Science.gov

Sample records for protein secretion system

  1. A light-triggered protein secretion system.

    PubMed

    Chen, Daniel; Gibson, Emily S; Kennedy, Matthew J

    2013-05-13

    Optical control of protein interactions has emerged as a powerful experimental paradigm for manipulating and studying various cellular processes. Tools are now available for controlling a number of cellular functions, but some fundamental processes, such as protein secretion, have been difficult to engineer using current optical tools. Here we use UVR8, a plant photoreceptor protein that forms photolabile homodimers, to engineer the first light-triggered protein secretion system. UVR8 fusion proteins were conditionally sequestered in the endoplasmic reticulum, and a brief pulse of light triggered robust forward trafficking through the secretory pathway to the plasma membrane. UVR8 was not responsive to excitation light used to image cyan, green, or red fluorescent protein variants, allowing multicolor visualization of cellular markers and secreted protein cargo as it traverses the cellular secretory pathway. We implemented this novel tool in neurons to demonstrate restricted, local trafficking of secretory cargo near dendritic branch points.

  2. Identification of protein secretion systems and novel secreted proteins in Rhizobium leguminosarum bv. viciae

    PubMed Central

    Krehenbrink, Martin; Downie, J Allan

    2008-01-01

    Background Proteins secreted by bacteria play an important role in infection of eukaryotic hosts. Rhizobia infect the roots of leguminous plants and establish a mutually beneficial symbiosis. Proteins secreted during the infection process by some rhizobial strains can influence infection and modify the plant defence signalling pathways. The aim of this study was to systematically analyse protein secretion in the recently sequenced strain Rhizobium leguminosarum bv. viciae 3841. Results Similarity searches using defined protein secretion systems from other Gram-negative bacteria as query sequences revealed that R. l. bv. viciae 3841 has ten putative protein secretion systems. These are the general export pathway (GEP), a twin-arginine translocase (TAT) secretion system, four separate Type I systems, one putative Type IV system and three Type V autotransporters. Mutations in genes encoding each of these (except the GEP) were generated, but only mutations affecting the PrsDE (Type I) and TAT systems were observed to affect the growth phenotype and the profile of proteins in the culture supernatant. Bioinformatic analysis and mass fingerprinting of tryptic fragments of culture supernatant proteins identified 14 putative Type I substrates, 12 of which are secreted via the PrsDE, secretion system. The TAT mutant was defective for the symbiosis, forming nodules incapable of nitrogen fixation. Conclusion None of the R. l. bv. viciae 3841 protein secretion systems putatively involved in the secretion of proteins to the extracellular space (Type I, Type IV, Type V) is required for establishing the symbiosis with legumes. The PrsDE (Type I) system was shown to be the major route of protein secretion in non-symbiotic cells and to secrete proteins of widely varied size and predicted function. This is in contrast to many Type I systems from other bacteria, which typically secrete specific substrates encoded by genes often localised in close proximity to the genes encoding the

  3. Using Transcriptional Control To Increase Titers of Secreted Heterologous Proteins by the Type III Secretion System

    PubMed Central

    Metcalf, Kevin J.; Finnerty, Casey; Azam, Anum; Valdivia, Elias

    2014-01-01

    The type III secretion system (T3SS) encoded at the Salmonella pathogenicity island 1 (SPI-1) locus secretes protein directly from the cytosol to the culture media in a concerted, one-step process, bypassing the periplasm. While this approach is attractive for heterologous protein production, product titers are too low for many applications. In addition, the expression of the SPI-1 gene cluster is subject to native regulation, which requires culturing conditions that are not ideal for high-density growth. We used transcriptional control to increase the amount of protein that is secreted into the extracellular space by the T3SS of Salmonella enterica. The controlled expression of the gene encoding SPI-1 transcription factor HilA circumvents the requirement of endogenous induction conditions and allows for synthetic induction of the secretion system. This strategy increases the number of cells that express SPI-1 genes, as measured by promoter activity. In addition, protein secretion titer is sensitive to the time of addition and the concentration of inducer for the protein to be secreted and SPI-1 gene cluster. Overexpression of hilA increases secreted protein titer by >10-fold and enables recovery of up to 28 ± 9 mg/liter of secreted protein from an 8-h culture. We also demonstrate that the protein beta-lactamase is able to adopt an active conformation after secretion, and the increase in secreted titer from hilA overexpression also correlates to increased enzyme activity in the culture supernatant. PMID:25038096

  4. Identification of protein secretion systems in bacterial genomes

    PubMed Central

    Abby, Sophie S.; Cury, Jean; Guglielmini, Julien; Néron, Bertrand; Touchon, Marie; Rocha, Eduardo P. C.

    2016-01-01

    Bacteria with two cell membranes (diderms) have evolved complex systems for protein secretion. These systems were extensively studied in some model bacteria, but the characterisation of their diversity has lagged behind due to lack of standard annotation tools. We built online and standalone computational tools to accurately predict protein secretion systems and related appendages in bacteria with LPS-containing outer membranes. They consist of models describing the systems’ components and genetic organization to be used with MacSyFinder to search for T1SS-T6SS, T9SS, flagella, Type IV pili and Tad pili. We identified ~10,000 candidate systems in bacterial genomes, where T1SS and T5SS were by far the most abundant and widespread. All these data are made available in a public database. The recently described T6SSiii and T9SS were restricted to Bacteroidetes, and T6SSii to Francisella. The T2SS, T3SS, and T4SS were frequently encoded in single-copy in one locus, whereas most T1SS were encoded in two loci. The secretion systems of diderm Firmicutes were similar to those found in other diderms. Novel systems may remain to be discovered, since some clades of environmental bacteria lacked all known protein secretion systems. Our models can be fully customized, which should facilitate the identification of novel systems. PMID:26979785

  5. Identification of Anaplasma marginale Type IV Secretion System Effector Proteins

    PubMed Central

    Brayton, Kelly A.; Beare, Paul A.; Brown, Wendy C.; Heinzen, Robert A.; Broschat, Shira L.

    2011-01-01

    Background Anaplasma marginale, an obligate intracellular alphaproteobacterium in the order Rickettsiales, is a tick-borne pathogen and the leading cause of anaplasmosis in cattle worldwide. Complete genome sequencing of A. marginale revealed that it has a type IV secretion system (T4SS). The T4SS is one of seven known types of secretion systems utilized by bacteria, with the type III and IV secretion systems particularly prevalent among pathogenic Gram-negative bacteria. The T4SS is predicted to play an important role in the invasion and pathogenesis of A. marginale by translocating effector proteins across its membrane into eukaryotic target cells. However, T4SS effector proteins have not been identified and tested in the laboratory until now. Results By combining computational methods with phylogenetic analysis and sequence identity searches, we identified a subset of potential T4SS effectors in A. marginale strain St. Maries and chose six for laboratory testing. Four (AM185, AM470, AM705 [AnkA], and AM1141) of these six proteins were translocated in a T4SS-dependent manner using Legionella pneumophila as a reporter system. Conclusions The algorithm employed to find T4SS effector proteins in A. marginale identified four such proteins that were verified by laboratory testing. L. pneumophila was shown to work as a model system for A. marginale and thus can be used as a screening tool for A. marginale effector proteins. The first T4SS effector proteins for A. marginale have been identified in this work. PMID:22140462

  6. Identification of Porphyromonas gingivalis proteins secreted by the Por secretion system.

    PubMed

    Sato, Keiko; Yukitake, Hideharu; Narita, Yuka; Shoji, Mikio; Naito, Mariko; Nakayama, Koji

    2013-01-01

    The Gram-negative bacterium Porphyromonas gingivalis possesses a number of potential virulence factors for periodontopathogenicity. In particular, cysteine proteinases named gingipains are of interest given their abilities to degrade host proteins and process other virulence factors such as fimbriae. Gingipains are translocated on the cell surface or into the extracellular milieu by the Por secretion system (PorSS), which consists of a number of membrane or periplasmic proteins including PorK, PorL, PorM, PorN, PorO, PorP, PorQ, PorT, PorU, PorV (PG27, LptO), PorW and Sov. To identify proteins other than gingipains secreted by the PorSS, we compared the proteomes of P. gingivalis strains kgp rgpA rgpB (PorSS-proficient strain) and kgp rgpA rgpB porK (PorSS-deficient strain) using two-dimensional gel electrophoresis and peptide-mass fingerprinting. Sixteen spots representing 10 different proteins were present in the particle-free culture supernatant of the PorSS-proficient strain but were absent or faint in that of the PorSS-deficient strain. These identified proteins possessed the C-terminal domains (CTDs), which had been suggested to form the CTD protein family. These results indicate that the PorSS is used for secretion of a number of proteins other than gingipains and that the CTDs of the proteins are associated with the PorSS-dependent secretion. PMID:23075153

  7. Identification of Porphyromonas gingivalis proteins secreted by the Por secretion system.

    PubMed

    Sato, Keiko; Yukitake, Hideharu; Narita, Yuka; Shoji, Mikio; Naito, Mariko; Nakayama, Koji

    2013-01-01

    The Gram-negative bacterium Porphyromonas gingivalis possesses a number of potential virulence factors for periodontopathogenicity. In particular, cysteine proteinases named gingipains are of interest given their abilities to degrade host proteins and process other virulence factors such as fimbriae. Gingipains are translocated on the cell surface or into the extracellular milieu by the Por secretion system (PorSS), which consists of a number of membrane or periplasmic proteins including PorK, PorL, PorM, PorN, PorO, PorP, PorQ, PorT, PorU, PorV (PG27, LptO), PorW and Sov. To identify proteins other than gingipains secreted by the PorSS, we compared the proteomes of P. gingivalis strains kgp rgpA rgpB (PorSS-proficient strain) and kgp rgpA rgpB porK (PorSS-deficient strain) using two-dimensional gel electrophoresis and peptide-mass fingerprinting. Sixteen spots representing 10 different proteins were present in the particle-free culture supernatant of the PorSS-proficient strain but were absent or faint in that of the PorSS-deficient strain. These identified proteins possessed the C-terminal domains (CTDs), which had been suggested to form the CTD protein family. These results indicate that the PorSS is used for secretion of a number of proteins other than gingipains and that the CTDs of the proteins are associated with the PorSS-dependent secretion.

  8. Por Secretion System-Dependent Secretion and Glycosylation of Porphyromonas gingivalis Hemin-Binding Protein 35

    PubMed Central

    Shoji, Mikio; Sato, Keiko; Yukitake, Hideharu; Kondo, Yoshio; Narita, Yuka; Kadowaki, Tomoko; Naito, Mariko; Nakayama, Koji

    2011-01-01

    The anaerobic Gram-negative bacterium Porphyromonas gingivalis is a major pathogen in severe forms of periodontal disease and refractory periapical perodontitis. We have recently found that P. gingivalis has a novel secretion system named the Por secretion system (PorSS), which is responsible for secretion of major extracellular proteinases, Arg-gingipains (Rgps) and Lys-gingipain. These proteinases contain conserved C-terminal domains (CTDs) in their C-termini. Hemin-binding protein 35 (HBP35), which is one of the outer membrane proteins of P. gingivalis and contributes to its haem utilization, also contains a CTD, suggesting that HBP35 is translocated to the cell surface via the PorSS. In this study, immunoblot analysis of P. gingivalis mutants deficient in the PorSS or in the biosynthesis of anionic polysaccharide-lipopolysaccharide (A-LPS) revealed that HBP35 is translocated to the cell surface via the PorSS and is glycosylated with A-LPS. From deletion analysis with a GFP-CTD[HBP35] green fluorescent protein fusion, the C-terminal 22 amino acid residues of CTD[HBP35] were found to be required for cell surface translocation and glycosylation. The GFP-CTD fusion study also revealed that the CTDs of CPG70, peptidylarginine deiminase, P27 and RgpB play roles in PorSS-dependent translocation and glycosylation. However, CTD-region peptides were not found in samples of glycosylated HBP35 protein by peptide map fingerprinting analysis, and antibodies against CTD-regions peptides did not react with glycosylated HBP35 protein. These results suggest both that the CTD region functions as a recognition signal for the PorSS and that glycosylation of CTD proteins occurs after removal of the CTD region. Rabbits were used for making antisera against bacterial proteins in this study. PMID:21731719

  9. Type III Protein Secretion Systems in Bacterial Pathogens of Animals and Plants

    PubMed Central

    Hueck, Christoph J.

    1998-01-01

    Various gram-negative animal and plant pathogens use a novel, sec-independent protein secretion system as a basic virulence mechanism. It is becoming increasingly clear that these so-called type III secretion systems inject (translocate) proteins into the cytosol of eukaryotic cells, where the translocated proteins facilitate bacterial pathogenesis by specifically interfering with host cell signal transduction and other cellular processes. Accordingly, some type III secretion systems are activated by bacterial contact with host cell surfaces. Individual type III secretion systems direct the secretion and translocation of a variety of unrelated proteins, which account for species-specific pathogenesis phenotypes. In contrast to the secreted virulence factors, most of the 15 to 20 membrane-associated proteins which constitute the type III secretion apparatus are conserved among different pathogens. Most of the inner membrane components of the type III secretion apparatus show additional homologies to flagellar biosynthetic proteins, while a conserved outer membrane factor is similar to secretins from type II and other secretion pathways. Structurally conserved chaperones which specifically bind to individual secreted proteins play an important role in type III protein secretion, apparently by preventing premature interactions of the secreted factors with other proteins. The genes encoding type III secretion systems are clustered, and various pieces of evidence suggest that these systems have been acquired by horizontal genetic transfer during evolution. Expression of type III secretion systems is coordinately regulated in response to host environmental stimuli by networks of transcription factors. This review comprises a comparison of the structure, function, regulation, and impact on host cells of the type III secretion systems in the animal pathogens Yersinia spp., Pseudomonas aeruginosa, Shigella flexneri, Salmonella typhimurium, enteropathogenic Escherichia coli

  10. Recognition and delivery of effector proteins into eukaryotic cells by bacterial secretion systems.

    PubMed

    Cambronne, Eric D; Roy, Craig R

    2006-08-01

    The direct transport of virulence proteins from bacterium to host has emerged as a common strategy employed by Gram-negative pathogens to establish infections. Specialized secretion systems function to facilitate this process. The delivery of 'effector' proteins by these secretion systems is currently confined to two functionally similar but mechanistically distinct pathways, termed type III and type IV secretion. The type III secretion pathway is ancestrally related to the multiprotein complexes that assemble flagella, whereas the type IV mechanism probably emerged from the protein complexes that support conjugal transfer of DNA. Although both pathways serve to transport proteins from the bacterium to host, the recognition of the effector protein substrates and the secretion information contained in these proteins appear highly distinct. Here, we review the mechanisms involved in the selection of substrates by each of these transport systems and secretion signal information required for substrate transport. PMID:16734660

  11. Heterologous protein secretion in Lactococcus lactis: a novel antigen delivery system.

    PubMed

    Langella, P; Le Loir, Y

    1999-02-01

    Lactic acid bacteria (LAB) are Gram-positive bacteria and are generally regarded as safe (GRAS) organisms. Therefore, LAB could be used for heterologous protein secretion and they are good potential candidates as antigen delivery vehicles. To develop such live vaccines, a better control of protein secretion is required. We developed an efficient secretion system in the model LAB, Lactococcus lactis. Staphylococcal nuclease (Nuc) was used as the reporter protein. We first observed that the quantity of secreted Nuc correlated with the copy number of the cloning vector. The nuc gene was cloned on a high-copy number cloning vector and no perturbation of the metabolism of the secreting strain was observed. Replacement of nuc native promoter by a strong lactococcal one led to a significant increase of nuc expression. Secretion efficiency (SE) of Nuc in L. lactis was low, i.e., only 60% of the synthesized Nuc was secreted. Insertion of a synthetic propeptide between the signal peptide and the mature moiety of Nuc increased the SE of Nuc. On the basis of these results, we developed a secretion system and we applied it to the construction of an L. lactis strain which secretes a bovine coronavirus (BCV) epitopeprotein fusion (BCV-Nuc). BCV-Nuc was recognized by both anti-BCV and anti-Nuc antibodies. Secretion of this antigenic fusion is the first step towards the development of a novel antigen delivery system based on LAB-secreting strains.

  12. Maltose-Binding Protein (MBP), a Secretion-Enhancing Tag for Mammalian Protein Expression Systems.

    PubMed

    Reuten, Raphael; Nikodemus, Denise; Oliveira, Maria B; Patel, Trushar R; Brachvogel, Bent; Breloy, Isabelle; Stetefeld, Jörg; Koch, Manuel

    2016-01-01

    Recombinant proteins are commonly expressed in eukaryotic expression systems to ensure the formation of disulfide bridges and proper glycosylation. Although many proteins can be expressed easily, some proteins, sub-domains, and mutant protein versions can cause problems. Here, we investigated expression levels of recombinant extracellular, intracellular as well as transmembrane proteins tethered to different polypeptides in mammalian cell lines. Strikingly, fusion of proteins to the prokaryotic maltose-binding protein (MBP) generally enhanced protein production. MBP fusion proteins consistently exhibited the most robust increase in protein production in comparison to commonly used tags, e.g., the Fc, Glutathione S-transferase (GST), SlyD, and serum albumin (ser alb) tag. Moreover, proteins tethered to MBP revealed reduced numbers of dying cells upon transient transfection. In contrast to the Fc tag, MBP is a stable monomer and does not promote protein aggregation. Therefore, the MBP tag does not induce artificial dimerization of tethered proteins and provides a beneficial fusion tag for binding as well as cell adhesion studies. Using MBP we were able to secret a disease causing laminin β2 mutant protein (congenital nephrotic syndrome), which is normally retained in the endoplasmic reticulum. In summary, this study establishes MBP as a versatile expression tag for protein production in eukaryotic expression systems. PMID:27029048

  13. A Systematic Proteomic Analysis of Listeria monocytogenes House-keeping Protein Secretion Systems*

    PubMed Central

    Halbedel, Sven; Reiss, Swantje; Hahn, Birgit; Albrecht, Dirk; Mannala, Gopala Krishna; Chakraborty, Trinad; Hain, Torsten; Engelmann, Susanne; Flieger, Antje

    2014-01-01

    Listeria monocytogenes is a firmicute bacterium causing serious infections in humans upon consumption of contaminated food. Most of its virulence factors are secretory proteins either released to the medium or attached to the bacterial surface. L. monocytogenes encodes at least six different protein secretion pathways. Although great efforts have been made in the past to predict secretory proteins and their secretion routes using bioinformatics, experimental evidence is lacking for most secretion systems. Therefore, we constructed mutants in the main housekeeping protein secretion systems, which are the Sec-dependent transport, the YidC membrane insertases SpoIIIJ and YqjG, as well as the twin-arginine pathway, and analyzed their secretion and virulence defects. Our results demonstrate that Sec-dependent secretion and membrane insertion of proteins via YidC proteins are essential for viability of L. monocytogenes. Depletion of SecA or YidC activity severely affected protein secretion, whereas loss of the Tat-pathway was without any effect on secretion, viability, and virulence. Two-dimensional gel electrophoresis combined with protein identification by mass spectrometry revealed that secretion of many virulence factors and of enzymes synthesizing and degrading the cell wall depends on the SecA route. This finding was confirmed by SecA inhibition experiments using sodium azide. Analysis of secretion of substrates typically dependent on the accessory SecA2 ATPase in wild type and azide resistant mutants of L. monocytogenes revealed for the first time that SecA2-dependent protein secretion also requires the ATPase activity of the house-keeping SecA protein. PMID:25056936

  14. A Yersinia secreted effector protein promotes virulence by preventing inflammasome recognition of the type III secretion system

    PubMed Central

    Brodsky, Igor E.; Palm, Noah W.; Sadanand, Saheli; Ryndak, Michelle B.; Sutterwala, Fayyaz S.; Flavell, Richard A.; Bliska, James B.; Medzhitov, Ruslan

    2010-01-01

    Pattern recognition receptors (PRRs) detect conserved microbial structures generally absent from eukaryotes. Bacterial pathogens commonly utilize pore-forming toxins or specialized secretion systems to deliver virulence factors that promote bacterial replication by modulating host cell physiology. Detection of these secretion systems or toxins by nucleotide-binding oligomerization domain leucine-rich-repeat proteins (NLRs) triggers the assembly of multiprotein complexes, termed inflammasomes, necessary for caspase-1 activation. Here we demonstrate that caspase-1 activation in response to the Yersinia type III secretion system (T3SS) requires the adapter ASC, and involves both NLRP3 and NLRC4 inflammasomes. We further identify a Yersinia type III secreted effector protein, YopK, which prevents inflammasome activation by preventing cellular recognition of the T3SS. Inflammasome-mediated sensing of the T3SS promotes bacterial clearance from infected tissues in vivo. These data demonstrate that a class of bacterial proteins interferes with cellular recognition of bacterial secretion systems, which contributes to bacterial survival within host tissues. PMID:20478539

  15. Genomic analysis of the protein secretion systems in Clostridium acetobutylicum ATCC 824.

    PubMed

    Desvaux, Mickaël; Khan, Arshad; Scott-Tucker, Anthony; Chaudhuri, Roy R; Pallen, Mark J; Henderson, Ian R

    2005-09-10

    Consistent information about protein secretion in Gram-positive bacteria is essentially restricted to the model organism Bacillus subtilis. Among genome-sequenced clostridia, Clostridium acetobutylicum has been the most extensively studied from a physiological point of view and is the organism for which the largest variety of molecular biology tools have been developed. Following in silico analyses, both secreted proteins and protein secretion systems were identified. The Tat (Twin arginine translocation; TC #2.A.64) pathway and ABC (ATP binding cassette) protein exporters (TC #3.A.1.) could not be identified, but the Sec (secretion) pathway (TC #3.A.5) appears to be used prevalently. Similarly, a flagella export apparatus (FEA; TC #3.A.6.), holins (TC #1.E.), and an ESAT-6/WXG100 (early secreted antigen target of 6 kDa/proteins with a WXG motif of approximately 100 residues) secretion system were identified. Here, we report for the first time the identification of a fimbrilin protein exporter (FPE; TC #3.A.14) and a Tad (tight adherence) export apparatus in C. acetobutylicum. This investigation highlights the potential use of this saprophytic bacterium in biotechnological and biomedical applications as well as a model organism for studying protein secretion in pathogenic Gram-positive bacteria.

  16. An Efficient Genome-Wide Fusion Partner Screening System for Secretion of Recombinant Proteins in Yeast

    PubMed Central

    Bae, Jung-Hoon; Hyun Sung, Bong; Kim, Hyun-Jin; Park, Soon-Ho; Lim, Kwang-Mook; Kim, Mi-Jin; Lee, Cho-Ryong; Sohn, Jung-Hoon

    2015-01-01

    To produce rarely secreted recombinant proteins in the yeast Saccharomyces cerevisiae, we developed a novel genome-wide optimal translational fusion partner (TFP) screening system that involves recruitment of an optimal secretion signal and fusion partner. A TFP library was constructed from a genomic and truncated cDNA library by using the invertase-based signal sequence trap technique. The efficiency of the system was demonstrated using two rarely secreted proteins, human interleukin (hIL)-2 and hIL-32. Optimal TFPs for secretion of hIL-2 and hIL-32 were easily selected, yielding secretion of these proteins up to hundreds of mg/L. Moreover, numerous uncovered yeast secretion signals and fusion partners were identified, leading to efficient secretion of various recombinant proteins. Selected TFPs were found to be useful for the hypersecretion of other recombinant proteins at yields of up to several g/L. This screening technique could provide new methods for the production of various types of difficult-to-express proteins. PMID:26195161

  17. Systems and methods for the secretion of recombinant proteins in gram negative bacteria

    DOEpatents

    Withers, III, Sydnor T.; Dominguez, Miguel A; DeLisa, Matthew P.; Haitjema, Charles H.

    2016-08-09

    Disclosed herein are systems and methods for producing recombinant proteins utilizing mutant E. coli strains containing expression vectors carrying nucleic acids encoding the proteins, and secretory signal sequences to direct the secretion of the proteins to the culture medium. Host cells transformed with the expression vectors are also provided.

  18. Protein Secretion Systems in Pseudomonas aeruginosa: An Essay on Diversity, Evolution, and Function.

    PubMed

    Filloux, Alain

    2011-01-01

    Protein secretion systems are molecular nanomachines used by Gram-negative bacteria to thrive within their environment. They are used to release enzymes that hydrolyze complex carbon sources into usable compounds, or to release proteins that capture essential ions such as iron. They are also used to colonize and survive within eukaryotic hosts, causing acute or chronic infections, subverting the host cell response and escaping the immune system. In this article, the opportunistic human pathogen Pseudomonas aeruginosa is used as a model to review the diversity of secretion systems that bacteria have evolved to achieve these goals. This diversity may result from a progressive transformation of cell envelope complexes that initially may not have been dedicated to secretion. The striking similarities between secretion systems and type IV pili, flagella, bacteriophage tail, or efflux pumps is a nice illustration of this evolution. Differences are also needed since various secretion configurations call for diversity. For example, some proteins are released in the extracellular medium while others are directly injected into the cytosol of eukaryotic cells. Some proteins are folded before being released and transit into the periplasm. Other proteins cross the whole cell envelope at once in an unfolded state. However, the secretion system requires conserved basic elements or features. For example, there is a need for an energy source or for an outer membrane channel. The structure of this review is thus quite unconventional. Instead of listing secretion types one after each other, it presents a melting pot of concepts indicating that secretion types are in constant evolution and use basic principles. In other words, emergence of new secretion systems could be predicted the way Mendeleïev had anticipated characteristics of yet unknown elements. PMID:21811488

  19. Unusual genetic organization of a functional type I protein secretion system in Neisseria meningitidis.

    PubMed

    Wooldridge, Karl G; Kizil, Murat; Wells, Damien B; Ala'aldeen, Dlawer A A

    2005-09-01

    Proteins secreted by Neisseria meningitidis are thought to play important roles in the pathogenesis of meningococcal disease. These proteins include the iron-repressible repeat-in-toxin (RTX) exoprotein FrpC. Related proteins in other pathogens are secreted via a type I secretion system (TOSS), but such a system has not been demonstrated in N. meningitidis. An in silico search of the group B meningococcal genome suggested the presence of a uniquely organized TOSS. Genes encoding homologs of the Escherichia coli HlyB (ATP-binding), HlyD (membrane fusion), and TolC (outer membrane channel) proteins were identified. In contrast to the cistronic organization of the secretion genes in most other rtx operons, the hlyD and tolC genes were adjacent but unlinked to hlyB; neither locus was part of an operon containing genes encoding putative TOSS substrates. Both loci were flanked by genes normally associated with mobile genetic elements. The three genes were shown to be expressed independently. Mutation at either locus resulted in an inability to secrete FrpC and a related protein, here called FrpC2. Successful complementation of these mutations at an ectopic site confirmed the observed phenotypes were caused by loss of function of the putative TOSS genes. We show that genes scattered in the meningococcal genome encode a functional TOSS required for secretion of the meningococcal RTX proteins.

  20. Unusual Genetic Organization of a Functional Type I Protein Secretion System in Neisseria meningitidis

    PubMed Central

    Wooldridge, Karl G.; Kizil, Murat; Wells, Damien B.; Ala'Aldeen, Dlawer A. A.

    2005-01-01

    Proteins secreted by Neisseria meningitidis are thought to play important roles in the pathogenesis of meningococcal disease. These proteins include the iron-repressible repeat-in-toxin (RTX) exoprotein FrpC. Related proteins in other pathogens are secreted via a type I secretion system (TOSS), but such a system has not been demonstrated in N. meningitidis. An in silico search of the group B meningococcal genome suggested the presence of a uniquely organized TOSS. Genes encoding homologs of the Escherichia coli HlyB (ATP-binding), HlyD (membrane fusion), and TolC (outer membrane channel) proteins were identified. In contrast to the cistronic organization of the secretion genes in most other rtx operons, the hlyD and tolC genes were adjacent but unlinked to hlyB; neither locus was part of an operon containing genes encoding putative TOSS substrates. Both loci were flanked by genes normally associated with mobile genetic elements. The three genes were shown to be expressed independently. Mutation at either locus resulted in an inability to secrete FrpC and a related protein, here called FrpC2. Successful complementation of these mutations at an ectopic site confirmed the observed phenotypes were caused by loss of function of the putative TOSS genes. We show that genes scattered in the meningococcal genome encode a functional TOSS required for secretion of the meningococcal RTX proteins. PMID:16113272

  1. The Type II secretion system delivers matrix proteins for biofilm formation by Vibrio cholerae.

    PubMed

    Johnson, Tanya L; Fong, Jiunn C; Rule, Chelsea; Rogers, Andrew; Yildiz, Fitnat H; Sandkvist, Maria

    2014-12-01

    Gram-negative bacteria have evolved several highly dedicated pathways for extracellular protein secretion, including the type II secretion (T2S) system. Since substrates secreted via the T2S system include both virulence factors and degradative enzymes, this secretion system is considered a major survival mechanism for pathogenic and environmental species. Previous analyses revealed that the T2S system mediates the export of ≥ 20 proteins in Vibrio cholerae, a human pathogen that is indigenous to the marine environment. Here we demonstrate a new role in biofilm formation for the V. cholerae T2S system, since wild-type V. cholerae was found to secrete the biofilm matrix proteins RbmC, RbmA, and Bap1 into the culture supernatant, while an isogenic T2S mutant could not. In agreement with this finding, the level of biofilm formation in a static microtiter assay was diminished in T2S mutants. Moreover, inactivation of the T2S system in a rugose V. cholerae strain prevented the development of colony corrugation and pellicle formation at the air-liquid interface. In contrast, extracellular secretion of the exopolysaccharide VPS, an essential component of the biofilm matrix, remained unaffected in the T2S mutants. Our results indicate that the T2S system provides a mechanism for the delivery of extracellular matrix proteins known to be important for biofilm formation by V. cholerae. Because the T2S system contributes to the pathogenicity of V. cholerae by secreting proteins such as cholera toxin and biofilm matrix proteins, elucidation of the molecular mechanism of T2S has the potential to lead to the development of novel preventions and therapies. PMID:25266381

  2. A protein secretion system linked to bacteroidete gliding motility and pathogenesis.

    PubMed

    Sato, Keiko; Naito, Mariko; Yukitake, Hideharu; Hirakawa, Hideki; Shoji, Mikio; McBride, Mark J; Rhodes, Ryan G; Nakayama, Koji

    2010-01-01

    Porphyromonas gingivalis secretes strong proteases called gingipains that are implicated in periodontal pathogenesis. Protein secretion systems common to other Gram-negative bacteria are lacking in P. gingivalis, but several proteins, including PorT, have been linked to gingipain secretion. Comparative genome analysis and genetic experiments revealed 11 additional proteins involved in gingipain secretion. Six of these (PorK, PorL, PorM, PorN, PorW, and Sov) were similar in sequence to Flavobacterium johnsoniae gliding motility proteins, and two others (PorX and PorY) were putative two-component system regulatory proteins. Real-time RT-PCR analysis revealed that porK, porL, porM, porN, porP, porT, and sov were down-regulated in P. gingivalis porX and porY mutants. Disruption of the F. johnsoniae porT ortholog resulted in defects in motility, chitinase secretion, and translocation of a gliding motility protein, SprB adhesin, to the cell surface, providing a link between a unique protein translocation system and a motility apparatus in members of the Bacteroidetes phylum. PMID:19966289

  3. A protein secretion system linked to bacteroidete gliding motility and pathogenesis

    PubMed Central

    Sato, Keiko; Naito, Mariko; Yukitake, Hideharu; Hirakawa, Hideki; Shoji, Mikio; McBride, Mark J.; Rhodes, Ryan G.; Nakayama, Koji

    2009-01-01

    Porphyromonas gingivalis secretes strong proteases called gingipains that are implicated in periodontal pathogenesis. Protein secretion systems common to other Gram-negative bacteria are lacking in P. gingivalis, but several proteins, including PorT, have been linked to gingipain secretion. Comparative genome analysis and genetic experiments revealed 11 additional proteins involved in gingipain secretion. Six of these (PorK, PorL, PorM, PorN, PorW, and Sov) were similar in sequence to Flavobacterium johnsoniae gliding motility proteins, and two others (PorX and PorY) were putative two-component system regulatory proteins. Real-time RT-PCR analysis revealed that porK, porL, porM, porN, porP, porT, and sov were down-regulated in P. gingivalis porX and porY mutants. Disruption of the F. johnsoniae porT ortholog resulted in defects in motility, chitinase secretion, and translocation of a gliding motility protein, SprB adhesin, to the cell surface, providing a link between a unique protein translocation system and a motility apparatus in members of the Bacteroidetes phylum. PMID:19966289

  4. A protein secretion system linked to bacteroidete gliding motility and pathogenesis.

    PubMed

    Sato, Keiko; Naito, Mariko; Yukitake, Hideharu; Hirakawa, Hideki; Shoji, Mikio; McBride, Mark J; Rhodes, Ryan G; Nakayama, Koji

    2010-01-01

    Porphyromonas gingivalis secretes strong proteases called gingipains that are implicated in periodontal pathogenesis. Protein secretion systems common to other Gram-negative bacteria are lacking in P. gingivalis, but several proteins, including PorT, have been linked to gingipain secretion. Comparative genome analysis and genetic experiments revealed 11 additional proteins involved in gingipain secretion. Six of these (PorK, PorL, PorM, PorN, PorW, and Sov) were similar in sequence to Flavobacterium johnsoniae gliding motility proteins, and two others (PorX and PorY) were putative two-component system regulatory proteins. Real-time RT-PCR analysis revealed that porK, porL, porM, porN, porP, porT, and sov were down-regulated in P. gingivalis porX and porY mutants. Disruption of the F. johnsoniae porT ortholog resulted in defects in motility, chitinase secretion, and translocation of a gliding motility protein, SprB adhesin, to the cell surface, providing a link between a unique protein translocation system and a motility apparatus in members of the Bacteroidetes phylum.

  5. A Reporter System to Study Unconventional Secretion of Proteins Avoiding N-Glycosylation in Ustilago maydis.

    PubMed

    Stock, Janpeter; Terfrüchte, Marius; Schipper, Kerstin

    2016-01-01

    Unconventional secretion of proteins in eukaryotes is characterized by the circumvention of the Endoplasmic Reticulum (ER). As a consequence proteins exported by unconventional pathways lack N-glycosylation, a post-transcriptional modification that is initiated in the ER during classical secretion. We are exploiting the well-established enzyme β-glucuronidase (GUS) to assay unconventional protein secretion (UPS). This bacterial protein is perfectly suited for this purpose because it carries a eukaryotic N-glycosylation motif. Modification of this residue by attachment of sugar moieties during the passage of the ER apparently causes a very strong reduction in GUS activity. Hence, this enzyme can only be secreted in an active state, if the export mechanism does not involve ER passage. Here, we describe a reporter system applied in the corn smut fungus Ustilago maydis that is based on this observation and can be used to test if candidate proteins are secreted to the culture supernatant via alternative pathways avoiding N-glycosylation. Importantly, this system is the basis for the establishment of genetic screens providing mechanistic insights into unknown UPS pathways in the future. PMID:27665557

  6. An optimized system for expression and purification of secreted bacterial proteins.

    PubMed

    Geisbrecht, Brian V; Bouyain, Samuel; Pop, Mihai

    2006-03-01

    In this report, we describe an optimized system for the efficient overexpression, purification, and refolding of secreted bacterial proteins. Candidate secreted proteins were produced recombinantly in Escherichia coli as Tobacco Etch Virus protease-cleavable hexahistidine-c-myc eptiope fusion proteins. Without regard to their initial solubility, recombinant fusion proteins were extracted from whole cells with guanidium chloride, purified under denaturing conditions by immobilized metal affinity chromatography, and refolded by rapid dilution into a solution containing only Tris buffer and sodium chloride. Following concentration on the same resin under native conditions, each protein was eluted for further purification and/or characterization. Preliminary studies on a test set of 12 secreted proteins ranging in size from 13 to 130 kDa yielded between 10 and 50 mg of fusion protein per liter of induced culture at greater than 90% purity, as judged by Coomassie-stained SDS-PAGE. Of the nine proteins further purified, analytical gel filtration chromatography indicated that each was a monomer in solution and circular dichroism spectroscopy revealed that each had adopted a well-defined secondary structure. While there are many potential applications for this system, the results presented here suggest that it will be particularly useful for investigators employing structural approaches to understand protein function, as attested to by the crystal structures of three proteins purified using this methodology (B.V. Geisbrecht, B.Y. Hamaoka, B. Perman, A. Zemla, D.J. Leahy, J. Biol. Chem. 280 (2005) 17243-17250). PMID:16260150

  7. The S-layer proteins of Tannerella forsythia are secreted via a type IX secretion system that is decoupled from protein O-glycosylation

    PubMed Central

    Tomek, Markus B.; Neumann, Laura; Nimeth, Irene; Koerdt, Andrea; Andesner, Philipp; Messner, Paul; Mach, Lukas; Potempa, Jan S.; Schäffer, Christina

    2014-01-01

    SUMMARY Conserved C-terminal domains (CTD) have been shown to act as a signal for the translocation of certain proteins across the outer membrane of Bacteroidetes via a type IX secretion system (T9SS). The genome sequence of the periodontal pathogen Tannerella forsythia predicts the presence of the components for a T9SS in conjunction with a suite of CTD proteins. T. forsythia is covered with a 2-dimensional crystalline surface (S-) layer composed of the glycosylated CTD proteins TfsA and TfsB. To investigate if T9SS is functional in T. forsythia, T9SS-deficient mutants were generated by targeting either TF0955 (putative C-terminal signal peptidase) or TF2327 (PorK ortholog), and the mutants were analyzed with respect to secretion, assembly and glycosylation of the S-layer proteins as well as to proteolytic processing of the CTD and biofilm formation. In either mutant, TfsA and TfsB were incapable of translocation, as evidenced by the absence of the S-layer in transmission electron microscopy of ultrathin-sectioned bacterial cells. Despite entrapped within the periplasm, mass spectrometry analysis revealed that the S-layer proteins were modified with the complete, mature glycan found on the secreted proteins, indicating that protein translocation and glycosylation are two independent processes. Further, the T9SS mutants showed a denser biofilm with less voids compared to the wild-type. This study demonstrates the functionality of T9SS and the requirement of CTD for the outer membrane passage of extracellular proteins in T. forsythia, exemplified with the two S-layer proteins. In addition, T9SS protein translocation is decoupled from O-glycan attachment in T. forsythia. PMID:24943676

  8. SseBCD Proteins Are Secreted by the Type III Secretion System of Salmonella Pathogenicity Island 2 and Function as a Translocon

    PubMed Central

    Nikolaus, Thomas; Deiwick, Jörg; Rappl, Catherine; Freeman, Jeremy A.; Schröder, Werner; Miller, Samuel I.; Hensel, Michael

    2001-01-01

    The type III secretion system encoded by Salmonella pathogenicity island 2 (SPI2) is required for systemic infections and intracellular accumulation of Salmonella enterica. This system is induced by intracellular Salmonella and subsequently transfers effector proteins into the host cell. Growth conditions either inducing expression of the type III secretion system or the secretion of substrate proteins were defined. Here we report the identification of a set of substrate proteins consisting of SseB, SseC, and SseD that are secreted by the SPI2 system in vitro. Secretion was observed if bacterial cells were exposed to acidic pH after growth in minimal medium with limitation of Mg2+ or phosphate. SseB, -C, and -D were isolated in a fraction detached from the bacterial cell surface by mechanical shearing, indicating that these proteins are predominantly assembled into complexes on the bacterial cell surface. The three proteins were required for the translocation of SPI2 effector proteins SspH1 and SspH2 into infected host cells. Thus, SseB, SseC, and SseD function as the translocon for effector proteins by intracellular Salmonella. PMID:11567004

  9. Edwardsiella tarda EscE (Orf13 Protein) Is a Type III Secretion System-Secreted Protein That Is Required for the Injection of Effectors, Secretion of Translocators, and Pathogenesis in Fish.

    PubMed

    Lu, Jin Fang; Wang, Wei Na; Wang, Gai Ling; Zhang, He; Zhou, Ying; Gao, Zhi Peng; Nie, Pin; Xie, Hai Xia

    2016-01-01

    The type III secretion system (T3SS) of Edwardsiella tarda is crucial for its intracellular survival and pathogenesis in fish. The orf13 gene (escE) of E. tarda is located 84 nucleotides (nt) upstream of esrC in the T3SS gene cluster. We found that EscE is secreted and translocated in a T3SS-dependent manner and that amino acids 2 to 15 in the N terminus were required for a completely functional T3SS in E. tarda. Deletion of escE abolished the secretion of T3SS translocators, as well as the secretion and translocation of T3SS effectors, but did not influence their intracellular protein levels in E. tarda. Complementation of the escE mutant with a secretion-incompetent EscE derivative restored the secretion of translocators and effectors. Interestingly, the effectors that were secreted and translocated were positively correlated with the EscE protein level in E. tarda. The escE mutant was attenuated in the blue gourami fish infection model, as its 50% lethal dose (LD50) increased to 4 times that of the wild type. The survival rate of the escE mutant-strain-infected fish was 69%, which was much higher than that of the fish infected with the wild-type bacteria (6%). Overall, EscE represents a secreted T3SS regulator that controls effector injection and translocator secretion, thus contributing to E. tarda pathogenesis in fish. The homology of EscE within the T3SSs of other bacterial species suggests that the mechanism of secretion and translocation control used by E. tarda may be commonly used by other bacterial pathogens. PMID:26459509

  10. Proteomes of the barley aleurone layer: A model system for plant signalling and protein secretion.

    PubMed

    Finnie, Christine; Andersen, Birgit; Shahpiri, Azar; Svensson, Birte

    2011-05-01

    The cereal aleurone layer is of major importance due to its nutritional properties as well as its central role in seed germination and industrial malting. Cereal seed germination involves mobilisation of storage reserves in the starchy endosperm to support seedling growth. In response to gibberellic acid produced by the embryo, the aleurone layer synthesises hydrolases that are secreted to the endosperm for the degradation of storage products. The barley aleurone layer can be separated from the other seed tissues and maintained in culture, allowing the study of the effect of added signalling molecules in an isolated system. These properties have led to its use as a model system for the study of plant signalling and germination. More recently, proteome analysis of the aleurone layer has provided new insight into this unique tissue including identification of plasma membrane proteins and targeted analysis of germination-related changes and the thioredoxin system. Here, analysis of intracellular and secreted proteomes reveals features of the aleurone layer system that makes it promising for investigations of plant protein secretion mechanisms.

  11. EffectiveDB—updates and novel features for a better annotation of bacterial secreted proteins and Type III, IV, VI secretion systems

    PubMed Central

    Eichinger, Valerie; Nussbaumer, Thomas; Platzer, Alexander; Jehl, Marc-André; Arnold, Roland; Rattei, Thomas

    2016-01-01

    Protein secretion systems play a key role in the interaction of bacteria and hosts. EffectiveDB (http://effectivedb.org) contains pre-calculated predictions of bacterial secreted proteins and of intact secretion systems. Here we describe a major update of the database, which was previously featured in the NAR Database Issue. EffectiveDB bundles various tools to recognize Type III secretion signals, conserved binding sites of Type III chaperones, Type IV secretion peptides, eukaryotic-like domains and subcellular targeting signals in the host. Beyond the analysis of arbitrary protein sequence collections, the new release of EffectiveDB also provides a ‘genome-mode’, in which protein sequences from nearly complete genomes or metagenomic bins can be screened for the presence of three important secretion systems (Type III, IV, VI). EffectiveDB contains pre-calculated predictions for currently 1677 bacterial genomes from the EggNOG 4.0 database and for additional bacterial genomes from NCBI RefSeq. The new, user-friendly and informative web portal offers a submission tool for running the EffectiveDB prediction tools on user-provided data. PMID:26590402

  12. Cutting edge: Mouse NAIP1 detects the type III secretion system needle protein.

    PubMed

    Rayamajhi, Manira; Zak, Daniel E; Chavarria-Smith, Joseph; Vance, Russell E; Miao, Edward A

    2013-10-15

    The NAIP/NLRC4 inflammasomes activate caspase-1 in response to bacterial type III secretion systems (T3SSs). Inadvertent injection of the T3SS rod protein and flagellin into the cytosol is detected through murine NAIP2 and NAIP5/6, respectively. In this study, we identify the agonist for the orphan murine NAIP1 receptor as the T3SS needle protein. NAIP1 is poorly expressed in resting mouse bone marrow-derived macrophages; however, priming with polyinosinic-polycytidylic acid induces it and confers needle protein sensitivity. Further, overexpression of NAIP1 in immortalized bone marrow-derived macrophages by retroviral transduction enabled needle detection. In contrast, peritoneal cavity macrophages basally express NAIP1 and respond to needle protein robustly, independent of priming. Human macrophages are known to express only one NAIP gene, which detects the needle protein, but not rod or flagellin. Thus, murine NAIP1 is functionally analogous to human NAIP. PMID:24043898

  13. The Salmonella Type III Secretion System Inner Rod Protein PrgJ Is Partially Folded*

    PubMed Central

    Zhong, Dalian; Lefebre, Matthew; Kaur, Kawaljit; McDowell, Melanie A.; Gdowski, Courtney; Jo, Sunhwan; Wang, Yu; Benedict, Stephen H.; Lea, Susan M.; Galan, Jorge E.; De Guzman, Roberto N.

    2012-01-01

    The type III secretion system (T3SS) is essential in the pathogenesis of many bacteria. The inner rod is important in the assembly of the T3SS needle complex. However, the atomic structure of the inner rod protein is currently unknown. Based on computational methods, others have suggested that the Salmonella inner rod protein PrgJ is highly helical, forming a folded 3 helix structure. Here we show by CD and NMR spectroscopy that the monomeric form of PrgJ lacks a tertiary structure, and the only well-structured part of PrgJ is a short α-helix at the C-terminal region from residues 65–82. Disruption of this helix by glycine or proline mutation resulted in defective assembly of the needle complex, rendering bacteria incapable of secreting effector proteins. Likewise, CD and NMR data for the Shigella inner rod protein MxiI indicate this protein lacks a tertiary structure as well. Our results reveal that the monomeric forms of the T3SS inner rod proteins are partially folded. PMID:22654099

  14. Bacterial Secretion Systems: An Overview.

    PubMed

    Green, Erin R; Mecsas, Joan

    2016-02-01

    Bacterial pathogens utilize a multitude of methods to invade mammalian hosts, damage tissue sites, and thwart the immune system from responding. One essential component of these strategies for many bacterial pathogens is the secretion of proteins across phospholipid membranes. Secreted proteins can play many roles in promoting bacterial virulence, from enhancing attachment to eukaryotic cells, to scavenging resources in an environmental niche, to directly intoxicating target cells and disrupting their functions. Many pathogens use dedicated protein secretion systems to secrete virulence factors from the cytosol of the bacteria into host cells or the host environment. In general, bacterial protein secretion apparatuses can be divided into classes, based on their structures, functions, and specificity. Some systems are conserved in all classes of bacteria and secrete a broad array of substrates, while others are only found in a small number of bacterial species and/or are specific to only one or a few proteins. In this chapter, we review the canonical features of several common bacterial protein secretion systems, as well as their roles in promoting the virulence of bacterial pathogens. Additionally, we address recent findings that indicate that the innate immune system of the host can detect and respond to the presence of protein secretion systems during mammalian infection.

  15. Chimeric adaptor proteins translocate diverse type VI secretion system effectors in Vibrio cholerae.

    PubMed

    Unterweger, Daniel; Kostiuk, Benjamin; Ötjengerdes, Rina; Wilton, Ashley; Diaz-Satizabal, Laura; Pukatzki, Stefan

    2015-08-13

    Vibrio cholerae is a diverse species of Gram-negative bacteria, commonly found in the aquatic environment and the causative agent of the potentially deadly disease cholera. These bacteria employ a type VI secretion system (T6SS) when they encounter prokaryotic and eukaryotic competitors. This contractile puncturing device translocates a set of effector proteins into neighboring cells. Translocated effectors are toxic unless the targeted cell produces immunity proteins that bind and deactivate incoming effectors. Comparison of multiple V. cholerae strains indicates that effectors are encoded in T6SS effector modules on mobile genetic elements. We identified a diverse group of chimeric T6SS adaptor proteins required for the translocation of diverse effectors encoded in modules. An example for a T6SS effector that requires T6SS adaptor protein 1 (Tap-1) is TseL found in pandemic V. cholerae O1 serogroup strains and other clinical isolates. We propose a model in which Tap-1 is required for loading TseL onto the secretion apparatus. After T6SS-mediated TseL export is completed, Tap-1 is retained in the bacterial cell to load other T6SS machines.

  16. Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells.

    PubMed

    Galán, Jorge E; Lara-Tejero, Maria; Marlovits, Thomas C; Wagner, Samuel

    2014-01-01

    One of the most exciting developments in the field of bacterial pathogenesis in recent years is the discovery that many pathogens utilize complex nanomachines to deliver bacterially encoded effector proteins into target eukaryotic cells. These effector proteins modulate a variety of cellular functions for the pathogen's benefit. One of these protein-delivery machines is the type III secretion system (T3SS). T3SSs are widespread in nature and are encoded not only by bacteria pathogenic to vertebrates or plants but also by bacteria that are symbiotic to plants or insects. A central component of T3SSs is the needle complex, a supramolecular structure that mediates the passage of the secreted proteins across the bacterial envelope. Working in conjunction with several cytoplasmic components, the needle complex engages specific substrates in sequential order, moves them across the bacterial envelope, and ultimately delivers them into eukaryotic cells. The central role of T3SSs in pathogenesis makes them great targets for novel antimicrobial strategies.

  17. Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells

    PubMed Central

    Galán, Jorge E.; Lara-Tejero, Maria; Marlovits, Thomas C.; Wagner, Samuel

    2015-01-01

    One of the most exciting developments in the field of bacterial pathogenesis in recent years is the discovery that many pathogens utilized complex nanomachines to deliver bacterially encoded effector proteins into target eukaryotic cells. These effector proteins modulate a variety of cellular functions for the pathogen’s benefit. One of these protein-delivery machines is the type III secretion system (T3SS). T3SSs are widespread in nature and are encoded not only by bacteria pathogenic to vertebrates or plants, but also by bacteria that are symbiotic to plants or insects. A central component of T3SSs is the needle complex, a supramolecular structure that mediates the passage of the secreted proteins across the bacterial envelope. Working in conjunction with several cytoplasmic components, the needle complex engages specific substrates in sequential order, moves them across the bacterial envelope, and ultimately delivers them into eukaryotic cells. The central role of T3SSs in pathogenesis makes them great targets for novel antimicrobial strategies. PMID:25002086

  18. Evaluation of Salmonella enterica type III secretion system effector proteins as carriers for heterologous vaccine antigens.

    PubMed

    Hegazy, Wael Abdel Halim; Xu, Xin; Metelitsa, Leonid; Hensel, Michael

    2012-03-01

    Live attenuated strains of Salmonella enterica have a high potential as carriers of recombinant vaccines. The type III secretion system (T3SS)-dependent translocation of S. enterica can be deployed for delivery of heterologous antigens to antigen-presenting cells. Here we investigated the efficacy of various effector proteins of the Salmonella pathogenicity island (SPI2)-encoded T3SS for the translocation of model antigens and elicitation of immune responses. The SPI2 T3SS effector proteins SifA, SteC, SseL, SseJ, and SseF share an endosomal membrane-associated subcellular localization after translocation. We observed that all effector proteins could be used to translocate fusion proteins with the model antigens ovalbumin and listeriolysin into the cytosol of host cells. Under in vitro conditions, fusion proteins with SseJ and SteC stimulated T-cell responses that were superior to those triggered by fusion proteins with SseF. However, in mice vaccinated with Salmonella carrier strains, only fusion proteins based on SseJ or SifA elicited potent T-cell responses. These data demonstrate that the selection of an optimal SPI2 effector protein for T3SS-mediated translocation is a critical parameter for the rational design of effective Salmonella-based recombinant vaccines.

  19. Extracellular secretion of recombinant proteins

    SciTech Connect

    Linger, Jeffrey G.; Darzins, Aldis

    2014-07-22

    Nucleic acids encoding secretion signals, expression vectors containing the nucleic acids, and host cells containing the expression vectors are disclosed. Also disclosed are polypeptides that contain the secretion signals and methods of producing polypeptides, including methods of directing the extracellular secretion of the polypeptides. Exemplary embodiments include cellulase proteins fused to secretion signals, methods to produce and isolate these polypeptides, and methods to degrade lignocellulosic biomass.

  20. Plant secretome: unlocking secrets of the secreted proteins.

    PubMed

    Agrawal, Ganesh Kumar; Jwa, Nam-Soo; Lebrun, Marc-Henri; Job, Dominique; Rakwal, Randeep

    2010-02-01

    Plant secretomics is a newly emerging area of the plant proteomics field. It basically describes the global study of secreted proteins into the extracellular space of plant cell or tissue at any given time and under certain conditions through various secretory mechanisms. A combination of biochemical, proteomics and bioinformatics approaches has been developed to isolate, identify and profile secreted proteins using complementary in vitro suspension-cultured cells and in planta systems. Developed inventories of secreted proteins under normal, biotic and abiotic conditions revealed several different types of novel secreted proteins, including the leaderless secretory proteins (LSPs). On average, LSPs can account for more than 50% of the total identified secretome, supporting, as in other eukaryotes, the existence of novel secretory mechanisms independent of the classical endoplasmic reticulum-Golgi secretory pathway, and suggesting that this non-classical mechanism of protein expression is, for as yet unknown reasons, more massively used than in other eukaryotic systems. Plants LSPs, which seem to be potentially involved in the defense/stress responses, might have dual (extracellular and/or intracellular) roles as most of them have established intracellular functions, yet presently unknown extracellular functions. Evidence is emerging on the role of glycosylation in the apical sorting and trafficking of secretory proteins. These initial secretome studies in plants have considerably advanced our understanding on secretion of different types of proteins and their underlying mechanisms, and opened a door for comparative analyses of plant secretomes with those of other organisms. In this first review on plant secretomics, we summarize and discuss the secretome definition, the applied approaches for unlocking secrets of the secreted proteins in the extracellular fluid, the possible functional significance and secretory mechanisms of LSPs, as well as glycosylation of

  1. A Substrate-Fusion Protein Is Trapped inside the Type III Secretion System Channel in Shigella flexneri

    PubMed Central

    Dohlich, Kim; Zumsteg, Anna Brotcke; Goosmann, Christian; Kolbe, Michael

    2014-01-01

    The Type III Secretion System (T3SS) is a macromolecular complex used by Gram-negative bacteria to secrete effector proteins from the cytoplasm across the bacterial envelope in a single step. For many pathogens, the T3SS is an essential virulence factor that enables the bacteria to interact with and manipulate their respective host. A characteristic structural feature of the T3SS is the needle complex (NC). The NC resembles a syringe with a basal body spanning both bacterial membranes and a long needle-like structure that protrudes from the bacterium. Based on the paradigm of a syringe-like mechanism, it is generally assumed that effectors and translocators are unfolded and secreted from the bacterial cytoplasm through the basal body and needle channel. Despite extensive research on T3SS, this hypothesis lacks experimental evidence and the mechanism of secretion is not fully understood. In order to elucidate details of the T3SS secretion mechanism, we generated fusion proteins consisting of a T3SS substrate and a bulky protein containing a knotted motif. Because the knot cannot be unfolded, these fusions are accepted as T3SS substrates but remain inside the NC channel and obstruct the T3SS. To our knowledge, this is the first time substrate fusions have been visualized together with isolated NCs and we demonstrate that substrate proteins are secreted directly through the channel with their N-terminus first. The channel physically encloses the fusion protein and shields it from a protease and chemical modifications. Our results corroborate an elementary understanding of how the T3SS works and provide a powerful tool for in situ-structural investigations in the future. This approach might also be applicable to other protein secretion systems that require unfolding of their substrates prior to secretion. PMID:24453973

  2. Pore-forming Activity of the Escherichia coli Type III Secretion System Protein EspD.

    PubMed

    Chatterjee, Abhishek; Caballero-Franco, Celia; Bakker, Dannika; Totten, Stephanie; Jardim, Armando

    2015-10-16

    Enterohemorrhagic Escherichia coli is a causative agent of gastrointestinal and diarrheal diseases. Pathogenesis associated with enterohemorrhagic E. coli involves direct delivery of virulence factors from the bacteria into epithelial cell cytosol via a syringe-like organelle known as the type III secretion system. The type III secretion system protein EspD is a critical factor required for formation of a translocation pore on the host cell membrane. Here, we show that recombinant EspD spontaneously integrates into large unilamellar vesicle (LUV) lipid bilayers; however, pore formation required incorporation of anionic phospholipids such as phosphatidylserine and an acidic pH. Leakage assays performed with fluorescent dextrans confirmed that EspD formed a structure with an inner diameter of ∼2.5 nm. Protease mapping indicated that the two transmembrane helical hairpin of EspD penetrated the lipid layer positioning the N- and C-terminal domains on the extralumenal surface of LUVs. Finally, a combination of glutaraldehyde cross-linking and rate zonal centrifugation suggested that EspD in LUV membranes forms an ∼280-320-kDa oligomeric structure consisting of ∼6-7 subunits.

