a nematic phase of rodlike micelles (Nc) --> isotropic (I) --> nematic of disklike micelles (N(D)) at a fixed surfactant concentration (phi). The lamellar phase is found to coexist with an isotropic phase (I') over a large region of the phase diagram. Deuterium nuclear magnetic resonance investigations of the phase behavior at phi = 0.4 confirm the transition from N(C) to N(D) on varying alpha. The viscoelastic and flow behaviors of the different phases were examined. A decrease in the steady shear viscosity across the different phases with increasing alpha suggests a decrease in the aspect ratio of the micellar aggregates. From the transient shear stress response of the N() and N(D) nematic phases in step shear experiments, they were characterized to be tumbling and flow aligning, respectively. Our studies reveal that by tuning the morphology of the surfactant micelles strongly binding counterions modify the phase behavior and rheological properties of concentrated surfactant solutions.

  5. Psychoneuroimmunology meets neuropsychopharmacology: translational implications of the impact of inflammation on behavior.

    PubMed

    Haroon, Ebrahim; Raison, Charles L; Miller, Andrew H

    2012-01-01

    The potential contribution of chronic inflammation to the development of neuropsychiatric disorders such as major depression has received increasing attention. Elevated biomarkers of inflammation, including inflammatory cytokines and acute-phase proteins, have been found in depressed patients, and administration of inflammatory stimuli has been associated with the development of depressive symptoms. Data also have demonstrated that inflammatory cytokines can interact with multiple pathways known to be involved in the development of depression, including monoamine metabolism, neuroendocrine function, synaptic plasticity, and neurocircuits relevant to mood regulation. Further understanding of mechanisms by which cytokines alter behavior have revealed a host of pharmacologic targets that may be unique to the impact of inflammation on behavior and may be especially relevant to the treatment and prevention of depression in patients with evidence of increased inflammation. Such targets include the inflammatory signaling pathways cyclooxygenase, p38 mitogen-activated protein kinase, and nuclear factor-κB, as well as the metabolic enzyme, indoleamine-2,3-dioxygenase, which breaks down tryptophan into kynurenine. Other targets include the cytokines themselves in addition to chemokines, which attract inflammatory cells from the periphery to the brain. Psychosocial stress, diet, obesity, a leaky gut, and an imbalance between regulatory and pro-inflammatory T cells also contribute to inflammation and may serve as a focus for preventative strategies relevant to both the development of depression and its recurrence. Taken together, identification of mechanisms by which cytokines influence behavior may reveal a panoply of personalized treatment options that target the unique contributions of the immune system to depression.

  6. Phase transitions and dynamics of bulk and interfacial water.

    PubMed

    Franzese, G; Hernando-Martínez, A; Kumar, P; Mazza, M G; Stokely, K; Strekalova, E G; de los Santos, F; Stanley, H E

    2010-07-21

    New experiments on water at the surface of proteins at very low temperature display intriguing dynamic behaviors. The extreme conditions of these experiments make it difficult to explore the wide range of thermodynamic state points needed to offer a suitable interpretation. Detailed simulations suffer from the same problem, where equilibration times at low temperature become extremely long. We show how Monte Carlo simulations and mean field calculations using a tractable model of water help interpret the experimental results. Here we summarize the results for bulk water and investigate the thermodynamic and dynamic properties of supercooled water at an interface.

  7. Quasiperiodic oscillation and possible Second Law violation in a nanosystem

    NASA Astrophysics Data System (ADS)

    Quick, R.; Singharoy, A.; Ortoleva, P.

    2013-05-01

    Simulation of a virus-like particle reveals persistent oscillation about a free-energy minimizing structure. For an icosahedral structure of 12 human papillomavirus (HPV) L1 protein pentamers, the period is about 70 picoseconds and has amplitude of about 4 Å at 300 K and pH 7. The pentamers move radially and out-of-phase with their neighbors. As temperature increases the amplitude and period decrease. Since the dynamics are shown to be friction-dominated and free-energy driven, the oscillations are noninertial. These anomalous oscillations are an apparent violation of the Second Law mediated by fluctuations accompanying nanosystem behavior.

  8. Effect of ketoprofen, lidocaine local anesthesia, and combined xylazine and lidocaine caudal epidural anesthesia during castration of beef cattle on stress responses, immunity, growth, and behavior.

    PubMed

    Ting, S T L; Earley, B; Hughes, J M L; Crowe, M A

    2003-05-01

    To determine the effects of burdizzo castration alone or in combination with ketoprofen (K), local anesthesia (LA), or caudal epidural anesthesia (EPI) on plasma cortisol, acute-phase proteins, interferon-gamma production, growth, and behavior of beef cattle, 50 Holstein x Friesian bulls (13 mo old, 307 +/- 5.3 kg) were assigned to (n = 10/treatment): 1) control (handled; C); 2) burdizzo castration (B); 3) B following K (3 mg/ kg of BW i.v.; BK); 4) B following LA (8 mL into each testis and 3 mL s.c. along the line where the jaws of the burdizzo were applied with 2% lidocaine HCl; BLA); and 5) B following EPI (0.05 mg/kg of BW of xylazine HCl and 0.4 mg/kg of BW of lidocaine HCl as caudal epidural; BEPI). The area under the cortisol curve against time was lower (P < 0.05) in BK than in B, BLA, or BEPI animals. On d 1 after treatment, plasma haptoglobin concentrations were higher (P < 0.05) in B, BLA, and BEPI than in BK animals. On d 3, haptoglobin and plasma fibrinogen concentrations were higher (P < 0.05) in all castration groups than in C. On d 7, haptoglobin and fibrinogen concentrations remained higher (P < 0.05) in BLA than in B and C animals. On d 1, concanavalin A-induced interferon-gamma production was lower (P < 0.05) in B, BLA, and BEPI than in C, but there was no difference between BK and C animals. From d -1 to 35, ADG was lower (P < 0.05) in B, BLA, and BEPI animals, but not in BK compared with C animals. Overall, there was a higher (P < 0.05) incidence of combined abnormal postures in B than in C, BK and BEPI animals. Although the use of K and EPI decreased (P < 0.05) these postures compared with B alone or B with LA, there was no difference between the K and EPI treatment. In conclusion, burdizzo castration increased plasma cortisol and acute-phase proteins, and suppressed immune function and growth rates. Local anesthesia prolonged the increase in acute-phase proteins. Ketoprofen was more effective than LA or EPI in decreasing cortisol and partially reversed the reduction in ADG following castration. The use of K or EPI was more effective than LA in decreasing pain-associated behavioral responses observed during the first 6 h after treatment. Systemic analgesia with ketoprofen, a non-steroidal antiinflammatory drug, was more effective in reducing inflammatory responses associated with castration than LA or EPI.

  9. Label-free proteome profiling reveals developmental-dependent patterns in young barley grains.

    PubMed

    Kaspar-Schoenefeld, Stephanie; Merx, Kathleen; Jozefowicz, Anna Maria; Hartmann, Anja; Seiffert, Udo; Weschke, Winfriede; Matros, Andrea; Mock, Hans-Peter

    2016-06-30

    Due to its importance as a cereal crop worldwide, high interest in the determination of factors influencing barley grain quality exists. This study focusses on the elucidation of protein networks affecting early grain developmental processes. NanoLC-based separation coupled to label-free MS detection was applied to gain insights into biochemical processes during five different grain developmental phases (pre-storage until storage phase, 3days to 16days after flowering). Multivariate statistics revealed two distinct developmental patterns during the analysed grain developmental phases: proteins showed either highest abundance in the middle phase of development - in the transition phase - or at later developmental stages - within the storage phase. Verification of developmental patterns observed by proteomic analysis was done by applying hypothesis-driven approaches, namely Western Blot analysis and enzyme assays. High general metabolic activity of the grain with regard to protein synthesis, cell cycle regulation, defence against oxidative stress, and energy production via photosynthesis was observed in the transition phase. Proteins upregulated in the storage phase are related towards storage protein accumulation, and interestingly to the defence of storage reserves against pathogens. A mixed regulatory pattern for most enzymes detected in our study points to regulatory mechanisms at the level of protein isoforms. In-depth understanding of early grain developmental processes of cereal caryopses is of high importance as they influence final grain weight and quality. Our knowledge about these processes is still limited, especially on proteome level. To identify key mechanisms in early barley grain development, a label-free data-independent proteomics acquisition approach has been applied. Our data clearly show, that proteins either exhibit highest expression during cellularization and the switch to the storage phase (transition phase, 5-7 DAF), or during storage product accumulation (10-16 DAF). The results highlight versatile cellular metabolic activity in the transition phase and strong convergence towards storage product accumulation in the storage phase. Notably, both phases are characterized by particular protective mechanism, such as scavenging of oxidative stress and defence against pathogens, during the transition and the storage phase, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Surfactant bilayers maintain transmembrane protein activity.

    PubMed

    Rayan, Gamal; Adrien, Vladimir; Reffay, Myriam; Picard, Martin; Ducruix, Arnaud; Schmutz, Marc; Urbach, Wladimir; Taulier, Nicolas

    2014-09-02

    In vitro studies of membrane proteins are of interest only if their structure and function are significantly preserved. One approach is to insert them into the lipid bilayers of highly viscous cubic phases rendering the insertion and manipulation of proteins difficult. Less viscous lipid sponge phases are sometimes used, but their relatively narrow domain of existence can be easily disrupted by protein insertion. We present here a sponge phase consisting of nonionic surfactant bilayers. Its extended domain of existence and its low viscosity allow easy insertion and manipulation of membrane proteins. We show for the first time, to our knowledge, that transmembrane proteins, such as bacteriorhodopsin, sarcoplasmic reticulum Ca(2+)ATPase (SERCA1a), and its associated enzymes, are fully active in a surfactant phase. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. Maternal protein-free diet during lactation programs male Wistar rat offspring for increased novelty-seeking, locomotor activity, and visuospatial performance.

    PubMed

    Lotufo, Bruna M; Tenório, Frank; Barradas, Penha C; Guedes, Paulo L; Lima, Sebastião S; Rocha, Michael L M; Duarte-Pinheiro, Vitor Hugo; Rodrigues, Vanessa S T; Lisboa, Patrícia C; Filgueiras, Cláudio C; Abreu-Villaça, Yael; Manhães, Alex C

    2018-04-01

    It is well established that chronic undernutrition has detrimental impacts on brain development and maturation. However, protein malnutrition during the period specifically encompassing the brain growth spurt has not been widely studied, particularly regarding its effects on adolescent and adult offspring behavior. Here, we assessed the effects of a protein-free diet during the 1st 10 postnatal days on the macronutrient content of the milk produced by lactating Wistar rats, on their maternal behavior, and on the offspring's behavior. Lactating dams were fed either a protein-free or a normoprotein diet from litter parturition to Postnatal Day 10 (P10). All dams received the normoprotein diet after P10. Offspring were tested in the elevated plus-maze (anxiety-like behavior), hole board arena (novelty-seeking and locomotor activity), and radial arm water maze (memory-learning) at either P40 (adolescents) or P90 (adults). The protein-free diet reduced milk protein content at P10 but not at P20. Carbohydrate and lipid contents were unaffected. Serum corticosterone levels in the offspring (at P10, P40, or P90) and dams (at P21) were not affected by the protein-free diet. Maternal behavior was also unchanged. In the offspring, no differences were observed between groups regarding anxiety-like behaviors at both ages. The protein-free diet increased adolescent locomotor activity as well as adult novelty-seeking behavior and memory performance. Our results indicate that the brain growth spurt period is particularly sensitive to protein malnutrition, showing that even a brief nutritional insult during this period can cause specific age-dependent behavioral effects on the offspring. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  12. Dynamics simulations for engineering macromolecular interactions

    NASA Astrophysics Data System (ADS)

    Robinson-Mosher, Avi; Shinar, Tamar; Silver, Pamela A.; Way, Jeffrey

    2013-06-01

    The predictable engineering of well-behaved transcriptional circuits is a central goal of synthetic biology. The artificial attachment of promoters to transcription factor genes usually results in noisy or chaotic behaviors, and such systems are unlikely to be useful in practical applications. Natural transcriptional regulation relies extensively on protein-protein interactions to insure tightly controlled behavior, but such tight control has been elusive in engineered systems. To help engineer protein-protein interactions, we have developed a molecular dynamics simulation framework that simplifies features of proteins moving by constrained Brownian motion, with the goal of performing long simulations. The behavior of a simulated protein system is determined by summation of forces that include a Brownian force, a drag force, excluded volume constraints, relative position constraints, and binding constraints that relate to experimentally determined on-rates and off-rates for chosen protein elements in a system. Proteins are abstracted as spheres. Binding surfaces are defined radially within a protein. Peptide linkers are abstracted as small protein-like spheres with rigid connections. To address whether our framework could generate useful predictions, we simulated the behavior of an engineered fusion protein consisting of two 20 000 Da proteins attached by flexible glycine/serine-type linkers. The two protein elements remained closely associated, as if constrained by a random walk in three dimensions of the peptide linker, as opposed to showing a distribution of distances expected if movement were dominated by Brownian motion of the protein domains only. We also simulated the behavior of fluorescent proteins tethered by a linker of varying length, compared the predicted Förster resonance energy transfer with previous experimental observations, and obtained a good correspondence. Finally, we simulated the binding behavior of a fusion of two ligands that could simultaneously bind to distinct cell-surface receptors, and explored the landscape of linker lengths and stiffnesses that could enhance receptor binding of one ligand when the other ligand has already bound to its receptor, thus, addressing potential mechanisms for improving targeted signal transduction proteins. These specific results have implications for the design of targeted fusion proteins and artificial transcription factors involving fusion of natural domains. More broadly, the simulation framework described here could be extended to include more detailed system features such as non-spherical protein shapes and electrostatics, without requiring detailed, computationally expensive specifications. This framework should be useful in predicting behavior of engineered protein systems including binding and dissociation reactions.

  13. Dynamics simulations for engineering macromolecular interactions.

    PubMed

    Robinson-Mosher, Avi; Shinar, Tamar; Silver, Pamela A; Way, Jeffrey

    2013-06-01

    The predictable engineering of well-behaved transcriptional circuits is a central goal of synthetic biology. The artificial attachment of promoters to transcription factor genes usually results in noisy or chaotic behaviors, and such systems are unlikely to be useful in practical applications. Natural transcriptional regulation relies extensively on protein-protein interactions to insure tightly controlled behavior, but such tight control has been elusive in engineered systems. To help engineer protein-protein interactions, we have developed a molecular dynamics simulation framework that simplifies features of proteins moving by constrained Brownian motion, with the goal of performing long simulations. The behavior of a simulated protein system is determined by summation of forces that include a Brownian force, a drag force, excluded volume constraints, relative position constraints, and binding constraints that relate to experimentally determined on-rates and off-rates for chosen protein elements in a system. Proteins are abstracted as spheres. Binding surfaces are defined radially within a protein. Peptide linkers are abstracted as small protein-like spheres with rigid connections. To address whether our framework could generate useful predictions, we simulated the behavior of an engineered fusion protein consisting of two 20,000 Da proteins attached by flexible glycine/serine-type linkers. The two protein elements remained closely associated, as if constrained by a random walk in three dimensions of the peptide linker, as opposed to showing a distribution of distances expected if movement were dominated by Brownian motion of the protein domains only. We also simulated the behavior of fluorescent proteins tethered by a linker of varying length, compared the predicted Förster resonance energy transfer with previous experimental observations, and obtained a good correspondence. Finally, we simulated the binding behavior of a fusion of two ligands that could simultaneously bind to distinct cell-surface receptors, and explored the landscape of linker lengths and stiffnesses that could enhance receptor binding of one ligand when the other ligand has already bound to its receptor, thus, addressing potential mechanisms for improving targeted signal transduction proteins. These specific results have implications for the design of targeted fusion proteins and artificial transcription factors involving fusion of natural domains. More broadly, the simulation framework described here could be extended to include more detailed system features such as non-spherical protein shapes and electrostatics, without requiring detailed, computationally expensive specifications. This framework should be useful in predicting behavior of engineered protein systems including binding and dissociation reactions.

  14. Prognostic value of serum acute-phase proteins in dogs with parvoviral enteritis.

    PubMed

    Kocaturk, M; Martinez, S; Eralp, O; Tvarijonaviciute, A; Ceron, J; Yilmaz, Z

    2010-09-01

    To evaluate the acute-phase protein response in dogs with parvoviral enteritis as predictor of the clinical outcome. Canine parvovirus infection was diagnosed based on the compatible clinical findings and confirmed by the canine parvovirus antigen test in 43 dogs of less than six months of age. Blood samples for complete blood cell count and acute-phase proteins (C-reactive protein, haptoglobin, ceruloplasmin and albumin) were collected before treatment. Twenty-three dogs died during or after treatment (non-survival) and the rest recovered (survival). Five healthy dogs were enrolled as control. Serum C-reactive protein, ceruloplasmin and haptoglobin levels in dogs with parvoviral enteritis were higher (P<0·001, P<0·01 and P<0·001, respectively), but serum albumin was lower (P<0·001) than those in controls. Mean C-reactive protein and ceruloplasmin values in non-survival were higher (P<0·01) than those for survival dogs. C-reactive protein was found to be superior to ceruloplasmin, haptoglobin and albumin for distinguishing survival from non-survival dogs. Values higher than 92·4 mg/l for C-reactive protein had a sensitivity of 91% to predict mortality. The magnitude of the increase in serum acute-phase proteins in dogs with parvoviral enteritis could be a useful indicator of the prognosis of the disease. In acute-phase proteins, C-reactive protein is a potent predictor of mortality in dogs with parvoviral enteritis. © 2010 British Small Animal Veterinary Association.

  15. Cross-linking proteins by laccase: Effects on the droplet size and rheology of emulsions stabilized by sodium caseinate.

    PubMed

    Sato, A C K; Perrechil, F A; Costa, A A S; Santana, R C; Cunha, R L

    2015-09-01

    The aim of this work was to evaluate the influence of laccase and ferulic acid on the characteristics of oil-in-water emulsions stabilized by sodium caseinate at different pH (3, 5 and 7). Emulsions were prepared by high pressure homogenization of soybean oil with sodium caseinate solution containing varied concentrations of laccase (0, 1 and 5mg/mL) and ferulic acid (5 and 10mM). Laccase treatment and pH exerted a strong influence on the properties with a consequent effect on stability, structure and rheology of emulsions stabilized by Na-caseinate. At pH7, O/W emulsions were kinetically stable due to the negative protein charge which enabled electrostatic repulsion between oil droplets resulting in an emulsion with small droplet size, low viscosity, pseudoplasticity and viscoelastic properties. The laccase treatment led to emulsions showing shear-thinning behavior as a result of a more structured system. O/W emulsions at pH5 and 3 showed phase separation due to the proximity to protein pI, but the laccase treatment improved their stability of emulsions especially at pH3. At pH3, the addition of ferulic acid and laccase produced emulsions with larger droplet size but with narrower droplet size distribution, increased viscosity, pseudoplasticity and viscoelastic properties (gel-like behavior). Comparing laccase treatments, the combined addition of laccase and ferulic acid generally produced emulsions with lower stability (pH5), larger droplet size (pH3, 5 and 7) and higher pseudoplasticity (pH5 and 7) than emulsion with only ferulic acid. The results suggested that the cross-linking of proteins by laccase and ferulic acid improved protein emulsifying properties by changing functional mechanisms of the protein on emulsion structure and rheology, showing that sodium caseinate can be successfully used in acid products when treated with laccase. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Kinetic evidence for folding and unfolding intermediates in staphylococcal nuclease.

    PubMed

    Walkenhorst, W F; Green, S M; Roder, H

    1997-05-13

    The complex kinetic behavior commonly observed in protein folding studies suggests that a heterogeneous population of molecules exists in solution and that a number of discrete steps are involved in the conversion of unfolded molecules to the fully native form. A central issue in protein folding is whether any of these kinetic events represent conformational steps important for efficient folding rather than side reactions caused by slow steps such as proline isomerization or misfolding of the polypeptide chain. In order to address this question, we used stopped-flow fluorescence techniques to characterize the kinetic mechanism of folding and unfolding for a Pro- variant of SNase in which all six proline residues were replaced by glycines or alanines. Compared to the wild-type protein, which exhibits a series of proline-dependent slow folding phases, the folding kinetics of Pro- SNase were much simpler, which made quantitative kinetic analysis possible. Despite the absence of prolines or other complicating factors, the folding kinetics still contain several phases and exhibit a complex denaturant dependence. The GuHCl dependence of the major observable folding phase and a distinct lag in the appearance of the native state provide clear evidence for an early folding intermediate. The fluorescence of Trp140 in the alpha-helical domain is insensitive to the formation of this early intermediate, which is consistent with a partially folded state with a stable beta-domain and a largely disordered alpha-helical region. A second intermediate is required to model the kinetics of unfolding for the Pro- variant, which shows evidence for a denaturant-induced change in the rate-limiting unfolding step. With the inclusion of these two intermediates, we are able to completely model the major phase(s) in both folding and unfolding across a wide range of denaturant concentrations using a sequential four-state folding mechanism. In order to model the minor slow phase observed for the Pro- mutant, a six-state scheme containing a parallel pathway originating from a distinct unfolded state was required. The properties of this alternate unfolded conformation are consistent with those expected due to the presence of a non-prolyl cis peptide bond. To test the kinetic model, we used simulations based on the six-state scheme and were able to completely reproduce the folding kinetics for Pro- SNase across a range of denaturant concentrations.

  17. Phase behavior of CO/sub 2/ - Appalachian oil systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monger, T.G.; Khakoo, A.

    1981-01-01

    The phase behavior of carbon dioxide with two Appalachian crude oils was examined at temperatures below and above the CO/sub 2/ critical temperature. Overall the observed phase equilibria emulate that reported for Western crude oil systems at low reservoir temperatures, but several contrasts in phase behavior are also apparent. Phase behavior of differences are interpreted in light of carbon-13 nuclear magnetic resonance spectroscopy measurements which show that the Appalachian crudes have significantly higher paraffinic and lower aromatic contents than those typically observed for Western crudes. Data analyses suggest that CO/sub 2/ preferentially condenses into a high paraffin oil, whereas hydrocarbonmore » extraction by a CO/sub 2/ -rich phase is the predominant mechanism for crude oils with significant aromatic content. 24 refs.« less

  18. Measuring P-V-T Phase Behavior with a Variable Volume View Cell

    ERIC Educational Resources Information Center

    Hoffmann, Markus M.; Salter, Jason D.

    2004-01-01

    An experiment using a variable volume cell is presented where students actively control and directly observe the phase equilibrium inside the view cell. Measuring and exploring P-V-T phase behavior through dielectric constant measurements conveys the important concept that solvent behavior can be changed continuously in the sc fluid state.

  19. Highly stable loading of Mcm proteins onto chromatin in living cells requires replication to unload

    PubMed Central

    Kuipers, Marjorie A.; Stasevich, Timothy J.; Sasaki, Takayo; Wilson, Korey A.; Hazelwood, Kristin L.; McNally, James G.; Davidson, Michael W.

    2011-01-01

    The heterohexameric minichromosome maintenance protein complex (Mcm2-7) functions as the eukaryotic helicase during DNA replication. Mcm2-7 loads onto chromatin during early G1 phase but is not converted into an active helicase until much later during S phase. Hence, inactive Mcm complexes are presumed to remain stably bound from early G1 through the completion of S phase. Here, we investigated Mcm protein dynamics in live mammalian cells. We demonstrate that Mcm proteins are irreversibly loaded onto chromatin cumulatively throughout G1 phase, showing no detectable exchange with a gradually diminishing soluble pool. Eviction of Mcm requires replication; during replication arrest, Mcm proteins remained bound indefinitely. Moreover, the density of immobile Mcms is reduced together with chromatin decondensation within sites of active replication, which provides an explanation for the lack of colocalization of Mcm with replication fork proteins. These results provide in vivo evidence for an exceptionally stable lockdown mechanism to retain all loaded Mcm proteins on chromatin throughout prolonged cell cycles. PMID:21220507

  20. Gingival crevicular fluid protein content and alkaline phosphatase activity in relation to pubertal growth phase.

    PubMed

    Perinetti, Giuseppe; Franchi, Lorenzo; Castaldo, Attilio; Contardo, Luca

    2012-11-01

    To evaluate gingival crevicular fluid (GCF) protein content and alkaline phosphatase (ALP) activity in growing subjects in relation to stages of skeletal maturation, ie, the growth phase, as prepubertal, pubertal, and postpubertal. Fifty healthy growing subjects (31 girls and 19 boys; age range, 7.8-17.7 years) were enrolled in this study that followed a double-blind, prospective, cross-sectional design. Collection of GCF was performed at the mesial and distal sites of both central incisors, for the maxilla and mandible. Growth phase was assessed through the cervical vertebral maturation method. GCF parameters were expressed as total protein content, total ALP activity, and normalized ALP activity. The total GCF protein content was similar between the different growth phases. On the contrary, the total ALP activity showed a peak for the pubertal growth phase. The normalized GCF ALP activity was only poorly associated with growth phase. No differences were seen between the maxillary and mandibular sites, or between the sexes, for any GCF parameter. The total GCF protein content is not sensitive to the growth phase. However, GCF ALP activity has potential as a diagnostic aid for identification of the pubertal growth phase in individual subjects when expressed as total, but not normalized, values.

  1. Diurnal fluctuations in HPA and neuropeptide Y-ergic systems underlie differences in vulnerability to traumatic stress responses at different zeitgeber times.

    PubMed

    Cohen, Shlomi; Vainer, Ella; Matar, Michael A; Kozlovsky, Nitsan; Kaplan, Zeev; Zohar, Joseph; Mathé, Aleksander A; Cohen, Hagit

    2015-02-01

    The hypothalamic-pituitary-adrenal (HPA) axis displays a characteristic circadian pattern of corticosterone release, with higher levels at the onset of the active phase and lower levels at the onset of the inactive phase. As corticosterone levels modify the response to stress and influence the susceptibility to and/or severity of stress-related sequelae, we examined the effects of an acute psychological trauma applied at different zeitgeber times (ZTs) on behavioral stress responses. Rats were exposed to stress either at the onset of the inactive-(light) phase (ZT=0) or at the onset of the active-(dark) phase (ZT=12). Their behavior in the elevated plus-maze and acoustic startle response paradigms were assessed 7 days post exposure for retrospective classification into behavioral response groups. Serum corticosterone levels and the dexamethasone suppression test were used to assess the stress response and feedback inhibition of the HPA axis. Immunoreactivity for neuropeptide Y (NPY) and NPY-Y1 receptor (Y1R) in the paraventricular (PVN) and arcuate (ARC) hypothalamic nuclei, hippocampus, and basolateral amygdala were measured. The behavioral effects of NPY/Y1R antagonist microinfused into the PVN 30 min before stress exposure during the inactive or active phase, respectively, were evaluated. PVN immunoreactivity for NPY and Y1R was measured 1 day after the behavioral tests. The time of day of the traumatic exposure markedly affected the pattern of the behavioral stress response and the prevalence of rats showing an extreme behavioral response. Rats exposed to the stressor at the onset of their inactive phase displayed a more traumatic behavioral response, faster post-exposure corticosterone decay, and a more pronounced stress-induced decline in NPY and Y1R expression in the PVN and arcuate hypothalamic nuclei. Blocking PVN Y1R before stress applied in the active phase, or administering NPY to the PVN before stress applied in the inactive phase, had a resounding behavioral effect. The time at which stress occurred significantly affected the behavioral stress response. Diurnal variations in HPA and NPY/Y1R significantly affect the behavioral response, conferring more resilience at the onset of the active phase and more vulnerability at the onset of the inactive phase, implying that NPY has a significant role in conferring resilience to stress-related psychopathology.

  2. Diurnal Fluctuations in HPA and Neuropeptide Y-ergic Systems Underlie Differences in Vulnerability to Traumatic Stress Responses at Different Zeitgeber Times

    PubMed Central

    Cohen, Shlomi; Vainer, Ella; Matar, Michael A; Kozlovsky, Nitsan; Kaplan, Zeev; Zohar, Joseph; Mathé, Aleksander A; Cohen, Hagit

    2015-01-01

    The hypothalamic–pituitary–adrenal (HPA) axis displays a characteristic circadian pattern of corticosterone release, with higher levels at the onset of the active phase and lower levels at the onset of the inactive phase. As corticosterone levels modify the response to stress and influence the susceptibility to and/or severity of stress-related sequelae, we examined the effects of an acute psychological trauma applied at different zeitgeber times (ZTs) on behavioral stress responses. Rats were exposed to stress either at the onset of the inactive-(light) phase (ZT=0) or at the onset of the active-(dark) phase (ZT=12). Their behavior in the elevated plus-maze and acoustic startle response paradigms were assessed 7 days post exposure for retrospective classification into behavioral response groups. Serum corticosterone levels and the dexamethasone suppression test were used to assess the stress response and feedback inhibition of the HPA axis. Immunoreactivity for neuropeptide Y (NPY) and NPY-Y1 receptor (Y1R) in the paraventricular (PVN) and arcuate (ARC) hypothalamic nuclei, hippocampus, and basolateral amygdala were measured. The behavioral effects of NPY/Y1R antagonist microinfused into the PVN 30 min before stress exposure during the inactive or active phase, respectively, were evaluated. PVN immunoreactivity for NPY and Y1R was measured 1 day after the behavioral tests. The time of day of the traumatic exposure markedly affected the pattern of the behavioral stress response and the prevalence of rats showing an extreme behavioral response. Rats exposed to the stressor at the onset of their inactive phase displayed a more traumatic behavioral response, faster post-exposure corticosterone decay, and a more pronounced stress-induced decline in NPY and Y1R expression in the PVN and arcuate hypothalamic nuclei. Blocking PVN Y1R before stress applied in the active phase, or administering NPY to the PVN before stress applied in the inactive phase, had a resounding behavioral effect. The time at which stress occurred significantly affected the behavioral stress response. Diurnal variations in HPA and NPY/Y1R significantly affect the behavioral response, conferring more resilience at the onset of the active phase and more vulnerability at the onset of the inactive phase, implying that NPY has a significant role in conferring resilience to stress-related psychopathology. PMID:25241802

  3. Comparative Proteomic Analysis Reveals Proteins Putatively Involved in Toxin Biosynthesis in the Marine Dinoflagellate Alexandrium catenella

    PubMed Central

    Wang, Da-Zhi; Gao, Yue; Lin, Lin; Hong, Hua-Sheng

    2013-01-01

    Alexandrium is a neurotoxin-producing dinoflagellate genus resulting in paralytic shellfish poisonings around the world. However, little is known about the toxin biosynthesis mechanism in Alexandrium. This study compared protein profiles of A. catenella collected at different toxin biosynthesis stages (non-toxin synthesis, initial toxin synthesis and toxin synthesizing) coupled with the cell cycle, and identified differentially expressed proteins using 2-DE and MALDI-TOF-TOF mass spectrometry. The results showed that toxin biosynthesis of A. catenella occurred within a defined time frame in the G1 phase of the cell cycle. Proteomic analysis indicated that 102 protein spots altered significantly in abundance (P < 0.05), and 53 proteins were identified using database searching. These proteins were involved in a variety of biological processes, i.e., protein modification and biosynthesis, metabolism, cell division, oxidative stress, transport, signal transduction, and translation. Among them, nine proteins with known functions in paralytic shellfish toxin-producing cyanobacteria, i.e., methionine S-adenosyltransferase, chloroplast ferredoxin-NADP+ reductase, S-adenosylhomocysteinase, adenosylhomocysteinase, ornithine carbamoyltransferase, inorganic pyrophosphatase, sulfotransferase (similar to), alcohol dehydrogenase and arginine deiminase, varied significantly at different toxin biosynthesis stages and formed an interaction network, indicating that they might be involved in toxin biosynthesis in A. catenella. This study is the first step in the dissection of the behavior of the A. catenella proteome during different toxin biosynthesis stages and provides new insights into toxin biosynthesis in dinoflagellates. PMID:23340676

  4. Force-extension behavior of DNA in the presence of DNA-bending nucleoid associated proteins

    NASA Astrophysics Data System (ADS)

    Dahlke, K.; Sing, C. E.

    2018-02-01

    Interactions between nucleoid associated proteins (NAPs) and DNA affect DNA polymer conformation, leading to phenomena such as concentration dependent force-extension behavior. These effects, in turn, also impact the local binding behavior of the protein, such as high forces causing proteins to unbind, or proteins binding favorably to locally bent DNA. We develop a coarse-grained NAP-DNA simulation model that incorporates both force- and concentration-dependent behaviors, in order to study the interplay between NAP binding and DNA conformation. This model system includes multi-state protein binding and unbinding, motivated by prior work, but is now dependent on the local structure of the DNA, which is related to external forces acting on the DNA strand. We observe the expected qualitative binding behavior, where more proteins are bound at lower forces than at higher forces. Our model also includes NAP-induced DNA bending, which affects DNA elasticity. We see semi-quantitative matching of our simulated force-extension behavior to the reported experimental data. By using a coarse-grained simulation, we are also able to look at non-equilibrium behaviors, such as dynamic extension of a DNA strand. We stretch a DNA strand at different rates and at different NAP concentrations to observe how the time scales of the system (such as pulling time and unbinding time) work in concert. When these time scales are similar, we observe measurable rate-dependent changes in the system, which include the number of proteins bound and the force required to extend the DNA molecule. This suggests that the relative time scales of different dynamic processes play an important role in the behavior of NAP-DNA systems.

  5. Hypoxia induces a phase transition within a kinase signaling network in cancer cells

    PubMed Central

    Wei, Wei; Shi, Qihui; Remacle, Francoise; Qin, Lidong; Shackelford, David B.; Shin, Young Shik; Mischel, Paul S.; Levine, R. D.; Heath, James R.

    2013-01-01

    Hypoxia is a near-universal feature of cancer, promoting glycolysis, cellular proliferation, and angiogenesis. The molecular mechanisms of hypoxic signaling have been intensively studied, but the impact of changes in oxygen partial pressure (pO2) on the state of signaling networks is less clear. In a glioblastoma multiforme (GBM) cancer cell model, we examined the response of signaling networks to targeted pathway inhibition between 21% and 1% pO2. We used a microchip technology that facilitates quantification of a panel of functional proteins from statistical numbers of single cells. We find that near 1.5% pO2, the signaling network associated with mammalian target of rapamycin (mTOR) complex 1 (mTORC1)—a critical component of hypoxic signaling and a compelling cancer drug target—is deregulated in a manner such that it will be unresponsive to mTOR kinase inhibitors near 1.5% pO2, but will respond at higher or lower pO2 values. These predictions were validated through experiments on bulk GBM cell line cultures and on neurosphere cultures of a human-origin GBM xenograft tumor. We attempt to understand this behavior through the use of a quantitative version of Le Chatelier’s principle, as well as through a steady-state kinetic model of protein interactions, both of which indicate that hypoxia can influence mTORC1 signaling as a switch. The Le Chatelier approach also indicates that this switch may be thought of as a type of phase transition. Our analysis indicates that certain biologically complex cell behaviors may be understood using fundamental, thermodynamics-motivated principles. PMID:23530221

  6. Importance of coccolithophore-associated organic biopolymers for fractionating particle-reactive radionuclides (234Th, 233Pa, 210Pb, 210Po, and 7Be) in the ocean

    NASA Astrophysics Data System (ADS)

    Lin, Peng; Xu, Chen; Zhang, Saijin; Sun, Luni; Schwehr, Kathleen A.; Bretherton, Laura; Quigg, Antonietta; Santschi, Peter H.

    2017-08-01

    Laboratory incubation experiments using the coccolithophore Emiliania huxleyi were conducted in the presence of 234Th, 233Pa, 210Pb, 210Po, and 7Be to differentiate radionuclide uptake to the CaCO3 coccosphere from coccolithophore-associated biopolymers. The coccosphere (biogenic calcite exterior and its associated biopolymers), extracellular (nonattached and attached exopolymeric substances), and intracellular (sodium-dodecyl-sulfate extractable and Fe-Mn-associated metabolites) fractions were obtained by sequentially extraction after E. huxleyi reached its stationary growth phase. Radionuclide partitioning and the composition of different organic compound classes, including proteins, total carbohydrates (TCHO), and uronic acids (URA), were assessed. 210Po was closely associated with the more hydrophobic biopolymers (high protein/TCHO ratio, e.g., in attached exopolymeric substances), while 234Th and 233Pa showed similar partitioning behavior with most activity being distributed in URA-enriched, nonattached exopolymeric substances and intracellular biopolymers. 234Th and 233Pa were nearly undetectable in the coccosphere, with a minor abundance of organic components in the associated biopolymers. These findings provide solid evidence that biogenic calcite is not the actual main carrier phase for Th and Pa isotopes in the ocean. In contrast, both 210Pb and 7Be were found to be mostly concentrated in the CaCO3 coccosphere, likely substituting for Ca2+ during coccolith formation. Our results demonstrate that even small cells (E. huxleyi) can play an important role in the scavenging and fractionation of radionuclides. Furthermore, the distinct partitioning behavior of radionuclides in diatoms (previous studies) and coccolithophores (present study) explains the difference in the scavenging of radionuclides between diatom- and coccolithophore-dominated marine environments.