  3. Identification of the DotL Coupling Protein Subcomplex of the Legionella Dot/Icm Type IV Secretion System

    PubMed Central

    Vincent, Carr D.; Friedman, Jonathan R.; Jeong, Kwang Cheol; Sutherland, Molly C.; Vogel, Joseph P.

    2012-01-01

    Summary Legionella pneumophila, the causative agent of Legionnaires’ disease, survives in macrophages by altering the endocytic pathway of its host cell. To accomplish this, the bacterium utilizes a type IVB secretion system to deliver effector molecules into the host cell cytoplasm. In a previous report, we performed an extensive characterization of the L. pneumophila type IVB secretion system that resulted in the identification of a critical five-protein subcomplex that forms the core of the secretion apparatus. Here we describe a second Dot/Icm protein subassembly composed of the type IV coupling protein DotL, the apparatus proteins DotM and DotN, and the secretion adaptor proteins IcmS and IcmW. In the absence of IcmS or IcmW, DotL becomes destabilized at the transition from the exponential to stationary phases of growth, concurrent with the expression of many secreted substrates. Loss of DotL is dependent on ClpA, a regulator of the cytoplasmic protease ClpP. The resulting decreased levels of DotL in the icmS and icmW mutants exacerbates the intracellular defects of these strains and can be partially suppressed by overproduction of DotL. Thus, in addition to their role as chaperones for Legionella T4SS substrates, IcmS and IcmW perform a second function as part of the Dot/Icm type IV coupling protein subcomplex. PMID:22694730

  4. Unconventional Protein Secretion in Plants.

    PubMed

    Davis, Destiny J; Kang, Byung-Ho; Heringer, Angelo S; Wilkop, Thomas E; Drakakaki, Georgia

    2016-01-01

    Unconventional protein secretion (UPS) describes secretion pathways that bypass one or several of the canonical secretion pit-stops on the way to the plasma membrane, and/or involve the secretion of leaderless proteins. So far, alternatives to conventional secretion were primarily observed and studied in yeast and animal cells. The sessile lifestyle of plants brings with it unique restraints on how they adapt to adverse conditions and environmental challenges. Recently, attention towards unconventional secretion pathways in plant cells has substantially increased, with the large number of leaderless proteins identified through proteomic studies. While UPS pathways in plants are certainly not yet exhaustively researched, an emerging notion is that induction of UPS pathways is correlated with pathogenesis and stress responses. Given the multitude UPS events observed, comprehensively organizing the routes proteins take to the apoplast in defined UPS categories is challenging. With the establishment of a larger collection of studied plant proteins taking these UPS pathways, a clearer picture of endomembrane trafficking as a whole will emerge. There are several novel enabling technologies, such as vesicle proteomics and chemical genomics, with great potential for dissecting secretion pathways, providing information about the cargo that travels along them and the conditions that induce them. PMID:27665550

  5. PG1058 Is a Novel Multidomain Protein Component of the Bacterial Type IX Secretion System

    PubMed Central

    Veith, Paul D.; Butler, Catherine A.; Nor Muhammad, Nor A.; Chen, Yu-Yen; Slakeski, Nada; Peng, Benjamin; Zhang, Lianyi; Dashper, Stuart G.; Cross, Keith J.; Cleal, Steven M.; Moore, Caroline; Reynolds, Eric C.

    2016-01-01

    Porphyromonas gingivalis utilises the Bacteroidetes-specific type IX secretion system (T9SS) to export proteins across the outer membrane (OM), including virulence factors such as the gingipains. The secreted proteins have a conserved carboxy-terminal domain essential for type IX secretion that is cleaved upon export. In P. gingivalis the T9SS substrates undergo glycosylation with anionic lipopolysaccharide (A-LPS) and are attached to the OM. In this study, comparative analyses of 24 Bacteroidetes genomes identified ten putative novel components of the T9SS in P. gingivalis, one of which was PG1058. Computer modelling of the PG1058 structure predicted a novel N- to C-terminal architecture comprising a tetratricopeptide repeat (TPR) domain, a β-propeller domain, a carboxypeptidase regulatory domain-like fold (CRD) and an OmpA_C-like putative peptidoglycan binding domain. Inactivation of pg1058 in P. gingivalis resulted in loss of both colonial pigmentation and surface-associated proteolytic activity; a phenotype common to T9SS mutants. Immunoblot and LC-MS/MS analyses of subcellular fractions revealed T9SS substrates accumulated within the pg1058 mutant periplasm whilst whole-cell ELISA showed the Kgp gingipain was absent from the cell surface, confirming perturbed T9SS function. Immunoblot, TEM and whole-cell ELISA analyses indicated A-LPS was produced and present on the pg1058 mutant cell surface although it was not linked to T9SS substrate proteins. This indicated that PG1058 is crucial for export of T9SS substrates but not for the translocation of A-LPS. PG1058 is a predicted lipoprotein and was localised to the periplasmic side of the OM using whole-cell ELISA, immunoblot and LC-MS/MS analyses of subcellular fractions. The structural prediction and localisation of PG1058 suggests that it may have a role as an essential scaffold linking the periplasmic and OM components of the T9SS. PMID:27711252

  6. VgrG and PAAR Proteins Define Distinct Versions of a Functional Type VI Secretion System

    PubMed Central

    Cianfanelli, Francesca R.; Alcoforado Diniz, Juliana; Guo, Manman; De Cesare, Virginia; Trost, Matthias; Coulthurst, Sarah J.

    2016-01-01

    The Type VI secretion system (T6SS) is widespread among bacterial pathogens and acts as an effective weapon against competitor bacteria and eukaryotic hosts by delivering toxic effector proteins directly into target cells. The T6SS utilises a bacteriophage-like contractile machinery to expel a puncturing device based on a tube of Hcp topped with a VgrG spike, which can be extended by a final tip from a PAAR domain-containing protein. Effector proteins are believed to be delivered by specifically associating with particular Hcp, VgrG or PAAR proteins, either covalently (‘specialised’) or non-covalently (‘cargo’ effectors). Here we used the T6SS of the opportunistic pathogen Serratia marcescens, together with integratecd genetic, proteomic and biochemical approaches, to elucidate the role of specific VgrG and PAAR homologues in T6SS function and effector specificity, revealing new aspects and unexpected subtleties in effector delivery by the T6SS. We identified effectors, both cargo and specialised, absolutely dependent on a particular VgrG for delivery to target cells, and discovered that other cargo effectors can show a preference for a particular VgrG. The presence of at least one PAAR protein was found to be essential for T6SS function, consistent with designation as a ‘core’ T6SS component. We showed that specific VgrG-PAAR combinations are required to assemble a functional T6SS and that the three distinct VgrG-PAAR assemblies in S. marcescens exhibit distinct effector specificity and efficiency. Unexpectedly, we discovered that two different PAAR-containing Rhs proteins can functionally pair with the same VgrG protein. Showing that accessory EagR proteins are involved in these interactions, native VgrG-Rhs-EagR complexes were isolated and specific interactions between EagR and cognate Rhs proteins identified. This study defines an essential yet flexible role for PAAR proteins in the T6SS and highlights the existence of distinct versions of the

  7. A substrate of the centisome 63 type III protein secretion system of Salmonella typhimurium is encoded by a cryptic bacteriophage.

    PubMed

    Hardt, W D; Urlaub, H; Galán, J E

    1998-03-01

    Salmonella enterica has evolved a type III protein secretion system that allows these enteropathogens to translocate effector molecules directly into the host cell cytoplasm. These effectors mediate a variety of responses, including cytoskeletal rearrangements, cytokine production, and in certain cells, the induction of apoptosis. We report here the characterization of a substrate of this secretion system in S. enterica serovar typhimurium (Salmonella typhimurium) that is homologous to the SopE protein of Salmonella dublin implicated in bacterial entry into cultured epithelial cells. The sopE locus is located within a cluster of genes that encode tail and tail fiber proteins of a cryptic P2-like prophage, outside of the centisome 63 pathogenicity island that encodes the invasion-associated type III secretion system. Southern hybridization analysis revealed that sopE is present in only a subset of S. enterica serovars and that the flanking bacteriophage genes are also highly polymorphic. Encoding effector proteins that are delivered through type III secretion systems in highly mobile genetic elements may allow pathogens to adapt rapidly by facilitating the assembly of an appropriate set of effector proteins required for successful replication in a new environment.

  8. A putative multicopper protein secreted by an atypical type II secretion system involved in the reduction of insoluble electron acceptors in Geobacter sulfurreducens.

    PubMed

    Mehta, Teena; Childers, Susan E; Glaven, Richard; Lovley, Derek R; Mester, Tünde

    2006-08-01

    Extracellular electron transfer onto Fe(III) oxides in Geobacter sulfurreducens is considered to require proteins that must be exported to the outer surface of the cell. In order to investigate this, the putative gene for OxpG, the pseudopilin involved in a type II general secretion pathway of Gram-negative bacteria, was deleted. The mutant was unable to grow with insoluble Fe(III) oxide as the electron acceptor. Growth on soluble Fe(III) was not affected. An analysis of proteins that accumulated in the periplasm of the oxpG mutant, but not in the wild-type, led to the identification of a secreted protein, OmpB. OmpB is predicted to be a multicopper protein, with highest homology to the manganese oxidase, MofA, from Leptothrix discophora. OmpB contains a potential Fe(III)-binding site and a fibronectin type III domain, suggesting a possible role for this protein in accessing Fe(III) oxides. OmpB was localized to the membrane fraction of G. sulfurreducens and in the supernatant of growing cultures, consistent with the type II secretion system exporting OmpB. A mutant in which ompB was deleted had the same phenotype as the oxpG mutant, suggesting that the failure to export OmpB was responsible for the inability of the oxpG-deficient mutant to reduce Fe(III) oxide. This is the first report that proposes a role for a multicopper oxidase-like protein in an anaerobic organism. These results further emphasize the importance of outer-membrane proteins in Fe(III) oxide reduction and suggest that outer-membrane proteins other than c-type cytochromes are required for Fe(III) oxide reduction in Geobacter species. PMID:16849792

  9. The type 3 protein secretion system of Cupriavidus taiwanensis strain LMG19424 compromises symbiosis with Leucaena leucocephala.

    PubMed

    Saad, Maged M; Crèvecoeur, Michèle; Masson-Boivin, Catherine; Perret, Xavier

    2012-10-01

    Cupriavidus taiwanensis forms proficient symbioses with a few Mimosa species. Inactivation of a type III protein secretion system (T3SS) had no effect on Mimosa pudica but allowed C. taiwanensis to establish chronic infections and fix nitrogen in Leucaena leucocephala. Unlike what was observed for other rhizobia, glutamate rather than plant flavonoids mediated transcriptional activation of this atypical T3SS. PMID:22865066

  10. Codon Usage in Signal Sequences Affects Protein Expression and Secretion Using Baculovirus/Insect Cell Expression System

    PubMed Central

    Tao, Shiheng; Chen, Hongying

    2015-01-01

    By introducing synonymous mutations into the coding sequences of GP64sp and FibHsp signal peptides, the influences of mRNA secondary structure and codon usage of signal sequences on protein expression and secretion were investigated using baculovirus/insect cell expression system. The results showed that mRNA structural stability of the signal sequences was not correlated with the protein production and secretion levels, and FibHsp was more tolerable to codon changes than GP64sp. Codon bias analyses revealed that codons for GP64sp were well de-optimized and contained more non-optimal codons than FibHsp. Synonymous mutations in GP64sp sufficiently increased its average codon usage frequency and resulted in dramatic reduction of the activity and secretion of luciferase. Protein degradation inhibition assay with MG-132 showed that higher codon usage frequency in the signal sequence increased the production as well as the degradation of luciferase protein, indicating that the synonymous codon substitutions in the signal sequence caused misfolding of luciferase instead of slowing down the protein production. Meanwhile, we found that introduction of more non-optimal codons into FibHsp could increase the production and secretion levels of luciferase, which suggested a new strategy to improve the production of secretory proteins in insect cells. PMID:26697848

  11. Development of a secretion system for the production of heterologous proteins in Corynebacterium glutamicum using the Porin B signal peptide.

    PubMed

    An, Seul Ji; Yim, Sung Sun; Jeong, Ki Jun

    2013-06-01

    Corynebacterium glutamicum is one of the useful hosts for the secretory production of heterologous proteins because of intrinsic attributes such as the presence of few endogenous proteins and proteases in culture medium. Here, we report the development of a new secretory system for the production of heterologous proteins by using the porin B (PorB) signal peptide in C. glutamicum. We examined two different endoxylanases and an antibody fragment (scFv) as model proteins for secretory production. In the flask cultivations, all the examined proteins were successfully produced as active forms into the culture medium with high efficiency. For the high-level production of endoxylanase, fed-batch cultivation was also performed in a lab-scale (5L) bioreactor, and the endoxylanases were efficiently secreted in the culture medium at levels as high as 615mg/L. From the culture supernatant, the secreted endoxylanases could be purified with high purity via one-step affinity column chromatography.

  12. Identification and Characterization of Putative Translocated Effector Proteins of the Edwardsiella ictaluri Type III Secretion System

    PubMed Central

    Dubytska, Lidiya P.; Rogge, Matthew L.

    2016-01-01

    tons produced annually, and ESC is the leading cause of disease loss in the industry. We have demonstrated the survival and replication of E. ictaluri within channel catfish cells and identified a secretion system that is essential for E. ictaluri intracellular replication and virulence. We have also identified nine proteins encoded in the E. ictaluri genome that we believe are actively transferred from the bacterium to the cytoplasm of the host cell and act to manipulate host cell physiology to the advantage of the bacterium. The data presented here confirm that the proteins are actually transferred during an infection, which will lead to further work on approaches to preventing or controlling ESC. PMID:27303737

  13. The Pseudomonas aeruginosa patatin-like protein PlpD is the archetype of a novel Type V secretion system.

    PubMed

    Salacha, Richard; Kovacić, Filip; Brochier-Armanet, Céline; Wilhelm, Susanne; Tommassen, Jan; Filloux, Alain; Voulhoux, Romé; Bleves, Sophie

    2010-06-01

    We discovered a novel secreted protein by Pseudomonas aeruginosa, PlpD, as a member of the bacterial lipolytic enzyme family of patatin-like proteins (PLPs). PlpD is synthesized as a single molecule consisting of a secreted domain fused to a transporter domain. The N-terminus of PlpD includes a classical signal peptide followed by the four PLP conserved blocks that account for its lipase activity. The C-terminus consists of a POTRA (polypeptide transport-associated) motif preceding a putative 16-stranded beta-barrel similar to those of TpsB transporters of Type Vb secretion system. We showed that the C-terminus remains inserted into the outer membrane while the patatin moiety is secreted. The association between a TpsB component and a passenger protein is a unique hybrid organization that we propose to classify as Type Vd. More than 200 PlpD orthologues exist among pathogenic and environmental bacteria, which suggests that bacteria secrete numerous PLPs using this newly defined mechanism.

  14. Nuclear Magnetic Resonance Characterization of the Type III Secretion System Tip Chaperone Protein PcrG of Pseudomonas aeruginosa.

    PubMed

    Chaudhury, Sukanya; Nordhues, Bryce A; Kaur, Kawaljit; Zhang, Na; De Guzman, Roberto N

    2015-11-01

    Lung infection with Pseudomonas aeruginosa is the leading cause of death among cystic fibrosis patients. To initiate infection, P. aeruginosa assembles a protein nanomachine, the type III secretion system (T3SS), to inject bacterial proteins directly into target host cells. An important regulator of the P. aeruginosa T3SS is the chaperone protein PcrG, which forms a complex with the tip protein, PcrV. In addition to its role as a chaperone to the tip protein, PcrG also regulates protein secretion. PcrG homologues are also important in the T3SS of other pathogens such as Yersinia pestis, the causative agent of bubonic plague. The atomic structure of PcrG or any member of the family of tip protein chaperones is currently unknown. Here, we show by circular dichroism and nuclear magnetic resonance (NMR) spectroscopy that PcrG lacks a tertiary structure. However, it is not completely disordered but contains secondary structures dominated by two long α-helices from residue 16 to 41 and from residue 55 to 76. The helices of PcrG are partially formed, have similar backbone dynamics, and are flexible. NMR titrations show that the entire length of PcrG residues from position 9 to 76 is involved in binding to PcrV. PcrG adds to the growing list of partially folded or unstructured proteins with important roles in type III secretion.

  15. Cell invasion of poultry-associated Salmonella enterica serovar Enteritidis isolates is associated with pathogenicity, motility and proteins secreted by the type III secretion system.

    PubMed

    Shah, Devendra H; Zhou, Xiaohui; Addwebi, Tarek; Davis, Margaret A; Orfe, Lisa; Call, Douglas R; Guard, Jean; Besser, Thomas E

    2011-05-01

    Salmonella enterica serovar Enteritidis (S. Enteritidis) is a major cause of food-borne gastroenteritis in humans worldwide. Poultry and poultry products are considered the major vehicles of transmission to humans. Using cell invasiveness as a surrogate marker for pathogenicity, we tested the invasiveness of 53 poultry-associated isolates of S. Enteritidis in a well-differentiated intestinal epithelial cell model (Caco-2). The method allowed classification of the isolates into low (n = 7), medium (n = 18) and high (n = 30) invasiveness categories. Cell invasiveness of the isolates did not correlate with the presence of the virulence-associated gene spvB or the ability of the isolates to form biofilms. Testing of representative isolates with high and low invasiveness in a mouse model revealed that the former were more invasive in vivo and caused more and earlier mortalities, whereas the latter were significantly less invasive in vivo, causing few or no mortalities. Further characterization of representative isolates with low and high invasiveness showed that most of the isolates with low invasiveness had impaired motility and impaired secretion of either flagella-associated proteins (FlgK, FljB and FlgL) or type III secretion system (TTSS)-secreted proteins (SipA and SipD) encoded on Salmonella pathogenicity island-1. In addition, isolates with low invasiveness had impaired ability to invade and/or survive within chicken macrophages. These data suggest that not all isolates of S. Enteritidis recovered from poultry may be equally pathogenic, and that the pathogenicity of S. Enteritidis isolates is associated, in part, with both motility and secretion of TTSS effector proteins.

  16. A homologous production system for Trichoderma reesei secreted proteins in a cellulase-free background.

    PubMed

    Uzbas, Fatma; Sezerman, Ugur; Hartl, Lukas; Kubicek, Christian P; Seiboth, Bernhard

    2012-02-01

    Recent demands for the production of biofuels from lignocellulose led to an increased interest in engineered cellulases from Trichoderma reesei or other fungal sources. While the methods to generate such mutant cellulases on DNA level are straightforward, there is often a bottleneck in their production since a correct posttranslational processing of these enzymes is needed to obtain highly active enzymes. Their production and subsequent enzymatic analysis in the homologous host T. reesei is, however, often disturbed by the concomitant production of other endogenous cellulases. As a useful alternative, we tested the production of cellulases in T. reesei in a genetic background where cellulase formation has been impaired by deletion of the major cellulase transcriptional activator gene xyr1. Three cellulase genes (cel7a, cel7b, and cel12a) were expressed under the promoter regions of the two highly expressed genes tef1 (encoding translation elongation factor 1-alpha) or cdna1 (encoding the hypothetical protein Trire2:110879). When cultivated on D: -glucose as carbon source, the Δxyr1 strain secreted all three cellulases into the medium. Related to the introduced gene copy number, the cdna1 promoter appeared to be superior to the tef1 promoter. No signs of proteolysis were detected, and the individual cellulases could be assayed over a background essentially free of other cellulases. Hence this system can be used as a vehicle for rapid and high-throughput testing of cellulase muteins in a homologous background.

  17. The Host Protein Calprotectin Modulates the Helicobacter pylori cag Type IV Secretion System via Zinc Sequestration

    PubMed Central

    Gaddy, Jennifer A.; Radin, Jana N.; Loh, John T.; Piazuelo, M. Blanca; Kehl-Fie, Thomas E.; Delgado, Alberto G.; Ilca, Florin T.; Peek, Richard M.; Cover, Timothy L.; Chazin, Walter J.; Skaar, Eric P.; Scott Algood, Holly M.

    2014-01-01

    Transition metals are necessary for all forms of life including microorganisms, evidenced by the fact that 30% of all proteins are predicted to interact with a metal cofactor. Through a process termed nutritional immunity, the host actively sequesters essential nutrient metals away from invading pathogenic bacteria. Neutrophils participate in this process by producing several metal chelating proteins, including lactoferrin and calprotectin (CP). As neutrophils are an important component of the inflammatory response directed against the bacterium Helicobacter pylori, a major risk factor for gastric cancer, it was hypothesized that CP plays a role in the host response to H. pylori. Utilizing a murine model of H. pylori infection and gastric epithelial cell co-cultures, the role CP plays in modifying H. pylori -host interactions and the function of the cag Type IV Secretion System (cag T4SS) was investigated. This study indicates elevated gastric levels of CP are associated with the infiltration of neutrophils to the H. pylori-infected tissue. When infected with an H. pylori strain harboring a functional cag T4SS, calprotectin-deficient mice exhibited decreased bacterial burdens and a trend toward increased cag T4SS -dependent inflammation compared to wild-type mice. In vitro data demonstrate that culturing H. pylori with sub-inhibitory doses of CP reduces the activity of the cag T4SS and the biogenesis of cag T4SS-associated pili in a zinc-dependent fashion. Taken together, these data indicate that zinc homeostasis plays a role in regulating the proinflammatory activity of the cag T4SS. PMID:25330071

  18. Self-Chaperoning of the Type III Secretion System needle tip proteins IpaD and BipD

    PubMed Central

    Johnson, Steven; Roversi, Pietro; Espina, Marianela; Olive, Andrew; Deane, Janet E.; Birket, Susan; Field, Terry; Picking, William D.; Blocker, Ariel; Galyov, Edouard E.; Picking, Wendy L.; Lea, Susan M.

    2007-01-01

    Bacteria expressing type III secretion systems (T3SS) have been responsible for the deaths of millions worldwide, acting as key virulence elements in diseases ranging from plague to typhoid fever. The T3SS is composed of a basal body, which traverses both bacterial membranes, and an external needle through which effector proteins are secreted. We report multiple crystal structures of two proteins that sit at the tip of the needle and are essential for virulence; IpaD from Shigella flexneri and BipD from Burkholderia pseudomallei. The structures reveal that the N-terminal domains of the molecules are intra-molecular chaperones that prevent premature oligomerization, as well as sharing structural homology with proteins involved in eukaryotic actin rearrangement. Crystal packing has allowed us to construct a model for the tip complex that is supported by mutations designed using the structure. PMID:17077085

  19. Protein secretion in Pichia pastoris and advances in protein production.

    PubMed

    Damasceno, Leonardo M; Huang, Chung-Jr; Batt, Carl A

    2012-01-01

    Yeast expression systems have been successfully used for over 20 years for the production of recombinant proteins. With the growing interest in recombinant protein expression for various uses, yeast expression systems, such as the popular Pichia pastoris, are becoming increasingly important. Although P. pastoris has been successfully used in the production of many secreted and intracellular recombinant proteins, there is still room for improvement of this expression system. In particular, secretion of recombinant proteins is still one of the main reasons for using P. pastoris. Therefore, endoplasmic reticulum protein folding, correct glycosylation, vesicular transport to the plasma membrane, gene dosage, secretion signal sequences, and secretome studies are important considerations for improved recombinant protein production. PMID:22057543

  20. Inhibition of a type III secretion system by the deletion of a short loop in one of its membrane proteins

    SciTech Connect

    Meshcheryakov, Vladimir A.; Kitao, Akio; Matsunami, Hideyuki; Samatey, Fadel A.

    2013-05-01

    Crystal structures of the cytoplasmic domain of FlhB from S. typhimurium and A. aeolicus were solved at 2.45 and 2.55 Å resolution, respectively. The deletion of a short loop in the cytoplasmic domain of Salmonella FlhB completely abolishes secretion by the type III secretion system. A molecular-dynamics simulation shows that the deletion of the loop affects the flexibility of a linker between the transmembrane and cytoplasmic domains of FlhB. The membrane protein FlhB is a highly conserved component of the flagellar secretion system. It is composed of an N-terminal transmembrane domain and a C-terminal cytoplasmic domain (FlhB{sub C}). Here, the crystal structures of FlhB{sub C} from Salmonella typhimurium and Aquifex aeolicus are described at 2.45 and 2.55 Å resolution, respectively. These flagellar FlhB{sub C} structures are similar to those of paralogues from the needle type III secretion system, with the major difference being in a linker that connects the transmembrane and cytoplasmic domains of FlhB. It was found that deletion of a short flexible loop in a globular part of Salmonella FlhB{sub C} leads to complete inhibition of secretion by the flagellar secretion system. Molecular-dynamics calculations demonstrate that the linker region is the most flexible part of FlhB{sub C} and that the deletion of the loop reduces this flexibility. These results are in good agreement with previous studies showing the importance of the linker in the function of FlhB and provide new insight into the relationship between the different parts of the FlhB{sub C} molecule.

  1. Legionella pneumophila strain 130b possesses a unique combination of type IV secretion systems and novel Dot/Icm secretion system effector proteins.

    PubMed

    Schroeder, Gunnar N; Petty, Nicola K; Mousnier, Aurélie; Harding, Clare R; Vogrin, Adam J; Wee, Bryan; Fry, Norman K; Harrison, Timothy G; Newton, Hayley J; Thomson, Nicholas R; Beatson, Scott A; Dougan, Gordon; Hartland, Elizabeth L; Frankel, Gad

    2010-11-01

    Legionella pneumophila is a ubiquitous inhabitant of environmental water reservoirs. The bacteria infect a wide variety of protozoa and, after accidental inhalation, human alveolar macrophages, which can lead to severe pneumonia. The capability to thrive in phagocytic hosts is dependent on the Dot/Icm type IV secretion system (T4SS), which translocates multiple effector proteins into the host cell. In this study, we determined the draft genome sequence of L. pneumophila strain 130b (Wadsworth). We found that the 130b genome encodes a unique set of T4SSs, namely, the Dot/Icm T4SS, a Trb-1-like T4SS, and two Lvh T4SS gene clusters. Sequence analysis substantiated that a core set of 107 Dot/Icm T4SS effectors was conserved among the sequenced L. pneumophila strains Philadelphia-1, Lens, Paris, Corby, Alcoy, and 130b. We also identified new effector candidates and validated the translocation of 10 novel Dot/Icm T4SS effectors that are not present in L. pneumophila strain Philadelphia-1. We examined the prevalence of the new effector genes among 87 environmental and clinical L. pneumophila isolates. Five of the new effectors were identified in 34 to 62% of the isolates, while less than 15% of the strains tested positive for the other five genes. Collectively, our data show that the core set of conserved Dot/Icm T4SS effector proteins is supplemented by a variable repertoire of accessory effectors that may partly account for differences in the virulences and prevalences of particular L. pneumophila strains.

  2. Roles of Hcp family proteins in the pathogenesis of the porcine extraintestinal pathogenic Escherichia coli type VI secretion system

    PubMed Central

    Peng, Ying; Wang, Xiangru; Shou, Jin; Zong, Bingbing; Zhang, Yanyan; Tan, Jia; Chen, Jing; Hu, Linlin; Zhu, Yongwei; Chen, Huanchun; Tan, Chen

    2016-01-01

    Hcp (hemolysin-coregulated protein) is considered a vital component of the functional T6SS (Type VI Secretion System), which is a newly discovered secretion system. Our laboratory has previously sequenced the whole genome of porcine extraintestinal pathogenic E. coli (ExPEC) strain PCN033, and identified an integrated T6SS encoding three different hcp family genes. In this study, we first identified a functional T6SS in porcine ExPEC strain PCN033, and demonstrated that the Hcp family proteins were involved in bacterial competition and the interactions with other cells. Interestingly, the three Hcp proteins had different functions. Hcp2 functioned predominantly in bacterial competition; all three proteins were involved in the colonization of mice; and Hcp1 and Hcp3 were predominantly contributed to bacterial-eukaryotic cell interactions. We showed an active T6SS in porcine ExPEC strain PCN033, and the Hcp family proteins had different functions in their interaction with other bacteria or host cells. PMID:27229766

  3. Bacterial Secretion Systems – An overview

    PubMed Central

    Green, Erin R.; Mecsas, Joan

    2015-01-01

    CHAPTER SUMMARY Bacterial pathogens utilize a multitude of methods to invade mammalian hosts, damage tissue sites, and thwart the immune system from responding. One essential component of these strategies for many bacterial pathogens is the secretion of proteins across phospholipid membranes. Secreted proteins can play many roles in promoting bacterial virulence, from enhancing attachment to eukaryotic cells, to scavenging resources in an environmental niche, to directly intoxicating target cells and disrupting their functions. Many pathogens use dedicated protein secretion systems to secrete virulence factors from the cytosol of the bacteria into host cells or the host environment. In general, bacterial protein secretion apparatuses can be divided into different classes, based on their structures, functions, and specificity. Some systems are conserved in all classes of bacteria and secrete a broad array of substrates, while others are only found in a small number of bacterial species and/or are specific to only one or a few proteins. In this chapter, we review the canonical features of several common bacterial protein secretion systems, as well as their roles in promoting the virulence of bacterial pathogens. Additionally, we address recent findings that indicate that the innate immune system of the host can detect and respond to the presence of protein secretion systems during mammalian infection. PMID:26999395

  4. Stenotrophomonas maltophilia Encodes a Type II Protein Secretion System That Promotes Detrimental Effects on Lung Epithelial Cells

    PubMed Central

    Karaba, Sara M.; White, Richard C.

    2013-01-01

    The Gram-negative bacterium Stenotrophomonas maltophilia is increasingly identified as a multidrug-resistant pathogen, being associated with pneumonia, among other infections. Despite this increasing clinical problem, the genetic and molecular basis of S. maltophilia virulence is quite minimally defined. We now report that strain K279a, the first clinical isolate of S. maltophilia to be sequenced, encodes a functional type II protein secretion (T2S) system. Indeed, mutants of K279a that contain a mutation in the xps locus exhibit a loss of at least seven secreted proteins and three proteolytic activities. Unlike culture supernatants from the parental K279a, supernatants from multiple xps mutants also failed to induce the rounding, detachment, and death of A549 cells, a human lung epithelial cell line. Supernatants of the xps mutants were also unable to trigger a massive rearrangement in the host cell's actin cytoskeleton that was associated with K279a secretion. In all assays, a complemented xpsF mutant behaved as the wild type did, demonstrating that Xps T2S is required for optimal protein secretion and the detrimental effects on host cells. The activities that were defined as being Xps dependent in K279a were evident among other respiratory isolates of S. maltophilia. Utilizing a similar type of genetic analysis, we found that a second T2S system (Gsp) encoded by the K279a genome is cryptic under all of the conditions tested. Overall, this study represents the first examination of T2S in S. maltophilia, and the data obtained indicate that Xps T2S likely plays an important role in S. maltophilia pathogenesis. PMID:23774603

  5. Construction of chromosomally located T7 expression system for production of heterologous secreted proteins in Bacillus subtilis.

    PubMed

    Chen, Po Ting; Shaw, Jei-Fu; Chao, Yun-Peng; David Ho, Tuan-Hua; Yu, Su-May

    2010-05-12

    Bacillus subtilis is most commonly employed for secretion of recombinant proteins. To circumvent the problems caused by using plasmids, the T7 expression system known for its high efficiency was rebuilt in B. subtilis. Accordingly, a markerless and replicon-free method was developed for genomic insertion of DNAs. By the act of homologous recombination via the guide DNA, a suicidal vector carrying the gene of interest was integrated into genomic loci of bacteria. Removal of the inserted selection marker and replicon flanked by FRT sites was mediated by the FLP recombinase. By using the mentioned system, B. subtilis strain PT5 was constructed to harbor a genomic copy of the spac promoter-regulated T7 gene 1 located at wprA (encoding the cell wall-associated protease). Similarly, the T7 promoter-driven nattokinase or endoglucanase E1 of Thermomonospora fusca genes were also integrated into mpr (encoding an extracellular protease) of strain PT5. Consequently, the integrant PT5/Mmp-T7N or PT5/MT1-E1 resulted in a "clean" producer strain deprived of six proteases. After 24 h, the strain receiving induction was able to secret nattokinase and endoglucanase E1 with the volumetric activity reaching 10860 CU/mL and 8.4 U/mL, respectively. This result clearly indicates the great promise of the proposed approach for high secretion of recombinant proteins in B. subtilis.

  6. Novel fold of VirA, a type III secretion system effector protein from Shigella flexneri

    SciTech Connect

    Davis, Jamaine; Wang, Jiawei; Tropea, Joseph E.; Zhang, Di; Dauter, Zbigniew; Waugh, David S.; Wlodawer, Alexander

    2009-01-28

    VirA, a secreted effector protein from Shigella sp., has been shown to be necessary for its virulence. It was also reported that VirA might be related to papain-like cysteine proteases and cleave {alpha}-tubulin, thus facilitating intracellular spreading. We have now determined the crystal structure of VirA at 3.0 {angstrom} resolution. The shape of the molecule resembles the letter 'V,' with the residues in the N-terminal third of the 45-kDa molecule (some of which are disordered) forming one clearly identifiable domain, and the remainder of the molecule completing the V-like structure. The fold of VirA is unique and does not resemble that of any known protein, including papain, although its N-terminal domain is topologically similar to cysteine protease inhibitors such as stefin B. Analysis of the sequence conservation between VirA and its Escherichia coli homologs EspG and EspG2 did not result in identification of any putative protease-like active site, leaving open a possibility that the biological function of VirA in Shigella virulence may not involve direct proteolytic activity.

  7. Txc, a New Type II Secretion System of Pseudomonas aeruginosa Strain PA7, Is Regulated by the TtsS/TtsR Two-Component System and Directs Specific Secretion of the CbpE Chitin-Binding Protein

    PubMed Central

    Cadoret, Frédéric; Ball, Geneviève; Douzi, Badreddine

    2014-01-01

    We present here the functional characterization of a third complete type II secretion system (T2SS) found in newly sequenced Pseudomonas aeruginosa strain PA7. We call this system Txc (third Xcp homolog). This system is encoded by the RGP69 region of genome plasticity found uniquely in strain PA7. In addition to the 11 txc genes, RGP69 contains two additional genes encoding a possible T2SS substrate and a predicted unorthodox sensor protein, TtsS (type II secretion sensor). We also identified a gene encoding a two-component response regulator called TtsR (type II secretion regulator), which is located upstream of the ttsS gene and just outside RGP69. We show that TtsS and TtsR constitute a new and functional two-component system that controls the production and secretion of the RGP69-encoded T2SS substrate in a Txc-dependent manner. Finally, we demonstrate that this Txc-secreted substrate binds chitin, and we therefore name it CbpE (chitin-binding protein E). PMID:24748613

  8. Fed-batch production of recombinant human calcitonin precursor fusion protein using Staphylococcus carnosus as an expression-secretion system.

    PubMed

    Dilsen, S; Paul, W; Sandgathe, A; Tippe, D; Freudl, R; Thömmes, J; Kula, M R; Takors, R; Wandrey, C; Weuster-Botz, D

    2000-09-01

    A pH-auxostatic fed-batch process was developed for the secretory production of a fusion protein consisting of the pro-part of Staphylococcus hyicus lipase and two synthetic human calcitonin (hCT) precursor repeats under the control of a xylose-inducible promotor from Staphylococcus xylosus. Using glycerol as the energy source and pH-controlled addition of yeast extract resulted in the production of 2000 mg 1(-1) of the fusion protein (420 mg 1(-1) of the recombinant hCT precursor) within 14 h, reaching 45 g 1(-1) cell dry mass with Staphylococcus carnosus in a stirred-tank reactor. Product titer and space-time yield (30 mg calcitonin precursor 1(-1) h(-1)) were thus improved by a factor of 2, and 4.5, respectively, compared to Escherichia coli expression-secretion systems for the production of calcitonin precursors. Two hundred grams of the fusion protein was secreted by the recombinant S. carnosus on a 150-1 scale (scale-up factor of 50) with a minimum use of technical-grade yeast extract (40 mg fusion protein g(-1) yeast extract).

  9. [Characterization of Schizosaccharomyces pombe secreted proteins].

    PubMed

    Liu, Yu-Ling; Liu, Yun-Fan; Xie, Jian-Ping

    2007-02-01

    Secreted proteins play a vital physiological role. Schizosaccharomyces pombe is an important model organism for cell cycle study and a potential useful drug screen model. Secreted proteins also initiate the mating. However, few global studies concerning the secreted proteins of S. pombe was reported. To address this issue, bioinformatics were used to reveal the global secreted proteins of S. pombe. The 4997 proteins deduced from the S. pombe genome were analyzed by combined several programs. One hundred and sixty proteins were identified carrying an NH2-terminal secretory signal peptide by signalP3.0. Among them, 117 proteins are integral membrane proteins (TMpred), 13 proteins are lipoproteins (PrositeS-can), and 66 proteins are secreted proteins. The location of the secreted proteins was also predicted by Target P. Some of the secreted proteins are involved in the nutrition, reproduction, as well as the communication between cells and environment. The global information of the secreted proteins of S. pombe will benefit further studies in drug screening model and host searching for heterologous gene expression.

  10. A two-component system regulates gene expression of the type IX secretion component proteins via an ECF sigma factor

    PubMed Central

    Kadowaki, Tomoko; Yukitake, Hideharu; Naito, Mariko; Sato, Keiko; Kikuchi, Yuichiro; Kondo, Yoshio; Shoji, Mikio; Nakayama, Koji

    2016-01-01

    The periodontopathogen Porphyromonas gingivalis secretes potent pathogenic proteases, gingipains, via the type IX secretion system (T9SS). This system comprises at least 11 components; however, the regulatory mechanism of their expression has not yet been elucidated. Here, we found that the PorY (PGN_2001)-PorX (PGN_1019)-SigP (PGN_0274) cascade is involved in the regulation of T9SS. Surface plasmon resonance (SPR) analysis revealed a direct interaction between a recombinant PorY (rPorY) and a recombinant PorX (rPorX). rPorY autophosphorylated and transferred a phosphoryl group to rPorX in the presence of Mn2+. These results demonstrate that PorX and PorY act as a response regulator and a histidine kinase, respectively, of a two component system (TCS), although they are separately encoded on the chromosome. T9SS component-encoding genes were down-regulated in a mutant deficient in a putative extracytoplasmic function (ECF) sigma factor, PGN_0274 (SigP), similar to the porX mutant. Electrophoretic gel shift assays showed that rSigP bound to the putative promoter regions of T9SS component-encoding genes. The SigP protein was lacking in the porX mutant. Co-immunoprecipitation and SPR analysis revealed the direct interaction between SigP and PorX. Together, these results indicate that the PorXY TCS regulates T9SS-mediated protein secretion via the SigP ECF sigma factor. PMID:26996145

  11. Identification of secreted bacterial proteins by noncanonical amino acid tagging

    PubMed Central

    Mahdavi, Alborz; Szychowski, Janek; Ngo, John T.; Sweredoski, Michael J.; Graham, Robert L. J.; Hess, Sonja; Schneewind, Olaf; Mazmanian, Sarkis K.; Tirrell, David A.

    2014-01-01

    Pathogenic microbes have evolved complex secretion systems to deliver virulence factors into host cells. Identification of these factors is critical for understanding the infection process. We report a powerful and versatile approach to the selective labeling and identification of secreted pathogen proteins. Selective labeling of microbial proteins is accomplished via translational incorporation of azidonorleucine (Anl), a methionine surrogate that requires a mutant form of the methionyl-tRNA synthetase for activation. Secreted pathogen proteins containing Anl can be tagged by azide-alkyne cycloaddition and enriched by affinity purification. Application of the method to analysis of the type III secretion system of the human pathogen Yersinia enterocolitica enabled efficient identification of secreted proteins, identification of distinct secretion profiles for intracellular and extracellular bacteria, and determination of the order of substrate injection into host cells. This approach should be widely useful for the identification of virulence factors in microbial pathogens and the development of potential new targets for antimicrobial therapy. PMID:24347637

  12. Proteins Exported via the PrsD-PrsE Type I Secretion System and the Acidic Exopolysaccharide Are Involved in Biofilm Formation by Rhizobium leguminosarum

    PubMed Central

    Russo, Daniela M.; Williams, Alan; Edwards, Anne; Posadas, Diana M.; Finnie, Christine; Dankert, Marcelo; Downie, J. Allan; Zorreguieta, Angeles

    2006-01-01

    The type I protein secretion system of Rhizobium leguminosarum bv. viciae encoded by the prsD and prsE genes is responsible for secretion of the exopolysaccharide (EPS)-glycanases PlyA and PlyB. The formation of a ring of biofilm on the surface of the glass in shaken cultures by both the prsD and prsE secretion mutants was greatly affected. Confocal laser scanning microscopy analysis of green-fluorescent-protein-labeled bacteria showed that during growth in minimal medium, R. leguminosarum wild type developed microcolonies, which progress to a characteristic three-dimensional biofilm structure. However, the prsD and prsE secretion mutants were able to form only an immature biofilm structure. A mutant disrupted in the EPS-glycanase plyB gene showed altered timing of biofilm formation, and its structure was atypical. A mutation in an essential gene for EPS synthesis (pssA) or deletion of several other pss genes involved in EPS synthesis completely abolished the ability of R. leguminosarum to develop a biofilm. Extracellular complementation studies of mixed bacterial cultures confirmed the role of the EPS and the modulation of the biofilm structure by the PrsD-PrsE secreted proteins. Protein analysis identified several additional proteins secreted by the PrsD-PrsE secretion system, and N-terminal sequencing revealed peptides homologous to the N termini of proteins from the Rap family (Rhizobium adhering proteins), which could have roles in cellular adhesion in R. leguminosarum. We propose a model for R. leguminosarum in which synthesis of the EPS leads the formation of a biofilm and several PrsD-PrsE secreted proteins are involved in different aspects of biofilm maturation, such as modulation of the EPS length or mediating attachment between bacteria. PMID:16740954

  13. Visualization of VirE2 protein translocation by the Agrobacterium type IV secretion system into host cells

    PubMed Central

    Sakalis, Philippe A; van Heusden, G Paul H; Hooykaas, Paul J J

    2014-01-01

    Type IV secretion systems (T4SS) can mediate the translocation of bacterial virulence proteins into host cells. The plant pathogen Agrobacterium tumefaciens uses a T4SS to deliver a VirD2-single stranded DNA complex as well as the virulence proteins VirD5, VirE2, VirE3, and VirF into host cells so that these become genetically transformed. Besides plant cells, yeast and fungi can efficiently be transformed by Agrobacterium. Translocation of virulence proteins by the T4SS has so far only been shown indirectly by genetic approaches. Here we report the direct visualization of VirE2 protein translocation by using bimolecular fluorescence complementation (BiFC) and Split GFP visualization strategies. To this end, we cocultivated Agrobacterium strains expressing VirE2 tagged with one part of a fluorescent protein with host cells expressing the complementary part, either fused to VirE2 (for BiFC) or not (Split GFP). Fluorescent filaments became visible in recipient cells 20–25 h after the start of the cocultivation indicative of VirE2 protein translocation. Evidence was obtained that filament formation was due to the association of VirE2 with the microtubuli. PMID:24376037

  14. Visualization of VirE2 protein translocation by the Agrobacterium type IV secretion system into host cells.

    PubMed

    Sakalis, Philippe A; van Heusden, G Paul H; Hooykaas, Paul J J

    2014-02-01

    Type IV secretion systems (T4SS) can mediate the translocation of bacterial virulence proteins into host cells. The plant pathogen Agrobacterium tumefaciens uses a T4SS to deliver a VirD2-single stranded DNA complex as well as the virulence proteins VirD5, VirE2, VirE3, and VirF into host cells so that these become genetically transformed. Besides plant cells, yeast and fungi can efficiently be transformed by Agrobacterium. Translocation of virulence proteins by the T4SS has so far only been shown indirectly by genetic approaches. Here we report the direct visualization of VirE2 protein translocation by using bimolecular fluorescence complementation (BiFC) and Split GFP visualization strategies. To this end, we cocultivated Agrobacterium strains expressing VirE2 tagged with one part of a fluorescent protein with host cells expressing the complementary part, either fused to VirE2 (for BiFC) or not (Split GFP). Fluorescent filaments became visible in recipient cells 20-25 h after the start of the cocultivation indicative of VirE2 protein translocation. Evidence was obtained that filament formation was due to the association of VirE2 with the microtubuli. PMID:24376037

  15. The Salmonella enterica serovar typhimurium-encoded type III secretion systems can translocate Chlamydia trachomatis proteins into the cytosol of host cells.

    PubMed

    Ho, Theresa D; Starnbach, Michael N

    2005-02-01

    Chlamydia trachomatis is an obligate, intracellular pathogen that is a major cause of preventable blindness and infertility worldwide. Although the published genome sequence suggests that C. trachomatis encodes a type III secretion system, the lack of genetic tools for studying Chlamydia has hindered the examination of this potentially important class of virulence genes. We have developed a technique to identify Chlamydia proteins that can be translocated into the host cell cytoplasm by a type III secretion system. We have selected several Chlamydia proteins and tagged them with a multiple peptide motif element called F8M4. Epitopes contained in the F8M4 tag allow us to use tools corresponding to different arms of the adaptive immune system to detect the expression and translocation of these proteins by Salmonella enterica serovar Typhimurium. In particular, CD8(+)-T-cell reactivity can be used to detect the translocation of F8M4-tagged proteins into the cytoplasm of host cells. We have found that CD8(+)-T-cell activity assays are sensitive enough to detect translocation of even a small amount of F8M4-tagged protein. We have used CD8(+)-T-cell activity to show that CopN, a Chlamydia protein previously shown to be translocated by Yersinia type III secretion, can be translocated by the Salmonella pathogenicity island 1 (SPI-1) type III secretion system. Additionally, we demonstrate that CopD and Pkn5, two Chlamydia proteins hypothesized to be substrates of a type III secretion system, are translocated via the SPI-2 type III secretion system of serovar Typhimurium. The epitope tag system described here can be used more generally to examine the expression and subcellular compartmentalization of bacterial proteins deployed during the interaction of pathogens with mammalian cells.

  16. Peptide linkage mapping of the Agrobacterium tumefaciens vir-encoded type IV secretion system reveals protein subassemblies.

    PubMed

    Ward, Doyle V; Draper, Olga; Zupan, John R; Zambryski, Patricia C

    2002-08-20

    Numerous bacterial pathogens use type IV secretion systems (T4SS) to deliver virulence factors directly to the cytoplasm of plant, animal, and human host cells. Here, evidence for interactions among components of the Agrobacterium tumefaciens vir-encoded T4SS is presented. The results derive from a high-resolution yeast two-hybrid assay, in which a library of small peptide domains of T4SS components was screened for interactions. The use of small peptides overcomes problems associated with assaying for interactions involving membrane-associated proteins. We established interactions between VirB11 (an inner membrane pore-forming protein), VirB9 (a periplasmic protein), and VirB7 (an outer membrane-associated lipoprotein and putative pilus component). We provide evidence for an interaction pathway, among conserved members of a T4SS, spanning the A. tumefaciens envelope and including a potential pore protein. In addition, we have determined interactions between VirB1 (a lytic transglycosylase likely involved in the local remodeling of the peptidoglycan) and primarily VirB8, but also VirB4, VirB10, and VirB11 (proteins likely to assemble the core structure of the T4SS). VirB4 interacts with VirB8, VirB10, and VirB11, also establishing a connection to the core components. The identification of these interactions suggests a model for assembly of the T4SS. PMID:12177441

  17. The Deinococcus radiodurans DR1245 Protein, a DdrB Partner Homologous to YbjN Proteins and Reminiscent of Type III Secretion System Chaperones

    SciTech Connect

    Norais, Cédric; Servant, Pascale; Bouthier-de-la-Tour, Claire; Coureux, Pierre-Damien; Ithurbide, Solenne; Vannier, Françoise; Guerin, Philippe P.; Dulberger, Charles L.; Satyshur, Kenneth A.; Keck, James L.; Armengaud, Jean; Cox, Michael M.; Sommer, Suzanne

    2013-02-18

    The bacterium Deinococcus radiodurans exhibits an extreme resistance to ionizing radiation. A small subset of Deinococcus genus-specific genes were shown to be up-regulated upon exposure to ionizing radiation and to play a role in genome reconstitution. These genes include an SSB-like protein called DdrB. Here, we identified a novel protein encoded by the dr1245gene as an interacting partner of DdrB. A strain devoid of the DR1245 protein is impaired in growth, exhibiting a generation time approximately threefold that of the wild type strain while radioresistance is not affected. We determined the three-dimensional structure of DR1245, revealing a relationship with type III secretion system chaperones and YbjN family proteins. Thus, DR1245 may display some chaperone activity towards DdrB and possibly other substrates.

  18. The inner rod protein controls substrate switching and needle length in a Salmonella type III secretion system

    PubMed Central

    Lefebre, Matthew D.; Galán, Jorge E.

    2014-01-01

    Type III secretion machines are essential for the biology of many bacteria that are pathogenic or symbiotic for animals, plants, or insects. They exert their function by delivering bacterial effector proteins into target eukaryotic cells. The core component of these machines is the needle complex, a multiprotein structure that spans the bacterial envelope and serves as a conduit for proteins that transit this secretion pathway. The needle complex is composed of a multiring base embedded in the bacterial envelope and a filament-like structure, the needle, that projects from the bacterial surface and is linked to the base by the inner rod. Assembly of the needle complex proceeds in a step-wise fashion that is initiated by the assembly of the base and is followed by the export of the building subunits for the needle and inner rod substructures. Once assembled, the needle complex reprograms its specificity and becomes competent for the secretion of effector proteins. Here through genetic, biochemical, and electron microscopy analyses of the Salmonella inner rod protein subunit PrgJ we present evidence that the assembly of the inner rod dictates the timing of substrate switching and needle length. Furthermore, the identification of mutations in PrgJ that specifically alter the hierarchy of protein secretion provides additional support for a complex role of the inner rod substructure in type III secretion. PMID:24379359

  19. Over-expression of secreted proteins from mammalian cell lines

    PubMed Central

    Dalton, Annamarie C; Barton, William A

    2014-01-01

    Secreted mammalian proteins require the development of robust protein over-expression systems for crystallographic and biophysical studies of protein function. Due to complex disulfide bonds and distinct glycosylation patterns preventing folding and expression in prokaryotic expression hosts, many secreted proteins necessitate production in more complex eukaryotic expression systems. Here, we elaborate on the methods used to obtain high yields of purified secreted proteins from transiently or stably transfected mammalian cell lines. Among the issues discussed are the selection of appropriate expression vectors, choice of signal sequences for protein secretion, availability of fusion tags for enhancing protein stability and purification, choice of cell line, and the large-scale growth of cells in a variety of formats. PMID:24510886

  20. VirB2 and VirB5 proteins: specialized adhesins in bacterial type-IV secretion systems?

    PubMed

    Backert, Steffen; Fronzes, Remi; Waksman, Gabriel

    2008-09-01

    Many type-IV secretion systems (T4SSs) of plant and human pathogens assemble a pilus used to inject virulence molecules (effectors) into host target cells. The T4SS of Agrobacterium tumefaciens consists of VirB1-VirB11 and VirD4 proteins. Whether targeting of T4SSs to the host requires a T4SS-adhesin that specifically engages host receptors for delivery of effectors has, until recently, remained unclear. Recent data of Agrobacterium and Helicobacter indicate that two classes of T4SS components, VirB2 and VirB5, might function as adhesins that mediate host-cell targeting through binding to specific host receptors. Here, we discuss this important issue and recent progress in the field. PMID:18706815

  1. Redox proteins are constitutively secreted by skeletal muscle.

    PubMed

    Manabe, Yasuko; Takagi, Mayumi; Nakamura-Yamada, Mio; Goto-Inoue, Naoko; Taoka, Masato; Isobe, Toshiaki; Fujii, Nobuharu L

    2014-11-01

    Myokines are skeletal muscle-derived hormones. In this study, using a C2C12 myotube contraction system, we sought to determine whether the skeletal muscle secreted thioredoxin (TRX) and related redox proteins. Redox proteins such as TRXs, peroxiredoxins, and glutaredoxins were detected in the C2C12 myotube culture medium in the absence of any stimulation. The amounts of TRXs, peroxiredoxins, and glutaredoxins secreted by the C2C12 myotubes were not affected by the contraction, unless the myotubes were injured. Because TRX-1 was known to be a secreted protein that lacks a signal peptide, we examined whether this protein was secreted via exosome vesicles. The results indicated that TRX-1 was not secreted via exosome vesicles. We concluded that TRX-1 and related redox proteins are myokines that are constitutively secreted by the skeletal muscle cells. Although the mechanism of TRX-1 secretion remains unclear, our findings suggest that the skeletal muscle is an endocrine organ and the redox proteins that are constitutively secreted from the skeletal muscle may exert antioxidant and systemic health-promoting effects.

  2. Type V Protein Secretion Pathway: the Autotransporter Story

    PubMed Central

    Henderson, Ian R.; Navarro-Garcia, Fernando; Desvaux, Mickaël; Fernandez, Rachel C.; Ala'Aldeen, Dlawer

    2004-01-01

    Gram-negative bacteria possess an outer membrane layer which constrains uptake and secretion of solutes and polypeptides. To overcome this barrier, bacteria have developed several systems for protein secretion. The type V secretion pathway encompasses the autotransporter proteins, the two-partner secretion system, and the recently described type Vc or AT-2 family of proteins. Since its discovery in the late 1980s, this family of secreted proteins has expanded continuously, due largely to the advent of the genomic age, to become the largest group of secreted proteins in gram-negative bacteria. Several of these proteins play essential roles in the pathogenesis of bacterial infections and have been characterized in detail, demonstrating a diverse array of function including the ability to condense host cell actin and to modulate apoptosis. However, most of the autotransporter proteins remain to be characterized. In light of new discoveries and controversies in this research field, this review considers the autotransporter secretion process in the context of the more general field of bacterial protein translocation and exoprotein function. PMID:15590781

  3. Involvement of an Skp-Like Protein, PGN_0300, in the Type IX Secretion System of Porphyromonas gingivalis

    PubMed Central

    Taguchi, Yuko; Sato, Keiko; Yukitake, Hideharu; Inoue, Tetsuyoshi; Nakayama, Masaaki; Naito, Mariko; Kondo, Yoshio; Kano, Konami; Hoshino, Tomonori; Nakayama, Koji; Takashiba, Shogo

    2015-01-01

    The oral Gram-negative anaerobic bacterium Porphyromonas gingivalis is an important pathogen involved in chronic periodontitis. Among its virulence factors, the major extracellular proteinases, Arg-gingipain and Lys-gingipain, are of interest given their abilities to degrade host proteins and process other virulence factors. Gingipains possess C-terminal domains (CTDs) and are translocated to the cell surface or into the extracellular milieu by the type IX secretion system (T9SS). Gingipains contribute to the colonial pigmentation of the bacterium on blood agar. In this study, Omp17, the PGN_0300 gene product, was found in the outer membrane fraction. A mutant lacking Omp17 did not show pigmentation on blood agar and showed reduced proteolytic activity of the gingipains. CTD-containing proteins were released from bacterial cells without cleavage of the CTDs in the omp17 mutant. Although synthesis of the anionic polysaccharide (A-LPS) was not affected in the omp17 mutant, the processing of and A-LPS modification of CTD-containing proteins was defective. PorU, a C-terminal signal peptidase that cleaves the CTDs of other CTD-containing proteins, was not detected in any membrane fraction of the omp17 mutant, suggesting that the defective maturation of CTD-containing proteins by impairment of Omp17 is partly due to loss of function of PorU. In the mouse subcutaneous infection experiment, the omp17 mutant was less virulent than the wild type. These results suggested that Omp17 is involved in P. gingivalis virulence. PMID:26502912

  4. Ehrlichia chaffeensis Tandem Repeat Proteins and Ank200 are Type 1 Secretion System Substrates Related to the Repeats-in-Toxin Exoprotein Family

    PubMed Central

    Wakeel, Abdul; den Dulk-Ras, Amke; Hooykaas, Paul J. J.; McBride, Jere W.

    2011-01-01

    Ehrlichia chaffeensis has type 1 and 4 secretion systems (T1SS and T4SS), but the substrates have not been identified. Potential substrates include secreted tandem repeat protein (TRP) 47, TRP120, and TRP32, and the ankyrin repeat protein, Ank200, that are involved in molecular host–pathogen interactions including DNA binding and a network of protein–protein interactions with host targets associated with signaling, transcriptional regulation, vesicle trafficking, and apoptosis. In this study we report that E. chaffeensis TRP47, TRP32, TRP120, and Ank200 were not secreted in the Agrobacterium tumefaciens Cre recombinase reporter assay routinely used to identify T4SS substrates. In contrast, all TRPs and the Ank200 proteins were secreted by the Escherichia coli complemented with the hemolysin secretion system (T1SS), and secretion was reduced in a T1SS mutant (ΔTolC), demonstrating that these proteins are T1SS substrates. Moreover, T1SS secretion signals were identified in the C-terminal domains of the TRPs and Ank200, and a detailed bioinformatic analysis of E. chaffeensis TRPs and Ank200 revealed features consistent with those described in the repeats-in-toxins (RTX) family of exoproteins, including glycine- and aspartate-rich tandem repeats, homology with ATP-transporters, a non-cleavable C-terminal T1SS signal, acidic pIs, and functions consistent with other T1SS substrates. Using a heterologous E. coli T1SS, this investigation has identified the first Ehrlichia T1SS substrates supporting the conclusion that the T1SS and corresponding substrates are involved in molecular host–pathogen interactions that contribute to Ehrlichia pathobiology. Further investigation of the relationship between Ehrlichia TRPs, Ank200, and the RTX exoprotein family may lead to a greater understanding of the importance of T1SS substrates and specific functions of T1SS in the pathobiology of obligately intracellular bacteria. PMID:22919588

  5. NMR characterization of the interaction of the Salmonella type III secretion system protein SipD and bile salts.

    PubMed

    Wang, Yu; Nordhues, Bryce A; Zhong, Dalian; De Guzman, Roberto N

    2010-05-18

    Salmonella and Shigella bacteria require the type III secretion system (T3SS) to inject virulence proteins into their hosts and initiate infections. The tip proteins SipD and IpaD are critical components of the Salmonella and Shigella T3SS, respectively. Recently, SipD and IpaD have been shown to interact with bile salts, which are enriched in the intestines, and are hypothesized to act as environmental sensors for these enteric pathogens. Bile salts activate the Shigella T3SS but repress the Salmonella T3SS, and the mechanism of this differing response to bile salts is poorly understood. Further, how SipD binds to bile salts is currently unknown. Computer modeling predicted that IpaD binds the bile salt deoxycholate in a cleft formed by the N-terminal domain and the long central coiled coil of IpaD. Here, we used NMR methods to determine which SipD residues are affected by the interaction with the bile salts deoxycholate, chenodeoxycholate, and taurodeoxcholate. The bile salts perturbed nearly the same set of SipD residues; however, the largest chemical shift perturbations occurred away from what was predicted for the bile salt binding site in IpaD. Our NMR results indicate that that bile salt interaction of SipD will be different from what was predicted for IpaD, suggesting a possible mechanism for the differing response of Salmonella and Shigella to bile salts.

  6. Biochemical Methods to Analyze Wnt Protein Secretion.

    PubMed

    Glaeser, Kathrin; Boutros, Michael; Gross, Julia Christina

    2016-01-01

    Wnt proteins act as potent morphogens in various aspects of embryonic development and adult tissue homeostasis. However, in addition to its physiological importance, aberrant Wnt signaling has been linked to the onset and progression of different types of cancer. On the cellular level, the secretion of Wnt proteins involves trafficking of lipid-modified Wnts from the endoplasmic reticulum (ER) to Golgi and further compartments via the Wnt cargo receptor evenness interrupted. Others and we have recently shown that Wnt proteins are secreted on extracellular vesicles (EVs) such as microvesicles and exosomes. Although more details about specific regulation of Wnt secretion steps are emerging, it remains largely unknown how Wnt proteins are channeled into different release pathways such as lipoprotein particles, EVs and cytonemes. Here, we describe protocols to purify and quantify Wnts from the supernatant of cells by either assessing total Wnt proteins in the supernatant or monitoring Wnt proteins on EVs. Purified Wnts from the supernatant as well as total cellular protein content can be investigated by immunoblotting. Additionally, the relative activity of canonical Wnts in the supernatant can be assessed by a dual-luciferase Wnt reporter assay. Quantifying the amount of secreted Wnt proteins and their activity in the supernatant of cells allows the investigation of intracellular trafficking events that regulate Wnt secretion and the role of extracellular modulators of Wnt spreading. PMID:27590148

  7. Protein Export According to Schedule: Architecture, Assembly, and Regulation of Type III Secretion Systems from Plant- and Animal-Pathogenic Bacteria

    PubMed Central

    2012-01-01

    Summary: Flagellar and translocation-associated type III secretion (T3S) systems are present in most Gram-negative plant- and animal-pathogenic bacteria and are often essential for bacterial motility or pathogenicity. The architectures of the complex membrane-spanning secretion apparatuses of both systems are similar, but they are associated with different extracellular appendages, including the flagellar hook and filament or the needle/pilus structures of translocation-associated T3S systems. The needle/pilus is connected to a bacterial translocon that is inserted into the host plasma membrane and mediates the transkingdom transport of bacterial effector proteins into eukaryotic cells. During the last 3 to 5 years, significant progress has been made in the characterization of membrane-associated core components and extracellular structures of T3S systems. Furthermore, transcriptional and posttranscriptional regulators that control T3S gene expression and substrate specificity have been described. Given the architecture of the T3S system, it is assumed that extracellular components of the secretion apparatus are secreted prior to effector proteins, suggesting that there is a hierarchy in T3S. The aim of this review is to summarize our current knowledge of T3S system components and associated control proteins from both plant- and animal-pathogenic bacteria. PMID:22688814

  8. Expression and Targeting of Secreted Proteins from Chlamydia trachomatis

    PubMed Central

    Bauler, Laura D.

    2014-01-01

    Chlamydia trachomatis is an obligate intracellular pathogen that replicates in a vacuole termed the inclusion. Many of the interactions of chlamydiae with the host cell are dependent upon bacterial protein synthesis and presumably exposure of these proteins to the cytosol. Because of the dearth of genetic tools for chlamydiae, previous studies examining secreted proteins required the use of heterologous bacterial systems. Recent advances in genetic manipulation of chlamydia now allow for transformation of the bacteria with plasmids. We describe here a shuttle vector system, pBOMB4, that permits expression of recombinant proteins under constitutive or conditional promoter control. We show that the inclusion membrane protein IncD is secreted in a type III-dependent manner from Yersinia pseudotuberculosis and also secreted from C. trachomatis in infected cells where it localizes appropriately to the inclusion membrane. IncD truncated of the first 30 amino acids containing the secretion signal is no longer secreted and is retained by the bacteria. Cytosolic exposure of secreted proteins can be confirmed by using CyaA, GSK, or microinjection assays. A protein predicted to be retained within the bacteria, NrdB is indeed localized to the chlamydia. In addition, we have shown that the chlamydial effector protein, CPAF, which is secreted into the host cell cytosol by a Sec-dependent pathway, also accesses the cytosol when expressed from this system. These assays should prove useful to assess the secretion of other chlamydial proteins that are potentially exposed to the cytosol of the host cell. PMID:24443531

  9. Sorting sweet sorting. Protein secretion.

    PubMed

    Ponnambalam, S; Banting, G

    1996-09-01

    Membrane-spanning, lectin-like proteins in the eukaryotic secretory pathway seem to operate quality-control checkpoints by fine tuning protein exit or retention within each subcompartment. PMID:8805362

  10. Characterization of the Interaction between the Salmonella Type III Secretion System Tip Protein SipD and the Needle Protein PrgI by Paramagnetic Relaxation Enhancement*

    PubMed Central

    Rathinavelan, Thenmalarchelvi; Tang, Chun; De Guzman, Roberto N.

    2011-01-01

    Many Gram-negative bacteria that cause major diseases and mortality worldwide require the type III secretion system (T3SS) to inject virulence proteins into their hosts and cause infections. A structural component of the T3SS is the needle apparatus, which consists of a base, an external needle, and a tip complex. In Salmonella typhimurium, the external needle is assembled by the polymerization of the needle protein PrgI. On top of this needle sits a tip complex, which is partly formed by the tip protein SipD. How SipD interacts with PrgI during the assembly of the T3SS needle apparatus remains unknown. The central region of PrgI forms an α-helical hairpin, whereas SipD has a long central coiled-coil, which is a defining structural feature of other T3SS tip proteins as well. Using NMR paramagnetic relaxation enhancement, we have identified a specific region on the SipD coiled-coil that interacts directly with PrgI. We present a model of how SipD might dock at the tip of the needle based on our paramagnetic relaxation enhancement results, thus offering new insight about the mechanism of assembly of the T3SS needle apparatus. PMID:21138848

  11. Dynamics of protein secretion during adipocyte differentiation.

    PubMed

    Ojima, Koichi; Oe, Mika; Nakajima, Ikuyo; Muroya, Susumu; Nishimura, Takanori

    2016-08-01

    The major functions of adipocytes include both lipid storage and the production of secretory factors. However, the type of proteins released from mouse 3T3-L1 cells during adipocyte differentiation remains poorly understood. We examined the dynamics of secreted proteins during adipocyte differentiation using mass spectrometry (MS) combined with an iTRAQ (®) labeling method that enables the simultaneous analysis of relative protein expression levels. A total of 215 proteins were identified and quantified from approximately 10 000 MS/MS spectra. Of these, approximately 38% were categorized as secreted proteins based on gene ontology classification. Adipokine secretion levels were increased with the progression of differentiation. By contrast, levels of fibril collagen components, such as subunits of type I and III collagens, were decreased during differentiation. Basement membrane components attained their peak levels at day 4 when small lipid droplets accumulated in differentiated 3T3-L1 cells. Simultaneously, peak levels of collagen microfibril components that comprise type V and VI collagen subunits were also observed. Our data demonstrated that extracellular matrix components were predominantly released during the early and middle stages of adipocyte differentiation, with a subsequent increase in the secretion of adipokines. This suggests that 3T3-L1 cells secrete adipokines after their ECM is constructed during adipocyte differentiation. PMID:27516960

  12. Structural Determinants of the Interaction between the TpsA and TpsB Proteins in the Haemophilus influenzae HMW1 Two-Partner Secretion System

    PubMed Central

    Grass, Susan; Rempe, Katherine A.

    2015-01-01

    least two discrete steps, including initial interaction between the HMW1 propiece and the HMW1B POTRA domains and then a separate translocation event. We have also discovered that the HMW1B pore itself appears to influence the translocation process. These observations extend our knowledge of the two-partner secretion system and may be broadly relevant to other proteins secreted by the TPS pathway. PMID:25777673

  13. Targeted Secretion Inhibitors—Innovative Protein Therapeutics

    PubMed Central

    Foster, Keith; Chaddock, John

    2010-01-01

    Botulinum neurotoxins are highly effective therapeutic products. Their therapeutic success results from highly specific and potent inhibition of neurotransmitter release with a duration of action measured in months. These same properties, however, make the botulinum neurotoxins the most potent acute lethal toxins known. Their toxicity and restricted target cell activity severely limits their clinical utility. Understanding the structure-function relationship of the neurotoxins has enabled the development of recombinant proteins selectively incorporating specific aspects of their pharmacology. The resulting proteins are not neurotoxins, but a new class of biopharmaceuticals, Targeted Secretion Inhibitors (TSI), suitable for the treatment of a wide range of diseases where secretion plays a major role. TSI proteins inhibit secretion for a prolonged period following a single application, making them particularly suited to the treatment of chronic diseases. A TSI for the treatment of chronic pain is in clinical development. PMID:22069575

  14. The Structure of the Toxin and Type Six Secretion System Substrate Tse2 in Complex with Its Immunity Protein.

    PubMed

    Robb, Craig S; Robb, Melissa; Nano, Francis E; Boraston, Alisdair B

    2016-02-01

    Tse2 is a cytoactive toxin secreted by a type six secretion apparatus of Pseudomonas aeruginosa. The Tse2 toxin naturally attacks a target in the cytoplasm of bacterial cells, and can cause toxicity if artificially introduced into eukaryotic cells. The X-ray crystal structure of the complex of Tse2 and its cognate immunity protein Tsi2 revealed a heterotetrameric structure with an extensive binding interface. Structural identity was found between Tse2 and NAD-dependent enzymes, especially ADP-ribosylating toxins, which facilitated the identification of the Tse2 active site and revealed it to be occluded upon binding the inhibitor Tsi2. The structural identity shared with NAD-dependent enzymes, including conserved catalytic residues, suggests that the mechanism of Tse2 toxicity may be NAD dependent.

  15. A novel cytology-based, two-hybrid screen for bacteria applied to protein-protein interaction studies of a type IV secretion system.

    PubMed

    Ding, Zhiyong; Zhao, Zhenming; Jakubowski, Simon J; Krishnamohan, Atmakuri; Margolin, William; Christie, Peter J

    2002-10-01

    DivIVA of Bacillus subtilis and FtsZ of Escherichia coli were used to target heterologous protein complexes to cell division sites of E. coli and Agrobacterium tumefaciens. DivIVA and FtsZ that were fused to the dimerizing leucine zipper (LZ) domain of the yeast transcription activator GCN4 directed the green fluorescent protein (GFP) that was fused to an LZ domain to E. coli division sites, resulting in fluorescence patterns identical to those observed with DivIVA::GFP and FtsZ::GFP. These cell division proteins also targeted the VirE1 chaperone and VirE2 secretion substrate complex to division sites of E. coli and A. tumefaciens. Coproduction of the native VirE1 or VirE2 proteins inhibited the dihybrid interaction in both species, as judged by loss of GFP targeting to division sites. The VirE1 chaperone bound independently to N- and C-terminal regions of VirE2, with a requirement for residues 84 to 147 and 331 to 405 for these interactions, as shown by dihybrid studies with VirE1::GFP and DivIVA fused to N- and C-terminal VirE2 fragments. DivIVA also targeted homo- and heterotypic complexes of VirB8 and VirB10, two bitopic inner membrane subunits of the A. tumefaciens T-DNA transfer system, in E. coli and homotypic complexes of VirB10 in A. tumefaciens. VirB10 self-association in bacteria was mediated by the C-terminal periplasmic domain, as shown by dihybrid studies with fusions to VirB10 truncation derivatives. Together, our findings establish a proof-of-concept for the use of cell-location-specific proteins for studies of interactions among cytosolic and membrane proteins in diverse bacterial species. PMID:12270814

  16. A Novel Cytology-Based, Two-Hybrid Screen for Bacteria Applied to Protein-Protein Interaction Studies of a Type IV Secretion System

    PubMed Central

    Ding, Zhiyong; Zhao, Zhenming; Jakubowski, Simon J.; Krishnamohan, Atmakuri; Margolin, William; Christie, Peter J.

    2002-01-01

    DivIVA of Bacillus subtilis and FtsZ of Escherichia coli were used to target heterologous protein complexes to cell division sites of E. coli and Agrobacterium tumefaciens. DivIVA and FtsZ that were fused to the dimerizing leucine zipper (LZ) domain of the yeast transcription activator GCN4 directed the green fluorescent protein (GFP) that was fused to an LZ domain to E. coli division sites, resulting in fluorescence patterns identical to those observed with DivIVA::GFP and FtsZ::GFP. These cell division proteins also targeted the VirE1 chaperone and VirE2 secretion substrate complex to division sites of E. coli and A. tumefaciens. Coproduction of the native VirE1 or VirE2 proteins inhibited the dihybrid interaction in both species, as judged by loss of GFP targeting to division sites. The VirE1 chaperone bound independently to N- and C-terminal regions of VirE2, with a requirement for residues 84 to 147 and 331 to 405 for these interactions, as shown by dihybrid studies with VirE1::GFP and DivIVA fused to N- and C-terminal VirE2 fragments. DivIVA also targeted homo- and heterotypic complexes of VirB8 and VirB10, two bitopic inner membrane subunits of the A. tumefaciens T-DNA transfer system, in E. coli and homotypic complexes of VirB10 in A. tumefaciens. VirB10 self-association in bacteria was mediated by the C-terminal periplasmic domain, as shown by dihybrid studies with fusions to VirB10 truncation derivatives. Together, our findings establish a proof-of-concept for the use of cell-location-specific proteins for studies of interactions among cytosolic and membrane proteins in diverse bacterial species. PMID:12270814

  17. Structure of a type IV secretion system.

    PubMed

    Low, Harry H; Gubellini, Francesca; Rivera-Calzada, Angel; Braun, Nathalie; Connery, Sarah; Dujeancourt, Annick; Lu, Fang; Redzej, Adam; Fronzes, Rémi; Orlova, Elena V; Waksman, Gabriel

    2014-04-24

    Bacterial type IV secretion systems translocate virulence factors into eukaryotic cells, distribute genetic material between bacteria and have shown potential as a tool for the genetic modification of human cells. Given the complex choreography of the substrate through the secretion apparatus, the molecular mechanism of the type IV secretion system has proved difficult to dissect in the absence of structural data for the entire machinery. Here we use electron microscopy to reconstruct the type IV secretion system encoded by the Escherichia coli R388 conjugative plasmid. We show that eight proteins assemble in an intricate stoichiometric relationship to form an approximately 3 megadalton nanomachine that spans the entire cell envelope. The structure comprises an outer membrane-associated core complex connected by a central stalk to a substantial inner membrane complex that is dominated by a battery of 12 VirB4 ATPase subunits organized as side-by-side hexameric barrels. Our results show a secretion system with markedly different architecture, and consequently mechanism, to other known bacterial secretion systems. PMID:24670658

  18. Proteolytic events in the processing of secreted proteins in fungi.

    PubMed

    Calmels, T P; Martin, F; Durand, H; Tiraby, G

    1991-01-01

    Secreted heterologous proteins have been found to be produced much less efficiently by fungi than secreted homologous ones. This could be due, at least in part, to proteolytic cleavage by site-specific endoproteases of the secretory pathway, similar to the yeast KEX2 protease and the mammalian dibasic endoproteinases found in secretory pathways. Mature secreted fungal proteins may be protected from such cleavage due to the absence of cleavable sites in exposed regions. A comparison of the dipeptide distributions of 33 secreted and 34 cytoplasmic proteins from fungal producers of extracellular enzymes indicated a significant bias for some doublets, including the basic dipeptides Lys-Arg, Arg-Arg and Arg-Lys which have also been demonstrated to be KEX2 substrates. Other combinations were also found to be rare in secreted proteins, which could indicate either a broader specificity of the considered endopeptidase, or the presence either in the secretory organelles or among the secreted proteins of additional proteases with different specificities. Experimental evidence that the Lys-Arg site is processed in Tolypocladium geodes was provided by cloning a synthetic prosequence upstream of a phleomycin resistance (Sh ble) gene and analyzing the N-terminus of the corresponding protein purified from the culture supernatant. This system also provides a tool for further studies of specific proteases of fungi.

  19. Structural and Functional Similarity between the Bacterial Type III Secretion System Needle Protein PrgI and the Eukaryotic Apoptosis Bcl-2 Proteins

    PubMed Central

    Shortridge, Matthew D.; Powers, Robert

    2009-01-01

    Background Functional similarity is challenging to identify when global sequence and structure similarity is low. Active-sites or functionally relevant regions are evolutionarily more stable relative to the remainder of a protein structure and provide an alternative means to identify potential functional similarity between proteins. We recently developed the FAST-NMR methodology to discover biochemical functions or functional hypotheses of proteins of unknown function by experimentally identifying ligand binding sites. FAST-NMR utilizes our CPASS software and database to assign a function based on a similarity in the structure and sequence of ligand binding sites between proteins of known and unknown function. Methodology/Principal Findings The PrgI protein from Salmonella typhimurium forms the needle complex in the type III secretion system (T3SS). A FAST-NMR screen identified a similarity between the ligand binding sites of PrgI and the Bcl-2 apoptosis protein Bcl-xL. These ligand binding sites correlate with known protein-protein binding interfaces required for oligomerization. Both proteins form membrane pores through this oligomerization to release effector proteins to stimulate cell death. Structural analysis indicates an overlap between the PrgI structure and the pore forming motif of Bcl-xL. A sequence alignment indicates conservation between the PrgI and Bcl-xL ligand binding sites and pore formation regions. This active-site similarity was then used to verify that chelerythrine, a known Bcl-xL inhibitor, also binds PrgI. Conclusions/Significance A structural and functional relationship between the bacterial T3SS and eukaryotic apoptosis was identified using our FAST-NMR ligand affinity screen in combination with a bioinformatic analysis based on our CPASS program. A similarity between PrgI and Bcl-xL is not readily apparent using traditional global sequence and structure analysis, but was only identified because of conservation in ligand binding sites

  20. Genes encoding putative effector proteins of the type III secretion system of Salmonella pathogenicity island 2 are required for bacterial virulence and proliferation in macrophages.

    PubMed

    Hensel, M; Shea, J E; Waterman, S R; Mundy, R; Nikolaus, T; Banks, G; Vazquez-Torres, A; Gleeson, C; Fang, F C; Holden, D W

    1998-10-01

    The type III secretion system of Salmonella pathogenicity island 2 (SPI-2) is required for systemic infection of this pathogen in mice. Cloning and sequencing of a central region of SPI-2 revealed the presence of genes encoding putative chaperones and effector proteins of the secretion system. The predicted products of the sseB, sseC and sseD genes display weak but significant similarity to amino acid sequences of EspA, EspD and EspB, which are secreted by the type III secretion system encoded by the locus of enterocyte effacement of enteropathogenic Escherichia coli. The transcriptional activity of an sseA::luc fusion gene was shown to be dependent on ssrA, which is required for the expression of genes encoding components of the secretion system apparatus. Strains carrying nonpolar mutations in sseA, sseB or sseC were severely attenuated in virulence, strains carrying mutations in sseF or sseG were weakly attenuated, and a strain with a mutation in sseE had no detectable virulence defect. These phenotypes were reflected in the ability of mutant strains to grow within a variety of macrophage cell types: strains carrying mutations in sseA, sseB or sseC failed to accumulate, whereas the growth rates of strains carrying mutations in sseE, sseF or sseG were only modestly reduced. These data suggest that, in vivo, one of the functions of the SPI-2 secretion system is to enable intracellular bacterial proliferation.

  1. Mutations in the Yersinia pseudotuberculosis Type III Secretion System Needle Protein, YscF, That Specifically Abrogate Effector Translocation into Host Cells▿ †

    PubMed Central

    Davis, Alison J.; Mecsas, Joan

    2007-01-01

    The trafficking of effectors, termed Yops, from Yersinia spp. into host cells is a multistep process that requires the type III secretion system (TTSS). The TTSS has three main structural parts: a base, a needle, and a translocon, which work together to ensure the polarized movement of Yops directly from the bacterial cytosol into the host cell cytosol. To understand the interactions that take place at the interface between the tip of the TTSS needle and the translocon, we developed a screen to identify mutations in the needle protein YscF that separated its function in secretion from its role in translocation. We identified 25 translocation-defective (TD) yscF mutants, which fall into five phenotypic classes. Some classes exhibit aberrant needle structure and/or reduced levels of Yop secretion, consistent with known functions for YscF. Strikingly, two yscF TD classes formed needles and secreted Yops normally but displayed distinct translocation defects. Class I yscF TD mutants showed diminished pore formation, suggesting incomplete pore insertion and/or assembly. Class II yscF TD mutants formed pores but showed nonpolar translocation, suggesting unstable needle-translocon interactions. These results indicate that YscF functions in Yop secretion and translocation can be genetically separated. Furthermore, the identification of YscF residues that are required for the assembly of the translocon and/or productive interactions with the translocon has allowed us to initiate the mapping of the needle-translocon interface. PMID:17071752

  2. Overcoming inefficient secretion of recombinant VEGF-C in baculovirus expression vector system by simple purification of the protein from cell lysate.

    PubMed

    Klaus, Tomasz; Kulesza, Małgorzata; Bzowska, Monika; Wyroba, Barbara; Kilarski, Witold W; Bereta, Joanna

    2015-06-01

    The first reports about successfully expressed recombinant proteins with the use of a baculovirus vector were published over 30years ago. Despite the long time of refining this expression system, early problems with the production of baculovirus-derived secretory proteins are still not satisfactorily solved. The high expression level driven by baculoviral promoters often does not result in the desired yield of secreted recombinant proteins, which frequently accumulate inside insect cells and are only partially processed. During our attempts to produce vascular endothelial growth factor C (VEGF-C) with the use of a baculovirus vector we also faced an inefficient secretion of the recombinant protein to culture medium. We were not able to improve the outcome and obtain an acceptable concentration of VEGF-C in the medium by changing the culture conditions or utilizing different signal peptides. However, as a significant amount of native VEGF-C was detected inside the baculovirus-infected cells, we developed a simple method to purify recombinant, glycosylated VEGF-C from a lysate of the cells. The presented results indicate that the lack of a secretory protein in the insect cell culture medium after baculovirus infection does not necessarily signify failure in the production of the protein. As demonstrated by us and contrary to generally accepted views, the lysate of baculovirus-infected cells may constitute a valuable source of the biologically active, secretory protein.

  3. Active Wnt proteins are secreted on exosomes.

    PubMed

    Gross, Julia Christina; Chaudhary, Varun; Bartscherer, Kerstin; Boutros, Michael

    2012-10-01

    Wnt signalling has important roles during development and in many diseases. As morphogens, hydrophobic Wnt proteins exert their function over a distance to induce patterning and cell differentiation decisions. Recent studies have identified several factors that are required for the secretion of Wnt proteins; however, how Wnts travel in the extracellular space remains a largely unresolved question. Here we show that Wnts are secreted on exosomes both during Drosophila development and in human cells. We demonstrate that exosomes carry Wnts on their surface to induce Wnt signalling activity in target cells. Together with the cargo receptor Evi/WIs, Wnts are transported through endosomal compartments onto exosomes, a process that requires the R-SNARE Ykt6. Our study demonstrates an evolutionarily conserved functional role of extracellular vesicular transport of Wnt proteins.

  4. Unconventional Protein Secretion in Animal Cells.

    PubMed

    Ng, Fanny; Tang, Bor Luen

    2016-01-01

    All eukaryotic cells secrete a range of proteins in a constitutive or regulated manner through the conventional or canonical exocytic/secretory pathway characterized by vesicular traffic from the endoplasmic reticulum, through the Golgi apparatus, and towards the plasma membrane. However, a number of proteins are secreted in an unconventional manner, which are insensitive to inhibitors of conventional exocytosis and use a route that bypasses the Golgi apparatus. These include cytosolic proteins such as fibroblast growth factor 2 (FGF2) and interleukin-1β (IL-1β), and membrane proteins that are known to also traverse to the plasma membrane by a conventional process of exocytosis, such as α integrin and the cystic fibrosis transmembrane conductor (CFTR). Mechanisms underlying unconventional protein secretion (UPS) are actively being analyzed and deciphered, and these range from an unusual form of plasma membrane translocation to vesicular processes involving the generation of exosomes and other extracellular microvesicles. In this chapter, we provide an overview on what is currently known about UPS in animal cells. PMID:27665549

  5. Characterization of Pseudomonas aeruginosa chitinase, a gradually secreted protein.

    PubMed

    Folders, J; Algra, J; Roelofs, M S; van Loon, L C; Tommassen, J; Bitter, W

    2001-12-01

    The gram-negative bacterium Pseudomonas aeruginosa secretes many proteins into its extracellular environment via the type I, II, and III secretion systems. In this study, a gene, chiC, coding for an extracellular chitinolytic enzyme, was identified. The chiC gene encodes a polypeptide of 483 amino acid residues, without a typical N-terminal signal sequence. Nevertheless, an N-terminal segment of 11 residues was found to be cleaved off in the secreted protein. The protein shows sequence similarity to the secreted chitinases ChiC of Serratia marcescens, ChiA of Vibrio harveyi, and ChiD of Bacillus circulans and consists of an activity domain and a chitin-binding domain, which are separated by a fibronectin type III domain. ChiC was able to bind and degrade colloidal chitin and was active on the artificial substrates carboxymethyl-chitin-Remazol Brilliant Violet and p-nitrophenyl-beta-D-N,N',N"-triacetylchitotriose, but not on p-nitrophenyl-beta-D-N-acetylglucosamine, indicating that it is an endochitinase. Expression of the chiC gene appears to be regulated by the quorum-sensing system of P. aeruginosa, since this gene was not expressed in a lasIR vsmI mutant. After overnight growth, the majority of the ChiC produced was found intracellularly, whereas only small amounts were detected in the culture medium. However, after several days, the cellular pool of ChiC was largely depleted, and the protein was found in the culture medium. This release could not be ascribed to cell lysis. Since ChiC did not appear to be secreted via any of the known secretion systems, a novel secretion pathway seems to be involved.

  6. Sequence-Based Prediction of Type III Secreted Proteins

    PubMed Central

    Arnold, Roland; Brandmaier, Stefan; Kleine, Frederick; Tischler, Patrick; Heinz, Eva; Behrens, Sebastian; Niinikoski, Antti; Mewes, Hans-Werner; Horn, Matthias; Rattei, Thomas

    2009-01-01

    The type III secretion system (TTSS) is a key mechanism for host cell interaction used by a variety of bacterial pathogens and symbionts of plants and animals including humans. The TTSS represents a molecular syringe with which the bacteria deliver effector proteins directly into the host cell cytosol. Despite the importance of the TTSS for bacterial pathogenesis, recognition and targeting of type III secreted proteins has up until now been poorly understood. Several hypotheses are discussed, including an mRNA-based signal, a chaperon-mediated process, or an N-terminal signal peptide. In this study, we systematically analyzed the amino acid composition and secondary structure of N-termini of 100 experimentally verified effector proteins. Based on this, we developed a machine-learning approach for the prediction of TTSS effector proteins, taking into account N-terminal sequence features such as frequencies of amino acids, short peptides, or residues with certain physico-chemical properties. The resulting computational model revealed a strong type III secretion signal in the N-terminus that can be used to detect effectors with sensitivity of ∼71% and selectivity of ∼85%. This signal seems to be taxonomically universal and conserved among animal pathogens and plant symbionts, since we could successfully detect effector proteins if the respective group was excluded from training. The application of our prediction approach to 739 complete bacterial and archaeal genome sequences resulted in the identification of between 0% and 12% putative TTSS effector proteins. Comparison of effector proteins with orthologs that are not secreted by the TTSS showed no clear pattern of signal acquisition by fusion, suggesting convergent evolutionary processes shaping the type III secretion signal. The newly developed program EffectiveT3 (http://www.chlamydiaedb.org) is the first universal in silico prediction program for the identification of novel TTSS effectors. Our findings will

  7. Secretion of multi-protein migratory complex induced by Toxoplasma gondii infection in macrophages involves the uPA/uPAR activation system.

    PubMed

    Schuindt, Sara Hellen Santos; Oliveira, Bruno Cabral de Lima; Pimentel, Pollyana Maria de Oliveira; Resende, Thatiane Lacerda; Retamal, Cláudio A; DaMatta, Renato A; Seipel, Daniele; Arnholdt, Andrea Cristina Vetö

    2012-05-25

    Toxoplasmosis is a world wide spread zoonosis caused by Toxoplasma gondii, an obligate intracellular parasite that is able to disseminate into deep tissues and cross biological barriers, reaching immunoprivileged sites such as the brain and retina. The parasite is able to infect macrophages and dendritic cells for dispersal throughout the body. However, the molecular mechanisms or outcomes of the subversion of the host cell are largely unknown. Recently our group established that metalloproteinases are involved in migration of infected macrophages. Herein, we evaluated the recruitment of host invasive machinery components in T. gondii infected murine macrophages. We showed by immunoprecipitation assays that MMP-9, CD44 TIMP-1 and uPAR were secreted as a multi-protein complex by infected macrophages. Zymographic analysis revealed that MMP-9 was present in its pro- and active form. Moreover, inhibition of uPA/uPAR pathway by PAI-1 decreased secretion of MMP-9 active forms, as well those associated to uPAR and TIMP-1, but not to CD44. Data presented here suggest that MMP-9 is secreted as a multiprotein complex by T. gondii infected macrophages, similar to that observed in metastatic cells. We further speculate that uPA/uPAR system is involved in the expression/secretion of complexes containing active MMP-9 forms.

  8. Structural Characterization of the Yersinia pestis Type III Secretion System Needle Protein YscF in Complex with Its Heterodimeric Chaperone YscE/YscG

    SciTech Connect

    Sun, Ping; Tropea, Joseph E.; Austin, Brian P.; Cherry, Scott; Waugh, David S.

    2008-05-03

    The plague-causing bacterium Yersinia pestis utilizes a type III secretion system to deliver effector proteins into mammalian cells where they interfere with signal transduction pathways that mediate phagocytosis and the inflammatory response. Effector proteins are injected through a hollow needle structure composed of the protein YscF. YscG and YscE act as 'chaperones' to prevent premature polymerization of YscF in the cytosol of the bacterium prior to assembly of the needle. Here, we report the crystal structure of the YscEFG protein complex at 1.8 {angstrom} resolution. Overall, the structure is similar to that of the analogous PscEFG complex from the Pseudomonas aeruginosa type III secretion system, but there are noteworthy differences. The structure confirms that, like PscG, YscG is a member of the tetratricopeptide repeat family of proteins. YscG binds tightly to the C-terminal half of YscF, implying that it is this region of YscF that controls its polymerization into the needle structure. YscE interacts with the N-terminal tetratricopeptide repeat motif of YscG but makes very little direct contact with YscF. Its function may be to stabilize the structure of YscG and/or to participate in recruiting the complex to the secretion apparatus. No electron density could be observed for the 49 N-terminal residues of YscF. This and additional evidence suggest that the N-terminus of YscF is disordered in the complex with YscE and YscG. As expected, conserved residues in the C-terminal half of YscF mediate important intra- and intermolecular interactions in the complex. Moreover, the phenotypes of some previously characterized mutations in the C-terminal half of YscF can be rationalized in terms of the structure of the heterotrimeric YscEFG complex.

  9. Eukaryotic pathways targeted by the type III secretion system effector protein, BipC, involved in the intracellular lifecycle of Burkholderia pseudomallei

    PubMed Central

    Kang, Wen-Tyng; Vellasamy, Kumutha Malar; Vadivelu, Jamuna

    2016-01-01

    Burkholderia pseudomallei, the etiological agent for melioidosis, is known to secrete a type III secretion system (TTSS) protein into the host’s internal milieu. One of the TTSS effector protein, BipC, has been shown to play an important role in the B. pseudomallei pathogenesis. To identify the host response profile that was directly or indirectly regulated by this protein, genome-wide transcriptome approach was used to examine the gene expression profiles of infected mice. The transcriptome analysis of the liver and spleen revealed that a total of approximately 1,000 genes were transcriptionally affected by BipC. Genes involved in bacterial invasion, regulation of actin cytoskeleton, and MAPK signalling pathway were over-expressed and may be specifically regulated by BipC in vivo. These results suggest that BipC mainly targets pathways related to the cellular processes which could modulate the cellular trafficking processes. The host transcriptional response exhibited remarkable differences with and without the presence of the BipC protein. Overall, the detailed picture of this study provides new insights that BipC may have evolved to efficiently manipulate host-cell pathways which is crucial in the intracellular lifecycle of B. pseudomallei. PMID:27634329

  10. Eukaryotic pathways targeted by the type III secretion system effector protein, BipC, involved in the intracellular lifecycle of Burkholderia pseudomallei.

    PubMed

    Kang, Wen-Tyng; Vellasamy, Kumutha Malar; Vadivelu, Jamuna

    2016-01-01

    Burkholderia pseudomallei, the etiological agent for melioidosis, is known to secrete a type III secretion system (TTSS) protein into the host's internal milieu. One of the TTSS effector protein, BipC, has been shown to play an important role in the B. pseudomallei pathogenesis. To identify the host response profile that was directly or indirectly regulated by this protein, genome-wide transcriptome approach was used to examine the gene expression profiles of infected mice. The transcriptome analysis of the liver and spleen revealed that a total of approximately 1,000 genes were transcriptionally affected by BipC. Genes involved in bacterial invasion, regulation of actin cytoskeleton, and MAPK signalling pathway were over-expressed and may be specifically regulated by BipC in vivo. These results suggest that BipC mainly targets pathways related to the cellular processes which could modulate the cellular trafficking processes. The host transcriptional response exhibited remarkable differences with and without the presence of the BipC protein. Overall, the detailed picture of this study provides new insights that BipC may have evolved to efficiently manipulate host-cell pathways which is crucial in the intracellular lifecycle of B. pseudomallei. PMID:27634329

  11. Crystal Structure of a Soluble Fragment of the Membrane Fusion Protein HlyD in a Type I Secretion System of Gram-Negative Bacteria.

    PubMed

    Kim, Jin-Sik; Song, Saemee; Lee, Minho; Lee, Seunghwa; Lee, Kangseok; Ha, Nam-Chul

    2016-03-01

    The protein toxin HlyA of Escherichia coli is exported without a periplasmic intermediate by the type I secretion system (T1SS). The T1SS is composed of an inner membrane ABC transporter HlyB, an outer-membrane channel protein TolC, and a membrane fusion protein HlyD. However, the assembly of the T1SS remains to be elucidated. In this study, we determine the crystal structure of a part of the C-terminal periplasmic domain of HlyD. The long α-helical domain consisting of three α helices and a lipoyl domain was identified in the crystal structure. Based on the HlyD structure, we modeled the hexameric assembly of HlyD with a long α-helical barrel, which formed a complex with TolC in an intermeshing cogwheel-to-cogwheel manner, as observed in tripartite RND-type drug efflux pumps. These observations provide a structural blueprint for understanding the type I secretion system in pathogenic Gram-negative bacteria.

  12. Crystal structure of the C-terminal domain of the Salmonella type III secretion system export apparatus protein InvA.

    PubMed

    Worrall, Liam J; Vuckovic, Marija; Strynadka, Natalie C J

    2010-05-01

    InvA is a prominent inner-membrane component of the Salmonella type III secretion system (T3SS) apparatus, which is responsible for regulating virulence protein export in pathogenic bacteria. InvA is made up of an N-terminal integral membrane domain and a C-terminal cytoplasmic domain that is proposed to form part of a docking platform for the soluble export apparatus proteins notably the T3SS ATPase InvC. Here, we report the novel crystal structure of the C-terminal domain of Salmonella InvA which shows a compact structure composed of four subdomains. The overall structure is unique although the first and second subdomains exhibit structural similarity to the peripheral stalk of the A/V-type ATPase and a ring building motif found in other T3SS proteins respectively.

  13. Orientia tsutsugamushi ankyrin repeat-containing protein family members are Type 1 secretion system substrates that traffic to the host cell endoplasmic reticulum

    PubMed Central

    VieBrock, Lauren; Evans, Sean M.; Beyer, Andrea R.; Larson, Charles L.; Beare, Paul A.; Ge, Hong; Singh, Smita; Rodino, Kyle G.; Heinzen, Robert A.; Richards, Allen L.; Carlyon, Jason A.

    2015-01-01

    Scrub typhus is an understudied, potentially fatal infection that threatens one billion persons in the Asia-Pacific region. How the causative obligate intracellular bacterium, Orientia tsutsugamushi, facilitates its intracellular survival and pathogenesis is poorly understood. Many intracellular bacterial pathogens utilize the Type 1 (T1SS) or Type 4 secretion system (T4SS) to translocate ankyrin repeat-containing proteins (Anks) that traffic to distinct subcellular locations and modulate host cell processes. The O. tsutsugamushi genome encodes one of the largest known bacterial Ank repertoires plus T1SS and T4SS components. Whether these potential virulence factors are expressed during infection, how the Anks are potentially secreted, and to where they localize in the host cell are not known. We determined that O. tsutsugamushi transcriptionally expresses 20 unique ank genes as well as genes for both T1SS and T4SS during infection of mammalian host cells. Examination of the Anks' C-termini revealed that the majority of them resemble T1SS substrates. Escherichia coli expressing a functional T1SS was able to secrete chimeric hemolysin proteins bearing the C-termini of 19 of 20 O. tsutsugamushi Anks in an HlyBD-dependent manner. Thus, O. tsutsugamushi Anks C-termini are T1SS-compatible. Conversely, Coxiella burnetii could not secrete heterologously expressed Anks in a T4SS-dependent manner. Analysis of the subcellular distribution patterns of 20 ectopically expressed Anks revealed that, while 6 remained cytosolic or trafficked to the nucleus, 14 localized to, and in some cases, altered the morphology of the endoplasmic reticulum. This study identifies O. tsutsugamushi Anks as T1SS substrates and indicates that many display a tropism for the host cell secretory pathway. PMID:25692099

  14. The Structure of a Type 3 Secretion System (T3SS) Ruler Protein Suggests a Molecular Mechanism for Needle Length Sensing.

    PubMed

    Bergeron, Julien R C; Fernández, Lucia; Wasney, Gregory A; Vuckovic, Marija; Reffuveille, Fany; Hancock, Robert E W; Strynadka, Natalie C J

    2016-01-22

    The type 3 secretion system (T3SS) and the bacterial flagellum are related pathogenicity-associated appendages found at the surface of many disease-causing bacteria. These appendages consist of long tubular structures that protrude away from the bacterial surface to interact with the host cell and/or promote motility. A proposed "ruler" protein tightly regulates the length of both the T3SS and the flagellum, but the molecular basis for this length control has remained poorly characterized and controversial. Using the Pseudomonas aeruginosa T3SS as a model system, we report the first structure of a T3SS ruler protein, revealing a "ball-and-chain" architecture, with a globular C-terminal domain (the ball) preceded by a long intrinsically disordered N-terminal polypeptide chain. The dimensions and stability of the globular domain do not support its potential passage through the inner lumen of the T3SS needle. We further demonstrate that a conserved motif at the N terminus of the ruler protein interacts with the T3SS autoprotease in the cytosolic side. Collectively, these data suggest a potential mechanism for needle length sensing by ruler proteins, whereby upon T3SS needle assembly, the ruler protein's N-terminal end is anchored on the cytosolic side, with the globular domain located on the extracellular end of the growing needle. Sequence analysis of T3SS and flagellar ruler proteins shows that this mechanism is probably conserved across systems. PMID:26589798

  15. In search of Brucella abortus Type IV secretion substrates: screening and identification of four proteins translocated into host cells through VirB system

    PubMed Central

    Marchesini, María Inés; Herrmann, Claudia K.; Salcedo, Suzana P.; Gorvel, Jean-Pierre; Comerci, Diego J.

    2011-01-01

    SUMMARY Type IV secretion systems (T4SS) are specialized protein complexes used by many bacterial pathogens for the delivery of effector molecules that subvert varied host cellular processes. Brucella spp. are facultative intracellular pathogens capable of survival and replication inside mammalian cells. Brucella T4SS (VirB) is essential to subvert lysosome fusion and to create an organelle permissive for replication. One possible role for VirB is to translocate effector proteins that modulate host cellular functions for the biogenesis of the replicative organelle. We hypothesized that proteins with eukaryotic domains or protein-protein interaction domains, among others, would be good candidates for modulation of host cell functions. To identify these candidates, we performed an in silico screen looking for proteins with distinctive features. Translocation of 84 potential substrates was assayed using adenylate cyclase reporter. By this approach, we identified six proteins that are delivered to the eukaryotic cytoplasm upon infection of macrophage-like cells and we could determine that four of them, encoded by genes BAB1_1043, BAB1_2005, BAB1_1275 and BAB2_0123, require a functional T4SS for their delivery. We confirmed VirB-mediated translocation of one of the substrates by immunofluorescence confocal microscopy, and we found that the N-terminal 25 amino acids are required for its delivery into cells. PMID:21707904

  16. Constitutive secretion of tau protein by an unconventional mechanism.

    PubMed

    Chai, Xiyun; Dage, Jeffrey L; Citron, Martin

    2012-12-01

    The microtubule-associated protein tau plays a critical role in the pathogenesis of Alzheimer's disease and several related disorders. In the disease tau aggregates into paired helical and straight filaments, which can form higher order neurofibrillary tangles in neurons and this pathology is associated with progressive neuronal loss and cognitive decline. Tau is a cytoplasmic protein and is thought to be released only from degenerating cells. In contrast, here we provide evidence that tau is constitutively secreted at a low level. We directly show tau release in cell culture model systems. In inducible transfected cell lines we observe that a small proportion of full-length tau is released from intact cells in a time dependent manner. We show that this tau is released by an unconventional secretion process, as the release is temperature dependent but not blocked by inhibitors of the conventional secretory pathway. We characterize the released tau as full length, not vesicle associated and containing Phospho-Tau (181P) proportional to its intracellular concentration. We demonstrate that tau secretion and its suppression by low temperature also occurs in human neurons differentiated from induced pluripotent stem cells. The constitutive tau secretion that we propose provides the most parsimonious explanation for the observed presence of tau in the CSF of healthy animals and human beings. If previously postulated pathogenic extracellular tau intermediates are released by this route, low level constitutive tau secretion could play a role in the spread of tau pathology in Alzheimer's disease and other human tauopathies. PMID:22668776

  17. N-terminus of IpaB provides a potential anchor to the Shigella type III secretion system tip complex protein IpaD.

    PubMed

    Dickenson, Nicholas E; Arizmendi, Olivia; Patil, Mrinalini K; Toth, Ronald T; Middaugh, C Russell; Picking, William D; Picking, Wendy L

    2013-12-10

    The type III secretion system (T3SS) is an essential virulence factor for Shigella flexneri , providing a conduit through which host-altering effectors are injected directly into a host cell to promote uptake. The type III secretion apparatus (T3SA) is composed of a basal body, external needle, and regulatory tip complex. The nascent needle is a polymer of MxiH capped by a pentamer of invasion plasmid antigen D (IpaD). Exposure to bile salts (e.g., deoxycholate) causes a conformational change in IpaD and promotes recruitment of IpaB to the needle tip. It has been proposed that IpaB senses contact with host cell membranes, recruiting IpaC and inducing full secretion of T3SS effectors. Although the steps of T3SA maturation and their external triggers have been identified, details of specific protein interactions and mechanisms have remained difficult to study because of the hydrophobic nature of the IpaB and IpaC translocator proteins. Here, we explored the ability for a series of soluble N-terminal IpaB peptides to interact with IpaD. We found that DOC is required for the interaction and that a region of IpaB between residues 11-27 is required for maximum binding, which was confirmed in vivo. Furthermore, intramolecular FRET measurements indicated that movement of the IpaD distal domain away from the protein core accompanied the binding of IpaB11-226. Together, these new findings provide important new insight into the interactions and potential mechanisms that define the maturation of the Shigella T3SA needle tip complex and provide a foundation for further studies probing T3SS activation.

  18. An efficient heat-inducible Bacillus subtilis bacteriophage 105 expression and secretion system for the production of the Streptomyces clavuligerus beta-lactamase inhibitory protein (BLIP).

    PubMed

    Liu, Hong-Bing; Chui, Ka-Shun; Chan, Chi-Leong; Tsang, Chun-Wai; Leung, Yun-Chung

    2004-03-18

    The Streptomyces clavuligerus beta-lactamase inhibitory protein (BLIP) has been shown to be a potent inhibitor of class A beta-lactamases including the Escherichia coli TEM-1 beta-lactamase (Ki = 0.6 nM). A heat-inducible BLIP expression system was constructed based on a derivative of Bacillus subtilis phage phi105. The recombinant BLIP produced by this system was secreted to the culture medium, purified to homogeneity, and fully active. We have shown that the signal peptide of BLIP functions well in B. subtilis to secrete BLIP out of the cells, which facilitates purification. The absence of a His-tag also avoids the activity and structure of BLIP being altered. An unprecedented high yield of recoverable protein in culture supernatant (3.6mg of >95% pure BLIP/l culture) was achieved by a simple purification protocol. We have developed an efficient production process in which the culture time before heat-induction was 3-4h and the culture supernatant could be collected 5h after induction. This total time of 8-9h is considered to be very short compared to that of the native S. clavuligerus culturing (60-70h). We achieved a very efficient BLIP production rate of 0.8-0.9mg/l/h. Heterologous gene expression was tightly controlled and no production of BLIP was observed before heat-induction, suggesting that cell density can be further increased to improve enzyme yield.

  19. Accurate prediction of secreted substrates and identification of a conserved putative secretion signal for type III secretion systems

    SciTech Connect

    Samudrala, Ram; Heffron, Fred; McDermott, Jason E.

    2009-04-24

    The type III secretion system is an essential component for virulence in many Gram-negative bacteria. Though components of the secretion system apparatus are conserved, its substrates, effector proteins, are not. We have used a machine learning approach to identify new secreted effectors. The method integrates evolutionary measures, such as the pattern of homologs in a range of other organisms, and sequence-based features, such as G+C content, amino acid composition and the N-terminal 30 residues of the protein sequence. The method was trained on known effectors from Salmonella typhimurium and validated on a corresponding set of effectors from Pseudomonas syringae, after eliminating effectors with detectable sequence similarity. The method was able to identify all of the known effectors in P. syringae with a specificity of 84% and sensitivity of 82%. The reciprocal validation, training on P. syringae and validating on S. typhimurium, gave similar results with a specificity of 86% when the sensitivity level was 87%. These results show that type III effectors in disparate organisms share common features. We found that maximal performance is attained by including an N-terminal sequence of only 30 residues, which agrees with previous studies indicating that this region contains the secretion signal. We then used the method to define the most important residues in this putative secretion signal. Finally, we present novel predictions of secreted effectors in S. typhimurium, some of which have been experimentally validated, and apply the method to predict secreted effectors in the genetically intractable human pathogen Chlamydia trachomatis. This approach is a novel and effective way to identify secreted effectors in a broad range of pathogenic bacteria for further experimental characterization and provides insight into the nature of the type III secretion signal.

  20. Marker for type VI secretion system effectors

    PubMed Central

    Salomon, Dor; Kinch, Lisa N.; Trudgian, David C.; Guo, Xiaofeng; Klimko, John A.; Grishin, Nick V.; Mirzaei, Hamid; Orth, Kim

    2014-01-01

    Bacteria use diverse mechanisms to kill, manipulate, and compete with other cells. The recently discovered type VI secretion system (T6SS) is widespread in bacterial pathogens and used to deliver virulence effector proteins into target cells. Using comparative proteomics, we identified two previously unidentified T6SS effectors that contained a conserved motif. Bioinformatic analyses revealed that this N-terminal motif, named MIX (marker for type six effectors), is found in numerous polymorphic bacterial proteins that are primarily located in the T6SS genome neighborhood. We demonstrate that several MIX-containing proteins are T6SS effectors and that they are not required for T6SS activity. Thus, we propose that MIX-containing proteins are T6SS effectors. Our findings allow for the identification of numerous uncharacterized T6SS effectors that will undoubtedly lead to the discovery of new biological mechanisms. PMID:24927539

  1. HDX-MS and deletion analysis of the type 4 secretion system protein TraF from the Escherichia coli F plasmid.

    PubMed

    Lento, Cristina; Ferraro, Michele; Wilson, Derek; Audette, Gerald F

    2016-02-01

    Conjugative DNA transfer by the F-plasmid is achieved through a type IV secretion system (T4SS) encoded within the plasmid's transfer region; TraF is one of several F-T4SS proteins essential for F-pilus assembly. In order to identify regions of the protein important for TraF function, a series of deletion mutants were assessed for their ability to recover conjugative transfer in a traF knockout. Interestingly, modification of any region of TraF abolishes pilus synthesis, resulting in a loss of rescue of conjugative function. Dynamic analysis of TraF by time-resolved hydrogen-deuterium exchange revealed that the C-terminal region containing the predicted thioredoxin-like domain is quite structured, while the N-terminal region, predicted to interact with TraH in the intact F-T4SS, was more dynamic. PMID:26785931

  2. Production and secretion of recombinant proteins in Dictyostelium discoideum.

    PubMed

    Dittrich, W; Williams, K L; Slade, M B

    1994-06-01

    We have expressed useful amounts of three recombinant proteins in a new eukaryotic host/vector system. The cellular slime mold Dictyostelium discoideum efficiently secreted two recombinant products, a soluble form of the normally cell surface associated D. discoideum glycoprotein (PsA) and the heterologous protein glutathione-S-transferase (GST) from Schistosoma japonicum, while the enzyme beta-glucuronidase (GUS) from Escherichia coli was cell associated. Up to 20mg/l of recombinant PsA and 1mg/l of GST were obtained after purification from a standard, peptone based growth medium. The secretion signal peptide was correctly cleaved from the recombinant GST- and PsA-proteins and the expression of recombinant PsA was shown to be stable for at least one hundred generations in the absence of selection. PMID:7764951

  3. C-terminal domain of CagX is responsible for its interaction with CagT protein of Helicobacter pylori type IV secretion system.

    PubMed

    Gopal, Gopal Jee; Pal, Jagannath; Kumar, Awanish; Mukhopadhyay, Gauranga

    2015-01-01

    Helicobacter pylori are the well known human pathogen associated with gastric cancer and peptic ulcer. Pathogenesis is mainly due to the presence of 40 kb cagPAI (cag Pathogenicity Island) region that encodes the type IV secretion system (TFSS) consisting of a cytoplasmic part, a middle part/core complex (spans from inner membrane to outer membrane), and an outer membrane associated part. CagX and CagT are two important proteins of TFSS that have homology with virB9 and virB7 of Agrobacterium tumefaciens TFSS. In this study, we have shown that the CagX and CagT interact directly by using co-immunoprecipitation of endogenous CagX and CagT and MBP pull down assay. We further authenticate this observation using yeast two-hybrid assay and co-expression of both the protein coding gene in Escherichia coli. We also observed that the C-terminal region of CagX is important for CagT interaction. We reconfirm that CagT depends on CagX for its stabilization. These observations could contribute in overall visualization of assembly and architecture of TFSS because protein-protein interactions among Cag proteins are likely to have an important role in assembly. Thorough understanding about architecture and mechanism of action of cag-TFSS may lead to design controlled drug delivery system. PMID:25446105

  4. Regulation of Protein Secretion Through Controlled Aggregation in the Endoplasmic Reticulum

    NASA Astrophysics Data System (ADS)

    Rivera, Victor M.; Wang, Xiurong; Wardwell, Scott; Courage, Nancy L.; Volchuk, Allen; Keenan, Terence; Holt, Dennis A.; Gilman, Michael; Orci, Lelio; Cerasoli, Frank; Rothman, James E.; Clackson, Tim

    2000-02-01

    A system for direct pharmacologic control of protein secretion was developed to allow rapid and pulsatile delivery of therapeutic proteins. A protein was engineered so that it accumulated as aggregates in the endoplasmic reticulum. Secretion was then stimulated by a synthetic small-molecule drug that induces protein disaggregation. Rapid and transient secretion of growth hormone and insulin was achieved in vitro and in vivo. A regulated pulse of insulin secretion resulted in a transient correction of serum glucose concentrations in a mouse model of hyperglycemia. This approach may make gene therapy a viable method for delivery of polypeptides that require rapid and regulated delivery.