  7. Folding pathway of a multidomain protein depends on its topology of domain connectivity

    PubMed Central

    Inanami, Takashi; Terada, Tomoki P.; Sasai, Masaki

    2014-01-01

    How do the folding mechanisms of multidomain proteins depend on protein topology? We addressed this question by developing an Ising-like structure-based model and applying it for the analysis of free-energy landscapes and folding kinetics of an example protein, Escherichia coli dihydrofolate reductase (DHFR). DHFR has two domains, one comprising discontinuous N- and C-terminal parts and the other comprising a continuous middle part of the chain. The simulated folding pathway of DHFR is a sequential process during which the continuous domain folds first, followed by the discontinuous domain, thereby avoiding the rapid decrease in conformation entropy caused by the association of the N- and C-terminal parts during the early phase of folding. Our simulated results consistently explain the observed experimental data on folding kinetics and predict an off-pathway structural fluctuation at equilibrium. For a circular permutant for which the topological complexity of wild-type DHFR is resolved, the balance between energy and entropy is modulated, resulting in the coexistence of the two folding pathways. This coexistence of pathways should account for the experimentally observed complex folding behavior of the circular permutant. PMID:25267632

  8. On the mechanism of non-radiative decay of blue fluorescent protein chromophore: New insight from the excited-state molecular dynamics simulations and potential energy calculations

    NASA Astrophysics Data System (ADS)

    Zhao, Li; Liu, Jian-Yong; Zhou, Pan-Wang

    2017-11-01

    A detailed theoretical investigation based on the ab initio on-the-fly surface hopping dynamics simulations and potential energy surfaces calculations has been performed to unveil the mechanism of the photoinduced non-adiabatic relaxation process of the isolated blue fluorescent protein (BFP) chromophore in gas phase. The data analysis presents that the dominant reaction coordinate of the BFP chromophore is driven by a rotation motion around the CC double bridging bond, which is in remarkable difference with a previous result which supports a Hula-Twist rotation pattern. Such behavior is consistent with the double bond rotation pattern of the GFP neutral chromophore. In addition, the dynamics simulations give an estimated decay time of 1.1 ps for the S1 state, which is agrees well with the experimental values measured in proteins. The present work offers a straightforward understanding for the decay mechanism of the BFP chromophore and suggestions of the photochemical properties of analogous protein chromophores. We hope the current work would be helpful for further exploration of the BFP photochemical and photophysical properties in various environments, and can provide guidance and prediction for rational design of the fluorescent proteins catering for different demands.

  9. Experimental data showing the thermal behavior of a flat roof with phase change material.

    PubMed

    Tokuç, Ayça; Başaran, Tahsin; Yesügey, S Cengiz

    2015-12-01

    The selection and configuration of building materials for optimal energy efficiency in a building require some assumptions and models for the thermal behavior of the utilized materials. Although the models for many materials can be considered acceptable for simulation and calculation purposes, the work for modeling the real time behavior of phase change materials is still under development. The data given in this article shows the thermal behavior of a flat roof element with a phase change material (PCM) layer. The temperature and energy given to and taken from the building element are reported. In addition the solid-liquid behavior of the PCM is tracked through images. The resulting thermal behavior of the phase change material is discussed and simulated in [1] A. Tokuç, T. Başaran, S.C. Yesügey, An experimental and numerical investigation on the use of phase change materials in building elements: the case of a flat roof in Istanbul, Build. Energy, vol. 102, 2015, pp. 91-104.

  10. Production of coconut protein powder from coconut wet processing waste and its characterization.

    PubMed

    Naik, Aduja; Raghavendra, S N; Raghavarao, K S M S

    2012-07-01

    Virgin coconut oil (VCO) has been gaining popularity in recent times. During its production, byproducts such as coconut skim milk and insoluble protein are obtained which are underutilized or thrown away to the environment at present. This study deals with utilization of these byproducts to obtain a value-added product, namely, coconut protein powder. When coconut milk was subjected to centrifugation, three phases, namely, fat phase (coconut cream), aqueous phase (coconut skim milk), and solid phase (insoluble protein) were obtained. The coconut skim milk and insoluble protein were mixed and homogenized before spray drying to obtain a dehydrated protein powder. The proximate analysis of the powder showed high protein content (33 % w/w) and low fat content (3 % w/w). Protein solubility was studied as a function of pH and ionic content of solvent. Functional properties such as water hydration capacity, fat absorption capacity, emulsifying properties, wettability, and dispersibility of coconut protein powder were evaluated along with morphological characterization, polyphenol content, and color analysis. Coconut protein powder has shown to have good emulsifying properties and hence has potential to find applications in emulsified foods. Sensory analysis showed high overall quality of the product, indicating that coconut protein powder could be a useful food ingredient.

  11. Comparative analysis of the alveolar macrophage proteome in ALI/ARDS patients between the exudative phase and recovery phase

    PubMed Central

    2013-01-01

    Background Despite decades of extensive studies, the morbidity and mortality for acute lung injury/acute respiratory distress syndrome (ALI/ARDS) remained high. Particularly, biomarkers essential for its early diagnosis and prognosis are lacking. Methods Recent studies suggest that alveolar macrophages (AMs) at the exudative phase of ALI/ARDS initiate, amplify and perpetuate inflammatory responses, while they resolve inflammation in the recovery phase to prevent further tissue injury and perpetuated inflammation in the lung. Therefore, proteins relevant to this functional switch could be valuable biomarkers for ALI/ARDS diagnosis and prognosis. We thus conducted comparative analysis of the AM proteome to assess its dynamic proteomic changes during ALI/ARDS progression and recovery. Results 135 proteins were characterized to be differentially expressed between AMs at the exudative and recovery phase. MALDI-TOF-MS and peptide mass fingerprint (PMF) analysis characterized 27 informative proteins, in which 17 proteins were found with a marked increase at the recovery phase, while the rest of 10 proteins were manifested by the significantly higher levels of expression at the exudative phase. Conclusions Given the role of above identified proteins played in the regulation of inflammatory responses, cell skeleton organization, oxidative stress, apoptosis and metabolism, they have the potential to serve as biomarkers for early diagnosis and prognosis in the setting of patients with ALI/ARDS. PMID:23773529

  12. Alleles versus genotypes: Genetic interactions and the dynamics of selection in sexual populations

    NASA Astrophysics Data System (ADS)

    Neher, Richard

    2010-03-01

    Physical interactions between amino-acids are essential for protein structure and activity, while protein-protein interactions and regulatory interactions are central to cellular function. As a consequence of these interactions, the combined effect of two mutations can differ from the sum of the individual effects of the mutations. This phenomenon of genetic interaction is known as epistasis. However, the importance of epistasis and its effects on evolutionary dynamics are poorly understood, especially in sexual populations where recombination breaks up existing combinations of alleles to produce new ones. Here, we present a computational model of selection dynamics involving many epistatic loci in a recombining population. We demonstrate that a large number of polymorphic interacting loci can, despite frequent recombination, exhibit cooperative behavior that locks alleles into favorable genotypes leading to a population consisting of a set of competing clones. As the recombination rate exceeds a certain critical value this ``genotype selection'' phase disappears in an abrupt transition giving way to ``allele selection'' - the phase where different loci are only weakly correlated as expected in sexually reproducing populations. Clustering of interacting sets of genes on a chromosome leads to the emergence of an intermediate regime, where localized blocks of cooperating alleles lock into genetic modules. Large populations attain highest fitness at a recombination rate just below critical, suggesting that natural selection might tune recombination rates to balance the beneficial aspect of exploration of genotype space with the breaking up of synergistic allele combinations.

  13. An Electrostatic Charge Partitioning Model for the Dissociation of Protein Complexes in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Sciuto, Stephen V.; Liu, Jiangjiang; Konermann, Lars

    2011-10-01

    Electrosprayed multi-protein complexes can be dissociated by collisional activation in the gas phase. Typically, these processes follow a mechanism whereby a single subunit gets ejected with a disproportionately high amount of charge relative to its mass. This asymmetric behavior suggests that the departing subunit undergoes some degree of unfolding prior to being separated from the residual complex. These structural changes occur concomitantly with charge (proton) transfer towards the subunit that is being unraveled. Charge accumulation takes place up to the point where the subunit loses physical contact with the residual complex. This work develops a simple electrostatic model for studying the relationship between conformational changes and charge enrichment during collisional activation. Folded subunits are described as spheres that carry continuum surface charge. The unfolded chain is envisioned as random coil bead string. Simulations are guided by the principle that the system will adopt the charge configuration with the lowest potential energy for any backbone conformation. A finite-difference gradient algorithm is used to determine the charge on each subunit throughout the dissociation process. Both dimeric and tetrameric protein complexes are investigated. The model reproduces the occurrence of asymmetric charge partitioning for dissociation events that are preceded by subunit unfolding. Quantitative comparisons of experimental MS/MS data with model predictions yield estimates of the structural changes that occur during collisional activation. Our findings suggest that subunit separation can occur over a wide range of scission point structures that correspond to different degrees of unfolding.

  14. Fibrin-polyethylene oxide interpenetrating polymer networks: new self-supported biomaterials combining the properties of both protein gel and synthetic polymer.

    PubMed

    Akpalo, E; Bidault, L; Boissière, M; Vancaeyzeele, C; Fichet, O; Larreta-Garde, V

    2011-06-01

    Interpenetrating polymer network (IPN) architectures were conceived to improve the mechanical properties of a fibrin gel. Conditions allowing an enzymatic reaction to create one of the two networks in IPN architecture were included in the synthesis pathway. Two IPN series were carried out, starting from two polyethylene oxide (PEO) network precursors leading to different cross-linking densities of the PEO phase. The fibrin concentration varied from 5 to 20 wt.% in each series. The behavior of these materials during dehydration/hydration cycles was also studied. The mechanical properties of the resulting IPN were characterized in the wet and dry states. These self-supported biomaterials combine the properties of both a protein gel and a synthetic polymer. Finally, cells were grown on PEO/fibrin IPN, indicating that they are non-cytotoxic. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Non-covalent nanodiamond-polymer dispersions and electrostatic immobilization of bovine serum albumin protein

    NASA Astrophysics Data System (ADS)

    Skaltsas, T.; Pispas, S.; Tagmatarchis, N.

    2015-11-01

    Nanodiamonds (NDs) lack efficient dispersion, not only in solvents but also in aqueous media. The latter is of great importance, considering the inherent biocompatibility of NDs and the plethora of suitable strategies for immobilizing functional biomolecules. In this work, a series of polymers was non-covalently interacted with NDs, forming ND-polymer ensembles, and their dispersibility and stability was examined. Dynamic light scattering gave valuable information regarding the size of the ensembles in liquid phase, while their morphology was further examined by high-resolution transmission electron microscopy imaging. In addition, thermal analysis measurements were applied to collect information on the thermal behavior of NDs and their ensembles and to calculate the amount of polymer interacting with the NDs, as well as the dispersibility values of the ND-polymer ensembles. Finally, the bovine serum albumin protein was electrostatically bound to a ND-polymer ensemble in which the polymeric moiety was carrying quaternized pyridine units.

  16. Cell segmentation in time-lapse fluorescence microscopy with temporally varying sub-cellular fusion protein patterns.

    PubMed

    Bunyak, Filiz; Palaniappan, Kannappan; Chagin, Vadim; Cardoso, M

    2009-01-01

    Fluorescently tagged proteins such as GFP-PCNA produce rich dynamically varying textural patterns of foci distributed in the nucleus. This enables the behavioral study of sub-cellular structures during different phases of the cell cycle. The varying punctuate patterns of fluorescence, drastic changes in SNR, shape and position during mitosis and abundance of touching cells, however, require more sophisticated algorithms for reliable automatic cell segmentation and lineage analysis. Since the cell nuclei are non-uniform in appearance, a distribution-based modeling of foreground classes is essential. The recently proposed graph partitioning active contours (GPAC) algorithm supports region descriptors and flexible distance metrics. We extend GPAC for fluorescence-based cell segmentation using regional density functions and dramatically improve its efficiency for segmentation from O(N(4)) to O(N(2)), for an image with N(2) pixels, making it practical and scalable for high throughput microscopy imaging studies.

  17. Hippocampal expression of a virus-derived protein impairs memory in mice.

    PubMed

    Bétourné, Alexandre; Szelechowski, Marion; Thouard, Anne; Abrial, Erika; Jean, Arnaud; Zaidi, Falek; Foret, Charlotte; Bonnaud, Emilie M; Charlier, Caroline M; Suberbielle, Elsa; Malnou, Cécile E; Granon, Sylvie; Rampon, Claire; Gonzalez-Dunia, Daniel

    2018-02-13

    The analysis of the biology of neurotropic viruses, notably of their interference with cellular signaling, provides a useful tool to get further insight into the role of specific pathways in the control of behavioral functions. Here, we exploited the natural property of a viral protein identified as a major effector of behavioral disorders during infection. We used the phosphoprotein (P) of Borna disease virus, which acts as a decoy substrate for protein kinase C (PKC) when expressed in neurons and disrupts synaptic plasticity. By a lentiviral-based strategy, we directed the singled-out expression of P in the dentate gyrus of the hippocampus and we examined its impact on mouse behavior. Mice expressing the P protein displayed increased anxiety and impaired long-term memory in contextual and spatial memory tasks. Interestingly, these effects were dependent on P protein phosphorylation by PKC, as expression of a mutant form of P devoid of its PKC phosphorylation sites had no effect on these behaviors. We also revealed features of behavioral impairment induced by P protein expression but that were independent of its phosphorylation by PKC. Altogether, our findings provide insight into the behavioral correlates of viral infection, as well as into the impact of virus-mediated alterations of the PKC pathway on behavioral functions.

  18. Predicting the Retention Behavior of Specific O-Linked Glycopeptides.

    PubMed

    Badgett, Majors J; Boyes, Barry; Orlando, Ron

    2017-09-01

    O -Linked glycosylation is a common post-translational modification that can alter the overall structure, polarity, and function of proteins. Reverse-phase (RP) chromatography is the most common chromatographic approach to analyze O -glycosylated peptides and their unmodified counterparts, even though this approach often does not provide adequate separation of these two species. Hydrophilic interaction liquid chromatography (HILIC) can be a solution to this problem, as the polar glycan interacts with the polar stationary phase and potentially offers the ability to resolve the peptide from its modified form(s). In this paper, HILIC is used to separate peptides with O - N -acetylgalactosamine ( O -GalNAc), O - N -acetylglucosamine ( O -GlcNAc), and O -fucose additions from their native forms, and coefficients representing the extent of hydrophilicity were derived using linear regression analysis as a means to predict the retention times of peptides with these modifications.

  19. Predicting the Retention Behavior of Specific O-Linked Glycopeptides

    PubMed Central

    Badgett, Majors J.; Boyes, Barry; Orlando, Ron

    2017-01-01

    O-Linked glycosylation is a common post-translational modification that can alter the overall structure, polarity, and function of proteins. Reverse-phase (RP) chromatography is the most common chromatographic approach to analyze O-glycosylated peptides and their unmodified counterparts, even though this approach often does not provide adequate separation of these two species. Hydrophilic interaction liquid chromatography (HILIC) can be a solution to this problem, as the polar glycan interacts with the polar stationary phase and potentially offers the ability to resolve the peptide from its modified form(s). In this paper, HILIC is used to separate peptides with O-N-acetylgalactosamine (O-GalNAc), O-N-acetylglucosamine (O-GlcNAc), and O-fucose additions from their native forms, and coefficients representing the extent of hydrophilicity were derived using linear regression analysis as a means to predict the retention times of peptides with these modifications. PMID:28785176

  20. Structural and hydrodynamic properties of an intrinsically disordered region of a germ cell-specific protein on phase separation

    PubMed Central

    Brady, Jacob P.; Farber, Patrick J.; Sekhar, Ashok; Lin, Yi-Hsuan; Huang, Rui; Bah, Alaji; Chan, Hue Sun; Forman-Kay, Julie D.; Kay, Lewis E.

    2017-01-01

    Membrane encapsulation is frequently used by the cell to sequester biomolecules and compartmentalize their function. Cells also concentrate molecules into phase-separated protein or protein/nucleic acid “membraneless organelles” that regulate a host of biochemical processes. Here, we use solution NMR spectroscopy to study phase-separated droplets formed from the intrinsically disordered N-terminal 236 residues of the germ-granule protein Ddx4. We show that the protein within the concentrated phase of phase-separated Ddx4, Ddx4cond, diffuses as a particle of 600-nm hydrodynamic radius dissolved in water. However, NMR spectra reveal sharp resonances with chemical shifts showing Ddx4cond to be intrinsically disordered. Spin relaxation measurements indicate that the backbone amides of Ddx4cond have significant mobility, explaining why high-resolution spectra are observed, but motion is reduced compared with an equivalently concentrated nonphase-separating control. Observation of a network of interchain interactions, as established by NOE spectroscopy, shows the importance of Phe and Arg interactions in driving the phase separation of Ddx4, while the salt dependence of both low- and high-concentration regions of phase diagrams establishes an important role for electrostatic interactions. The diffusion of a series of small probes and the compact but disordered 4E binding protein 2 (4E-BP2) protein in Ddx4cond are explained by an excluded volume effect, similar to that found for globular protein solvents. No changes in structural propensities of 4E-BP2 dissolved in Ddx4cond are observed, while changes to DNA and RNA molecules have been reported, highlighting the diverse roles that proteinaceous solvents play in dictating the properties of dissolved solutes. PMID:28894006

  1. Automated de novo phasing and model building of coiled-coil proteins.

    PubMed

    Rämisch, Sebastian; Lizatović, Robert; André, Ingemar

    2015-03-01

    Models generated by de novo structure prediction can be very useful starting points for molecular replacement for systems where suitable structural homologues cannot be readily identified. Protein-protein complexes and de novo-designed proteins are examples of systems that can be challenging to phase. In this study, the potential of de novo models of protein complexes for use as starting points for molecular replacement is investigated. The approach is demonstrated using homomeric coiled-coil proteins, which are excellent model systems for oligomeric systems. Despite the stereotypical fold of coiled coils, initial phase estimation can be difficult and many structures have to be solved with experimental phasing. A method was developed for automatic structure determination of homomeric coiled coils from X-ray diffraction data. In a benchmark set of 24 coiled coils, ranging from dimers to pentamers with resolutions down to 2.5 Å, 22 systems were automatically solved, 11 of which had previously been solved by experimental phasing. The generated models contained 71-103% of the residues present in the deposited structures, had the correct sequence and had free R values that deviated on average by 0.01 from those of the respective reference structures. The electron-density maps were of sufficient quality that only minor manual editing was necessary to produce final structures. The method, named CCsolve, combines methods for de novo structure prediction, initial phase estimation and automated model building into one pipeline. CCsolve is robust against errors in the initial models and can readily be modified to make use of alternative crystallographic software. The results demonstrate the feasibility of de novo phasing of protein-protein complexes, an approach that could also be employed for other small systems beyond coiled coils.

  2. Live cell plasma membranes do not exhibit a miscibility phase transition over a wide range of temperatures.

    PubMed

    Lee, Il-Hyung; Saha, Suvrajit; Polley, Anirban; Huang, Hector; Mayor, Satyajit; Rao, Madan; Groves, Jay T

    2015-03-26

    Lipid/cholesterol mixtures derived from cell membranes as well as their synthetic reconstitutions exhibit well-defined miscibility phase transitions and critical phenomena near physiological temperatures. This suggests that lipid/cholesterol-mediated phase separation plays a role in the organization of live cell membranes. However, macroscopic lipid-phase separation is not generally observed in cell membranes, and the degree to which properties of isolated lipid mixtures are preserved in the cell membrane remain unknown. A fundamental property of phase transitions is that the variation of tagged particle diffusion with temperature exhibits an abrupt change as the system passes through the transition, even when the two phases are distributed in a nanometer-scale emulsion. We support this using a variety of Monte Carlo and atomistic simulations on model lipid membrane systems. However, temperature-dependent fluorescence correlation spectroscopy of labeled lipids and membrane-anchored proteins in live cell membranes shows a consistently smooth increase in the diffusion coefficient as a function of temperature. We find no evidence of a discrete miscibility phase transition throughout a wide range of temperatures: 14-37 °C. This contrasts the behavior of giant plasma membrane vesicles (GPMVs) blebbed from the same cells, which do exhibit phase transitions and macroscopic phase separation. Fluorescence lifetime analysis of a DiI probe in both cases reveals a significant environmental difference between the live cell and the GPMV. Taken together, these data suggest the live cell membrane may avoid the miscibility phase transition inherent to its lipid constituents by actively regulating physical parameters, such as tension, in the membrane.

  3. Phase behavior of charged colloids at a fluid interface

    NASA Astrophysics Data System (ADS)

    Kelleher, Colm P.; Guerra, Rodrigo E.; Hollingsworth, Andrew D.; Chaikin, Paul M.

    2017-02-01

    We study the phase behavior of a system of charged colloidal particles that are electrostatically bound to an almost flat interface between two fluids. We show that, despite the fact that our experimental system consists of only 103-104 particles, the phase behavior is consistent with the theory of melting due to Kosterlitz, Thouless, Halperin, Nelson, and Young. Using spatial and temporal correlations of the bond-orientational order parameter, we classify our samples into solid, isotropic fluid, and hexatic phases. We demonstrate that the topological defect structure we observe in each phase corresponds to the predictions of Kosterlitz-Thouless-Halperin-Nelson-Young theory. By measuring the dynamic Lindemann parameter γL(τ ) and the non-Gaussian parameter α2(τ ) of the displacements of the particles relative to their neighbors, we show that each of the phases displays distinctive dynamical behavior.

  4. Ashkin-Teller criticality and weak first-order behavior of the phase transition to a fourfold degenerate state in two-dimensional frustrated Ising antiferromagnets

    NASA Astrophysics Data System (ADS)

    Liu, R. M.; Zhuo, W. Z.; Chen, J.; Qin, M. H.; Zeng, M.; Lu, X. B.; Gao, X. S.; Liu, J.-M.

    2017-07-01

    We study the thermal phase transition of the fourfold degenerate phases (the plaquette and single-stripe states) in the two-dimensional frustrated Ising model on the Shastry-Sutherland lattice using Monte Carlo simulations. The critical Ashkin-Teller-like behavior is identified both in the plaquette phase region and the single-stripe phase region. The four-state Potts critical end points differentiating the continuous transitions from the first-order ones are estimated based on finite-size-scaling analyses. Furthermore, a similar behavior of the transition to the fourfold single-stripe phase is also observed in the anisotropic triangular Ising model. Thus, this work clearly demonstrates that the transitions to the fourfold degenerate states of two-dimensional Ising antiferromagnets exhibit similar transition behavior.

  5. Prediction of heterotrimeric protein complexes by two-phase learning using neighboring kernels

    PubMed Central

    2014-01-01

    Background Protein complexes play important roles in biological systems such as gene regulatory networks and metabolic pathways. Most methods for predicting protein complexes try to find protein complexes with size more than three. It, however, is known that protein complexes with smaller sizes occupy a large part of whole complexes for several species. In our previous work, we developed a method with several feature space mappings and the domain composition kernel for prediction of heterodimeric protein complexes, which outperforms existing methods. Results We propose methods for prediction of heterotrimeric protein complexes by extending techniques in the previous work on the basis of the idea that most heterotrimeric protein complexes are not likely to share the same protein with each other. We make use of the discriminant function in support vector machines (SVMs), and design novel feature space mappings for the second phase. As the second classifier, we examine SVMs and relevance vector machines (RVMs). We perform 10-fold cross-validation computational experiments. The results suggest that our proposed two-phase methods and SVM with the extended features outperform the existing method NWE, which was reported to outperform other existing methods such as MCL, MCODE, DPClus, CMC, COACH, RRW, and PPSampler for prediction of heterotrimeric protein complexes. Conclusions We propose two-phase prediction methods with the extended features, the domain composition kernel, SVMs and RVMs. The two-phase method with the extended features and the domain composition kernel using SVM as the second classifier is particularly useful for prediction of heterotrimeric protein complexes. PMID:24564744

  6. Probing Protein Structure and Folding in the Gas Phase by Electron Capture Dissociation

    NASA Astrophysics Data System (ADS)

    Schennach, Moritz; Breuker, Kathrin

    2015-07-01

    The established methods for the study of atom-detailed protein structure in the condensed phases, X-ray crystallography and nuclear magnetic resonance spectroscopy, have recently been complemented by new techniques by which nearly or fully desolvated protein structures are probed in gas-phase experiments. Electron capture dissociation (ECD) is unique among these as it provides residue-specific, although indirect, structural information. In this Critical Insight article, we discuss the development of ECD for the structural probing of gaseous protein ions, its potential, and limitations.

  7. Dynamics simulations for engineering macromolecular interactions

    PubMed Central

    Robinson-Mosher, Avi; Shinar, Tamar; Silver, Pamela A.; Way, Jeffrey

    2013-01-01

    The predictable engineering of well-behaved transcriptional circuits is a central goal of synthetic biology. The artificial attachment of promoters to transcription factor genes usually results in noisy or chaotic behaviors, and such systems are unlikely to be useful in practical applications. Natural transcriptional regulation relies extensively on protein-protein interactions to insure tightly controlled behavior, but such tight control has been elusive in engineered systems. To help engineer protein-protein interactions, we have developed a molecular dynamics simulation framework that simplifies features of proteins moving by constrained Brownian motion, with the goal of performing long simulations. The behavior of a simulated protein system is determined by summation of forces that include a Brownian force, a drag force, excluded volume constraints, relative position constraints, and binding constraints that relate to experimentally determined on-rates and off-rates for chosen protein elements in a system. Proteins are abstracted as spheres. Binding surfaces are defined radially within a protein. Peptide linkers are abstracted as small protein-like spheres with rigid connections. To address whether our framework could generate useful predictions, we simulated the behavior of an engineered fusion protein consisting of two 20 000 Da proteins attached by flexible glycine/serine-type linkers. The two protein elements remained closely associated, as if constrained by a random walk in three dimensions of the peptide linker, as opposed to showing a distribution of distances expected if movement were dominated by Brownian motion of the protein domains only. We also simulated the behavior of fluorescent proteins tethered by a linker of varying length, compared the predicted Förster resonance energy transfer with previous experimental observations, and obtained a good correspondence. Finally, we simulated the binding behavior of a fusion of two ligands that could simultaneously bind to distinct cell-surface receptors, and explored the landscape of linker lengths and stiffnesses that could enhance receptor binding of one ligand when the other ligand has already bound to its receptor, thus, addressing potential mechanisms for improving targeted signal transduction proteins. These specific results have implications for the design of targeted fusion proteins and artificial transcription factors involving fusion of natural domains. More broadly, the simulation framework described here could be extended to include more detailed system features such as non-spherical protein shapes and electrostatics, without requiring detailed, computationally expensive specifications. This framework should be useful in predicting behavior of engineered protein systems including binding and dissociation reactions. PMID:23822508

  8. Impairment of ovarian function and associated health-related abnormalities are attributable to low social status in premenopausal monkeys and not mitigated by a high-isoflavone soy diet.

    PubMed

    Kaplan, J R; Chen, H; Appt, S E; Lees, C J; Franke, A A; Berga, S L; Wilson, M E; Manuck, S B; Clarkson, T B

    2010-12-01

    Psychological stress may impair premenopausal ovarian function and contribute to risk for chronic disease. Soy isoflavones may also influence ovarian function and affect health. Here, we report the effects of a psychological stressor (subordinate social status) and dietary soy on reproductive function and related health indices in female monkeys. We hypothesized that reproductive compromise and adverse health outcomes would be induced in subordinate when compared with dominant monkeys and be mitigated by exposure to soy. Subjects were 95 adult cynomolgus monkeys (Macaca fascicularis) housed in social groups of five or six. Animals consumed a soy-free, animal protein-based diet during an 8-month Baseline phase and then, during a 32-month Treatment phase, consumed either the baseline diet or an identical diet that substituted high-isoflavone soy protein for animal protein. Across more than 1200 menstrual cycles, subordinate monkeys consistently exhibited ovarian impairment [increased cycle length (P < 0.02) and variability (P < 0.02) and reduced levels of progesterone (P < 0.04) and estradiol (P < 0.04)]. Subordinate status was confirmed behaviorally and was associated with elevated cortisol (P < 0.04) and relative osteopenia (P < 0.05). Consumption of the soy diet had no significant effects. (i) Psychological stress adversely affects ovarian function and related health indices in a well-accepted animal model of women's health; (ii) Similar effects may extend to women experiencing reproductive impairment of psychogenic origin; (iii) soy protein and isoflavones neither exacerbate nor mitigate the effects of an adverse psychosocial environment; and (iv) this study was limited by an inability to investigate the genetic and developmental determinants of social status.

  9. Tensegrity II. How structural networks influence cellular information processing networks

    NASA Technical Reports Server (NTRS)

    Ingber, Donald E.

    2003-01-01

    The major challenge in biology today is biocomplexity: the need to explain how cell and tissue behaviors emerge from collective interactions within complex molecular networks. Part I of this two-part article, described a mechanical model of cell structure based on tensegrity architecture that explains how the mechanical behavior of the cell emerges from physical interactions among the different molecular filament systems that form the cytoskeleton. Recent work shows that the cytoskeleton also orients much of the cell's metabolic and signal transduction machinery and that mechanical distortion of cells and the cytoskeleton through cell surface integrin receptors can profoundly affect cell behavior. In particular, gradual variations in this single physical control parameter (cell shape distortion) can switch cells between distinct gene programs (e.g. growth, differentiation and apoptosis), and this process can be viewed as a biological phase transition. Part II of this article covers how combined use of tensegrity and solid-state mechanochemistry by cells may mediate mechanotransduction and facilitate integration of chemical and physical signals that are responsible for control of cell behavior. In addition, it examines how cell structural networks affect gene and protein signaling networks to produce characteristic phenotypes and cell fate transitions during tissue development.

  10. Effects of urea induced protein conformational changes on ion exchange chromatographic behavior.

    PubMed

    Hou, Ying; Hansen, Thomas B; Staby, Arne; Cramer, Steven M

    2010-11-19

    Urea is widely employed to facilitate protein separations in ion exchange chromatography at various scales. In this work, five model proteins were used to examine the chromatographic effects of protein conformational changes induced by urea in ion exchange chromatography. Linear gradient experiments were carried out at various urea concentrations and the protein secondary and tertiary structures were evaluated by far UV CD and fluorescence measurements, respectively. The results indicated that chromatographic retention times were well correlated with structural changes and that they were more sensitive to tertiary structural change. Steric Mass Action (SMA) isotherm parameters were also examined and the results indicated that urea induced protein conformational changes could affect both the characteristic charge and equilibrium constants in these systems. Dynamic light scattering analysis of changes in protein size due to urea-induced unfolding indicated that the size of the protein was not correlated with SMA parameter changes. These results indicate that while urea-induced structural changes can have a marked effect on protein chromatographic behavior in IEX, this behavior can be quite complicated and protein specific. These differences in protein behavior may provide insight into how these partially unfolded proteins are interacting with the resin material. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Quatenary structure of methemoglobin II. Pulse radiolysis study of the binding of oxygen to the valence-hybrid. Progress report, December 1, 1978-November 30, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chevion, M; Ilan, Y A; Samuni, A

    1979-01-01

    The pulse-radiolysis of solutions of adult human methemoglobin was used in order to reduce a single heme-iron within the protein tetramers. The valence-hybrids thus formed were reacted with oxygen. Kinetics of the reactions were studied. The effects of pH and inositol-hexaphosphate were examined. The kinetics of the ligation of oxygen to stripped valence-hybrids showed a single-phase behavior at the pH range 6.5 to 9. As the pH was lowered below 6.5 a second, slower phase became apparent. In the presence of IHP, above pH 8, the kinetics of oxygem binding was of a single phase. As the pH was loweredmore » a transition to a second, slower phase was noticed. Below pH 7 the slower phase was the only detectable one. The analysis of the relative contribution of the faster phase to the total reaction as a function of the pH showed a typical transition curve characterized by a pK = 7.5 and a Hill parameter n =2.9. On the basis it is concluded that human adult stripped methemoglobin resides in an R quarternary structure while the presence of IHP stabilizes the T structure at pH below 7.5.« less

  12. Dehydration induced phase transitions in a microfluidic droplet array for the separation of biomolecules

    NASA Astrophysics Data System (ADS)

    Nelson, Chris; Anna, Shelley

    2013-11-01

    Droplet-based strategies for fluid manipulation have seen significant application in microfluidics due to their ability to compartmentalize solutions and facilitate highly parallelized reactions. Functioning as micro-scale reaction vessels, droplets have been used to study protein crystallization, enzyme kinetics, and to encapsulate whole cells. Recently, the mass transport out of droplets has been used to concentrate solutions and induce phase transitions. Here, we show that droplets trapped in a microfluidic array will spontaneously dehydrate over the course of several hours. By loading these devices with an initially dilute aqueous polymer solution, we use this slow dehydration to observe phase transitions and the evolution of droplet morphology in hundreds of droplets simultaneously. As an example, we trap and dehydrate droplets of a model aqueous two-phase system consisting of polyethylene glycol and dextran. Initially the drops are homogenous, then after some time the polymer concentration reaches a critical point and two phases form. As water continues to leave the system, the drops transition from a microemulsion of DEX in PEG to a core-shell configuration. Eventually, changes in interfacial tension, driven by dehydration, cause the DEX core to completely de-wet from the PEG shell. Since aqueous two phase systems are able to selectively separate a variety of biomolecules, this core shedding behavior has the potential to provide selective, on-chip separation and concentration.

  13. Chemical systems for improved oil recovery: Phase behavior, oil recovery, and mobility control studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Llave, F.; Gall, B.; Gao, H., Scott, L., Cook, I.

    Selected surfactant systems containing a series of ethoxylated nonionic surfactants in combination with an anionic surfactant system have been studied to evaluate phase behavior as well as oil recovery potential. These experiments were conducted to evaluate possible improved phase behavior and overall oil recovery potential of mixed surfactant systems over a broad range of conditions. Both polyacrylamide polymers and Xanthan biopolymers were evaluated. Studies were initiated to use a chemical flooding simulation program, UTCHEM, to simulate oil recovery for laboratory and field applications and evaluate its use to simulate oil saturation distributions obtained in CT-monitoring of oil recovery experiments. Themore » phase behavior studies focused on evaluating the effect of anionic-nonionic surfactant proportion on overall phase behavior. Two distinct transition behaviors were observed, depending on the dominant surfactant in the overall system. The first type of transition corresponded to more conventional behavior attributed to nonionic-dominant surfactant systems. This behavior is manifested by an oil-water-surfactant system that inverts from a water-external (highly conducting) microemulsion to an oil-external (nonconducting) one, as a function of temperature. The latter type which inverts in an opposite manner can be attributed to the separation of the anionic-nonionic mixtures into water- and oil-soluble surfactants. Both types of transition behavior can still be used to identify relative proximity to optimal areas. Determining these transition ranges provided more insight on how the behavior of these surfactant mixtures was affected by altering component proportions. Efforts to optimize the chemical system for oil displacement experiments were also undertaken. Phase behavior studies with systems formulated with biopolymer in solution were conducted.« less

  14. Correlation between mechanical behavior of protein films at the air/water interface and intrinsic stability of protein molecules.

    PubMed

    Martin, Anneke H; Cohen Stuart, Martien A; Bos, Martin A; van Vliet, Ton

    2005-04-26

    The relation between mechanical film properties of various adsorbed protein layers at the air/water interface and intrinsic stability of the corresponding proteins is discussed. Mechanical film properties were determined by surface deformation in shear and dilation. In shear, fracture stress, sigma(f), and fracture strain, gamma(f), were determined, as well as the relaxation behavior after macroscopic fracture. The dilatational measurements were performed in a Langmuir trough equipped with an infra-red reflection absorption spectroscopy (IRRAS) accessory. During compression and relaxation of the surface, the surface pressure, Pi, and adsorbed amount, Gamma (determined from the IRRAS spectra), were determined simultaneously. In addition, IRRAS spectra revealed information on conformational changes in terms of secondary structure. Possible correlations between macroscopic film properties and intrinsic stability of the proteins were determined and discussed in terms of molecular dimensions of single proteins and interfacial protein films. Molecular properties involved the area per protein molecule at Pi approximately 0 mN/m (A(0)), A(0)/M (M = molecular weight) and the maximum slope of the Pi-Gamma curves (dPi/dGamma). The differences observed in mechanical properties and relaxation behavior indicate that the behavior of a protein film subjected to large deformation may vary widely from predominantly viscous (yielding) to more elastic (fracture). This transition is also observed in gradual changes in A(0)/M. It appeared that in general protein layers with high A(0)/M have a high gamma(f) and behave more fluidlike, whereas solidlike behavior is characterized by low A(0)/M and low gamma(f). Additionally, proteins with a low A(0)/M value have a low adaptability in changing their conformation upon adsorption at the air/water interface. Both results support the conclusion that the hardness (internal cohesion) of protein molecules determines predominantly the mechanical behavior of adsorbed protein layers.

  15. Effects of altered gravity on the cell cycle, actin cytoskeleton and proteome in Physarum polycephalum

    NASA Astrophysics Data System (ADS)

    He, Jie; Zhang, Xiaoxian; Gao, Yong; Li, Shuijie; Sun, Yeqing

    Some researchers suggest that the changes of cell cycle under the effect of microgravity may be associated with many serious adverse physiological changes. In the search for underlying mechanisms and possible new countermeasures, we used the slime mold Physarum polycephalum in which all the nuclei traverse the cell cycle in natural synchrony to study the effects of altered gravity on the cell cycle, actin cytoskeleton and proteome. In parallel, the cell cycle was analyzed in Physarum incubated (1) in altered gravity for 20 h, (2) in altered gravity for 40 h, (3) in altered gravity for 80 h, and (4) in ground controls. The cell cycle, the actin cytoskeleton, and proteome in the altered gravity and ground controls were examined. The results indicated that the duration of the G2 phase was lengthened 20 min in high aspect ratio vessel (HARV) for 20 h, and prolonged 2 h in altered gravity either for 40 h or for 80 h, whereas the duration of other phases in the cell cycle was unchanged with respect to the control. The microfilaments in G2 phase had a reduced number of fibers and a unique abnormal morphology in altered gravity for 40 h, whereas the microfilaments in other phases of cell cycle were unchanged when compared to controls. Employing classical two-dimensional electrophoresis (2-DE), we examined the effect of the altered gravity on P. polycephalum proteins. The increase in the duration of G2 phase in altered gravity for 40 h was accompanied by changes in the 2-DE protein profiles, over controls. Out of a total of 200 protein spots investigated in G2 phase, which were reproducible in repeated experiments, 72 protein spots were visually identified as specially expressed, and 11 proteins were up-regulated by 2-fold and 28 proteins were down-regulated by 2-fold over controls. Out of a total of three low-expressed proteins in G2 phase in altered gravity for 40 h, two proteins were unknown proteins, and one protein was spherulin 3b by MALDI-TOF mass spectrometry (MS). Our results suggest that a low level of spherulin 3b in G2 phase, which may lead to a reduction of Poly(b-L-malate) (PMLA), may contribute to the lengthened duration of G2 phase in altered gravity for 40 h. Present results indicate that altered gravity results in the prolongation of G2 phase with significantly altered actin cytoskeleton and proteome in P. polycephalum.

  16. Re-entrant phase behavior for systems with competition between phase separation and self-assembly

    NASA Astrophysics Data System (ADS)

    Reinhardt, Aleks; Williamson, Alexander J.; Doye, Jonathan P. K.; Carrete, Jesús; Varela, Luis M.; Louis, Ard A.

    2011-03-01

    In patchy particle systems where there is a competition between the self-assembly of finite clusters and liquid-vapor phase separation, re-entrant phase behavior can be observed, with the system passing from a monomeric vapor phase to a region of liquid-vapor phase coexistence and then to a vapor phase of clusters as the temperature is decreased at constant density. Here, we present a classical statistical mechanical approach to the determination of the complete phase diagram of such a system. We model the system as a van der Waals fluid, but one where the monomers can assemble into monodisperse clusters that have no attractive interactions with any of the other species. The resulting phase diagrams show a clear region of re-entrance. However, for the most physically reasonable parameter values of the model, this behavior is restricted to a certain range of density, with phase separation still persisting at high densities.

  17. Statistical mechanics of simple models of protein folding and design.

    PubMed Central

    Pande, V S; Grosberg, A Y; Tanaka, T

    1997-01-01

    It is now believed that the primary equilibrium aspects of simple models of protein folding are understood theoretically. However, current theories often resort to rather heavy mathematics to overcome some technical difficulties inherent in the problem or start from a phenomenological model. To this end, we take a new approach in this pedagogical review of the statistical mechanics of protein folding. The benefit of our approach is a drastic mathematical simplification of the theory, without resort to any new approximations or phenomenological prescriptions. Indeed, the results we obtain agree precisely with previous calculations. Because of this simplification, we are able to present here a thorough and self contained treatment of the problem. Topics discussed include the statistical mechanics of the random energy model (REM), tests of the validity of REM as a model for heteropolymer freezing, freezing transition of random sequences, phase diagram of designed ("minimally frustrated") sequences, and the degree to which errors in the interactions employed in simulations of either folding and design can still lead to correct folding behavior. Images FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 6 PMID:9414231

  18. Partial purification of penicillin acylase from Escherichia coli in poly(ethylene glycol)-sodium citrate aqueous two-phase systems.

    PubMed

    Marcos, J C; Fonseca, L P; Ramalho, M T; Cabral, J M

    1999-10-29

    Studies on the partition and purification of penicillin acylase from Escherichia coli osmotic shock extract were performed in poly(ethylene glycol)-sodium citrate systems. Partition coefficient behavior of the enzyme and total protein are similar to those described in other reports, increasing with pH and tie line length and decreasing with PEG molecular weight. However, some selectivity could be attained with PEG 1000 systems and long tie line at pH 6.9. Under these conditions 2.6-fold purification with 83% yield were achieved. Influence of pH on partition shows that is the composition of the system and not the net charge of the enzyme that determines the behaviour in these conditions. Addition of NaCl to PEG 3350 systems significantly increases the partition of the enzyme. Although protein partition also increased, purification conditions were possible with 1.5 M NaCl where 5.7-fold purification and 85% yield was obtained. This was possible due to the higher hydrophobicity of the enzyme compared to that of most contaminants proteins.

  19. Activation of the cAMP-PKA signaling pathway in rat dorsal root ganglion and spinal cord contributes toward induction and maintenance of bone cancer pain.

    PubMed

    Zhu, Gui-Qin; Liu, Su; He, Duan-Duan; Liu, Yue-Peng; Song, Xue-Jun

    2014-08-01

    The objective of this study was to explore the role of cyclic adenosine monophosphate-protein kinase A (cAMP-PKA) signaling in the development of bone cancer pain in rats. Female Sprague-Dawley rats (N=48) were divided randomly into four groups: sham (n=8), tumor cell implantation (TCI) (n=16), TCI+saline (n=8), and TCI+PKA inhibitor (n=16). Bone cancer-induced pain behaviors - thermal hyperalgesia and mechanical allodynia - were tested at postoperative days -3, -1, 1, 3, 5, 7, 10, and 14. A PKA inhibitor, Rp-cAMPS (1 mmol/l/20 μl), was injected intrathecally on postoperative days 3, 4, and 5 (early phase) or 7, 8, and 9 postoperative days (late phase). The expression of PKA mRNA in dorsal root ganglia (DRG) was detected by reverse transcription-PCR. The concentration of cAMP and activity of PKA in DRG and spinal cord were measured by enzyme-linked immunosorbent assay. TCI treatment induced significant pain behaviors, manifested as thermal hyperalgesia and mechanical allodynia. Spinal administration of the PKA inhibitor Rp-cAMPS during the early phase and late phase significantly delayed or reversed, respectively, TCI-induced thermal hyperalgesia and mechanical allodynia. TCI treatment also led to obvious tumor growth and bone destruction. The level of PKA mRNA in the DRG, as well as the concentration of cAMP and the activity of PKA, in both the DRG and spinal cord were significantly increased after TCI treatment (P<0.01). We conclude that the inhibition of the cAMP-PKA signaling pathway may reduce bone cancer pain.

  20. Flow cytometric DNA analysis of cirrhotic liver cells in patients with hepatocellular carcinoma can provide a new prognostic factor.

    PubMed

    Ruà, S; Comino, A; Fruttero, A; Torchio, P; Bouzari, H; Taraglio, S; Torchio, B; Capussotti, L

    1996-09-15

    DNA flow cytometry of hepatocellular carcinoma (HCC) cells has been investigated in many studies, but, to the best of our knowledge, there are no data on DNA analysis of cirrhotic parenchyma around the HCC. In this study, cell kinetics and ploidy of parenchymal cells around HCC were performed to ascertain if this would predict the possibility of recurrence in the cirrhotic areas. The DNA content of 93 cases of HCC and of cirrhotic liver around the tumor nodules was analyzed by flow cytometry. Ploidy and proliferative index of HCC and cirrhotic liver were compared with macroscopic, histologic, and clinical features of each case and linked with the behavior of these tumors. Survival curves were assessed according to the Kaplan-Meier method. A multivariate analysis based on Cox proportional hazards regression model was performed on cases of diploid cirrhosis cells in which the S-phase fraction was evaluable. The univariate analysis of survival suggested significant roles for age, number of intrahepatic nodules, Edmondson-Steiner's classification, portal invasion, vascular invasion, presence of necrosis, hepatitis B surface antigen, alpha-feto-protein, Child's score, ploidy, and S-phase fraction of HCC cells. The DNA analysis of the cirrhotic cells showed that polyploidy was dramatically reduced in patients with HCC, compared with normal hepatocytes, and aneuploid clones were present among diploid cells. High S-phase fraction of cirrhotic cells and Child-Pugh classification were the strongest independent parameters affecting the tumor behavior in this study. The results of this study suggest that S-phase fraction of cirrhotic liver parenchyma may be employed as a new parameter in the prognostic evaluation of HCC patients.

  1. Relationship between Acute Phase Proteins and Serum Fatty Acid Composition in Morbidly Obese Patients

    PubMed Central

    Fernandes, Ricardo; Beserra, Bruna Teles Soares; Cunha, Raphael Salles Granato; Hillesheim, Elaine; Camargo, Carolina de Quadros; Pequito, Danielle Cristina Tonello; de Castro, Isabela Coelho; Fernandes, Luiz Cláudio; Nunes, Everson Araújo; Trindade, Erasmo Benício Santos de Moraes

    2013-01-01

    Background. Obesity is considered a low-grade inflammatory state and has been associated with increased acute phase proteins as well as changes in serum fatty acids. Few studies have assessed associations between acute phase proteins and serum fatty acids in morbidly obese patients. Objective. To investigate the relationship between acute phase proteins (C-Reactive Protein, Orosomucoid, and Albumin) and serum fatty acids in morbidly obese patients. Methods. Twenty-two morbidly obese patients were enrolled in this study. Biochemical and clinical data were obtained before bariatric surgery, and fatty acids measured in preoperative serum. Results. Orosomucoid was negatively correlated with lauric acid (P = 0.027) and eicosapentaenoic acid (EPA) (P = 0.037) and positively with arachidonic acid (AA) (P = 0.035), AA/EPA ratio (P = 0.005), and n-6/n-3 polyunsaturated fatty acids ratio (P = 0.035). C-Reactive Protein (CRP) was negatively correlated with lauric acid (P = 0.048), and both CRP and CRP/Albumin ratio were negatively correlated with margaric acid (P = 0.010, P = 0.008, resp.). Albumin was positively correlated with EPA (P = 0.027) and margaric acid (P = 0.008). Other correlations were not statistically significant. Conclusion. Our findings suggest that serum fatty acids are linked to acute phase proteins in morbidly obese patients. PMID:24167354

  2. Identification of candidate diagnostic serum biomarkers for Kawasaki disease using proteomic analysis

    PubMed Central

    Kimura, Yayoi; Yanagimachi, Masakatsu; Ino, Yoko; Aketagawa, Mao; Matsuo, Michie; Okayama, Akiko; Shimizu, Hiroyuki; Oba, Kunihiro; Morioka, Ichiro; Imagawa, Tomoyuki; Kaneko, Tetsuji; Yokota, Shumpei; Hirano, Hisashi; Mori, Masaaki

    2017-01-01

    Kawasaki disease (KD) is a systemic vasculitis and childhood febrile disease that can lead to cardiovascular complications. The diagnosis of KD depends on its clinical features, and thus it is sometimes difficult to make a definitive diagnosis. In order to identify diagnostic serum biomarkers for KD, we explored serum KD-related proteins, which differentially expressed during the acute and recovery phases of two patients by mass spectrometry (MS). We identified a total of 1,879 proteins by MS-based proteomic analysis. The levels of three of these proteins, namely lipopolysaccharide-binding protein (LBP), leucine-rich alpha-2-glycoprotein (LRG1), and angiotensinogen (AGT), were higher in acute phase patients. In contrast, the level of retinol-binding protein 4 (RBP4) was decreased. To confirm the usefulness of these proteins as biomarkers, we analyzed a total of 270 samples, including those collected from 55 patients with acute phase KD, by using western blot analysis and microarray enzyme-linked immunosorbent assays (ELISAs). Over the course of this experiment, we determined that the expression level of these proteins changes specifically in the acute phase of KD, rather than the recovery phase of KD or other febrile illness. Thus, LRG1 could be used as biomarkers to facilitate KD diagnosis based on clinical features. PMID:28262744

  3. The effect of amino acid deletions and substitutions in the longest loop of GFP

    PubMed Central

    Flores-Ramírez, Gabriela; Rivera, Manuel; Morales-Pablos, Alfredo; Osuna, Joel; Soberón, Xavier; Gaytán, Paul

    2007-01-01

    Background The effect of single and multiple amino acid substitutions in the green fluorescent protein (GFP) from Aequorea victoria has been extensively explored, yielding several proteins of diverse spectral properties. However, the role of amino acid deletions in this protein -as with most proteins- is still unknown, due to the technical difficulties involved in generating combinatorial in-phase amino acid deletions on a target region. Results In this study, the region I129-L142 of superglo GFP (sgGFP), corresponding to the longest loop of the protein and located far away from the central chromophore, was subjected to a random amino acid deletion approach, employing an in-house recently developed mutagenesis method termed Codon-Based Random Deletion (COBARDE). Only two mutants out of 16384 possible variant proteins retained fluorescence: sgGFP-Δ I129 and sgGFP-Δ D130. Interestingly, both mutants were thermosensitive and at 30°C sgGFP-Δ D130 was more fluorescent than the parent protein. In contrast with deletions, substitutions of single amino acids from residues F131 to L142 were well tolerated. The substitution analysis revealed a particular importance of residues F131, G135, I137, L138, H140 and L142 for the stability of the protein. Conclusion The behavior of GFP variants with both amino acid deletions and substitutions demonstrate that this loop is playing an important structural role in GFP folding. Some of the amino acids which tolerated any substitution but no deletion are simply acting as "spacers" to localize important residues in the protein structure. PMID:17594481

  4. Critical behaviors and phase transitions of black holes in higher order gravities and extended phase spaces

    NASA Astrophysics Data System (ADS)

    Sherkatghanad, Zeinab; Mirza, Behrouz; Mirzaiyan, Zahra; Mansoori, Seyed Ali Hosseini

    We consider the critical behaviors and phase transitions of Gauss-Bonnet-Born-Infeld-AdS black holes (GB-BI-AdS) for d = 5, 6 and the extended phase space. We assume the cosmological constant, Λ, the coupling coefficient α, and the BI parameter β to be thermodynamic pressures of the system. Having made these assumptions, the critical behaviors are then studied in the two canonical and grand canonical ensembles. We find “reentrant and triple point phase transitions” (RPT-TP) and “multiple reentrant phase transitions” (multiple RPT) with increasing pressure of the system for specific values of the coupling coefficient α in the canonical ensemble. Also, we observe a reentrant phase transition (RPT) of GB-BI-AdS black holes in the grand canonical ensemble and for d = 6. These calculations are then expanded to the critical behavior of Born-Infeld-AdS (BI-AdS) black holes in the third-order of Lovelock gravity and in the grand canonical ensemble to find a van der Waals (vdW) behavior for d = 7 and a RPT for d = 8 for specific values of potential ϕ in the grand canonical ensemble. Furthermore, we obtain a similar behavior for the limit of β →∞, i.e. charged-AdS black holes in the third-order of the Lovelock gravity. Thus, it is shown that the critical behaviors of these black holes are independent of the parameter β in the grand canonical ensemble.

  5. Holographic insulator/superconductor transition with exponential nonlinear electrodynamics probed by entanglement entropy

    NASA Astrophysics Data System (ADS)

    Yao, Weiping; Yang, Chaohui; Jing, Jiliang

    2018-05-01

    From the viewpoint of holography, we study the behaviors of the entanglement entropy in insulator/superconductor transition with exponential nonlinear electrodynamics (ENE). We find that the entanglement entropy is a good probe to the properties of the holographic phase transition. Both in the half space and the belt space, the non-monotonic behavior of the entanglement entropy in superconducting phase versus the chemical potential is general in this model. Furthermore, the behavior of the entanglement entropy for the strip geometry shows that the confinement/deconfinement phase transition appears in both insulator and superconductor phases. And the critical width of the confinement/deconfinement phase transition depends on the chemical potential and the exponential coupling term. More interestingly, the behaviors of the entanglement entropy in their corresponding insulator phases are independent of the exponential coupling factor but depends on the width of the subsystem A.

  6. Optimization of the β-Elimination/Michael Addition Chemistry on Reversed-Phase Supports for Mass Spectrometry Analysis of O-Linked Protein Modifications

    PubMed Central

    Nika, Heinz; Nieves, Edward; Hawke, David H.; Angeletti, Ruth Hogue

    2013-01-01

    We previously adapted the β-elimination/Michael addition chemistry to solid-phase derivatization on reversed-phase supports, and demonstrated the utility of this reaction format to prepare phosphoseryl peptides in unfractionated protein digests for mass spectrometric identification and facile phosphorylation-site determination. Here, we have expanded the use of this technique to β-N-acetylglucosamine peptides, modified at serine/threonine, phosphothreonyl peptides, and phosphoseryl/phosphothreonyl peptides, followed in sequence by proline. The consecutive β-elimination with Michael addition was adapted to optimize the solid-phase reaction conditions for throughput and completeness of derivatization. The analyte remained intact during derivatization and was recovered efficiently from the silica-based, reversed-phase support with minimal sample loss. The general use of the solid-phase approach for enzymatic dephosphorylation was demonstrated with phosphoseryl and phosphothreonyl peptides and was used as an orthogonal method to confirm the identity of phosphopeptides in proteolytic mixtures. The solid-phase approach proved highly suitable to prepare substrates from low-level amounts of protein digests for phosphorylation-site determination by chemical-targeted proteolysis. The solid-phase protocol provides for a simple, robust, and efficient tool to prepare samples for phosphopeptide identification in MALDI mass maps of unfractionated protein digests, using standard equipment available in most biological laboratories. The use of a solid-phase analytical platform is expected to be readily expanded to prepare digest from O-glycosylated- and O-sulfonated proteins for mass spectrometry-based structural characterization. PMID:23997661

  7. Influence of motivating operations and discriminative stimuli on challenging behavior maintained by positive reinforcement.

    PubMed

    Edrisinha, Chaturi; O'Reilly, Mark; Sigafoos, Jeff; Lancioni, Giulio; Choi, Ha Young

    2011-01-01

    We examined the effects of an establishing operation (EO) and abolishing operation (AO) on stimulus control of challenging behavior. Two participants with developmental disabilities and challenging behavior participated. In Phase I, a functional analysis was conducted to identify the consequences maintaining challenging behavior. In Phase II, a discrimination between SD and SΔ was trained. In Phase III, pre-session MOs (i.e., EO and AO conditions) were arranged to assess their effects on challenging behavior. Finally in Phase IV, in addition to manipulating pre-session MOs the challenging behavior was evaluated under extinction in both SD and SΔ conditions. Results indicated that in the context of extinction when pre-session EO and AO conditions were manipulated, responding not only became differentiated but was higher in both SD and SΔ conditions in the pre-session EO condition when compared to the pre-session AO condition. Published by Elsevier Ltd.

  8. Age-Related Enhancement of a Protein Synthesis-Dependent Late Phase of LTP Induced by Low Frequency Paired-Pulse Stimulation in Hippocampus

    ERIC Educational Resources Information Center

    Huang, Yan-You; Kandel, Eric R.

    2006-01-01

    Protein synthesis-dependent late phase of LTP (L-LTP) is typically induced by repeated high-frequency stimulation (HFS). This form of L-LTP is reduced in the aged animal and is positively correlated with age-related memory loss. Here we report a novel form of protein synthesis-dependent late phase of LTP in the CA1 region of hippocampus induced by…

  9. The effect of protein on phase separation in giant unilamellar lipid vesicles.

    NASA Astrophysics Data System (ADS)

    Hutchison, J. B.; Weis, R. M.; Dinsmore, A. D.

    2009-03-01

    We explore the coarsening and out of plane curvature (budding) of domains in lipid bilayer vesicles composed of DOPC (unsaturated), PSM (saturated), and cholesterol. Green fluorescent protein (GFP) was added to the membrane in controlled amounts by binding to the Ni-chelating lipid, Ni-DOGS. Vesicles with diameters between 10 and 50 microns were prepared via a standard electroformation procedure. As a sample is lowered through temperature Tmix, a previously homogeneous vesicle phase separates into two fluid phases with distinct compositions. Phase-separated domains have a line tension (energy/length) at the boundary with the major phase which competes with bending energy and lateral tension to determine the overall configuration of the vesicle. Domain budding and coarsening were observed and recorded using both bright field and fluorescence microscopy during temperature scans and with varying concentrations of GFP. The addition of a model protein into our system allows for a broader understanding of the effect of protein, which are ubiquitous in cell membranes, on phase separation, budding, and coarsening.

  10. Proteomic analysis of early phase of conidia germination in Aspergillus nidulans.

    PubMed

    Oh, Young Taek; Ahn, Chun-Seob; Kim, Jeong Geun; Ro, Hyeon-Su; Lee, Chang-Won; Kim, Jae Won

    2010-03-01

    In order to investigate proteins involved in early phase of conidia germination, proteomic analysis was performed using two-dimensional gel electrophoresis (2D-GE) in conjunction with MALDI-TOF mass spectrometry (MS). The expression levels of 241 proteins varied quantitatively with statistical significance (P<0.05) at the early phase of the germination stage. Out of these 57 were identified by MALDI-TOF MS. Through classification of physiological functions from Conserved Domain Database analysis, among the identified proteins, 21, 13, and 6 proteins were associated with energy metabolism, protein synthesis, and protein folding process, respectively. Interestingly, eight proteins, which are involved in detoxification of reactive oxygen species (ROS) including catalase A, thioredoxin reductase, and mitochondrial peroxiredoxin, were also identified. The expression levels of the genes were further confirmed using Northern blot and reverse transcriptase (RT)-PCR analyses. This study represents the first proteomic analysis of early phase of conidia germination and will contribute to a better understanding of the molecular events involved in conidia germination process. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  11. Protein synthesis and the recovery of both survival and cytoplasmic "petite" mutation in ultraviolet-treated yeast cells. II. Mitochondrial protein synthesis.

    PubMed

    Heude, M; Chanet, R

    1975-04-01

    The contribution of mitochondrial proteins in the repair of UV-induced lethal and cytoplasmic genetic damages was studied in dark liquid held exponential and stationary phase yeast cells. This was performed by using the specific inhibitors, erythromycin (ER) anc chloramphenicol (CAP). It was shown that mitochondrial proteins are involved in the recovery of stationary phase cells. Mitochondrial proteins are partly implicated in the mechanisms leading to the restoration of the (see article) genotype in UV-irradiated dark liquid held exponential phase cells. Here again, in stationary phase cells, mitochondrial enzymes do not seem to participate in the negative liquid holding (NLH) process for the (see article) induction, as shown by inhibiting mitochondrial protein synthesis or both mitochondrial and nuclear protein synthesis. When cells are grown in glycerol, the response after dark liquid holding of UV-treated cells in the different growth stages are similar to that found for glucose-grown cells. In other words, the fate of cytoplasmic genetic damage, in particular, is not correlated with the repressed or derepressed state of the mitochondria.

  12. Reverse-phase protein array profiling of oropharyngeal cancer and significance of PIK3CA mutations in HPV-associated head and neck cancer.

    PubMed

    Sewell, Andrew; Brown, Brandee; Biktasova, Asel; Mills, Gordon B; Lu, Yiling; Tyson, Darren R; Issaeva, Natalia; Yarbrough, Wendell G

    2014-05-01

    Human papilloma virus (HPV)-associated (HPV+) oropharyngeal squamous cell carcinomas (OPSCC) have different molecular and biologic characteristics and clinical behavior compared with HPV-negative (HPV-) OPSCC. PIK3CA mutations are more common in HPV(+) OPSCC. To define molecular differences and tumor subsets, protein expression and phosphorylation were compared between HPV(+) and HPV(-) OPSCC and between tumors with and without PIK3CA mutations. Expression of 137 total and phosphorylated proteins was evaluated by reverse-phase protein array in 29 HPV(+) and 13 HPV(-) prospectively collected OPSCCs. Forty-seven OPSCCs were tested for hotspot-activating mutations in PIK3CA and AKT. Activation of PIK3CA downstream targets and sensitivity to pathway inhibitors were determined in HPV(+) head and neck cancer cells overexpressing wild-type or mutant PIK3CA. Analyses revealed 41 differentially expressed proteins between HPV(+) and HPV(-) OPSCC categorized into functional groups: DNA repair, cell cycle, apoptosis, phosphoinositide 3-kinase (PI3K)/AKT/mTOR, and receptor kinase pathways. All queried DNA repair proteins were significantly upregulated in HPV(+) samples. A total of 8 of 33 HPV(+) and 0 of 14 HPV(-) tumors contained activating PIK3CA mutations. Despite all activating PIK3CA mutations occurring in HPV(+) samples, HPV(+) tumors had lower mean levels of activated AKT and downstream AKT target phosphorylation. Ectopic expression of mutant PIK3CA in HPV(+) cells increased mTOR, but not AKT activity. HPV E6/E7 overexpression inhibited AKT phosphorylation in HPV-negative cells. Mutant PIK3CA overexpressing cells were more sensitive to a dual PI3K/mTOR inhibitor compared with an AKT inhibitor. Protein expression analyses suggest that HPV(+) and HPV(-) OPSCC differentially activate DNA repair, cell cycle, apoptosis, PI3K/AKT/mTOR, and receptor kinase pathways. PIK3CA mutations are more common in HPV(+) OPSCC and are associated with activation of mTOR, but not AKT. These data suggest that inhibitors for mTOR may have activity against HPV(+) PIK3CA mutant oropharyngeal cancers. ©2014 AACR.

  13. The effects of feeding unpredictability and classical conditioning on pre-release training of white-lipped peccary (Mammalia, Tayassuidae).

    PubMed

    Nogueira, Selene S C; Abreu, Shauana A; Peregrino, Helderes; Nogueira-Filho, Sérgio L G

    2014-01-01

    Some authors have suggested that environmental unpredictability, accompanied by some sort of signal for behavioral conditioning, can boost activity or foster exploratory behavior, which may increase post-release success in re-introduction programs. Thus, using white-lipped peccary (Tayassu pecari), a vulnerable Neotropical species, as a model, we evaluated an unpredictable feeding schedule. Associating this with the effect of classical conditioning on behavioral activities, we assessed the inclusion of this approach in pre-release training protocols. The experimental design comprised predictable feeding phases (control phases: C1, C2 and C3) and unpredictable feeding phases (U1- signaled and U2- non-signaled). The animals explored more during the signaled and non-signaled unpredictable phases and during the second control phase (C2) than during the other two predictable phases (C1 and C3). The peccaries also spent less time feeding during the signaled unpredictable phase (U1) and the following control phase (C2) than during the other phases. Moreover, they spent more time in aggressive encounters during U1 than the other experimental phases. However, the animals did not show differences in the time they spent on affiliative interactions or in the body weight change during the different phases. The signaled unpredictability, besides improving foraging behavior, showing a prolonged effect on the next control phase (C2), also increased the competition for food. The signaled feeding unpredictability schedule, mimicking wild conditions by eliciting the expression of naturalistic behaviors in pre-release training, may be essential to fully prepare them for survival in the wild.

  14. Prone positioning reduces severe pushing behavior: three case studies.

    PubMed

    Fujino, Yuji; Amimoto, Kazu; Sugimoto, Satoshi; Fukata, Kazuhiro; Inoue, Masahide; Takahashi, Hidetoshi; Makita, Shigeru

    2016-09-01

    [Purpose] Pushing behavior is classically described as a disorder of body orientation in the coronal plane. Most interventions for pushing behavior have focused on correcting the deviation in vertical perception. However, pushing behavior seems to involve erroneous movements associated with excessive motor output by the non-paretic limbs and trunk. The present study aimed to inhibit muscular hyper-activity by placing the non-paretic limbs and trunk in the prone position. [Subjects and Methods] The subjects of the present study were 3 acute stroke patients with severe pushing behavior. The study consisted of the following 3 phases: baseline, intervention, and follow-up. In addition to conventional therapy, patients received relaxation therapy in the prone position for 10 minutes a day over 2 days. The severity of pushing behavior was assessed using the scale for contraversive pushing, and truncal balance was evaluated using the trunk control test. These assessments were performed before and after the baseline phase, and after the intervention and follow-up phases. [Results] At the baseline phase, both scores were poor. Both scores improved after the intervention and follow-up phases, and all the patients could sit independently. [Conclusion] Relaxation therapy in the prone position might ameliorate pushing behavior and impaired truncal balance.

  15. The Proteome and Lipidome of Thermococcus kodakarensis across the Stationary Phase

    PubMed Central

    Yoshinaga, Marcos Y.; Garcia Prado, Franka; Hinrichs, Kai-Uwe; Thomm, Michael

    2016-01-01

    The majority of cells in nature probably exist in a stationary-phase-like state, due to nutrient limitation in most environments. Studies on bacteria and yeast reveal morphological and physiological changes throughout the stationary phase, which lead to an increased ability to survive prolonged nutrient limitation. However, there is little information on archaeal stationary phase responses. We investigated protein- and lipid-level changes in Thermococcus kodakarensis with extended time in the stationary phase. Adaptations to time in stationary phase included increased proportion of membrane lipids with a tetraether backbone, synthesis of proteins that ensure translational fidelity, specific regulation of ABC transporters (upregulation of some, downregulation of others), and upregulation of proteins involved in coenzyme production. Given that the biological mechanism of tetraether synthesis is unknown, we also considered whether any of the protein-level changes in T. kodakarensis might shed light on the production of tetraether lipids across the same period. A putative carbon-nitrogen hydrolase, a TldE (a protease in Escherichia coli) homologue, and a membrane bound hydrogenase complex subunit were candidates for possible involvement in tetraether-related reactions, while upregulation of adenosylcobalamin synthesis proteins might lend support to a possible radical mechanism as a trigger for tetraether synthesis. PMID:27274708

  16. The Proteome and Lipidome of Thermococcus kodakarensis across the Stationary Phase.

    PubMed

    Gagen, Emma J; Yoshinaga, Marcos Y; Garcia Prado, Franka; Hinrichs, Kai-Uwe; Thomm, Michael

    2016-01-01

    The majority of cells in nature probably exist in a stationary-phase-like state, due to nutrient limitation in most environments. Studies on bacteria and yeast reveal morphological and physiological changes throughout the stationary phase, which lead to an increased ability to survive prolonged nutrient limitation. However, there is little information on archaeal stationary phase responses. We investigated protein- and lipid-level changes in Thermococcus kodakarensis with extended time in the stationary phase. Adaptations to time in stationary phase included increased proportion of membrane lipids with a tetraether backbone, synthesis of proteins that ensure translational fidelity, specific regulation of ABC transporters (upregulation of some, downregulation of others), and upregulation of proteins involved in coenzyme production. Given that the biological mechanism of tetraether synthesis is unknown, we also considered whether any of the protein-level changes in T. kodakarensis might shed light on the production of tetraether lipids across the same period. A putative carbon-nitrogen hydrolase, a TldE (a protease in Escherichia coli) homologue, and a membrane bound hydrogenase complex subunit were candidates for possible involvement in tetraether-related reactions, while upregulation of adenosylcobalamin synthesis proteins might lend support to a possible radical mechanism as a trigger for tetraether synthesis.

  17. Sterile Filtration of Highly Concentrated Protein Formulations: Impact of Protein Concentration, Formulation Composition, and Filter Material.

    PubMed

    Allmendinger, Andrea; Mueller, Robert; Huwyler, Joerg; Mahler, Hanns-Christian; Fischer, Stefan

    2015-10-01

    Differences in filtration behavior of concentrated protein formulations were observed during aseptic drug product manufacturing of biologics dependent on formulation composition. The present study investigates filtration forces of monoclonal antibody formulations in a small-scale set-up using polyvinylidene difluoride (PVDF) or polyethersulfone (PES) filters. Different factors like formulation composition and protein concentration related to differences in viscosity, as well as different filtration rates were evaluated. The present study showed that filtration behavior was influenced by the presence or absence of a surfactant in the formulation, which defines the interaction between filter membrane and surface active formulation components. This can lead to a change in filter resistance (PES filter) independent on the buffer system used. Filtration behavior was additionally defined by rheological non-Newtonian flow behavior. The data showed that high shear rates resulting from small pore sizes and filtration pressure up to 1.0 bar led to shear-thinning behavior for highly concentrated protein formulations. Differences in non-Newtonian behavior were attributed to ionic strength related to differences in repulsive and attractive interactions. The present study showed that the interplay of formulation composition, filter material, and filtration rate can explain differences in filtration behavior/filtration flux observed for highly concentrated protein formulations thus guiding filter selection. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  18. Improved Separations of Proteins and Sugar Derivatives Using the Small-Scale Cross-Axis Coil Planet Centrifuge with Locular Multilayer Coiled Columns.

    PubMed

    Shinomiya, Kazufusa; Umezawa, Motoki; Seki, Manami; Nitta, Jun; Zaima, Kazumasa; Harikai, Naoki; Ito, Yoichiro

    2016-12-01

    Countercurrent chromatography (CCC) is liquid-liquid partition chromatography without using a solid support matrix. This technique requires further improvement of partition efficiency and shortening theseparation time. The locular multilayer coils modified with and without mixer glass beads were developed for the separation of proteins and 4-methylumbelliferyl (MU) sugar derivatives using the small-scale cross-axis coil planet centrifuge. Proteins were well separated from each other and the separation was improved at a low flow rate of the mobile phase. On the other hand, 4-MU sugar derivatives were sufficiently resolved with short separation time at a highflow rate of the mobile phase under satisfactory stationary phase retention. Effective separations were achieved using the locular multilayer coil for proteins with aqueous-aqueous polymer phase systems and for 4-MU sugar derivatives with organic-aqueous two-phase solvent systems by inserting a glass bead into each locule.

  19. Denaturation of Proteins by SDS and by Tetra-alkylammonium Dodecyl Sulfates

    PubMed Central

    Lee, Andrew; Tang, Sindy K. Y.; Mace, Charles R.