  5. Regulation of protein secretion through controlled aggregation in the endoplasmic reticulum.

    PubMed

    Rivera, V M; Wang, X; Wardwell, S; Courage, N L; Volchuk, A; Keenan, T; Holt, D A; Gilman, M; Orci, L; Cerasoli, F; Rothman, J E; Clackson, T

    2000-02-01

    A system for direct pharmacologic control of protein secretion was developed to allow rapid and pulsatile delivery of therapeutic proteins. A protein was engineered so that it accumulated as aggregates in the endoplasmic reticulum. Secretion was then stimulated by a synthetic small-molecule drug that induces protein disaggregation. Rapid and transient secretion of growth hormone and insulin was achieved in vitro and in vivo. A regulated pulse of insulin secretion resulted in a transient correction of serum glucose concentrations in a mouse model of hyperglycemia. This approach may make gene therapy a viable method for delivery of polypeptides that require rapid and regulated delivery. PMID:10657290

  6. Mutations in the Pseudomonas aeruginosa Needle Protein Gene pscF Confer Resistance to Phenoxyacetamide Inhibitors of the Type III Secretion System

    PubMed Central

    Bowlin, Nicholas O.; Williams, John D.; Knoten, Claire A.; Torhan, Matthew C.; Tashjian, Tommy F.; Li, Bing; Aiello, Daniel; Mecsas, Joan; Hauser, Alan R.; Peet, Norton P.; Bowlin, Terry L.

    2014-01-01

    The type III secretion system (T3SS) is a clinically important virulence mechanism in Pseudomonas aeruginosa that secretes and translocates effector toxins into host cells, impeding the host's rapid innate immune response to infection. Inhibitors of T3SS may be useful as prophylactic or adjunctive therapeutic agents to augment the activity of antibiotics in P. aeruginosa infections, such as pneumonia and bacteremia. One such inhibitor, the phenoxyacetamide MBX 1641, exhibits very responsive structure-activity relationships, including striking stereoselectivity, in its inhibition of P. aeruginosa T3SS. These features suggest interaction with a specific, but unknown, protein target. Here, we identify the apparent molecular target by isolating inhibitor-resistant mutants and mapping the mutation sites by deep sequencing. Selection and sequencing of four independent mutants resistant to the phenoxyacetamide inhibitor MBX 2359 identified the T3SS gene pscF, encoding the needle apparatus, as the only locus of mutations common to all four strains. Transfer of the wild-type and mutated alleles of pscF, together with its chaperone and cochaperone genes pscE and pscG, to a ΔpscF P. aeruginosa strain demonstrated that each of the single-codon mutations in pscF is necessary and sufficient to provide secretion and translocation that is resistant to a variety of phenoxyacetamide inhibitor analogs but not to T3SS inhibitors with different chemical scaffolds. These results implicate the PscF needle protein as an apparent new molecular target for T3SS inhibitor discovery and suggest that three other chemically distinct T3SS inhibitors interact with one or more different targets or a different region of PscF. PMID:24468789

  7. The Versatile Type VI Secretion System

    PubMed Central

    Alteri, Christopher J.; Mobley, Harry L.T.

    2016-01-01

    Summary Bacterial Type VI Secretion Systems (T6SS) function as contractile nanomachines to puncture target cells and deliver lethal effectors. In the ten years since the discovery of the T6SS, much has been learned about the structure and function of this versatile protein secretion apparatus. Most of the conserved protein components that comprise the T6SS apparatus itself have been identified and ascribed specific functions. In addition, numerous effector proteins that are translocated by the T6SS have been identified and characterized. These protein effectors usually represent toxic cargoes that are delivered by the attacker cell to a target cell. The field is beginning to better understand the lifestyle or physiology that dictates when bacteria normally express their T6SS. In this Chapter, we consider what is known about the structure and regulation of the T6SS, the numerous classes of antibacterial effector T6SS substrates, and how the action of the T6SS relates to a given lifestyle or behavior in certain bacteria. PMID:27227310

  8. A Disordered Region in the EvpP Protein from the Type VI Secretion System of Edwardsiella tarda is Essential for EvpC Binding

    PubMed Central

    Hu, Wentao; Anand, Ganesh; Sivaraman, J.; Leung, Ka Yin; Mok, Yu-Keung

    2014-01-01

    The type VI secretion system (T6SS) of pathogenic bacteria plays important roles in both virulence and inter-bacterial competitions. The effectors of T6SS are presumed to be transported either by attaching to the tip protein or by interacting with HcpI (haemolysin corregulated protein 1). In Edwardsiella tarda PPD130/91, the T6SS secreted protein EvpP (E. tarda virulent protein P) is found to be essential for virulence and directly interacts with EvpC (Hcp-like), suggesting that it could be a potential effector. Using limited protease digestion, nuclear magnetic resonance heteronuclear Nuclear Overhauser Effects, and hydrogen-deuterium exchange mass spectrometry, we confirmed that the dimeric EvpP (40 kDa) contains a substantial proportion (40%) of disordered regions but still maintains an ordered and folded core domain. We show that an N-terminal, 10-kDa, protease-resistant fragment in EvpP connects to a shorter, 4-kDa protease-resistant fragment through a highly flexible region, which is followed by another disordered region at the C-terminus. Within this C-terminal disordered region, residues Pro143 to Ile168 are essential for its interaction with EvpC. Unlike the highly unfolded T3SS effector, which has a lower molecular weight and is maintained in an unfolded conformation with a dedicated chaperone, the T6SS effector seems to be relatively larger, folded but partially disordered and uses HcpI as a chaperone. PMID:25401506

  9. The response of type three secretion system needle proteins MxiHDelta5, BsaLDelta5, and PrgIDelta5 to temperature and pH.

    PubMed

    Barrett, Brooke S; Picking, Wendy L; Picking, William D; Middaugh, C Russell

    2008-11-15

    The type III secretion system (TTSS) is a specialized supramolecular injectisome composed of 25 or more proteins which form basal and extracellular domains and share gross architectural similarities with bacterial flagella. The extracellular component of the "needle complex" is primarily composed of a single monomeric subunit organized in a helical array surrounding a hollow pore and protrudes from the bacterial membrane. It is through this surface appendage that virulence factors are translocated to the host cell cytoplasm and thereby subvert normal host cell functions. We present here a comprehensive biophysical analysis of the dynamic conformational behavior of the truncated monomeric needle subunit proteins MxiH(Delta5) (Shigella flexneri), BsaL(Delta5) (Burkholderia pseudomallei), and PrgI(Delta5) (Salmonella typhimurium) as well as their thermal stability over a pH range of 3-8. Circular dichroism spectroscopy indicates the secondary structure is largely alpha helical in all three proteins, and surprisingly thermally labile with transition midpoints in the range of 35-50 degrees C over the pH range of 3-8. Additionally, at the concentrations examined, the very broad thermal transitions were >90% reversible. Second derivative UV absorbance spectroscopy data indicates some disruption of the protein's tertiary structure occurs at temperatures in the range of 29-46 degrees C. The difference in the pH of maximal stability for each of the proteins and the variation for each protein with respect to both secondary and tertiary structural elements is striking. It appears, that at physiological temperatures all three proteins experience intermediate non-native molten globule like states in which they display significant secondary structure in the absence of extensive tertiary interactions. Because of the size difference between the inner pore of the needle and the fully folded needle proteins, it seems clear that the needle subunits must be secreted in a partially or

  10. Anticytolytic screen identifies inhibitors of mycobacterial virulence protein secretion.

    PubMed

    Rybniker, Jan; Chen, Jeffrey M; Sala, Claudia; Hartkoorn, Ruben C; Vocat, Anthony; Benjak, Andrej; Boy-Röttger, Stefanie; Zhang, Ming; Székely, Rita; Greff, Zoltán; Orfi, László; Szabadkai, István; Pató, János; Kéri, György; Cole, Stewart T

    2014-10-01

    Mycobacterium tuberculosis (Mtb) requires protein secretion systems like ESX-1 for intracellular survival and virulence. The major virulence determinant and ESX-1 substrate, EsxA, arrests phagosome maturation and lyses cell membranes, resulting in tissue damage and necrosis that promotes pathogen spread. To identify inhibitors of Mtb protein secretion, we developed a fibroblast survival assay exploiting this phenotype and selected molecules that protect host cells from Mtb-induced lysis without being bactericidal in vitro. Hit compounds blocked EsxA secretion and promoted phagosome maturation in macrophages, thus reducing bacterial loads. Target identification studies led to the discovery of BTP15, a benzothiophene inhibitor of the histidine kinase MprB that indirectly regulates ESX-1, and BBH7, a benzyloxybenzylidene-hydrazine compound. BBH7 affects Mtb metal-ion homeostasis and revealed zinc stress as an activating signal for EsxA secretion. This screening approach extends the target spectrum of small molecule libraries and will help tackle the mounting problem of antibiotic-resistant mycobacteria.

  11. High-Yield Secretion of Multiple Client Proteins in Aspergillus

    SciTech Connect

    Segato, F.; Damasio, A. R. L.; Goncalves, T. A.; de Lucas, R. C.; Squina, F. M.; Decker, S. R.; Prade, R. A.

    2012-07-15

    Production of pure and high-yield client proteins is an important technology that addresses the need for industrial applications of enzymes as well as scientific experiments in protein chemistry and crystallization. Fungi are utilized in industrial protein production because of their ability to secrete large quantities of proteins. In this study, we engineered a high-expression-secretion vector, pEXPYR that directs proteins towards the extracellular medium in two Aspergillii host strains, examine the effect of maltose-induced over-expression and protein secretion as well as time and pH-dependent protein stability in the medium. We describe five client proteins representing a core set of hemicellulose degrading enzymes that accumulated up to 50-100 mg/L of protein. Using a recyclable genetic marker that allows serial insertion of multiple genes, simultaneous hyper-secretion of three client proteins in a single host strain was accomplished.

  12. YscP and YscU Switch the Substrate Specificity of the Yersinia Type III Secretion System by Regulating Export of the Inner Rod Protein YscI▿ †

    PubMed Central

    Wood, Sarah E.; Jin, Jin; Lloyd, Scott A.

    2008-01-01

    Pathogenic yersiniae utilize a type III secretion system to inject antihost factors, called Yops, directly into the cytosol of eukaryotic cells. The Yops are injected via a needle-like structure, comprising the YscF protein, on the bacterial surface. While the needle is being assembled, Yops cannot be secreted. YscP and YscU switch the substrate specificity of the secretion system to enable Yop export once the needle attains its proper length. Here, we demonstrate that the inner rod protein YscI plays a critical role in substrate specificity switching. We show that YscI is secreted by the type III secretion system and that YscI secretion by a yscP mutant is abnormally elevated. Furthermore, we show that mutations in the cytoplasmic domain of YscU reduce YscI secretion by the yscP null strain. We also demonstrate that mutants expressing one of three forms of YscI (those with mutations Q84A, L87A, and L96A) secrete substantial amounts of Yops yet exhibit severe defects in needle formation. In the absence of YscP, mutants with the same changes in YscI assemble needles but are unable to secrete Yops. Together, these results suggest that the formation of the inner rod, not the needle, is critical for substrate specificity switching and that YscP and YscU exert their effects on substrate export by controlling the secretion of YscI. PMID:18424518

  13. Investigation of the role of the BAM complex and SurA chaperone in outer-membrane protein biogenesis and type III secretion system expression in Salmonella.

    PubMed

    Fardini, Yann; Trotereau, Jérôme; Bottreau, Elisabeth; Souchard, Charlène; Velge, Philippe; Virlogeux-Payant, Isabelle

    2009-05-01

    In Escherichia coli, the assembly of outer-membrane proteins (OMP) requires the BAM complex and periplasmic chaperones, such as SurA or DegP. Previous work has suggested a potential link between OMP assembly and expression of the genes encoding type-III secretion systems. In order to test this hypothesis, we studied the role of the different lipoproteins of the BAM complex (i.e. BamB, BamC, BamD and BamE), and the periplasmic chaperones SurA and DegP, in these two phenotypes in Salmonella. Analysis of the corresponding deletion mutants showed that, as previously described with the DeltabamB mutant, BamD, SurA and, to a lesser extent, BamE play a role in outer-membrane biogenesis in Salmonella Enteritidis, while the membrane was not notably disturbed in DeltabamC and DeltadegP mutants. Interestingly, we found that BamD is not essential in Salmonella, unlike its homologues in Escherichia coli and Neisseria gonorrhoeae. In contrast, BamD was the only protein required for full expression of T3SS-1 and flagella, as demonstrated by transcriptional analysis of the genes involved in the biosynthesis of these T3SSs. In line with this finding, bamD mutants showed a reduced secretion of effector proteins by these T3SSs, and a reduced ability to invade HT-29 cells. As DeltasurA and DeltabamE mutants had lower levels of OMPs in their outer membrane, but showed no alteration in T3SS-1 and flagella expression, these results demonstrate the absence of a systematic link between an OMP assembly defect and the downregulation of T3SSs in Salmonella; therefore, this link appears to be related to a more specific mechanism that involves at least BamB and BamD. PMID:19372159

  14. The Role of Pathogen-Secreted Proteins in Fungal Vascular Wilt Diseases

    PubMed Central

    de Sain, Mara; Rep, Martijn

    2015-01-01

    A limited number of fungi can cause wilting disease in plants through colonization of the vascular system, the most well-known being Verticillium dahliae and Fusarium oxysporum. Like all pathogenic microorganisms, vascular wilt fungi secrete proteins during host colonization. Whole-genome sequencing and proteomics screens have identified many of these proteins, including small, usually cysteine-rich proteins, necrosis-inducing proteins and enzymes. Gene deletion experiments have provided evidence that some of these proteins are required for pathogenicity, while the role of other secreted proteins remains enigmatic. On the other hand, the plant immune system can recognize some secreted proteins or their actions, resulting in disease resistance. We give an overview of proteins currently known to be secreted by vascular wilt fungi and discuss their role in pathogenicity and plant immunity. PMID:26473835

  15. HrpG and HrpV proteins from the Type III secretion system of Erwinia amylovora form a stable heterodimer.

    PubMed

    Gazi, Anastasia D; Charova, Spyridoula; Aivaliotis, Michalis; Panopoulos, Nicholas J; Kokkinidis, Michael

    2015-01-01

    Bacterial type III secretion systems (T3SSs) are specialized multicomponent nanomachines that mediate the transport of proteins either to extracellular locations or directly into eukaryotic host cell cytoplasm. Erwinia amylovora, the main agent of rosaceous plants fireblight disease, employs an Hrp/Hrc1 T3SS to accomplish its pathogenesis. The regulatory network that controls the activation of this T3SS is largely unknown in E. amylovora. However, in Pseudomonas syringae pathovars, the HrpG/HrpV complex has been shown to directly regulate the activity of transcription factor HrpS and consequently the upregulation of the Hrp/Hrc1 T3SS related genes. In this work, we report the successful recombinant production and purification of a stable E. amylovora HrpG/HrpV complex, using pPROpET, a bicistronic expression vector. Furthermore, we present the first solution structure of this complex based on small-angle X-ray scattering data.

  16. Legionella pneumophila secretes a mitochondrial carrier protein during infection.

    PubMed

    Dolezal, Pavel; Aili, Margareta; Tong, Janette; Jiang, Jhih-Hang; Marobbio, Carlo M T; Marobbio, Carlo M; Lee, Sau Fung; Schuelein, Ralf; Belluzzo, Simon; Binova, Eva; Mousnier, Aurelie; Frankel, Gad; Giannuzzi, Giulia; Palmieri, Ferdinando; Gabriel, Kipros; Naderer, Thomas; Hartland, Elizabeth L; Lithgow, Trevor

    2012-01-01

    The Mitochondrial Carrier Family (MCF) is a signature group of integral membrane proteins that transport metabolites across the mitochondrial inner membrane in eukaryotes. MCF proteins are characterized by six transmembrane segments that assemble to form a highly-selective channel for metabolite transport. We discovered a novel MCF member, termed Legionellanucleotide carrier Protein (LncP), encoded in the genome of Legionella pneumophila, the causative agent of Legionnaire's disease. LncP was secreted via the bacterial Dot/Icm type IV secretion system into macrophages and assembled in the mitochondrial inner membrane. In a yeast cellular system, LncP induced a dominant-negative phenotype that was rescued by deleting an endogenous ATP carrier. Substrate transport studies on purified LncP reconstituted in liposomes revealed that it catalyzes unidirectional transport and exchange of ATP transport across membranes, thereby supporting a role for LncP as an ATP transporter. A hidden Markov model revealed further MCF proteins in the intracellular pathogens, Legionella longbeachae and Neorickettsia sennetsu, thereby challenging the notion that MCF proteins exist exclusively in eukaryotic organisms.

  17. Examining marginal sequence similarities between bacterial type III secretion system components and Trypanosoma cruzi surface proteins: horizontal gene transfer or convergent evolution?

    PubMed Central

    Silva, Danielle C. F.; Silva, Richard C.; Ferreira, Renata C.; Briones, Marcelo R. S.

    2013-01-01

    The cell invasion mechanism of Trypanosoma cruzi has similarities with some intracellular bacterial taxa especially regarding calcium mobilization. This mechanism is not observed in other trypanosomatids, suggesting that the molecules involved in this type of cell invasion were a product of (1) acquisition by horizontal gene transfer (HGT); (2) secondary loss in the other trypanosomatid lineages of the mechanism inherited since the bifurcation Bacteria-Neomura (1.9 billion to 900 million years ago); or (3) de novo evolution from non-homologous proteins via convergent evolution. Similar to T. cruzi, several bacterial genera require increased host cell cytosolic calcium for intracellular invasion. Among intracellular bacteria, the mechanism of host cell invasion of genus Salmonella is the most similar to T. cruzi. The invasion of Salmonella occurs by contact with the host's cell surface and is mediated by the type III secretion system (T3SS) that promotes the contact-dependent translocation of effector proteins directly into host's cell cytoplasm. Here we provide evidence of distant sequence similarities and structurally conserved domains between T. cruzi and Salmonella spp T3SS proteins. Exhaustive database searches were directed to a wide range of intracellular bacteria and trypanosomatids, exploring sequence patterns for comparison of structural similarities and Bayesian phylogenies. Based on our data we hypothesize that T. cruzi acquired genes for calcium mobilization mediated invasion by ancient HGT from ancestral Salmonella lineages. PMID:23967008

  18. Type V Secretion Systems in Bacteria.

    PubMed

    Fan, Enguo; Chauhan, Nandini; Udatha, D B R K Gupta; Leo, Jack C; Linke, Dirk

    2016-02-01

    Type V secretion denotes a variety of secretion systems that cross the outer membrane in Gram-negative bacteria but that depend on the Sec machinery for transport through the inner membrane. They are possibly the simplest bacterial secretion systems, because they consist only of a single polypeptide chain (or two chains in the case of two-partner secretion). Their seemingly autonomous transport through the outer membrane has led to the term "autotransporters" for various subclasses of type V secretion. In this chapter, we review the structure and function of these transporters and review recent findings on additional factors involved in the secretion process, which have put the term "autotransporter" to debate. PMID:26999388

  19. Structural characterization of the Yersinia pestis type III secretion system needle protein YscF in complex with its heterodimeric chaperone YscE/YscG

    PubMed Central

    Sun, Ping; Tropea, Joseph E.; Austin, Brian P.; Cherry, Scott; Waugh, David S.

    2008-01-01

    Summary The plague-causing bacterium Yersinia pestis utilizes a Type III Secretion System (T3SS) to deliver effector proteins into mammalian cells where they interfere with signal transduction pathways that mediate phagocytosis and the inflammatory response. Effector proteins are injected through a hollow needle structure composed of the protein YscF. YscG and YscE act as "chaperones" to prevent premature polymerization of YscF in the cytosol of the bacterium prior to assembly of the needle. Here, we report the crystal structure of the YscEFG protein complex at 1.8 Å resolution. Overall, the structure is similar to that of the analogous PscEFG complex from the Pseudomonas aeruginosa T3SS, but there are noteworthy differences. The structure confirms that, like PscG, YscG is a member of the tetratricopeptide repeat (TPR) family of proteins. YscG binds tightly to the C-terminal half of YscF, implying that it is this region of YscF that controls its polymerization into the needle structure. YscE interacts with the N-terminal TPR motif of YscG but makes very little direct contact with YscF. Its function may be to stabilize the structure of YscG and/or to participate in recruiting the complex to the secretion apparatus. No electron density could be observed for the N-terminal 49 residues of YscF. This and additional evidence suggest that the N-terminus of YscF is disordered in the complex with YscE and YscG. As expected, conserved residues in the C-terminal half of YscF mediate important intra- and intermolecular interactions in the complex. Moreover, the phenotypes of some previously characterized mutations in the C-terminal half of YscF can be rationalized in terms of the structure of the heterotrimeric YscEFG complex. PMID:18281060

  20. Btc22 chaperone is required for secretion and stability of the type III secreted protein Bsp22 in Bordetella bronchiseptica.

    PubMed

    Kurushima, Jun; Kuwae, Asaomi; Abe, Akio

    2012-06-01

    The type III secretion system (T3SS) is a sophisticated protein secretion machinery that delivers bacterial virulence proteins into host cells. A needle-tip protein, Bsp22 , is one of the secreted substrates of the T3SS and plays an essential role in the full function of the T3SS in Bordetella bronchiseptica. In this study, we found that BB1618 functions as a chaperone for Bsp22 . The deletion of BB1618 resulted in a dramatic impairment of Bsp22 secretion into the culture supernatants and Bsp22 stability in the bacterial cytosol. In contrast, the secretion of other type III secreted proteins was not affected by the BB1618 mutation. Furthermore, the BB1618 mutant strain could not induce cytotoxicity and displayed the same phenotypes as the Bsp22 mutant strain. An immunoprecipitation assay demonstrated that BB1618 interacts with Bsp22 , but not with BopB and BopD . Thus, we identified BB1618 as a specific type III chaperone for Bsp22 . Therefore, we propose that BB1618 be renamed Btc22 for the Bordetella type III chaperone for Bsp22 .

  1. ER to Golgi-Dependent Protein Secretion: The Conventional Pathway.

    PubMed

    Viotti, Corrado

    2016-01-01

    Secretion is the cellular process present in every organism that delivers soluble proteins and cargoes to the extracellular space. In eukaryotes, conventional protein secretion (CPS) is the trafficking route that secretory proteins undertake when are transported from the endoplasmic reticulum (ER) to the Golgi apparatus (GA), and subsequently to the plasma membrane (PM) via secretory vesicles or secretory granules. This book chapter recalls the fundamental steps in cell biology research contributing to the elucidation of CPS; it describes the most prominent examples of conventionally secreted proteins in eukaryotic cells and the molecular mechanisms necessary to regulate each step of this process. PMID:27665548

  2. Identification and characterization of secreted proteins in Eimeria tenella

    NASA Astrophysics Data System (ADS)

    Ramlee, Intan Azlinda; Firdaus-Raih, Mohd; Wan, Kiew-Lian

    2015-09-01

    Eimeria tenella is a protozoan parasite that causes coccidiosis, an economically important disease in the poultry industry. The characterization of proteins that are secreted by parasites have been shown to play important roles in parasite invasion and are considered to be potential control agents. In this study, 775 proteins potentially secreted by E. tenella were identified. These proteins were further filtered to remove mitochondrial proteins. Out of 763 putative secreted proteins, 259 proteins possess transmembrane domains while another 150 proteins have GPI (Glycosylphosphatidylinositol) anchors. Homology search revealed that 315 and 448 proteins have matches with known and hypothetical proteins in the database, respectively. Within this data set, previously characterized secretory proteins such as micronemes, rhoptry kinases and dense granules were detected.

  3. Proteomic analysis of rutin-induced secreted proteins from Aspergillus flavus.

    PubMed

    Medina, Martha L; Kiernan, Urban A; Francisco, Wilson A

    2004-03-01

    Few studies have been conducted to identify the extracellular proteins and enzymes secreted by filamentous fungi, particularly with respect to dispensable metabolic pathways. Proteomic analysis has proven to be the most powerful method for identification of proteins in complex mixtures and is suitable for the study of the alteration of protein expression under different environmental conditions. The filamentous fungus Aspergillus flavus can degrade the flavonoid rutin as the only source of carbon via an extracellular enzyme system. In this study, a proteomic analysis was used to differentiate and identify the extracellular rutin-induced and non-induced proteins secreted by A. flavus. The secreted proteins were analyzed by two-dimensional electrophoresis and MALDI-TOF mass spectrometry. While 15 rutin-induced proteins and 7 non-induced proteins were identified, more than 90 protein spots remain unidentified, indicating that these proteins are either novel proteins or proteins that have not yet been sequenced.

  4. Functional Production of a Soluble and Secreted Single-Chain Antibody by a Bacterial Secretion System

    PubMed Central

    Cheng, Chiu-Min; Tzou, Shey-Cherng; Zhuang, Ya-Han; Huang, Chien-Chiao; Kao, Chien-Han; Liao, Kuang-Wen; Cheng, Ta-Chun; Chuang, Chih-Hung; Hsieh, Yuan-Chin; Tai, Ming-Hong; Cheng, Tian-Lu

    2014-01-01

    Single-chain variable fragments (scFvs) serve as an alternative to full-length monoclonal antibodies used in research and therapeutic and diagnostic applications. However, when recombinant scFvs are overexpressed in bacteria, they often form inclusion bodies and exhibit loss of function. To overcome this problem, we developed an scFv secretion system in which scFv was fused with osmotically inducible protein Y (osmY), a bacterial secretory carrier protein, for efficient protein secretion. Anti-EGFR scFv (αEGFR) was fused with osmY (N- and C-termini) and periplasmic leader sequence (pelB) to generate αEGFR-osmY, osmY-αEGFR, and pelB-αEGFR (control), respectively. In comparison with the control, both the osmY-fused αEGFR scFvs were soluble and secreted into the LB medium. Furthermore, the yield of soluble αEGFR-osmY was 20-fold higher, and the amount of secreted protein was 250-fold higher than that of osmY-αEGFR. In addition, the antigen-binding activity of both the osmY-fused αEGFRs was 2-fold higher than that of the refolded pelB-αEGFR from inclusion bodies. Similar results were observed with αTAG72-osmY and αHer2-osmY. These results suggest that the N-terminus of osmY fused with scFv produces a high yield of soluble, functional, and secreted scFv, and the osmY-based bacterial secretion system may be used for the large-scale industrial production of low-cost αEGFR protein. PMID:24824752

  5. Evaluation of immunogenicity and protective efficacy of orally delivered Shigella type III secretion system proteins IpaB and IpaD.

    PubMed

    Heine, Shannon J; Diaz-McNair, Jovita; Martinez-Becerra, Francisco J; Choudhari, Shyamal P; Clements, John D; Picking, Wendy L; Pasetti, Marcela F

    2013-06-19

    Shigella spp. are food- and water-borne pathogens that cause shigellosis, a severe diarrheal and dysenteric disease that is associated with a high morbidity and mortality in resource-poor countries. No licensed vaccine is available to prevent shigellosis. We have recently demonstrated that Shigella invasion plasmid antigens (Ipas), IpaB and IpaD, which are components of the bacterial type III secretion system (TTSS), can prevent infection in a mouse model of intranasal immunization and lethal pulmonary challenge. Because they are conserved across Shigella spp. and highly immunogenic, these proteins are excellent candidates for a cross-protective vaccine. Ideally, such a vaccine could be administered to humans orally to induce mucosal and systemic immunity. In this study, we investigated the immunogenicity and protective efficacy of Shigella IpaB and IpaD administered orally with a double mutant of the Escherichia coli heat labile toxin (dmLT) as a mucosal adjuvant. We characterized the immune responses induced by oral vs. intranasal immunization and the protective efficacy using a mouse pulmonary infection model. Serum IgG and fecal IgA against IpaB were induced after oral immunization. These responses, however, were lower than those obtained after intranasal immunization despite a 100-fold dosage increase. The level of protection induced by oral immunization with IpaB and IpaD was 40%, while intranasal immunization resulted in 90% protective efficacy. IpaB- and IpaD-specific IgA antibody-secreting cells in the lungs and spleen and T-cell-derived IL-2, IL-5, IL-17 and IL-10 were associated with protection. These results demonstrate the immunogenicity of orally administered IpaB and IpaD and support further studies in humans.

  6. Autocrine regulation of milk secretion by a protein in milk.

    PubMed Central

    Wilde, C J; Addey, C V; Boddy, L M; Peaker, M

    1995-01-01

    Frequency or completeness of milk removal from the lactating mammary gland regulates the rate of milk secretion by a mechanism which is local, chemical and inhibitory in nature. Screening of goat's milk proteins in rabbit mammary explant cultures identified a single whey protein of M(r) 7600 able to inhibit synthesis of milk constituents. The active whey protein, which we term FIL (Feedback inhibitor of Lactation), also decreased milk secretion temporarily when introduced into a mammary gland of lactating goats. FIL was synthesized by primary cultures of goat mammary epithelial cells, and was secreted vectorially together with other milk proteins. N-terminal amino acid sequencing indicated that it is a hitherto unknown protein. The evidence indicates that local regulation of milk secretion by milk removal is through autocrine feedback inhibition by this milk protein. Images Figure 1 Figure 2 Figure 5 PMID:7826353

  7. An Experimental Approach for the Identification of Conserved Secreted Proteins in Trypanosomatids

    PubMed Central

    Corrales, Rosa M.; Mathieu-Daudé, Françoise; Garcia, Déborah; Brenière, Simone F.; Sereno, Denis

    2010-01-01

    Extracellular factors produced by Leishmania spp., Trypanosoma cruzi, and Trypanosoma brucei are important in the host-parasite relationship. Here, we describe a genome-based approach to identify putative extracellular proteins conserved among trypanosomatids that are likely involved in the classical secretory pathway. Potentially secreted proteins were identified by bioinformatic analysis of the T. cruzi genome. A subset of thirteen genes encoding unknown proteins with orthologs containing a signal peptide sequence in L. infantum, L. major, and T. brucei were transfected into L. infantum. Tagged proteins detected in the extracellular medium confirmed computer predictions in about 25% of the hits. Secretion was confirmed for two L. infantum orthologs proteins using the same experimental system. Infectivity studies of transgenic Leishmania parasites suggest that one of the secreted proteins increases parasite replication inside macrophages. This methodology can identify conserved secreted proteins involved in the classical secretory pathway, and they may represent potential virulence factors in trypanosomatids. PMID:20145711

  8. The crystal structures of the Salmonella type III secretion system tip protein SipD in complex with deoxycholate and chenodeoxycholate

    PubMed Central

    Chatterjee, Srirupa; Zhong, Dalian; Nordhues, Bryce A; Battaile, Kevin P; Lovell, Scott; De Guzman, Roberto N

    2011-01-01

    The type III secretion system (T3SS) is a protein injection nanomachinery required for virulence by many human pathogenic bacteria including Salmonella and Shigella. An essential component of the T3SS is the tip protein and the Salmonella SipD and the Shigella IpaD tip proteins interact with bile salts, which serve as environmental sensors for these enteric pathogens. SipD and IpaD have long central coiled coils and their N-terminal regions form α-helical hairpins and a short helix α3 that pack against the coiled coil. Using AutoDock, others have predicted that the bile salt deoxycholate binds IpaD in a cleft formed by the α-helical hairpin and its long central coiled coil. NMR chemical shift mapping, however, indicated that the SipD residues most affected by bile salts are located in a disordered region near helix α3. Thus, how bile salts interact with SipD and IpaD is unclear. Here, we report the crystal structures of SipD in complex with the bile salts deoxycholate and chenodeoxycholate. Bile salts bind SipD in a region different from what was predicted for IpaD. In SipD, bile salts bind part of helix α3 and the C-terminus of the long central coiled coil, towards the C-terminus of the protein. We discuss the biological implication of the differences in how bile salts interact with SipD and IpaD. PMID:21031487

  9. In vivo quantification of the secretion rates of the hemolysin A Type I secretion system.

    PubMed

    Lenders, Michael H H; Beer, Tobias; Smits, Sander H J; Schmitt, Lutz

    2016-01-01

    Type 1 secretion systems (T1SS) of Gram-negative bacteria secrete a broad range of substrates into the extracellular space. Common to all substrates is a C-terminal secretion sequence and nonapeptide repeats in the C-terminal part that bind Ca(2+) in the extracellular space, to trigger protein folding. Like all T1SS, the hemolysin A (HlyA) T1SS of Escherichia coli consists of an ABC transporter, a membrane fusion protein and an outer membrane protein allowing the one step translocation of the substrate across both membranes. Here, we analyzed the secretion rate of the HlyA T1SS. Our results demonstrate that the rate is independent of substrate-size and operates at a speed of approximately 16 amino acids per transporter per second. We also demonstrate that the rate is independent of the extracellular Ca(2+) concentration raising the question of the driving force of substrate secretion by T1SS in general. PMID:27616645

  10. In vivo quantification of the secretion rates of the hemolysin A Type I secretion system

    PubMed Central

    Lenders, Michael H. H.; Beer, Tobias; Smits, Sander H. J.; Schmitt, Lutz

    2016-01-01

    Type 1 secretion systems (T1SS) of Gram-negative bacteria secrete a broad range of substrates into the extracellular space. Common to all substrates is a C-terminal secretion sequence and nonapeptide repeats in the C-terminal part that bind Ca2+ in the extracellular space, to trigger protein folding. Like all T1SS, the hemolysin A (HlyA) T1SS of Escherichia coli consists of an ABC transporter, a membrane fusion protein and an outer membrane protein allowing the one step translocation of the substrate across both membranes. Here, we analyzed the secretion rate of the HlyA T1SS. Our results demonstrate that the rate is independent of substrate-size and operates at a speed of approximately 16 amino acids per transporter per second. We also demonstrate that the rate is independent of the extracellular Ca2+ concentration raising the question of the driving force of substrate secretion by T1SS in general. PMID:27616645

  11. Diversity and Evolution of Bacterial Twin Arginine Translocase Protein, TatC, Reveals a Protein Secretion System That Is Evolving to Fit Its Environmental Niche

    PubMed Central

    Simone, Domenico; Bay, Denice C.; Leach, Thorin; Turner, Raymond J.

    2013-01-01

    Background The twin-arginine translocation (Tat) protein export system enables the transport of fully folded proteins across a membrane. This system is composed of two integral membrane proteins belonging to TatA and TatC protein families and in some systems a third component, TatB, a homolog of TatA. TatC participates in substrate protein recognition through its interaction with a twin arginine leader peptide sequence. Methodology/Principal Findings The aim of this study was to explore TatC diversity, evolution and sequence conservation in bacteria to identify how TatC is evolving and diversifying in various bacterial phyla. Surveying bacterial genomes revealed that 77% of all species possess one or more tatC loci and half of these classes possessed only tatC and tatA genes. Phylogenetic analysis of diverse TatC homologues showed that they were primarily inherited but identified a small subset of taxonomically unrelated bacteria that exhibited evidence supporting lateral gene transfer within an ecological niche. Examination of bacilli tatCd/tatCy isoform operons identified a number of known and potentially new Tat substrate genes based on their frequent association to tatC loci. Evolutionary analysis of these Bacilli isoforms determined that TatCy was the progenitor of TatCd. A bacterial TatC consensus sequence was determined and highlighted conserved and variable regions within a three dimensional model of the Escherichia coli TatC protein. Comparative analysis between the TatC consensus sequence and Bacilli TatCd/y isoform consensus sequences revealed unique sites that may contribute to isoform substrate specificity or make TatA specific contacts. Synonymous to non-synonymous nucleotide substitution analyses of bacterial tatC homologues determined that tatC sequence variation differs dramatically between various classes and suggests TatC specialization in these species. Conclusions/Significance TatC proteins appear to be diversifying within particular bacterial

  12. Type III secretion needle proteins induce cell signaling and cytokine secretion via Toll-like receptors.

    PubMed

    Jessen, Danielle L; Osei-Owusu, Patrick; Toosky, Melody; Roughead, William; Bradley, David S; Nilles, Matthew L

    2014-06-01

    Pathogens are recognized by hosts by use of various receptors, including the Toll-like receptor (TLR) and Nod-like receptor (NLR) families. Ligands for these varied receptors, including bacterial products, are identified by the immune system, resulting in development of innate immune responses. Only a couple of components from type III secretion (T3S) systems are known to be recognized by TLR or NLR family members. Known T3S components that are detected by pattern recognition receptors (PRRs) are (i) flagellin, detected by TLR5 and NLRC4 (Ipaf); and (ii) T3S rod proteins (PrgJ and homologs) and needle proteins (PrgI and homologs), detected by NAIP and the NLRC4 inflammasome. In this report, we characterize the induction of proinflammatory responses through TLRs by the Yersinia pestis T3S needle protein, YscF, the Salmonella enterica needle proteins PrgI and SsaG, and the Shigella needle protein, MxiH. More specifically, we determine that the proinflammatory responses occur through TLR2 and -4. These data support the hypothesis that T3S needles have an unrecognized role in bacterial pathogenesis by modulating immune responses. PMID:24643544

  13. Type III Secretion Needle Proteins Induce Cell Signaling and Cytokine Secretion via Toll-Like Receptors

    PubMed Central

    Jessen, Danielle L.; Osei-Owusu, Patrick; Toosky, Melody; Roughead, William; Bradley, David S.

    2014-01-01

    Pathogens are recognized by hosts by use of various receptors, including the Toll-like receptor (TLR) and Nod-like receptor (NLR) families. Ligands for these varied receptors, including bacterial products, are identified by the immune system, resulting in development of innate immune responses. Only a couple of components from type III secretion (T3S) systems are known to be recognized by TLR or NLR family members. Known T3S components that are detected by pattern recognition receptors (PRRs) are (i) flagellin, detected by TLR5 and NLRC4 (Ipaf); and (ii) T3S rod proteins (PrgJ and homologs) and needle proteins (PrgI and homologs), detected by NAIP and the NLRC4 inflammasome. In this report, we characterize the induction of proinflammatory responses through TLRs by the Yersinia pestis T3S needle protein, YscF, the Salmonella enterica needle proteins PrgI and SsaG, and the Shigella needle protein, MxiH. More specifically, we determine that the proinflammatory responses occur through TLR2 and -4. These data support the hypothesis that T3S needles have an unrecognized role in bacterial pathogenesis by modulating immune responses. PMID:24643544

  14. High-Throughput System for the Presentation of Secreted and Surface-Exposed Proteins from Gram-Positive Bacteria in Functional Metagenomics Studies

    PubMed Central

    Dobrijevic, Dragana; Di Liberto, Gaetana; Tanaka, Kosei; de Wouters, Tomas; Dervyn, Rozenn; Boudebbouze, Samira; Binesse, Johan; Blottière, Hervé M.; Jamet, Alexandre; Maguin, Emmanuelle; van de Guchte, Maarten

    2013-01-01

    Complex microbial ecosystems are increasingly studied through the use of metagenomics approaches. Overwhelming amounts of DNA sequence data are generated to describe the ecosystems, and allow to search for correlations between gene occurrence and clinical (e.g. in studies of the gut microbiota), physico-chemical (e.g. in studies of soil or water environments), or other parameters. Observed correlations can then be used to formulate hypotheses concerning microbial gene functions in relation to the ecosystem studied. In this context, functional metagenomics studies aim to validate these hypotheses and to explore the mechanisms involved. One possible approach is to PCR amplify or chemically synthesize genes of interest and to express them in a suitable host in order to study their function. For bacterial genes, Escherichia coli is often used as the expression host but, depending on the origin and nature of the genes of interest and the test system used to evaluate their putative function, other expression systems may be preferable. In this study, we developed a system to evaluate the role of secreted and surface-exposed proteins from Gram-positive bacteria in the human gut microbiota in immune modulation. We chose to use a Gram-positive host bacterium, Bacillus subtilis, and modified it to provide an expression background that behaves neutral in a cell-based immune modulation assay, in vitro. We also adapted an E. coli – B. subtilis shuttle expression vector for use with the Gateway high-throughput cloning system. Finally, we demonstrate the functionality of this host-vector system through the cloning and expression of a flagellin-coding sequence, and show that the expression-clone elicits an inflammatory response in a human intestinal epithelial cell line. The expression host can easily be adapted to assure neutrality in other assay systems, allowing the use of the presented presentation system in functional metagenomics of the gut and other ecosystems. PMID

  15. Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin

    SciTech Connect

    Leiman, Petr G.; Basler, Marek; Ramagopal, Udupi A.; Bonanno, Jeffrey B.; Sauder, J. Michael; Pukatzki, Stefan; Burley, Stephen K.; Almo, Steven C.; Mekalanos, John J.

    2009-04-22

    Protein secretion is a common property of pathogenic microbes. Gram-negative bacterial pathogens use at least 6 distinct extracellular protein secretion systems to export proteins through their multilayered cell envelope and in some cases into host cells. Among the most widespread is the newly recognized Type VI secretion system (T6SS) which is composed of 15--20 proteins whose biochemical functions are not well understood. Using crystallographic, biochemical, and bioinformatic analyses, we identified 3 T6SS components, which are homologous to bacteriophage tail proteins. These include the tail tube protein; the membrane-penetrating needle, situated at the distal end of the tube; and another protein associated with the needle and tube. We propose that T6SS is a multicomponent structure whose extracellular part resembles both structurally and functionally a bacteriophage tail, an efficient machine that translocates proteins and DNA across lipid membranes into cells.

  16. Mining secreted proteins that function in pepper fruit development and ripening using a yeast secretion trap (YST)

    SciTech Connect

    Lee, Je Min; Lee, Sang-Jik; Rose, Jocelyn K.C.; Yeam, Inhwa; Kim, Byung-Dong

    2014-04-18

    Highlights: • Yeast secretion trap (YST) is a valuable tool for mining secretome. • A total of 80 secreted proteins are newly identified via YST in pepper fruits. • The secreted proteins are differentially regulated during pepper development and ripening. • Transient GFP-fusion assay and in planta secretion trap can effectively validate the secretion of proteins. - Abstract: Plant cells secrete diverse sets of constitutively- and conditionally-expressed proteins under various environmental and developmental states. Secreted protein populations, or secretomes have multiple functions, including defense responses, signaling, metabolic processes, and developmental regulation. To identify genes encoding secreted proteins that function in fruit development and ripening, a yeast secretion trap (YST) screen was employed using pepper (Capsicum annuum) fruit cDNAs. The YST screen revealed 80 pepper fruit-related genes (CaPFRs) encoding secreted proteins including cell wall proteins, several of which have not been previously described. Transient GFP-fusion assay and an in planta secretion trap were used to validate the secretion of proteins encoded by selected YST clones. In addition, RNA gel blot analyses provided further insights into their expression and regulation during fruit development and ripening. Integrating our data, we conclude that the YST provides a valuable functional genomics tool for the identification of substantial numbers of novel secreted plant proteins that are associated with biological processes, including fruit development and ripening.

  17. The archetype Pseudomonas aeruginosa proteins TssB and TagJ form a novel subcomplex in the bacterial type VI secretion system.

    PubMed

    Lossi, Nadine S; Manoli, Eleni; Simpson, Pete; Jones, Cerith; Hui, Kailyn; Dajani, Rana; Coulthurst, Sarah J; Freemont, Paul; Filloux, Alain

    2012-10-01

    In Pseudomonas aeruginosa three type VI secretion systems (T6SSs) coexist, called H1- to H3-T6SSs. Several T6SS components are proposed to be part of a macromolecular complex resembling the bacteriophage tail. The T6SS protein HsiE1 (TagJ) is unique to the H1-T6SS and absent from the H2- and H3-T6SSs. We demonstrate that HsiE1 interacts with a predicted N-terminal α-helix in HsiB1 (TssB) thus forming a novel subcomplex of the T6SS. HsiB1 is homologous to the Vibrio cholerae VipA component, which contributes to the formation of a bacteriophage tail sheath-like structure. We show that the interaction between HsiE1 and HsiB1 is specific and does not occur between HsiE1 and HsiB2. Proteins of the TssB family encoded in T6SS clusters lacking a gene encoding a TagJ-like component are often devoid of the predicted N-terminal helical region, which suggests co-evolution. We observe that a synthetic peptide corresponding to the N-terminal 20 amino acids of HsiB1 interacts with purified HsiE1 protein. This interaction is a common feature to other bacterial T6SSs that display a TagJ homologue as shown here with Serratia marcescens. We further show that hsiE1 is a non-essential gene for the T6SS and suggest that HsiE1 may modulate incorporation of HsiB1 into the T6SS.

  18. Complete protection against P. berghei malaria upon heterologous prime/boost immunization against circumsporozoite protein employing Salmonella type III secretion system and Bordetella adenylate cyclase toxoid.

    PubMed

    Tartz, Susanne; Rüssmann, Holger; Kamanova, Jana; Sebo, Peter; Sturm, Angelika; Heussler, Volker; Fleischer, Bernhard; Jacobs, Thomas

    2008-11-01

    Sterile immunity against malaria can be achieved by the induction of IFNgamma-producing CD8(+) T cells that target infected hepatocytes presenting epitopes of the circumsporozoite protein (CSP). In the present study we evaluate the protective efficacy of a heterologous prime/boost immunization protocol based on the delivery of the CD8(+) epitope of Plasmodium berghei CSP into the MHC class I presentation pathway, by either a type III secretion system of live recombinant Salmonella and/or by direct translocation of a recombinant Bordetella adenylate cyclase toxoid fusion (ACT-CSP) into the cytosol of professional antigen-presenting cells (APCs). A single intraperitoneal application of the recombinant ACT-CSP toxoid, as well as a single oral immunization with the Salmonella vaccine, induced a specific CD8(+) T cell response, which however conferred only a partial protection on mice against a subsequent sporozoite challenge. In contrast, a heterologous prime/boost vaccination with the live Salmonella followed by ACT-CSP led to a significant enhancement of the CSP-specific T cell response and induced complete protection in all vaccinated mice.

  19. The type VI protein secretion system contributes to biofilm formation and seed-to-seedling transmission of Acidovorax citrulli on melon.

    PubMed

    Tian, Yanli; Zhao, Yuqiang; Wu, Xinrong; Liu, Fengquan; Hu, Baishi; Walcott, Ronald R

    2015-01-01

    The type VI protein secretion system (T6SS) is essential for the virulence of several Gram-negative bacteria. In this study, we identified a T6SS gene cluster in Acidovorax citrulli, a plant-pathogenic bacterium that causes bacterial fruit blotch (BFB) of cucurbits. One T6SS cluster, of approximately 25 kb in length and comprising 17 genes, was found in the A. citrulli AAC00-1 genome. Seventeen A. citrulli mutants were generated, each with a deletion of a single T6SS core gene. There were significant differences in BFB seed-to-seedling transmission between wild-type A. citrulli strain, xjl12, and ΔvasD, ΔimpK, ΔimpJ and ΔimpF mutants (71.71%, 9.83%, 8.41%, 7.15% and 5.99% BFB disease index, respectively). In addition, we observed that these four mutants were reduced in melon seed colonization and biofilm formation; however, they were not affected in virulence when infiltrated into melon seedling tissues. There were no significant differences in BFB seed-to-seedling transmission, melon tissue colonization and biofilm formation between xjl12 and the other 13 T6SS mutants. Overall, our results indicate that T6SS plays a role in seed-to-seedling transmission of BFB on melon.

  20. Mutant strains of Pichia pastoris with enhanced secretion of recombinant proteins.

    PubMed

    Larsen, Sasha; Weaver, Jun; de Sa Campos, Katherine; Bulahan, Rhobe; Nguyen, Jackson; Grove, Heather; Huang, Amy; Low, Lauren; Tran, Namphuong; Gomez, Seth; Yau, Jennifer; Ilustrisimo, Thomas; Kawilarang, Jessica; Lau, Jonathan; Tranphung, Maivi; Chen, Irene; Tran, Christina; Fox, Marcia; Lin-Cereghino, Joan; Lin-Cereghino, Geoff P

    2013-11-01

    Although Pichia pastoris is a popular protein expression system, it exhibits limitations in its ability to secrete heterologous proteins. Therefore, a REMI (restriction enzyme mediated insertion) strategy was utilized to select mutant beta-g alactosidase s upersecretion (bgs) strains that secreted increased levels of a β-galactosidase reporter. Many of the twelve BGS genes may have functions in intracellular signaling or vesicle transport. Several of these strains also appeared to contain a more permeable cell wall. Preliminary characterization of four bgs mutants showed that they differed in the ability to enhance the export of other reporter proteins. bgs13, which has a disruption in a gene homologous to Saccharomyces cerevisiae protein kinase C (PKC1), gave enhanced secretion of most recombinant proteins that were tested, raising the possibility that it has the universal super-secreter phenotype needed in an industrial production strain of P. pastoris. PMID:23881328

  1. Secreted proteins as a fundamental source for biomarker discovery

    PubMed Central

    Stastna, Miroslava; Van Eyk, Jennifer E.

    2012-01-01

    The proteins secreted by various cells (the secretomes) are a potential rich source of biomarkers since they reflect various states of the cells at real time and at given conditions. To have accessible, sufficient and reliable protein markers is desirable since they mark various stages of disease development and their presence/absence can be used for diagnosis, prognosis, risk stratification and therapeutic monitoring. As direct analysis of blood/plasma, a common and noninvasive patient screening method, can be difficult for candidate protein biomarker identification, the alternative/complementary approaches are required, one of them is the analysis of secretomes in cell conditioned media in vitro. Since the proteins secreted by cells as a response to various stimuli are most likely secreted into blood/plasma, the identification and preselection of candidate protein biomarkers from cell secretomes with subsequent validation of their presence at higher levels in serum/plasma is a promising approach. In this review, we discuss the proteins secreted by three progenitor cell types (smooth muscle, endothelial and cardiac progenitor cells) and two adult cell types (neonatal rat ventrical myocytes and smooth muscle cells) which can be relevant to cardiovascular research and which have been recently published in the literature. We found, at least for secretome studies included in this review, that secretomes of progenitor and adult cells overlap by 48% but the secretomes are very distinct among progenitor cell themselves as well as between adult cells. In addition, we compared secreted proteins to protein identifications listed in the Human Plasma PeptideAtlas and in two reports with cardiovascular-related proteins and we performed the extensive literature search to find if any of these secreted proteins were identified in a biomarker study. As expected, many proteins have been identified as biomarkers in cancer but 18 proteins (out of 62) have been tested as biomarkers in

  2. Signal peptide optimization tool for the secretion of recombinant protein from Saccharomyces cerevisiae.

    PubMed

    Mori, Akihiro; Hara, Shoichi; Sugahara, Tomohiro; Kojima, Takaaki; Iwasaki, Yugo; Kawarasaki, Yasuaki; Sahara, Takehiko; Ohgiya, Satoru; Nakano, Hideo

    2015-11-01

    The secretion efficiency of foreign proteins in recombinant microbes is strongly dependent on the combination of the signal peptides (SPs) used and the target proteins; therefore, identifying the optimal SP sequence for each target protein is a crucial step in maximizing the efficiency of protein secretion in both prokaryotes and eukaryotes. In this study, we developed a novel method, named the SP optimization tool (SPOT), for the generation and rapid screening of a library of SP-target gene fusion constructs to identify the optimal SP for maximizing target protein secretion. In contrast to libraries generated in previous studies, SPOT fusion constructs are generated without adding the intervening sequences associated with restriction enzyme digestion sites. Therefore, no extra amino acids are inserted at the N-terminus of the target protein that might affect its function or conformational stability. As a model system, β-galactosidase (LacA) from Aspergillus oryzae was used as a target protein for secretion from Saccharomyces cerevisiae. In total, 60 SPs were selected from S. cerevisiae secretory proteins and utilized to generate the SP library. While many of the SP-LacA fusions were not secreted, several of the SPs, AGA2, CRH1, PLB1, and MF(alpha)1, were found to enhance LacA secretion compared to the WT sequence. Our results indicate that SPOT is a valuable method for optimizing the bioproduction of any target protein, and could be adapted to many host strains.

  3. Pseudomonas syringae lytic transglycosylases coregulated with the type III secretion system contribute to the translocation of effector proteins into plant cells.

    PubMed

    Oh, Hye-Sook; Kvitko, Brian H; Morello, Joanne E; Collmer, Alan

    2007-11-01

    Pseudomonas syringae translocates virulence effector proteins into plant cells via a type III secretion system (T3SS) encoded by hrp (for hypersensitive response and pathogenicity) genes. Three genes coregulated with the Hrp T3SS system in P. syringae pv. tomato DC3000 have predicted lytic transglycosylase domains: PSPTO1378 (here designated hrpH), PSPTO2678 (hopP1), and PSPTO852 (hopAJ1). hrpH is located between hrpR and avrE1 in the Hrp pathogenicity island and is carried in the functional cluster of P. syringae pv. syringae 61 hrp genes cloned in cosmid pHIR11. Strong expression of DC3000 hrpH in Escherichia coli inhibits bacterial growth unless the predicted catalytic glutamate at position 148 is mutated. Translocation tests involving C-terminal fusions with a Cya (Bordetella pertussis adenylate cyclase) reporter indicate that HrpH and HopP1, but not HopAJ1, are T3SS substrates. Pseudomonas fluorescens carrying a pHIR11 derivative lacking hrpH is poorly able to translocate effector HopA1, and this deficiency can be restored by HopP1 and HopAJ1, but not by HrpH(E148A) or HrpH(1-241). DC3000 mutants lacking hrpH or hrpH, hopP1, and hopAJ1 combined are variously reduced in effector translocation, elicitation of the hypersensitive response, and virulence. However, the mutants are not reduced in secretion of T3SS substrates in culture. When produced in wild-type DC3000, the HrpH(E148A) and HrpH(1-241) variants have a dominant-negative effect on the ability of DC3000 to elicit the hypersensitive response in nonhost tobacco and to grow and cause disease in host tomato. The three Hrp-associated lytic transglycosylases in DC3000 appear to have overlapping functions in contributing to T3SS functions during infection.

  4. Proteinaceous determinants of surface colonization in bacteria: bacterial adhesion and biofilm formation from a protein secretion perspective

    PubMed Central

    Chagnot, Caroline; Zorgani, Mohamed A.; Astruc, Thierry; Desvaux, Mickaël

    2013-01-01

    Bacterial colonization of biotic or abiotic surfaces results from two quite distinct physiological processes, namely bacterial adhesion and biofilm formation. Broadly speaking, a biofilm is defined as the sessile development of microbial cells. Biofilm formation arises following bacterial adhesion but not all single bacterial cells adhering reversibly or irreversibly engage inexorably into a sessile mode of growth. Among molecular determinants promoting bacterial colonization, surface proteins are the most functionally diverse active components. To be present on the bacterial cell surface, though, a protein must be secreted in the first place. Considering the close association of secreted proteins with their cognate secretion systems, the secretome (which refers both to the secretion systems and their protein substrates) is a key concept to apprehend the protein secretion and related physiological functions. The protein secretion systems are here considered in light of the differences in the cell-envelope architecture between diderm-LPS (archetypal Gram-negative), monoderm (archetypal Gram-positive) and diderm-mycolate (archetypal acid-fast) bacteria. Besides, their cognate secreted proteins engaged in the bacterial colonization process are regarded from single protein to supramolecular protein structure as well as the non-classical protein secretion. This state-of-the-art on the complement of the secretome (the secretion systems and their cognate effectors) involved in the surface colonization process in diderm-LPS and monoderm bacteria paves the way for future research directions in the field. PMID:24133488

  5. Further Characterization of a Type III Secretion System (T3SS) and of a New Effector Protein from a Clinical Isolate of Aeromonas Hydrophila - Part I

    EPA Science Inventory

    A type III secretion system (T3SS)-associated cytotoxin, AexT, with ADP-ribosyltransferase activity and homology to Pseudomonas aeruginosa bifuncational toxins ExoT/S, was recently identified from a fish pathogen Aeromonas salmonicida. In this study, we reported the molecular cha...