    2011-01-01

    This paper describes the use of capillary electrophoresis (CE) to examine the influence of different cations (C+; C+ = Na+ and tetra-n-alkylammonium, NR4 +, where R = Me, Et, Pr, Bu) on the rates of denaturation of bovine carbonic anhydrase II (BCA) in the presence of the anionic surfactant dodecylsulfate (DS−). Analysis of the denaturation of BCA in solutions of Na+DS− and NR4 +DS− (in Tris-Gly buffer) indicated that the rates of formation of complexes of denatured BCA with DS− (BCAD-DS−n,sat) are indistinguishable and independent of the cation below the critical micellar concentration (cmc), and independent of the total concentration of DS− above the cmc. At concentrations of C+DS− above the cmc, BCA denatured with rates that depended on the cation; the rates decreased by a factor > 104, in the order Na+ ~ NMe4 + > NEt4 + > NPr4 + > NBu4 + – the same order as the values of cmc (which decrease from 4.0 mM for Na+DS− to 0.9 mM for NBu4 +DS− in Tris-Gly buffer). The relationship between values of cmc and rates of formation of BCAD-DS−n,sat suggested that the kinetics of denaturation of BCA involve the association of this protein with monomeric DS−, rather than with micelles of (C+DS−)n. A less-detailed survey of seven other proteins (α-lactalbumin, β-lactoglobulin A, β-lactoglobulin B, carboxypeptidase B, creatine phosphokinase, myoglobin, and ubiquitin) showed that the difference between Na+DS− and NR4 +DS− observed with BCA was not general. Instead, the influence of NR4 + on the association of DS− with these proteins depended on the protein. The selection of cation contributed to the properties (including composition, electrophoretic mobility, and partitioning behavior in aqueous two-phase systems) of aggregates of denatured protein and DS−. These results suggest that variation in the behavior of NR4 +DS− with changes in R may be exploited in methods for analyzing and separating mixtures of proteins. PMID:21834533

  20. Denaturation of proteins by SDS and tetraalkylammonium dodecyl sulfates.

    PubMed

    Lee, Andrew; Tang, Sindy K Y; Mace, Charles R; Whitesides, George M

    2011-09-20

    This article describes the use of capillary electrophoresis (CE) to examine the influence of different cations (C(+); C(+) = Na(+) and tetra-n-alkylammonium, NR(4)(+), where R = Me, Et, Pr, and Bu) on the rates of denaturation of bovine carbonic anhydrase II (BCA) in the presence of anionic surfactant dodecylsulfate (DS(-)). An analysis of the denaturation of BCA in solutions of Na(+)DS(-) and NR(4)(+)DS(-) (in Tris-Gly buffer) indicated that the rates of formation of complexes of denatured BCA with DS(-) (BCA(D)-DS(-)(n,sat)) are indistinguishable and independent of the cation below the critical micellar concentration (cmc) and independent of the total concentration of DS(-) above the cmc. At concentrations of C(+)DS(-) above the cmc, BCA denatured at rates that depended on the cation; the rates decreased by a factor >10(4) in the order of Na(+) ≈ NMe(4)(+) > NEt(4)(+) > NPr(4)(+) > NBu(4)(+), which is the same order as the values of the cmc (which decrease from 4.0 mM for Na(+)DS(-) to 0.9 mM for NBu(4)(+)DS(-) in Tris-Gly buffer). The relationship between the cmc values and the rates of formation of BCA(D)-DS(-)(n,sat()) suggested that the kinetics of denaturation of BCA involve the association of this protein with monomeric DS(-) rather than with micelles of (C(+)DS(-))(n). A less-detailed survey of seven other proteins (α-lactalbumin, β-lactoglobulin A, β-lactoglobulin B, carboxypeptidase B, creatine phosphokinase, myoglobin, and ubiquitin) showed that the difference between Na(+)DS(-) and NR(4)(+)DS(-) observed with BCA was not general. Instead, the influence of NR(4)(+) on the association of DS(-) with these proteins depended on the protein. The selection of the cation contributed to the properties (including the composition, electrophoretic mobility, and partitioning behavior in aqueous two-phase systems) of aggregates of denatured protein and DS(-). These results suggest that the variation in the behavior of NR(4)(+)DS(-) with changes in R may be exploited in methods used to analyze and separate mixtures of proteins. © 2011 American Chemical Society

  1. Synaptic basis of social dysfunction: a focus on postsynaptic proteins linking group-I mGluRs with AMPARs and NMDARs.

    PubMed

    O'Connor, Eoin C; Bariselli, Sebastiano; Bellone, Camilla

    2014-04-01

    Most of us engage in social interactions on a daily basis and the repertoire of social behaviors we acquire during development and later in life are incredibly varied. However, in many neurodevelopmental disorders, including autism spectrum disorders (ASDs), social behavior is severely compromised and indeed this represents a key diagnostic component for such conditions. From genetic association studies, it is increasingly apparent that genes identified as altered in individuals with ASDs often encode synaptic proteins. Moreover, these synaptic proteins typically serve to scaffold group-I metabotropic glutamate receptors (group-I mGluRs) and ionotropic glutamate receptors (iGluRs; AMPARs and NMDARs), or to enable group-I mGluR to iGluR crosstalk via protein synthesis. Here we aim to explore the possibility of a causal link between altered function of such synaptic proteins and impaired social behaviors that feature in neurodevelopmental disorders, such as ASDs. We review the known synaptic function and role in social behaviors of selected post-synaptic structural proteins (Shank, SAPAP and neuroligin) and regulators of protein synthesis (TSC1/2, FMRP and PTEN). While manipulations of proteins involved in group-I mGluR and iGluR scaffolding or crosstalk frequently lead to profound alterations in synaptic function and one or more components of social behavior, the neuronal circuits responsible for impairments in specific social behaviors are often poorly defined. We argue for an improved understanding of the neuronal circuits underlying specific social behaviors to aid the development of new ASD therapies. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  2. Betaxolol, a selective β1-adrenergic receptor antagonist, diminishes anxiety-like behavior during early withdrawal from chronic cocaine administration in rats

    PubMed Central

    Rudoy, C.A.; Van Bockstaele, E.J.

    2007-01-01

    Background Anxiety has been indicated as one of the main symptoms of the cocaine withdrawal syndrome in human addicts and severe anxiety during withdrawal may potentially contribute to relapse. As alterations in noradrenergic transmission in limbic areas underlie withdrawal symptomatology for many drugs of abuse, the present study sought to determine the effect of cocaine withdrawal on β-adrenergic receptor (β1 and β2) expression in the amygdala. Methods Male Sprague Dawley rats were administered intraperitoneal (i.p.) injections of cocaine (20 mg/kg) once daily for 14 days. Two days following the last cocaine injection, amygdala brain regions were micro-dissected and processed for Western blot analysis. Results showed that β1–adrenergic receptor, but not β2–adrenergic receptor expression was significantly increased in amygdala extracts of cocaine-withdrawn animals as compared to controls. This finding motivated further studies aimed at determining whether treatment with betaxolol, a highly selective β1–adrenergic receptor antagonist, could ameliorate cocaine withdrawal-induced anxiety. In these studies, betaxolol (5 mg/kg via i.p. injection) was administered at 24 and then 44 hours following the final chronic cocaine administration. Anxiety-like behavior was evaluated using the elevated plus maze test approximately 2 hours following the last betaxolol injection. Following behavioral testing, betaxolol effects on β1-adrenergic receptor protein expression were examined by Western blotting in amygdala extracts from rats undergoing cocaine withdrawal. Results Animals treated with betaxolol during cocaine withdrawal exhibited a significant attenuation of anxiety-like behavior characterized by increased time spent in the open arms and increased entries into the open arms compared to animals treated with only saline during cocaine withdrawal. In contrast, betaxolol did not produce anxiolytic-like effects in control animals treated chronically with saline. Furthermore, treatment with betaxolol during early cocaine withdrawal significantly decreased β1-adrenergic receptor protein expression in the amygdala to levels comparable to those of control animals. Conclusions The present findings suggest that the anxiolytic-like effect of betaxolol on cocaine-induced anxiety may be related to its effect on amygdalar β1-adrenergic receptors that are up-regulated during early phases of drug withdrawal. These data support the efficacy of betaxolol as a potential effective pharmacotherapy in treating cocaine withdrawal-induced anxiety during early phases of abstinence. PMID:17513029

  3. Betaxolol, a selective beta(1)-adrenergic receptor antagonist, diminishes anxiety-like behavior during early withdrawal from chronic cocaine administration in rats.

    PubMed

    Rudoy, C A; Van Bockstaele, E J

    2007-06-30

    Anxiety has been indicated as one of the main symptoms of the cocaine withdrawal syndrome in human addicts and severe anxiety during withdrawal may potentially contribute to relapse. As alterations in noradrenergic transmission in limbic areas underlie withdrawal symptomatology for many drugs of abuse, the present study sought to determine the effect of cocaine withdrawal on beta-adrenergic receptor (beta(1) and beta(2)) expression in the amygdala. Male Sprague Dawley rats were administered intraperitoneal (i.p.) injections of cocaine (20 mg/kg) once daily for 14 days. Two days following the last cocaine injection, amygdala brain regions were micro-dissected and processed for Western blot analysis. Results showed that beta(1)-adrenergic receptor, but not beta(2)-adrenergic receptor expression was significantly increased in amygdala extracts of cocaine-withdrawn animals as compared to controls. This finding motivated further studies aimed at determining whether treatment with betaxolol, a highly selective beta(1)-adrenergic receptor antagonist, could ameliorate cocaine withdrawal-induced anxiety. In these studies, betaxolol (5 mg/kg via i.p. injection) was administered at 24 and then 44 h following the final chronic cocaine administration. Anxiety-like behavior was evaluated using the elevated plus maze test approximately 2 h following the last betaxolol injection. Following behavioral testing, betaxolol effects on beta(1)-adrenergic receptor protein expression were examined by Western blotting in amygdala extracts from rats undergoing cocaine withdrawal. Animals treated with betaxolol during cocaine withdrawal exhibited a significant attenuation of anxiety-like behavior characterized by increased time spent in the open arms and increased entries into the open arms compared to animals treated with only saline during cocaine withdrawal. In contrast, betaxolol did not produce anxiolytic-like effects in control animals treated chronically with saline. Furthermore, treatment with betaxolol during early cocaine withdrawal significantly decreased beta(1)-adrenergic receptor protein expression in the amygdala to levels comparable to those of control animals. The present findings suggest that the anxiolytic-like effect of betaxolol on cocaine-induced anxiety may be related to its effect on amygdalar beta(1)-adrenergic receptors that are up-regulated during early phases of drug withdrawal. These data support the efficacy of betaxolol as a potential effective pharmacotherapy in treating cocaine withdrawal-induced anxiety during early phases of abstinence.

  4. The Phase Behavior of γ-Oryzanol and β-Sitosterol in Edible Oil.

    PubMed

    Sawalha, Hassan; Venema, Paul; Bot, Arjen; Flöter, Eckhard; Adel, Ruud den; van der Linden, Erik

    The phase behavior of binary mixtures of γ-oryzanol and β-sitosterol and ternary mixtures of γ-oryzanol and β-sitosterol in sunflower oil was studied. Binary mixtures of γ-oryzanol and β-sitosterol show double-eutectic behavior. Complex phase behavior with two intermediate mixed solid phases was derived from differential scanning calorimetry (DSC) and small-angle X-ray scattering (SAXS) data, in which a compound that consists of γ-oryzanol and β-sitosterol molecules at a specific ratio can be formed. SAXS shows that the organization of γ-oryzanol and β-sitosterol in the mixed phases is different from the structure of tubules in ternary systems. Ternary mixtures including sunflower oil do not show a sudden structural transition from the compound to a tubule, but a gradual transition occurs as γ-oryzanol and β-sitosterol are diluted in edible oil. The same behavior is observed when melting binary mixtures of γ-oryzanol and β-sitosterol at higher temperatures. This indicates the feasibility of having an organogelling agent in dynamic exchange between solid and liquid phase, which is an essential feature of triglyceride networks.

  5. Universality in the Self Organized Critical behavior of a cellular model of superconducting vortex dynamics

    NASA Astrophysics Data System (ADS)

    Sun, Yudong; Vadakkan, Tegy; Bassler, Kevin

    2007-03-01

    We study the universality and robustness of variants of the simple model of superconducting vortex dynamics first introduced by Bassler and Paczuski in Phys. Rev. Lett. 81, 3761 (1998). The model is a coarse-grained model that captures the essential features of the plastic vortex motion. It accounts for the repulsive interaction between vortices, the pining of vortices at quenched disordered locations in the material, and the over-damped dynamics of the vortices that leads to tearing of the flux line lattice. We report the results of extensive simulations of the critical ``Bean state" dynamics of the model. We find a phase diagram containing four distinct phases of dynamical behavior, including two phases with distinct Self Organized Critical (SOC) behavior. Exponents describing the avalanche scaling behavior in the two SOC phases are determined using finite-size scaling. The exponents are found to be robust within each phase and for different variants of the model. The difference of the scaling behavior in the two phases is also observed in the morphology of the avalanches.

  6. Chaotic behavior in Casimir oscillators: A case study for phase-change materials.

    PubMed

    Tajik, Fatemeh; Sedighi, Mehdi; Khorrami, Mohammad; Masoudi, Amir Ali; Palasantzas, George

    2017-10-01

    Casimir forces between material surfaces at close proximity of less than 200 nm can lead to increased chaotic behavior of actuating devices depending on the strength of the Casimir interaction. We investigate these phenomena for phase-change materials in torsional oscillators, where the amorphous to crystalline phase transitions lead to transitions between high and low Casimir force and torque states, respectively, without material compositions. For a conservative system bifurcation curve and Poincare maps analysis show the absence of chaotic behavior but with the crystalline phase (high force-torque state) favoring more unstable behavior and stiction. However, for a nonconservative system chaotic behavior can take place introducing significant risk for stiction, which is again more pronounced for the crystalline phase. The latter illustrates the more general scenario that stronger Casimir forces and torques increase the possibility for chaotic behavior. The latter is making it impossible to predict whether stiction or stable actuation will occur on a long-term basis, and it is setting limitations in the design of micronano devices operating at short-range nanoscale separations.

  7. Serum protein capillary electrophoresis and measurement of acute phase proteins in a captive cheetah (Acinonyx jubatus) population.

    PubMed

    Depauw, Sarah; Delanghe, Joris; Whitehouse-Tedd, Katherine; Kjelgaard-Hansen, Mads; Christensen, Michelle; Hesta, Myriam; Tugirimana, Pierrot; Budd, Jane; Dermauw, Veronique; Janssens, Geert P J

    2014-09-01

    Renal and gastrointestinal pathologies are widespread in the captive cheetah (Acinonyx jubatus) population but are often diagnosed at a late stage, because diagnostic tools are limited to the evaluation of clinical signs or general blood examination. Presently, no data are available on serum proteins and acute-phase proteins in cheetahs during health or disease, although they might be important to improve health monitoring. This study aimed to quantify serum proteins by capillary electrophoresis in 80 serum samples from captive cheetahs, categorized according to health status and disease type. Moreover, serum amyloid A concentrations were measured via a turbidimetric immunoassay validated in domestic cats, whereas haptoglobin and C-reactive protein were determined by non-species-specific functional tests. Cheetahs classified as healthy had serum protein and acute phase protein concentrations within reference ranges for healthy domestic cats. In contrast, unhealthy cheetahs had higher (P < 0.001) serum amyloid A, alpha2-globulin, and haptoglobin concentrations compared with the healthy subgroup. Moreover, serum amyloid A (P = 0.020), alpha2-globulin (P < 0.001) and haptoglobin (P = 0.001) concentrations in cheetahs suffering from chronic kidney disease were significantly greater compared to the reportedly healthy cheetahs. Our study indicates that serum proteins in the cheetah can be analyzed by routine capillary electrophoresis, whereas acute-phase proteins can be measured using available immunoassays or non-species-specific techniques, which are also likely to be applicable in other exotic felids. Moreover, results suggest that serum amyloid A and haptoglobin are important acute-phase proteins in the diseased cheetah and highlight the need to evaluate their role as early-onset markers for disease.

  8. Influence of the intrinsic membrane protein bacteriorhodopsin on gel-phase domain topology in two-component phase-separated bilayers.

    PubMed Central

    Schram, V; Thompson, T E

    1997-01-01

    We have investigated the effect of the intrinsic membrane protein bacteriorhodopsin of Halobacterium halobium on the lateral organization of the lipid phase structure in the coexistence region of an equimolar mixture of dimyristoylphos-phatidylcholine and distearoylphosphatidylcholine. The fluorescence recovery after photobleaching (FRAP) technique was used to monitor the diffusion of both a lipid analog (N-(7-nitrobenzoxa-2,3-diazol-4-yl)-dimyristoylphosphatidyle thanolamine, NBD-DMPE) and fluorescein-labeled bacteriorhodopsin (Fl-BR). In the presence of bacteriorhodopsin, the mobile fractions of the two fluorescent probes display a shift of the percolation threshold toward lower temperatures (larger gel-phase fractions), independent of the protein concentration, from 43 degrees C (without bacteriorhodopsin) to 39 degrees C and 41 degrees C for NBD-DMPE and Fl-BR, respectively. Moreover, in the presence of bacteriorhodopsin, the gel-phase domains are much less efficient in restricting the diffusion of both probes than they are in the absence of the protein in the two-phase coexistence region. Bacteriorhodopsin itself, however, obstructs diffusion of NBD-DMPE and Fl-BR to about the same extent in the fluid phase of the two-phase region as it does in the homogeneous fluid phase. These observations suggest that 1) the protein induces the formation of much larger and/or more centrosymmetrical gel-phase domains than those formed in its absence, and 2) bacteriorhodopsin partitions almost equally between the coexisting fluid and gel phases. Although the molecular mechanisms involved are not clear, this phenomenon is fully consistent with the effect of the transmembrane peptide pOmpA of Escherichia coli investigated by electron spin resonance in the same lipid system. PMID:9129824

  9. Relationships of feeding behaviors with average daily gain, dry matter intake, and residual feed intake in Red Angus-sired cattle.

    PubMed

    McGee, M; Welch, C M; Ramirez, J A; Carstens, G E; Price, W J; Hall, J B; Hill, R A

    2014-11-01

    Feeding behavior has the potential to enhance prediction of feed intake and to improve understanding of the relationships between behavior, DMI, ADG, and residual feed intake (RFI) in beef cattle. Two cohorts, born in 2009 and 2010, the progeny of Red Angus bulls (n = 58 heifers and n = 53 steers), were evaluated during the growing phase, and the latter group of steers was also evaluated during the finishing phase. All behavior analyses were based on 7 feeding behavior traits (bunk visit frequency, bunk visit duration [BVDUR], feed bout frequency, feed bout duration, meal frequency, meal duration, and average meal intake) and their relationships with ADG, DMI, and RFI. During the growing phase, feeding duration traits were most indicative of DMI with positive correlations between BVDUR and DMI for cohort 1 steers, growing phase (n = 28, r = 0.52, P = 0.00); cohort 2 steers, growing phase (n = 25, r = 0.44, P = 0.01); and cohort 2 heifers, growing phase (n = 29, r = 0.28 P = 0.05). There were similar trends toward correlation of BVDUR and RFI for both steer groups and cohort 1 heifers, growing phase (C1HG; n = 29; r = 0.27, P = 0.06; r = 0.30, P = 0.07; and r = 0.26, P = 0.08, respectively). Feed bout frequency was correlated with ADG in C1HG and in cohort 2 steers, finishing phase (r = -0.31, P = 0.04, and r = 0.43, P = 0.01, respectively). Feed bout duration was correlated with ADG in heifer groups (r = 0.29 and r = 0.28, P = 0.05 for both groups) and DMI for all growing phase animals (r = 0.29 to 0.55, P ≤ 0.05 for all groups). Evaluation of growing vs. finishing phase steer groups suggests that all behaviors, RFI, and DMI, but not ADG, are correlated through the growing and finishing phases (P ≤ 0.01 for all variables excluding ADG), implying that feeding behaviors determined during the growing phase are strong predictors of DMI in either life stage. Sire maintenance energy EPD effects (measured as high or low groups) on progeny feeding behaviors revealed a difference in meal duration with a tendency to differ in average meal intake (P = 0.01 and P = 0.07, respectively). Feeding behavior duration traits may be useful predictors of DMI in Red Angus cattle.

  10. Integration of carboxyl modified magnetic particles and aqueous two-phase extraction for selective separation of proteins.

    PubMed

    Gai, Qingqing; Qu, Feng; Zhang, Tao; Zhang, Yukui

    2011-07-15

    Both of the magnetic particle adsorption and aqueous two-phase extraction (ATPE) were simple, fast and low-cost method for protein separation. Selective proteins adsorption by carboxyl modified magnetic particles was investigated according to protein isoelectric point, solution pH and ionic strength. Aqueous two-phase system of PEG/sulphate exhibited selective separation and extraction for proteins before and after magnetic adsorption. The two combination ways, magnetic adsorption followed by ATPE and ATPE followed by magnetic adsorption, for the separation of proteins mixture of lysozyme, bovine serum albumin, trypsin, cytochrome C and myloglobin were discussed and compared. The way of magnetic adsorption followed by ATPE was also applied to human serum separation. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Influence of Motivating Operations and Discriminative Stimuli on Challenging Behavior Maintained by Positive Reinforcement

    ERIC Educational Resources Information Center

    Edrisinha, Chaturi; O'Reilly, Mark; Sigafoos, Jeff; Lancioni, Giulio; Choi, Ha Young

    2011-01-01

    We examined the effects of an establishing operation (EO) and abolishing operation (AO) on stimulus control of challenging behavior. Two participants with developmental disabilities and challenging behavior participated. In Phase I, a functional analysis was conducted to identify the consequences maintaining challenging behavior. In Phase II, a…

  12. Reference intervals for acute phase protein and serum protein electrophoresis values in captive Asian elephants (Elephas maximus).

    PubMed

    Isaza, Ramiro; Wiedner, Ellen; Hiser, Sarah; Cray, Carolyn

    2014-09-01

    Acute phase protein (APP) immunoassays and serum protein electrophoresis (SPEP) are assays for evaluating the inflammatory response and have use as diagnostic tools in a variety of species. Acute phase proteins are markers of inflammation that are highly conserved across different species while SPEP separates and quantifies serum protein fractions based on their physical properties. In the current study, serum samples from 35 clinically healthy Asian elephants (Elephas maximus) were analyzed using automated assays for C-reactive protein, serum amyloid A, and haptoglobin and SPEP. Robust methods were used to generate reference intervals for the APPs: C-reactive protein (1.3-12.8 mg/l), serum amyloid A (0-47.5 mg/l), and haptoglobin (0-1.10 mg/ml). In addition, SPEP was performed on these samples to establish reference intervals for each protein fraction. A combination of APPs and SPEP measurements are valuable adjunctive diagnostic tools in elephant health care. © 2014 The Author(s).

  13. Phase Separation in Solutions of Monoclonal Antibodies

    NASA Astrophysics Data System (ADS)

    Benedek, George; Wang, Ying; Lomakin, Aleksey; Latypov, Ramil

    2012-02-01

    We report the observation of liquid-liquid phase separation (LLPS) in a solution of humanized monoclonal antibodies, IgG2, and the effects of human serum albumin, a major blood protein, on this phase separation. We find a significant reduction of phase separation temperature in the presence of albumin, and a preferential partitioning of the albumin into the antibody-rich phase. We provide a general thermodynamic analysis of the antibody-albumin mixture phase diagram and relate its features to the magnitude of the effective inter-protein interactions. Our analysis suggests that additives (HSA in this report), which have moderate attraction with antibody molecules, may be used to forestall undesirable protein condensation in antibody solutions. Our findings are relevant to understanding the stability of pharmaceutical solutions of antibodies and the mechanisms of cryoglobulinemia.

  14. Biological applications of phase-contrast electron microscopy.

    PubMed

    Nagayama, Kuniaki

    2014-01-01

    Here, I review the principles and applications of phase-contrast electron microscopy using phase plates. First, I develop the principle of phase contrast based on a minimal model of microscopy, introducing a double Fourier-transform process to mathematically formulate the image formation. Next, I explain four phase-contrast (PC) schemes, defocus PC, Zernike PC, Hilbert differential contrast, and schlieren optics, as image-filtering processes in the context of the minimal model, with particular emphases on the Zernike PC and corresponding Zernike phase plates. Finally, I review applications of Zernike PC cryo-electron microscopy to biological systems such as protein molecules, virus particles, and cells, including single-particle analysis to delineate three-dimensional (3D) structures of protein and virus particles and cryo-electron tomography to reconstruct 3D images of complex protein systems and cells.

  15. Discrete gene replication events drive coupling between the cell cycle and circadian clocks

    PubMed Central

    Paijmans, Joris; Bosman, Mark; ten Wolde, Pieter Rein; Lubensky, David K.

    2016-01-01

    Many organisms possess both a cell cycle to control DNA replication and a circadian clock to anticipate changes between day and night. In some cases, these two rhythmic systems are known to be coupled by specific, cross-regulatory interactions. Here, we use mathematical modeling to show that, additionally, the cell cycle generically influences circadian clocks in a nonspecific fashion: The regular, discrete jumps in gene-copy number arising from DNA replication during the cell cycle cause a periodic driving of the circadian clock, which can dramatically alter its behavior and impair its function. A clock built on negative transcriptional feedback either phase-locks to the cell cycle, so that the clock period tracks the cell division time, or exhibits erratic behavior. We argue that the cyanobacterium Synechococcus elongatus has evolved two features that protect its clock from such disturbances, both of which are needed to fully insulate it from the cell cycle and give it its observed robustness: a phosphorylation-based protein modification oscillator, together with its accompanying push–pull read-out circuit that responds primarily to the ratios of different phosphoform concentrations, makes the clock less susceptible to perturbations in protein synthesis; the presence of multiple, asynchronously replicating copies of the same chromosome diminishes the effect of replicating any single copy of a gene. PMID:27035936

  16. Discrete gene replication events drive coupling between the cell cycle and circadian clocks.

    PubMed

    Paijmans, Joris; Bosman, Mark; Ten Wolde, Pieter Rein; Lubensky, David K

    2016-04-12

    Many organisms possess both a cell cycle to control DNA replication and a circadian clock to anticipate changes between day and night. In some cases, these two rhythmic systems are known to be coupled by specific, cross-regulatory interactions. Here, we use mathematical modeling to show that, additionally, the cell cycle generically influences circadian clocks in a nonspecific fashion: The regular, discrete jumps in gene-copy number arising from DNA replication during the cell cycle cause a periodic driving of the circadian clock, which can dramatically alter its behavior and impair its function. A clock built on negative transcriptional feedback either phase-locks to the cell cycle, so that the clock period tracks the cell division time, or exhibits erratic behavior. We argue that the cyanobacterium Synechococcus elongatus has evolved two features that protect its clock from such disturbances, both of which are needed to fully insulate it from the cell cycle and give it its observed robustness: a phosphorylation-based protein modification oscillator, together with its accompanying push-pull read-out circuit that responds primarily to the ratios of different phosphoform concentrations, makes the clock less susceptible to perturbations in protein synthesis; the presence of multiple, asynchronously replicating copies of the same chromosome diminishes the effect of replicating any single copy of a gene.

  17. Preparation of a novel dual-function strong cation exchange/hydrophobic interaction chromatography stationary phase for protein separation.

    PubMed

    Zhao, Kailou; Yang, Li; Wang, Xuejiao; Bai, Quan; Yang, Fan; Wang, Fei

    2012-08-30

    We have explored a novel dual-function stationary phase which combines both strong cation exchange (SCX) and hydrophobic interaction chromatography (HIC) characteristics. The novel dual-function stationary phase is based on porous and spherical silica gel functionalized with ligand containing sulfonic and benzyl groups capable of electrostatic and hydrophobic interaction functionalities, which displays HIC character in a high salt concentration, and IEC character in a low salt concentration in mobile phase employed. As a result, it can be employed to separate proteins with SCX and HIC modes, respectively. The resolution and selectivity of the dual-function stationary phase were evaluated under both HIC and SCX modes with standard proteins and can be comparable to that of conventional IEC and HIC columns. More than 96% of mass and bioactivity recoveries of proteins can be achieved in both HIC and SCX modes, respectively. The results indicated that the novel dual-function column could replace two individual SCX and HIC columns for protein separation. Mixed retention mechanism of proteins on this dual-function column based on stoichiometric displacement theory (SDT) in LC was investigated to find the optimal balance of the magnitude of electrostatic and hydrophobic interactions between protein and the ligand on the silica surface in order to obtain high resolution and selectivity for protein separation. In addition, the effects of the hydrophobicity of the ligand of the dual-function packings and pH of the mobile phase used on protein separation were also investigated in detail. The results show that the ligand with suitable hydrophobicity to match the electrostatic interaction is very important to prepare the dual-function stationary phase, and a better resolution and selectivity can be obtained at pH 6.5 in SCX mode. Therefore, the dual-function column can replace two individual SCX and HIC columns for protein separation and be used to set up two-dimensional liquid chromatography with a single column (2DLC-1C), which can also be employed to separate three kinds of active proteins completely, such as lysozyme, ovotransferrin and ovalbumin from egg white. The result is very important not only to the development of new 2DLC technology with a single column for proteomics, but also to recombinant protein drug production for saving column expense and simplifying the process in biotechnology. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Spontaneous and Flow-Driven Interfacial Phase Change: Dynamics of Microemulsion Formation at the Pore Scale.

    PubMed

    Tagavifar, Mohsen; Xu, Ke; Jang, Sung Hyun; Balhoff, Matthew T; Pope, Gary A

    2017-11-14

    The dynamic behavior of microemulsion-forming water-oil-amphiphiles mixtures is investigated in a 2.5D micromodel. The equilibrium phase behavior of such mixtures is well-understood in terms of macroscopic phase transitions. However, what is less understood and where experimental data are lacking is the coupling between the phase change and the bulk flow. Herein, we study the flow of an aqueous surfactant solution-oil mixture in porous media and analyze the dependence of phase formation and spatial phase configurations on the bulk flow rate. We find that a microemulsion forms instantaneously as a boundary layer at the initial surface of contact between the surfactant solution and oil. The boundary layer is temporally continuous because of the imposed convection. In addition to the imposed flow, we observe spontaneous pulsed Marangoni flows that drag the microemulsion and surfactant solution into the oil stream, forming large (macro)emulsion droplets. The formation of the microemulsion phase at the interface distinguishes the situation from that of the more common Marangoni flow with only two phases present. Additionally, an emulsion forms via liquid-liquid nucleation or the Ouzo effect (i.e., spontaneous emulsification) at low flow rates and via mechanical mixing at high flow rates. With regard to multiphase flow, contrary to the common belief that the microemulsion is the wetting liquid, we observe that the minor oil phase wets the solid surface. We show that a layered flow pattern is formed because of the out-of-equilibrium phase behavior at high volumetric flow rates (order of 2 m/day) where advection is much faster than the diffusive interfacial mass transfer and transverse mixing, which promote equilibrium behavior. At lower flow rates (order of 30 cm/day), however, the dynamic and equilibrium phase behaviors are well-correlated. These results clearly show that the phase change influences the macroscale flow behavior.

  19. Influence of vitamin E acetate and other lipids on the phase behavior of mesophases based on unsaturated monoglycerides.

    PubMed

    Sagalowicz, L; Guillot, S; Acquistapace, S; Schmitt, B; Maurer, M; Yaghmur, A; de Campo, L; Rouvet, M; Leser, M; Glatter, O

    2013-07-02

    The phase behavior of the ternary unsaturated monoglycerides (UMG)-DL-α-tocopheryl acetate-water system has been studied. The effects of lipid composition in both bulk and dispersed lyotropic liquid crystalline phases and microemulsions were investigated. In excess water, progressive addition of DL-α-tocopheryl acetate to a binary UMG mixture results in the following phase sequence: reversed bicontinuous cubic phase, reversed hexagonal (H(II)) phase, and a reversed microemulsion. The action of DL-α-tocopheryl acetate is then compared to that of other lipids such as triolein, limonene, tetradecane, and DL-α-tocopherol. The impact of solubilizing these hydrophobic molecules on the UMG-water phase behavior shows some common features. However, the solubilization of certain molecules, like DL-α-tocopherol, leads to the presence of the reversed micellar cubic phase (space group number 227 and symmetry Fd3m) while the solubilization of others does not. These differences in phase behavior are discussed in terms of physical-chemical characteristics of the added lipid molecule and its interaction with UMG and water. From an applications point of view, phase behavior as a function of the solubilized content of guest molecules (lipid additive in our case) is crucial since macroscopic properties such as molecular release depend strongly on the phase present. The effect of two hydrophilic emulsifiers, used to stabilize the aqueous dispersions of UMG, was studied and compared. Those were Pluronic F127, which is the most commonly used stabilizer for these kinds of inverted type structures, and the partially hydrolyzed emulsifier lecithin (Emultop EP), which is a well accepted food-grade emulsifier. The phase behavior of particles stabilized by the partially hydrolyzed lecithin is similar to that of bulk sample at full hydration, but this emulsifier interacts significantly with the internal structure and affects it much more than F127.

  20. Facilitation of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor transmission in the suprachiasmatic nucleus by aniracetam enhances photic responses of the biological clock in rodents.

    PubMed

    Moriya, Takahiro; Ikeda, Masayuki; Teshima, Koji; Hara, Reiko; Kuriyama, Koji; Yoshioka, Tohru; Allen, Charles N; Shibata, Shigenobu

    2003-05-01

    This study was designed to test whether the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor-facilitating drug, aniracetam, could potentiate photic responses of the biological clock in the suprachiasmatic nucleus (SCN) of rodents. Using the whole-cell patch technique, we first demonstrated that AMPA currents elicited by either local AMPA application or optic chiasm stimulation were augmented by aniracetam in the neurons of the SCN. The AMPA application-elicited increase of intracellular Ca2+ concentration in SCN slices was also enhanced by aniracetam treatment. The systemic injection of aniracetam dose-dependently (10-100 mg/kg) potentiated the phase delay in behavioral rhythm induced by brief light exposure of low intensity (3 lux) but not high intensity (10 or 60 lux) during early subjective night. Under the blockade of NMDA receptors by (+) MK801, aniracetam failed to potentiate a light (3 lux)-induced phase delay in behavioral rhythm. Aniracetam increased the photic induction of c-Fos protein in the SCN that was elicited by low intensity light exposure (3 lux). These results suggest that AMPA receptor-mediated responses facilitated by aniracetam can explain enhanced photic responses of the biological clock in the SCN of rodents.

  1. Electrophoretic serum protein fraction profile during the different physiological phases in Comisana ewes.

    PubMed

    Piccione, G; Alberghina, D; Marafioti, S; Giannetto, C; Casella, S; Assenza, A; Fazio, F

    2012-08-01

    The aim of this study was to evaluate the influence of different physiological phases on serum total proteins and their fractions of ten Comisana ewes housed in Mediterranean area. From each animal, blood samples were collected at different physiological phases: late pregnancy, post-partum, early, mid-, end lactation and dry period. On all samples serum total proteins were determined by the biuret method, and albumin, α-globulins, β(1) -globulins, β(2) -globulins and γ-globulins concentrations were assessed using an automated system. One-way repeated measures analysis of variance was applied to determine the significant effect of different physiological phases on the parameters studied. During the late pregnancy and post-partum, total proteins, β1- and β2-globulins and γ-globulins showed the highest values. Starting from post-partum, α-globulins increased to reach their peaks in mid-lactation. Early lactation was characterized by low γ-globulins values. The increase in serum albumin concentration and the drop in some globulin fractions determined the significant increase in albumin/globulin ratio. The obtained results contributed to improve the knowledge on electrophoretic profile during the different physiological phases in ewes, confirming that pregnancy and lactation periods affect the protein metabolism. Particularly, serum protein fractions pattern could give information about dehydration, plasma volume expansion and hepatic function, which occur during the different physiological phases. Dynamics of the protein profile - from pregnancy to dry period - which are provided by our results, could be considered as guidelines for the management strategies to guarantee the nutritional needs of these animals during the different physiological phases and to avoid a decline of productive performance and consequently an economic loss. © 2011 Blackwell Verlag GmbH.

  2. Fluorescent Approaches to High Throughput Crystallography

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Forsythe, Elizabeth; Achari, Aniruddha

    2006-01-01

    We have shown that by covalently modifying a subpopulation, less than or equal to 1%, of a macromolecule with a fluorescent probe, the labeled material will add to a growing crystal as a microheterogeneous growth unit. Labeling procedures can be readily incorporated into the final stages of purification, and the presence of the probe at low concentrations does not affect the X-ray data quality or the crystallization behavior. The presence of the trace fluorescent label gives a number of advantages when used with high throughput crystallizations. The covalently attached probe will concentrate in the crystal relative to the solution, and under fluorescent illumination crystals show up as bright objects against a dark background. Non-protein structures, such as salt crystals, will not incorporate the probe and will not show up under fluorescent illumination. Brightly fluorescent crystals are readily found against less bright precipitated phases, which under white light illumination may obscure the crystals. Automated image analysis to find crystals should be greatly facilitated, without having to first define crystallization drop boundaries as the protein or protein structures is all that shows up. Fluorescence intensity is a faster search parameter, whether visually or by automated methods, than looking for crystalline features. We are now testing the use of high fluorescence intensity regions, in the absence of clear crystalline features or "hits", as a means for determining potential lead conditions. A working hypothesis is that kinetics leading to non-structured phases may overwhelm and trap more slowly formed ordered assemblies, which subsequently show up as regions of brighter fluorescence intensity. Preliminary experiments with test proteins have resulted in the extraction of a number of crystallization conditions from screening outcomes based solely on the presence of bright fluorescent regions. Subsequent experiments will test this approach using a wider range of proteins. The trace fluorescently labeled crystals will also emit with sufficient intensity to aid in the automation of crystal alignment using relatively low cost optics, further increasing throughput at synchrotrons.

  3. Label-free proteomic analysis of environmental acidification-influenced Streptococcus pyogenes secretome reveals a novel acid-induced protein histidine triad protein A (HtpA) involved in necrotizing fasciitis.

    PubMed

    Wen, Yao-Tseng; Wang, Jie-Siou; Tsai, Shu-Han; Chuan, Chiang-Ni; Wu, Jiunn-Jong; Liao, Pao-Chi

    2014-09-23

    Streptococcus pyogenes is responsible for various diseases. During infection, bacteria must adapt to adverse environments, such as the acidic environment. Acidic stimuli may stimulate S. pyogenes to invade into deeper tissue. However, how this acidic stimulus causes S. pyogenes to manipulate its secretome for facilitating invasion remains unclear. The dynamic label-free LC-MS/MS profiling identified 97 proteins, which are influenced by environmental acidification. Among these, 33 (34%) of the identified proteins were predicted to be extracellular proteins. Interestingly, classical secretory proteins comprise approximately 90% of protein abundance of the secretome in acidic condition at the stationary phase. One acid-induced secreted protein, HtpA, was selected to investigate its role in invasive infection. The mouse infected by the htpA deficient mutant showed lower virulence and smaller lesion area than the wild-type strain. The mutant strain was more efficiently cleared at infected skin than the wild-type strain. Besides, the relative phagocytosis resistance is lower in the mutant strain than in the wild-type strain. These data indicate that a novel acid-induced virulence factor, HtpA, which improves anti-phagocytosis ability for causing necrotizing fasciitis. Our investigation provides vital information for documenting the broad influences and mechanisms underlying the invasive behavior of S. pyogenes in an acidified environment. The acidified infected environment may facilitate S. pyogenes invasion from the mucosa to the deeper subepithelial tissue. The acid stimuli have been considered to affect the complex regulatory network of S. pyogenes for causing severe infections. Many of secreted virulence factors influenced by acidified environment may also play a crucial role in pathogenesis of invasive disease. To investigate temporal secretome changes under acidic environment, a comparative secretomics approach using label-free LC-MS/MS was undertaken to analyze the secretome in acidic and neutral conditions. The dynamic label-free LC-MS/MS profiling and secretome prediction were used in this study for mining acid-influenced secreted proteins. We identified 33 acid-influenced secreted proteins in this study. Among these proteins, a novel acid-induced virulence factor, HtpA, was demonstrated to improve anti-phagocytosis ability for causing necrotizing fasciitis. In addition, our study demonstrates the first evidence that acidic stimuli and growth-phase cues are crucial for classical protein secretion in S. pyogenes. Copyright © 2014. Published by Elsevier B.V.

  4. Cell cycle-dependent protein fingerprint from a single cancer cell: image cytometry coupled with single-cell capillary sieving electrophoresis.

    PubMed

    Hu, Shen; Le, Zhang; Krylov, Sergey; Dovichi, Norman J

    2003-07-15

    Study of cell cycle-dependent protein expression is important in oncology, stem cell research, and developmental biology. In this paper, we report the first protein fingerprint from a single cell with known phase in the cell cycle. To determine that phase, we treated HT-29 colon cancer cells with Hoescht 33342, a vital nuclear stain. A microscope was used to measure the fluorescence intensity from one treated cell; in this form of image cytometry, the fluorescence intensity is proportional to the cell's DNA content, which varies in a predictable fashion during the cell cycle. To generate the protein fingerprint, the cell was aspirated into the separation capillary and lysed. Proteins were fluorescently labeled with 3-(2-furoylquinoline-2-carboxaldehyde, separated by capillary sieving electrophoresis, and detected by laser-induced fluorescence. This form of electrophoresis is the capillary version of SDS-PAGE. The single-cell electropherogram partially resolved approximately 25 components in a 30-min separation, and the dynamic range of the detector exceeded 5000. There was a large cell-to-cell variation in protein expression, averaging 40% relative standard deviation across the electropherogram. The dominant source of variation was the phase of the cell in the cell cycle; on average, approximately 60% of the cell-to-cell variance in protein expression was associated with the cell cycle. Cells in the G1 and G2/M phases of the cell cycle had 27 and 21% relative standard deviations in protein expression, respectively. Cells in the G2/M phase generated signals that were twice the amplitude of the signals generated by G1 phase cells, as expected for cells that are soon to divide into two daughter cells. When electropherograms were normalized to total protein content, the expression of only one component was dependent on cell cycle at the 99% confidence limit. That protein is tentatively identified as cytokeratin 18 in a companion paper.

  5. [Protein -based diet with respect to the principles of rational nutrition. Menus analysis].

    PubMed

    Szczuko, Małgorzata; Pieszak, Natalia; Jamioł -Milc, Dominika; Stachowska, Ewa

    A diet high in protein and low in carbohydrates has four phases, first of them being the attack phase, which eliminates carbohydrates to the highest extent. In subsequent phases the consumption of carbohydrates is gradually allowed but their ratio is limited. The aim of performed studies was to analyze the metabolic effects of protein -based diet. The hypothesis – the analysis based on the composition of the diets should draw the attention to health risks being not only related to too high consumption of protein. In the study, 40 diets were composed according to the objectives of high protein diet – 10 diets for each of the four phases. Next, the diets were introduced into dietetic program Dietician 2 recommended by the National Food and Nutrition Institute in Poland, and the amounts of nutrients supplied with the diets were calculated. Those amounts were compared to the currently recommended dietary allowances in Poland. Based on too high consumption of some nutrients and the deficiency of others in the diets, the highest detrimental effect was determined for the first two phases of the diet. In all four phases of the diet, too high consumption of protein, UFA and cholesterol was determined, which amounted to 148.8–160.5 g/day, 12.5–16.2 g/day and 467.7–488.7 mg/day, respectively. Simultaneously, too low average consumption was noted in case of energy (1131–1690 kcal), carbohydrates (58.2–149.4 g) and dietary fiber (3.3–28.7 g) in all phases of the diet. Additionally, the deficiency in vitamin E (2.69–7.21 mg) was observed in the first three phases of the diet, and thiamin in the first two phases (0.72–1.02 mg). The most deficient phase of the diet was the first phase – the attack phase, where the deficiency also concerned folacin (154.4 mg/day), vitamin C (6.14 mg), potassium (2947.7 mg), iron (7.19 mg), copper (0.59 mg) and magnesium (294.8 mg). The main causes of body mass reduction in high protein diet are caloric restrictions in all diet phases. The analyses of diets compositions determined the potential negative effect of using this diet in case of people with predisposition to kidney diseases, gout, cardiovascular diseases, anemia and erythropoiesis disorders. The most detrimental was the first phase of the diet, which entirely eliminates carbohydrate products.

  6. Brittle behavior of ceramic matrix composites made of 2 different phases

    NASA Astrophysics Data System (ADS)

    Sadowski, Tomasz; Craciun, Eduard; Marsavina, Liviu

    2018-02-01

    Brittle behavior of Ceramic matrix Composites (CMCs) results from overall response to applied loads due to complex of their internal microstructure. The CMCs materials are composed of mixtures of phases, some amount of porosity and technological defects. The phases can exhibit purely elastic behavior or elastic-plastic one under high level of loading. The crucial point in description of their behavior is correlation of microcracking processes with the type of loading, i.e. tensile or compressive. This distinction in the material behavior is typical for so called brittle materials. In this paper we compared both microcracking processes for the above 2 characteristic loading paths.

  7. A bioinspired elastin-based protein for a cytocompatible underwater adhesive.

    PubMed

    Brennan, M Jane; Kilbride, Bridget F; Wilker, Jonathan J; Liu, Julie C

    2017-04-01

    The development of adhesives that can be applied and create strong bonds underwater is a significant challenge for materials engineering. When the adhesive is intended for biomedical applications, further criteria, such as biocompatibility, must be met. Current biomedical adhesive technologies do not meet these needs. In response, we designed a bioinspired protein system that shows promise to achieve biocompatible underwater adhesion coupled with environmentally responsive behavior that is "smart" - that is, it can be tuned to suit a specific application. The material, ELY 16 , is constructed from an elastin-like polypeptide (ELP) that can be produced in high yields from Escherichia coli and can coacervate in response to environmental factors such as temperature, pH, and salinity. To confer wet adhesion, we utilized design principles from marine organisms such as mussels and sandcastle worms. When expressed, ELY 16 is rich in tyrosine. Upon modification with the tyrosinase enzyme to form mELY 16 , the tyrosine residues are converted to 3,4-dihydroxyphenylalanine (DOPA). Both ELY 16 and mELY 16 exhibit cytocompatibility and significant dry adhesion strength (>2 MPa). Modification with DOPA increases protein adsorption to glass and provides moderate adhesion strength (∼240 kPa) in a highly humid environment. Furthermore, this ELP exhibits a tunable phase transition behavior that can be formulated to coacervate in physiological conditions and provides a convenient mechanism for application underwater. Finally, mELY 16 possesses significantly higher adhesion strength in dry, humid, and underwater environments compared with a commercially available fibrin sealant. To our knowledge, mELY 16 provides the strongest bonds of any rationally designed protein when used completely underwater, and its high yields make it more viable for commercial application compared to natural adhesive proteins. In conclusion, this ELP shows great potential to be a new "smart" underwater adhesive. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Liquid Crystalline Polymers Containing Heterocycloalkane Mesogens. 2. Side-Chain Liquid Crystalline Polysiloxanes Containing 2,5-Disubstituted-1,3-Dioxane Mesogens.

    DTIC Science & Technology

    1986-10-01

    units and an aliphatic spacer containing eleven and respectively, ten methylene units were synthesized. Their phase behavior was studied by differential...scanning calorimetry and optical polarization microscopy, and compared with the phase behavior of the polysiloxanes and copolysiloxanes containing 4...containing eleven and respectively, ten methylene -units were synthesized. Their phase behavior was studied by differential * scanning calorimetry

  9. Novel Displacement Agents for Aqueous 2-Phase Extraction Can Be Estimated Based on Hybrid Shortcut Calculations.

    PubMed

    Kress, Christian; Sadowski, Gabriele; Brandenbusch, Christoph

    2016-10-01

    The purification of therapeutic proteins is a challenging task with immediate need for optimization. Besides other techniques, aqueous 2-phase extraction (ATPE) of proteins has been shown to be a promising alternative to cost-intensive state-of-the-art chromatographic protein purification. Most likely, to enable a selective extraction, protein partitioning has to be influenced using a displacement agent to isolate the target protein from the impurities. In this work, a new displacement agent (lithium bromide [LiBr]) allowing for the selective separation of the target protein IgG from human serum albumin (represents the impurity) within a citrate-polyethylene glycol (PEG) ATPS is presented. In order to characterize the displacement suitability of LiBr on IgG, the mutual influence of LiBr and the phase formers on the aqueous 2-phase system (ATPS) and partitioning is investigated. Using osmotic virial coefficients (B22 and B23) accessible by composition gradient multiangle light-scattering measurements, the precipitating effect of LiBr on both proteins and an estimation of both protein partition coefficients is estimated. The stabilizing effect of LiBr on both proteins was estimated based on B22 and experimentally validated within the citrate-PEG ATPS. Our approach contributes to an efficient implementation of ATPE within the downstream processing development of therapeutic proteins. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  10. A Simplified Micromechanical Modeling Approach to Predict the Tensile Flow Curve Behavior of Dual-Phase Steels

    NASA Astrophysics Data System (ADS)

    Nanda, Tarun; Kumar, B. Ravi; Singh, Vishal

    2017-11-01

    Micromechanical modeling is used to predict material's tensile flow curve behavior based on microstructural characteristics. This research develops a simplified micromechanical modeling approach for predicting flow curve behavior of dual-phase steels. The existing literature reports on two broad approaches for determining tensile flow curve of these steels. The modeling approach developed in this work attempts to overcome specific limitations of the existing two approaches. This approach combines dislocation-based strain-hardening method with rule of mixtures. In the first step of modeling, `dislocation-based strain-hardening method' was employed to predict tensile behavior of individual phases of ferrite and martensite. In the second step, the individual flow curves were combined using `rule of mixtures,' to obtain the composite dual-phase flow behavior. To check accuracy of proposed model, four distinct dual-phase microstructures comprising of different ferrite grain size, martensite fraction, and carbon content in martensite were processed by annealing experiments. The true stress-strain curves for various microstructures were predicted with the newly developed micromechanical model. The results of micromechanical model matched closely with those of actual tensile tests. Thus, this micromechanical modeling approach can be used to predict and optimize the tensile flow behavior of dual-phase steels.

  11. Advances in organic polymer-based monolithic column technology for high-resolution liquid chromatography-mass spectrometry profiling of antibodies, intact proteins, oligonucleotides, and peptides.

    PubMed

    Eeltink, Sebastiaan; Wouters, Sam; Dores-Sousa, José Luís; Svec, Frantisek

    2017-05-19

    This review focuses on the preparation of organic polymer-based monolithic stationary phases and their application in the separation of biomolecules, including antibodies, intact proteins and protein isoforms, oligonucleotides, and protein digests. Column and material properties, and the optimization of the macropore structure towards kinetic performance are also discussed. State-of-the-art liquid chromatography-mass spectrometry biomolecule separations are reviewed and practical aspects such as ion-pairing agent selection and carryover are presented. Finally, advances in comprehensive two-dimensional LC separations using monolithic columns, in particular ion-exchange×reversed-phase and reversed-phase×reversed-phase LC separations conducted at high and low pH, are shown. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Late Protein Synthesis-Dependent Phases in CTA Long-Term Memory: BDNF Requirement

    PubMed Central

    Martínez-Moreno, Araceli; Rodríguez-Durán, Luis F.; Escobar, Martha L.

    2011-01-01

    It has been proposed that long-term memory (LTM) persistence requires a late protein synthesis-dependent phase, even many hours after memory acquisition. Brain-derived neurotrophic factor (BDNF) is an essential protein synthesis product that has emerged as one of the most potent molecular mediators for long-term synaptic plasticity. Studies in the rat hippocampus have been shown that BDNF is capable to rescue the late-phase of long-term potentiation as well as the hippocampus-related LTM when protein synthesis was inhibited. Our previous studies on the insular cortex (IC), a region of the temporal cortex implicated in the acquisition and storage of conditioned taste aversion (CTA), have demonstrated that intracortical delivery of BDNF reverses the deficit in CTA memory caused by the inhibition of IC protein synthesis due to anisomycin administration during early acquisition. In this work, we first analyze whether CTA memory storage is protein synthesis-dependent in different time windows. We observed that CTA memory become sensible to protein synthesis inhibition 5 and 7 h after acquisition. Then, we explore the effect of BDNF delivery (2 μg/2 μl per side) in the IC during those late protein synthesis-dependent phases. Our results show that BDNF reverses the CTA memory deficit produced by protein synthesis inhibition in both phases. These findings support the notion that recurrent rounds of consolidation-like events take place in the neocortex for maintenance of CTA memory trace and that BDNF is an essential component of these processes. PMID:21960964

  13. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Statistical interior properties of globular proteins

    NASA Astrophysics Data System (ADS)

    Jiang, Zhou-Ting; Zhang, Lin-Xi; Sun, Ting-Ting; Wu, Tai-Quan

    2009-10-01

    The character of forming long-range contacts affects the three-dimensional structure of globular proteins deeply. As the different ability to form long-range contacts between 20 types of amino acids and 4 categories of globular proteins, the statistical properties are thoroughly discussed in this paper. Two parameters NC and ND are defined to confine the valid residues in detail. The relationship between hydrophobicity scales and valid residue percentage of each amino acid is given in the present work and the linear functions are shown in our statistical results. It is concluded that the hydrophobicity scale defined by chemical derivatives of the amino acids and nonpolar phase of large unilamellar vesicle membranes is the most effective technique to characterise the hydrophobic behavior of amino acid residues. Meanwhile, residue percentage Pi and sequential residue length Li of a certain protein i are calculated under different conditions. The statistical results show that the average value of Pi as well as Li of all-α proteins has a minimum among these 4 classes of globular proteins, indicating that all-α proteins are hardly capable of forming long-range contacts one by one along their linear amino acid sequences. All-β proteins have a higher tendency to construct long-range contacts along their primary sequences related to the secondary configurations, i.e. parallel and anti-parallel configurations of β sheets. The investigation of the interior properties of globular proteins give us the connection between the three-dimensional structure and its primary sequence data or secondary configurations, and help us to understand the structure of protein and its folding process well.

  14. Behavioral indicators of ovarian phase in white-faced capuchins (Cebus capucinus).

    PubMed

    Carnegie, Sarah D; Fedigan, Linda M; Ziegler, Toni E

    2005-09-01

    In many primate species, conspicuous behavioral and/or morphological changes are indicators of the fertile phase of the female cycle. However, several primate species, such as the white-faced capuchin, lack these cues. This is referred to as "concealed ovulation," and is argued to be a reproductive strategy that confuses paternity and lowers the risk of infanticide. We studied 10 adult female white-faced capuchins in Santa Rosa National Park, Costa Rica, from January to June 2002. We determined their ovarian cycling patterns by analyzing fecal ovarian hormones, and compared simultaneously collected behavioral data to determine which, if any, cues females use to signal their fertile phases. We found that four females cycled during the study period but ceased to cycle without becoming pregnant. We considered several explanations for the lack of conception during our study, including reproductive seasonality. We found that female C. capucinus showed only small increases in rates of affiliative/proceptive behaviors directed toward adult males during their periovulatory phases. The best indicator of cycle phase was a significant increase in male affiliative behaviors (e.g., following and grooming bouts) and sexual behaviors (e.g., copulations and courtship displays) directed toward females during the periovulatory phase compared to the nonovulatory phase. Our finding that females exhibit little proceptive behavior, but that copulations and male courtship are nonetheless concentrated in periovulatory phases suggests that even though females do not provide behavioral and morphological cues to ovulation, males are still able to detect it. Infanticide occurs with some frequency in these monkeys, and there is evidence for postconceptive mating as a female strategy to lower risk of infanticide via paternity confusion. However, despite this occurrence of nonconceptive mating and the absence of female cues to ovulation, truly concealed ovulation does not appear to be characteristic of this study population of white-faced capuchins.

  15. Phase-field modeling of diffusional phase behaviors of solid surfaces: A case study of phase-separating Li XFePO 4 electrode particles

    DOE PAGES

    Heo, Tae Wook; Chen, Long-Qing; Wood, Brandon C.

    2015-04-08

    In this paper, we present a comprehensive phase-field model for simulating diffusion-mediated kinetic phase behaviors near the surface of a solid particle. The model incorporates elastic inhomogeneity and anisotropy, diffusion mobility anisotropy, interfacial energy anisotropy, and Cahn–Hilliard diffusion kinetics. The free energy density function is formulated based on the regular solution model taking into account the possible solute-surface interaction near the surface. The coherency strain energy is computed using the Fourier-spectral iterative-perturbation method due to the strong elastic inhomogeneity with a zero surface traction boundary condition. Employing a phase-separating Li XFePO 4 electrode particle for Li-ion batteries as a modelmore » system, we perform parametric three-dimensional computer simulations. The model permits the observation of surface phase behaviors that are different from the bulk counterpart. For instance, it reproduces the theoretically well-established surface modes of spinodal decomposition of an unstable solid solution: the surface mode of coherent spinodal decomposition and the surface-directed spinodal decomposition mode. We systematically investigate the influences of major factors on the kinetic surface phase behaviors during the diffusional process. Finally, our simulation study provides insights for tailoring the internal phase microstructure of a particle by controlling the surface phase morphology.« less

  16. The Role of the Replacement Behavior in Function-Based Intervention

    ERIC Educational Resources Information Center

    Reeves, Linda M.; Ferro, Jolenea B.; Umbreit, John; Liaupsin, Carl J.

    2017-01-01

    Three students with autism spectrum disorder (ASD) who displayed off-task behavior participated in a two-phase study. In Phase 1, a functional behavioral assessment (FBA) was conducted for each student. In addition, an assessment of each student's ability to perform the replacement behavior identified that none of the participants was able to do…

  17. Effect of divalent ions on the optical emission behavior of protein thin films

    NASA Astrophysics Data System (ADS)

    Bhowal, Ashim Chandra; Kundu, Sarathi

    2016-05-01

    Photoluminescence behaviors of proteinthin film, bovine serum albumin (BSA) have been studied in the presence of three divalent ions (Mg2+, Ca2+ and Ba2+) at different temperatures using fluorescence spectroscopy. Film thickness and morphology have been studied using atomic force microscopy. Variation of different physicochemical parameters like temperature, solvent polarity, pH, ionic strength, substrate binding etc. can make conformational changes in the protein structure and hence influences the emission behavior.In thin film conformation of BSA, dynamic quenching behavior has beenidentified in the presence of all the three divalent ions at pH≈ 5.5. Depending upon the charge density of the divalent ions interaction with protein molecules modifies and as a result quenching efficiency varies. Also after heat treatment, conformation of the protein molecules changes and as a result the quenching efficiency enhances than that of the unheated films. Studies on such protein-ion interactions and conformational variation may explore various functions of protein when it will adsorb on soft surfaces like membranes, vesicles, etc.

  18. Equilibrium-phase MR angiography: Comparison of unspecific extracellular and protein-binding gadolinium-based contrast media with respect to image quality.

    PubMed

    Erb-Eigner, Katharina; Taupitz, Matthias; Asbach, Patrick

    2016-01-01

    The purpose of this study was to compare contrast and image quality of whole-body equilibrium-phase high-spatial-resolution MR angiography using a non-protein-binding unspecific extracellular gadolinium-based contrast medium with that of two contrast media with different protein-binding properties. 45 patients were examined using either 15 mL of gadobutrol (non-protein-binding, n = 15), 32 mL of gadobenate dimeglumine (weakly protein binding, n = 15) or 11 mL gadofosveset trisodium (protein binding, n = 15) followed by equilibrium-phase high-spatial-resolution MR-angiography of four consecutive anatomic regions. The time elapsed between the contrast injection and the beginning of the equilibrium-phase image acquisition in the respective region was measured and was up to 21 min. Signal intensity was measured in two vessels per region and in muscle tissue. Relative contrast (RC) values were calculated. Vessel contrast, artifacts and image quality were rated by two radiologists in consensus on a five-point scale. Compared with gadobutrol, gadofosveset trisodium revealed significantly higher RC values only when acquired later than 15 min after bolus injection. Otherwise, no significant differences between the three contrast media were found regarding vascular contrast and image quality. Equilibrium-phase high-spatial-resolution MR-angiography using a weakly protein-binding or even non-protein-binding contrast medium is equivalent to using a stronger protein-binding contrast medium when image acquisition is within the first 15 min after contrast injection, and allows depiction of the vasculature with high contrast and image quality. The protein-binding contrast medium was superior for imaging only later than 15 min after contrast medium injection. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Monitoring acute phase proteins in retrovirus infected cats undergoing feline interferon-ω therapy.

    PubMed

    Leal, R O; Gil, S; Sepúlveda, N; McGahie, D; Duarte, A; Niza, M M R E; Tavares, L

    2014-01-01

    Recombinant feline interferon-ω therapy is an immunomodulator currently used in the treatment of different retroviral diseases including feline immune deficiency virus and feline leukaemia virus. Although its mechanism of action remains unclear, this drug appears to potentiate the innate response. Acute phase proteins are one of the key components of innate immunity and studies describing their use as a monitoring tool for the immune system in animals undergoing interferon-ω therapy are lacking. This study aimed to determine whether interferon-ω therapy influences acute phase protein concentrations namely serum amyloid-A, α-1-glycoprotein and C-reactive protein. A single-arm study was performed using 16 cats, living in an animal shelter, naturally infected with retroviruses and subjected to the interferon-ω therapy licensed protocol. Samples were collected before (D0), during (D10 and D30) and after therapy (D65). Serum amyloid-A and C-reactive protein were measured by specific enzyme-linked immunosorbent assay kits and α-1-glycoprotein by single radial immunodiffusion. All the acute phase proteins significantly increased in cats undergoing interferon-ω therapy (D0/D65: P<0·05) CLINICAL SIGNIFICANCE: Acute phase proteins appear to be reasonable predictors of innate-immune stimulation and may be useful in the individual monitoring of naturally retroviral infected cats undergoing interferon-ω therapy. © 2013 British Small Animal Veterinary Association.

  20. Phase transformation and deformation behavior of NiTi-Nb eutectic joined NiTi wires

    PubMed Central

    Wang, Liqiang; Wang, Cong; Zhang, Lai-Chang; Chen, Liangyu; Lu, Weijie; Zhang, Di

    2016-01-01

    NiTi wires were brazed together via eutectic reaction between NiTi and Nb powder deposited at the wire contact region. Phase transformation and deformation behavior of the NiTi-Nb eutectic microstructure were investigated using transmission electron microscopy (TEM) and cyclic loading-unloading tests. Results show that R phase and B19′ martensite transformation are induced by plastic deformation. R phase transformation, which significantly contributes to superelasticity, preferentially occurs at the interfaces between NiTi and eutectic region. Round-shaped Nb-rich phase with rod-like and lamellar-type eutectics are observed in eutectic regions. These phases appear to affect the deformation behavior of the brazed NiTi-Nb region via five distinct stages in stress-strain curves: (I) R phase reorientation, (II) R phase transformation from parent phase, (III) elastic deformation of reoriented martensite accompanied by the plastic deformation of Nb-rich phase and lamellar NiTi-Nb eutectic, (IV) B19′ martensitic transformation, and (V) plastic deformation of the specimen. PMID:27049025

  1. Wide-pore silica-based ether-bonded phases for separation of proteins by high-performance hydrophobic-interaction and size-exclusion chromatography.

    PubMed

    Miller, N T; Feibush, B; Karger, B L

    1984-12-21

    This paper examines the use of wide-pore silica-based hydrophilic ether-bonded phases for the chromatographic separation of proteins under mild elution conditions. In particular, ether phases of the following structure identical to Si-(CH2)3-O-(CH2-CH2-O)n-R, where n = 1, 2, 3 and R = methyl, ethyl or n-butyl, have been prepared. These phases can be employed either in high-performance hydrophobic-interaction or size-exclusion chromatography, depending on mobile phase conditions. In the hydrophobic-interaction mode, a gradient of decreasing salt concentration, e.g., from 3 M ammonium sulfate (pH 6.0, 25 degrees C), yields sharp peaks with high mass recovery of active proteins. In this mode, retention can be controlled by salt type and concentration, as well as by column temperature. In the size-exclusion mode, use of medium ionic strength, e.g., 0.5 M ammonium acetate (pH 6.0) yields linear calibration of log (MW[eta]) vs. retention volume. Even at 0.05 M salt concentration, no stationary phase charge effects on protein elution are observed. These bonded-phase columns exhibit good column-to-column reproducibility and constant retention for at least five months of continual use. Examples of the high-performance separation of proteins in both modes are illustrated.

  2. Increased KPI containing amyloid precursor protein in experimental autoimmune encephalomyelitis brains.

    PubMed

    Beilin, Orit; Karussis, Dimitrios M; Korczyn, Amos D; Gurwitz, David; Aronovich, Ramona; Mizrachi-Kol, Rachel; Chapman, Joab

    2007-04-16

    Amyloid precursor protein can be translated from three alternatively spliced mRNAs. We measured levels of amyloid precursor protein isoforms containing the Kunitz protease inhibitor domain (KPIAPP), and amyloid precursor protein without the Kunitz protease inhibitor domain (KPIAPP) in brain homogenates of acute experimental autoimmune encephalomyelitis mice. At the preclinical phase of the disease, both KPIAPP and KPIAPP levels were significantly higher in homogenates from brains of autoimmune encephalomyelitis mice, whereas at the acute phase of the disease only KPIAPP remained significantly elevated compared with controls. At the recovery phase, no differences were observed between the groups. The early and isoform-specific elevation of KPIAPP in autoimmune encephalomyelitis mice suggests a possible role for amyloid precursor protein in the immune response mediating the disease.

  3. Phase behavior of a family of truncated hard cubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gantapara, Anjan P., E-mail: A.P.Gantapara@uu.nl; Dijkstra, Marjolein, E-mail: M.Dijkstra1@uu.nl; Graaf, Joost de

    2015-02-07

    In continuation of our work in Gantapara et al., [Phys. Rev. Lett. 111, 015501 (2013)], we investigate here the thermodynamic phase behavior of a family of truncated hard cubes, for which the shape evolves smoothly from a cube via a cuboctahedron to an octahedron. We used Monte Carlo simulations and free-energy calculations to establish the full phase diagram. This phase diagram exhibits a remarkable richness in crystal and mesophase structures, depending sensitively on the precise particle shape. In addition, we examined in detail the nature of the plastic crystal (rotator) phases that appear for intermediate densities and levels of truncation.more » Our results allow us to probe the relation between phase behavior and building-block shape and to further the understanding of rotator phases. Furthermore, the phase diagram presented here should prove instrumental for guiding future experimental studies on similarly shaped nanoparticles and the creation of new materials.« less

  4. Proteomic analysis of growth phase-dependent expression of Legionella pneumophila proteins which involves regulation of bacterial virulence traits.

    PubMed

    Hayashi, Tsuyoshi; Nakamichi, Masahiro; Naitou, Hirotaka; Ohashi, Norio; Imai, Yasuyuki; Miyake, Masaki

    2010-07-22

    Legionella pneumophila, which is a causative pathogen of Legionnaires' disease, expresses its virulent traits in response to growth conditions. In particular, it is known to become virulent at a post-exponential phase in vitro culture. In this study, we performed a proteomic analysis of differences in expression between the exponential phase and post-exponential phase to identify candidates associated with L. pneumophila virulence using 2-Dimentional Fluorescence Difference Gel Electrophoresis (2D-DIGE) combined with Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry (MALDI-TOF-MS). Of 68 identified proteins that significantly differed in expression between the two growth phases, 64 were up-regulated at a post-exponential phase. The up-regulated proteins included enzymes related to glycolysis, ketone body biogenesis and poly-3-hydroxybutyrate (PHB) biogenesis, suggesting that L. pneumophila may utilize sugars and lipids as energy sources, when amino acids become scarce. Proteins related to motility (flagella components and twitching motility-associated proteins) were also up-regulated, predicting that they enhance infectivity of the bacteria in host cells under certain conditions. Furthermore, 9 up-regulated proteins of unknown function were found. Two of them were identified as novel bacterial factors associated with hemolysis of sheep red blood cells (SRBCs). Another 2 were found to be translocated into macrophages via the Icm/Dot type IV secretion apparatus as effector candidates in a reporter assay with Bordetella pertussis adenylate cyclase. The study will be helpful for virulent analysis of L. pneumophila from the viewpoint of physiological or metabolic modulation dependent on growth phase.

  5. 2-Methyl-6-(phenylethynyl) pyridine (MPEP) reverses maze learning and PSD-95 deficits in Fmr1 knock-out mice.

    PubMed

    Gandhi, Réno M; Kogan, Cary S; Messier, Claude

    2014-01-01

    Fragile X Syndrome (FXS) is caused by the lack of expression of the fragile X mental retardation protein (FMRP), which results in intellectual disability and other debilitating symptoms including impairment of visual-spatial functioning. FXS is the only single-gene disorder that is highly co-morbid with autism spectrum disorder and can therefore provide insight into its pathophysiology. Lack of FMRP results in altered group I metabotropic glutamate receptor (mGluR) signaling, which is a target for putative treatments. The Hebb-Williams (H-W) mazes are a set of increasingly complex spatial navigation problems that depend on intact hippocampal and thus mGluR-5 functioning. In the present investigation, we examined whether an antagonist of mGluR-5 would reverse previously described behavioral deficits in fragile X mental retardation 1 knock-out (Fmr1 KO) mice. Mice were trained on a subset of the H-W mazes and then treated with either 20 mg/kg of an mGluR-5 antagonist, 2-Methyl-6-(phenylethynyl) pyridine (MPEP; n = 11) or an equivalent dose of saline (n = 11) prior to running test mazes. Latency and errors were dependent variables recorded during the test phase. Immediately after completing each test, marble-burying behavior was assessed, which confirmed that the drug treatment was pharmacologically active during maze learning. Although latency was not statistically different between the groups, MPEP treated Fmr1 KO mice made significantly fewer errors on mazes deemed more difficult suggesting a reversal of the behavioral deficit. MPEP treated mice were also less perseverative and impulsive when navigating mazes. Furthermore, MPEP treatment reversed post-synaptic density-95 (PSD-95) protein deficits in Fmr1 KO treated mice, whereas levels of a control protein (β-tubulin) remained unchanged. These data further validate MPEP as a potentially beneficial treatment for FXS. Our findings also suggest that adapted H-W mazes may be a useful tool to document alterations in behavioral functioning following pharmacological intervention in FXS.

  6. Tuning of electrostatic vs. depletion interaction in deciding the phase behavior of nanoparticle-polymer system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Sugam, E-mail: sugam@barc.gov.in; Aswal, V. K.; Kohlbrecher, J.

    2015-06-24

    Nanoparticle-polymer system interestingly show a re-entrant phase behavior where charge stabilized silica nanoparticles (phase I) undergo particle clustering (phase II) and then back to individual particles (phase I) as a function of polymer concentration. Such phase behavior arises as a result of dominance of various interactions (i) nanoparticle-nanoparticle electrostatic repulsion (ii) polymer induced attractive depletion between nanoparticles and (iii) polymer-polymer repulsion, at different concentration regimes. Small-angle neutron scattering (SANS) has been used to study the evolution of interaction during this re-entrant phase behavior of nanoparticles by contrast-marching the polymer. The SANS data have been modeled using a two-Yukawa potential accountingmore » for both attractive and repulsive parts of the interaction between nanoparticles. The degree of both of these parts has been separately tuned by varying the polymer concentration and ionic strength of the solution. Both of these parts are found to have long-range nature. At low polymer concentrations, the electrostatic repulsion dominates over the depletion attraction. The magnitude and the range of the depletion interaction increase with the polymer concentration leading to nanoparticle clustering. At higher polymer concentrations, the increased polymer-polymer repulsion reduces the strength of depletion leading to re-entrant phase behavior. The clusters formed under depletion attraction are found to have surface fractal morphology.« less

  7. Regional distribution and subcellular associations of Type II calcium and calmodulin-dependent protein kinase in rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erondu, N.E.

    1986-01-01

    Four monoclonal antibodies generated against the Type II CaM kinase have been characterized. Two of these antibodies were used to confirm that both alpha and beta subunits were part of the holoenzyme complex. I also developed liquid phase and solid phase radioimmunoassays for the kinase. With the solid phase radioimmunoassay, the distribution of the kinase in rat brain was examined. This study revealed that the concentration of the kinase varies markedly in different brain regions. It is most highly concentrated in the telencephalon where it comprises approximately 2% of total hippocampal protein, 1.3% of cortical protein and 0.7% of striatalmore » protein. It is less concentrated in lower brain regions ranging from 0.3% of hypothalamic protein to 0.1% of protein in the pons/medulla.« less

  8. Solid-phase assays for small molecule screening using sol-gel entrapped proteins.

    PubMed

    Lebert, Julie M; Forsberg, Erica M; Brennan, John D

    2008-04-01

    With compound libraries exceeding one million compounds, the ability to quickly and effectively screen these compounds against relevant pharmaceutical targets has become crucial. Solid-phase assays present several advantages over solution-based methods. For example, a higher degree of miniaturization can be achieved, functional- and affinity-based studies are possible, and a variety of detection methods can be used. Unfortunately, most protein immobilization methods are either too harsh or require recombinant proteins and thus are not amenable to delicate proteins such as kinases and membrane-bound receptors. Sol-gel encapsulation of proteins in an inorganic silica matrix has emerged as a novel solid-phase assay platform. In this minireview, we discuss the development of sol-gel derived protein microarrays and sol-gel based monolithic bioaffinity columns for the high-throughput screening of small molecule libraries and mixtures.

  9. Behavioral Momentum Theory Fails to Account for the Effects of Reinforcement Rate on Resurgence

    PubMed Central

    Craig, Andrew R.; Shahan, Timothy A.

    2017-01-01

    The behavioral-momentum model of resurgence predicts reinforcer rates within a resurgence preparation should have three effects on target behavior. First, higher reinforcer rates in baseline (Phase 1) produce more persistent target behavior during extinction plus alternative reinforcement. Second, higher rate alternative reinforcement during Phase 2 generates greater disruption of target responding during extinction. Finally, higher rates of either reinforcement source should produce greater responding when alternative reinforcement is suspended in Phase 3. Recent empirical reports have produced mixed results in terms of these predictions. Thus, the present experiment further examined reinforcer-rate effects on persistence and resurgence. Rats pressed target levers for high-rate or low-rate variable-interval food during Phase 1. In Phase 2, target-lever pressing was extinguished, an alternative nose-poke became available, and nose-poking produced either high-rate variable-interval, low-rate variable-interval, or no (an extinction control) alternative reinforcement. Alternative reinforcement was suspended in Phase 3. For groups that received no alternative reinforcement, target-lever pressing was less persistent following high-rate than low-rate Phase-1 reinforcement. Target behavior was more persistent with low-rate alternative reinforcement than with high-rate alternative reinforcement or extinction alone. Finally, no differences in Phase-3 responding were observed for groups that received either high-rate or low-rate alternative reinforcement, and resurgence occurred only following high-rate alternative reinforcement. These findings are inconsistent with the momentum-based model of resurgence. We conclude this model mischaracterizes the effects of rein-forcer rates on persistence and resurgence of operant behavior. PMID:27193242

  10. Specific Adhesion of Lipid Membranes Can Simultaneously Produce Two Types of Lipid and Protein Heterogeneities

    NASA Astrophysics Data System (ADS)

    Shindell, Orrin; Micah, Natalie; Ritzer, Max; Gordon, Vernita

    2015-03-01

    Living cells adhere to one another and their environment. Adhesion is associated with re-organization of the lipid and protein components of the cell membrane. The resulting heterogeneities are functional structures involved in biological processes. We use artificial lipid membranes that contain a single type of binding protein. Before adhesion, the lipid, protein, and dye components in the membrane are well-mixed and constitute a single disordered-liquid phase (Ld) . After adhesion, two distinct types of heterogeneities coexist in the adhesion zone: a central domain of ordered lipid phase that excludes both binding proteins and membrane dye, and a peripheral domain of disordered lipid phase that is densely packed with adhesion proteins and enriched in membrane dye relative to the non-adhered portion of the vesicle. Thus, we show that adhesion that is mediated by only one type of protein can organize the lipid and protein components of the membranes into heterogeneities that resemble those found in biology, for example the immune synapse.

  11. Reprioritization of hepatic plasma protein release in trauma and sepsis.

    PubMed

    Sganga, G; Siegel, J H; Brown, G; Coleman, B; Wiles, C E; Belzberg, H; Wedel, S; Placko, R

    1985-02-01

    We studied the temporal pattern of seven hepatic synthesized plasma proteins in 26 severely injured patients beginning in the immediate posttrauma period. Clinical sepsis developed in ten patients between three and eight days after injury, and 16 patients had nonseptic courses. In the initial five days after injury, except for albumin, all acute-phase protein levels rose. However, if sepsis developed, C-reactive protein, fibrinogen, ceruloplasmin, and alpha 1-antitrypsin levels continued to be elevated after the initial five posttrauma days, while transferrin, albumin, and alpha 2-macroglobulin levels fell. This differential response became more extreme as sepsis progressed. Covariance analysis of the regression of the five true acute-phase hepatic proteins on C-reactive protein showed that, when sepsis occurred after major traumatic injury, the C-reactive protein rise was associated with a significant reprioritization of hepatic acute-phase plasma protein release. This reprioritization response seems to be both a predictor of sepsis as well as a measure of the adequacy of the host response to trauma and sepsis.