  6. TraK and TraB are conserved outer membrane proteins of the Neisseria gonorrhoeae Type IV secretion system and are expressed at low levels in wild-type cells.

    PubMed

    Ramsey, Meghan E; Hackett, Kathleen T; Bender, Tobias; Kotha, Chaitra; van der Does, Chris; Dillard, Joseph P

    2014-08-15

    Neisseria gonorrhoeae uses a type IV secretion system (T4SS) to secrete chromosomal DNA into the medium, and this DNA is effective in transforming other gonococci via natural transformation. In addition, the T4SS is important in the initial stages of biofilm development and mediates intracellular iron uptake in the absence of TonB. To better understand the mechanism of type IV secretion in N. gonorrhoeae, we examined the expression levels and localization of two predicted T4SS outer membrane proteins, TraK and TraB, in the wild-type strain as well as in overexpression strains and in a strain lacking all of the T4SS proteins. Despite very low sequence similarity to known homologues, TraB (VirB10 homolog) and TraK (VirB9 homolog) localized similarly to related proteins in other systems. Additionally, we found that TraV (a VirB7 homolog) interacts with TraK, as in other T4SSs. However, unlike in other systems, neither TraK nor TraB required the presence of other T4SS components for proper localization. Unlike other gonococcal T4SS proteins we have investigated, protein levels of the outer membrane proteins TraK and TraB were extremely low in wild-type cells and were undetectable by Western blotting unless overexpressed or tagged with a FLAG3 triple-epitope tag. Localization of TraK-FLAG3 in otherwise wild-type cells using immunogold electron microscopy of thin sections revealed a single gold particle on some cells. These results suggest that the gonococcal T4SS may be present in single copy per cell and that small amounts of T4SS proteins TraK and TraB are sufficient for DNA secretion.

  7. TraK and TraB are conserved outer membrane proteins of the Neisseria gonorrhoeae Type IV secretion system and are expressed at low levels in wild-type cells.

    PubMed

    Ramsey, Meghan E; Hackett, Kathleen T; Bender, Tobias; Kotha, Chaitra; van der Does, Chris; Dillard, Joseph P

    2014-08-15

    Neisseria gonorrhoeae uses a type IV secretion system (T4SS) to secrete chromosomal DNA into the medium, and this DNA is effective in transforming other gonococci via natural transformation. In addition, the T4SS is important in the initial stages of biofilm development and mediates intracellular iron uptake in the absence of TonB. To better understand the mechanism of type IV secretion in N. gonorrhoeae, we examined the expression levels and localization of two predicted T4SS outer membrane proteins, TraK and TraB, in the wild-type strain as well as in overexpression strains and in a strain lacking all of the T4SS proteins. Despite very low sequence similarity to known homologues, TraB (VirB10 homolog) and TraK (VirB9 homolog) localized similarly to related proteins in other systems. Additionally, we found that TraV (a VirB7 homolog) interacts with TraK, as in other T4SSs. However, unlike in other systems, neither TraK nor TraB required the presence of other T4SS components for proper localization. Unlike other gonococcal T4SS proteins we have investigated, protein levels of the outer membrane proteins TraK and TraB were extremely low in wild-type cells and were undetectable by Western blotting unless overexpressed or tagged with a FLAG3 triple-epitope tag. Localization of TraK-FLAG3 in otherwise wild-type cells using immunogold electron microscopy of thin sections revealed a single gold particle on some cells. These results suggest that the gonococcal T4SS may be present in single copy per cell and that small amounts of T4SS proteins TraK and TraB are sufficient for DNA secretion. PMID:24914183

  8. Serratia ATP-binding cassette protein exporter, Lip, recognizes a protein region upstream of the C terminus for specific secretion.

    PubMed

    Omori, K; Idei, A; Akatsuka, H

    2001-07-20

    Serratia marcescens ATP-binding cassette (ABC) exporter, the Lip system, secretes lipase (LipA(SM)), metalloproteases, and a cell surface layer protein homologue but not a heme acquisition protein, HasA (HasA(SM)). Secretion of HasA(SM) is limited to the Has(SM) system. However, HasA proteins from Pseudomonas fluorescens (HasA(PF)) and Pseudomonas aeruginosa were exported through the Lip and Has(SM) systems. To investigate the specificity in Lip exporter-mediated secretion, secretion analysis was performed using chimeras containing the HasA(PF) and HasA(SM) sequences. The segment Val-Ala-Leu (designated R1 to R3 sites), which is present close to the C terminus of HasA(PF) but not HasA(SM), was revealed to be involved in the substrate specificity of the Lip exporter. Introduction of amino acid substitutions into the R1-R5 region demonstrated that R1, R3, R4, and R5 sites require some specific amino acid residues for Lip-mediated secretion. The amino acid sequence of the region was conserved considerably among the proteins secreted by the Lip exporter. On the contrary, the region was not related to HasA secretion through the Has(SM) system. Interestingly, a typical C-terminal motif, so far regarded as a secretion signal, was not necessary for secretion through either the Lip or the Has(SM) exporter. In LipA(SM) secretion via the Lip system, the typical C-terminal motif was not essential either, but the presence of a sequence similar to Val-Ala-Leu and its location from the C terminus greatly affect the secretion level. Secretion analyses using hybrid exporters and competitors exhibited that the R1-R5 region was recognized by an ABC protein of the Lip exporter, LipB, and that the mutations aborting Lip-mediated secretion in the region resulted in a loss of the affinity to LipB. Thus, a determinant within the secretory protein for Lip-mediated secretion was fully defined.

  9. Expression level tuning for optimal heterologous protein secretion in Saccharomyces cerevisiae.

    PubMed

    Parekh, R N; Wittrup, K D

    1997-01-01

    The relationship between expression level and secretion of bovine pancreatic trypsin inhibitor (BPTI) was determined in Saccharomyces cerevisiae using a tunable amplifiable delta integration vector. Optimal secretory productivity of 15 mg of BPTI/g cell dry weight yields 180 mg/L secreted active BPTI in test-tube cultures, an order of magnitude increase over 2 mu plasmid-directed secretion. Maximum productivity is determined by the protein folding capacity of the endoplasmic reticulum (ER). Unfolded protein accumulates in the ER as synthesis increases, until a physiological instability is reached and secretion decreases precipitously despite high BPTI mRNA levels. Optimal specific productivity of a standard laboratory strain of S. cerevisiae is double that reported for secretion of BPTI by Pichia pastoris, indicating that efficient utilization of S. cerevisiae's available secretory capacity can eliminate apparent differences among yeast species in their capacity for heterologous protein secretion. Although not generally recognized, the existence of an optimum synthesis level for secretion is apparently a general feature of eucaryotic expression systems and could be of substantial significance for maximization of protein secretion in mammalian and insect cell culture. PMID:9104035

  10. Characterization of the Unconventional Secretion of the Ebola Matrix Protein VP40.

    PubMed

    Reynard, Olivier; Mateo, Mathieu

    2016-01-01

    While most secreted proteins use the classical endoplasmic reticulum (ER)-Golgi secretion pathway to reach the extracellular medium, a few proteins are secreted through unconventional secretary pathways. Viral proteins can be secreted through unconventional secretion pathways. Here, we describe how we have recently demonstrated that the Ebola virus (EBOV) matrix protein VP40 is released from transfected and infected cells in a soluble form through an unconventional secretion pathway. PMID:27665561

  11. Schistosoma mansoni secretes a chemokine binding protein with antiinflammatory activity.

    PubMed

    Smith, Philip; Fallon, Rosie E; Mangan, Niamh E; Walsh, Caitriona M; Saraiva, Margarida; Sayers, Jon R; McKenzie, Andrew N J; Alcami, Antonio; Fallon, Padraic G

    2005-11-21

    The coevolution of humans and infectious agents has exerted selective pressure on the immune system to control potentially lethal infections. Correspondingly, pathogens have evolved with various strategies to modulate and circumvent the host's innate and adaptive immune response. Schistosoma species are helminth parasites with genes that have been selected to modulate the host to tolerate chronic worm infections, often for decades, without overt morbidity. The modulation of immunity by schistosomes has been shown to prevent a range of immune-mediated diseases, including allergies and autoimmunity. Individual immune-modulating schistosome molecules have, therefore, therapeutic potential as selective manipulators of the immune system to prevent unrelated diseases. Here we show that S. mansoni eggs secrete a protein into host tissues that binds certain chemokines and inhibits their interaction with host chemokine receptors and their biological activity. The purified recombinant S. mansoni chemokine binding protein (smCKBP) suppressed inflammation in several disease models. smCKBP is unrelated to host proteins and is the first described chemokine binding protein encoded by a pathogenic human parasite and may have potential as an antiinflammatory agent.

  12. Odorant-Binding Protein: Localization to Nasal Glands and Secretions

    NASA Astrophysics Data System (ADS)

    Pevsner, Jonathan; Sklar, Pamela B.; Snyder, Solomon H.

    1986-07-01

    An odorant-binding protein (OBP) was isolated from bovine olfactory and respiratory mucosa. We have produced polyclonal antisera to this protein and report its immunohistochemical localization to mucus-secreting glands of the olfactory and respiratory mucosa. Although OBP was originally isolated as a pyrazine binding protein, both rat and bovine OBP also bind the odorants [3H]methyldihydrojasmonate and 3,7-dimethyl-octan-1-ol as well as 2-isobutyl-3-[3H]methoxypyrazine. We detect substantial odorant-binding activity attributable to OBP in secreted rat nasal mucus and tears but not in saliva, suggesting a role for OBP in transporting or concentrating odorants.

  13. Crystal structure of the Yersinia type III secretion protein YscE

    SciTech Connect

    Phan, Jason; Austin, Brian P.; Waugh, David S.

    2010-12-06

    The plague-causing bacterium Yersinia pestis utilizes a contact-dependent (type III) secretion system (T3SS) to transport virulence factors from the bacterial cytosol directly into the interior of mammalian cells where they interfere with signal transduction pathways that mediate phagocytosis and the inflammatory response. The type III secretion apparatus is composed of 20-25 different Yersinia secretion (Ysc) proteins. We report here the structure of YscE, the smallest Ysc protein, which is a dimer in solution. The probable mode of oligomerization is discussed.

  14. Type III secretion systems and pathogenicity islands.

    PubMed

    Winstanley, C; Hart, C A

    2001-02-01

    Some bacterial pathogens have evolved by acquiring pathogenicity islands (PIs), which are clusters of genes encoding virulence traits. PIs encoding the secretion of effector molecules via type III secretion (TTS) systems have been discovered in several gram-negative pathogens. TTS systems are involved in contact-dependent secretion of virulence factors and can facilitate delivery of toxins directly into target cells. The expanding list of bacteria found to contain clusters of TTS genes includes members of the genera Yersinia, Salmonella, Shigella, Escherichia, Pseudomonas, Bordetella, Burkholderia, Chlamydia and a number of plant pathogens or symbionts. This review discusses the current knowledge of the role of TTS PIs in pathogenicity, the genetic organisation and evolution of such systems,and the potential for using TTS systems as targets for novel treatments.

  15. Proteomic analysis of Taenia solium metacestode excretion-secretion proteins.

    PubMed

    Victor, Bjorn; Kanobana, Kirezi; Gabriël, Sarah; Polman, Katja; Deckers, Nynke; Dorny, Pierre; Deelder, André M; Palmblad, Magnus

    2012-06-01

    The metacestode larval stage of Taenia solium is the causal agent of a zoonotic disease called cysticercosis. The disease has an important impact on pork trade (due to porcine cysticercosis) and public health (due to human neurocysticercosis). In order to improve the current diagnostic tools and to get a better understanding of the interaction between T. solium metacestodes and their host, there is a need for more information about the proteins that are released by the parasite. In this study, we used protein sequences from different helminths, 1DE, reversed-phase LC, and MS/MS to analyze the excretion-secretion proteins produced by T. solium metacestodes from infected pigs. This is the first report of the T. solium metacestode excretion-secretion proteome. We report 76 proteins including 27 already described T. solium proteins, 17 host proteins and 32 proteins likely to be of T. solium origin, but identified using sequences from other helminths.

  16. Investigating the dynamics of recombinant protein secretion from a microalgal host.

    PubMed

    Lauersen, Kyle J; Huber, Isabel; Wichmann, Julian; Baier, Thomas; Leiter, Andreas; Gaukel, Volker; Kartushin, Viktor; Rattenholl, Anke; Steinweg, Christian; von Riesen, Lena; Posten, Clemens; Gudermann, Frank; Lütkemeyer, Dirk; Mussgnug, Jan H; Kruse, Olaf

    2015-12-10

    Production of recombinant proteins with microalgae represents an alternative platform over plant- or bacterial-based expression systems for certain target proteins. Secretion of recombinant proteins allows accumulation of the target product physically separate from the valuable algal biomass. To date, there has been little investigation into the dynamics of recombinant protein secretion from microalgal hosts-the culture parameters that encourage secreted product accumulation and stability, while encouraging biomass production. In this work, the efficiency of recombinant protein production was optimized by adjusting cultivation parameters for a strain of Chlamydomonas reinhardtii previously engineered to secrete a functional recombinant Lolium perenne ice binding protein (LpIBP), which has applications as a frozen food texturing and cryopreservation additive, into its culture medium. Three media and several cultivation styles were investigated for effects on secreted LpIBP titres and culture growth. A combination of acetate and carbon dioxide feeding with illumination resulted in the highest overall biomass and recombinant protein titres up to 10mgL(-1) in the culture medium. Pure photoautotrophic production was possible using two media types, with recombinant protein accumulation in all cultivations correlating to culture cell density. Two different cultivation systems were used for scale-up to 10L cultivations, one of which produced yields of secreted recombinant protein up to 12mgL(-1) within six cultivation days. Functional ice recrystallization inhibition (IRI) of the LpIBP from total concentrated extracellular protein extracts was demonstrated in a sucrose solution used as a simplified ice cream model. IRI lasted up to 7 days, demonstrating the potential of secreted products from microalgae for use as food additives. PMID:25975624

  17. Membrane and Chaperone Recognition by the Major Translocator Protein PopB of the Type III Secretion System of Pseudomonas aeruginosa*

    PubMed Central

    Discola, Karen F.; Förster, Andreas; Boulay, François; Simorre, Jean-Pierre; Attree, Ina; Dessen, Andréa; Job, Viviana

    2014-01-01

    The type III secretion system is a widespread apparatus used by pathogenic bacteria to inject effectors directly into the cytoplasm of eukaryotic cells. A key component of this highly conserved system is the translocon, a pore formed in the host membrane that is essential for toxins to bypass this last physical barrier. In Pseudomonas aeruginosa the translocon is composed of PopB and PopD, both of which before secretion are stabilized within the bacterial cytoplasm by a common chaperone, PcrH. In this work we characterize PopB, the major translocator, in both membrane-associated and PcrH-bound forms. By combining sucrose gradient centrifugation experiments, limited proteolysis, one-dimensional NMR, and β-lactamase reporter assays on eukaryotic cells, we show that PopB is stably inserted into bilayers with its flexible N-terminal domain and C-terminal tail exposed to the outside. In addition, we also report the crystal structure of the complex between PcrH and an N-terminal region of PopB (residues 51–59), which reveals that PopB lies within the concave face of PcrH, employing mostly backbone residues for contact. PcrH is thus the first chaperone whose structure has been solved in complex with both type III secretion systems translocators, revealing that both molecules employ the same surface for binding and excluding the possibility of formation of a ternary complex. The characterization of the major type III secretion system translocon component in both membrane-bound and chaperone-bound forms is a key step for the eventual development of antibacterials that block translocon assembly. PMID:24297169

  18. Mechanism of Action of Secreted Newt Anterior Gradient Protein

    PubMed Central

    Grassme, Kathrin S.; Garza-Garcia, Acely; Delgado, Jean-Paul; Godwin, James W.; Kumar, Anoop; Gates, Phillip B.; Brockes, Jeremy P.

    2016-01-01

    Anterior gradient (AG) proteins have a thioredoxin fold and are targeted to the secretory pathway where they may act in the ER, as well as after secretion into the extracellular space. A newt member of the family (nAG) was previously identified as interacting with the GPI-anchored salamander-specific three-finger protein called Prod1. Expression of nAG has been implicated in the nerve dependence of limb regeneration in salamanders, and nAG acted as a growth factor for cultured newt limb blastemal (progenitor) cells, but the mechanism of action was not understood. Here we show that addition of a peptide antibody to Prod1 specifically inhibit the proliferation of blastema cells, suggesting that Prod1 acts as a cell surface receptor for secreted nAG, leading to S phase entry. Mutation of the single cysteine residue in the canonical active site of nAG to alanine or serine leads to protein degradation, but addition of residues at the C terminus stabilises the secreted protein. The mutation of the cysteine residue led to no detectable activity on S phase entry in cultured newt limb blastemal cells. In addition, our phylogenetic analyses have identified a new Caudata AG protein called AG4. A comparison of the AG proteins in a cell culture assay indicates that nAG secretion is significantly higher than AGR2 or AG4, suggesting that this property may vary in different members of the family. PMID:27100463

  19. Mechanism of Action of Secreted Newt Anterior Gradient Protein.

    PubMed

    Grassme, Kathrin S; Garza-Garcia, Acely; Delgado, Jean-Paul; Godwin, James W; Kumar, Anoop; Gates, Phillip B; Driscoll, Paul C; Brockes, Jeremy P

    2016-01-01

    Anterior gradient (AG) proteins have a thioredoxin fold and are targeted to the secretory pathway where they may act in the ER, as well as after secretion into the extracellular space. A newt member of the family (nAG) was previously identified as interacting with the GPI-anchored salamander-specific three-finger protein called Prod1. Expression of nAG has been implicated in the nerve dependence of limb regeneration in salamanders, and nAG acted as a growth factor for cultured newt limb blastemal (progenitor) cells, but the mechanism of action was not understood. Here we show that addition of a peptide antibody to Prod1 specifically inhibit the proliferation of blastema cells, suggesting that Prod1 acts as a cell surface receptor for secreted nAG, leading to S phase entry. Mutation of the single cysteine residue in the canonical active site of nAG to alanine or serine leads to protein degradation, but addition of residues at the C terminus stabilises the secreted protein. The mutation of the cysteine residue led to no detectable activity on S phase entry in cultured newt limb blastemal cells. In addition, our phylogenetic analyses have identified a new Caudata AG protein called AG4. A comparison of the AG proteins in a cell culture assay indicates that nAG secretion is significantly higher than AGR2 or AG4, suggesting that this property may vary in different members of the family. PMID:27100463

  20. Type VI secretion system: secretion by a contractile nanomachine

    PubMed Central

    Basler, Marek

    2015-01-01

    The type VI secretion systems (T6SS) are present in about a quarter of all Gram-negative bacteria. Several key components of T6SS are evolutionarily related to components of contractile nanomachines such as phages and R-type pyocins. The T6SS assembly is initiated by formation of a membrane complex that binds a phage-like baseplate with a sharp spike, and this is followed by polymerization of a long rigid inner tube and an outer contractile sheath. Effectors are preloaded onto the spike or into the tube during the assembly by various mechanisms. Contraction of the sheath releases an unprecedented amount of energy, which is used to thrust the spike and tube with the associated effectors out of the effector cell and across membranes of both bacterial and eukaryotic target cells. Subunits of the contracted sheath are recycled by T6SS-specific unfoldase to allow for a new round of assembly. Live-cell imaging has shown that the assembly is highly dynamic and its subcellular localization is in certain bacteria regulated with a remarkable precision. Through the action of effectors, T6SS has mainly been shown to contribute to pathogenicity and competition between bacteria. This review summarizes the knowledge that has contributed to our current understanding of T6SS mode of action. PMID:26370934

  1. Type II secretion in Yersinia—a secretion system for pathogenicity and environmental fitness

    PubMed Central

    von Tils, Dominik; Blädel, Inga; Schmidt, M. Alexander; Heusipp, Gerhard

    2012-01-01

    In Yersinia species, type III secretion (T3S) is the most prominent and best studied secretion system and a hallmark for the infection process of pathogenic Yersinia species. Type II secretion (T2S), on the other hand, is less well-characterized, although all Yersinia species, pathogenic as well as non-pathogenic, possess one or even two T2S systems. The only Yersinia strain in which T2S has so far been studied is the human pathogenic strain Y. enterocolitica 1b. Mouse infection experiments showed that at least one of the two T2S systems of Y. enterocolitica 1b, termed Yts1, is involved in dissemination and colonization of deeper tissues like liver and spleen. Interestingly, in vitro studies revealed a complex regulation of the Yts1 system, which is mainly active at low temperatures and high Mg2+-levels. Furthermore, the functional characterization of the proteins secreted in vitro indicates a role of the Yts1 machinery in survival of the bacteria in an environmental habitat. In silico analyses identified Yts1 homologous systems in bacteria that are known as plant symbionts or plant pathogens. Thus, the recent studies point to a dual function of the Yts1 T2S systems, playing a role in virulence of humans and animals, as well as in the survival of the bacteria outside of the mammalian host. In contrast, the role of the second T2S system, Yts2, remains ill defined. Whereas the T3S system and its virulence-mediating role has been intensively studied, it might now be time to also focus on the T2S system and its role in the Yersinia lifestyle, especially considering that most of the Yersinia isolates are not found in infected humans but have been gathered from various environmental samples. PMID:23248779

  2. THE VERSATILE BACTERIAL TYPE IV SECRETION SYSTEMS

    PubMed Central

    Cascales, Eric; Christie, Peter J.

    2013-01-01

    Bacteria use type IV secretion systems for two fundamental objectives related to pathogenesis — genetic exchange and the delivery of effector molecules to eukaryotic target cells. Whereas gene acquisition is an important adaptive mechanism that enables pathogens to cope with a changing environment during invasion of the host, interactions between effector and host molecules can suppress defence mechanisms, facilitate intracellular growth and even induce the synthesis of nutrients that are beneficial to bacterial colonization. Rapid progress has been made towards defining the structures and functions of type IV secretion machines, identifying the effector molecules, and elucidating the mechanisms by which the translocated effectors subvert eukaryotic cellular processes during infection. PMID:15035043

  3. Type VI Secretion System Toxins Horizontally Shared between Marine Bacteria

    PubMed Central

    Salomon, Dor; Klimko, John A.; Trudgian, David C.; Kinch, Lisa N.; Grishin, Nick V.; Mirzaei, Hamid; Orth, Kim

    2015-01-01

    The type VI secretion system (T6SS) is a widespread protein secretion apparatus used by Gram-negative bacteria to deliver toxic effector proteins into adjacent bacterial or host cells. Here, we uncovered a role in interbacterial competition for the two T6SSs encoded by the marine pathogen Vibrio alginolyticus. Using comparative proteomics and genetics, we identified their effector repertoires. In addition to the previously described effector V12G01_02265, we identified three new effectors secreted by T6SS1, indicating that the T6SS1 secretes at least four antibacterial effectors, of which three are members of the MIX-effector class. We also showed that the T6SS2 secretes at least three antibacterial effectors. Our findings revealed that many MIX-effectors belonging to clan V are “orphan” effectors that neighbor mobile elements and are shared between marine bacteria via horizontal gene transfer. We demonstrated that a MIX V-effector from V. alginolyticus is a functional T6SS effector when ectopically expressed in another Vibrio species. We propose that mobile MIX V-effectors serve as an environmental reservoir of T6SS effectors that are shared and used to diversify antibacterial toxin repertoires in marine bacteria, resulting in enhanced competitive fitness. PMID:26305100

  4. Crystal structure of YwpF from Staphylococcus aureus reveals its architecture comprised of a β-barrel core domain resembling type VI secretion system proteins and a two-helix pair.

    PubMed

    Lee, Sang Jae; Lee, Kyu-Yeon; Lee, Ki-Young; Kim, Dong-Gyun; Kim, Soon-Jong; Lee, Bong-Jin

    2015-04-01

    The ywpF gene (SAV2097) of the Staphylococcus aureus strain Mu50 encodes the YwpF protein, which may play a role in antibiotic resistance. Here, we report the first crystal structure of the YwpF superfamily from S. aureus at 2.5-Å resolution. The YwpF structure consists of two regions: an N-terminal core β-barrel domain that shows structural similarity to type VI secretion system (T6SS) proteins (e.g., Hcp1, Hcp3, and EvpC) and a C-terminal two-helix pair. Although the monomer structure of S. aureus YwpF resembles those of T6SS proteins, the dimer/tetramer model of S. aureus YwpF is distinct from the functionally important hexameric ring of T6SS proteins. We therefore suggest that the S. aureus YwpF may have a different function compared to T6SS proteins.

  5. Enhancement of protein secretion in Pichia pastoris by overexpression of protein disulfide isomerase.

    PubMed

    Inan, Mehmet; Aryasomayajula, Dinesh; Sinha, Jayanta; Meagher, Michael M

    2006-03-01

    A potential vaccine candidate, Necator americanus secretory protein (Na-ASP1), against hookworm infections, has been expressed in Pichia pastoris. Na-ASP1, a 45 kDa protein containing 20 cysteines, was directed outside the cell by fusing the protein to the preprosequence of the alpha-mating factor of Saccharomyces cerevisiae. Most of the protein produced by single copy clones was secreted outside the cell. However, increasing gene copy number of Na-ASP1 protein in P. pastoris saturated secretory capacity and therefore, decreased the amount of secreted protein in clones harboring multiple copies of Na-ASP1 gene. Overexpression of the endoplasmic reticulum (ER) resident, homologous chaperone protein, protein disulfide isomerase (PDI) was able to increase the secretion of (Na-ASP1) protein in high copy clones. The effect of PDI levels on secretion of Na-ASP1 protein was examined in clones with varying copy number of PDI gene. Increase in secreted Na-ASP1 secretion is correlated well with the PDI copy number. Increasing levels of PDI also increased overall Na-ASP1 protein production in all the clones. Nevertheless, there was still accumulation of intracellular Na-ASP1 protein in P. pastoris clones over-expressing Na-ASP1 and PDI proteins. PMID:16255058

  6. Differentially expressed protein markers in human submandibular and sublingual secretions.

    PubMed

    Hu, Shen; Denny, Patricia; Denny, Paul; Xie, Yongming; Loo, Joseph A; Wolinsky, Lawrence E; Li, Yang; McBride, Jim; Ogorzalek Loo, Rachel R; Navazesh, Mavash; Wong, David T

    2004-11-01

    Proteome analysis of secretions from individual salivary glands is important for understanding the health of the oral cavity and pathogenesis of certain diseases. However, cross-contamination of submandibular (SM) and sublingual (SL) glandular secretions can occur. The close anatomic relationship of the SM and SL ductal orifices can lead to such contamination. Additionally, these glands may share common ducts. To insure the purity of SM/SL secretions for proteomic analysis, it is important to develop unique biomarkers which could be used to verify the integrity of the individual glandular saliva. In this study, a proteomics approach based on mass spectrometry and gel electrophoresis techniques was utilized to identify and verify a set of proteins (cystatin C, calgranulin B and MUC5B mucin), which are differentially expressed in SM/SL secretions. SM/SL fluids were obtained from nine healthy subjects. Cystatin C was found to be an SM-selective protein as it was found in all SM fluids but not detected in two SL fluids. MUC5B mucin and calgranulin B, on the other hand, were found to be SL-selective proteins. All SL samples contained MUC5B mucin, whereas MUC5B mucin was not detected in four SM samples. Eight of the SL samples contained calgranulin B; however, calgranulin B was absent in eight SM samples. This set of protein markers, especially calgranulin B, can be used to determine the purity of SM/SL samples, and therefore identify potential individuals who do not exhibit cross-contaminated SM/SL secretions, an important requirement for subsequent proteome analysis of pure SM and SL secretions.

  7. Characterization of novel secreted proteins from Xylella fastidiosa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Xylella fastidiosa is a bacterium that causes disease of agriculturally important crops, including Pierce’s disease of grapevine. Little is known about virulence factors that are necessary for X. fastidiosa to grow and cause disease in the xylem vessels of a plant host. Any protein secreted by the b...

  8. Neisseria gonorrhoeae secretes chromosomal DNA via a novel type IV secretion system.

    PubMed

    Hamilton, Holly L; Domínguez, Nadia M; Schwartz, Kevin J; Hackett, Kathleen T; Dillard, Joseph P

    2005-03-01

    The process of DNA donation for natural transformation of bacteria is poorly understood and has been assumed to involve bacterial cell death. Recently in Neisseria gonorrhoeae we found that mutations in three genes in the gonococcal genetic island (GGI) reduced the ability of a strain to act as a donor in transformation and to release DNA into the culture. To better characterize the GGI and the process of DNA donation, the 57 kb genetic island was cloned, sequenced and subjected to insertional mutagenesis. DNA sequencing revealed that the GGI has characteristics of a horizontally acquired genomic island and encodes homologues of type IV secretion system proteins. The GGI was found to be incorporated near the chromosomal replication terminus at the dif site, a sequence targeted by the site-specific recombinase XerCD. Using a plasmid carrying a small region of the GGI and the associated dif site, we demonstrated that this model island could be integrated at the dif site in strains not carrying the GGI and was spontaneously excised from that site. Also, we were able to delete the entire 57 kb region by transformation with DNA from a strain lacking the GGI. Thus the GGI was likely acquired and integrated into the gonococcal chromosome by site-specific recombination and may be lost by site-specific recombination or natural transformation. We made mutations in six putative type IV secretion system genes and assayed these strains for the ability to secrete DNA. Five of the mutations greatly reduced or completely eliminated DNA secretion. Our data indicate that N. gonorrhoeae secretes DNA via a specific process. Donated DNA may be used in natural transformation, contributing to antigenic variation and the spread of antibiotic resistance, and it may modulate the host immune response.

  9. Long-term potentiation in the hippocampal slice: evidence for stimulated secretion of newly synthesized proteins

    SciTech Connect

    Duffy, C.; Teyler, T.J.; Shashoua, V.E.

    1981-06-01

    Long-term potentiation of the hippocampal slice preparation results in an increase in the incorporation of labeled valine into the proteins destined for secretion into the extracellular medium. Double-labeling methods established that the increased secretion of the labeled proteins was limited to the potentiated region of a slice; incorporation of labeled valine was increased in the hippocampus if potentiation was through the Schaffer collaterals and in the dentate if potentiation was through the perforant path. Controls for nonspecific stimulation showed no changes. There appears to be a link between long-term potentiation and the metabolic processes that lead to protein synthesis in the hippocampal slice system.

  10. Type I Signal Peptidase and Protein Secretion in Staphylococcus aureus

    PubMed Central

    Schallenberger, Mark A.; Niessen, Sherry; Shao, Changxia; Fowler, Bruce J.

    2012-01-01

    Staphylococcus aureus is an important human pathogen whose virulence relies on the secretion of many different proteins. In general, the secretion of most proteins in S. aureus, as well as other bacteria, is dependent on the type I signal peptidase (SPase)-mediated cleavage of the N-terminal signal peptide that targets a protein to the general secretory pathway. The arylomycins are a class of natural product antibiotics that inhibit SPase, suggesting that they may be useful chemical biology tools for characterizing the secretome. While wild-type S. aureus (NCTC 8325) is naturally resistant to the arylomycins, sensitivity is conferred via a point mutation in its SPase. Here, we use a synthetic arylomycin along with a sensitized strain of S. aureus and multidimensional protein identification technology (MudPIT) mass spectrometry to identify 46 proteins whose extracellular accumulation requires SPase activity. Forty-four possess identifiable Sec-type signal peptides and thus are likely canonically secreted proteins, while four also appear to possess cell wall retention signals. We also identified the soluble C-terminal domains of two transmembrane proteins, lipoteichoic acid synthase, LtaS, and O-acyteltransferase, OatA, both of which appear to have noncanonical, internal SPase cleavage sites. Lastly, we identified three proteins, HtrA, PrsA, and SAOUHSC_01761, whose secretion is induced by arylomycin treatment. In addition to elucidating fundamental aspects of the physiology and pathology of S. aureus, the data suggest that an arylomycin-based therapeutic would reduce virulence while simultaneously eradicating an infection. PMID:22447899

  11. Applying unconventional secretion of the endochitinase Cts1 to export heterologous proteins in Ustilago maydis.

    PubMed

    Stock, Janpeter; Sarkari, Parveen; Kreibich, Saskia; Brefort, Thomas; Feldbrügge, Michael; Schipper, Kerstin

    2012-10-15

    The demand on the biotechnological production of proteins for pharmaceutical, medical and industrial applications is steadily growing. For the production of challenging proteins, we aim to establish a novel expression platform in the well characterized eukaryotic microorganism Ustilago maydis. In filaments of this fungus, secretion of the endochitinase Cts1 depends on mRNA transport along microtubules, which is mediated by the key RNA-binding protein Rrm4. Here, we report two important findings: (i) Cts1 secretion occurs via a novel unconventional route and (ii) this secretory mechanism can be exploited for the export of active heterologous proteins. Initially, we used β-glucuronidase (Gus) as a reporter for unconventional secretion. This bacterial enzyme is inactivated by N-glycosylation during its passage through the conventional eukaryotic secretory pathway. By contrast, in our system Gus was exported in its active form by fusion to Cts1 confirming its secretion by an unconventional route. As a proof-of-principle for economically important biopharmaceuticals we expressed an active single-chain antibody. Importantly, the novel protein export pathway circumvents N-glycosylation which is advantageous in many applications, e.g., to avoid undesired immune reactions in humans. Thus, the unconventional Cts1 secretion machinery has a high potential for the production of biotechnologically relevant proteins.

  12. Total protein output during rapid reduction of bile salt secretion rates in man.

    PubMed Central

    Harvey, P R; Toth, J L; Upadhya, G A; Ilson, R G; Strasberg, S M

    1989-01-01

    An investigation was undertaken to study the effect of bile salt secretion on total biliary protein secretion in man. Bile was collected in eight patients from a tube in the bile duct. Collection was started after a meal and continued for six hours, in order to obtain bile salt secretion rates over the entire physiological range. Total protein secretion rates did not vary with change in bile salt secretion or bile flow. The protein pattern assessed by SDS-PAGE did not vary with bile salt secretion. The results indicate that bile salt secretion has little influence on biliary protein secretion under these conditions in man. Changes in bile salt secretion were associated with linear change in bile flow, but there was no relationship between bile flow and protein secretion rates. This argues against convective sieving of plasma proteins into bile. Images Fig. 4 PMID:2920916

  13. Proteomic identification of secreted proteins of Propionibacterium acnes

    PubMed Central

    2010-01-01

    Background The anaerobic Gram-positive bacterium Propionibacterium acnes is a human skin commensal that resides preferentially within sebaceous follicles; however, it also exhibits many traits of an opportunistic pathogen, playing roles in a variety of inflammatory diseases such as acne vulgaris. To date, the underlying disease-causing mechanisms remain ill-defined and knowledge of P. acnes virulence factors remains scarce. Here, we identified proteins secreted during anaerobic cultivation of a range of skin and clinical P. acnes isolates, spanning the four known phylogenetic groups. Results Culture supernatant proteins of P. acnes were separated by two-dimensional electrophoresis (2-DE) and all Coomassie-stained spots were subsequently identified by MALDI mass spectrometry (MALDI-MS). A set of 20 proteins was secreted in the mid-exponential growth phase by the majority of strains tested. Functional annotation revealed that many of these common proteins possess degrading activities, including glycoside hydrolases with similarities to endoglycoceramidase, β-N-acetylglucosaminidase and muramidase; esterases such as lysophospholipase and triacylglycerol lipase; and several proteases. Other secreted factors included Christie-Atkins-Munch-Petersen (CAMP) factors, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and several hypothetical proteins, a few of which are unique to P. acnes. Strain-specific differences were apparent, mostly in the secretion of putative adhesins, whose genes exhibit variable phase variation-like sequence signatures. Conclusions Our proteomic investigations have revealed that the P. acnes secretome harbors several proteins likely to play a role in host-tissue degradation and inflammation. Despite a large overlap between the secretomes of all four P. acnes phylotypes, distinct differences between predicted host-tissue interacting proteins were identified, providing potential insight into the differential virulence properties of P. acnes isolates

  14. High-level secretion of a recombinant protein to the culture medium with a Bacillus subtilis twin-arginine translocation system in Escherichia coli.

    PubMed

    Albiniak, Anna M; Matos, Cristina F R O; Branston, Steven D; Freedman, Robert B; Keshavarz-Moore, Eli; Robinson, Colin

    2013-08-01

    The twin-arginine translocation (Tat) system transports folded proteins across the plasma membrane in bacteria, and heterologous proteins can be exported by this pathway if a Tat-type signal peptide is present at the N-terminus. The system thus has potential for biopharmaceutical production in Escherichia coli, where export to the periplasm is often a favoured approach. Previous studies have shown that E. coli cells can export high levels of protein by the Tat pathway, and the protein product accummulates almost exclusively in the periplasm. In this study, we analysed E. coli cells that express the Bacillus subtilis TatAdCd system in place of the native TatABC system. We show that a heterologous model protein, comprising the TorA signal peptide linked to green fluorescent protein (TorA-GFP), is efficiently exported by the TatAdCd system. However, whereas the GFP is exported initially to the periplasm during batch fermentation, the mature protein is increasingly found in the extracellular culture medium. By the end of a 16-h fermentation, ~ 90% of exported GFP is present in the medium as active mature protein. The total protein profiles of the medium and periplasm are essentially identical, confirming that the outer membrane becomes leaky during the fermentation process. The cells are otherwise intact, and there is no large-scale release of cytoplasmic contents. Export levels are relatively high, with ~ 0.35 g GFP·L⁻¹ culture present in the medium. This system thus offers a means of producing recombinant protein in E. coli and harvesting directly from the medium, with potential advantages in terms of ease of purification and downstream processing. PMID:23745597

  15. Secretion and extracellular space travel of Wnt proteins.

    PubMed

    Gross, Julia Christina; Boutros, Michael

    2013-08-01

    Wnt signaling pathways control many processes during development, stem cell maintenance and homeostasis, and their aberrant regulation has been linked to diseases in man including diabetes, neurodegeneration and cancer. Wnts are hydrophobic proteins, however, quite paradoxically, they can travel over distances to induce cell-type specific responses. While there has been an initial focus on elucidating the intracellular signaling cascade, discoveries in the past few years have shed light on a highly complex, and regulated secretory process that guides Wnt proteins through the exocytic pathway. Wnt proteins are at least in portion packaged onto extracellular carriers such as exosomes. Similar to dysregulation of components in the Wnt receiving cell, failure to regulate Wnt secretion has been linked to cancer. Here, we review recent discoveries on factors and processes implicated in Wnt secretion.

  16. Selection for Genes Encoding Secreted Proteins and Receptors

    NASA Astrophysics Data System (ADS)

    Klein, Robert D.; Gu, Qimin; Goddard, Audrey; Rosenthal, Arnon

    1996-07-01

    Extracellular proteins play an essential role in the formation, differentiation, and maintenance of multicellular organisms. Despite that, the systematic identification of genes encoding these proteins has not been possible. We describe here a highly efficient method to isolate genes encoding secreted and membrane-bound proteins by using a single-step selection in yeast. Application of this method, termed signal peptide selection, to various tissues yielded 559 clones that appear to encode known or novel extracellular proteins. These include members of the transforming growth factor and epidermal growth factor protein families, endocrine hormones, tyrosine kinase receptors, serine/threonine kinase receptors, seven transmembrane receptors, cell adhesion molecules, extracellular matrix proteins, plasma proteins, and ion channels. The eventual identification of most, or all, extracellular signaling molecules will advance our understanding of fundamental biological processes and our ability to intervene in disease states.

  17. Structure of EspB, a secreted substrate of the ESX-1 secretion system of Mycobacterium tuberculosis

    PubMed Central

    Korotkova, Natalia; Piton, Jérémie; Wagner, Jonathan M.; Boy-Röttger, Stefanie; Japaridze, Aleksandre; Evans, Timothy J.; Cole, Stewart T.; Pojer, Florence; Korotkov, Konstantin V.

    2015-01-01

    Mycobacterium tuberculosis secretes multiple virulence factors during infection via the general Sec and Tat pathways, and via specialized ESX secretion systems, also referred to as type VII secretion systems. The ESX-1 secretion system is an important virulence determinant because deletion of ESX-1 leads to attenuation of M. tuberculosis. ESX-1 secreted protein B (EspB) contains putative PE (Pro-Glu) and PPE (Pro-Pro-Glu) domains, and a C-terminal domain, which is processed by MycP1 protease during secretion. We determined the crystal structure of PE–PPE domains of EspB, which represents an all-helical, elongated molecule closely resembling the structure of the PE25–PPE41 heterodimer despite limited sequence similarity. Also, we determined the structure of full-length EspB, which does not have interpretable electron density for the C-terminal domain confirming that it is largely disordered. Comparative analysis of EspB in cell lysate and culture filtrates of M. tuberculosis revealed that mature secreted EspB forms oligomers. Electron microscopy analysis showed that the N-terminal fragment of EspB forms donut-shaped particles. These data provide a rationale for the future investigation of EspB's role in M. tuberculosis pathogenesis. PMID:26051906

  18. Coupled transport protein systems.

    PubMed

    Thatcher, Jack D

    2013-04-16

    This set of animated lessons provides examples of how transport proteins interact in coupled systems to produce physiologic effects. The gastric pumps animation depicts the secretion of hydrochloric acid into the gastric lumen. The animation called glucose absorption depicts glucose absorption by intestinal epithelial cells. The CFTR animation explains how the cystic fibrosis conductance transmembrane regulator (CFTR) functions as a key component of a coupled system of transport proteins that clears the pulmonary system of mucus and inhaled particulates. These animations serve as valuable resources for any collegiate-level course that describes these processes. Courses that might use them include introductory biology, biochemistry, biophysics, cell biology, pharmacology, and physiology.

  19. Synthesis and secretion of plasma proteins by embryonic chick hepatocytes: changing patterns during the first three days of culture

    PubMed Central

    1978-01-01

    A simple model system is described for studying synthesis of plasma proteins. The system is based on chick embryo hepatocytes in primary monolayer culture which synthesize a broad spectrum of plasma proteins and secrete them into the culture medium. The secreted proteins are stable and consist almost exclusively of plasma proteins. The cultured cells are nonproliferating hepatic parenchymal cells whose cell mass remains constant in culture. By a modification of Laurell's rocket immunoelectrophoresis, the secreted plasma proteins can be detected in nanogram amounts in 3 microliter of unconcentrated culture medium. Kinetics of secretion are obtained by sequential assay of proteins accumulating in the medium. In this system it is demonstrated that: (a) intracellular plasma protein levels are equivalent to less than 5% of the daily secretion; (b) synthesis and secretion are continuous; and (c) the overall half-time for plasma protein movement along the secretory pathway is less than 10 min. From these results, it follows that the rate at which the plasma proteins are secreted gives a valid estimate of their rate of synthesis. This feature of the culture and the sensitivity of the assay allow routine measurements of plasma protein synthesis without disruption of the cells and without the use of radioisotopes. It is shown, furthermore, that the overall rate of plasma protein synthesis in cultured hepatocytes is constant over a 3- day period and is similar to that of the intact liver. 3,000,000 cells, containing 1 mg cell protein, synthesize 0.2 mg of plasma proteins daily, amounting to one-fifth of hepatocellular protein synthesis. Under the conditions used, albumin synthesis steadily decreases with culture time whereas the synthesis of many other plasma proteins increases. The observed phenotypic changes and reorganization of plasma protein synthesis illustrate how the system may be exploited for studying the regulatory processes governing plasma protein synthesis. PMID

  20. Mining secreted proteins that function in pepper fruit development and ripening using a yeast secretion trap (YST).

    PubMed

    Lee, Je Min; Lee, Sang-Jik; Rose, Jocelyn K C; Yeam, Inhwa; Kim, Byung-Dong

    2014-04-18

    Plant cells secrete diverse sets of constitutively- and conditionally-expressed proteins under various environmental and developmental states. Secreted protein populations, or secretomes have multiple functions, including defense responses, signaling, metabolic processes, and developmental regulation. To identify genes encoding secreted proteins that function in fruit development and ripening, a yeast secretion trap (YST) screen was employed using pepper (Capsicum annuum) fruit cDNAs. The YST screen revealed 80 pepper fruit-related genes (CaPFRs) encoding secreted proteins including cell wall proteins, several of which have not been previously described. Transient GFP-fusion assay and an in planta secretion trap were used to validate the secretion of proteins encoded by selected YST clones. In addition, RNA gel blot analyses provided further insights into their expression and regulation during fruit development and ripening. Integrating our data, we conclude that the YST provides a valuable functional genomics tool for the identification of substantial numbers of novel secreted plant proteins that are associated with biological processes, including fruit development and ripening.

  1. The proteins secreted by Trichomonas vaginalis and vaginal epithelial cell response to secreted and episomally expressed AP65.

    PubMed

    Kucknoor, Ashwini S; Mundodi, Vasanthakrishna; Alderete, John F

    2007-11-01

    We showed recently that contact of human vaginal epithelial cells (VECs) by Trichomonas vaginalis and incubation with trichomonad proteins in conditioned medium induced expression of VEC genes. We performed 2-D SDS-PAGE followed by MALDI-TOF to identify the major secreted proteins. Based on protein abundance and separation of spots in 2-D gels, 32 major secreted proteins were examined, which gave 19 proteins with accession numbers. These proteins included known secreted cysteine proteinases. In addition, other secreted proteins were enzymes of carbohydrate metabolism, adhesin protein AP65, heat shock proteins, thioredoxin reductase and coronins. We confirmed that the secreted trichomonad proteins induced expression of VEC genes, including interleukin 8 (IL-8), COX-2 and fibronectin. Purified AP65 added to VECs had a pronounced effect only on IL-8 gene expression, which was inhibited in the presence of 12G4 monoclonal antibody to AP65. Moreover, AP65 expressed episomally within epithelial cells was found to enhance the expression of IL-8 and COX-2. This may be the first report of analysis of the secreted proteins of T. vaginalis and of the host epithelial cell response to these proteins and to the prominent adhesin AP65. PMID:17590165

  2. The proteins secreted by Trichomonas vaginalis and vaginal epithelial cell response to secreted and episomally expressed AP65

    PubMed Central

    Kucknoor, Ashwini S.; Mundodi, Vasanthakrishna; Alderete, John F.

    2007-01-01

    Summary We showed recently that contact of human vaginal epithelial cells (VECs) by Trichomonas vaginalis and incubation with trichomonad proteins in conditioned medium induced expression of VEC genes. We performed 2-D SDS-PAGE followed by MALDI-TOF to identify the major secreted proteins. Based on protein abundance and separation of spots in 2-D gels, 32 major secreted proteins were examined, which gave 19 proteins with accession numbers. These proteins included known secreted cysteine proteinases. In addition, other secreted proteins were enzymes of carbohydrate metabolism, adhesin protein AP65, heat shock proteins, thioredoxin reductase and coronins. We confirmed that the secreted trichomonad proteins induced expression of VEC genes, including interleukin 8 (IL-8), COX-2 and fibronectin. Purified AP65 added to VECs had a pronounced effect only on IL-8 gene expression, which was inhibited in the presence of 12G4 monoclonal antibody to AP65. Moreover, AP65 expressed episomally within epithelial cells was found to enhance the expression of IL-8 and COX-2. This may be the first report of analysis of the secreted proteins of T. vaginalis and of the host epithelial cell response to these proteins and to the prominent adhesin AP65. PMID:17590165

  3. Identification and Characterization of Plant Cell Death-Inducing Secreted Proteins From Ustilaginoidea virens.

    PubMed

    Fang, Anfei; Han, Yanqing; Zhang, Nan; Zhang, Min; Liu, Lijuan; Li, Shuai; Lu, Fen; Sun, Wenxian

    2016-05-01

    Ustilaginoidea virens (Cooke) Takah (telemorph Villosiclava virens) is an ascomycetous fungus that causes rice false smut, one of the most important rice diseases. Fungal effectors often play essential roles in host-pathogen coevolutionary interactions. However, little is known about the functions of U. virens effectors. Here, we performed functional studies on putative effectors in U. virens and demonstrated that 13 of 119 putative effectors caused necrosis or necrosis-like phenotypes in Nicotiana benthamiana. Among them, 11 proteins were confirmed to be secreted, using a yeast secretion system, and the corresponding genes are all highly induced during infection, except UV_44 and UV_4753. Eight secreted proteins were proven to trigger cell death or defenses in rice protoplasts and the secretion signal of these proteins is essential for their cell death-inducing activity. The ability of UV_44 and UV_1423 to trigger cell death is dependent on the predicted serine peptidase and ribonuclease catalytic active sites, respectively. We demonstrated that UV_1423 and UV_6205 are N-glycosylated proteins, which glycosylation has different impacts on their abilities to induce cell death. Collectively, the study identified multiple secreted proteins in U. virens with specific structural motifs that induce cell death or defense machinery in nonhost and host plants. PMID:26927000

  4. Engineering the Salmonella type III secretion system to export spider silk monomers.

    PubMed

    Widmaier, Daniel M; Tullman-Ercek, Danielle; Mirsky, Ethan A; Hill, Rena; Govindarajan, Sridhar; Minshull, Jeremy; Voigt, Christopher A

    2009-01-01

    The type III secretion system (T3SS) exports proteins from the cytoplasm, through both the inner and outer membranes, to the external environment. Here, a system is constructed to harness the T3SS encoded within Salmonella Pathogeneity Island 1 to export proteins of biotechnological interest. The system is composed of an operon containing the target protein fused to an N-terminal secretion tag and its cognate chaperone. Transcription is controlled by a genetic circuit that only turns on when the cell is actively secreting protein. The system is refined using a small human protein (DH domain) and demonstrated by exporting three silk monomers (ADF-1, -2, and -3), representative of different types of spider silk. Synthetic genes encoding silk monomers were designed to enhance genetic stability and codon usage, constructed by automated DNA synthesis, and cloned into the secretion control system. Secretion rates up to 1.8 mg l(-1) h(-1) are demonstrated with up to 14% of expressed protein secreted. This work introduces new parts to control protein secretion in Gram-negative bacteria, which will be broadly applicable to problems in biotechnology. PMID:19756048

  5. Xanthomonas campestris pv. vesicatoria Secretes Proteases and Xylanases via the Xps Type II Secretion System and Outer Membrane Vesicles

    PubMed Central

    Solé, Magali; Scheibner, Felix; Hoffmeister, Anne-Katrin; Hartmann, Nadine; Hause, Gerd; Rother, Annekatrin; Jordan, Michael; Lautier, Martine; Arlat, Matthieu

    2015-01-01

    ABSTRACT Many plant-pathogenic bacteria utilize type II secretion (T2S) systems to secrete degradative enzymes into the extracellular milieu. T2S substrates presumably mediate the degradation of plant cell wall components during the host-pathogen interaction and thus promote bacterial virulence. Previously, the Xps-T2S system from Xanthomonas campestris pv. vesicatoria was shown to contribute to extracellular protease activity and the secretion of a virulence-associated xylanase. The identities and functions of additional T2S substrates from X. campestris pv. vesicatoria, however, are still unknown. In the present study, the analysis of 25 candidate proteins from X. campestris pv. vesicatoria led to the identification of two type II secreted predicted xylanases, a putative protease and a lipase which was previously identified as a virulence factor of X. campestris pv. vesicatoria. Studies with mutant strains revealed that the identified xylanases and the protease contribute to virulence and in planta growth of X. campestris pv. vesicatoria. When analyzed in the related pathogen X. campestris pv. campestris, several T2S substrates from X. campestris pv. vesicatoria were secreted independently of the T2S systems, presumably because of differences in the T2S substrate specificities of the two pathogens. Furthermore, in X. campestris pv. vesicatoria T2S mutants, secretion of T2S substrates was not completely absent, suggesting the contribution of additional transport systems to protein secretion. In line with this hypothesis, T2S substrates were detected in outer membrane vesicles, which were frequently observed for X. campestris pv. vesicatoria. We, therefore, propose that extracellular virulence-associated enzymes from X. campestris pv. vesicatoria are targeted to the Xps-T2S system and to outer membrane vesicles. IMPORTANCE The virulence of plant-pathogenic bacteria often depends on TS2 systems, which secrete degradative enzymes into the extracellular milieu. T2S

  6. Secreted proteins of Avibacterium paragallinarum are lethal for chicken embryo.

    PubMed

    Pérez-Márquez, Víctor; Pérez-Méndez, Alma; Ibarra-Caballero, Jorge; Gómez-Lugo, Gabriela; Vázquez-Cruz, Candelario; Vaca, Sergio; Negrete-Abascal, Erasmo

    2008-12-01

    Avibacterium paragallinarum causes infectious coryza in chickens. This bacterium secretes proteins of 110 kDa (a putative RTX protein) and 120 kDa. Expression of these proteins increases by the addition of CaCl(2), MgSO(4), MnSO(4), or ferric ammonium citrate and diminishes with CuSO(4) or ZnCl(2). Protein expression is optimal at 37 degrees C and pH 7.5. Mortality (90-100%) of chicken embryos was observed when secreted proteins (SPs) from A. paragallinarum reference or field isolates (serogroup A or C) were inoculated via yolk sac and was not observed when SPs from A. avium, a chicken respiratory tract indigenous bacterium, were inoculated. A. paragallinarum SPs could contain toxins responsible for the embryo deaths. Indeed, presence of the putative RTX protein of 110 kDa was confirmed by Western blotting with antibodies against the Actinobacillus pleuropneumoniae RTX ApxI, a closely related RTX protein.

  7. Secretion and proteolysis of heterologous proteins fused to the Escherichia coli maltose binding protein in Pichia pastoris.

    PubMed

    Li, Zhiguo; Leung, Wilson; Yon, Amy; Nguyen, John; Perez, Vincent C; Vu, Jane; Giang, William; Luong, Linda T; Phan, Tracy; Salazar, Kate A; Gomez, Seth R; Au, Colin; Xiang, Fan; Thomas, David W; Franz, Andreas H; Lin-Cereghino, Joan; Lin-Cereghino, Geoff P

    2010-07-01

    The Escherichia coli maltose binding protein (MBP) has been utilized as a translational fusion partner to improve the expression of foreign proteins made in E. coli. When located N-terminal to its cargo protein, MBP increases the solubility of intracellular proteins and improves the export of secreted proteins in bacterial systems. We initially explored whether MBP would have the same effect in the methylotrophic yeast Pichia pastoris, a popular eukaryotic host for heterologous protein expression. When MBP was fused as an N-terminal partner to several C-terminal cargo proteins expressed in this yeast, proteolysis occurred between the two peptides, and MBP reached the extracellular region unattached to its cargo. However, in two of three instances, the cargo protein reached the extracellular region as well, and its initial attachment to MBP enhanced its secretion from the cell. Extensive mutagenesis of the spacer region between MBP and its C-terminal cargo protein could not inhibit the cleavage although it did cause changes in the protease target sites in the fusion proteins, as determined by mass spectrometry. Taken together, these results suggested that an uncharacterized P. pastoris protease attacked at different locations in the region C-terminal of the MBP domain, including the spacer and cargo regions, but the MBP domain could still act to enhance the secretion of certain cargo proteins. PMID:20230898

  8. Secretion and Proteolysis of Heterologous Proteins Fused to the Escherichia coli Maltose Binding Protein in Pichia pastoris

    PubMed Central

    Li, Zhiguo; Leung, Wilson; Yon, Amy; Nguyen, John; Perez, Vincent C.; Vu, Jane; Giang, William; Luong, Linda T.; Phan, Tracy; Salazar, Katherine A.; Gomez, Seth R.; Au, Colin; Xiang, Fan; Thomas, David W.; Franz, Andreas H.; Lin-Cereghino, Joan; Lin-Cereghino, Geoff P.

    2010-01-01

    The E. coli maltose binding protein (MBP) has been utilized as a translational fusion partner to improve the expression of foreign proteins made in E. coli. When located N-terminal to its cargo protein, MBP increases the solubility of intracellular proteins and improves the export of secreted proteins in bacterial systems. We initially explored whether MBP would have the same effect in the methylotrophic yeast Pichia pastoris, a popular eukaryotic host for heterologous protein expression. When MBP was fused as an N-terminal partner to several C-terminal cargo proteins expressed in this yeast, proteolysis occurred between the two peptides, and MBP reached the extracellular region unattached to its cargo. However, in two of three instances, the cargo protein reached the extracellular region as well, and its initial attachment to MBP enhanced its secretion from the cell. Extensive mutagenesis of the spacer region between MBP and its C-terminal cargo protein could not inhibit the cleavage although it did cause changes in the protease target sites in the fusion proteins, as determined by mass spectrometry. Taken together, these results suggested that an uncharacterized P. pastoris protease attacked at different locations in the region C-terminal of the MBP domain, including the spacer and cargo regions, but the MBP domain could still act to enhance the secretion of certain cargo proteins. PMID:20230898

  9. Monosodium urate activates Src/Pyk2/PI3 kinase and cathepsin dependent unconventional protein secretion from human primary macrophages.

    PubMed

    Välimäki, Elina; Miettinen, Juho J; Lietzén, Niina; Matikainen, Sampsa; Nyman, Tuula A

    2013-03-01

    Monosodium urate (MSU) is an endogenous danger signal that is crystallized from uric acid released from injured cells. MSU is known to activate inflammatory response in macrophages but the molecular mechanisms involved have remained uncharacterized. Activated macrophages start to secrete proteins to activate immune response and to recruit other immune cells to the site of infection and/or tissue damage. Secretome characterization after activation of innate immune system is essential to unravel the details of early phases of defense responses. Here, we have analyzed the secretome of human primary macrophages stimulated with MSU using quantitative two-dimensional gel electrophoresis based proteomics as well as high-throughput qualitative GeLC-MS/MS approach combining protein separation by SDS-PAGE and protein identification by liquid chromatography-MS/MS. Both methods showed that MSU stimulation induced robust protein secretion from lipopolysaccharide-primed human macrophages. Bioinformatic analysis of the secretome data showed that MSU stimulation strongly activates unconventional, vesicle mediated protein secretion. The unconventionally secreted proteins included pro-inflammatory cytokines like IL-1β and IL-18, interferon-induced proteins, and danger signal proteins. Also active forms of lysosomal proteases cathepsins were secreted on MSU stimulation, and cathepsin activity was essential for MSU-induced unconventional protein secretion. Additionally, proteins associated to phosphorylation events including Src family tyrosine kinases were increased in the secretome of MSU-stimulated cells. Our functional studies demonstrated that Src, Pyk2, and PI3 kinases act upstream of cathepsins to activate the overall protein secretion from macrophages. In conclusion, we provide the first comprehensive characterization of protein secretion pathways activated by MSU in human macrophages, and reveal a novel role for cathepsins and Src, Pyk2, PI3 kinases in the activation of

  10. Quantitative proteomic analysis of Burkholderia pseudomallei Bsa type III secretion system effectors using hypersecreting mutants.

    PubMed

    Vander Broek, Charles W; Chalmers, Kevin J; Stevens, Mark P; Stevens, Joanne M

    2015-04-01

    Burkholderia pseudomallei is an intracellular pathogen and the causative agent of melioidosis, a severe disease of humans and animals. One of the virulence factors critical for early stages of infection is the Burkholderia secretion apparatus (Bsa) Type 3 Secretion System (T3SS), a molecular syringe that injects bacterial proteins, called effectors, into eukaryotic cells where they subvert cellular functions to the benefit of the bacteria. Although the Bsa T3SS itself is known to be important for invasion, intracellular replication, and virulence, only a few genuine effector proteins have been identified and the complete repertoire of proteins secreted by the system has not yet been fully characterized. We constructed a mutant lacking bsaP, a homolog of the T3SS "gatekeeper" family of proteins that exert control over the timing and magnitude of effector protein secretion. Mutants lacking BsaP, or the T3SS translocon protein BipD, were observed to hypersecrete the known Bsa effector protein BopE, providing evidence of their role in post-translational control of the Bsa T3SS and representing key reagents for the identification of its secreted substrates. Isobaric Tags for Relative and Absolute Quantification (iTRAQ), a gel-free quantitative proteomics technique, was used to compare the secreted protein profiles of the Bsa T3SS hypersecreting mutants of B. pseudomallei with the isogenic parent strain and a bsaZ mutant incapable of effector protein secretion. Our study provides one of the most comprehensive core secretomes of B. pseudomallei described to date and identified 26 putative Bsa-dependent secreted proteins that may be considered candidate effectors. Two of these proteins, BprD and BapA, were validated as novel effector proteins secreted by the Bsa T3SS of B. pseudomallei.

  11. Metrnl: a secreted protein with new emerging functions

    PubMed Central

    Zheng, Si-li; Li, Zhi-yong; Song, Jie; Liu, Jian-min; Miao, Chao-yu

    2016-01-01

    Secreted proteins play critical roles in physiological and pathological processes and can be used as biomarkers and therapies for aging and disease. Metrnl is a novel secreted protein homologous to the neurotrophin Metrn. But this protein, unlike Metrn that is mainly expressed in the brain, shows a relatively wider distribution in the body with high levels of expression in white adipose tissue and barrier tissues. This protein plays important roles in neural development, white adipose browning and insulin sensitization. Based on its expression and distinct functions, this protein is also called Cometin, Subfatin and Interleukin 39, which refer to its neurotrophic effect, adipokine function and the possible action as a cytokine, respectively. The spectrum of Metrnl functions remains to be determined, and the mechanisms of Metrnl action need to be elucidated. In this review, we focus on the discovery, structural characteristics, expression pattern and physiological functions of Metrnl, which will assist in developing this protein as a new therapeutic target or agent. PMID:27063217

  12. Pollen tube growth and guidance: roles of small, secreted proteins

    PubMed Central

    Chae, Keun; Lord, Elizabeth M.

    2011-01-01

    Background Pollination is a crucial step in angiosperm (flowering plant) reproduction. Highly orchestrated pollen–pistil interactions and signalling events enable plant species to avoid inbreeding and outcrossing as a species-specific barrier. In compatible pollination, pollen tubes carrying two sperm cells grow through the pistil transmitting tract and are precisely guided to the ovules, discharging the sperm cells to the embryo sac for fertilization. Scope In Lilium longiflorum pollination, growing pollen tubes utilize two critical mechanisms, adhesion and chemotropism, for directional growth to the ovules. Among several molecular factors discovered in the past decade, two small, secreted cysteine-rich proteins have been shown to play major roles in pollen tube adhesion and reorientation bioassays: stigma/style cysteine-rich adhesin (SCA, approx. 9·3 kDa) and chemocyanin (approx. 9·8 kDa). SCA, a lipid transfer protein (LTP) secreted from the stylar transmitting tract epidermis, functions in lily pollen tube tip growth as well as in forming the adhesive pectin matrix at the growing pollen tube wall back from the tip. Lily chemocyanin is a plantacyanin family member and acts as a directional cue for reorienting pollen tubes. Recent consecutive studies revealed that Arabidopsis thaliana homologues for SCA and chemocyanin play pivotal roles in tip polarity and directionality of pollen tube growth, respectively. This review outlines the biological roles of various secreted proteins in angiosperm pollination, focusing on plant LTPs and chemocyanin. PMID:21307038

  13. Role of proteins in insulin secretion and glycemic control.

    PubMed

    Ranawana, Viren; Kaur, Bhupinder

    2013-01-01

    Dietary proteins are essential for the life of all animals and humans at all stages of the life cycle. They serve many structural and biochemical functions and have significant effects on health and wellbeing. Dietary protein consumption has shown an upward trend in developed countries in the past two decades primarily due to greater supply and affordability. Consumption is also on the rise in developing countries as affluence is increasing. Research shows that proteins have a notable impact on glucose homeostasis mechanisms, predominantly through their effects on insulin, incretins, gluconeogenesis, and gastric emptying. Since higher protein consumption and impaired glucose tolerance can be commonly seen in the same population demographics, a thorough understanding of the former's role in glucose homeostasis is crucial both toward the prevention and management of the latter. This chapter reviews the current state of the art on proteins, amino acids, and their effects on blood glucose and insulin secretion. PMID:23722093

  14. A holin and an endopeptidase are essential for chitinolytic protein secretion in Serratia marcescens

    PubMed Central

    Hamilton, Jaeger J.; Marlow, Victoria L.; Owen, Richard A.; Costa, Marília de Assis Alcoforado; Guo, Manman; Buchanan, Grant; Chandra, Govind; Trost, Matthias; Coulthurst, Sarah J.; Palmer, Tracy; Stanley-Wall, Nicola R.

    2014-01-01

    Pathogenic bacteria adapt to their environment and manipulate the biochemistry of hosts by secretion of effector molecules. Serratia marcescens is an opportunistic pathogen associated with healthcare-acquired infections and is a prolific secretor of proteins, including three chitinases (ChiA, ChiB, and ChiC) and a chitin binding protein (Cbp21). In this work, genetic, biochemical, and proteomic approaches identified genes that were required for secretion of all three chitinases and Cbp21. A genetic screen identified a holin-like protein (ChiW) and a putative l-alanyl-d-glutamate endopeptidase (ChiX), and subsequent biochemical analyses established that both were required for nonlytic secretion of the entire chitinolytic machinery, with chitinase secretion being blocked at a late stage in the mutants. In addition, live-cell imaging experiments demonstrated bimodal and coordinated expression of chiX and chiA and revealed that cells expressing chiA remained viable. It is proposed that ChiW and ChiX operate in tandem as components of a protein secretion system used by gram-negative bacteria. PMID:25488919

  15. EsxB, a secreted protein from Bacillus anthracis forms two distinct helical bundles

    DOE PAGES

    Fan, Yao; Tan, Kemin; Chhor, Gekleng; Butler, Emily K.; Jedrzejczak, Robert P.; Missiakas, Dominique; Joachimiak, Andrzej

    2015-07-03

    The EsxB protein from Bacillus anthracis belongs to the WXG100 family, a group of proteins secreted by a specialized secretion system. We have determined the crystal structures of recombinant EsxB and discovered that the small protein (~10 kDa), comprised of a helix-loop-helix (HLH) hairpin, is capable of associating into two different helical bundles. The two basic quaternary assemblies of EsxB are an antiparallel (AP) dimer and a rarely observed bisecting U (BU) dimer. This structural duality of EsxB is believed to originate from the heptad repeat sequence diversity of the first helix of its HLH hairpin, which allows for twomore » alternative helix packing. The flexibility of EsxB and the ability to form alternative helical bundles underscore the possibility that this protein can serve as an adaptor in secretion and can form hetero-oligomeric helix bundle(s) with other secreted members of the WXG100 family, such as EsxW. The highly conserved WXG motif is located within the loop of the HLH hairpin and is mostly buried within the helix bundle suggesting that its role is mainly structural. The exact functions of the motif, including a proposed role as a secretion signal, remain unknown.« less

  16. EsxB, a secreted protein from Bacillus anthracis forms two distinct helical bundles

    PubMed Central

    Fan, Yao; Tan, Kemin; Chhor, Gekleng; Butler, Emily K; Jedrzejczak, Robert P; Missiakas, Dominique; Joachimiak, Andrzej

    2015-01-01

    The EsxB protein from Bacillus anthracis belongs to the WXG100 family, a group of proteins secreted by a specialized secretion system. We have determined the crystal structures of recombinant EsxB and discovered that the small protein (∼10 kDa), comprised of a helix-loop-helix (HLH) hairpin, is capable of associating into two different helical bundles. The two basic quaternary assemblies of EsxB are an antiparallel (AP) dimer and a rarely observed bisecting U (BU) dimer. This structural duality of EsxB is believed to originate from the heptad repeat sequence diversity of the first helix of its HLH hairpin, which allows for two alternative helix packing. The flexibility of EsxB and the ability to form alternative helical bundles underscore the possibility that this protein can serve as an adaptor in secretion and can form hetero-oligomeric helix bundle(s) with other secreted members of the WXG100 family, such as EsxW. The highly conserved WXG motif is located within the loop of the HLH hairpin and is mostly buried within the helix bundle suggesting that its role is mainly structural. The exact functions of the motif, including a proposed role as a secretion signal, remain unknown. PMID:26032645

  17. Molecular Characterization of a Functional Type VI Secretion System from a Clinical Isolate of Aeromonas hydrophilia

    EPA Science Inventory

    Our laboratory recently molecularly characterized the type II secretion system (T2SS)-associated cytotoxic enterotoxin (Act) and the T3SS-secreted AexU effector from a diarrheal isolate SSU of Aeromonas hydrophila. The role of these toxin proteins in the pathogenesis of A. hydrop...

  18. Molecular characterization of a functional type VI secretion system from a clinical isolate of Aeromonas hydrophila

    EPA Science Inventory

    Our laboratory recently molecularly characterized the type II secretion system (T2SS)-associated cytotoxic enterotoxin (Act) and the T3SS-secreted AexU effector from a diarrheal isolate SSU of Aeromonas hydrophila. The role of these toxin proteins in the pathogenesis of A. hydrop...

  19. Pmp-like proteins Pls1 and Pls2 are secreted into the lumen of the Chlamydia trachomatis inclusion.

    PubMed

    Jorgensen, Ine; Valdivia, Raphael H

    2008-09-01

    The obligate intracellular pathogen Chlamydia trachomatis secretes effector proteins across the membrane of the pathogen-containing vacuole (inclusion) to modulate host cellular functions. In an immunological screen for secreted chlamydial proteins, we identified CT049 and CT050 as potential inclusion membrane-associated proteins. These acidic, nonglobular proteins are paralogously related to the passenger domain of the polymorphic membrane protein PmpC and, like other Pmp proteins, are highly polymorphic among C. trachomatis ocular and urogenital strains. We generated antibodies to these Pmp-like secreted (Pls) proteins and determined by immunofluorescence microscopy that Pls1 (CT049) and Pls2 (CT050) localized to globular structures within the inclusion lumen and at the inclusion membrane. Fractionation of membranes and cytoplasmic components from infected cells by differential and density gradient centrifugation further indicated that Pls1 and Pls2 associated with membranes distinct from the bulk of bacterial and inclusion membranes. The accumulation of Pls1 and, to a lesser extent, Pls2 in the inclusion lumen was insensitive to the type III secretion inhibitor C1, suggesting that this translocation system is not essential for Pls protein secretion. In contrast, Pls secretion and stability were sensitive to low levels of beta-lactam antibiotics, suggesting that a functional cell wall is required for Pls secretion from the bacterial cell. Finally, we tested the requirement for these proteins in Chlamydia infection by microinjecting anti-Pls1 and anti-Pls2 antibodies into infected cells. Coinjection of anti-Pls1 and -Pls2 antibodies partially inhibited expansion of the inclusion. Because Pls proteins lack classical sec-dependent secretion signals, we propose that Pls proteins are secreted into the inclusion lumen by a novel mechanism to regulate events important for chlamydial replication and inclusion expansion.

  20. Intradermal delivery of Shigella IpaB and IpaD type III secretion proteins: kinetics of cell recruitment and antigen uptake, mucosal and systemic immunity, and protection across serotypes.

    PubMed

    Heine, Shannon J; Diaz-McNair, Jovita; Andar, Abhay U; Drachenberg, Cinthia B; van de Verg, Lillian; Walker, Richard; Picking, Wendy L; Pasetti, Marcela F

    2014-02-15

    Shigella is one of the leading pathogens contributing to the vast pediatric diarrheal disease burden in low-income countries. No licensed vaccine is available, and the existing candidates are only partially effective and serotype specific. Shigella type III secretion system proteins IpaB and IpaD, which are conserved across Shigella spp., are candidates for a broadly protective, subunit-based vaccine. In this study, we investigated the immunogenicity and protective efficacy of IpaB and IpaD administered intradermally (i.d.) with a double-mutant of the Escherichia coli heat-labile enterotoxin (dmLT) adjuvant using microneedles. Different dosage levels of IpaB and IpaD, with or without dmLT, were tested in mice. Vaccine delivery into the dermis, recruitment of neutrophils, macrophages, dendritic cells, and Langerhans cells, and colocalization of vaccine Ag within skin-activated APC were demonstrated through histology and immunofluorescence microscopy. Ag-loaded neutrophils, macrophages, dendritic cells, and Langerhans cells remained in the tissue at least 1 wk. IpaB, IpaD, and dmLT-specific serum IgG- and IgG-secreting cells were produced following i.d. immunization. The protective efficacy was 70% against Shigella flexneri and 50% against Shigella sonnei. Similar results were obtained when the vaccine was administered intranasally, with the i.d. route requiring 25-40 times lower doses. Distinctively, IgG was detected in mucosal secretions; secretory IgA, as well as mucosal and systemic IgA Ab-secreting cells, were seemingly absent. Vaccine-induced T cells produced IFN-γ, IL-2, TNF-α, IL-17, IL-4, IL-5, and IL-10. These results demonstrate the potential of i.d. vaccination with IpaB and IpaD to prevent Shigella infection and support further studies in humans.

  1. Imipramine and citalopram facilitate amyloid precursor protein secretion in vitro.

    PubMed

    Pákáski, Magdolna; Bjelik, Annamária; Hugyecz, Marietta; Kása, Péter; Janka, Zoltán; Kálmán, János

    2005-08-01

    Comorbid depression of Alzheimer's disease (AD) is a common mood disorder in the elderly and a broad spectrum of antidepressants have been used for its treatment. Abeta peptides and other derivatives of the amyloid precursor protein (APP) have been implicated as central to the pathogenesis of AD. However, the functional relationship of APP and its proteolytic derivatives to antidepressant therapy is not known. In this study, Western blotting was used to test the ability of the tricyclic antidepressant (TCA) imipramine or the selective serotonin reuptake inhibitor (SSRI) citalopram to change the release of APP and the protein kinase C (PKC) content. Both antidepressants increased APP secretion in primary rat neuronal cultures. Imipramine or citalopram enhanced the level of secreted APP by 3.2- or 3.4-fold, respectively. Increases in PKC level were observed only after imipramine treatment. These in vitro data suggest that both TCA and SSRI are able to interfere with the APP metabolism. Imipramine promotes the non-amyloidogenic route of APP processing via stimulatory effects on PKC. We propose that PKC is not involved in the mechanism underlying the effects of citalopram on the APP metabolism. Since the secreted APP is not further available for the pathological cleavage of beta- and gamma-secretases, antidepressant medication might be beneficial in AD therapy. PMID:15955598

  2. A Phytase-Based Reporter System for Identification of Functional Secretion Signals in Bifidobacteria

    PubMed Central

    Osswald, Annika; Westermann, Christina; Sun, Zhongke; Riedel, Christian U.

    2015-01-01

    Health-promoting effects have been attributed to a number of Bifidobacterium sp. strains. These effects as well as the ability to colonise the host depend on secreted proteins. Moreover, rational design of protein secretion systems bears the potential for the generation of novel probiotic bifidobacteria with improved health-promoting or therapeutic properties. To date, there is only very limited data on secretion signals of bifidobacteria available. Using in silico analysis, we demonstrate that all bifidobacteria encode the major components of Sec-dependent secretion machineries but only B. longum strains harbour Tat protein translocation systems. A reporter plasmid for secretion signals in bifidobacteria was established by fusing the coding sequence of the signal peptide of a sialidase of Bifidobacterium bifidum S17 to the phytase gene appA of E. coli. The recombinant strain showed increased phytase activity in spent culture supernatants and reduced phytase levels in crude extracts compared to the control indicating efficient phytase secretion. The reporter plasmid was used to screen seven predicted signal peptides in B. bifidum S17 and B. longum E18. The tested signal peptides differed substantially in their efficacy to mediate protein secretion in different host strains. An efficient signal peptide was used for expression and secretion of a therapeutically relevant protein in B. bifidum S17. Expression of a secreted cytosine deaminase led to a 100-fold reduced sensitivity of B. bifidum S17 to 5-fluorocytosine compared to the non-secreted cytosine deaminase suggesting efficient conversion of 5-fluorocytosine to the cytotoxic cancer drug 5-fluorouracil by cytosine deaminase occurred outside the bacterial cell. Selection of appropriate signal peptides for defined protein secretion might improve therapeutic efficacy as well as probiotic properties of bifidobacteria. PMID:26086721

  3. Structure of a PE–PPE–EspG complex from Mycobacterium tuberculosis reveals molecular specificity of ESX protein secretion

    PubMed Central

    Ekiert, Damian C.; Cox, Jeffery S.

    2014-01-01

    Nearly 10% of the coding capacity of the Mycobacterium tuberculosis genome is devoted to two highly expanded and enigmatic protein families called PE and PPE, some of which are important virulence/immunogenicity factors and are secreted during infection via a unique alternative secretory system termed “type VII.” How PE-PPE proteins function during infection and how they are translocated to the bacterial surface through the five distinct type VII secretion systems [ESAT-6 secretion system (ESX)] of M. tuberculosis is poorly understood. Here, we report the crystal structure of a PE-PPE heterodimer bound to ESX secretion-associated protein G (EspG), which adopts a novel fold. This PE-PPE-EspG complex, along with structures of two additional EspGs, suggests that EspG acts as an adaptor that recognizes specific PE–PPE protein complexes via extensive interactions with PPE domains, and delivers them to ESX machinery for secretion. Surprisingly, secretion of most PE-PPE proteins in M. tuberculosis is likely mediated by EspG from the ESX-5 system, underscoring the importance of ESX-5 in mycobacterial pathogenesis. Moreover, our results indicate that PE-PPE domains function as cis-acting targeting sequences that are read out by EspGs, revealing the molecular specificity for secretion through distinct ESX pathways. PMID:25275011

  4. Secretion of protein disulphide isomerase AGR2 confers tumorigenic properties

    PubMed Central

    Fessart, Delphine; Domblides, Charlotte; Avril, Tony; Eriksson, Leif A; Begueret, Hugues; Pineau, Raphael; Malrieux, Camille; Dugot-Senant, Nathalie; Lucchesi, Carlo; Chevet, Eric; Delom, Frederic

    2016-01-01

    The extracellular matrix (ECM) plays an instrumental role in determining the spatial orientation of epithelial polarity and the formation of lumens in glandular tissues during morphogenesis. Here, we show that the Endoplasmic Reticulum (ER)-resident protein anterior gradient-2 (AGR2), a soluble protein-disulfide isomerase involved in ER protein folding and quality control, is secreted and interacts with the ECM. Extracellular AGR2 (eAGR2) is a microenvironmental regulator of epithelial tissue architecture, which plays a role in the preneoplastic phenotype and contributes to epithelial tumorigenicity. Indeed, eAGR2, is secreted as a functionally active protein independently of its thioredoxin-like domain (CXXS) and of its ER-retention domain (KTEL), and is sufficient, by itself, to promote the acquisition of invasive and metastatic features. Therefore, we conclude that eAGR2 plays an extracellular role independent of its ER function and we elucidate this gain-of-function as a novel and unexpected critical ECM microenvironmental pro-oncogenic regulator of epithelial morphogenesis and tumorigenesis. DOI: http://dx.doi.org/10.7554/eLife.13887.001 PMID:27240165

  5. Aphids evolved novel secreted proteins for symbiosis with bacterial endosymbiont.

    PubMed

    Shigenobu, Shuji; Stern, David L

    2013-01-01

    Aphids evolved novel cells, called bacteriocytes, that differentiate specifically to harbour the obligatory mutualistic endosymbiotic bacteria Buchnera aphidicola. The genome of the host aphid Acyrthosiphon pisum contains many orphan genes that display no similarity with genes found in other sequenced organisms, prompting us to hypothesize that some of these orphan genes are related to lineage-specific traits, such as symbiosis. We conducted deep sequencing of bacteriocytes mRNA followed by whole mount in situ hybridizations of over-represented transcripts encoding aphid-specific orphan proteins. We identified a novel class of genes that encode small proteins with signal peptides, which are often cysteine-rich, that are over-represented in bacteriocytes. These genes are first expressed at a developmental time point coincident with the incorporation of symbionts strictly in the cells that contribute to the bacteriocyte and this bacteriocyte-specific expression is maintained throughout the aphid's life. The expression pattern suggests that recently evolved secretion proteins act within bacteriocytes, perhaps to mediate the symbiosis with beneficial bacterial partners, which is reminiscent of the evolution of novel cysteine-rich secreted proteins of leguminous plants that regulate nitrogen-fixing endosymbionts.

  6. Type Three Secretion System in Attaching and Effacing Pathogens

    PubMed Central

    Gaytán, Meztlli O.; Martínez-Santos, Verónica I.; Soto, Eduardo; González-Pedrajo, Bertha

    2016-01-01

    Enteropathogenic Escherichia coli and enterohemorrhagic E. coli are diarrheagenic bacterial human pathogens that cause severe gastroenteritis. These enteric pathotypes, together with the mouse pathogen Citrobacter rodentium, belong to the family of attaching and effacing pathogens that form a distinctive histological lesion in the intestinal epithelium. The virulence of these bacteria depends on a type III secretion system (T3SS), which mediates the translocation of effector proteins from the bacterial cytosol into the infected cells. The core architecture of the T3SS consists of a multi-ring basal body embedded in the bacterial membranes, a periplasmic inner rod, a transmembrane export apparatus in the inner membrane, and cytosolic components including an ATPase complex and the C-ring. In addition, two distinct hollow appendages are assembled on the extracellular face of the basal body creating a channel for protein secretion: an approximately 23 nm needle, and a filament that extends up to 600 nm. This filamentous structure allows these pathogens to get through the host cells mucus barrier. Upon contact with the target cell, a translocation pore is assembled in the host membrane through which the effector proteins are injected. Assembly of the T3SS is strictly regulated to ensure proper timing of substrate secretion. The different type III substrates coexist in the bacterial cytoplasm, and their hierarchical secretion is determined by specialized chaperones in coordination with two molecular switches and the so-called sorting platform. In this review, we present recent advances in the understanding of the T3SS in attaching and effacing pathogens.

  7. Flavobacterium gliding motility and the type IX secretion system.

    PubMed

    McBride, Mark J; Nakane, Daisuke

    2015-12-01

    Cells of Flavobacterium johnsoniae crawl rapidly over surfaces in a process called gliding motility. These cells do not have flagella or pili but instead rely on a novel motility machine composed of proteins that are unique to the phylum Bacteroidetes. The motility adhesins SprB and RemA are propelled along the cell surface by the still poorly-defined gliding motor. Interaction of these adhesins with a surface results in translocation of the cell. SprB and RemA are delivered to the cell surface by the type IX secretion system (T9SS). T9SSs are confined to but common in the phylum Bacteroidetes. Transmembrane components of the T9SS may perform roles in both secretion and gliding motility. PMID:26461123

  8. Structure and Regulation of the Type VI Secretion System

    PubMed Central

    Silverman, Julie M.; Brunet, Yannick R.; Cascales, Eric; Mougous, Joseph D.

    2013-01-01

    The type VI secretion system (T6SS) is a complex and widespread gram-negative export pathway with the capacity to translocate protein effectors into a diversity of target cell types. Current structural models of the T6SS indicate that the apparatus is composed of at least two complexes, a dynamic bacteriophage-like structure and a cell envelope-spanning membrane-associated assembly. How these complexes interact to promote effector secretion and cell targeting remains a major question in the field. As a contact-dependent pathway with specific cellular targets, the T6SS is subject to tight regulation. Thus, the identification of regulatory elements that control T6S expression continues to shape our understanding of the environmental circumstances relevant to its function. This review discusses recent progress toward characterizing T6S structure and regulation. PMID:22746332

  9. Exploration of Chlamydial Type III Secretion System Reconstitution in Escherichia coli

    PubMed Central

    Bao, Xiaofeng; Beatty, Wandy L.; Fan, Huizhou

    2012-01-01

    Background Type III secretion system is a virulent factor for many pathogens, and is thought to play multiple roles in the development cycle and pathogenesis of chlamydia, an important human pathogen. However, due to the obligate intracellular parasitical nature of chlamydiae and a lack of convenient genetic methodology for the organisms, very limited approaches are available to study the chlamydial type III secretion system. In this study, we explored the reconstitution of a chlamydial type III secretion in Escherichia coli. Results We successfully cloned all 6 genomic DNA clusters of the chlamydial type III secretion system into three bacterial plasmids. 5 of the 6 clusters were found to direct mRNA synthesis from their own promoters in Escherichia coli transformed with the three plasmids. Cluster 5 failed to express mRNA using its own promoters. However, fusion of cluster 5 to cluster 6 resulted in the expression of cluster 5 mRNA. Although only two of the type III secretion system proteins were detected transformed E. coli due to limited antibody availability, type III secretion system-like structures were detected in ultrathin sections in a small proportion of transformed E. coli. Conclusions We have successfully generated E. coli expressing all genes of the chlamydial type III secretion system. This serves as a foundation for optimal expression and assembly of the recombinant chlamydial type III secretion system, which may be extremely useful for the characterization of the chlamydial type III secretion system and for studying its role in chlamydial pathogenicity. PMID:23239989

  10. NopC Is a Rhizobium-Specific Type 3 Secretion System Effector Secreted by Sinorhizobium (Ensifer) fredii HH103.

    PubMed

    Jiménez-Guerrero, Irene; Pérez-Montaño, Francisco; Medina, Carlos; Ollero, Francisco Javier; López-Baena, Francisco Javier

    2015-01-01

    Sinorhizobium (Ensifer) fredii HH103 is a broad host-range nitrogen-fixing bacterium able to nodulate many legumes, including soybean. In several rhizobia, root nodulation is influenced by proteins secreted through the type 3 secretion system (T3SS). This specialized secretion apparatus is a common virulence mechanism of many plant and animal pathogenic bacteria that delivers proteins, called effectors, directly into the eukaryotic host cells where they interfere with signal transduction pathways and promote infection by suppressing host defenses. In rhizobia, secreted proteins, called nodulation outer proteins (Nops), are involved in host-range determination and symbiotic efficiency. S. fredii HH103 secretes at least eight Nops through the T3SS. Interestingly, there are Rhizobium-specific Nops, such as NopC, which do not have homologues in pathogenic bacteria. In this work we studied the S. fredii HH103 nopC gene and confirmed that its expression was regulated in a flavonoid-, NodD1- and TtsI-dependent manner. Besides, in vivo bioluminescent studies indicated that the S. fredii HH103 T3SS was expressed in young soybean nodules and adenylate cyclase assays confirmed that NopC was delivered directly into soybean root cells by means of the T3SS machinery. Finally, nodulation assays showed that NopC exerted a positive effect on symbiosis with Glycine max cv. Williams 82 and Vigna unguiculata. All these results indicate that NopC can be considered a Rhizobium-specific effector secreted by S. fredii HH103. PMID:26569401

  11. NopC Is a Rhizobium-Specific Type 3 Secretion System Effector Secreted by Sinorhizobium (Ensifer) fredii HH103

    PubMed Central

    Medina, Carlos; Ollero, Francisco Javier; López-Baena, Francisco Javier

    2015-01-01

    Sinorhizobium (Ensifer) fredii HH103 is a broad host-range nitrogen-fixing bacterium able to nodulate many legumes, including soybean. In several rhizobia, root nodulation is influenced by proteins secreted through the type 3 secretion system (T3SS). This specialized secretion apparatus is a common virulence mechanism of many plant and animal pathogenic bacteria that delivers proteins, called effectors, directly into the eukaryotic host cells where they interfere with signal transduction pathways and promote infection by suppressing host defenses. In rhizobia, secreted proteins, called nodulation outer proteins (Nops), are involved in host-range determination and symbiotic efficiency. S. fredii HH103 secretes at least eight Nops through the T3SS. Interestingly, there are Rhizobium-specific Nops, such as NopC, which do not have homologues in pathogenic bacteria. In this work we studied the S. fredii HH103 nopC gene and confirmed that its expression was regulated in a flavonoid-, NodD1- and TtsI-dependent manner. Besides, in vivo bioluminescent studies indicated that the S. fredii HH103 T3SS was expressed in young soybean nodules and adenylate cyclase assays confirmed that NopC was delivered directly into soybean root cells by means of the T3SS machinery. Finally, nodulation assays showed that NopC exerted a positive effect on symbiosis with Glycine max cv. Williams 82 and Vigna unguiculata. All these results indicate that NopC can be considered a Rhizobium-specific effector secreted by S. fredii HH103. PMID:26569401

  12. A Rapid Method for Determining the Concentration of Recombinant Protein Secreted from Pichia pastoris

    NASA Astrophysics Data System (ADS)

    Sun, L. W.; Zhao, Y.; Niu, L. P.; Jiang, R.; Song, Y.; Feng, H.; feng, K.; Qi, C.

    2011-02-01

    Pichia secretive expression system is one of powerful eukaryotic expression systems in genetic engineering, which is especially suitable for industrial utilization. Because of the low concentration of the target protein in initial experiment, the methods and conditions for expression of the target protein should be optimized according to the protein yield repetitively. It is necessary to set up a rapid, simple and convenient analysis method for protein expression levels instead of the generally used method such as ultrafiltration, purification, dialysis, lyophilization and so on. In this paper, acetone precipitation method was chosen to concentrate the recombinant protein firstly after comparing with four different protein precipitation methods systematically, and then the protein was analyzed by SDS-Polyacrylamide Gel Electrophoresis. The recombinant protein was determined with the feature of protein band by the Automated Image Capture and 1-D Analysis Software directly. With this method, the optimized expression conditions of basic fibroblast growth factor secreted from pichia were obtained, which is as the same as using traditional methods. Hence, a convenient tool to determine the optimized conditions for the expression of recombinant proteins in Pichia was established.

  13. Modulation of host immune defenses by Aeromonas and Yersinia species: convergence on toxins secreted by various secretion systems

    PubMed Central

    Rosenzweig, Jason A.; Chopra, Ashok K.

    2013-01-01

    Like other pathogenic bacteria, Yersinia and Aeromonas species have been continuously co-evolving with their respective hosts. Although the former is a bonafide human pathogen, the latter has gained notararity as an emerging disease-causing agent. In response to immune cell challenges, bacterial pathogens have developed diverse mechanism(s) enabling their survival, and, at times, dominance over various host immune defense systems. The bacterial type three secretion system (T3SS) is evolutionarily derived from flagellar subunits and serves as a vehicle by which microbes can directly inject/translocate anti-host factors/effector proteins into targeted host immune cells. A large number of Gram-negative bacterial pathogens possess a T3SS empowering them to disrupt host cell signaling, actin cytoskeleton re-arrangements, and even to induce host-cell apoptotic and pyroptotic pathways. All pathogenic yersiniae and most Aeromonas species possess a T3SS, but they also possess T2- and T6-secreted toxins/effector proteins. This review will focus on the mechanisms by which the T3SS effectors Yersinia outer membrane protein J (YopJ) and an Aeromonas hydrophila AexU protein, isolated from the diarrheal isolate SSU, mollify host immune system defenses. Additionally, the mechanisms that are associated with host cell apoptosis/pyroptosis by Aeromonas T2SS secreted Act, a cytotoxic enterotoxin, and Hemolysin co-regulated protein (Hcp), an A. hydrophila T6SS effector, will also be discussed. PMID:24199174

  14. A Repulsive Electrostatic Mechanism for Protein Export through the Type III Secretion Apparatus

    PubMed Central

    Rathinavelan, Thenmalarchelvi; Zhang, Lingling; Picking, Wendy L.; Weis, David D.; De Guzman, Roberto N.; Im, Wonpil

    2010-01-01

    Abstract Many Gram-negative bacteria initiate infections by injecting effector proteins into host cells through the type III secretion apparatus, which is comprised of a basal body, a needle, and a tip. The needle channel is formed by the assembly of a single needle protein. To explore the export mechanisms of MxiH needle protein through the needle of Shigella flexneri, an essential step during needle assembly, we have performed steered molecular dynamics simulations in implicit solvent. The trajectories reveal a screwlike rotation motion during the export of nativelike helix-turn-helix conformations. Interestingly, the channel interior with excessive electronegative potential creates an energy barrier for MxiH to enter the channel, whereas the same may facilitate the ejection of the effectors into host cells. Structurally known basal regions and ATPase underneath the basal region also have electronegative interiors. Effector proteins also have considerable electronegative potential patches on their surfaces. From these observations, we propose a repulsive electrostatic mechanism for protein translocation through the type III secretion apparatus. Based on this mechanism, the ATPase activity and/or proton motive force could be used to energize the protein translocation through these nanomachines. A similar mechanism may be applicable to macromolecular channels in other secretion systems or viruses through which proteins or nucleic acids are transported. PMID:20141759

  15. Bacterial killing via a type IV secretion system.

    PubMed

    Souza, Diorge P; Oka, Gabriel U; Alvarez-Martinez, Cristina E; Bisson-Filho, Alexandre W; Dunger, German; Hobeika, Lise; Cavalcante, Nayara S; Alegria, Marcos C; Barbosa, Leandro R S; Salinas, Roberto K; Guzzo, Cristiane R; Farah, Chuck S

    2015-01-01

    Type IV secretion systems (T4SSs) are multiprotein complexes that transport effector proteins and protein-DNA complexes through bacterial membranes to the extracellular milieu or directly into the cytoplasm of other cells. Many bacteria of the family Xanthomonadaceae, which occupy diverse environmental niches, carry a T4SS with unknown function but with several characteristics that distinguishes it from other T4SSs. Here we show that the Xanthomonas citri T4SS provides these cells the capacity to kill other Gram-negative bacterial species in a contact-dependent manner. The secretion of one type IV bacterial effector protein is shown to require a conserved C-terminal domain and its bacteriolytic activity is neutralized by a cognate immunity protein whose 3D structure is similar to peptidoglycan hydrolase inhibitors. This is the first demonstration of the involvement of a T4SS in bacterial killing and points to this special class of T4SS as a mediator of both antagonistic and cooperative interbacterial interactions. PMID:25743609

  16. The type III secreted protein BspR regulates the virulence genes in Bordetella bronchiseptica.

    PubMed

    Kurushima, Jun; Kuwae, Asaomi; Abe, Akio

    2012-01-01

    Bordetella bronchiseptica is closely related with B. pertussis and B. parapertussis, the causative agents of whooping cough. These pathogenic species share a number of virulence genes, including the gene locus for the type III secretion system (T3SS) that delivers effector proteins. To identify unknown type III effectors in Bordetella, secreted proteins in the bacterial culture supernatants of wild-type B. bronchiseptica and an isogenic T3SS-deficient mutant were compared with iTRAQ-based, quantitative proteomic analysis method. BB1639, annotated as a hypothetical protein, was identified as a novel type III secreted protein and was designated BspR (Bordetella secreted protein regulator). The virulence of a BspR mutant (ΔbspR) in B. bronchiseptica was significantly attenuated in a mouse infection model. BspR was also highly conserved in B. pertussis and B. parapertussis, suggesting that BspR is an essential virulence factor in these three Bordetella species. Interestingly, the BspR-deficient strain showed hyper-secretion of T3SS-related proteins. Furthermore, T3SS-dependent host cell cytotoxicity and hemolytic activity were also enhanced in the absence of BspR. By contrast, the expression of filamentous hemagglutinin, pertactin, and adenylate cyclase toxin was completely abolished in the BspR-deficient strain. Finally, we demonstrated that BspR is involved in the iron-responsive regulation of T3SS. Thus, Bordetella virulence factors are coordinately but inversely controlled by BspR, which functions as a regulator in response to iron starvation.

  17. Application of β-Lactamase Reporter Fusions as an Indicator of Effector Protein Secretion during Infections with the Obligate Intracellular Pathogen Chlamydia trachomatis

    PubMed Central

    Mueller, Konrad E.; Fields, Kenneth A.

    2015-01-01

    Chlamydia spp. utilize multiple secretion systems, including the type III secretion system (T3SS), to deploy host-interactive effector proteins into infected host cells. Elucidation of secreted proteins has traditionally required ectopic expression in a surrogate T3SS followed by immunolocalization of endogenous candidate effectors to confirm secretion by chlamydiae. The ability to transform Chlamydia and achieve stable expression of recombinant gene products has enabled a more direct assessment of secretion. We adapted TEM-1 β-lactamase as a reporter system for assessment of chlamydial protein secretion. We provide evidence that this system facilitates visualization of secretion in the context of infection. Specifically, our findings provide definitive evidence that C. trachomatis CT695 is secreted during infection. Follow-up indirect immunofluorescence studies confirmed CT695 secretion and indicate that this effector can be secreted at multiple points during the chlamydial developmental cycle. Our results indicate that the BlaM-fusion reporter assay will allow efficacious identification of novel secreted proteins. Moreover, this approach can easily be adapted to enable more sophisticated studies of the secretion process in Chlamydia. PMID:26258949

  18. KDEL-Containing Auxin-Binding Protein Is Secreted to the Plasma Membrane and Cell Wall.

    PubMed Central

    Jones, A. M.; Herman, E. M.

    1993-01-01

    The auxin-binding protein ABP1 has been postulated to mediate auxin-induced cellular changes associated with cell expansion. This protein contains the endoplasmic reticulum (ER) retention signal, the tetrapeptide lysine-aspartic acid-glutamic acid-leucine (KDEL), at its carboxy terminus, consistent with previous subcellular fractionation data that indicated an ER location for ABP1. We used electron microscopic immunocytochemistry to identify the subcellular localization of ABP1. Using maize (Zea mays) coleoptile tissue and a black Mexican sweet (BMS) maize cell line, we found that ABP1 is located in the ER as expected, but is also on or closely associated with the plasma membrane and within the cell wall. Labeling of the Golgi apparatus suggests that the transport of ABP1 to the cell wall occurs via the secretory system. Inhibition of secretion of an ABP homolog into the medium of BMS cell cultures by brefeldin A, a drug that specifically blocks secretion, is consistent with this secretion pathway. The secreted protein was recognized by an anti-KDEL peptide antibody, strongly supporting the interpretation that movement of this protein out of the ER does not involve loss of the carboxy-terminal signal. Cells starved for 2,4-dichlorophenoxyacetic acid for 72 h retained less ABP in the cell and secreted more of it into the medium. The significance of our observations is 2-fold. We have identified a KDEL-containing protein that specifically escapes the ER retention system, and we provide an explanation for the apparent discrepancy that most of the ABP is located in the ER, whereas ABP and auxin act at the plasma membrane. PMID:12231715

  19. Mechanism and structure of the bacterial type IV secretion systems.

    PubMed

    Christie, Peter J; Whitaker, Neal; González-Rivera, Christian

    2014-08-01

    The bacterial type IV secretion systems (T4SSs) translocate DNA and protein substrates to bacterial or eukaryotic target cells generally by a mechanism dependent on direct cell-to-cell contact. The T4SSs encompass two large subfamilies, the conjugation systems and the effector translocators. The conjugation systems mediate interbacterial DNA transfer and are responsible for the rapid dissemination of antibiotic resistance genes and virulence determinants in clinical settings. The effector translocators are used by many Gram-negative bacterial pathogens for delivery of potentially hundreds of virulence proteins to eukaryotic cells for modulation of different physiological processes during infection. Recently, there has been considerable progress in defining the structures of T4SS machine subunits and large machine subassemblies. Additionally, the nature of substrate translocation sequences and the contributions of accessory proteins to substrate docking with the translocation channel have been elucidated. A DNA translocation route through the Agrobacterium tumefaciens VirB/VirD4 system was defined, and both intracellular (DNA ligand, ATP energy) and extracellular (phage binding) signals were shown to activate type IV-dependent translocation. Finally, phylogenetic studies have shed light on the evolution and distribution of T4SSs, and complementary structure-function studies of diverse systems have identified adaptations tailored for novel functions in pathogenic settings. This review summarizes the recent progress in our understanding of the architecture and mechanism of action of these fascinating machines, with emphasis on the 'archetypal' A. tumefaciens VirB/VirD4 T4SS and related conjugation systems. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey. PMID:24389247

  20. Angiogenic activity of an Onchocerca volvulus Ancylostoma secreted protein homologue.

    PubMed

    Higazi, Tarig B; Pearlman, Eric; Whikehart, David R; Unnasch, Thomas R

    2003-06-01

    Angiogenesis is an important step in the development of ocular onchocercaisis. In previous studies, it has been demonstrated that Onchocerca volvulus homologues of the Ancylostoma secreted protein family have pronounced angiogenic activity. The overall goal of the current study was to determine if this angiogenic effect is exerted through a direct or indirect mechanism. These studies focused on one member of this family, OvASP-2, as this protein is expressed in microfilaria, the stage of the parasite that causes ocular onchocercaisis. Clones encoding truncated and full length open reading frames were expressed as fusion proteins with Escherichia coli maltose binding protein (MBP), and angiogenic activity was compared in vitro and in vivo with MBP alone. Truncated constructs expressing only the first 105 amino acids of OvASP-2 were as active as the full length protein in inducing new blood vessel formation. The full length fusion protein did not stimulate proliferation or production of vascular endothelial growth factor in vascular endothelial cells in vitro, indicating that OvASP-2 does not directly stimulate angiogenesis. Sequence analysis demonstrated that the gene encoding OvASP-2 contained five introns. Sequence comparisons of the genomic loci from West African blinding and non-blinding strains of O. volvulus revealed that some polymorphism existed among the various isolates tested. However, none of these polymorphisms could be used to differentiate the parasite strains, suggesting that qualitative variation in OvASP-2 could not explain the difference in ocular pathogenic potential of the two parasite strains.

  1. Efficient Secretion of Recombinant Proteins from Rice Suspension-Cultured Cells Modulated by the Choice of Signal Peptide

    PubMed Central

    Huang, Li-Fen; Tan, Chia-Chun; Yeh, Ju-Fang; Liu, Hsin-Yi; Liu, Yu-Kuo; Ho, Shin-Lon; Lu, Chung-An

    2015-01-01

    Plant-based expression systems have emerged as a competitive platform in the large-scale production of recombinant proteins. By adding a signal peptide, αAmy3sp, the desired recombinant proteins can be secreted outside transgenic rice cells, making them easy to harvest. In this work, to improve the secretion efficiency of recombinant proteins in rice expression systems, various signal peptides including αAmy3sp, CIN1sp, and 33KDsp have been fused to the N-terminus of green fluorescent protein (GFP) and introduced into rice cells to explore the efficiency of secretion of foreign proteins. 33KDsp had better efficiency than αAmy3sp and CIN1sp for the secretion of GFP from calli and suspension-cultured cells. 33KDsp was further applied for the secretion of mouse granulocyte-macrophage colony-stimulating factor (mGM-CSF) from transgenic rice suspension-cultured cells; approximately 76%–92% of total rice-derived mGM-CSF (rmGM-CSF) was detected in the culture medium. The rmGM-CSF was bioactive and could stimulate the proliferation of a murine myeloblastic leukemia cell line, NSF-60. The extracellular yield of rmGM-CSF reached 31.7 mg/L. Our study indicates that 33KDsp is better at promoting the secretion of recombinant proteins in rice suspension-cultured cell systems than the commonly used αAmy3sp. PMID:26473722

  2. The mystery of nonclassical protein secretion. A current view on cargo proteins and potential export routes.

    PubMed

    Nickel, Walter

    2003-05-01

    Most of the examples of protein translocation across a membrane (such as the import of classical secretory proteins into the endoplasmic reticulum, import of proteins into mitochondria and peroxisomes, as well as protein import into and export from the nucleus), are understood in great detail. In striking contrast, the phenomenon of unconventional protein secretion (also known as nonclassical protein export or ER/Golgi-independent protein secretion) from eukaryotic cells was discovered more than 10 years ago and yet the molecular mechanism and the molecular identity of machinery components that mediate this process remain elusive. This problem appears to be even more complex as several lines of evidence indicate that various kinds of mechanistically distinct nonclassical export routes may exist. In most cases these secretory mechanisms are gated in a tightly controlled fashion. This review aims to provide a comprehensive overview of our current knowledge as a basis for the development of new experimental strategies designed to unravel the molecular machineries mediating ER/Golgi-independent protein secretion. Beyond solving a fundamental problem in current cell biology, the molecular analysis of these processes is of major biomedical importance as these export routes are taken by proteins such as angiogenic growth factors, inflammatory cytokines, components of the extracellular matrix which regulate cell differentiation, proliferation and apoptosis, viral proteins, and parasite surface proteins potentially involved in host infection.

  3. Phosphatidylethanolamine binding protein 4 (PEBP4) is a secreted protein and has multiple functions.

    PubMed

    He, Huan; Liu, Dan; Lin, Hui; Jiang, Shanshan; Ying, Ying; Chun, Shao; Deng, Haiteng; Zaia, Joseph; Wen, Rong; Luo, Zhijun

    2016-07-01

    Phosphatidylethanolamine binding proteins (PEBP) represent a superfamily of proteins that are conserved from bacteria to humans. In mammals, four members have been identified, PEBP1-4. To determine the functional differences among PEBP1-4 and the underlying mechanism for their actions, we performed a sequence alignment and found that PEBP4 contains a signal peptide and potential glycosylation sites, whereas PEBP1-3 are intracellular proteins. To test if PEBP4 is secreted, we made constructs with Myc epitope at the amino (N) terminus or carboxyl (C) terminus to mask the signal sequence or keep it free, respectively. Our data revealed that both mouse and human PEBP4 were secreted when the epitope was tagged at their C-terminus. To our surprise, secretion was dependent upon the C-terminal conserved domain in addition to the N-terminal signal sequence. When the epitope was placed to the N-terminus, the recombinant protein failed to secrete and instead, was retained in the cytoplasm. Mass spectrometry detected asparagine (N)-glycosylation on the secreted PEBP4. Although overexpression of N-terminal tagged PEBP4 resulted in an inhibition of ERK activation by EGF, that with a C-terminal epitope tag did not have such an effect. Likewise, transfection of PEBP4 shRNA did not appear to affect ERK activation, suggesting that PEBP4 does not participate in the regulation of this pathway. In contrast, PEBP4 siRNA suppressed phosphorylation of Act at S473. Therefore, our results suggest that PEBP4 is a multifunctional protein and can be secreted. It will be important to investigate the mechanism by which PEBP4 is secreted and regulates cellular events.

  4. The bacterial virulence factor NleA inhibits cellular protein secretion by disrupting mammalian COPII function.

    PubMed

    Kim, Jinoh; Thanabalasuriar, Ajitha; Chaworth-Musters, Tessa; Fromme, J Chris; Frey, Elizabeth A; Lario, Paula I; Metalnikov, Pavel; Rizg, Keyrillos; Thomas, Nikhil A; Lee, Sau Fung; Hartland, Elizabeth L; Hardwidge, Philip R; Pawson, Tony; Strynadka, Natalie C; Finlay, B Brett; Schekman, Randy; Gruenheid, Samantha

    2007-09-13

    Enterohemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC) maintain an extracellular lifestyle and use a type III secretion system to translocate effector proteins into the host cytosol. These effectors manipulate host pathways to favor bacterial replication and survival. NleA is an EHEC/EPEC- and related species-specific translocated effector protein that is essential for bacterial virulence. However, the mechanism by which NleA impacts virulence remains undetermined. Here we demonstrate that NleA compromises the Sec23/24 complex, a component of the mammalian COPII protein coat that shapes intracellular protein transport vesicles, by directly binding Sec24. Expression of an NleA-GFP fusion protein reduces the efficiency of cellular secretion by 50%, and secretion is inhibited in EPEC-infected cells. Direct biochemical experiments show that NleA inhibits COPII-dependent protein export from the endoplasmic reticulum. Collectively, these findings indicate that disruption of COPII function in host cells contributes to the virulence of EPEC and EHEC.

  5. Enteropathogenic Escherichia coli protein secretion is induced in response to conditions similar to those in the gastrointestinal tract.

    PubMed Central

    Kenny, B; Abe, A; Stein, M; Finlay, B B

    1997-01-01

    The pathogenicity of enteropathogenic Escherichia coli (EPEC) is associated with the expression and secretion of specific bacterial factors. EspB is one such secreted protein which is required to trigger host signaling pathways resulting in effacement of microvilli and cytoskeletal rearrangements. These events presumably contribute to the ensuing diarrhea associated with EPEC infections. EPEC encounters several environmental changes and stimuli during its passage from the external environment into the host gastrointestinal tract. In this paper we show that the secretion of EspB is subject to environmental regulation, and maximal secretion occurs under conditions reminiscent of those in the gastrointestinal tract. Thus, secretion is maximal at 37 degrees C, pH 7, and physiological osmolarity. In addition, maximal secretion requires the presence of sodium bicarbonate and calcium and is stimulated by millimolar concentrations of Fe(NO3)3. The secretion of the four other EPEC-secreted proteins appears to be modulated in a manner similar to that of EspB. Our results also show that secretion is not dependent on CO2, as originally reported by Haigh et al. (FEMS Microbiol. Lett. 129: 63-67, 1995), but that CO2 more likely acts as a component of the medium buffering system, since CO2 dependence was abolished by the use of alternative buffers. PMID:9199427

  6. Synthesis and secretion of proteins by perifused caput epididymal tubules, and association of secreted proteins with spermatozoa

    SciTech Connect

    Klinefelter, G.R.; Hamilton, D.W.

    1985-11-01

    We have used perifusion organ culture of proximal and distal caput epididymal tubules of the rat to study the secretion of proteins by epididymal epithelium and uptake of the luminal radioactive proteins by sperm. The amount of incorporation of L-(35S)methionine into luminal fluid proteins was time dependent and completely inhibited by cycloheximide. The association of labeled proteins with cultured sperm was also dependent on time and continuous, with sperm still acquiring labeled luminal proteins after protein synthesis was arrested. A Mr = 46,000 molecule was found to be heavily labeled in luminal fluid and sperm extracts. Fluorograms of all L-(35S)methionine extracts immunoprecipitated using an antiepididymal alpha-lactalbumin antibody (Klinefelter and Hamilton, 1984) showed labeling of an Mr = 18,000 molecule and, in addition, the Mr = 46,000 molecule, but immunostaining was specific only for the Mr = 18,000 molecule and the heavy chain of the immunoglobulin. We suggest that the Mr = 46,000 molecule may be galactosyltransferase. Galactose oxidase-NaB(3H)4 labeling of the cultured caput sperm cell surface revealed a Mr = 23,000 molecule that was able to be immunoprecipitated with antiepididymal alpha-lactalbumin antibody. Our data suggest that this cell surface molecule is similar to one component of the fluid epididymal alpha-lactalbumin-like complex and, in addition, show that glycosylation of the sperm surface can occur in the caput epididymidis.

  7. Rotating wall vessel exposure alters protein secretion and global gene expression in Staphylococcus aureus

    NASA Astrophysics Data System (ADS)

    Rosado, Helena; O'Neill, Alex J.; Blake, Katy L.; Walther, Meik; Long, Paul F.; Hinds, Jason; Taylor, Peter W.

    2012-04-01

    Staphylococcus aureus is routinely recovered from air and surface samples taken aboard the International Space Station (ISS) and poses a health threat to crew. As bacteria respond to the low shear forces engendered by continuous rotation conditions in a Rotating Wall Vessel (RWV) and the reduced gravitational field of near-Earth flight by altering gene expression, we examined the effect of low-shear RWV growth on protein secretion and gene expression by three S. aureus isolates. When cultured under 1 g, the total amount of protein secreted by these strains varied up to fourfold; under continuous rotation conditions, protein secretion by all three strains was significantly reduced. Concentrations of individual proteins were differentially reduced and no evidence was found for increased lysis. These data suggest that growth under continuous rotation conditions reduces synthesis or secretion of proteins. A limited number of changes in gene expression under continuous rotation conditions were noted: in all isolates vraX, a gene encoding a polypeptide associated with cell wall stress, was down-regulated. A vraX deletion mutant of S. aureus SH1000 was constructed: no differences were found between SH1000 and ΔvraX with respect to colony phenotype, viability, protein export, antibiotic susceptibility, vancomycin kill kinetics, susceptibility to cold or heat and gene modulation. An ab initio protein-ligand docking simulation suggests a major binding site for β-lactam drugs such as imipenem. If such changes to the bacterial phenotype occur during spaceflight, they will compromise the capacity of staphylococci to cause systemic infection and to circumvent antibacterial chemotherapy.