  12. Nucleation of Iron Oxide Nanoparticles Mediated by Mms6 Protein in Situ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashyap, Sanjay; Woehl, Taylor J; Liu, Xunpei

    2014-09-23

    Biomineralization proteins are widely used as templating agents in biomimetic synthesis of a variety of organic–inorganic nanostructures. However, the role of the protein in controlling the nucleation and growth of biomimetic particles is not well understood, because the mechanism of the bioinspired reaction is often deduced from ex situ analysis of the resultant nanoscale mineral phase. Here we report the direct visualization of biomimetic iron oxide nanoparticle nucleation mediated by an acidic bacterial recombinant protein, Mms6, during an in situ reaction induced by the controlled addition of sodium hydroxide to solution-phase Mms6 protein micelles incubated with ferric chloride. Using inmore » situ liquid cell scanning transmission electron microscopy we observe the liquid iron prenucleation phase and nascent amorphous nanoparticles forming preferentially on the surface of protein micelles. Our results provide insight into the early steps of protein-mediated biomimetic nucleation of iron oxide and point to the importance of an extended protein surface during nanoparticle formation.« less

  13. Protein-surface interactions on stimuli-responsive polymeric biomaterials.

    PubMed

    Cross, Michael C; Toomey, Ryan G; Gallant, Nathan D

    2016-03-04

    Responsive surfaces: a review of the dependence of protein adsorption on the reversible volume phase transition in stimuli-responsive polymers. Specifically addressed are a widely studied subset: thermoresponsive polymers. Findings are also generalizable to other materials which undergo a similarly reversible volume phase transition. As of 2015, over 100,000 articles have been published on stimuli-responsive polymers and many more on protein-biomaterial interactions. Significantly, fewer than 100 of these have focused specifically on protein interactions with stimuli-responsive polymers. These report a clear trend of increased protein adsorption in the collapsed state compared to the swollen state. This control over protein interactions makes stimuli-responsive polymers highly useful in biomedical applications such as wound repair scaffolds, on-demand drug delivery, and antifouling surfaces. Outstanding questions are whether the protein adsorption is reversible with the volume phase transition and whether there is a time-dependence. A clear understanding of protein interactions with stimuli-responsive polymers will advance theoretical models, experimental results, and biomedical applications.

  14. Day and night: diurnal phase influences the response to chronic mild stress

    PubMed Central

    Aslani, Shilan; Harb, Mazen R.; Costa, Patricio S.; Almeida, Osborne F. X.; Sousa, Nuno; Palha, Joana A.

    2014-01-01

    Chronic mild stress (CMS) protocols are widely used to create animal models of depression. Despite this, the inconsistencies in the reported effects may be indicative of crucial differences in methodology. Here, we considered the time of the diurnal cycle in which stressors are applied as a possible relevant temporal variable underlying the association between stress and behavior. Most laboratories test behavior during the light phase of the diurnal cycle, which corresponds to the animal's resting period. Here, rats stressed either in their resting (light phase) or active (dark phase) periods were behaviorally characterized in the light phase. When exposure to CMS occurred during the light phase of the day cycle, rats displayed signs of depressive and anxiety-related behaviors. This phenotype was not observed when CMS was applied during the dark (active) period. Interestingly, although no differences in spatial and reference memory were detected (Morris water maze) in animals in either stress period, those stressed in the light phase showed marked impairments in the probe test. These animals also showed significant dendritic atrophy in the hippocampal dentate granule neurons, with a decrease in the number of spines. Taken together, the observations reported demonstrate that the time in which stress is applied has differential effects on behavioral and neurostructural phenotypes. PMID:24672446

  15. Numerical calculation on a two-step subdiffusion behavior of lateral protein movement in plasma membranes

    NASA Astrophysics Data System (ADS)

    Sumi, Tomonari; Okumoto, Atsushi; Goto, Hitoshi; Sekino, Hideo

    2017-10-01

    A two-step subdiffusion behavior of lateral movement of transmembrane proteins in plasma membranes has been observed by using single-molecule experiments. A nested double-compartment model where large compartments are divided into several smaller ones has been proposed in order to explain this observation. These compartments are considered to be delimited by membrane-skeleton "fences" and membrane-protein "pickets" bound to the fences. We perform numerical simulations of a master equation using a simple two-dimensional lattice model to investigate the heterogeneous diffusion dynamics behavior of transmembrane proteins within plasma membranes. We show that the experimentally observed two-step subdiffusion process can be described using fence and picket models combined with decreased local diffusivity of transmembrane proteins in the vicinity of the pickets. This allows us to explain the two-step subdiffusion behavior without explicitly introducing nested double compartments.

  16. Investigating the Structural Compaction of Biomolecules Upon Transition to the Gas-Phase Using ESI-TWIMS-MS.

    PubMed

    Devine, Paul W A; Fisher, Henry C; Calabrese, Antonio N; Whelan, Fiona; Higazi, Daniel R; Potts, Jennifer R; Lowe, David C; Radford, Sheena E; Ashcroft, Alison E

    2017-09-01

    Collision cross-section (CCS) measurements obtained from ion mobility spectrometry-mass spectrometry (IMS-MS) analyses often provide useful information concerning a protein's size and shape and can be complemented by modeling procedures. However, there have been some concerns about the extent to which certain proteins maintain a native-like conformation during the gas-phase analysis, especially proteins with dynamic or extended regions. Here we have measured the CCSs of a range of biomolecules including non-globular proteins and RNAs of different sequence, size, and stability. Using traveling wave IMS-MS, we show that for the proteins studied, the measured CCS deviates significantly from predicted CCS values based upon currently available structures. The results presented indicate that these proteins collapse to different extents varying on their elongated structures upon transition into the gas-phase. Comparing two RNAs of similar mass but different solution structures, we show that these biomolecules may also be susceptible to gas-phase compaction. Together, the results suggest that caution is needed when predicting structural models based on CCS data for RNAs as well as proteins with non-globular folds. Graphical Abstract ᅟ.

  17. Prone positioning reduces severe pushing behavior: three case studies

    PubMed Central

    Fujino, Yuji; Amimoto, Kazu; Sugimoto, Satoshi; Fukata, Kazuhiro; Inoue, Masahide; Takahashi, Hidetoshi; Makita, Shigeru

    2016-01-01

    [Purpose] Pushing behavior is classically described as a disorder of body orientation in the coronal plane. Most interventions for pushing behavior have focused on correcting the deviation in vertical perception. However, pushing behavior seems to involve erroneous movements associated with excessive motor output by the non-paretic limbs and trunk. The present study aimed to inhibit muscular hyper-activity by placing the non-paretic limbs and trunk in the prone position. [Subjects and Methods] The subjects of the present study were 3 acute stroke patients with severe pushing behavior. The study consisted of the following 3 phases: baseline, intervention, and follow-up. In addition to conventional therapy, patients received relaxation therapy in the prone position for 10 minutes a day over 2 days. The severity of pushing behavior was assessed using the scale for contraversive pushing, and truncal balance was evaluated using the trunk control test. These assessments were performed before and after the baseline phase, and after the intervention and follow-up phases. [Results] At the baseline phase, both scores were poor. Both scores improved after the intervention and follow-up phases, and all the patients could sit independently. [Conclusion] Relaxation therapy in the prone position might ameliorate pushing behavior and impaired truncal balance. PMID:27799722

  18. Chemical manipulation of phase stability and electronic behavior in Cu 4−x Ag x Se 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olvera, A.; Bailey, T. P.; Uher, C.

    Gradual stoichiometric chemical substitution of Cu by Ag in the p-type Cu 2 Se phase enables phase segregation and incremental switching of the electronic transport to n-type behavior for large Ag/Cu ratios.

  19. Chemical manipulation of phase stability and electronic behavior in Cu 4−x Ag x Se 2

    DOE PAGES

    Olvera, A.; Bailey, T. P.; Uher, C.; ...

    2018-01-01

    Gradual stoichiometric chemical substitution of Cu by Ag in the p-type Cu 2 Se phase enables phase segregation and incremental switching of the electronic transport to n-type behavior for large Ag/Cu ratios.

  20. Lipid phase behavior studied with a quartz crystal microbalance: A technique for biophysical studies with applications in screening

    NASA Astrophysics Data System (ADS)

    Peschel, Astrid; Langhoff, Arne; Uhl, Eva; Dathathreyan, Aruna; Haindl, Susanne; Johannsmann, Diethelm; Reviakine, Ilya

    2016-11-01

    Quartz crystal microbalance (QCM) is emerging as a versatile tool for studying lipid phase behavior. The technique is attractive for fundamental biophysical studies as well applications because of its simplicity, flexibility, and ability to work with very small amounts of material crucial for biomedical studies. Further progress hinges on the understanding of the mechanism, by which a surface-acoustic technique such as QCM, senses lipid phase changes. Here, we use a custom-built instrument with improved sensitivity to investigate phase behavior in solid-supported lipid systems of different geometries (adsorbed liposomes and bilayers). We show that we can detect a model anesthetic (ethanol) through its effect on the lipid phase behavior. Further, through the analysis of the overtone dependence of the phase transition parameters, we show that hydrodynamic effects are important in the case of adsorbed liposomes, and viscoelasticity is significant in supported bilayers, while layer thickness changes make up the strongest contribution in both systems.

  1. Does Warming a Lysozyme Solution Cook Ones Data?

    NASA Technical Reports Server (NTRS)

    Pusey, Marc; Burke, Michael; Judge, Russell

    2000-01-01

    Chicken egg white lysozyme has a well characterized thermally driven phase transition. Between pH 4.0 and 5.2, the transition temperature, as defined by the point where the tetragonal and orthorhombic solubility are equal, is a function of the pH, salt (precipitant) type and concentration, and most likely of the buffer concentration as well. This phase transition can be carried out with protein solution alone, prior to the initiation of the crystallization process. We have now measured the kinetics of this process and investigated its reversibility. An aliquot of a stock protein solution is held at a given temperature, and at periodic intervals used to set up batch crystallization experiments. The batch solutions were incubated at 20 C until macroscopic crystals were obtained, at which point the number of crystals in each well were counted. The transition effects increased with temperature, slowly falling off at 30 C with a half time (time to approx. 1/2 the t = 0 number of crystals) of approx. 5 hours, and an estimated half time of approx. 0.5 hours at 43 C. Further, the process was not reversible by simple cooling. After holding a lysozyme solution at 37 C (prior to addition of precipitant) for 16 hours, then cooling and holding it at 4 C, no return to the pre-warmed nucleation kinetics are observed after at least 4 weeks. Thus every thermal excursion above the phase transition point results in a further decrease in the nucleation rate of that solution, the extent being a function of the time and temperature. Orthorhombic lysozyme crystals apparently do not undergo the flow-induced growth cessation of tetragonal lysozyme crystals. We have previously shown that putting the protein in the orthorhombic form does not affect the averaged face growth kinetics, only nucleation, for tetragonal crystals. We may be able to use this differential behavior to elucidate how flow affects tile lysozyme crystal growth process.

  2. Substrate water exchange in photosystem II depends on the peripheral proteins.

    PubMed

    Hillier, W; Hendry, G; Burnap, R L; Wydrzynski, T

    2001-12-14

    The (18)O exchange rates for the substrate water bound in the S(3) state were determined in different photosystem II sample types using time-resolved mass spectrometry. The samples included thylakoid membranes, salt-washed Triton X-100-prepared membrane fragments, and purified core complexes from spinach and cyanobacteria. For each sample type, two kinetically distinct isotopic exchange rates could be resolved, indicating that the biphasic exchange behavior for the substrate water is inherent to the O(2)-evolving catalytic site in the S(3) state. However, the fast phase of exchange became somewhat slower (by a factor of approximately 2) in NaCl-washed membrane fragments and core complexes from spinach in which the 16- and 23-kDa extrinsic proteins have been removed, compared with the corresponding rate for the intact samples. For CaCl(2)-washed membrane fragments in which the 33-kDa manganese stabilizing protein (MSP) has also been removed, the fast phase of exchange slowed down even further (by a factor of approximately 3). Interestingly, the slow phase of exchange was little affected in the samples from spinach. For core complexes prepared from Synechocystis PCC 6803 and Synechococcus elongatus, the fast and slow exchange rates were variously affected. Nevertheless, within the experimental error, nearly the same exchange rates were measured for thylakoid samples made from wild type and an MSP-lacking mutant of Synechocystis PCC 6803. This result could indicate that the MSP has a slightly different function in eukaryotic organisms compared with prokaryotic organisms. In all samples, however, the differences in the exchange rates are relatively small. Such small differences are unlikely to arise from major changes in the metal-ligand structure at the catalytic site. Rather, the observed differences may reflect subtle long range effects in which the exchange reaction coordinates become slightly altered. We discuss the results in terms of solvent penetration into photosystem II and the regional dielectric around the catalytic site.

  3. Noncovalent Polymerization of Mesogens Crystallizes Lysozyme: Correlation between Nonamphiphilic Lyotropic Liquid Crystal Phase and Protein Crystal Formation

    PubMed Central

    Simon, Karen A.; Shetye, Gauri S.; Englich, Ulrich; Wu, Lei; Luk, Yan-Yeung

    2011-01-01

    Crystallization of proteins is important for fundamental studies and biopharmaceutical development but remains largely an empirical science. Here, we report the use of organic salts that can form a class of unusual non-amphiphilic lyotropic liquid crystals to crystallize the protein lysozyme. Certain non-amphiphilic organic molecules with fused aromatic rings and two charges can assemble into stable thread-like noncovalent polymers that may further form liquid crystal phases in water, traditionally termed chromonic liquid crystals. Using five of these mesogenic molecules as additives to induce protein crystallization, we discover that molecules that can form liquid crystal phases in water are highly effective at inducing the crystal formation of lysozyme, even at concentrations significantly lower than that required for forming liquid crystal phases. This result reveals an example of inducing protein crystallization by the molecular assembly of the additives, and is consistent with a new mechanism by which the strong hydration of an assembly process provides a gradual means to compete for the water molecules to enable solvated proteins to form crystals. PMID:21786812

  4. Evaluation of new superficially porous particles with carbon core and nanodiamond-polymer shell for proteins characterization.

    PubMed

    Bobály, Balázs; Guillarme, Davy; Fekete, Szabolcs

    2015-02-01

    A new superficially porous material possessing a carbon core and nanodiamond-polymer shell and pore size of 180Å was evaluated for the analysis of large proteins. Because the stationary phase on this new support contains a certain amount of protonated amino groups within the shell structure, the resulting retention mechanism is most probably a mix between reversed phase and anion exchange. However, under the applied conditions (0.1-0.5% TFA in the mobile phase), it seemed that the main retention mechanism for proteins was hydrophobic interaction with the C18 alkylchains on this carbon based material. In this study, we demonstrated that there was no need to increase mobile phase temperature, as the peak capacity was not modified considerably between 30 and 80°C for model proteins. Thus, the risk of thermal on-column degradation or denaturation of large proteins is not relevant. Another important difference compared to silica-based materials is that this carbon-based column requires larger amount of TFA, comprised between 0.2 and 0.5%. Finally, it is important to mention that selectivity between closely related proteins (oxidized, native and reduced forms of Interferon α-2A variants) could be changed mostly through mobile phase temperature. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Synaptic Tagging, Evaluation of Memories, and the Distal Reward Problem

    ERIC Educational Resources Information Center

    Papper, Marc; Kempter, Richard; Leibold, Christian

    2011-01-01

    Long-term synaptic plasticity exhibits distinct phases. The synaptic tagging hypothesis suggests an early phase in which synapses are prepared, or "tagged," for protein capture, and a late phase in which those proteins are integrated into the synapses to achieve memory consolidation. The synapse specificity of the tags is consistent with…

  6. Spatial patterning of P granules by RNA-induced phase separation of the intrinsically-disordered protein MEG-3

    PubMed Central

    Smith, Jarrett; Calidas, Deepika; Schmidt, Helen; Lu, Tu; Rasoloson, Dominique; Seydoux, Geraldine

    2016-01-01

    RNA granules are non-membrane bound cellular compartments that contain RNA and RNA binding proteins. The molecular mechanisms that regulate the spatial distribution of RNA granules in cells are poorly understood. During polarization of the C. elegans zygote, germline RNA granules, called P granules, assemble preferentially in the posterior cytoplasm. We present evidence that P granule asymmetry depends on RNA-induced phase separation of the granule scaffold MEG-3. MEG-3 is an intrinsically disordered protein that binds and phase separates with RNA in vitro. In vivo, MEG-3 forms a posterior-rich concentration gradient that is anti-correlated with a gradient in the RNA-binding protein MEX-5. MEX-5 is necessary and sufficient to suppress MEG-3 granule formation in vivo, and suppresses RNA-induced MEG-3 phase separation in vitro. Our findings suggest that MEX-5 interferes with MEG-3’s access to RNA, thus locally suppressing MEG-3 phase separation to drive P granule asymmetry. Regulated access to RNA, combined with RNA-induced phase separation of key scaffolding proteins, may be a general mechanism for controlling the formation of RNA granules in space and time. DOI: http://dx.doi.org/10.7554/eLife.21337.001 PMID:27914198

  7. The effect of temperature and bacterial growth phase on protein extraction by means of electroporation.

    PubMed

    Haberl-Meglič, Saša; Levičnik, Eva; Luengo, Elisa; Raso, Javier; Miklavčič, Damijan

    2016-12-01

    Different chemical and physical methods are used for extraction of proteins from bacteria, which are used in variety of fields. But on a large scale, many methods have severe drawbacks. Recently, extraction by means of electroporation showed a great potential to quickly obtain proteins from bacteria. Since many parameters are affecting the yield of extracted proteins, our aim was to investigate the effect of temperature and bacterial growth phase on the yield of extracted proteins. At the same time bacterial viability was tested. Our results showed that the temperature has a great effect on protein extraction, the best temperature post treatment being 4°C. No effect on bacterial viability was observed for all temperatures tested. Also bacterial growth phase did not affect the yield of extracted proteins or bacterial viability. Nevertheless, further experiments may need to be performed to confirm this observation, since only one incubation temperature (4°C) and one incubation time before and after electroporation (0.5 and 1h) were tested for bacterial growth phase. Based on our results we conclude that temperature is a key element for bacterial membrane to stay in a permeabilized state, so more proteins flow out of bacteria into surrounding media. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Secretory proteins in the reproductive tract of the snapping turtle, Chelhydra serpentina.

    PubMed

    Mahmoud, I Y; Paulson, J R; Dudley, M; Patzlaff, J S; Al-Kindi, A Y A

    2004-12-01

    SDS-polyacrylamide gel electrophoresis was used to separate the secretory proteins produced by the epithelial and endometrial glands of the uterine tube and uterus in the snapping turtle Chelydra serpentina. The proteins were analyzed throughout the phases of the reproductive cycle from May to August, including preovulatory, ovulatory, postovulatory or luteal, and vitellogenic phases. The pattern of secretory proteins is quite uniform along the length of the uterine tube, and the same is true of the uterus, but the patterns for uterine tube and uterus are clearly different. We identify 13 major proteins in C. serpentina egg albumen. Bands co-migrating with 11 of these are found in the uterine tube, but at most 4 are found in the uterus, suggesting that the majority of the albumen proteins are most likely secreted in the uterine tube, not in the uterus. Although some of the egg albumen proteins are present in the uterine tube only at the time of ovulation, most of the bands corresponding to albumen proteins are present throughout the breeding season even though the snapping turtle is a monoclutch species. These results suggest that the glandular secretory phase in the uterine tube is active and quite homogeneous in function regardless of location or phase of the reproductive cycle.

  9. Protein Structure Prediction Using Gas Phase Molecular Dynamics Simulation: EOTAXIN-3 Cytokine as a Case Study

    NASA Astrophysics Data System (ADS)

    Khairudin, Nurul Bahiyah Ahmad; Wahab, Habibah A.

    In the current work, the structure of the enzyme CC chemokine eotaxin-3 (1G2S) was chosen as a case study to investigate the effects of gas phase on the predicted protein conformation using molecular dynamics simulation. Generally, simulating proteins in the gas phase tend to suffer from various drawbacks, among which excessive numbers of protein-protein hydrogen bonds. However, current results showed that the effects of gas phase simulation on 1G2S did not amplify the protein-protein hydrogen bonds. It was also found that some of the hydrogen bonds which were crucial in maintaining the secondary structural elements were disrupted. The predicted models showed high values of RMSD, 11.5 Å and 13.5 Å for both vacuum and explicit solvent simulations, respectively, indicating that the conformers were very much different from the native conformation. Even though the RMSD value for the in vacuo model was slightly lower, it somehow suffered from lower fraction of native contacts, poor hydrogen bonding networks and fewer occurrences of secondary structural elements compared to the solvated model. This finding supports the notion that water plays a dominant role in guiding the protein to fold along the correct path.

  10. Internal States and Behavioral Decision-Making: Toward an Integration of Emotion and Cognition.

    PubMed

    Kennedy, Ann; Asahina, Kenta; Hoopfer, Eric; Inagaki, Hidehiko; Jung, Yonil; Lee, Hyosang; Remedios, Ryan; Anderson, David J

    2014-01-01

    Social interactions, such as an aggressive encounter between two conspecific males or a mating encounter between a male and a female, typically progress from an initial appetitive or motivational phase, to a final consummatory phase. This progression involves both changes in the intensity of the animals' internal state of arousal or motivation and sequential changes in their behavior. How are these internal states, and their escalating intensity, encoded in the brain? Does this escalation drive the progression from the appetitive/motivational to the consummatory phase of a social interaction and, if so, how are appropriate behaviors chosen during this progression? Recent work on social behaviors in flies and mice suggests possible ways in which changes in internal state intensity during a social encounter may be encoded and coupled to appropriate behavioral decisions at appropriate phases of the interaction. These studies may have relevance to understanding how emotion states influence cognitive behavioral decisions at higher levels of brain function. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  11. The magic triangle goes MAD: experimental phasing with a bromine derivative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, Tobias, E-mail: tbeck@shelx.uni-ac.gwdg.de; Gruene, Tim; Sheldrick, George M.

    2010-04-01

    5-Amino-2, 4, 6-tribromoisophthalic acid is used as a phasing tool for protein structure determination by MAD phasing. It is the second representative of a novel class of compounds for heavy-atom derivatization that combine heavy atoms with amino and carboxyl groups for binding to proteins. Experimental phasing is an essential technique for the solution of macromolecular structures. Since many heavy-atom ion soaks suffer from nonspecific binding, a novel class of compounds has been developed that combines heavy atoms with functional groups for binding to proteins. The phasing tool 5-amino-2, 4, 6-tribromoisophthalic acid (B3C) contains three functional groups (two carboxylate groups andmore » one amino group) that interact with proteins via hydrogen bonds. Three Br atoms suitable for anomalous dispersion phasing are arranged in an equilateral triangle and are thus readily identified in the heavy-atom substructure. B3C was incorporated into proteinase K and a multiwavelength anomalous dispersion (MAD) experiment at the Br K edge was successfully carried out. Radiation damage to the bromine–carbon bond was investigated. A comparison with the phasing tool I3C that contains three I atoms for single-wavelength anomalous dispersion (SAD) phasing was also carried out.« less

  12. Probing the kinetic stabilities of Friedreich's ataxia clinical variants using a solid phase GroEL chaperonin capture platform.

    PubMed

    Correia, Ana R; Naik, Subhashchandra; Fisher, Mark T; Gomes, Cláudio M

    2014-10-20

    Numerous human diseases are caused by protein folding defects where the protein may become more susceptible to degradation or aggregation. Aberrant protein folding can affect the kinetic stability of the proteins even if these proteins appear to be soluble in vivo. Experimental discrimination between functional properly folded and misfolded nonfunctional conformers is not always straightforward at near physiological conditions. The differences in the kinetic behavior of two initially folded frataxin clinical variants were examined using a high affinity chaperonin kinetic trap approach at 25 °C. The kinetically stable wild type frataxin (FXN) shows no visible partitioning onto the chaperonin. In contrast, the clinical variants FXN-p.Asp122Tyr and FXN-p.Ile154Phe kinetically populate partial folded forms that tightly bind the GroEL chaperonin platform. The initially soluble FXN-p.Ile154Phe variant partitions onto GroEL more rapidly and is more kinetically liable. These differences in kinetic stability were confirmed using differential scanning fluorimetry. The kinetic and aggregation stability differences of these variants may lead to the distinct functional impairments described in Friedreich's ataxia, the neurodegenerative disease associated to frataxin functional deficiency. This chaperonin platform approach may be useful for identifying small molecule stabilizers since stabilizing ligands to frataxin variants should lead to a concomitant decrease in chaperonin binding.

  13. Induction of Salivary Proteins Modifies Measures of Both Orosensory and Postingestive Feedback during Exposure to a Tannic Acid Diet

    PubMed Central

    Torregrossa, Ann-Marie; Nikonova, Larissa; Bales, Michelle B.; Villalobos Leal, Maria; Smith, James C.; Contreras, Robert J.; Eckel, Lisa A.

    2014-01-01

    There are hundreds of proteins in saliva. Although it has long been hypothesized that these proteins modulate taste by interacting with taste receptors or taste stimuli, the functional impact of these proteins on feeding remains relatively unexplored. We have developed a new technique for saliva collection that does not interfere with daily behavioral testing and allows us to explore the relationship between feeding behavior and salivary protein expression. First, we monitored the alterations in salivary protein expression while simultaneously monitoring the animals' feeding behavior and meal patterns on a custom control diet or on the same diet mixed with 3% tannic acid. We demonstrated that six protein bands increased in density with dietary tannic acid exposure. Several of these bands were significantly correlated with behaviors thought to represent both orosensory and postingestive signaling. In a follow-up experiment, unconditioned licking to 0.01–3% tannic acid solutions was measured during a brief-access taste test before and after exposure to the tannic acid diet. In this experiment, rats with salivary proteins upregulated found the tannin solution less aversive (i.e., licked more) than those in the control condition. These data suggest a role for salivary proteins in mediating changes in both orosensory and postingestive feedback. PMID:25162297

  14. Play Caging Benefits the Behavior of Singly Housed Laboratory Rhesus Macaques (Macaca mulatta)

    PubMed Central

    Griffis, Caroline M; Martin, Allison L; Perlman, Jaine E; Bloomsmith, Mollie A

    2013-01-01

    This study addresses a recommendation in The Guide for the Care and Use of Laboratory Animals to provide singly housed nonhuman primates with intermittent access to large, enriched (play) caging. Research on the potential benefits of this type of caging is limited. The present study examines the effects of play caging on behavior, activity, and enrichment use. Singly housed, adult male, rhesus macaques (n = 10) underwent a baseline phase in their home cages, a 2-wk treatment phase with housing in play cages, and a posttreatment phase after returning to their home cages. Each subject underwent focal behavioral observations (n = 10; duration 30 min each) during each study phase, for a total of 150 h of data collection. Results showed increases in locomotion and enrichment use and a trend toward decreased abnormal behavior while subjects were in the play cage, with the durations of these behaviors returning to baseline levels after treatment. Anxiety-related behaviors decreased between the treatment and posttreatment phases but not between baseline and treatment, suggesting that outside factors may have influenced the decline. During the treatment phase, subjects spent more time in the upper quadrants of the play caging and preferred a mirror and forage boards as forms of enrichment. The greatest behavioral improvement occurred during the first week in the play cage. This study provides evidence to support the benefits of play caging for singly housed rhesus macaques. PMID:24041207

  15. Effect of Charge Patterning on the Phase Behavior of Polymer Coacervates for Charge Driven Self Assembly

    NASA Astrophysics Data System (ADS)

    Radhakrishna, Mithun; Sing, Charles E.

    Oppositely charged polymers can undergo associative liquid-liquid phase separation when mixed under suitable conditions of ionic strength, temperature and pH to form what are known as `polymeric complex coacervates'. Polymer coacervates find use in diverse array of applications like microencapsulation, drug delivery, membrane filtration and underwater adhesives. The similarity between complex coacervate environments and those in biological systems has also found relevance in areas of bio-mimicry. Our previous works have demonstrated how local charge correlations and molecular connectivity can drastically affect the phase behavior of coacervates. The precise location of charges along the chain therefore dramatically influences the local charge correlations, which consequently influences the phase behavior of coacervates. We investigate the effect of charge patterning along the polymer chain on the phase behavior of coacervates in the framework of the Restricted Primitive Model using Gibbs Ensemble Monte Carlo simulations. Our results show that charge patterning dramatically changes the phase behavior of polymer coacervates, which contrasts with the predictions of the classical Voorn-Overbeek theory. This provides the basis for designing new materials through charge driven self assembly by controlling the positioning of the charged monomers along the chain.

  16. Predicting phase behavior of mixtures of reservoir fluids with carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigg, R.B.; Lingane, P.J.

    1983-01-01

    The use of an equation of state to predict phase behavior during carbon dioxide flooding is well established. The characterization of the C/sub 7/ fraction and the selection of interaction parameters are the most important variables. Single-contact phase behavior is presented for mixtures of Ford Geraldine (Delaware), Maljamar (Grayburg), West Sussex (Shannon), and Reservoir D reservoir fluids, and of a synthetic oil with carbon dioxide. The phase behavior of these mixtures can be reproduced using 3 to 5 pseudo components and common interaction parameters. The critical properties of the pseudo components are calculated from detailed oil characterizations. Because the parametersmore » are not further adjusted, this approach reduces the empiricism in fitting phase data and may result in a more accurate representation of the system as the composition of the oil changes during the approach to miscibility. 21 references.« less

  17. A racket-sport intervention improves behavioral and cognitive performance in children with attention-deficit/hyperactivity disorder.

    PubMed

    Pan, Chien-Yu; Chu, Chia-Hua; Tsai, Chia-Liang; Lo, Shen-Yu; Cheng, Yun-Wen; Liu, Yu-Jen

    2016-10-01

    The present study assessed the effects of a 12-week table tennis exercise on motor skills, social behaviors, and executive functions in children with attention deficit hyperactivity disorder (ADHD). In the first 12-week phase, 16 children (group I) received the intervention, whereas 16 children (group II) did not. A second 12-week phase immediately followed with the treatments reversed. Improvements were observed in executive functions in both groups after the intervention. After the first 12-week phase, some motor and behavioral functions improved in group I. After the second 12-week phase, similar improvements were noted for group II, and the intervention effects achieved in the first phase were persisted in group I. The racket-sport intervention is valuable in promoting motor skills, social behaviors, and executive functions and should be included within the standard-of-care treatment for children with ADHD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Aqueous two-phase system purification for superoxide dismutase induced by menadione from Phanerochaete chrysosporium.

    PubMed

    Kavakcıoğlu, Berna; Tongul, Burcu; Tarhan, Leman

    2017-03-01

    In the present work, the partitioning behavior of menadione-induced superoxide dismutase (SOD; EC 1.15.1.1), an antioxidant enzyme that has various applications in the medical and cosmetic industries, from the white rot fungus Phanerochaete chrysosporium has been characterized on different types of aqueous two-phase systems (ATPSs) (poly(ethylene glycol)/polypropylene glycol (PEG/PPG)-dextran, PEG-salt and PPG-salt). PEG-salt combinations were found most optimal systems for the purification of SOD. The best partition conditions were found using the PEG-3350 24% and K 2 HPO 4 5% (w/w) with pH 7.0 at 25 °C. The partition coefficient of total SOD activity and total protein concentration observed in this system were 0.17 and 6.65, respectively, with the recovery percentage as 78.90% in the bottom phase and 13.17% in the top phase. The highest purification fold for SOD from P. chrysosporium was found as 6.04 in the bottom phase of PEG 3350%24 - K 2 HPO 4 %5 (w/w) system with pH 7.0. SOD purified from P. chrysosporium was determined to be a homodimer in its native state with a molecular weight of 60  ± 4 kDa. Consequently, simple and only one step PEG-salt ATPS system was developed for SOD purification from P. chrysosporium.

  19. Ascorbic Acid Alleviates Damage from Heat Stress in the Photosystem II of Tall Fescue in Both the Photochemical and Thermal Phases

    PubMed Central

    Chen, Ke; Zhang, Minna; Zhu, Huihui; Huang, Meiyu; Zhu, Qing; Tang, Diyong; Han, Xiaole; Li, Jinlin; Sun, Jie; Fu, Jinmin

    2017-01-01

    L-Ascorbate (Asc) plays important roles in plant development, hormone signaling, the cell cycle and cellular redox system, etc. The higher content of Asc in plant chloroplasts indicates its important role in the photosystem. The objective of this study was to study the roles of Asc in tall fescue leaves against heat stress. After a heat stress treatment, we observed a lower value of the maximum quantum yield for primary photochemistry (φPo), which reflects the inhibited activity of the photochemical phase of photosystem II (PSII). Moreover, we observed a higher value of efficiency of electron transfer from QB to photosystem I acceptors (δR0), which reflects elevated activity of the thermal phase of the photosystem of the tall fescue. The addition of Asc facilitate the behavior of the photochemical phase of the PSII by lowering the ROS content as well as that of the alternative electron donor to provide electron to the tyrosine residue of the D1 protein. Additionally, exogenous Asc reduces the activity of the thermal phase of the photosystem, which could contribute to the limitation of energy input into the photosystem in tall fescue against heat stress. Synthesis of the Asc increased under heat stress treatment. However, under heat stress this regulation does not occur at the transcription level and requires further study. PMID:28848577

  20. Binary Phase Behavior of Saturated-Unsaturated Mixed-Acid Triacylglycerols-A Review.

    PubMed

    Zhang, Lu; Ueno, Satoru; Sato, Kiyotaka

    2018-06-01

    Most natural lipids contain a complex mixture of individual triacylglycerols (TAGs). An in-depth knowledge of the mixing behavior of TAGs is necessary for the rational design and engineering of food materials. The binary phase diagram of TAGs is a simplified model that can be explored to help foster an understanding of the phase behavior of complex fats and oils. This article reviews recent research on the binary phase behavior of saturated-unsaturated mixed-acid TAGs, with special emphasis on the stearicunsaturated and palmitic-unsaturated diacid TAGs. The occurrence of polymorphic forms and mutual solubility of TAG mixtures are strongly related to the glycerol conformation of the saturated-oleic diacid TAGs; it appears to be most influenced by the chain-length mismatch in saturated-elaidic diacid TAGs. In addition, the polymorphism of pure enantiomers and racemic mixture of chiral TAGs was also reviewed, while the effect of chirality on mixing behavior was discussed.

  1. Small-Angle Neutron Scattering Study of Interplay of Attractive and Repulsive Interactions in Nanoparticle-Polymer System.

    PubMed

    Kumar, Sugam; Aswal, Vinod K; Kohlbrecher, Joachim

    2016-02-16

    The phase behavior of nanoparticle (silica)-polymer (polyethylene glycol) system without and with an electrolyte (NaCl) has been studied. It is observed that nanoparticle-polymer system behaves very differently in the presence of electrolyte. In the absence of electrolyte, the nanoparticle-polymer system remains in one-phase even at very high polymer concentrations. On the other hand, a re-entrant phase behavior is found in the presence of electrolyte, where one-phase (individual) system undergoes two-phase (nanoparticle aggregation) and then back to one-phase with increasing polymer concentration. The regime of two-phase system has been tuned by varying the electrolyte concentration. The polymer concentration range over which the two-phase system exists is significantly enhanced with the increase in the electrolyte concentration. These systems have been characterized by small-angle neutron scattering (SANS) experiments of contrast-marching the polymer to the solvent. The data are modeled using a two-Yukawa potential accounting for both attractive and repulsive parts of the interaction between nanoparticles. The phase behavior of nanoparticle-polymer system is explained by interplay of attractive (polymer-induced attractive depletion between nanoparticles) and repulsive (nanoparticle-nanoparticle electrostatic repulsion and polymer-polymer repulsion) interactions present in the system. In the absence of electrolyte, the strong electrostatic repulsion between nanoparticles dominates over the polymer-induced depletion attraction and the nanoparticle system remains in one-phase. With addition of electrolyte, depletion attraction overcomes electrostatic repulsion at some polymer concentration, resulting into nanoparticle aggregation and two-phase system. Further addition of polymer increases the polymer-polymer repulsion which eventually reduces the strength of depletion and hence re-entrant phase behavior. The effects of varying electrolyte concentration on the phase behavior of nanoparticle-polymer system are understood in terms of modifications in nanoparticle-nanoparticle and polymer-polymer interactions. The nanoparticle aggregates in two-phase systems are found to have surface fractal morphology.

  2. A Theory of Planned Behavior Research Model for Predicting the Sleep Intentions and Behaviors of Undergraduate College Students

    ERIC Educational Resources Information Center

    Knowlden, Adam P.; Sharma, Manoj; Bernard, Amy L.