  8. Biological diversity of prokaryotic type IV secretion systems.

    PubMed

    Alvarez-Martinez, Cristina E; Christie, Peter J

    2009-12-01

    Type IV secretion systems (T4SS) translocate DNA and protein substrates across prokaryotic cell envelopes generally by a mechanism requiring direct contact with a target cell. Three types of T4SS have been described: (i) conjugation systems, operationally defined as machines that translocate DNA substrates intercellularly by a contact-dependent process; (ii) effector translocator systems, functioning to deliver proteins or other macromolecules to eukaryotic target cells; and (iii) DNA release/uptake systems, which translocate DNA to or from the extracellular milieu. Studies of a few paradigmatic systems, notably the conjugation systems of plasmids F, R388, RP4, and pKM101 and the Agrobacterium tumefaciens VirB/VirD4 system, have supplied important insights into the structure, function, and mechanism of action of type IV secretion machines. Information on these systems is updated, with emphasis on recent exciting structural advances. An underappreciated feature of T4SS, most notably of the conjugation subfamily, is that they are widely distributed among many species of gram-negative and -positive bacteria, wall-less bacteria, and the Archaea. Conjugation-mediated lateral gene transfer has shaped the genomes of most if not all prokaryotes over evolutionary time and also contributed in the short term to the dissemination of antibiotic resistance and other virulence traits among medically important pathogens. How have these machines adapted to function across envelopes of distantly related microorganisms? A survey of T4SS functioning in phylogenetically diverse species highlights the biological complexity of these translocation systems and identifies common mechanistic themes as well as novel adaptations for specialized purposes relating to the modulation of the donor-target cell interaction. PMID:19946141

  9. Quantification of the physiochemical constraints on the export of spider silk proteins by Salmonella type III secretion

    PubMed Central

    2010-01-01

    Background The type III secretion system (T3SS) is a molecular machine in gram negative bacteria that exports proteins through both membranes to the extracellular environment. It has been previously demonstrated that the T3SS encoded in Salmonella Pathogenicity Island 1 (SPI-1) can be harnessed to export recombinant proteins. Here, we demonstrate the secretion of a variety of unfolded spider silk proteins and use these data to quantify the constraints of this system with respect to the export of recombinant protein. Results To test how the timing and level of protein expression affects secretion, we designed a hybrid promoter that combines an IPTG-inducible system with a natural genetic circuit that controls effector expression in Salmonella (psicA). LacO operators are placed in various locations in the psicA promoter and the optimal induction occurs when a single operator is placed at the +5nt (234-fold) and a lower basal level of expression is achieved when a second operator is placed at -63nt to take advantage of DNA looping. Using this tool, we find that the secretion efficiency (protein secreted divided by total expressed) is constant as a function of total expressed. We also demonstrate that the secretion flux peaks at 8 hours. We then use whole gene DNA synthesis to construct codon optimized spider silk genes for full-length (3129 amino acids) Latrodectus hesperus dragline silk, Bombyx mori cocoon silk, and Nephila clavipes flagelliform silk and PCR is used to create eight truncations of these genes. These proteins are all unfolded polypeptides and they encompass a variety of length, charge, and amino acid compositions. We find those proteins fewer than 550 amino acids reliably secrete and the probability declines significantly after ~700 amino acids. There also is a charge optimum at -2.4, and secretion efficiency declines for very positively or negatively charged proteins. There is no significant correlation with hydrophobicity. Conclusions We show that

  10. The Structure and Function of Type III Secretion Systems

    PubMed Central

    Notti, Ryan Q.; Stebbins, C. Erec

    2015-01-01

    ARTICLE SUMMARY Type III secretion systems (T3SS) afford gram-negative bacteria a most intimate means of altering the biology of their eukaryotic hosts — the direct delivery of effector proteins from the bacterial cytoplasm to that of the eukaryote. This incredible biophysical feat is accomplished by nanosyringe “injectisomes,” which form a conduit across the three plasma membranes, peptidoglycan layer and extracellular space that form a barrier to the direct delivery of proteins from bacterium to host. The focus of this chapter is T3SS function at the structural level; we will summarize the core findings that have shaped our understanding of the structure and function of these systems and highlight recent developments in the field. In turn, we describe the T3SS secretory apparatus, consider its engagement with secretion substrates, and discuss the post-translational regulation of secretory function. Lastly, we close with a discussion of the future prospects for the interrogation of structure-function relationships in the T3SS. PMID:26999392

  11. Astrocyte-secreted matricellular proteins in CNS remodelling during development and disease.

    PubMed

    Jones, Emma V; Bouvier, David S

    2014-01-01

    Matricellular proteins are secreted, nonstructural proteins that regulate the extracellular matrix (ECM) and interactions between cells through modulation of growth factor signaling, cell adhesion, migration, and proliferation. Despite being well described in the context of nonneuronal tissues, recent studies have revealed that these molecules may also play instrumental roles in central nervous system (CNS) development and diseases. In this minireview, we discuss the matricellular protein families SPARC (secreted protein acidic and rich in cysteine), Hevin/SC1 (SPARC-like 1), TN-C (Tenascin C), TSP (Thrombospondin), and CCN (CYR61/CTGF/NOV), which are secreted by astrocytes during development. These proteins exhibit a reduced expression in adult CNS but are upregulated in reactive astrocytes following injury or disease, where they are well placed to modulate the repair processes such as tissue remodeling, axon regeneration, glial scar formation, angiogenesis, and rewiring of neural circuitry. Conversely, their reexpression in reactive astrocytes may also lead to detrimental effects and promote the progression of neurodegenerative diseases.

  12. The Protein Architecture of Human Secretory Vesicles Reveals Differential Regulation of Signaling Molecule Secretion by Protein Kinases

    PubMed Central

    Taupenot, Laurent; Ziegler, Michael; O'Connor, Daniel T.; Ma, Qi; Smoot, Michael; Ideker, Trey; Hook, Vivian

    2012-01-01

    Secretory vesicles are required for release of chemical messengers to mediate intercellular signaling among human biological systems. It is necessary to define the organization of the protein architecture of the ‘human’ dense core secretory vesicles (DCSV) to understand mechanisms for secretion of signaling molecules essential for cellular regulatory processes. This study, therefore, conducted extensive quantitative proteomics and systems biology analyses of human DCSV purified from human pheochromocytoma. Over 600 human DCSV proteins were identified with quantitative evaluation of over 300 proteins, revealing that most proteins participate in producing peptide hormones and neurotransmitters, enzymes, and the secretory machinery. Systems biology analyses provided a model of interacting DCSV proteins, generating hypotheses for differential intracellular protein kinases A and C signaling pathways. Activation of cellular PKA and PKC pathways resulted in differential secretion of neuropeptides, catecholamines, and β-amyloid of Alzheimer's disease for mediating cell-cell communication. This is the first study to define a model of the protein architecture of human DCSV for human disease and health. PMID:22916103

  13. Involvement of type VI secretion system in secretion of iron chelator pyoverdine in Pseudomonas taiwanensis

    PubMed Central

    Chen, Wen-Jen; Kuo, Tzu-Yen; Hsieh, Feng-Chia; Chen, Pi-Yu; Wang, Chang-Sheng; Shih, Yu-Ling; Lai, Ying-Mi; Liu, Je-Ruei; Yang, Yu-Liang; Shih, Ming-Che

    2016-01-01

    Rice bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most destructive rice diseases worldwide. Therefore, in addition to breeding disease-resistant rice cultivars, it is desirable to develop effective biocontrol agents against Xoo. Here, we report that a soil bacterium Pseudomonas taiwanensis displayed strong antagonistic activity against Xoo. Using matrix-assisted laser desorption/ionization imaging mass spectrometry, we identified an iron chelator, pyoverdine, secreted by P. taiwanensis that could inhibit the growth of Xoo. Through Tn5 mutagenesis of P. taiwanensis, we showed that mutations in genes that encode components of the type VI secretion system (T6SS) as well as biosynthesis and maturation of pyoverdine resulted in reduced toxicity against Xoo. Our results indicated that T6SS is involved in the secretion of endogenous pyoverdine. Mutations in T6SS component genes affected the secretion of mature pyoverdine from the periplasmic space into the extracellular medium after pyoverdine precursor is transferred to the periplasm by the inner membrane transporter PvdE. In addition, we also showed that other export systems, i.e., the PvdRT-OpmQ and MexAB-OprM efflux systems (for which there have been previous suggestions of involvement) and the type II secretion system (T2SS), are not involved in pyoverdine secretion. PMID:27605490

  14. Involvement of type VI secretion system in secretion of iron chelator pyoverdine in Pseudomonas taiwanensis.

    PubMed

    Chen, Wen-Jen; Kuo, Tzu-Yen; Hsieh, Feng-Chia; Chen, Pi-Yu; Wang, Chang-Sheng; Shih, Yu-Ling; Lai, Ying-Mi; Liu, Je-Ruei; Yang, Yu-Liang; Shih, Ming-Che

    2016-01-01

    Rice bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most destructive rice diseases worldwide. Therefore, in addition to breeding disease-resistant rice cultivars, it is desirable to develop effective biocontrol agents against Xoo. Here, we report that a soil bacterium Pseudomonas taiwanensis displayed strong antagonistic activity against Xoo. Using matrix-assisted laser desorption/ionization imaging mass spectrometry, we identified an iron chelator, pyoverdine, secreted by P. taiwanensis that could inhibit the growth of Xoo. Through Tn5 mutagenesis of P. taiwanensis, we showed that mutations in genes that encode components of the type VI secretion system (T6SS) as well as biosynthesis and maturation of pyoverdine resulted in reduced toxicity against Xoo. Our results indicated that T6SS is involved in the secretion of endogenous pyoverdine. Mutations in T6SS component genes affected the secretion of mature pyoverdine from the periplasmic space into the extracellular medium after pyoverdine precursor is transferred to the periplasm by the inner membrane transporter PvdE. In addition, we also showed that other export systems, i.e., the PvdRT-OpmQ and MexAB-OprM efflux systems (for which there have been previous suggestions of involvement) and the type II secretion system (T2SS), are not involved in pyoverdine secretion. PMID:27605490

  15. Shigella IpaD has a dual role: signal transduction from the type III secretion system needle tip and intracellular secretion regulation.

    PubMed

    Roehrich, A Dorothea; Guillossou, Enora; Blocker, Ariel J; Martinez-Argudo, Isabel

    2013-02-01

    Type III secretion systems (T3SSs) are protein injection devices essential for the interaction of many Gram-negative bacteria with eukaryotic cells. While Shigella assembles its T3SS when the environmental conditions are appropriate for invasion, secretion is only activated after physical contact with a host cell. First, the translocators are secreted to form a pore in the host cell membrane, followed by effectors which manipulate the host cell. Secretion activation is tightly controlled by conserved T3SS components: the needle tip proteins IpaD and IpaB, the needle itself and the intracellular gatekeeper protein MxiC. To further characterize the role of IpaD during activation, we combined random mutagenesis with a genetic screen to identify ipaD mutant strains unable to respond to host cell contact. Class II mutants have an overall defect in secretion induction. They map to IpaD's C-terminal helix and likely affect activation signal generation or transmission. The Class I mutant secretes translocators prematurely and is specifically defective in IpaD secretion upon activation. A phenotypically equivalent mutant was found in mxiC. We show that IpaD and MxiC act in the same intracellular pathway. In summary, we demonstrate that IpaD has a dual role and acts at two distinct locations during secretion activation.

  16. Induction of a secreted protein by the myxoid liposarcoma oncogene

    PubMed Central

    Kuroda, Masahiko; Wang, XiaoZhong; Sok, John; Yin, Yin; Chung, Peter; Giannotti, JoAnn W.; Jacobs, Kenneth A.; Fitz, Lori J.; Murtha-Riel, Patricia; Turner, Katherine J.; Ron, David

    1999-01-01

    The TLS-CHOP oncoprotein, found in the majority of human myxoid liposarcomas, consists of a fusion between the transcription factor CHOP/GADD153 and the N terminus of an RNA-binding protein TLS/FUS. Clinical correlation and in vitro transformation assays indicate that the N terminus of TLS plays an important role in oncogenesis by TLS-CHOP. Until now, however, the only activity attributed to the oncoprotein is that of inhibiting the binding of transcription factors of the C/EBP class to certain adipogenic target genes, a function that TLS-CHOP shares with the nononcogenic CHOP protein. Here we report the isolation of a gene, DOL54, that is activated in primary fibroblasts by the expression of TLS-CHOP. DOL54 is expressed in the neoplastic component of human myxoid liposarcomas and increases the tumorigenicity of cells injected in nude mice. Activation of DOL54 requires an intact DNA-binding and dimerization domain in TLS-CHOP, a suitable cellular dimerization partner, and depends on the TLS N terminus. Normal adipocytic differentiation is associated with an early and transient expression of DOL54, and the gene encodes a secreted protein that is tightly associated with the cell surface or extracellular matrix. TLS-CHOP thus leads to the unscheduled expression of a gene that is normally associated with adipocytic differentiation. PMID:10220412

  17. Unconventional protein secretion in plants: a critical assessment.

    PubMed

    Robinson, David G; Ding, Yu; Jiang, Liwen

    2016-01-01

    Unconventional protein secretion (UPS) is a collective term for mechanisms by which cytosolic proteins that lack a signal peptide ("leaderless secretory proteins" (LSPs)) can gain access to the cell exterior. Numerous examples of UPS have been well documented in animal and yeast cells. In contrast, our understanding of the mechanism(s) and function of UPS in plants is very limited. This review evaluates the available literature on this subject. The apparent large numbers of LSPs in the plant secretome suggest that UPS also occurs in plants but is not a proof. Although the direct transport of LSPs across the plant plasma membrane (PM) has not yet been described, it is possible that as in other eukaryotes, exosomes may be released from plant cells through fusion of multivesicular bodies (MVBs) with the PM. In this way, LSPs, but also small RNAs (sRNAs), that are passively taken up from the cytosol into the intraluminal vesicles of MVBs, could reach the apoplast. Another possible mechanism is the recently discovered exocyst-positive organelle (EXPO), a double-membrane-bound compartment, distinct from autophagosomes, which appears to sequester LSPs.

  18. Modular Organization of the ESX-5 Secretion System in Mycobacterium tuberculosis

    PubMed Central

    Shah, Swati; Briken, Volker

    2016-01-01

    Mycobacteria utilize type VII secretion systems (T7SS) to export many of their important virulence proteins. The T7SS encompasses five homologous secretion systems (ESX-1 to ESX-5). Most pathogenic mycobacterial species, including the human pathogen Mycobacterium tuberculosis, possess all five ESX systems. The ESX-1, -3, and -5 systems are important for virulence of mycobacteria but the molecular mechanisms of their secretion apparatus and the identity and activity of secreted effector proteins are not well characterized. The different ESX systems show similarities in gene composition due to their common phylogenetic origin but recent studies demonstrate mechanistic as well as functional variations between the systems. For example, the ESX-1 system is involved in lysis of the phagosomal membrane and phagosomal escape of the bacteria while the ESX-5 system is required for mycobacterial cell wall stability and host cell lysis. Mechanistically, the ESX-1 substrates show interdependence during secretion while the ESX-5 system may use a duplicated four-gene region (ESX-5a) as an accessory system for transport of a subset of proteins of the ESX-5 secretome. In the present review we will provide an overview of the molecular components of the T7SS and their function with a particular focus on the ESX-5 system. PMID:27200304

  19. Bacterial Type IV Secretion Systems in Human Disease

    PubMed Central

    Llosa, Matxalen; Roy, Craig; Dehio, Christoph

    2009-01-01

    Summary Type IV secretion (T4S) systems are versatile machines involved in many processes relevant to bacterial virulence, such as horizontal DNA transfer and effector translocation into human cells. A recent Workshop organized by the International University of Andalousia (UNIA) in Baeza, Spain, covered most aspects of bacterial T4S relevant to human disease, ranging from the structural and mechanistic analysis of the T4S systems to the physiological roles of the translocated effector proteins in subverting cellular functions in infected humans. This review reports the highlights from this workshop, which include the first visualization of a T4S system core complex spanning both membranes of Gram-negative bacteria, the identification of the first host receptors for T4S systems, the identification and characterization of novel T4S effector proteins, the analysis of the molecular function of effector proteins in subverting human cellular functions, and an analysis of the role of T4S systems in the evolution of pathogenic bacteria. Our increasing knowledge of the biology of T4S improves our ability to exploit them as biotechnological tools or to use them as novel targets for a new generation of antimicrobials. PMID:19508287

  20. New players in the same old game: a system level in silico study to predict type III secretion system and effector proteins in bacterial genomes reveals common themes in T3SS mediated pathogenesis

    PubMed Central

    2013-01-01

    Background Type III secretion system (T3SS) plays an important role in virulence or symbiosis of many pathogenic or symbiotic bacteria [CHM 2:291–294, 2007; Physiology (Bethesda) 20:326–339, 2005]. T3SS acts like a tunnel between a bacterium and its host through which the bacterium injects ‘effector’ proteins into the latter [Nature 444:567–573, 2006; COSB 18:258–266, 2008]. The effectors spatially and temporally modify the host signalling pathways [FEMS Microbiol Rev 35:1100–1125, 2011; Cell Host Microbe5:571–579, 2009]. In spite its crucial role in host-pathogen interaction, the study of T3SS and the associated effectors has been limited to a few bacteria [Cell Microbiol 13:1858–1869, 2011; Nat Rev Microbiol 6:11–16, 2008; Mol Microbiol 80:1420–1438, 2011]. Before one set out to perform systematic experimental studies on an unknown set of bacteria it would be beneficial to identify the potential candidates by developing an in silico screening algorithm. A system level study would also be advantageous over traditional laboratory methods to extract an overriding theme for host-pathogen interaction, if any, from the vast resources of data generated by sequencing multiple bacterial genomes. Results We have developed an in silico protocol in which the most conserved set of T3SS proteins was used as the query against the entire bacterial database with increasingly stringent search parameters. It enabled us to identify several uncharacterized T3SS positive bacteria. We adopted a similar strategy to predict the presence of the already known effectors in the newly identified T3SS positive bacteria. The huge resources of biochemical data [FEMS Microbiol Rev 35:1100–1125, 2011; Cell Host Microbe 5:571–579, 2009; BMC Bioinformatics 7(11):S4, 2010] on the T3SS effectors enabled us to search for the common theme in T3SS mediated pathogenesis. We identified few cellular signalling networks in the host, which are manipulated by most of the T3SS

  1. SecReT4: a web-based bacterial type IV secretion system resource

    PubMed Central

    Bi, Dexi; Liu, Linmeng; Tai, Cui; Deng, Zixin; Rajakumar, Kumar; Ou, Hong-Yu

    2013-01-01

    SecReT4 (http://db-mml.sjtu.edu.cn/SecReT4/) is an integrated database providing comprehensive information of type IV secretion systems (T4SSs) in bacteria. T4SSs are versatile assemblages that promote genetic exchange and/or effector translocation with consequent impacts on pathogenesis and genome plasticity. T4SSs have been implicated in conjugation, DNA uptake and release and effector translocation. The effectors injected into eukaryotic target cells can lead to alteration of host cellular processes during infection. SecReT4 offers a unique, highly organized, readily exploreable archive of known and putative T4SSs and cognate effectors in bacteria. It currently contains details of 10 752 core components mapping to 808 T4SSs and 1884 T4SS effectors found in representatives of 289 bacterial species, as well as a collection of more than 900 directly related references. A broad range of similarity search, sequence alignment, phylogenetic, primer design and other functional analysis tools are readily accessible via SecReT4. We propose that SecReT4 will facilitate efficient investigation of large numbers of these systems, recognition of diverse patterns of sequence-, gene- and/or functional conservation and an improved understanding of the biological roles and significance of these versatile molecular machines. SecReT4 will be regularly updated to ensure its ongoing maximum utility to the research community. PMID:23193298

  2. a Computational Approach to Explore Protein Translocation Through Type III Secretion Apparatus

    NASA Astrophysics Data System (ADS)

    Rathinavelan, Thenmalarchelvi; Im, Wonpil

    2010-01-01

    Many Gram-negative bacteria initiate infections by injecting effector proteins into host cells through the type III secretion apparatus (TTSA) that is comprised of a basal body, a needle, and a tip. The needle channel is formed by the assembly of a single needle protein. To explore the export mechanisms of MxiH needle protein through the needle of Shigella flexneri, an essential step during needle assembly, we have performed steered molecular dynamics simulations in implicit solvent. Interestingly, the electronegative channel interior creates an energy barrier for MxiH to enter the channel, while the same may facilitate the ejection of the effectors into host cells. Structurally-known basal regions and ATPase underneath the basal region have also such electronegative interior, while effector proteins have considerable electronegative patches on their surfaces. Based on these observations, we propose a repulsive electrostatic mechanism for protein translocation through the TTSA. This mechanism is supported by the suggestion that an ATPase is required for protein translocation through these nanomachines, which may provide the energy to overcome the initial electrostatic energy barrier. A similar mechanism may be applicable to macromolecular channels in other secretion systems or viruses through which proteins or nucleic acids are transported.

  3. Novel diagnosis for citrus stubborn disease by detection of a spiroplasma citri-secreted protein.

    PubMed

    Shi, Jinxia; Pagliaccia, Deborah; Morgan, Robyn; Qiao, Yongli; Pan, Songqin; Vidalakis, Georgios; Ma, Wenbo

    2014-02-01

    Citrus stubborn disease (CSD), first identified in California, is a widespread bacterial disease found in most arid citrus-producing regions in the United States and the Mediterranean Region. The disease is caused by Spiroplasma citri, an insect-transmitted and phloem-colonizing bacterium. CSD causes significant tree damage resulting in loss of fruit production and quality. Detection of CSD is challenging due to low and fluctuating titer and sporadic distribution of the pathogen in infected trees. In this study, we report the development of a novel diagnostic method for CSD using an S. citri-secreted protein as the detection marker. Microbial pathogens secrete a variety of proteins during infection that can potentially disperse systemically in infected plants with the vascular flow. Therefore, their distribution may not be restricted to the pathogen infection sites and could be used as a biological marker for infection. Using mass spectrometry analysis, we identified a unique secreted protein from S. citri that is highly expressed in the presence of citrus phloem extract. ScCCPP1, an antibody generated against this protein, was able to distinguish S. citri-infected citrus and periwinkle from healthy plants. In addition, the antiserum could be used to detect CSD using a simple direct tissue print assay without the need for sample processing or specialized lab equipment and may be suitable for field surveys. This study provides proof of a novel concept of using pathogen-secreted protein as a marker for diagnosis of a citrus bacterial disease and can probably be applied to other plant diseases.

  4. Solution structure of monomeric BsaL, the type III secretion needle protein of Burkholderia pseudomallei.

    PubMed

    Zhang, Lingling; Wang, Yu; Picking, Wendy L; Picking, William D; De Guzman, Roberto N

    2006-06-01

    Many gram-negative bacteria that are important human pathogens possess type III secretion systems as part of their required virulence factor repertoire. During the establishment of infection, these pathogens coordinately assemble greater than 20 different proteins into a macromolecular structure that spans the bacterial inner and outer membranes and, in many respects, resembles and functions like a syringe. This type III secretion apparatus (TTSA) is used to inject proteins into a host cell's membrane and cytoplasm to subvert normal cellular processes. The external portion of the TTSA is a needle that is composed of a single type of protein that is polymerized in a helical fashion to form an elongated tube with a central channel of 2-3 nm in diameter. TTSA needle proteins from a variety of bacterial pathogens share sequence conservation; however, no atomic structure for any TTSA needle protein is yet available. Here, we report the structure of a TTSA needle protein called BsaL from Burkholderia pseudomallei determined by nuclear magnetic resonance (NMR) spectroscopy. The central part of the protein assumes a helix-turn-helix core domain with two well-defined alpha-helices that are joined by an ordered, four-residue linker. This forms a two-helix bundle that is stabilized by interhelix hydrophobic contacts. Residues that flank this presumably exposed core region are not completely disordered, but adopt a partial helical conformation. The atomic structure of BsaL and its sequence homology with other TTSA needle proteins suggest potentially unique structural dynamics that could be linked with a universal mechanism for control of type III secretion in diverse gram-negative bacterial pathogens.

  5. Vacuole Membrane Protein 1 Is an Endoplasmic Reticulum Protein Required for Organelle Biogenesis, Protein Secretion, and Development

    PubMed Central

    Calvo-Garrido, Javier; Carilla-Latorre, Sergio; Lázaro-Diéguez, Francisco; Egea, Gustavo

    2008-01-01

    Vacuole membrane protein 1 (Vmp1) is membrane protein of unknown molecular function that has been associated with pancreatitis and cancer. The social amoeba Dictyostelium discoideum has a vmp1-related gene that we identified previously in a functional genomic study. Loss-of-function of this gene leads to a severe phenotype that compromises Dictyostelium growth and development. The expression of mammalian Vmp1 in a vmp1− Dictyostelium mutant complemented the phenotype, suggesting a functional conservation of the protein among evolutionarily distant species and highlights Dictyostelium as a valid experimental system to address the function of this gene. Dictyostelium Vmp1 is an endoplasmic reticulum protein necessary for the integrity of this organelle. Cells deficient in Vmp1 display pleiotropic defects in the secretory pathway and organelle biogenesis. The contractile vacuole, which is necessary to survive under hypoosmotic conditions, is not functional in the mutant. The structure of the Golgi apparatus, the function of the endocytic pathway and conventional protein secretion are also affected in these cells. Transmission electron microscopy of vmp1− cells showed the accumulation of autophagic features that suggests a role of Vmp1 in macroautophagy. In addition to these defects observed at the vegetative stage, the onset of multicellular development and early developmental gene expression are also compromised. PMID:18550798

  6. Insulin-degrading enzyme is exported via an unconventional protein secretion pathway

    PubMed Central

    Zhao, Ji; Li, Lilin; Leissring, Malcolm A

    2009-01-01

    Insulin-degrading enzyme (IDE) is a ubiquitously expressed zinc-metalloprotease that degrades several pathophysiologically significant extracellular substrates, including insulin and the amyloid β-protein (Aβ), and accumulating evidence suggests that IDE dysfunction may be operative in both type 2 diabetes mellitus and Alzheimer disease (AD). Although IDE is well known to be secreted by a variety of cell types, the underlying trafficking pathway(s) remain poorly understood. To address this topic, we investigated the effects of known inhibitors or stimulators of protein secretion on the secretion of IDE from murine hepatocytes and HeLa cells. IDE secretion was found to be unaffected by the classical secretion inhibitors brefeldin A (BFA), monensin, or nocodazole, treatments that readily inhibited the secretion of α1-antitrypsin (AAT) overexpressed in the same cells. Using a novel cell-based Aβ-degradation assay, we show further that IDE secretion was similarly unaffected by multiple stimulators of protein secretion, including glyburide and 3'-O-(4-benzoyl)benzoyl-ATP (Bz-ATP). The calcium ionophore, A23187, increased extracellular IDE activity, but only under conditions that also elicited cytotoxicity. Our results provide the first biochemical evidence that IDE export is not dependent upon the classical secretion pathway, thereby identifying IDE as a novel member of the select class of unconventionally secreted proteins. Further elucidation of the mechanisms underlying IDE secretion, which would be facilitated by the assays described herein, promises to uncover processes that might be defective in disease or manipulated for therapeutic benefit. PMID:19144176

  7. Unconventional secretion of misfolded proteins promotes adaptation to proteasome dysfunction in mammalian cells.

    PubMed

    Lee, Jin-Gu; Takahama, Shokichi; Zhang, Guofeng; Tomarev, Stanislav I; Ye, Yihong

    2016-07-01

    To safeguard proteomic integrity, cells rely on the proteasome to degrade aberrant polypeptides, but it is unclear how cells remove defective proteins that have escaped degradation owing to proteasome insufficiency or dysfunction. Here we report a pathway termed misfolding-associated protein secretion, which uses the endoplasmic reticulum (ER)-associated deubiquitylase USP19 to preferentially export aberrant cytosolic proteins. Intriguingly, the catalytic domain of USP19 possesses an unprecedented chaperone activity, allowing recruitment of misfolded proteins to the ER surface for deubiquitylation. Deubiquitylated cargos are encapsulated into ER-associated late endosomes and secreted to the cell exterior. USP19-deficient cells cannot efficiently secrete unwanted proteins, and grow more slowly than wild-type cells following exposure to a proteasome inhibitor. Together, our findings delineate a protein quality control (PQC) pathway that, unlike degradation-based PQC mechanisms, promotes protein homeostasis by exporting misfolded proteins through an unconventional protein secretion process. PMID:27295555

  8. Characterization of EspC, a 110-kilodalton protein secreted by enteropathogenic Escherichia coli which is homologous to members of the immunoglobulin A protease-like family of secreted proteins.

    PubMed Central

    Stein, M; Kenny, B; Stein, M A; Finlay, B B

    1996-01-01

    Enteropathogenic Escherichia coli (EPEC) secretes at least five proteins. Two of these proteins, EspA and EspB (previously called EaeB), activate signal transduction pathways in host epithelial cells. While the role of the other three proteins (39, 40, and 110 kDa) remains undetermined, secretion of all five proteins is under the control of perA, a known positive regulator of several EPEC virulence factors. On the basis of amino-terminal protein sequence data, we cloned and sequenced the gene which encodes the 110-kDa secreted protein and examined its possible role in EPEC signaling and interaction with epithelial cells. In accordance with the terminology used for espA and espB, we called this gene espC, for EPEC-secreted protein C. We found significant homology between the predicted EspC protein sequence and a family of immunoglobulin A (IgA) protease-like proteins which are widespread among pathogenic bacteria. Members of this protein family are found in avian pathogenic Escherichia coli (Tsh), Haemophilus influenzae (Hap), and Shigella flexneri (SepA). Although these proteins and EspC do not encode IgA protease activity, they have considerable homology with IgA protease from Neisseria gonorrhoeae and H. influenzae and appear to use a export system for secretion. We found that genes homologous to espC also exist in other pathogenic bacteria which cause attaching and effacing lesions, including Hafnia alvei biotype 19982, Citrobacter freundii biotype 4280, and rabbit diarrheagenic E. coli (RDEC-1). Although these strains secrete various proteins similar in molecular size to the proteins secreted by EPEC, we did not detect secretion of a 110-kDa protein by these strains. To examine the possible role of EspC in EPEC interactions with epithelial cells, we constructed a deletion mutant in espC by allelic exchange and characterized the mutant by standard tissue culture assays. We found that EspC is not necessary for mediating EPEC-induced signal transduction in He

  9. Agrobacterium rhizogenes GALLS protein contains domains for ATP binding, nuclear localization, and type IV secretion.

    PubMed

    Hodges, Larry D; Vergunst, Annette C; Neal-McKinney, Jason; den Dulk-Ras, Amke; Moyer, Deborah M; Hooykaas, Paul J J; Ream, Walt

    2006-12-01

    Agrobacterium tumefaciens and Agrobacterium rhizogenes are closely related plant pathogens that cause different diseases, crown gall and hairy root. Both diseases result from transfer, integration, and expression of plasmid-encoded bacterial genes located on the transferred DNA (T-DNA) in the plant genome. Bacterial virulence (Vir) proteins necessary for infection are also translocated into plant cells. Transfer of single-stranded DNA (ssDNA) and Vir proteins requires a type IV secretion system, a protein complex spanning the bacterial envelope. A. tumefaciens translocates the ssDNA-binding protein VirE2 into plant cells, where it binds single-stranded T-DNA and helps target it to the nucleus. Although some strains of A. rhizogenes lack VirE2, they are pathogenic and transfer T-DNA efficiently. Instead, these bacteria express the GALLS protein, which is essential for their virulence. The GALLS protein can complement an A. tumefaciens virE2 mutant for tumor formation, indicating that GALLS can substitute for VirE2. Unlike VirE2, GALLS contains ATP-binding and helicase motifs similar to those in TraA, a strand transferase involved in conjugation. Both GALLS and VirE2 contain nuclear localization sequences and a C-terminal type IV secretion signal. Here we show that mutations in any of these domains abolished the ability of GALLS to substitute for VirE2. PMID:17012398

  10. Protein-Phospholipid Interactions in Nonclassical Protein Secretion: Problem and Methods of Study

    PubMed Central

    Prudovsky, Igor; Kumar, Thallapuranam Krishnaswamy Suresh; Sterling, Sarah; Neivandt, David

    2013-01-01

    Extracellular proteins devoid of signal peptides use nonclassical secretion mechanisms for their export. These mechanisms are independent of the endoplasmic reticulum and Golgi. Some nonclassically released proteins, particularly fibroblast growth factors (FGF) 1 and 2, are exported as a result of their direct translocation through the cell membrane. This process requires specific interactions of released proteins with membrane phospholipids. In this review written by a cell biologist, a structural biologist and two membrane engineers, we discuss the following subjects: (i) Phenomenon of nonclassical protein release and its biological significance; (ii) Composition of the FGF1 multiprotein release complex (MRC); (iii) The relationship between FGF1 export and acidic phospholipid externalization; (iv) Interactions of FGF1 MRC components with acidic phospholipids; (v) Methods to study the transmembrane translocation of proteins; (vi) Membrane models to study nonclassical protein release. PMID:23396106

  11. Modulation of secreted proteins of mouse mammary epithelial cells by the collagenous substrata

    SciTech Connect

    Lee, E.Y.H.; Parry, G.; Bissell, M.J.

    1984-01-01

    It has been shown previously that cultures of mouse mammary epithelial cells retain their characteristic morphology and their ability to produce ..gamma..-casein, a member of the casein gene family, only if they are maintained on floating collagen gels. In this paper we show: (a) Cells on floating collagen gels secrete not only ..gamma..-casein but also ..cap alpha../sub 1/-, ..cap alpha../sub 2/-, and ..beta..-caseins. These are not secreted by cells on plastic and are secreted to only a very limited extent by cells on attached collagen gels. (b) The floating collagen gel regulates at the level of synthesis and/or stabilization of the caseins rather than at the level of secretion alone. Contraction of the floating gel is important in that cells cultured on floating glutaraldehyde cross-linked gels do not secrete any of the caseins. (c) The secretion of an 80,000-mol-wt protein, most probably transferrin, and a 67,000-mol-wt protein, probably butyrophilin, a major protein of the milk fat globule membrane, are partially modulated by substrata. However, in contrast to the caseins, these are always detectable in media from cells cultured on plastic and attached gels. (d) Whey acidic protein, a major whey protein, is actively secreted by freshly isolated cells but is secreted in extremely limited quantities in cultured cells regardless of the nature of the substratum used. Lactalbumin secretion is also decreased significantly in cultured cells. (e) A previously unreported set of proteins, which may be minor milk proteins, are prominently secreted by the mammary cells on all substrata tested. We conclude that while the substratum profoundly influences the secretion of the caseins, it does not regulate the expression of every milk-specific protein in the same way. The mechanistic implications of these findings are discussed.

  12. The ESAT-6/CFP-10 secretion system of Mycobacterium marinum modulates phagosome maturation.

    PubMed

    Tan, Tracy; Lee, Warren L; Alexander, David C; Grinstein, Sergio; Liu, Jun

    2006-09-01

    Virulence of Mycobacterium tuberculosis and related pathogenic mycobacteria requires the secretion of early secretory antigenic 6 kDa (ESAT-6) and culture filtrate protein 10 (CFP-10), two small proteins that lack traditional signal sequences and are exported through an alternative secretion pathway encoded primarily by the RD1 genetic locus. Mutations affecting the synthesis or secretion of ESAT-6 or CFP-10 attenuate the virulence of M. tuberculosis in murine models of infection. However, the specific functions of these proteins and of their secretion system are currently unclear. In this study, we isolated a mutant of Mycobacterium marinum defective in the secretion of ESAT-6 and CFP-10. The mutation was localized within MM5446, which is orthologous to Rv3871 of M. tuberculosis H37Rv and encodes an ATPase that is a component of the ESAT-6/CFP-10 secretion system. The mutant bacteria were unable to replicate within J774 macrophages although their growth in 7H9 medium was equivalent to the parental strain. Phagosome maturation and acidification were analysed in infected macrophages by confocal and electron microscopy using the late endosome/lysosome marker LAMP-1, along with various fluid-phase markers such as rhodamine-dextran and ferritin and the acidotropic dye LysoTracker Red. These studies demonstrated that while the wild-type parental strain of M. marinum primarily resides in a poorly acidified, non-lysosomal compartment, a significantly higher percentage of the MM5446 mutant organisms are in acidified compartments. These results suggest that the ESAT-6/CFP-10 secretion system plays a role in preventing phagolysosomal fusion, a novel function that accounts for the ability of bacteria to survive inside host cells. This finding provides a mechanism by which the ESAT-6/CFP-10 secretion system potentiates the virulence of pathogenic mycobacteria. PMID:16922861

  13. The Evolution of the Secreted Regulatory Protein Progranulin

    PubMed Central

    Palfree, Roger G. E.; Bennett, Hugh P. J.; Bateman, Andrew

    2015-01-01

    Progranulin is a secreted growth factor that is active in tumorigenesis, wound repair, and inflammation. Haploinsufficiency of the human progranulin gene, GRN, causes frontotemporal dementia. Progranulins are composed of chains of cysteine-rich granulin modules. Modules may be released from progranulin by proteolysis as 6kDa granulin polypeptides. Both intact progranulin and some of the granulin polypeptides are biologically active. The granulin module occurs in certain plant proteases and progranulins are present in early diverging metazoan clades such as the sponges, indicating their ancient evolutionary origin. There is only one Grn gene in mammalian genomes. More gene-rich Grn families occur in teleost fish with between 3 and 6 members per species including short-form Grns that have no tetrapod counterparts. Our goals are to elucidate progranulin and granulin module evolution by investigating (i): the origins of metazoan progranulins (ii): the evolutionary relationships between the single Grn of tetrapods and the multiple Grn genes of fish (iii): the evolution of granulin module architectures of vertebrate progranulins (iv): the conservation of mammalian granulin polypeptide sequences and how the conserved granulin amino acid sequences map to the known three dimensional structures of granulin modules. We report that progranulin-like proteins are present in unicellular eukaryotes that are closely related to metazoa suggesting that progranulin is among the earliest extracellular regulatory proteins still employed by multicellular animals. From the genomes of the elephant shark and coelacanth we identified contemporary representatives of a precursor for short-from Grn genes of ray-finned fish that is lost in tetrapods. In vertebrate Grns pathways of exon duplication resulted in a conserved module architecture at the amino-terminus that is frequently accompanied by an unusual pattern of tandem nearly identical module repeats near the carboxyl-terminus. Polypeptide

  14. A functional equivalent of endoplasmic reticulum and Golgi in axons for secretion of locally synthesized proteins

    PubMed Central

    Merianda, Tanuja T.; Lin, Andrew C.; Lam, Joyce S.Y.; Vuppalanchi, Deepika; Willis, Dianna E.; Karin, Norman; Holt, Christine E.; Twiss, Jeffery L.

    2013-01-01

    Subcellular localization of protein synthesis provides a means to regulate the protein composition in far reaches of a cell. This localized protein synthesis gives neuronal processes autonomy to rapidly respond to extracellular stimuli. Locally synthesized axonal proteins enable neurons to respond to guidance cues and can help to initiate regeneration after injury. Most studies of axonal mRNA translation have concentrated on cytoplasmic proteins. While ultrastructural studies suggest that axons do not have rough endoplasmic reticulum or Golgi apparatus, mRNAs for transmembrane and secreted proteins localize to axons. Here, we show that growing axons with protein synthetic activity contain ER and Golgi components needed for classical protein synthesis and secretion. Isolated axons have the capacity to traffic locally synthesized proteins into secretory pathways and inhibition of Golgi function attenuates translation-dependent axonal growth responses. Finally, the capacity for secreting locally synthesized proteins in axons appears to be increased by injury. PMID:19022387

  15. Trade Secret Law and Information Systems: Can Your Students Keep a Secret?

    ERIC Educational Resources Information Center

    Willey, Lorrie; Ford, Janet C.; White, Barbara Jo; Clapper, Danial L.

    2011-01-01

    The impact of intellectual property (IP) law on information systems (IS) professionals in business cannot be overstated. The IS 2010 model curriculum guidelines for undergraduate IS programs stress the importance of information security and knowledge about IP. While copyright and patents are the most well-known types of IP, another, trade secrets,…

  16. Protein kinase C mediates cholinergically regulated protein phosphorylation in a Cl(-)-secreting epithelium.

    PubMed

    Cohn, J A

    1990-02-01

    T84 cell monolayers were used to study the cholinergic regulation of protein phosphorylation in epithelial cells. When T84 cell monolayers are labeled with 32Pi and stimulated with carbachol, six proteins exhibit altered phosphorylation. The most prominent response is a fivefold increase in labeling of p83, an acidic protein of Mr 83,000. Increasing labeling of p83 parallels stimulated secretion with respect to the onset of agonist action, agonist potency, and antagonism by atropine. However, the p83 and secretory responses differ in that the p83 response is more sustained. When T84 cell fractions are incubated with [gamma-32P]ATP, Ca2(+)-phospholipid stimulates p83 labeling. Phosphorylation of p83 also occurs when a T84 cell extract is incubated with purified protein kinase C and when intact cells are exposed to phorbol myristate acetate. p83 does not become phosphorylated in cell fractions incubated with adenosine 3',5'-cyclic monophosphate (cAMP) or in monolayers stimulated with agonists acting via cAMP. Thus carbachol stimulates the phosphorylation of an endogenous substrate for protein kinase C in T84 cells. The duration of this phosphorylation response suggests that protein kinase C may mediate a sustained response to carbachol, possibly acting to limit the duration of stimulated secretion.

  17. Type VI secretion system sheaths as nanoparticles for antigen display

    PubMed Central

    Del Tordello, Elena; Danilchanka, Olga; McCluskey, Andrew J.; Mekalanos, John J.

    2016-01-01

    The bacterial type 6 secretion system (T6SS) is a dynamic apparatus that translocates proteins between cells by a mechanism analogous to phage tail contraction. T6SS sheaths are cytoplasmic tubular structures composed of stable VipA-VipB (named for ClpV-interacting protein A and B) heterodimers. Here, the structure of the VipA/B sheath was exploited to generate immunogenic multivalent particles for vaccine delivery. Sheaths composed of VipB and VipA fused to an antigen of interest were purified from Vibrio cholerae or Escherichia coli and used for immunization. Sheaths displaying heterologous antigens generated better immune responses against the antigen and different IgG subclasses compared with soluble antigen alone. Moreover, antigen-specific antibodies raised against sheaths presenting Neisseria meningitidis factor H binding protein (fHbp) antigen were functional in a serum bactericidal assay. Our results demonstrate that multivalent nanoparticles based on the T6SS sheath represent a versatile scaffold for vaccine applications. PMID:26929342

  18. Gibberellic Acid-Induced Aleurone Layers Responding to Heat Shock or Tunicamycin Provide Insight into the N-Glycoproteome, Protein Secretion, and Endoplasmic Reticulum Stress1[W

    PubMed Central

    Barba-Espín, Gregorio; Dedvisitsakul, Plaipol; Hägglund, Per; Svensson, Birte; Finnie, Christine

    2014-01-01

    The growing relevance of plants for the production of recombinant proteins makes understanding the secretory machinery, including the identification of glycosylation sites in secreted proteins, an important goal of plant proteomics. Barley (Hordeum vulgare) aleurone layers maintained in vitro respond to gibberellic acid by secreting an array of proteins and provide a unique system for the analysis of plant protein secretion. Perturbation of protein secretion in gibberellic acid-induced aleurone layers by two independent mechanisms, heat shock and tunicamycin treatment, demonstrated overlapping effects on both the intracellular and secreted proteomes. Proteins in a total of 22 and 178 two-dimensional gel spots changing in intensity in extracellular and intracellular fractions, respectively, were identified by mass spectrometry. Among these are proteins with key roles in protein processing and secretion, such as calreticulin, protein disulfide isomerase, proteasome subunits, and isopentenyl diphosphate isomerase. Sixteen heat shock proteins in 29 spots showed diverse responses to the treatments, with only a minority increasing in response to heat shock. The majority, all of which were small heat shock proteins, decreased in heat-shocked aleurone layers. Additionally, glycopeptide enrichment and N-glycosylation analysis identified 73 glycosylation sites in 65 aleurone layer proteins, with 53 of the glycoproteins found in extracellular fractions and 36 found in intracellular fractions. This represents major progress in characterization of the barley N-glycoproteome, since only four of these sites were previously described. Overall, these findings considerably advance knowledge of the plant protein secretion system in general and emphasize the versatility of the aleurone layer as a model system for studying plant protein secretion. PMID:24344171

  19. Gibberellic acid-induced aleurone layers responding to heat shock or tunicamycin provide insight into the N-glycoproteome, protein secretion, and endoplasmic reticulum stress.

    PubMed

    Barba-Espín, Gregorio; Dedvisitsakul, Plaipol; Hägglund, Per; Svensson, Birte; Finnie, Christine

    2014-02-01

    The growing relevance of plants for the production of recombinant proteins makes understanding the secretory machinery, including the identification of glycosylation sites in secreted proteins, an important goal of plant proteomics. Barley (Hordeum vulgare) aleurone layers maintained in vitro respond to gibberellic acid by secreting an array of proteins and provide a unique system for the analysis of plant protein secretion. Perturbation of protein secretion in gibberellic acid-induced aleurone layers by two independent mechanisms, heat shock and tunicamycin treatment, demonstrated overlapping effects on both the intracellular and secreted proteomes. Proteins in a total of 22 and 178 two-dimensional gel spots changing in intensity in extracellular and intracellular fractions, respectively, were identified by mass spectrometry. Among these are proteins with key roles in protein processing and secretion, such as calreticulin, protein disulfide isomerase, proteasome subunits, and isopentenyl diphosphate isomerase. Sixteen heat shock proteins in 29 spots showed diverse responses to the treatments, with only a minority increasing in response to heat shock. The majority, all of which were small heat shock proteins, decreased in heat-shocked aleurone layers. Additionally, glycopeptide enrichment and N-glycosylation analysis identified 73 glycosylation sites in 65 aleurone layer proteins, with 53 of the glycoproteins found in extracellular fractions and 36 found in intracellular fractions. This represents major progress in characterization of the barley N-glycoproteome, since only four of these sites were previously described. Overall, these findings considerably advance knowledge of the plant protein secretion system in general and emphasize the versatility of the aleurone layer as a model system for studying plant protein secretion.

  20. Multistep processing of the secretion leader of the extracellular protein Epx1 in Pichia pastoris and implications for protein localization.

    PubMed

    Heiss, Silvia; Puxbaum, Verena; Gruber, Clemens; Altmann, Friedrich; Mattanovich, Diethard; Gasser, Brigitte

    2015-07-01

    Secretion leaders are required to direct nascent proteins to the secretory pathway. They are of interest in the study of intracellular protein transport, and are required for the production of secretory recombinant proteins. Secretion leaders are processed in two steps in the endoplasmic reticulum and Golgi. Although yeast cells typically contain about 150 proteins entering the secretory pathway, only a low number of proteins are actually secreted to the cell supernatant. Analysis of the secretome of the yeast Pichia pastoris revealed that the most abundant secretory protein, which we named Epx1, belongs to the cysteine-rich secretory protein family CRISP. Surprisingly, the Epx1 secretion leader undergoes a three-step processing on its way to the cell exterior instead of the usual two-step processing. The Kex2 cleavage site within the P. pastoris Epx1 leader is not conserved in the homologues of most other yeasts. We studied the effect of exchanging the Kex2-cleavage motif on the secretory behaviour of reporter proteins fused to variants of the Epx1 leader sequence, and observed mistargeting for some but not all of the variants using fluorescence microscopy. By targeting several recombinant human proteins for secretion, we revealed that a short variant of the leader sequence, as well as the Epx1 signal sequence alone, resulted in the correct N-termini of the secreted proteins. Both leader variants proved to be very efficient, even exceeding the secretion levels obtained with commonly used secretion leaders. Taken together, the novel Epx1 secretion leader sequences are a valuable tool for recombinant protein production as well as basic research of intracellular transport.

  1. Large-Scale Cultivation of Acidophilic Hyperthermophiles for Recovery of Secreted Proteins

    PubMed Central

    Worthington, Penny; Blum, Paul; Perez-Pomares, Francisco; Elthon, Tom

    2003-01-01

    An electric water heater was modified for large-scale cultivation of aerobic acidophilic hyperthermophiles to enable recovery of secreted proteins. Critical changes included thermostat replacement, redesign of the temperature control circuit, and removal of the cathodic anticorrosion system. These alterations provided accurate temperature and pH control. The bioreactor was used to cultivate selected strains of the archaeon Sulfolobus solfataricus and other species within this genus. Reformulation of a basal salts medium facilitated preparation of large culture volumes and eliminated sterilization-induced precipitation of medium components. Substrate induction of synthesis of the S. solfataricus-secreted alpha-amylase during growth in a defined medium supported the utility of the bioreactor for studies of physiologically regulated processes. An improved purification strategy was developed by using strong cation-exchange chromatography for recovery of the alpha-amylase and the processing of large sample volumes of acidic culture supernatant. These findings should simplify efforts to study acidophilic hyperthermophilic microbes and their secreted proteins. PMID:12514002

  2. The intracellular production and secretion of HIV-1 envelope protein in the methylotrophic yeast Pichia pastoris.

    PubMed

    Scorer, C A; Buckholz, R G; Clare, J J; Romanos, M A

    1993-12-22

    The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein, gp120 (ENV), is required in large quantities for immunological studies and as a potential vaccine component. We have expressed the DNA encoding gp120 in a highly efficient expression system based on the methylotrophic yeast, Pichia pastoris. The native gene was found to contain a sequence which resembled a Saccharomyces cerevisiae polyadenylation consensus and acted as a premature polyadenylation site in P. pastoris, resulting in the production of truncated mRNA. As full-length mRNA was produced in S. cerevisiae, this indicates differences in mRNA 3'-end formation between the two yeasts. Inactivation of this site by site-directed mutagenesis revealed several additional fortuitous polyadenylation sites within the gene. We have designed and constructed a 69%-synthetic gene with increased G + C content which overcomes this transcriptional problem, giving rise to full-length mRNA. High levels of intracellular, insoluble, unglycosylated ENV were produced [1.25 mg/ml in high-density (2 x 10(10) cells per ml) fermentations]. ENV also was secreted from P. pastoris using the S. cerevisiae alpha-factor prepro secretion leader and the S. cerevisiae invertase signal sequence. However, a high proportion of the secreted product was found to be hyperglycosylated, in contrast to other foreign proteins secreted from P. pastoris. There also was substantial proteolytic degradation, but this was minimized by maintaining a low pH on induction. Insoluble, yeast-derived ENV proteins are being considered as vaccine antigens and the P. pastoris system offers an efficient method of production. PMID:8293993

  3. A bacterial type III secretion-based protein delivery tool for broad applications in cell biology

    PubMed Central

    Ittig, Simon J.; Schmutz, Christoph; Kasper, Christoph A.; Amstutz, Marlise; Schmidt, Alexander; Sauteur, Loïc; Vigano, M. Alessandra; Low, Shyan Huey; Affolter, Markus; Cornelis, Guy R.; Nigg, Erich A.

    2015-01-01

    Methods enabling the delivery of proteins into eukaryotic cells are essential to address protein functions. Here we propose broad applications to cell biology for a protein delivery tool based on bacterial type III secretion (T3S). We show that bacterial, viral, and human proteins, fused to the N-terminal fragment of the Yersinia enterocolitica T3S substrate YopE, are effectively delivered into target cells in a fast and controllable manner via the injectisome of extracellular bacteria. This method enables functional interaction studies by the simultaneous injection of multiple proteins and allows the targeting of proteins to different subcellular locations by use of nanobody-fusion proteins. After delivery, proteins can be freed from the YopE fragment by a T3S-translocated viral protease or fusion to ubiquitin and cleavage by endogenous ubiquitin proteases. Finally, we show that this delivery tool is suitable to inject proteins in living animals and combine it with phosphoproteomics to characterize the systems-level impact of proapoptotic human truncated BID on the cellular network. PMID:26598622

  4. Secreted proteins of tobacco cultured BY2 cells: identification of a new member of pathogenesis-related proteins.

    PubMed

    Okushima, Y; Koizumi, N; Kusano, T; Sano, H

    2000-02-01

    Cultured cells of tobacco BY2 secrete more than 100 proteins into culture medium. Six major proteins were purified, and partial protein sequences were determined. Five of them were found to be similar to an ascorbic acid oxidase, three peroxidase isozymes and a beta-1,3-exoglucanase, respectively. A cDNA clone encoding the remaining polypeptide, whose amino acid sequence showed no similarity with earlier reported proteins, was isolated. It encoded a putative 27 kDa protein of 242 amino acids with resemblance to WCI-5, a wheat protein induced by benzo(1,2,3)thiadiazole-7-carbothioic acid S-methyl ester (BTH) which activates genes involved in systemic acquired resistance. Transcripts of this clone accumulated upon tobacco mosaic virus infection, mechanical wounding and drought treatment, an induction profile that satisfies the definition of pathogenesis-related (PR) proteins by van Loon et al. (Plant Mol. Biol. Rep. 12 (1994) 245). No similar PR proteins have so far been reported, and therefore our newly designated NtPRp27 points to the existence of a novel PR protein family in tobacco plants.

  5. RTX proteins: a highly diverse family secreted by a common mechanism

    PubMed Central

    Linhartová, Irena; Bumba, Ladislav; Mašín, Jiří; Basler, Marek; Osička, Radim; Kamanová, Jana; Procházková, Kateřina; Adkins, Irena; Hejnová-Holubová, Jana; Sadílková, Lenka; Morová, Jana; Šebo, Peter

    2010-01-01

    Repeats-in-toxin (RTX) exoproteins of Gram-negative bacteria form a steadily growing family of proteins with diverse biological functions. Their common feature is the unique mode of export across the bacterial envelope via the type I secretion system and the characteristic, typically nonapeptide, glycine- and aspartate-rich repeats binding Ca2+ ions. In this review, we summarize the current state of knowledge on the organization of rtx loci and on the biological and biochemical activities of therein encoded proteins. Applying several types of bioinformatic screens on the steadily growing set of sequenced bacterial genomes, over 1000 RTX family members were detected, with the biological functions of most of them remaining to be characterized. Activities of the so far characterized RTX family members are then discussed and classified according to functional categories, ranging from the historically first characterized pore-forming RTX leukotoxins, through the large multifunctional enzymatic toxins, bacteriocins, nodulation proteins, surface layer proteins, up to secreted hydrolytic enzymes exhibiting metalloprotease or lipase activities of industrial interest. PMID:20528947

  6. The Type IV Secretion System Effector Protein CirA Stimulates the GTPase Activity of RhoA and Is Required for Virulence in a Mouse Model of Coxiella burnetii Infection.

    PubMed

    Weber, Mary M; Faris, Robert; van Schaik, Erin J; McLachlan, Juanita Thrasher; Wright, William U; Tellez, Andres; Roman, Victor A; Rowin, Kristina; Case, Elizabeth Di Russo; Luo, Zhao-Qing; Samuel, James E

    2016-09-01

    Coxiella burnetii, the etiological agent of Q fever in humans, is an intracellular pathogen that replicates in an acidified parasitophorous vacuole derived from host lysosomes. Generation of this replicative compartment requires effectors delivered into the host cell by the Dot/Icm type IVb secretion system. Several effectors crucial for C. burnetii intracellular replication have been identified, but the host pathways coopted by these essential effectors are poorly defined, and very little is known about how spacious vacuoles are formed and maintained. Here we demonstrate that the essential type IVb effector, CirA, stimulates GTPase activity of RhoA. Overexpression of CirA in mammalian cells results in cell rounding and stress fiber disruption, a phenotype that is rescued by overexpression of wild-type or constitutively active RhoA. Unlike other effector proteins that subvert Rho GTPases to modulate uptake, CirA is the first effector identified that is dispensable for uptake and instead recruits Rho GTPase to promote biogenesis of the bacterial vacuole. Collectively our results highlight the importance of CirA in coopting host Rho GTPases for establishment of Coxiella burnetii infection and virulence in mammalian cell culture and mouse models of infection. PMID:27324482

  7. Type IV secretion: intercellular transfer of macromolecules by systems ancestrally related to conjugation machines.

    PubMed

    Christie, P J

    2001-04-01

    Bacterial conjugation systems are highly promiscuous macromolecular transfer systems that impact human health significantly. In clinical settings, conjugation is exceptionally problematic, leading to the rapid dissemination of antibiotic resistance genes and other virulence traits among bacterial populations. Recent work has shown that several pathogens of plants and mammals - Agrobacterium tumefaciens, Bordetella pertussis, Helicobacter pylori and Legionella pneumophila - have evolved secretion pathways ancestrally related to conjugation systems for the purpose of delivering effector molecules to eukaryotic target cells. Each of these systems exports distinct DNA or protein substrates to effect a myriad of changes in host cell physiology during infection. Collectively, secretion pathways ancestrally related to bacterial conjugation systems are now referred to as the type IV secretion family. The list of putative type IV family members is increasing rapidly, suggesting that macromolecular transfer by these systems is a widespread phenomenon in nature. PMID:11309113

  8. Differential secretion pathways of proteins fused to the Escherichia coli maltose binding protein (MBP) in Pichia pastoris.