    2012-01-01

    The purpose of this study was to operationalize the constructs of the Theory of Planned Behavior (TPB) to predict the sleep intentions and behaviors of undergraduate college students attending a Midwestern University. Data collection spanned three phases. The first phase included a semi-structured qualitative interview (n = 11), readability by…

  3. The N-terminal strand modulates immunoglobulin light chain fibrillogenesis.

    PubMed

    del Pozo-Yauner, Luis; Wall, Jonathan S; González Andrade, Martín; Sánchez-López, Rosana; Rodríguez-Ambriz, Sandra L; Pérez Carreón, Julio I; Ochoa-Leyva, Adrián; Fernández-Velasco, D Alejandro

    2014-01-10

    It has been suggested that the N-terminal strand of the light chain variable domain (V(L)) protects the molecule from aggregation by hindering spurious intermolecular contacts. We evaluated the impact of mutations in the N-terminal strand on the thermodynamic stability and kinetic of fibrillogenesis of the V(L) protein 6aJL2. Mutations in this strand destabilized the protein in a position-dependent manner, accelerating the fibrillogenesis by shortening the lag time; an effect that correlated with the extent of destabilization. In contrast, the effect on the kinetics of fibril elongation, as assessed in seeding experiments was of different nature, as it was not directly dependant on the degree of destabilization. This finding suggests different factors drive the nucleation-dependent and elongation phases of light chain fibrillogenesis. Finally, taking advantage of the dependence of the Trp fluorescence upon environment, four single Trp substitutions were made in the N-terminal strand, and changes in solvent exposure during aggregation were evaluated by acrylamide-quenching. The results suggest that the N-terminal strand is buried in the fibrillar state of 6aJL2 protein. This finding suggest a possible explanation for the modulating effect exerted by the mutations in this strand on the aggregation behavior of 6aJL2 protein. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Proteomic analysis of Oenococcus oeni freeze-dried culture to assess the importance of cell acclimation to conduct malolactic fermentation in wine.

    PubMed

    Cecconi, Daniela; Milli, Alberto; Rinalducci, Sara; Zolla, Lello; Zapparoli, Giacomo

    2009-09-01

    Cultures of Oenococcus oeni, the most important malolactic bacterium, are used to induce malolactic fermentation in wine. Survival assays in two different wines confirmed that cells acclimated for 24 h in half-strength wine-like medium (acclimation medium) enhanced the malolactic performances. To investigate the effect of the pre-incubation phase on cell physiology, a proteomic study was carried out. Total protein extracts of acclimated and non-acclimated cell cultures (control) were analyzed by 2-D-PAGE. A total of 20 out of approximately 400 spots varied significantly. All the spots were identified by MS analysis and most of them were proteins involved in metabolism, transcription/translation processes and stress response. The results revealed the different physiological status between non-acclimated and acclimated cells explaining, in part, their different behavior in wine. Regulation of stress proteins such as heat and cold shock proteins was involved. Moreover, the availability of sugars and amino acids (even if at low concentration) in acclimation medium determined a modulation of energy metabolism enhancing the resistance to stressful conditions (as those that cells find in wine when inoculated). Finally, this proteomic study increased knowledge concerning the physiological changes in freeze-dried culture occurring with pre-inoculation procedures.

  5. Acute-phase proteins in relation to neuropsychiatric symptoms and use of psychotropic medication in Huntington's disease.

    PubMed

    Bouwens, J A; Hubers, A A M; van Duijn, E; Cobbaert, C M; Roos, R A C; van der Mast, R C; Giltay, E J

    2014-08-01

    Activation of the innate immune system has been postulated in the pathogenesis of Huntington's disease (HD). We studied serum concentrations of C-reactive protein (CRP) and low albumin as positive and negative acute-phase proteins in HD. Multivariate linear and logistic regression was used to study the association between acute-phase protein levels in relation to clinical, neuropsychiatric, cognitive, and psychotropic use characteristics in a cohort consisting of 122 HD mutation carriers and 42 controls at first biomarker measurement, and 85 HD mutation carriers and 32 controls at second biomarker measurement. Significant associations were found between acute-phase protein levels and Total Functioning Capacity (TFC) score, severity of apathy, cognitive impairment, and the use of antipsychotics. Interestingly, all significant results with neuropsychiatric symptoms disappeared after additional adjusting for antipsychotic use. High sensitivity CRP levels were highest and albumin levels were lowest in mutation carriers who continuously used antipsychotics during follow-up versus those that had never used antipsychotics (mean difference for CRP 1.4 SE mg/L; P=0.04; mean difference for albumin 3 SE g/L; P<0.001). The associations found between acute-phase proteins and TFC score, apathy, and cognitive impairment could mainly be attributed to the use of antipsychotics. This study provides evidence that HD mutation carriers who use antipsychotics are prone to develop an acute-phase response. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  6. Comparison of analytical protein separation characteristics for three amine-based capillary-channeled polymer (C-CP) stationary phases.

    PubMed

    Jiang, Liuwei; Marcus, R Kenneth

    2016-02-01

    Capillary-channeled polymer (C-CP) fiber stationary phases are finding utility in the realms of protein analytics as well as downstream processing. We have recently described the modification of poly(ethylene terephthalate) (PET) C-CP fibers to affect amine-rich phases for the weak anion-exchange (WAX) separation of proteins. Polyethylenimine (PEI) is covalently coupled to the PET surface, with subsequent cross-linking imparted by treatment with 1,4-butanediol diglycidyl ether (BUDGE). These modifications yield vastly improved dynamic binding capacities over the unmodified fibers. We have also previously employed native (unmodified) nylon 6 C-CP fibers as weak anion/cation-exchange (mixed-mode) and hydrophobic interaction chromatography (HIC) phases for protein separations. Polyamide, nylon 6, consists of amide groups along the polymer backbone, with primary amines and carboxylic acid end groups. The analytical separation characteristics of these three amine-based C-CP fiber phases are compared here. Each of the C-CP fiber columns in this study was shown to be able to separate a bovine serum albumin/hemoglobin/lysozyme mixture at high mobile phase linear velocity (∼70 mm s(-1)) but with different elution characteristics. These differences reflect the types of protein-surface interactions that are occurring, based on the active group composition of the fiber surfaces. This study provides important fundamental understanding for the development of surface-modified C-CP fiber columns for protein separation.

  7. Pressure-induced structural transition in chalcopyrite ZnSiP2

    NASA Astrophysics Data System (ADS)

    Bhadram, Venkata S.; Krishna, Lakshmi; Toberer, Eric S.; Hrubiak, Rostislav; Greenberg, Eran; Prakapenka, Vitali B.; Strobel, Timothy A.

    2017-05-01

    The pressure-dependent phase behavior of semiconducting chalcopyrite ZnSiP2 was studied up to 30 GPa using in situ X-ray diffraction and Raman spectroscopy in a diamond-anvil cell. A structural phase transition to the rock salt type structure was observed between 27 and 30 GPa, which is accompanied by soft phonon mode behavior and simultaneous loss of Raman signal and optical transmission through the sample. The high-pressure rock salt type phase possesses cationic disorder as evident from broad features in the X-ray diffraction patterns. The behavior of the low-frequency Raman modes during compression establishes a two-stage, order-disorder phase transition mechanism. The phase transition is partially reversible, and the parent chalcopyrite structure coexists with an amorphous phase upon slow decompression to ambient conditions.

  8. Design of experiments reveals critical parameters for pilot-scale freeze-and-thaw processing of L-lactic dehydrogenase.

    PubMed

    Roessl, Ulrich; Humi, Sebastian; Leitgeb, Stefan; Nidetzky, Bernd

    2015-09-01

    Freezing constitutes an important unit operation of biotechnological protein production. Effects of freeze-and-thaw (F/T) process parameters on stability and other quality attributes of the protein product are usually not well understood. Here a design of experiments (DoE) approach was used to characterize the F/T behavior of L-lactic dehydrogenase (LDH) in a 700-mL pilot-scale freeze container equipped with internal temperature and pH probes. In 24-hour experiments, target temperature between -10 and -38°C most strongly affected LDH stability whereby enzyme activity was retained best at the highest temperature of -10°C. Cooling profile and liquid fill volume also had significant effects on LDH stability and affected the protein aggregation significantly. Parameters of the thawing phase had a comparably small effect on LDH stability. Experiments in which the standard sodium phosphate buffer was exchanged by Tris-HCl and the non-ionic surfactant Tween 80 was added to the protein solution showed that pH shift during freezing and protein surface exposure were the main factors responsible for LDH instability at the lower freeze temperatures. Collectively, evidence is presented that supports the use of DoE-based systematic analysis at pilot scale in the identification of F/T process parameters critical for protein stability and in the development of suitable process control strategies. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Programming molecular self-assembly of intrinsically disordered proteins containing sequences of low complexity

    NASA Astrophysics Data System (ADS)

    Simon, Joseph R.; Carroll, Nick J.; Rubinstein, Michael; Chilkoti, Ashutosh; López, Gabriel P.

    2017-06-01

    Dynamic protein-rich intracellular structures that contain phase-separated intrinsically disordered proteins (IDPs) composed of sequences of low complexity (SLC) have been shown to serve a variety of important cellular functions, which include signalling, compartmentalization and stabilization. However, our understanding of these structures and our ability to synthesize models of them have been limited. We present design rules for IDPs possessing SLCs that phase separate into diverse assemblies within droplet microenvironments. Using theoretical analyses, we interpret the phase behaviour of archetypal IDP sequences and demonstrate the rational design of a vast library of multicomponent protein-rich structures that ranges from uniform nano-, meso- and microscale puncta (distinct protein droplets) to multilayered orthogonally phase-separated granular structures. The ability to predict and program IDP-rich assemblies in this fashion offers new insights into (1) genetic-to-molecular-to-macroscale relationships that encode hierarchical IDP assemblies, (2) design rules of such assemblies in cell biology and (3) molecular-level engineering of self-assembled recombinant IDP-rich materials.

  10. Protein - Calorie Malnutrition in Children and its Relation to Psychological Development and Behavior

    ERIC Educational Resources Information Center

    Latham, Michael C.

    1974-01-01

    Encompassing only human and excluding animal studies, this review surveys the literature on protein-calorie malnutrition and its possible role in retarding psychological, intellectual or behavioral development. Areas reviewed include types of protein-calorie malnutrition, the effects of malnutrition on brain development, cross-sectional and…

  11. Improved Separations of Proteins and Sugar Derivatives Using the Small-Scale Cross-Axis Coil Planet Centrifuge with Locular Multilayer Coiled Columns

    PubMed Central

    Shinomiya, Kazufusa; Umezawa, Motoki; Seki, Manami; Nitta, Jun; Zaima, Kazumasa; Harikai, Naoki; Ito, Yoichiro

    2016-01-01

    1) Background Countercurrent chromatography (CCC) is liquid-liquid partition chromatography without using a solid support matrix. This technique requires further improvement of partition efficiency and shortening theseparation time. 2) Methods The locular multilayer coils modified with and without mixer glass beads were developed for the separation of proteins and 4-methylumbelliferyl (MU) sugar derivatives using the small-scale cross-axis coil planet centrifuge. 3) Results Proteins were well separated from each other and the separation was improved at a low flow rate of the mobile phase. On the other hand, 4-MU sugar derivatives were sufficiently resolved with short separation time at a highflow rate of the mobile phase under satisfactory stationary phase retention. 4) Conclusion Effective separations were achieved using the locular multilayer coil for proteins with aqueous-aqueous polymer phase systems and for 4-MU sugar derivatives with organic-aqueous two-phase solvent systems by inserting a glass bead into each locule. PMID:27891507

  12. Computational Models of Protein Kinematics and Dynamics: Beyond Simulation

    PubMed Central

    Gipson, Bryant; Hsu, David; Kavraki, Lydia E.; Latombe, Jean-Claude

    2016-01-01

    Physics-based simulation represents a powerful method for investigating the time-varying behavior of dynamic protein systems at high spatial and temporal resolution. Such simulations, however, can be prohibitively difficult or lengthy for large proteins or when probing the lower-resolution, long-timescale behaviors of proteins generally. Importantly, not all questions about a protein system require full space and time resolution to produce an informative answer. For instance, by avoiding the simulation of uncorrelated, high-frequency atomic movements, a larger, domain-level picture of protein dynamics can be revealed. The purpose of this review is to highlight the growing body of complementary work that goes beyond simulation. In particular, this review focuses on methods that address kinematics and dynamics, as well as those that address larger organizational questions and can quickly yield useful information about the long-timescale behavior of a protein. PMID:22524225

  13. Identification of proteins in a human pleural exudate using two-dimensional preparative liquid-phase electrophoresis and matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Nilsson, C L; Puchades, M; Westman, A; Blennow, K; Davidsson, P

    1999-01-01

    Pleural effusion may occur in patients suffering from physical trauma or systemic disorders such as infection, inflammation, or cancer. In order to investigate proteins in a pleural exudate from a patient with severe pneumonia, we used a strategy that combined preparative two-dimensional liquid-phase electrophoresis (2-D LPE), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and Western blotting. Preparative 2-D LPE is based on the same principles as analytical 2-D gel electrophoresis, except that the proteins remain in liquid phase during the entire procedure. In the first dimension, liquid-phase isoelectric focusing allows for the enrichment of proteins in liquid fractions. In the Rotofor cell, large volumes (up to 55 mL) and protein amounts (up to 1-2 g) can be loaded. Several low abundance proteins, cystatin C, haptoglobin, transthyretin, beta2-microglobulin, and transferrin, were detected after liquid-phase isoelectric focusing, through Western blotting analysis, in a pleural exudate (by definition, >25 g/L total protein). Direct MALDI-TOF-MS analysis of proteins in a Rotofor fraction is demonstrated as well. MALDI-TOF-MS analysis of a tryptic digest of a continuous elution sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) fraction confirmed the presence of cystatin C. By applying 2-D LPE, MALDI-TOF-MS, and Western blotting to the analysis of this pleural exudate, we were able to confirm the identity of proteins of potential diagnostic value. Our findings serve to illustrate the usefulness of this combination of methods in the analysis of pathological fluids.

  14. Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography.

    PubMed

    Weierstall, Uwe; James, Daniel; Wang, Chong; White, Thomas A; Wang, Dingjie; Liu, Wei; Spence, John C H; Bruce Doak, R; Nelson, Garrett; Fromme, Petra; Fromme, Raimund; Grotjohann, Ingo; Kupitz, Christopher; Zatsepin, Nadia A; Liu, Haiguang; Basu, Shibom; Wacker, Daniel; Han, Gye Won; Katritch, Vsevolod; Boutet, Sébastien; Messerschmidt, Marc; Williams, Garth J; Koglin, Jason E; Marvin Seibert, M; Klinker, Markus; Gati, Cornelius; Shoeman, Robert L; Barty, Anton; Chapman, Henry N; Kirian, Richard A; Beyerlein, Kenneth R; Stevens, Raymond C; Li, Dianfan; Shah, Syed T A; Howe, Nicole; Caffrey, Martin; Cherezov, Vadim

    2014-01-01

    Lipidic cubic phase (LCP) crystallization has proven successful for high-resolution structure determination of challenging membrane proteins. Here we present a technique for extruding gel-like LCP with embedded membrane protein microcrystals, providing a continuously renewed source of material for serial femtosecond crystallography. Data collected from sub-10-μm-sized crystals produced with less than 0.5 mg of purified protein yield structural insights regarding cyclopamine binding to the Smoothened receptor.

  15. Membrane-Protein Binding Measured with Solution-Phase Plasmonic Nanocube Sensors

    PubMed Central

    Wu, Hung-Jen; Henzie, Joel; Lin, Wan-Chen; Rhodes, Christopher; Li, Zhu; Sartorel, Elodie; Thorner, Jeremy; Yang, Peidong; Groves, Jay. T.

    2013-01-01

    We describe a solution-phase sensor of lipid-protein binding based on localized surface plasmon resonance (LSPR) of silver nanocubes. When silica-coated nanocubes are mixed into a suspension of lipid vesicles, supported membranes spontaneously assemble on their surfaces. Using a standard laboratory spectrophotometer, we calibrate the LSPR peak shift due to protein binding to the membrane surface and then characterize the lipid-binding specificity of a pleckstrin-homology domain protein. PMID:23085614

  16. Burn Injuries: Causes, Consequences, Knowledge, Behaviors.

    ERIC Educational Resources Information Center

    Healer, Cheryl V.; And Others

    This report covers Phase I of the Burn Injury Education Demonstration Project, a four-phased project designed to explore the feasibility of using educational intervention strategies to increase knowledge and appropriate behaviors and attitudes to reduce the number and severity of burns. Phase I involved a comprehensive needs assessment conducted…

  17. Seven Deadly Sins of Childhood: Advising Parents about Difficult Developmental Phases.

    ERIC Educational Resources Information Center

    Schmitt, Barton D.

    1987-01-01

    Seven difficult developmental phases for parents are colic, awakening at night, separation anxiety, normal exploratory behavior, normal negativism, normal poor appetite, and toilet training resistance. Principles of behavior modification and alternatives to physical punishment are given for each phase as part of the treatment plan for the…

  18. Dietary protein modulates circadian changes in core body temperature and metabolic rate in rats.

    PubMed

    Yamaoka, Ippei; Nakayama, Mitsuo; Miki, Takanori; Yokoyama, Toshifumi; Takeuchi, Yoshiki

    2008-02-01

    We assessed the contribution of dietary protein to circadian changes in core body temperature (Tb) and metabolic rate in freely moving rats. Daily changes in rat intraperitoneal temperature, locomotor activity (LMA), whole-body oxygen consumption (VO2), and carbon dioxide production (VCO2) were measured before and during 4 days of consuming a 20% protein diet (20% P), a protein-free diet (0% P), or a pair-fed 20% P diet (20% P-R). Changes in Tb did not significantly differ between the 20% P and 20% P-R groups throughout the study. The Tb in the 0% P group remained elevated during the dark (D) phase throughout the study, but VO2, VCO2, and LMA increased late in the study when compared with the 20% P-R group almost in accordance with elevated Tb. By contrast, during the light (L) phase in the 0% P group, Tb became elevated early in the study and thereafter declined with a tendency to accompany significantly lower VO2 and VCO2 when compared with the 20% P group, but not the 20% P-R group. The respiratory quotient (RQ) in the 0% P group declined throughout the D phase and during the early L phase. By contrast, RQ in the 20% P-R group consistently decreased from the late D phase to the end of the L phase. Our findings suggest that dietary protein contributes to the maintenance of daily oscillations in Tb with modulating metabolic rates during the D phase. However, the underlying mechanisms of Tb control during the L phase remain obscure.

  19. Chemical probes and engineered constructs reveal a detailed unfolding mechanism for a solvent-free multi-domain protein

    PubMed Central

    Eschweiler, Joseph D.; Martini, Rachel M.; Ruotolo, Brandon T.

    2017-01-01

    Despite the growing application of gas-phase measurements in structural biology and drug discovery, the factors that govern protein stabilities and structures in a solvent-free environment are still poorly understood. Here, we examine the solvent-free unfolding pathway for a group of homologous serum albumins. Utilizing a combination of chemical probes and non-covalent reconstructions, we draw new specific conclusions regarding the unfolding of albumins in the gas-phase, as well as more-general inferences regarding the sensitivity of collision induced unfolding to changes in protein primary and tertiary structure. Our findings suggest that the general unfolding pathway of low charge state albumin ions is largely unaffected by changes in primary structure; however, the stabilities of intermediates along these pathways vary widely as sequences diverge. Additionally, we find that human albumin follows a domain associated unfolding pathway, and are able to assign each unfolded form observed in our gas-phase dataset to the disruption of specific domains within the protein. The totality of our data informs the first detailed mechanism for multi-domain protein unfolding in the gas phase, and highlights key similarities and differences from the known the solution-phase pathway. PMID:27959526

  20. Phenomenological model and phase behavior of saturated and unsaturated lipids and cholesterol.

    PubMed

    Putzel, G Garbès; Schick, M

    2008-11-15

    We present a phenomenological theory for the phase behavior of ternary mixtures of cholesterol and saturated and unsaturated lipids, one that describes both liquid and gel phases. It leads to the following description of the mechanism of the phase behavior: In a binary system of the lipids, phase separation occurs when the saturated chains are well ordered, as in the gel phase, simply due to packing effects. In the liquid phase, the saturated ones are not sufficiently well ordered for separation to occur. The addition of cholesterol, however, increases the saturated lipid order to the point that phase separation is once again favorable. Our theory addresses this last mechanism-the means by which cholesterol-mediated ordering of membrane lipids leads to liquid-liquid immiscibility. It produces, for the system above the main chain transition of the saturated lipid, phase diagrams in which there can be liquid-liquid phase separation in the ternary system but not in any of the binary ones, while below that temperature it yields the more common phase diagram in which a gel phase, rich in saturated lipid, appears in addition to the two liquid phases.

  1. SELDI Validation Study Phase II — EDRN Public Portal

    Cancer.gov

    This project –A Comprehensive Program for the Validation of Prostate Cancer Early Detection with Novel Protein Identification Techniques -- is divided into three phases. The goal of Phase I was to assess the reproducibility and portability of Surface-Enhanced Laser Desorption and Ionization time-of-flight mass spectrometry (SELDI-TOF-MS) using protein profiles generated from serum. Phase I was recently successfully completed at six institutions using a single source of pooled sera.

  2. Regulation of alpha-1 acid glycoprotein synthesis by porcine hepatocytes in monolayer culture

    USDA-ARS?s Scientific Manuscript database

    Alpha 1-acid glycoprotein (AGP, ORM-1) is a highly glycosylated mammalian acute phase protein, which is synthesized primarily in the liver and represents the major serum protein in newborn pigs. Recent data have suggested that the pig is unique in that AGP is a negative acute phase protein in this ...

  3. From Macromolecular to Small-Molecular Triggers: Facile Method toward Photoinduced LCST Phase Behavior of Thermoresponsive Polymers in Mixed Ionic Liquids Containing an Azobenzene Moiety.

    PubMed

    Wang, Caihong; Ma, Xiaofeng; Kitazawa, Yuzo; Kobayashi, Yumi; Zhang, Shiguo; Kokubo, Hisashi; Watanabe, Masayoshi

    2016-12-01

    Instead of the reported photoinduced lower critical solution temperature (LCST) phase transition behavior in ionic liquids (ILs) achieved by photofunctional polymers, this study reports the facile photoinduced LCST phase behavior of nonfunctionalized polymers (poly(benzyl methacrylate) (PBnMA) and poly(2-phenylethyl methacrylate) (PPhEtMA)) in mixed ILs (1,3-dimethylimidazolium bis(trifluoromethanesulfonyl)amide; [C 1 mim][NTf 2 ] and a newly designed functionalized IL containing an azobenzene moiety (1-butyl-3-(4-phenylazobenzyl)imidazolium bis(trifluoromethanesulfonyl)amide; [Azo][NTf 2 ])) as a small-molecular photo trigger. Interestingly, the length of the alkyl spacer between the ester and aryl groups, which is the only structural difference between the two polymers, leads to two different photoresponsive LCST phase transition behaviors. On the basis of spectroscopic studies, the different phase transition behaviors of PBnMA and PPhEtMA may attribute to the different cooperative interactions between the polymers and [C 1 mim][NTf 2 ]. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Melatonin ameliorates anxiety and depression-like behaviors and modulates proteomic changes in triple transgenic mice of Alzheimer's disease.

    PubMed

    Nie, Lulin; Wei, Gang; Peng, Shengming; Qu, Zhongsen; Yang, Ying; Yang, Qian; Huang, Xinfeng; Liu, Jianjun; Zhuang, Zhixiong; Yang, Xifei

    2017-07-08

    Alzheimer's disease (AD) is a devastating neurodegenerative disease accompanied by neuropsychiatric symptoms, such as anxiety and depression. The levels of melatonin decrease in brains of AD patients. The potential effect of melatonin on anxiety and depression behaviors in AD and the underlying mechanisms remain unclear. In this study, we treated 10-month-old triple transgenic mice of AD (3xTg-AD) with melatonin (10 mg/kg body weight/day) for 1 month and explored the effects of melatonin on anxiety and depression-like behaviors in 3xTg-AD mice and the protein expression of hippocampal tissues. The behavioral test showed that melatonin ameliorated anxiety and depression-like behaviors of 3xTg-AD mice as measured by open field test, elevated plus maze test, forced swimming test, and tail suspension test. By carrying out two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) coupled with mass spectrometry, we revealed a total of 46 differentially expressed proteins in hippocampus between the wild-type (WT) mice and non-treated 3xTg-AD mice. A total of 21 differentially expressed proteins were revealed in hippocampus between melatonin-treated and non-treated 3xTg-AD mice. Among these differentially expressed proteins, glutathione S-transferase P 1 (GSTP1) (an anxiety-associated protein) and complexin-1 (CPLX1) (a depression-associated protein) were significantly down-regulated in hippocampus of 3xTg-AD mice compared with the WT mice. The expression of these two proteins was modulated by melatonin treatment. Our study suggested that melatonin could be used as a potential candidate drug to improve the neuropsychiatric behaviors in AD via modulating the expression of the proteins (i.e. GSTP1 and CPLX1) involved in anxiety and depression behaviors. © 2017 BioFactors, 43(4):593-611, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  5. Increases in the serum acute phase proteins after ozone exposure are associated with induction of genes in the lung but not liver

    EPA Science Inventory

    Acute Phase Response (APR), a systemic reaction to infection, trauma, and inflammation, is characterized by increases and decreases in plasma levels of positive and negative acute phase proteins (APP), respectively. Although the liver has been shown to contribute to APR in variou...

  6. Localization and Ordering of Lipids Around Aquaporin-0: Protein and Lipid Mobility Effects.

    PubMed

    Briones, Rodolfo; Aponte-Santamaría, Camilo; de Groot, Bert L

    2017-01-01

    Hydrophobic matching, lipid sorting, and protein oligomerization are key principles by which lipids and proteins organize in biological membranes. The Aquaporin-0 channel (AQP0), solved by electron crystallography (EC) at cryogenic temperatures, is one of the few protein-lipid complexes of which the structure is available in atomic detail. EC and room-temperature molecular dynamics (MD) of dimyristoylglycerophosphocholine (DMPC) annular lipids around AQP0 show similarities, however, crystal-packing and temperature might affect the protein surface or the lipids distribution. To understand the role of temperature, lipid phase, and protein mobility in the localization and ordering of AQP0-lipids, we used MD simulations of an AQP0-DMPC bilayer system. Simulations were performed at physiological and at DMPC gel-phase temperatures. To decouple the protein and lipid mobility effects, we induced gel-phase in the lipids or restrained the protein. We monitored the lipid ordering effects around the protein. Reducing the system temperature or inducing lipid gel-phase had a marginal effect on the annular lipid localization. However, restraining the protein mobility increased the annular lipid localization around the whole AQP0 surface, resembling EC. The distribution of the inter-phosphate and hydrophobic thicknesses showed that stretching of the DMPC annular layer around AQP0 surface is the mechanism that compensates the hydrophobic mismatch in this system. The distribution of the local area-per-lipid and the acyl-chain order parameters showed particular fluid- and gel-like areas that involved several lipid layers. These areas were in contact with the surfaces of higher and lower protein mobility, respectively. We conclude that the AQP0 surfaces induce specific fluid- and gel-phase prone areas. The presence of these areas might guide the AQP0 lipid sorting interactions with other membrane components, and is compatible with the squared array oligomerization of AQP0 tetramers separated by a layer of annular lipids.

  7. [Environment of tryptophan residues in proteins--a factor for stability to oxidative nitrosylation. I. Analysis of primary structure].

    PubMed

    Beda, N V; Nedospasov, A A

    2001-01-01

    Micellar catalysis under aerobic conditions effectively accelerates oxidative nitrosylation because of solubilization of NO and O2 by protein membranes and hydrophobic nuclei. Nitrosylating intermediates NOx (NO2, N2O3, N2O4) form mainly in the hydrophobic phase, and therefore their solubility in aqueous phase is low and hydrolysis is rapid, local concentration of NOx in the hydrophobic phase being essentially higher than in aqueous. Tryptophan is a hydrophobic residue and can nitrosylate with the formation of isomer N-nitrosotryptophans (NOW). Without denitrosylation mechanism, the accumulation of NOW in proteins of NO-synthesizing organisms would be constant, and long-living proteins would contain essential amounts of NOW, which is however not the case. Using Protein Data Bank (more than 78,000 sequences) we investigated the distribution of tryptophan residues environment (22 residues on each side of polypeptide chain) in proteins with known primary structure. Charged and polar residues (D, H, K, N, Q, R, S) are more incident in the immediate surrounding of tryptophan (-6, -5, -2, -1, 1, 2, 4) and hydrophobic residues (A, F, I, L, V, Y) are more rare than in remote positions. Hence, an essential part of tryptophan residues is situated in hydrophilic environment, which decreases the nitrosylation velocity because of lower NOx concentration in aqueous phase and allows the denitrosylation reactions course via nitrosonium ion transfer on nucleophils of functional groups of protein and low-molecular compounds in aqueous phase.

  8. G protein-coupled estrogen receptor 1 (GPER, GPR 30) in normal human endometrium and early pregnancy decidua.

    PubMed

    Kolkova, Z; Noskova, V; Ehinger, A; Hansson, S; Casslén, B

    2010-10-01

    The recently identified trans-membrane G protein-coupled estrogen receptor 1 (GPER, GPR30) has been implicated in rapid non-genomic effects of estrogens. This focuses on expression and localization of GPER mRNA and protein in normal cyclic endometrium and early pregnancy decidua. Real-time PCR, western blotting, in situ hybridization and immuno-histochemistry were used. Endometrial expression of GPER mRNA was lower in the secretory phase than in the proliferative phase, and even lower in the decidua. The expression pattern was similar to that of ERα mRNA, but different from that of ERβ mRNA. Western blot detected GPER protein as a 54 kDa band in all endometrial and decidual samples. In contrast to the mRNA, GPER protein did not show cyclic variations. Apparently, a lower amount of mRNA is sufficient to maintain protein levels in the secretory phase. GPER mRNA was predominantly localized in the epithelium of mid- and late-proliferative phase endometrium, whereas expression in early proliferative and secretory glands could not be distinguished from the diffuse stromal signal, which was present throughout the cycle. Immuno-staining for GPER was stronger in glandular and luminal epithelium than in the stroma throughout the cycle. The cyclic variations of GPER mRNA obviously relate to strong epithelial expression in the proliferative phase, and the expression pattern suggests regulation by ovarian steroids. GPER protein is present in endometrial tissue throughout the cycle, and the epithelial localization suggests potential functions during sperm migration at mid-cycle, as well as decidualization and blastocyst implantation in the mid-secretory phase.

  9. Female sexual behavior and sexual swelling size as potential cues for males to discern the female fertile phase in free-ranging Barbary macaques (Macaca sylvanus) of Gibraltar.

    PubMed

    Brauch, Katrin; Pfefferle, Dana; Hodges, Keith; Möhle, Ulrike; Fischer, Julia; Heistermann, Michael

    2007-09-01

    Although female catarrhine primates show cyclic changes in sexual behavior and sexual swellings, the value of these sexual signals in providing information to males about timing of the fertile phase is largely unclear. Recently, we have shown that in Barbary macaques, males receive information from females which enables them to discern the fertile phase and to focus their reproductive effort accordingly. Here, we investigate the nature of the cues being used by examining female sexual behavior and the size of sexual swelling as potential indicators of the fertile phase. We collected behavioral data and quantified swelling size using digital images of 11 females of the Gibraltar Barbary macaque population and related the data to the time of ovulation and the fertile phase as determined from fecal hormone analysis. We found that rates of female sexual behaviors were not correlated with female estrogen levels and did not significantly differ between the fertile and non-fertile phases of the cycle. In contrast, swelling size was significantly correlated with female estrogen levels and increased predictably towards ovulation with size being maximal during the fertile phase. Moreover, frequencies of male ejaculatory copulations showed a strong positive correlation with swelling size and highest rates were found during maximum swelling. Our data provide strong evidence that female Barbary macaques honestly signal the probability of fertility through sexual swelling and that males apparently use this information to time their mating activities. Honest advertising of the fertile phase might be part of a female strategy to manipulate male mating behavior for their own advantage, such as ensure fertilization with high quality sperm or influence paternity outcome.

  10. Circadian changes in core body temperature, metabolic rate and locomotor activity in rats on a high-protein, carbohydrate-free diet.

    PubMed

    Yamaoka, Ippei; Hagi, Mieko; Doi, Masako

    2009-12-01

    Ingestion of a high-protein meal results in body weight loss due to elevated energy expenditure, while also increasing satiety and decreasing subsequent food intake. The present study aimed to clarify the effects of a high-protein, carbohydrate-free diet (HPCFD) on these physiological indicators from a circadian perspective. Rats were given HPCFD or a pair-fed normal protein content diet (20% protein; NPD) for 4 d. The HPCFD group lost more body weight than the NPD group. Oxygen consumption (VO(2)) in the HPCFD group did not change during the experimental period, and tended to be higher during the light (L) phase than in the NPD group. Carbon dioxide production (VCO(2)) during the L phase was higher in the HPCFD group than in the NPD group, where VCO(2) was gradually decreased during the last dark (D) phase and throughout the L phase. The HPCFD group exhibited higher daily core body temperature (T(b)), particularly during the late D phase and throughout the L phase when compared to the NPD group. Locomotor activities during the D phase of the NPD group tended to gradually increase and were thus significantly higher than in the HPCFD group. These results suggest that HPCFD, even if energy intake is insufficient, maintains circadian changes in metabolic rates, resulting in maintenance of elevated daily T(b) and body weight reduction without increasing activity.

  11. At-sea behavior varies with lunar phase in a nocturnal pelagic seabird, the swallow-tailed gull

    USGS Publications Warehouse

    Cruz, Sebastian M.; Hooten, Mevin; Huyvaert, Kathryn P.; Proaño, Carolina B.; Anderson, David J.; Afanasyev, Vsevolod; Wikelski, Martin

    2013-01-01

    Strong and predictable environmental variability can reward flexible behaviors among animals. We used long-term records of activity data that cover several lunar cycles to investigate whether behavior at-sea of swallow-tailed gulls Creagrus furcatus, a nocturnal pelagic seabird, varied with lunar phase in the Galápagos Islands. A Bayesian hierarchical model showed that nighttime at-sea activity of 37 breeding swallow-tailed gulls was clearly associated with changes in moon phase. Proportion of nighttime spent on water was highest during darker periods of the lunar cycle, coinciding with the cycle of the diel vertical migration (DVM) that brings prey to the sea surface at night. Our data show that at-sea behavior of a tropical seabird can vary with environmental changes, including lunar phase.

  12. At-sea behavior varies with lunar phase in a nocturnal pelagic seabird, the swallow-tailed gull.

    PubMed

    Cruz, Sebastian M; Hooten, Mevin; Huyvaert, Kathryn P; Proaño, Carolina B; Anderson, David J; Afanasyev, Vsevolod; Wikelski, Martin

    2013-01-01

    Strong and predictable environmental variability can reward flexible behaviors among animals. We used long-term records of activity data that cover several lunar cycles to investigate whether behavior at-sea of swallow-tailed gulls Creagrus furcatus, a nocturnal pelagic seabird, varied with lunar phase in the Galápagos Islands. A Bayesian hierarchical model showed that nighttime at-sea activity of 37 breeding swallow-tailed gulls was clearly associated with changes in moon phase. Proportion of nighttime spent on water was highest during darker periods of the lunar cycle, coinciding with the cycle of the diel vertical migration (DVM) that brings prey to the sea surface at night. Our data show that at-sea behavior of a tropical seabird can vary with environmental changes, including lunar phase.

  13. Progesterone-dependent sexual behavior and protein patterns in the ventromedial hypothalamus of the adult female rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montemayor, M.E.; Roy, E.J.; Giometti, C.S.

    1994-09-01

    Controversy exists concerning mechanisms by which progesterone exerts central nervous system effects on behavior. Progesterone may affect behavior by genomic regulation of protein synthesis. Alternatively, it may work through non-genomic mechanisms, consistent with its short latency to act. Recent work suggests that progesterone may elicit its effects on sexual behavior by more than one mechanism in a tissue specific manner. In the present study, we have examined whether progesterone facilitation of sexual behavior is correlated with modification of protein synthesis patterns in the ventromedial hypothalamus (VMH). Ovariectomized rats were divided into three groups: estradiol (4 ug/ka at 0 and 18more » hrs), estradiol (at 0 and 18 hrs) plus progesterone (2 mg/kg at 37 hrs), and vehicle only. {sup 35}S-labeled cysteine and methionine were bilaterally infused into the VMH at 37 hrs (the time of progesterone administration). Following 4 hrs of infusion, animals were tested for sexual behavior and sacrificed. Newly synthesized VMH proteins were separated by two dimensional gel electrophoresis followed by fluorography. Analysis of approximately 660 spots/fluorogram in two independent replications indicated that no protein was completely induced or lost as a result of being treated with progesterone. The abundances of several proteins were significantly altered in response to progesterone treatment in each replication; however, none were changed in abundance in both replications. These findings present no evidence that progesterone causes detectable alterations in VIMH protein patterns between 10-100 kDa in the 4.8-6.7 apparent pI range.« less

  14. Understanding the interfacial behavior of lysozyme on Au (111) surfaces with multiscale simulations

    NASA Astrophysics Data System (ADS)

    Samieegohar, Mohammadreza; Ma, Heng; Sha, Feng; Jahan Sajib, Md Symon; Guerrero-García, G. Iván; Wei, Tao

    2017-02-01

    The understanding of the adsorption and interfacial behavior of proteins is crucial to the development of novel biosensors and biomaterials. By using bottom-up atomistic multiscale simulations, we study here the adsorption of lysozyme on Au(111) surfaces in an aqueous environment. Atomistic simulations are used to calculate the inhomogeneous polarization of the gold surface, which is induced by the protein adsorption, and by the presence of an interfacial layer of water molecules and monovalent salts. The corresponding potential of mean force between the protein and the gold surface including polarization effects is used in Langevin Dynamics simulations to study the time dependent behavior of proteins at finite concentration. These simulations display a rapid adsorption and formation of a first-layer of proteins at the interface. Proteins are initially adsorbed directly on the gold surface due to the strong protein-surface attractive interaction. A subsequent interfacial weak aggregation of proteins leading to multilayer build-up is also observed at long times.

  15. A high-protein diet enhances satiety without conditioned taste aversion in the rat.

    PubMed

    Bensaïd, Ahmed; Tomé, Daniel; L'Heureux-Bourdon, Diane; Even, Patrick; Gietzen, Dorothy; Morens, Céline; Gaudichon, Claire; Larue-Achagiotis, Christiane; Fromentin, Gilles

    2003-02-01

    In order to determine the respective roles of conditioned food aversion, satiety and palatability, we studied behavioral responses to a 50% total milk protein diet, compared with those to a normal protein diet containing 14% total milk protein. Different paradigms were employed, including meal pattern analysis, two-choice testing, flavor testing, a behavioral satiety sequence (BSS) and taste reactivity. Our experiments showed that only behavioral and food intake parameters were disturbed during the first day when an animal ate the high-protein (P50) diet, and that most parameters returned to baseline values as soon as the second day of P50. Rats adapted to P50 did not acquire a conditioned taste aversion (CTA) but exhibited satiety, and a normal BSS. The initial reduction in high-protein diet intake appeared to result from the lower palatability of the food combined with the satiety effect of the high-protein diet and the delay required for metabolic adaptation to the higher protein level.

  16. Effects of diet and behavior therapy on social and motor behavior of retarded phenylketonuric adults: an experimental analysis.

    PubMed

    Marholin, D; Pohl, R E; Stewart, R M; Touchette, P E; Townsend, N M; Kolodny, E H

    1978-03-01

    The effects of a low phenylalanine diet on six retarded phenylketonuric adults were assessed. An ABA individual-subject design was used in experiment I to assess the effects of a low phenylalanine diet on social and motor behavior. Following a baseline during which the subjects ingested a normal phenylalanine diet (phase A), a low phenylalanine diet (phase B) was administered in a double blind fashion. Finally, the baseline condition (phase A) was reinstated (normal diet). The low phenylalanine diet resulted in few significant behavioral changes for those subjects with which proper methodologic controls were employed. However, for two of six subjects motor behavior, including stereotypy and tremor, seem to have ameliorated. In experiment II, applied behavior analysis techniques, including differential reinforcement of other behavior and time out, were combined to radically reduce the frequency of stereotypy and self-abuse exhibited by one of the six subjects of experiment I.

  17. Feasibility of protein turnover studies in prototroph Saccharomyces cerevisiae strains.

    PubMed

    Martin-Perez, Miguel; Villén, Judit

    2015-04-07

    Quantitative proteomics studies of yeast that use metabolic labeling with amino acids rely on auxotrophic mutations of one or more genes on the amino acid biosynthesis pathways. These mutations affect yeast metabolism and preclude the study of some biological processes. Overcoming this limitation, it has recently been described that proteins in a yeast prototrophic strain can also be metabolically labeled with heavy amino acids. However, the temporal profiles of label incorporation under the different phases of the prototroph's growth have not been examined. Labeling trajectories are important in the study of protein turnover and dynamics, in which label incorporation into proteins is monitored across many time points. Here we monitored protein labeling trajectories for 48 h after a pulse with heavy lysine in a yeast prototrophic strain and compared them with those of a lysine auxotrophic yeast. Labeling was successful in prototroph yeast during exponential growth phase but not in stationary phase. Furthermore, we were able to determine the half-lives of more than 1700 proteins during exponential phase of growth with high accuracy and reproducibility. We found a median half-life of 2 h in both strains, which corresponds with the cellular doubling time. Nucleolar and ribosomal proteins showed short half-lives, whereas mitochondrial proteins and other energy production enzymes presented longer half-lives. Except for some proteins involved in lysine biosynthesis, we observed a high correlation in protein half-lives between prototroph and auxotroph strains. Overall, our results demonstrate the feasibility of using prototrophs for proteomic turnover studies and provide a reliable data set of protein half-lives in exponentially growing yeast.

  18. The development and validation of the Clinical Teaching Behavior Inventory (CTBI-23): Nurse preceptors' and new graduate nurses' perceptions of precepting.

    PubMed

    Lee-Hsieh, Jane; O'Brien, Anthony; Liu, Chieh-Yu; Cheng, Su-Fen; Lee, Yea-Wen; Kao, Yu-Hsiu

    2016-03-01

    Few studies have examined the perceptions of clinical teaching behaviors among both nurse preceptors and preceptees. To develop a Clinical Teaching Behavior Inventory (CTBI) for nurse preceptors' self-evaluation, and for new graduate nurse preceptee evaluation of preceptor clinical teaching behaviors and to test the validity and reliability of the CTBI. This study used mixed research techniques in five phases. Phase I: based on a literature review, the researchers developed an instrument to measure clinical teaching behaviors. Phase II: 17 focus group interviews were conducted with 63 preceptors and 24 new graduate nurses from five hospitals across Taiwan. Clinical teaching behavior themes were extracted from the focus group data and integrated into the domains and items of the CTBI. Phase III: two rounds of an expert Delphi study were conducted to determine the content validity of the instrument. Phase IV: a total of 290 nurse preceptors and 260 new graduate nurses were recruited voluntarily in the same five hospitals in Taiwan. Of these, 521 completed questionnaires to test the construct validity of CTBI by using confirmatory factory analysis. Phase V: the internal consistency and reliability of the instrument were tested. CTBI consists of 23 items in six domains: (1) 'Committing to Teaching'; (2) 'Building a Learning Atmosphere'; (3) 'Using Appropriate Teaching Strategies'; (4) 'Guiding Inter-professional Communication'; (5) 'Providing Feedback and Evaluation'; and (6) 'Showing Concern and Support'. The confirmatory factor analysis yielded a good fit and reliable scores for the CTBI-23 model. The CTBI-23 is a valid and reliable instrument for identifying the clinical teaching behaviors of a preceptor as perceived by preceptors and new graduate preceptees. The CTBI-23 depicts clinical teaching behaviors of nurse preceptors in Taiwan. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Towards the synthesis of hydroxyapatite/protein scaffolds with controlled porosities: bulk and interfacial shear rheology of a hydroxyapatite suspension with protein additives.

    PubMed

    Maas, Michael; Bodnar, Pedro Marcus; Hess, Ulrike; Treccani, Laura; Rezwan, Kurosch

    2013-10-01

    The synthesis of porous hydroxyapatite scaffolds is essential for biomedical applications such as bone tissue engineering and replacement. One way to induce macroporosity, which is needed to support bone in-growth, is to use protein additives as foaming agents. Another reason to use protein additives is the potential to introduce a specific biofunctionality to the synthesized scaffolds. In this work, we study the rheological properties of a hydroxyapatite suspension system with additions of the proteins bovine serum albumin (BSA), lysozyme (LSZ) and fibrinogen (FIB). Both the rheology of the bulk phase as well as the interfacial shear rheology are studied. The bulk rheological data provides important information on the setting behavior of the thixotropic suspension, which we find to be faster with the addition of FIB and LSZ and much slower with BSA. Foam bubble stabilization mechanisms can be rationalized via interfacial shear rheology and we show that it depends on the growth of interfacial films at the suspension/air interface. These interfacial films support the stabilization of bubbles within the ceramic matrix and thereby introduce macropores. Due to the weak interaction of the protein molecules with the hydroxyapatite particles of the suspension, we find that BSA forms the most stable interfacial films, followed by FIB. LSZ strongly interacts with the hydroxyapatite particles and thus only forms thin films with very low elastic moduli. In summary, our study provides fundamental rheological insights which are essential for tailoring hydroxyapatite/protein suspensions in order to synthesize scaffolds with controlled porosities. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Moderate and strong static magnetic fields directly affect EGFR kinase domain orientation to inhibit cancer cell proliferation

    PubMed Central

    Wang, Wenchao; Li, Zhiyuan; Liu, Juanjuan; Yang, Xingxing; Ji, Xinmiao; Luo, Yan; Hu, Chen; Hou, Yubin; He, Qianqian; Fang, Jun; Wang, Junfeng; Liu, Qingsong; Li, Guohui; Lu, Qingyou; Zhang, Xin

    2016-01-01

    Static magnetic fields (SMFs) can affect cell proliferation in a cell-type and intensity-dependent way but the mechanism remains unclear. At the same time, although the diamagnetic anisotropy of proteins has been proposed decades ago, the behavior of isolated proteins in magnetic fields has not been directly observed. Here we show that SMFs can affect isolated proteins at the single molecular level in an intensity-dependent manner. We found that Epidermal Growth Factor Receptor (EGFR), a protein that is overexpressed and highly activated in multiple cancers, can be directly inhibited by SMFs. Using Liquid-phase Scanning Tunneling Microscopy (STM) to examine pure EGFR kinase domain proteins at the single molecule level in solution, we observed orientation changes of these proteins in response to SMFs. This may interrupt inter-molecular interactions between EGFR monomers, which are critical for their activation. In molecular dynamics (MD) simulations, 1-9T SMFs caused increased probability of EGFR in parallel with the magnetic field direction in an intensity-dependent manner. A superconducting ultrastrong 9T magnet reduced proliferation of CHO-EGFR cells (Chinese Hamster Ovary cells with EGFR overexpression) and EGFR-expressing cancer cell lines by ~35%, but minimally affected CHO cells. We predict that similar effects of magnetic fields can also be applied to some other proteins such as ion channels. Our paper will help clarify some dilemmas in this field and encourage further investigations in order to achieve a better understanding of the biological effects of SMFs. PMID:27223425

  1. In vitro osteoblastic differentiation of human bone marrow cells in the presence of metal ions.

    PubMed

    Morais, S; Dias, N; Sousa, J P; Fernandes, M H; Carvalho, G S

    1999-02-01

    For periods up to 21 days human bone marrow was cultured in control conditions that favor the proliferation and differentiation of osteoblastic cells. The effect of AISI 316L corrosion products and the corresponding major separate metal ions (Fe, Cr, and Ni) were studied in three different phases of the culture period in order to investigate the effects of metal ions in cell populations representative of osteoblastic cells in different stages of differentiation. Toxicity consequences of the presence of metal ions in bone marrow cultures were evaluated by biochemical parameters (enzymatic reduction of MTT, alkaline phosphatase activity, and total protein content), histochemical assays (identification of ALP-positive cells and Ca and phosphates deposits), and observation of the cultures by light and scanning electron microscopy. Culture media were analyzed for total and ionized Ca and P and also for metal ions (Fe, Cr, and Ni). The presence of AISI 316L corrosion products and Ni salt in bone marrow cultures during the first and second weeks of culture significantly disturbs the normal behavior of these cultures, interfering in the lag phase and exponential phase of cell growth and ALP expression. However, the presence of these species during the third week of culture, when expression of osteoblastic functions occurs (mineralization process), did not result in any detectable effect. Fe salt also disturbs the behavior of bone marrow cell cultures when present during the lag phase and proliferation phase, and a somewhat compromised response between the normal pattern (control cultures) and intense inhibition (AISI 316L corrosion products and Ni salt-added cultures) was observed. Fe did not affect the progression of the mineralization phase. Osteogenic cultures exposed to Cr salt (Cr3+) presented a pattern similar to the controls, indicating that this element does not interfere, in the concentration studied, in the osteoblastic differentiation of bone marrow cells. Quantification of metal ions in the culture media showed that Cr (originated from AISI 316L corrosion products but from not Cr3+ salt) and Ni (originated from AISI 316L corrosion products and Ni salt) appear to be retained by the bone marrow cultures. Copyright 1999 John Wiley & Sons, Inc.

  2. Phase-specific Surround suppression in Mouse Primary Visual Cortex Correlates with Figure Detection Behavior Based on Phase Discontinuity.

    PubMed

    Li, Fengling; Jiang, Weiqian; Wang, Tian-Yi; Xie, Taorong; Yao, Haishan

    2018-05-21

    In the primary visual cortex (V1), neuronal responses to stimuli within the receptive field (RF) are modulated by stimuli in the RF surround. A common effect of surround modulation is surround suppression, which is dependent on the feature difference between stimuli within and surround the RF and is suggested to be involved in the perceptual phenomenon of figure-ground segregation. In this study, we examined the relationship between feature-specific surround suppression of V1 neurons and figure detection behavior based on figure-ground feature difference. We trained freely moving mice to perform a figure detection task using figure and ground gratings that differed in spatial phase. The performance of figure detection increased with the figure-ground phase difference, and was modulated by stimulus contrast. Electrophysiological recordings from V1 in head-fixed mice showed that the increase in phase difference between stimuli within and surround the RF caused a reduction in surround suppression, which was associated with an increase in V1 neural discrimination between stimuli with and without RF-surround phase difference. Consistent with the behavioral performance, the sensitivity of V1 neurons to RF-surround phase difference could be influenced by stimulus contrast. Furthermore, inhibiting V1 by optogenetically activating either parvalbumin (PV)- or somatostatin (SOM)-expressing inhibitory neurons both decreased the behavioral performance of figure detection. Thus, the phase-specific surround suppression in V1 represents a neural correlate of figure detection behavior based on figure-ground phase discontinuity. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. High Internal Phase Pickering Emulsions Stabilized Solely by Peanut Protein Microgel Particles with Multiple Potential Applications.

    PubMed

    Jiao, Bo; Shi, Aimin; Qiang, Wang; Binks, Bernard

    2018-05-30

    High internal phase Pickering emulsions have various applications in materials science. However, the biocompatibility and biodegradability of inorganic or synthetic stabilizers limit their applications. Herein, we describe the high internal phase Pickering emulsions with 87% edible oil or 88% n-hexane in water stabilized by peanut protein isolate microgel particles. These dispersed phase volume fractions reach the highest in all known food-grade Pickering emulsions. The protein based microgel particles are in different aggregate states depends on pH. The emulsions can be utilized for multiple potential applications simply by changing the internal phase composition. A substitute for partially hydrogenated vegetable oils is obtained when the internal phase is an edible oil. If the internal phase is n-hexane, the emulsion can be used as a template to produce porous materials, which can be used in tissue engineering advantageously since the raw materials are natural and non-toxic. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. On-tissue Direct Monitoring of Global Hydrogen/Deuterium Exchange by MALDI Mass Spectrometry: Tissue Deuterium Exchange Mass Spectrometry (TDXMS)*

    PubMed Central

    Quanico, Jusal; Franck, Julien

    2016-01-01

    Hydrogen/deuterium exchange mass spectrometric (H/DXMS) methods for protein structural analysis are conventionally performed in solution. We present Tissue Deuterium Exchange Mass Spectrometry (TDXMS), a method to directly monitor deuterium uptake on tissue, as a means to better approximate the deuterium exchange behavior of proteins in their native microenvironment. Using this method, a difference in deuterium uptake behavior was observed when the same proteins were monitored in solution and on tissue. The higher maximum deuterium uptake at equilibrium for all proteins analyzed in solution suggests a more open conformation in the absence of interacting partners normally observed on tissue. We also demonstrate a difference in the deuterium uptake behavior of a few proteins across different morphological regions of the same tissue section. Modifications of the total number of hydrogens exchanged, as well as the kinetics of exchange, were both observed. These results provide information on the implication of protein interactions with partners as well as on the conformational changes related to these interactions, and illustrate the importance of examining protein deuterium exchange behavior in the presence of its specific microenvironment directly at the level of tissues. PMID:27512083

  5. Pathways from childhood intelligence and socioeconomic status to late-life cardiovascular disease risk.

    PubMed

    Hagger-Johnson, Gareth; Mõttus, René; Craig, Leone C A; Starr, John M; Deary, Ian J

    2012-07-01

    C-reactive protein (CRP) is an acute-phase marker of systemic inflammation and considered an established risk marker for cardiovascular disease (CVD) in old age. Previous studies have suggested that low childhood intelligence, lower socioeconomic status (SES) in childhood or in later life, unhealthy behaviors, poor wellbeing, and high body mass index (BMI) are associated with inflammation. Life course models that simultaneously incorporate all these risk factors can explain how CVD risks accumulate over time, from childhood to old age. Using the data from 1,091 Scottish adults (Lothian Birth Cohort Study, 1936), a path model was constructed to predict CRP at age 70 from concurrent health behaviors, self-perceived quality of life, and BMI and adulthood SES as mediating variables, and from parental SES and childhood intelligence as distal risk factors. A well-fitting path model (CFI = .92, SRMR = .05) demonstrated significant indirect effects from childhood intelligence and parental social class to inflammation via BMI, health behaviors and quality of life (all ps < .05). Low childhood intelligence, unhealthy behaviors, and higher BMI were also direct predictors of CRP. The life course model illustrated how CVD risks may accumulate over time, beginning in childhood and being both direct and transmitted indirectly via low adult SES, unhealthy behaviors, impaired quality of life, and high BMI. Knowledge on the childhood risk factors and their pathways to poor health can be used to identify high-risk individuals for more intensive and tailored behavior change interventions, and to develop effective public health policies.

  6. Observation of the Quantum Anomalous Hall Insulator to Anderson Insulator Quantum Phase Transition and its Scaling Behavior.

    PubMed

    Chang, Cui-Zu; Zhao, Weiwei; Li, Jian; Jain, J K; Liu, Chaoxing; Moodera, Jagadeesh S; Chan, Moses H W

    2016-09-16

    Fundamental insight into the nature of the quantum phase transition from a superconductor to an insulator in two dimensions, or from one plateau to the next or to an insulator in the quantum Hall effect, has been revealed through the study of its scaling behavior. Here, we report on the experimental observation of a quantum phase transition from a quantum-anomalous-Hall insulator to an Anderson insulator in a magnetic topological insulator by tuning the chemical potential. Our experiment demonstrates the existence of scaling behavior from which we extract the critical exponent for this quantum phase transition. We expect that our work will motivate much further investigation of many properties of quantum phase transition in this new context.

  7. The phase behavior of cationic lipid-DNA complexes.

    PubMed Central

    May, S; Harries, D; Ben-Shaul, A

    2000-01-01

    We present a theoretical analysis of the phase behavior of solutions containing DNA, cationic lipids, and nonionic (helper) lipids. Our model allows for five possible structures, treated as incompressible macroscopic phases: two lipid-DNA composite (lipoplex) phases, namely, the lamellar (L(alpha)(C)) and hexagonal (H(II)(C)) complexes; two binary (cationic/neutral) lipid phases, that is, the bilayer (L(alpha)) and inverse-hexagonal (H(II)) structures, and uncomplexed DNA. The free energy of the four lipid-containing phases is expressed as a sum of composition-dependent electrostatic, elastic, and mixing terms. The electrostatic free energies of all phases are calculated based on Poisson-Boltzmann theory. The phase diagram of the system is evaluated by minimizing the total free energy of the three-component mixture with respect to all the compositional degrees of freedom. We show that the phase behavior, in particular the preferred lipid-DNA complex geometry, is governed by a subtle interplay between the electrostatic, elastic, and mixing terms, which depend, in turn, on the lipid composition and lipid/DNA ratio. Detailed calculations are presented for three prototypical systems, exhibiting markedly different phase behaviors. The simplest mixture corresponds to a rigid planar membrane as the lipid source, in which case, only lamellar complexes appear in solution. When the membranes are "soft" (i.e., low bending modulus) the system exhibits the formation of both lamellar and hexagonal complexes, sometimes coexisting with each other, and with pure lipid or DNA phases. The last system corresponds to a lipid mixture involving helper lipids with strong propensity toward the inverse-hexagonal phase. Here, again, the phase diagram is rather complex, revealing a multitude of phase transitions and coexistences. Lamellar and hexagonal complexes appear, sometimes together, in different regions of the phase diagram. PMID:10733951

  8. A stationary-phase protein of Escherichia coli that affects the mode of association between the trp repressor protein and operator-bearing DNA.

    PubMed

    Yang, W; Ni, L; Somerville, R L

    1993-06-15

    Highly purified preparations of trp repressor (TrpR) protein derived from Escherichia coli strains that were engineered to overexpress this material were found to contain another protein, of 21 kDa. The second protein, designated WrbA [for tryptophan (W) repressor-binding protein] remained associated with its namesake through several sequential protein fractionation steps. The N-terminal amino acid sequence of the WrbA protein guided the design of two degenerate oligonucleotides that were used as probes in the cloning of the wrbA gene (198 codons). The WrbA protein, in purified form, was found by several criteria to enhance the formation and/or stability of noncovalent complexes between TrpR holorepressor and its primary operator targets. The formation of an operator-holorepressor-WrbA ternary complex was demonstrated by gel mobility-shift analysis. The WrbA protein alone does not interact with the trp operator. During the stationary phase, cells deficient in the WrbA protein were less efficient than wild type in their ability to repress the trp promoter. It is proposed that the WrbA protein functions as an accessory element in blocking TrpR-specific transcriptional processes that might be physiologically disadvantageous in the stationary phase of the bacterial life cycle.

  9. Direct Correlation between Motile Behavior and Protein Abundance in Single Cells

    PubMed Central

    Gillet, Sébastien; Frankel, Nicholas W.; Weibel, Douglas B.

    2016-01-01

    Understanding how stochastic molecular fluctuations affect cell behavior requires the quantification of both behavior and protein numbers in the same cells. Here, we combine automated microscopy with in situ hydrogel polymerization to measure single-cell protein expression after tracking swimming behavior. We characterized the distribution of non-genetic phenotypic diversity in Escherichia coli motility, which affects single-cell exploration. By expressing fluorescently tagged chemotaxis proteins (CheR and CheB) at different levels, we quantitatively mapped motile phenotype (tumble bias) to protein numbers using thousands of single-cell measurements. Our results disagreed with established models until we incorporated the role of CheB in receptor deamidation and the slow fluctuations in receptor methylation. Beyond refining models, our central finding is that changes in numbers of CheR and CheB affect the population mean tumble bias and its variance independently. Therefore, it is possible to adjust the degree of phenotypic diversity of a population by adjusting the global level of expression of CheR and CheB while keeping their ratio constant, which, as shown in previous studies, confers functional robustness to the system. Since genetic control of protein expression is heritable, our results suggest that non-genetic diversity in motile behavior is selectable, supporting earlier hypotheses that such diversity confers a selective advantage. PMID:27599206

  10. Downregulation of the expression of HDGF attenuates malignant biological behaviors of hilar cholangiocarcinoma cells.

    PubMed

    Liu, Yanfeng; Sun, Jingxian; Yang, Guangyun; Liu, Zhaojian; Guo, Sen; Zhao, Rui; Xu, Kesen; Wu, Xiaopeng; Zhang, Zhaoyang

    2015-09-01

    Hepatoma-derived growth factor (HDGF) has been reported to be a potential predictive and prognostic marker for several types of cancer and important in malignant biological behaviors. However, its role in human hilar cholangiocarcinoma remains to be elucidated. Our previous study demonstrated that high expression levels of HDGF in hilar cholangiocarcinoma tissues correlates with tumor progression and patient outcome. The present study aimed to elucidate the detailed functions of the HDGF protein. This was performed by downregulating the protein expression of HDGF in the FRH0201 hilar cholangiocarcinoma cell line by RNA interference (RNAi) in vitro, and revealed that downregulation of the HDGF protein significantly inhibited the malignant biological behavior of the FRH0201 cells. In addition, further investigation revealed that downregulation of the protein expression of HDGF significantly decreased the secretion of vascular endothelial growth factor, which may be the mechanism partially responsible for the inhibition of malignant biological behaviors. These findings demonstrated that HDGF is important in promoting malignant biological behaviors, including proliferation, migration and invasion of hilar cholangiocarcinoma FRH0201 cells. Inhibition of the expression of HDGF downregulated the malignant biological behaviors, suggesting that downregulation of the protein expression of HDGF by RNAi may be a novel therapeutic approach to inhibit the progression of hilar cholangiocarcinoma.

  11. Pressure-induced structural transition in chalcopyrite ZnSiP 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhadram, Venkata S.; Krishna, Lakshmi; Toberer, Eric S.

    The pressure-dependent phase behavior of semiconducting chalcopyrite ZnSiP 2 was studied up to 30 GPa using in situ X-ray diffraction and Raman spectroscopy in a diamond-anvil cell. A structural phase transition to the rock salt type structure was observed between 27 and 30 GPa, which is accompanied by soft phonon mode behavior and simultaneous loss of Raman signal and optical transmission through the sample. The high-pressure rock salt type phase possesses cationic disorder as evident from broad features in the X-ray diffraction patterns. The behavior of the low-frequency Raman modes during compression establishes a two-stage, order-disorder phase transition mechanism. Themore » phase transition is partially reversible, and the parent chalcopyrite structure coexists with an amorphous phase upon slow decompression to ambient conditions.« less

  12. An investigation into the flow behavior of a single phase gas system and a two phase gas/liquid system in normal gravity with nonuniform heating from above

    NASA Technical Reports Server (NTRS)

    Disimile, Peter J.; Heist, Timothy J.

    1990-01-01

    The fluid behavior in normal gravity of a single phase gas system and a two phase gas/liquid system in an enclosed circular cylinder heated suddenly and nonuniformly from above was investigated. Flow visualization was used to obtain qualitative data on both systems. The use of thermochromatic liquid crystal particles as liquid phase flow tracers was evaluated as a possible means of simultaneously gathering both flow pattern and temperature gradient data for the two phase system. The results of the flow visualization experiments performed on both systems can be used to gain a better understanding of the behavior of such systems in a reduced gravity environment and aid in the verification of a numerical model of the system.

  13. High-pressure phase transitions, amorphization, and crystallization behaviors in Bi2Se3.

    PubMed

    Zhao, Jinggeng; Liu, Haozhe; Ehm, Lars; Dong, Dawei; Chen, Zhiqiang; Gu, Genda

    2013-03-27

    The phase transition, amorphization, and crystallization behaviors of the topological insulator bismuth selenide (Bi2Se3) were discovered by performing in situ high-pressure angle-dispersive x-ray diffraction experiments during an increasing, decreasing, and recycling pressure process. In the compression process, Bi2Se3 transforms from the original rhombohedral structure (phase I(A)) to a monoclinic structure (phase II) at about 10.4 GPa, and further to a body-centered tetragonal structure (phase III) at about 24.5 GPa. When releasing pressure to ambient conditions after the complete transformation from phase II to III, Bi2Se3 becomes an amorphous solid (AM). In the relaxation process from this amorphous state, Bi2Se3 starts crystallizing into an orthorhombic structure (phase I(B)) about five hours after releasing the pressure to ambient. A review of the pressure-induced phase transition behaviors of A2B3-type materials composed from the V and VI group elements is presented.

  14. The Effect of AOT and Octanoic Acid on the Formation of Stable Water-in-diesel Microemulsion

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Misran, Misni Bin; Wang, Zhicheng; Zhang, Yu

    2017-05-01

    Sodium bis(2-ethylhexyl)sulfosuccinate (AOT) and octanoic acid (OA) were used as surfactants to prepare water-in-diesel microemulsion. The effect of mixed surfactants ratio on the phase behavior of water-in-diesel microemulsion was investigated. The R0-T plot phase diagrams for the diesel/AOT and OA/water system with different surfactant ratios were constructed at 30-80 °C. The results indicate that the largest single phase region could be obtained when OA to AOT molar ratio was 1. The temperature had a significant influence on phase transformation behavior. The single phase separated into two immiscible phases with the increase of temperature when R0 value was above 10. Compared with applying AOT alone, mixing AOT with appropriate amount of OA is benefit to form smaller nanosized W/O droplets. The determination of particle size was performed to verify the phase transformation behavior, and the results were consistent with the phase diagrams.

  15. Dynamics of Hippocampal Protein Expression During Long-term Spatial Memory Formation*

    PubMed Central

    Borovok, Natalia; Nesher, Elimelech; Levin, Yishai; Reichenstein, Michal; Pinhasov, Albert

    2016-01-01

    Spatial memory depends on the hippocampus, which is particularly vulnerable to aging. This vulnerability has implications for the impairment of navigation capacities in older people, who may show a marked drop in performance of spatial tasks with advancing age. Contemporary understanding of long-term memory formation relies on molecular mechanisms underlying long-term synaptic plasticity. With memory acquisition, activity-dependent changes occurring in synapses initiate multiple signal transduction pathways enhancing protein turnover. This enhancement facilitates de novo synthesis of plasticity related proteins, crucial factors for establishing persistent long-term synaptic plasticity and forming memory engrams. Extensive studies have been performed to elucidate molecular mechanisms of memory traces formation; however, the identity of plasticity related proteins is still evasive. In this study, we investigated protein turnover in mouse hippocampus during long-term spatial memory formation using the reference memory version of radial arm maze (RAM) paradigm. We identified 1592 proteins, which exhibited a complex picture of expression changes during spatial memory formation. Variable linear decomposition reduced significantly data dimensionality and enriched three principal factors responsible for variance of memory-related protein levels at (1) the initial phase of memory acquisition (165 proteins), (2) during the steep learning improvement (148 proteins), and (3) the final phase of the learning curve (123 proteins). Gene ontology and signaling pathways analysis revealed a clear correlation between memory improvement and learning phase-curbed expression profiles of proteins belonging to specific functional categories. We found differential enrichment of (1) neurotrophic factors signaling pathways, proteins regulating synaptic transmission, and actin microfilament during the first day of the learning curve; (2) transcription and translation machinery, protein trafficking, enhancement of metabolic activity, and Wnt signaling pathway during the steep phase of memory formation; and (3) cytoskeleton organization proteins. Taken together, this study clearly demonstrates dynamic assembly and disassembly of protein-protein interaction networks depending on the stage of memory formation engrams. PMID:26598641

  16. Seminal Fluid Regulation of Female Sexual Attractiveness in Drosophila melanogaster

    NASA Astrophysics Data System (ADS)

    Tram, Uyen; Wolfner, Mariana F.

    1998-03-01

    Finding a willing and suitable mate is critical for sexual reproduction. Visual, auditory, and chemical cues aid in locating and/or attracting partners. After mating, females from many insect species become less attractive. This is caused by changes in the quantity and/or quality of pheromones synthesized by the female and to changes in the female's behavior. For example, female insects may stop releasing pheromones, assume a mate refusal posture, or move less in response to males. Many postmating changes in female insects are triggered by seminal fluid proteins from the male's accessory gland proteins (Acps) and by sperm. To determine the role of seminal fluid components in mediating changes in attractiveness, we measured the attractiveness of Drosophila melanogaster females that had been mated to genetically altered males that lack sperm and/or Acps. We found that the drop in female attractiveness occurs in two phases. A short-term drop in attractiveness is triggered independent of the receipt of sperm and Acps. Maintenance of lowered attractiveness is dependent upon sperm.

  17. Effect of bioparticle size on dispersion and retention in monolithic and perfusive beds

    PubMed Central

    Trilisky, Egor I.; Lenhoff, Abraham M.

    2010-01-01

    Single-component pulse response studies were used to compare the retention and transport behavior of small molecules, proteins, and a virus on commercially available monolithic and perfusive ion-exchangers. Temporal distortion and extra-column effects were corrected for using a simple algorithm based on the method of moments. It was found that temporal distortion is inversely related to the number of theoretical plates. With increasing bioparticle size, retention increased and the transition from a non-eluting to a non-adsorbing state with increasing ionic strength became more abrupt. Both of these observations are qualitatively explained by calculations of particle-surface electrostatic attractive energy. Calculations also show that, for sufficiently large bioparticles, such as viruses or cells, hydrodynamic drag can promote elution. Under non-adsorbing conditions, plate height increased only weakly with flow rate and the skew remained unchanged. With increasing retention, plate height increased dramatically for proteins. Plate height was scaled by permeability rather than bead diameter to enable comparison among different stationary phases. PMID:20951383

  18. The cyanobacterial circadian clock follows midday in vivo and in vitro

    PubMed Central

    Leypunskiy, Eugene; Lin, Jenny; Yoo, Haneul; Lee, UnJin; Dinner, Aaron R; Rust, Michael J

    2017-01-01

    Circadian rhythms are biological oscillations that schedule daily changes in physiology. Outside the laboratory, circadian clocks do not generally free-run but are driven by daily cues whose timing varies with the seasons. The principles that determine how circadian clocks align to these external cycles are not well understood. Here, we report experimental platforms for driving the cyanobacterial circadian clock both in vivo and in vitro. We find that the phase of the circadian rhythm follows a simple scaling law in light-dark cycles, tracking midday across conditions with variable day length. The core biochemical oscillator comprised of the Kai proteins behaves similarly when driven by metabolic pulses in vitro, indicating that such dynamics are intrinsic to these proteins. We develop a general mathematical framework based on instantaneous transformation of the clock cycle by external cues, which successfully predicts clock behavior under many cycling environments. DOI: http://dx.doi.org/10.7554/eLife.23539.001 PMID:28686160

  19. A Bottom-Up Approach to Understanding Protein Layer Formation at Solid-Liquid Interfaces

    PubMed Central

    Kastantin, Mark; Langdon, Blake B.; Schwartz, Daniel K.

    2014-01-01

    A common goal across different fields (e.g. separations, biosensors, biomaterials, pharmaceuticals) is to understand how protein behavior at solid-liquid interfaces is affected by environmental conditions. Temperature, pH, ionic strength, and the chemical and physical properties of the solid surface, among many factors, can control microscopic protein dynamics (e.g. adsorption, desorption, diffusion, aggregation) that contribute to macroscopic properties like time-dependent total protein surface coverage and protein structure. These relationships are typically studied through a top-down approach in which macroscopic observations are explained using analytical models that are based upon reasonable, but not universally true, simplifying assumptions about microscopic protein dynamics. Conclusions connecting microscopic dynamics to environmental factors can be heavily biased by potentially incorrect assumptions. In contrast, more complicated models avoid several of the common assumptions but require many parameters that have overlapping effects on predictions of macroscopic, average protein properties. Consequently, these models are poorly suited for the top-down approach. Because the sophistication incorporated into these models may ultimately prove essential to understanding interfacial protein behavior, this article proposes a bottom-up approach in which direct observations of microscopic protein dynamics specify parameters in complicated models, which then generate macroscopic predictions to compare with experiment. In this framework, single-molecule tracking has proven capable of making direct measurements of microscopic protein dynamics, but must be complemented by modeling to combine and extrapolate many independent microscopic observations to the macro-scale. The bottom-up approach is expected to better connect environmental factors to macroscopic protein behavior, thereby guiding rational choices that promote desirable protein behaviors. PMID:24484895

  20. Associations between dairy protein intake and body weight and risk markers of diabetes and CVD during weight maintenance.

    PubMed

    Bendtsen, Line Q; Lorenzen, Janne K; Larsen, Thomas M; van Baak, Marleen; Papadaki, Angeliki; Martinez, J Alfredo; Handjieva-Darlenska, Teodora; Jebb, Susan A; Kunešová, Marie; Pfeiffer, Andreas F H; Saris, Wim H M; Astrup, Arne; Raben, Anne

    2014-03-14

    Dairy products have previously been reported to be associated with beneficial effects on body weight and metabolic risk markers. Moreover, primary data from the Diet, Obesity and Genes (DiOGenes) study indicate a weight-maintaining effect of a high-protein-low-glycaemic index diet. The objective of the present study was to examine putative associations between consumption of dairy proteins and changes in body weight and metabolic risk markers after weight loss in obese and overweight adults. Results were based on secondary analyses of data obtained from overweight and obese adults who completed the DiOGenes study. The study consisted of an 8-week weight-loss phase and a 6-month weight-maintenance (WM) phase, where the subjects were given five different diets varying in protein content and glycaemic index. In the present study, data obtained from all the subjects were pooled. Dairy protein intake was estimated from 3 d dietary records at two time points (week 4 and week 26) during the WM phase. Body weight and metabolic risk markers were determined at baseline (week -9 to -11) and before and at the end of the WM phase (week 0 and week 26). Overall, no significant associations were found between consumption of dairy proteins and changes in body weight and metabolic risk markers. However, dairy protein intake tended to be negatively associated with body weight gain (P=0·08; β=-0·17), but this was not persistent when controlled for total protein intake, which indicates that dairy protein adds no additional effect to the effect of total protein. Therefore, the present study does not report that dairy proteins are more favourable than other proteins for body weight regulation.

Top