    PubMed

    Moua, Pachai S; Gonzalez, Alfonso; Oshiro, Kristin T; Tam, Vivian; Li, Zhiguo Harry; Chang, Jennifer; Leung, Wilson; Yon, Amy; Thor, Der; Venkatram, Sri; Franz, Andreas H; Risser, Douglas D; Lin-Cereghino, Joan; Lin-Cereghino, Geoff P

    2016-08-01

    The Escherichia coli maltose binding protein (MBP) is an N-terminal fusion partner that was shown to enhance the secretion of some heterologous proteins from the yeast Pichia pastoris, a popular host for recombinant protein expression. The amount of increase in secretion was dependent on the identity of the cargo protein, and the fusions were proteolyzed prior to secretion, limiting its use as a purification tag. In order to overcome these obstacles, we used the MBP as C-terminal partner for several cargo peptides. While the Cargo-MBP proteins were no longer proteolyzed in between these two moieties when the MBP was in this relative position, the secretion efficiency of several fusions was lower than when MBP was located at the opposite end of the cargo protein (MBP-Cargo). Furthermore, fluorescence analysis suggested that the MBP-EGFP and EGFP-MBP proteins followed different routes within the cell. The effect of several Pichia pastoris beta-galactosidase supersecretion (bgs) strains, mutants showing enhanced secretion of select reporters, was also investigated on both MBP-EGFP and EGFP-MBP. While the secretion efficiency, proteolysis and localization of the MBP-EGFP was influenced by the modified function of Bgs13, EGFP-MBP behavior was not affected in the bgs strain. Taken together, these results indicate that the location of the MBP in a fusion affects the pathway and trans-acting factors regulating secretion in P. pastoris.

  9. EsxB, a secreted protein from Bacillus anthracis forms two distinct helical bundles

    SciTech Connect

    Fan, Yao; Tan, Kemin; Chhor, Gekleng; Butler, Emily K.; Jedrzejczak, Robert P.; Missiakas, Dominique; Joachimiak, Andrzej

    2015-07-03

    The EsxB protein from Bacillus anthracis belongs to the WXG100 family, a group of proteins secreted by a specialized secretion system. We have determined the crystal structures of recombinant EsxB and discovered that the small protein (~10 kDa), comprised of a helix-loop-helix (HLH) hairpin, is capable of associating into two different helical bundles. The two basic quaternary assemblies of EsxB are an antiparallel (AP) dimer and a rarely observed bisecting U (BU) dimer. This structural duality of EsxB is believed to originate from the heptad repeat sequence diversity of the first helix of its HLH hairpin, which allows for two alternative helix packing. The flexibility of EsxB and the ability to form alternative helical bundles underscore the possibility that this protein can serve as an adaptor in secretion and can form hetero-oligomeric helix bundle(s) with other secreted members of the WXG100 family, such as EsxW. The highly conserved WXG motif is located within the loop of the HLH hairpin and is mostly buried within the helix bundle suggesting that its role is mainly structural. The exact functions of the motif, including a proposed role as a secretion signal, remain unknown.

  10. Human NAIP and mouse NAIP1 recognize bacterial type III secretion needle protein for inflammasome activation.

    PubMed

    Yang, Jieling; Zhao, Yue; Shi, Jianjin; Shao, Feng

    2013-08-27

    Inflammasome mediated by central nucleotide-binding and oligomerization domain (NOD)-like receptor (NLR) protein is critical for defense against bacterial infection. Here we show that type III secretion system (T3SS) needle proteins from several bacterial pathogens, including Salmonella typhimurium, enterohemorrhagic Escherichia coli, Shigella flexneri, and Burkholderia spp., can induce robust inflammasome activation in both human monocyte-derived and mouse bone marrow macrophages. Needle protein activation of human NRL family CARD domain containing 4 (NLRC4) inflammasome requires the sole human neuronal apoptosis inhibitory protein (hNAIP). Among the seven mouse NAIPs, NAIP1 functions as the mouse counterpart of hNAIP. We found that NAIP1 recognition of T3SS needle proteins was more robust in mouse dendritic cells than in bone marrow macrophages. Needle proteins, as well as flagellin and rod proteins from five different bacteria, exhibited differential and cell type-dependent inflammasome-stimulating activity. Comprehensive profiling of the three types of NAIP ligands revealed that NAIP1 sensing of the needle protein dominated S. flexneri-induced inflammasome activation, particularly in dendritic cells. hNAIP/NAIP1 and NAIP2/5 formed a large oligomeric complex with NLRC4 in the presence of corresponding bacterial ligands, and could support reconstitution of the NLRC4 inflammasome in a ligand-specific manner. PMID:23940371

  11. A dynamic study of protein secretion and aggregation in the secretory pathway.

    PubMed

    Mossuto, Maria Francesca; Sannino, Sara; Mazza, Davide; Fagioli, Claudio; Vitale, Milena; Yoboue, Edgar Djaha; Sitia, Roberto; Anelli, Tiziana

    2014-01-01

    Precise coordination of protein biogenesis, traffic and homeostasis within the early secretory compartment (ESC) is key for cell physiology. As a consequence, disturbances in these processes underlie many genetic and chronic diseases. Dynamic imaging methods are needed to follow the fate of cargo proteins and their interactions with resident enzymes and folding assistants. Here we applied the Halotag labelling system to study the behavior of proteins with different fates and roles in ESC: a chaperone, an ERAD substrate and an aggregation-prone molecule. Exploiting the Halo property of binding covalently ligands labelled with different fluorochromes, we developed and performed non-radioactive pulse and chase assays to follow sequential waves of proteins in ESC, discriminating between young and old molecules at the single cell level. In this way, we could monitor secretion and degradation of ER proteins in living cells. We can also follow the biogenesis, growth, accumulation and movements of protein aggregates in the ESC. Our data show that protein deposits within ESC grow by sequential apposition of molecules up to a given size, after which novel seeds are detected. The possibility of using ligands with distinct optical and physical properties offers a novel possibility to dynamically follow the fate of proteins in the ESC. PMID:25279560

  12. Human NAIP and mouse NAIP1 recognize bacterial type III secretion needle protein for inflammasome activation

    PubMed Central

    Yang, Jieling; Zhao, Yue; Shi, Jianjin; Shao, Feng

    2013-01-01

    Inflammasome mediated by central nucleotide-binding and oligomerization domain (NOD)-like receptor (NLR) protein is critical for defense against bacterial infection. Here we show that type III secretion system (T3SS) needle proteins from several bacterial pathogens, including Salmonella typhimurium, enterohemorrhagic Escherichia coli, Shigella flexneri, and Burkholderia spp., can induce robust inflammasome activation in both human monocyte-derived and mouse bone marrow macrophages. Needle protein activation of human NRL family CARD domain containing 4 (NLRC4) inflammasome requires the sole human neuronal apoptosis inhibitory protein (hNAIP). Among the seven mouse NAIPs, NAIP1 functions as the mouse counterpart of hNAIP. We found that NAIP1 recognition of T3SS needle proteins was more robust in mouse dendritic cells than in bone marrow macrophages. Needle proteins, as well as flagellin and rod proteins from five different bacteria, exhibited differential and cell type-dependent inflammasome-stimulating activity. Comprehensive profiling of the three types of NAIP ligands revealed that NAIP1 sensing of the needle protein dominated S. flexneri-induced inflammasome activation, particularly in dendritic cells. hNAIP/NAIP1 and NAIP2/5 formed a large oligomeric complex with NLRC4 in the presence of corresponding bacterial ligands, and could support reconstitution of the NLRC4 inflammasome in a ligand-specific manner. PMID:23940371

  13. A Dynamic Study of Protein Secretion and Aggregation in the Secretory Pathway

    PubMed Central

    Mossuto, Maria Francesca; Sannino, Sara; Mazza, Davide; Fagioli, Claudio; Vitale, Milena; Yoboue, Edgar Djaha; Anelli, Tiziana

    2014-01-01

    Precise coordination of protein biogenesis, traffic and homeostasis within the early secretory compartment (ESC) is key for cell physiology. As a consequence, disturbances in these processes underlie many genetic and chronic diseases. Dynamic imaging methods are needed to follow the fate of cargo proteins and their interactions with resident enzymes and folding assistants. Here we applied the Halotag labelling system to study the behavior of proteins with different fates and roles in ESC: a chaperone, an ERAD substrate and an aggregation-prone molecule. Exploiting the Halo property of binding covalently ligands labelled with different fluorochromes, we developed and performed non-radioactive pulse and chase assays to follow sequential waves of proteins in ESC, discriminating between young and old molecules at the single cell level. In this way, we could monitor secretion and degradation of ER proteins in living cells. We can also follow the biogenesis, growth, accumulation and movements of protein aggregates in the ESC. Our data show that protein deposits within ESC grow by sequential apposition of molecules up to a given size, after which novel seeds are detected. The possibility of using ligands with distinct optical and physical properties offers a novel possibility to dynamically follow the fate of proteins in the ESC. PMID:25279560

  14. LMAN1 (ERGIC-53) is a potential carrier protein for matrix metalloproteinase-9 glycoprotein secretion

    PubMed Central

    Duellman, Tyler; Burnett, John; Shin, Alice; Yang, Jay

    2015-01-01

    Matrix metalloproteinase-9 (MMP-9) is a secreted glycoprotein with a major role in shaping the extra-cellular matrix and a detailed understanding of the secretory mechanism could help identify methods to correct diseases resulting from dysregulation of secretion. MMP-9 appears to follow a canonical secretory pathway through a quality control cycle in the endoplasmic reticulum (ER) before transport of the properly folded protein to the Golgi apparatus and beyond for secretion. Through a complementation assay, we determined that LMAN1, a well-studied lectin-carrier protein, interacts with a secretion-competent N-glycosylated MMP-9 in the ER while N-glycosylation-deficient secretion-compromised MMP-9 does not. In contrast, co-immunoprecipitation demonstrated protein interaction between LMAN1 and secretion-compromised N-glycosylation-deficient MMP-9. MMP-9 secretion was reduced in the LMAN1 knockout cell line compared to control cells confirming the functional role of LMAN1. These observations support the role of LMAN1 as a lectin-carrier protein mediating efficient MMP-9 secretion. PMID:26150355

  15. Small secreted proteins enable biofilm development in the cyanobacterium Synechococcus elongatus

    PubMed Central

    Parnasa, Rami; Nagar, Elad; Sendersky, Eleonora; Reich, Ziv; Simkovsky, Ryan; Golden, Susan; Schwarz, Rakefet

    2016-01-01

    Small proteins characterized by a double-glycine (GG) secretion motif, typical of secreted bacterial antibiotics, are encoded by the genomes of diverse cyanobacteria, but their functions have not been investigated to date. Using a biofilm-forming mutant of Synechococcus elongatus PCC 7942 and a mutational approach, we demonstrate the involvement of four small secreted proteins and their GG-secretion motifs in biofilm development. These proteins are denoted EbfG1-4 (enable biofilm formation with a GG-motif). Furthermore, the conserved cysteine of the peptidase domain of the Synpcc7942_1133 gene product (dubbed PteB for peptidase transporter essential for biofilm) is crucial for biofilm development and is required for efficient secretion of the GG-motif containing proteins. Transcriptional profiling of ebfG1-4 indicated elevated transcript levels in the biofilm-forming mutant compared to wild type (WT). However, these transcripts decreased, acutely but transiently, when the mutant was cultured in extracellular fluids from a WT culture, and biofilm formation was inhibited. We propose that WT cells secrete inhibitor(s) that suppress transcription of ebfG1-4, whereas secretion of the inhibitor(s) is impaired in the biofilm-forming mutant, leading to synthesis and secretion of EbfG1-4 and supporting the formation of biofilms. PMID:27558743

  16. Transient fusion and selective secretion of vesicle proteins in Phytophthora nicotianae zoospores

    PubMed Central

    Zhang, Weiwei; Blackman, Leila M.

    2013-01-01

    Secretion of pathogen proteins is crucial for the establishment of disease in animals and plants. Typically, early interactions between host and pathogen trigger regulated secretion of pathogenicity factors that function in pathogen adhesion and host penetration. During the onset of plant infection by spores of the Oomycete, Phytophthora nicotianae, proteins are secreted from three types of cortical vesicles. Following induction of spore encystment, two vesicle types undergo full fusion, releasing their entire contents onto the cell surface. However, the third vesicle type, so-called large peripheral vesicles, selectively secretes a small Sushi domain-containing protein, PnCcp, while retaining a large glycoprotein, PnLpv, before moving away from the plasma membrane. Selective secretion of PnCcp is associated with its compartmentalization within the vesicle periphery. Pharmacological inhibition of dynamin function, purportedly in vesicle fission, by dynasore treatment provides evidence that selective secretion of PnCcp requires transient fusion of the large peripheral vesicles. This is the first report of selective protein secretion via transient fusion outside mammalian cells. Selective secretion is likely to be an important aspect of plant infection by this destructive pathogen. PMID:24392285

  17. Small secreted proteins enable biofilm development in the cyanobacterium Synechococcus elongatus.

    PubMed

    Parnasa, Rami; Nagar, Elad; Sendersky, Eleonora; Reich, Ziv; Simkovsky, Ryan; Golden, Susan; Schwarz, Rakefet

    2016-01-01

    Small proteins characterized by a double-glycine (GG) secretion motif, typical of secreted bacterial antibiotics, are encoded by the genomes of diverse cyanobacteria, but their functions have not been investigated to date. Using a biofilm-forming mutant of Synechococcus elongatus PCC 7942 and a mutational approach, we demonstrate the involvement of four small secreted proteins and their GG-secretion motifs in biofilm development. These proteins are denoted EbfG1-4 (enable biofilm formation with a GG-motif). Furthermore, the conserved cysteine of the peptidase domain of the Synpcc7942_1133 gene product (dubbed PteB for peptidase transporter essential for biofilm) is crucial for biofilm development and is required for efficient secretion of the GG-motif containing proteins. Transcriptional profiling of ebfG1-4 indicated elevated transcript levels in the biofilm-forming mutant compared to wild type (WT). However, these transcripts decreased, acutely but transiently, when the mutant was cultured in extracellular fluids from a WT culture, and biofilm formation was inhibited. We propose that WT cells secrete inhibitor(s) that suppress transcription of ebfG1-4, whereas secretion of the inhibitor(s) is impaired in the biofilm-forming mutant, leading to synthesis and secretion of EbfG1-4 and supporting the formation of biofilms. PMID:27558743

  18. Transient fusion and selective secretion of vesicle proteins in Phytophthora nicotianae zoospores.

    PubMed

    Zhang, Weiwei; Blackman, Leila M; Hardham, Adrienne R

    2013-01-01

    Secretion of pathogen proteins is crucial for the establishment of disease in animals and plants. Typically, early interactions between host and pathogen trigger regulated secretion of pathogenicity factors that function in pathogen adhesion and host penetration. During the onset of plant infection by spores of the Oomycete, Phytophthora nicotianae, proteins are secreted from three types of cortical vesicles. Following induction of spore encystment, two vesicle types undergo full fusion, releasing their entire contents onto the cell surface. However, the third vesicle type, so-called large peripheral vesicles, selectively secretes a small Sushi domain-containing protein, PnCcp, while retaining a large glycoprotein, PnLpv, before moving away from the plasma membrane. Selective secretion of PnCcp is associated with its compartmentalization within the vesicle periphery. Pharmacological inhibition of dynamin function, purportedly in vesicle fission, by dynasore treatment provides evidence that selective secretion of PnCcp requires transient fusion of the large peripheral vesicles. This is the first report of selective protein secretion via transient fusion outside mammalian cells. Selective secretion is likely to be an important aspect of plant infection by this destructive pathogen. PMID:24392285

  19. Cytosporone B, an inhibitor of the type III secretion system of Salmonella enterica serovar Typhimurium.

    PubMed

    Li, Jianfang; Lv, Chao; Sun, Weiyang; Li, Zhenyu; Han, Xiaowei; Li, Yaoyao; Shen, Yuemao

    2013-05-01

    Bacterial virulence factors have been increasingly regarded as attractive targets for development of novel antibacterial agents. Virulence inhibitors are less likely to generate bacterial resistance, which makes them superior to traditional antibiotics that target bacterial viability. Salmonella enterica serovar Typhimurium, an important food-borne human pathogen, has type III secretion system (T3SS) as its major virulence factor. T3SS secretes effector proteins to facilitate invasion into host cells. In this study, we identified several analogs of cytosporone B (Csn-B) that strongly block the secretion of Salmonella pathogenicity island 1 (SPI-1)-associated effector proteins, without affecting the secretion of flagellar protein FliC in vitro. Csn-B and two other derivatives exhibited a strong inhibitory effect on SPI-1-mediated invasion to HeLa cells, while no significant toxicity to bacteria was observed. Nucleoid proteins Hha and H-NS bind to the promoters of SPI-1 regulator genes hilD, hilC, and rtsA to repress their expression and consequently regulate the expression of SPI-1 apparatus and effector genes. We found that Csn-B upregulated the transcription of hha and hns, implying that Csn-B probably affected the secretion of effectors through the Hha-H-NS regulatory pathway. In summary, this study presented an effective SPI-1 inhibitor, Csn-B, which may have potential in drug development against antibiotic-resistant Salmonella.

  20. Unfolded protein response-induced ERdj3 secretion links ER stress to extracellular proteostasis

    PubMed Central

    Genereux, Joseph C; Qu, Song; Zhou, Minghai; Ryno, Lisa M; Wang, Shiyu; Shoulders, Matthew D; Kaufman, Randal J; Lasmézas, Corinne I; Kelly, Jeffery W; Wiseman, R Luke

    2015-01-01

    The Unfolded Protein Response (UPR) indirectly regulates extracellular proteostasis through transcriptional remodeling of endoplasmic reticulum (ER) proteostasis pathways. This remodeling attenuates secretion of misfolded, aggregation-prone proteins during ER stress. Through these activities, the UPR has a critical role in preventing the extracellular protein aggregation associated with numerous human diseases. Here, we demonstrate that UPR activation also directly influences extracellular proteostasis through the upregulation and secretion of the ER HSP40 ERdj3/DNAJB11. Secreted ERdj3 binds misfolded proteins in the extracellular space, substoichiometrically inhibits protein aggregation, and attenuates proteotoxicity of disease-associated toxic prion protein. Moreover, ERdj3 can co-secrete with destabilized, aggregation-prone proteins in a stable complex under conditions where ER chaperoning capacity is overwhelmed, preemptively providing extracellular chaperoning of proteotoxic misfolded proteins that evade ER quality control. This regulated co-secretion of ERdj3 with misfolded clients directly links ER and extracellular proteostasis during conditions of ER stress. ERdj3 is, to our knowledge, the first metazoan chaperone whose secretion into the extracellular space is regulated by the UPR, revealing a new mechanism by which UPR activation regulates extracellular proteostasis. PMID:25361606

  1. Screen of Non-annotated Small Secreted Proteins of Pseudomonas syringae Reveals a Virulence Factor That Inhibits Tomato Immune Proteases

    PubMed Central

    Shindo, Takayuki; Kaschani, Farnusch; Kovács, Judit; Tian, Fang; Kourelis, Jiorgos; Hong, Tram Ngoc; Colby, Tom; Shabab, Mohammed; Chawla, Rohini; Kumari, Selva; Ilyas, Muhammad; Hörger, Anja C.; Alfano, James R.; van der Hoorn, Renier A. L.

    2016-01-01

    Pseudomonas syringae pv. tomato DC3000 (PtoDC3000) is an extracellular model plant pathogen, yet its potential to produce secreted effectors that manipulate the apoplast has been under investigated. Here we identified 131 candidate small, secreted, non-annotated proteins from the PtoDC3000 genome, most of which are common to Pseudomonas species and potentially expressed during apoplastic colonization. We produced 43 of these proteins through a custom-made gateway-compatible expression system for extracellular bacterial proteins, and screened them for their ability to inhibit the secreted immune protease C14 of tomato using competitive activity-based protein profiling. This screen revealed C14-inhibiting protein-1 (Cip1), which contains motifs of the chagasin-like protease inhibitors. Cip1 mutants are less virulent on tomato, demonstrating the importance of this effector in apoplastic immunity. Cip1 also inhibits immune protease Pip1, which is known to suppress PtoDC3000 infection, but has a lower affinity for its close homolog Rcr3, explaining why this protein is not recognized in tomato plants carrying the Cf-2 resistance gene, which uses Rcr3 as a co-receptor to detect pathogen-derived protease inhibitors. Thus, this approach uncovered a protease inhibitor of P. syringae, indicating that also P. syringae secretes effectors that selectively target apoplastic host proteases of tomato, similar to tomato pathogenic fungi, oomycetes and nematodes. PMID:27603016

  2. Screen of Non-annotated Small Secreted Proteins of Pseudomonas syringae Reveals a Virulence Factor That Inhibits Tomato Immune Proteases.

    PubMed

    Shindo, Takayuki; Kaschani, Farnusch; Yang, Fan; Kovács, Judit; Tian, Fang; Kourelis, Jiorgos; Hong, Tram Ngoc; Colby, Tom; Shabab, Mohammed; Chawla, Rohini; Kumari, Selva; Ilyas, Muhammad; Hörger, Anja C; Alfano, James R; van der Hoorn, Renier A L

    2016-09-01

    Pseudomonas syringae pv. tomato DC3000 (PtoDC3000) is an extracellular model plant pathogen, yet its potential to produce secreted effectors that manipulate the apoplast has been under investigated. Here we identified 131 candidate small, secreted, non-annotated proteins from the PtoDC3000 genome, most of which are common to Pseudomonas species and potentially expressed during apoplastic colonization. We produced 43 of these proteins through a custom-made gateway-compatible expression system for extracellular bacterial proteins, and screened them for their ability to inhibit the secreted immune protease C14 of tomato using competitive activity-based protein profiling. This screen revealed C14-inhibiting protein-1 (Cip1), which contains motifs of the chagasin-like protease inhibitors. Cip1 mutants are less virulent on tomato, demonstrating the importance of this effector in apoplastic immunity. Cip1 also inhibits immune protease Pip1, which is known to suppress PtoDC3000 infection, but has a lower affinity for its close homolog Rcr3, explaining why this protein is not recognized in tomato plants carrying the Cf-2 resistance gene, which uses Rcr3 as a co-receptor to detect pathogen-derived protease inhibitors. Thus, this approach uncovered a protease inhibitor of P. syringae, indicating that also P. syringae secretes effectors that selectively target apoplastic host proteases of tomato, similar to tomato pathogenic fungi, oomycetes and nematodes. PMID:27603016

  3. A Bacterial Pathogen uses Distinct Type III Secretion Systems to Alternate between Host Kingdom

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gram-negative bacterial pathogens of eukaryotes often secrete proteins directly into host cells via a needle-like protein channel called a ‘type III secretion system’ (T3SS). Bacteria that are adapted to either animal or plant hosts use phylogenetically distinct T3SSs for secreting proteins. Here, ...

  4. The Architecture of EssB, an Integral Membrane Component of the Type VII Secretion System

    PubMed Central

    Zoltner, Martin; Norman, David G.; Fyfe, Paul K.; El Mkami, Hassane; Palmer, Tracy; Hunter, William N.

    2013-01-01

    Summary The membrane-bound EssB is an integral and essential component of the bacterial type VII secretion system that can contribute to pathogenicity. The architecture of Geobacillus thermodenitrificans EssB has been investigated by combining crystallographic and EPR spectroscopic methods. The protein forms a dimer that straddles the cytoplasmic membrane. A helical fold is observed for the C-terminal segment, which is positioned on the exterior of the membrane. This segment contributes most to dimer formation. The N-terminal segment displays a structure related to the pseudokinase fold and may contribute to function by recognizing substrates or secretion system partners. The remaining part of EssB may serve as an anchor point for the secretion apparatus, which is embedded in the cytoplasmic membrane with the C-terminal domain protruding out to interact with partner proteins or components of peptidoglycan. PMID:23499020

  5. The Agrobacterium rhizogenes GALLS gene encodes two secreted proteins required for genetic transformation of plants.

    PubMed

    Hodges, Larry D; Lee, Lan-Ying; McNett, Henry; Gelvin, Stanton B; Ream, Walt

    2009-01-01

    Agrobacterium tumefaciens and Agrobacterium rhizogenes are related pathogens that cause crown gall and hairy root diseases, which result from integration and expression of bacterial genes in the plant genome. Single-stranded DNA (T strands) and virulence proteins are translocated into plant cells by a type IV secretion system. VirD2 nicks a specific DNA sequence, attaches to the 5' end, and pilots the DNA into plant cells. A. tumefaciens translocates single-stranded DNA-binding protein VirE2 into plant cells where it likely binds T strands and may aid in targeting them into the nucleus. Although some A. rhizogenes strains lack VirE2, they transfer T strands efficiently due to the GALLS gene, which complements an A. tumefaciens virE2 mutant for tumor formation. Unlike VirE2, full-length GALLS (GALLS-FL) contains ATP-binding and helicase motifs similar to those in TraA, a strand transferase involved in conjugation. GALLS-FL and VirE2 contain nuclear localization signals (NLS) and secretion signals. Mutations in any of these domains abolish the ability of the GALLS gene to substitute for virE2. Here, we show that the GALLS gene encodes two proteins from one open reading frame: GALLS-FL and a protein comprised of the C-terminal domain, which initiates at an internal in-frame start codon. On some hosts, both GALLS proteins were required to substitute for VirE2. GALLS-FL tagged with yellow fluorescent protein localized to the nucleus of tobacco cells in an NLS-dependent manner. In plant cells, the GALLS proteins interacted with themselves, VirD2, and each other. VirD2 interacted with GALLS-FL and localized inside the nucleus, where its predicted helicase activity may pull T strands into the nucleus. PMID:18952790

  6. Human Neutrophils Secrete Bioactive Paucimannosidic Proteins from Azurophilic Granules into Pathogen-Infected Sputum*

    PubMed Central

    Thaysen-Andersen, Morten; Venkatakrishnan, Vignesh; Loke, Ian; Laurini, Christine; Diestel, Simone; Parker, Benjamin L.; Packer, Nicolle H.

    2015-01-01

    Unlike plants and invertebrates, mammals reportedly lack proteins displaying asparagine (N)-linked paucimannosylation (mannose1–3fucose0–1N-acetylglucosamine2Asn). Enabled by technology advancements in system-wide biomolecular characterization, we document that protein paucimannosylation is a significant host-derived molecular signature of neutrophil-rich sputum from pathogen-infected human lungs and is negligible in pathogen-free sputum. Five types of paucimannosidic N-glycans were carried by compartment-specific and inflammation-associated proteins of the azurophilic granules of human neutrophils including myeloperoxidase (MPO), azurocidin, and neutrophil elastase. The timely expressed human azurophilic granule-resident β-hexosaminidase A displayed the capacity to generate paucimannosidic N-glycans by trimming hybrid/complex type N-glycan intermediates with relative broad substrate specificity. Paucimannosidic N-glycoepitopes showed significant co-localization with β-hexosaminidase A and the azurophilic marker MPO in human neutrophils using immunocytochemistry. Furthermore, promyelocyte stage-specific expression of genes coding for paucimannosidic proteins and biosynthetic enzymes indicated a novel spatio-temporal biosynthetic route in early neutrophil maturation. The absence of bacterial exoglycosidase activities and paucimannosidic N-glycans excluded exogenous origins of paucimannosylation. Paucimannosidic proteins from isolated and sputum neutrophils were preferentially secreted upon inoculation with virulent Pseudomonas aeruginosa. Finally, paucimannosidic proteins displayed affinities to mannose-binding lectin, suggesting immune-related functions of paucimannosylation in activated human neutrophils. In conclusion, we are the first to document that human neutrophils produce, store and, upon activation, selectively secrete bioactive paucimannosidic proteins into sputum of lungs undergoing pathogen-based inflammation. PMID:25645918

  7. Human neutrophils secrete bioactive paucimannosidic proteins from azurophilic granules into pathogen-infected sputum.

    PubMed

    Thaysen-Andersen, Morten; Venkatakrishnan, Vignesh; Loke, Ian; Laurini, Christine; Diestel, Simone; Parker, Benjamin L; Packer, Nicolle H

    2015-04-01

    Unlike plants and invertebrates, mammals reportedly lack proteins displaying asparagine (N)-linked paucimannosylation (mannose(1-3)fucose(0-1)N-acetylglucosamine(2)Asn). Enabled by technology advancements in system-wide biomolecular characterization, we document that protein paucimannosylation is a significant host-derived molecular signature of neutrophil-rich sputum from pathogen-infected human lungs and is negligible in pathogen-free sputum. Five types of paucimannosidic N-glycans were carried by compartment-specific and inflammation-associated proteins of the azurophilic granules of human neutrophils including myeloperoxidase (MPO), azurocidin, and neutrophil elastase. The timely expressed human azurophilic granule-resident β-hexosaminidase A displayed the capacity to generate paucimannosidic N-glycans by trimming hybrid/complex type N-glycan intermediates with relative broad substrate specificity. Paucimannosidic N-glycoepitopes showed significant co-localization with β-hexosaminidase A and the azurophilic marker MPO in human neutrophils using immunocytochemistry. Furthermore, promyelocyte stage-specific expression of genes coding for paucimannosidic proteins and biosynthetic enzymes indicated a novel spatio-temporal biosynthetic route in early neutrophil maturation. The absence of bacterial exoglycosidase activities and paucimannosidic N-glycans excluded exogenous origins of paucimannosylation. Paucimannosidic proteins from isolated and sputum neutrophils were preferentially secreted upon inoculation with virulent Pseudomonas aeruginosa. Finally, paucimannosidic proteins displayed affinities to mannose-binding lectin, suggesting immune-related functions of paucimannosylation in activated human neutrophils. In conclusion, we are the first to document that human neutrophils produce, store and, upon activation, selectively secrete bioactive paucimannosidic proteins into sputum of lungs undergoing pathogen-based inflammation. PMID:25645918

  8. The Type III Secretion System Cleans up Its Act(in).

    PubMed

    Auerbuch, Victoria

    2016-09-14

    Inflammasome-associated innate immune receptors sense host-cell targeting by the type III secretion system (T3SS) of pathogenic Yersinia. In this issue of Cell Host & Microbe, Chung et al. (2016) show that the Yersinia T3SS effector protein YopM counteracts this recognition pathway by restricting the pyrin inflammasome, thus increasing bacterial fitness.

  9. The Type III Secretion System Cleans up Its Act(in).

    PubMed

    Auerbuch, Victoria

    2016-09-14

    Inflammasome-associated innate immune receptors sense host-cell targeting by the type III secretion system (T3SS) of pathogenic Yersinia. In this issue of Cell Host & Microbe, Chung et al. (2016) show that the Yersinia T3SS effector protein YopM counteracts this recognition pathway by restricting the pyrin inflammasome, thus increasing bacterial fitness. PMID:27631695

  10. Campylobacter fetus subspecies contain conserved type IV secretion systems on multiple genomic islands and plasmids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The features contributing to the differences in pathogenicity of the C. fetus subspecies are unknown. Putative factors involved in pathogenesis are located in genomic islands that encode type IV secretion system (T4SS) and fic-domain (filamentation induced by cyclic AMP) proteins. In the genomes of ...

  11. A bacterial pathogen uses distinct type III secretion systems to alternate between host kingdoms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant and animal-pathogenic bacteria utilize phylogenetically distinct type III secretion systems (T3SS) that produce needle-like injectisomes or pili for the delivery of effector proteins into host cells. Pantoea stewartii subsp. stewartii (Pnss), the causative agent of Stewart’s bacterial wilt and...

  12. Contribution of Bordetella bronchiseptica Type III secretion system to respiratory disease in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: The type III secretion system (TTSS) of gram negative bacteria allows injection of effector proteins directly into the cytosol of eukaryotic cells. Previous studies have demonstrated that the B. bronchiseptica TTSS plays a role in the persistent bacterial colonization of the trachea of m...

  13. The All-Alpha Domains of Coupling Proteins from the Agrobacterium tumefaciens VirB/VirD4 and Enterococcus faecalis pCF10-Encoded Type IV Secretion Systems Confer Specificity to Binding of Cognate DNA Substrates

    PubMed Central

    Whitaker, Neal; Chen, Yuqing; Jakubowski, Simon J.; Sarkar, Mayukh K.; Li, Feng

    2015-01-01

    ABSTRACT Bacterial type IV coupling proteins (T4CPs) bind and mediate the delivery of DNA substrates through associated type IV secretion systems (T4SSs). T4CPs consist of a transmembrane domain, a conserved nucleotide-binding domain (NBD), and a sequence-variable helical bundle called the all-alpha domain (AAD). In the T4CP structural prototype, plasmid R388-encoded TrwB, the NBD assembles as a homohexamer resembling RecA and DNA ring helicases, and the AAD, which sits at the channel entrance of the homohexamer, is structurally similar to N-terminal domain 1 of recombinase XerD. Here, we defined the contributions of AADs from the Agrobacterium tumefaciens VirD4 and Enterococcus faecalis PcfC T4CPs to DNA substrate binding. AAD deletions abolished DNA transfer, whereas production of the AAD in otherwise wild-type donor strains diminished the transfer of cognate but not heterologous substrates. Reciprocal swaps of AADs between PcfC and VirD4 abolished the transfer of cognate DNA substrates, although strikingly, the VirD4-AADPcfC chimera (VirD4 with the PcfC AAD) supported the transfer of a mobilizable plasmid. Purified AADs from both T4CPs bound DNA substrates without sequence preference but specifically bound cognate processing proteins required for cleavage at origin-of-transfer sequences. The soluble domains of VirD4 and PcfC lacking their AADs neither exerted negative dominance in vivo nor specifically bound cognate processing proteins in vitro. Our findings support a model in which the T4CP AADs contribute to DNA substrate selection through binding of associated processing proteins. Furthermore, MOBQ plasmids have evolved a docking mechanism that bypasses the AAD substrate discrimination checkpoint, which might account for their capacity to promiscuously transfer through many different T4SSs. IMPORTANCE For conjugative transfer of mobile DNA elements, members of the VirD4/TraG/TrwB receptor superfamily bind cognate DNA substrates through mechanisms that are

  14. Protein kinase D negatively regulates hepatitis C virus secretion through phosphorylation of oxysterol-binding protein and ceramide transfer protein.

    PubMed

    Amako, Yutaka; Syed, Gulam H; Siddiqui, Aleem

    2011-04-01

    Hepatitis C virus (HCV) RNA replicates its genome on specialized endoplasmic reticulum modified membranes termed membranous web and utilizes lipid droplets for initiating the viral nucleocapsid assembly. HCV maturation and/or the egress pathway requires host sphingolipid synthesis, which occur in the Golgi. Ceramide transfer protein (CERT) and oxysterol-binding protein (OSBP) play a crucial role in sphingolipid biosynthesis. Protein kinase D (PKD), a serine/threonine kinase, is recruited to the trans-Golgi network where it influences vesicular trafficking to the plasma membrane by regulation of several important mediators via phosphorylation. PKD attenuates the function of both CERT and OSBP by phosphorylation at their respective Ser(132) and Ser(240) residues (phosphorylation inhibition). Here, we investigated the functional role of PKD in HCV secretion. Our studies show that HCV gene expression down-regulated PKD activation. PKD depletion by shRNA or inhibition by pharmacological inhibitor Gö6976 enhanced HCV secretion. Overexpression of a constitutively active form of PKD suppressed HCV secretion. The suppression by PKD was subverted by the ectopic expression of nonphosphorylatable serine mutant CERT S132A or OSBP S240A. These observations imply that PKD negatively regulates HCV secretion/release by attenuating OSBP and CERT functions by phosphorylation inhibition. This study identifies the key role of the Golgi components in the HCV maturation process. PMID:21285358

  15. Type IV secretion system of Anaplasma phagocytophilum and Ehrlichia chaffeensis.

    PubMed

    Rikihisa, Yasuko; Lin, Mingqun; Niu, Hua; Cheng, Zhihui

    2009-05-01

    The intracellular bacterial pathogens Ehrlichia chaffeensis and Anaplasma phagocytophilum have evolved to infect leukocytes and hijack biological compounds and processes of these host defensive cells. Bacterial type IV secretion (T4S) system transports macromolecules across the membrane in an ATP-dependent manner and is increasingly recognized as a virulence factor delivery mechanism that allows pathogens to modulate eukaryotic cell functions for their own benefit. Genes encoding T4S system homologous to those of a plant pathogen Agrobacterium tumefaciens have been identified in E. chaffeensis and A. phagocytophilum. Upon interaction with new host cells, E. chaffeensis and A. phagocytophilum genes encoding the T4S apparatus are upregulated. The delivered macromolecules are referred to as T4S substrates, or effectors, because they affect and alter basic host cellular processes, resulting in disease development. Recently, A. phagocytophilum 160-kDa AnkA protein was to be delivered by T4S system into the host cytoplasm. Thus, dynamic signal transduction events are likely induced by T4S substrates in the host cells for successful establishment of intracellular infection. Further studies on Ehrlichia and Anaplasma T4S effectors cognate host cell molecules will undoubtedly advance our understanding of the complex interplay between obligatory intracellular pathogens and their hosts. Such data can be applied toward treatment, diagnosis, and control of ehrlichiosis and anaplasmosis. PMID:19538269

  16. A bacterial type III secretion assay for delivery of fungal effector proteins into wheat.

    PubMed

    Upadhyaya, Narayana M; Mago, Rohit; Staskawicz, Brian J; Ayliffe, Michael A; Ellis, Jeffrey G; Dodds, Peter N

    2014-03-01

    Large numbers of candidate effectors from fungal pathogens are being identified through whole-genome sequencing and in planta expression studies. Although Agrobacterium-mediated transient expression has enabled high-throughput functional analysis of effectors in dicot plants, this assay is not effective in cereal leaves. Here, we show that a nonpathogenic Pseudomonas fluorescens engineered to express the type III secretion system (T3SS) of P. syringae and the wheat pathogen Xanthomonas translucens can deliver fusion proteins containing T3SS signals from P. syringae (AvrRpm1) and X. campestris (AvrBs2) avirulence (Avr) proteins, respectively, into wheat leaf cells. A calmodulin-dependent adenylate cyclase reporter protein was delivered effectively into wheat and barley by both bacteria. Absence of any disease symptoms with P. fluorescens makes it more suitable than X. translucens for detecting a hypersensitive response (HR) induced by an effector protein with avirulence activity. We further modified the delivery system by removal of the myristoylation site from the AvrRpm1 fusion to prevent its localization to the plasma membrane which could inhibit recognition of an Avr protein. Delivery of the flax rust AvrM protein by the modified delivery system into transgenic tobacco leaves expressing the corresponding M resistance protein induced a strong HR, indicating that the system is capable of delivering a functional rust Avr protein. In a preliminary screen of effectors from the stem rust fungus Puccinia graminis f. sp. tritici, we identified one effector that induced a host genotype-specific HR in wheat. Thus, the modified AvrRpm1:effector-Pseudomonas fluorescens system is an effective tool for large-scale screening of pathogen effectors for recognition in wheat. PMID:24156769

  17. Role of Autocleavage in the Function of a Type III Secretion Specificity Switch Protein in Salmonella enterica Serovar Typhimurium

    PubMed Central

    Monjarás Feria, Julia V.; Lefebre, Matthew D.; Stierhof, York-Dieter

    2015-01-01

    ABSTRACT Type III secretion systems (T3SSs) are multiprotein machines employed by many Gram-negative bacteria to inject bacterial effector proteins into eukaryotic host cells to promote bacterial survival and colonization. The core unit of T3SSs is the needle complex, a supramolecular structure that mediates the passage of the secreted proteins through the bacterial envelope. A distinct feature of the T3SS is that protein export occurs in a strictly hierarchical manner in which proteins destined to form the needle complex filament and associated structures are secreted first, followed by the secretion of effectors and the proteins that will facilitate their translocation through the target host cell membrane. The secretion hierarchy is established by complex mechanisms that involve several T3SS-associated components, including the “switch protein,” a highly conserved, inner membrane protease that undergoes autocatalytic cleavage. It has been proposed that the autocleavage of the switch protein is the trigger for substrate switching. We show here that autocleavage of the Salmonella enterica serovar Typhimurium switch protein SpaS is an unregulated process that occurs after its folding and before its incorporation into the needle complex. Needle complexes assembled with a precleaved form of SpaS function in a manner indistinguishable from that of the wild-type form. Furthermore, an engineered mutant of SpaS that is processed by an external protease also displays wild-type function. These results demonstrate that the cleavage event per se does not provide a signal for substrate switching but support the hypothesis that cleavage allows the proper conformation of SpaS to render it competent for its switching function. PMID:26463164

  18. Proteins of the exocytotic core complex mediate platelet alpha-granule secretion. Roles of vesicle-associated membrane protein, SNAP-23, and syntaxin 4.

    PubMed

    Flaumenhaft, R; Croce, K; Chen, E; Furie, B; Furie, B C

    1999-01-22

    To understand the molecular basis of granule release from platelets, we examined the role of vesicle-associated membrane protein, SNAP-23, and syntaxin 4 in alpha-granule secretion. A vesicle-associated membrane protein, SNAP-23, and syntaxin 4 were detected in platelet lysate. These proteins form a SDS-resistant complex that disassembles upon platelet activation. To determine whether these proteins are involved in alpha-granule secretion, we developed a streptolysin O-permeabilized platelet model of alpha-granule secretion. Streptolysin O-permeabilized platelets released alpha-granules, as measured by surface expression of P-selectin, in response to Ca2+ up to 120 min after permeabilization. Incubation of streptolysin O-permeabilized platelets with an antibody directed against vesicle-associated membrane protein completely inhibited Ca2+-induced alpha-granule release. Tetanus toxin cleaved platelet vesicle-associated membrane protein and inhibited Ca2+-induced alpha-granule secretion from streptolysin O-permeabilized platelets. An antibody to syntaxin 4 also inhibited Ca2+-induced alpha-granule release by approximately 75% in this system. These results show that vesicle-associated membrane protein, SNAP-23, and syntaxin 4 form a heterotrimeric complex in platelets that disassembles with activation and demonstrate that alpha-granule release is dependent on vesicle SNAP receptor-target SNAP receptor (vSNARE-tSNARE) interactions. PMID:9891020

  19. Campylobacter jejuni survival within human epithelial cells is enhanced by the secreted protein CiaI

    PubMed Central

    Buelow, Daelynn R.; Christensen, Jeffrey E.; Neal-McKinney, Jason M.; Konkel, Michael E.

    2011-01-01

    Summary Although it is known that Campylobacter jejuni invade the cells that line the human intestinal tract, the bacterial proteins that enable this pathogen to survive within Campylobacter-containing vacuoles (CCV) have not been identified. Here, we describe the identification and characterization of a protein that we termed CiaI for Campylobacter invasion antigen involved in Intracellular survival. We show that CiaI harbors an amino-terminal type III secretion (T3S) sequence and is secreted from C. jejuni through the flagellar T3S system. In addition, the ciaI mutant was impaired in intracellular survival when compared to a wild-type strain, as judged by the gentamicin-protection assay. Fluorescence microscopy examination of epithelial cells infected with the C. jejuni ciaI mutant revealed that the CCV were more frequently co-localized with Cathepsin D (a lysosomal marker) than the CCV in cells infected with a C. jejuni wild-type strain. Ectopic expression of CiaI-GFP in epithelial cells yielded a punctate phenotype not observed with the other C. jejuni genes, and this phenotype was abolished by mutation of a dileucine motif located in the carboxy-terminus of the protein. Based on the data, we conclude that CiaI contributes to the ability of C. jejuni to survive within epithelial cells. PMID:21435039

  20. Protein secretion biotechnology in Gram-positive bacteria with special emphasis on Streptomyces lividans.

    PubMed

    Anné, Jozef; Vrancken, Kristof; Van Mellaert, Lieve; Van Impe, Jan; Bernaerts, Kristel

    2014-08-01

    Proteins secreted by Gram-positive bacteria are released into the culture medium with the obvious benefit that they usually retain their native conformation. This property makes these host cells potentially interesting for the production of recombinant proteins, as one can take full profit of established protocols for the purification of active proteins. Several state-of-the-art strategies to increase the yield of the secreted proteins will be discussed, using Streptomyces lividans as an example and compared with approaches used in some other host cells. It will be shown that approaches such as increasing expression and translation levels, choice of secretion pathway and modulation of proteins thereof, avoiding stress responses by changing expression levels of specific (stress) proteins, can be helpful to boost production yield. In addition, the potential of multi-omics approaches as a tool to understand the genetic background and metabolic fluxes in the host cell and to seek for new targets for strain and protein secretion improvement is discussed. It will be shown that S. lividans, along with other Gram-positive host cells, certainly plays a role as a production host for recombinant proteins in an economically viable way. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.

  1. Role and Characterization of Synuclein-γ Unconventional Protein Secretion in Cancer Cells.

    PubMed

    Liu, Caiyun; Qu, Like; Shou, Chengchao

    2016-01-01

    Synuclein-γ (SNCG), the third member of synuclein family, is implicated in both neurodegenerative diseases and cancer. Overexpression of SNCG in cancer cells is linked to tumor progression and chemoresistance. Without any known signal sequence required for conventional protein secretion, SNCG is elevated in the serum of cancer patients and the medium of cultured cancer cells. SNCG actively secretes from cancer cells and extracellular SNCG promotes malignant phenotypes of cancer cells. Here, we describe methods for the characterization of SNCG as an unconventional secretion protein from cancer cells and investigation of the effect of extracellular SNCG on the phenotypes of cancer cells. PMID:27665562

  2. Roles of secreted phospholipases A₂ in the mammalian immune system.

    PubMed

    Krizaj, Igor

    2014-01-01

    Secreted phospholipase A2 (sPLA2) molecules constitute a family of proteins that are involved functionally in many biological processes. In particular, they participate in diverse pathophysiological settings as enzymes that release free fatty acids and lysophospholipids from phospholipids in biological membranes, or as ligands for various cellular receptors. In this review the confirmed or expected functions of sPLA2s in the mammalian immune system are surveyed. Some of the twelve mammalian sPLA2 molecules constitute part of the so-called innate immune system by virtue of their antibacterial, antiviral and antifungal activities. They are also involved in acute inflammation, a protective reaction of the body to infection or injury. The acute inflammation sometimes escapes regulation, becomes chronic and can evolve into a severe pathology. One or more types of sPLA2 are involved in asthma, rheumatoid arthritis, sepsis, atherosclerosis, myocardial infarction, Crohn's disease, ulcerative colitis and cancer. sPLA2s are thus important therapeutic targets as well as biotherapeutic molecules. Improving the selectivity of inhibitors of sPLA2s to be able to target a particular sPLA2 could therefore be one of the most important tasks for future research.

  3. Is caseinomacropeptide from milk proteins, an inhibitor of gastric secretion?

    PubMed

    Guilloteau, Paul; Romé, Véronique; Delaby, Luc; Mendy, François; Roger, Loic; Chayvialle, Jean Alain

    2010-01-01

    The aim of this work was to study, in vivo, the effect of the ingestion of not glycosylated caseinomacropeptide (CMP) on gastric secretion. In Experiments #1 and #2, 7 calves fitted with a gastric pouch received either a diet without CMP (C diet) or C diet in which CMP was introduced (equal to and 5 folds that of CMP quantity contained in cow milk, diets CMP1 and CMP5, respectively). In Experiment #3, 2 calves (with gastric pouch) were fed C diet followed by an "iv perfusion" of CMP. In Experiment #4, 25 calves fed either C, CMP1 or CMP5 diets were fitted with a blood catheter for sample collections. The quantities of daily gastric secretions seemed few modified by CMP ingestion but the profile of these secretions was changed along the day. The most important result is that CMP can inhibit gastric secretions (mainly hydrochloric acid) stimulated by the meal, but there was no dose-dependent response. No similar observations were obtained after perfusion of CMP in jugular vein. CMP was not detected in blood. Results obtained in our experiments are not in favor of its significant intestinal absorption. Gastrin, somatostatin and VIP could be implicated in the mechanisms of regulation.

  4. Live attenuated Salmonella vaccines against Mycobacterium tuberculosis with antigen delivery via the type III secretion system.

    PubMed

    Juárez-Rodríguez, María Dolores; Arteaga-Cortés, Lourdes T; Kader, Rebin; Curtiss, Roy; Clark-Curtiss, Josephine E

    2012-02-01

    Tuberculosis remains a global health threat, and there is dire need to develop a vaccine that is safe and efficacious and confers long-lasting protection. In this study, we constructed recombinant attenuated Salmonella vaccine (RASV) strains with plasmids expressing fusion proteins consisting of the 80 amino-terminal amino acids of the type 3 secretion system effector SopE of Salmonella and the Mycobacterium tuberculosis antigens early secreted antigenic target 6-kDa (ESAT-6) protein and culture filtrate protein 10 (CFP-10). We demonstrated that the SopE-mycobacterial antigen fusion proteins were translocated into the cytoplasm of INT-407 cells in cell culture assays. Oral immunization of mice with RASV strains synthesizing SopE-ESAT-6-CFP-10 fusion proteins resulted in significant protection of the mice against aerosol challenge with M. tuberculosis H37Rv that was similar to the protection afforded by immunization with Mycobacterium bovis bacillus Calmette-Guérin (BCG) administered subcutaneously. In addition, oral immunization with the RASV strains specifying these mycobacterial antigens elicited production of significant antibody titers to ESAT-6 and production of ESAT-6- or CFP-10-specific gamma interferon (IFN-γ)-secreting and tumor necrosis factor alpha (TNF-α)-secreting splenocytes. PMID:22144486

  5. Atomic model of the type III secretion system needle.

    PubMed

    Loquet, Antoine; Sgourakis, Nikolaos G; Gupta, Rashmi; Giller, Karin; Riedel, Dietmar; Goosmann, Christian; Griesinger, Christian; Kolbe, Michael; Baker, David; Becker, Stefan; Lange, Adam

    2012-05-20

    Pathogenic bacteria using a type III secretion system (T3SS) to manipulate host cells cause many different infections including Shigella dysentery, typhoid fever, enterohaemorrhagic colitis and bubonic plague. An essential part of the T3SS is a hollow needle-like protein filament through which effector proteins are injected into eukaryotic host cells. Currently, the three-dimensional structure of the needle is unknown because it is not amenable to X-ray crystallography and solution NMR, as a result of its inherent non-crystallinity and insolubility. Cryo-electron microscopy combined with crystal or solution NMR subunit structures has recently provided a powerful hybrid approach for studying supramolecular assemblies, resulting in low-resolution and medium-resolution models. However, such approaches cannot deliver atomic details, especially of the crucial subunit-subunit interfaces, because of the limited cryo-electron microscopic resolution obtained in these studies. Here we report an alternative approach combining recombinant wild-type needle production, solid-state NMR, electron microscopy and Rosetta modelling to reveal the supramolecular interfaces and ultimately the complete atomic structure of the Salmonella typhimurium T3SS needle. We show that the 80-residue subunits form a right-handed helical assembly with roughly 11 subunits per two turns, similar to that of the flagellar filament of S. typhimurium. In contrast to established models of the needle in which the amino terminus of the protein subunit was assumed to be α-helical and positioned inside the needle, our model reveals an extended amino-terminal domain that is positioned on the surface of the needle, while the highly conserved carboxy terminus points towards the lumen.

  6. Aqueous two-phase partitioning of milk proteins. Application to human protein C secreted in pig milk.

    PubMed

    Cole, K D; Lee, T K; Lubon, H

    1997-01-01

    Milk of transgenic pigs secreting recombinant human Protein C (rHPC) was used as a model system to determine the utility of aqueous two-phase extraction systems (ATPS) for the initial step in the purification of proteins from milk. The major challenges in purification of recombinant proteins from milk are removal of casein micelles (that foul processing equipment) and elimination of the host milk proteins from the final product. When milk was partitioned in ATPS composed of polyethylene glycol (PEG) and ammonium sulfate (AS), the phases were clarified and most of the caseins precipitated at the interphase. The partition coefficients of the major milk proteins and rHPC were dependent upon the molecular weight of the PEG used in the ATPS. Higher-partition coefficients of the major whey proteins, beta-lactoglobulin, and alpha-lactalbumin were observed in ATPS made up of lower molecular-weight PEG (1000 or 1450) as compared to systems using higher molecular-weight PEG. Lowering the pH of the ATPS from 7.5 to 6.0 resulted in increased precipitation of the caseins and decreased their concentration in both phases. rHPC had a partition coefficient of 0.04 in a system composed of AS and PEG 1450. The rHPC in pig milk was shown to be highly heterogenous by two-dimensional gel electrophoresis. The heterogeneity was owing to inefficient proteolytic processing of the single chain to the heterodimeric form and differences in glycosylation and other post-translational processing. Differential partitioning of the multiple forms of purified rHPC in the ATPS was not observed. rHPC after processing in ATPS was recovered in a clear phase free of most major milk proteins. ATPS are useful as the initial processing step in the purification of recombinant proteins from milk because clarification and enrichment in combined in a single step. PMID:9382491

  7. A Dual SILAC Proteomic Labeling Strategy for Quantifying Constitutive and Cell-Cell Induced Protein Secretion.

    PubMed

    Stiess, Michael; Wegehingel, Sabine; Nguyen, Chuong; Nickel, Walter; Bradke, Frank; Cambridge, Sidney B

    2015-08-01

    Recent evidence suggests that the extracellular protein milieu is much more complex than previously assumed as various secretome analyses from different cell types described the release of hundreds to thousands of proteins. The extracellular function of many of these proteins has yet to be determined particularly in the context of three-dimensional tissues with abundant cell-cell contacts. Toward this goal, we developed a strategy of dual SILAC labeling astrocytic cultures for in silico exclusion of unlabeled proteins from serum or neurons used for stimulation. For constitutive secretion, this strategy allowed the precise quantification of the extra-to-intracellular protein ratio of more than 2000 identified proteins. Ratios covered 4 orders of magnitude indicating that the intracellular vs extracellular contributions of different proteins can be variable. Functionally, the secretome of labeled forebrain astrocytic cultures specifically changed within hours after adding unlabeled, "physiological" forebrain neurons. "Nonphysiological" cerebellar hindbrain neurons, however, elicited a different, highly repulsive secretory response. Our data also suggest a significant association of constitutive secretion with the classical secretion pathway and regulated secretion with unconventional pathways. We conclude that quantitative proteomics can help to elucidate general principles of cellular secretion and provide functional insight into the abundant extracellular presence of proteins.

  8. An Optimized Approach to Recover Secreted Proteins from Fibroblast Conditioned-Media for Secretomic Analysis

    PubMed Central

    Paré, Bastien; Deschênes, Lydia T.; Pouliot, Roxane; Dupré, Nicolas; Gros-Louis, Francois

    2016-01-01

    The proteins secreted by a particular type of cell, the secretome, play important roles in the regulation of many physiological processes via paracrine/autocrine mechanisms, and they are of increasing interest to help understanding rare diseases and to identify potential biomarkers and therapeutic targets. To facilitate ongoing research involving secreted proteins, we revisited cell culture protocols and whole secreted protein enrichment protocols. A reliable method for culturing and precipitating secreted protein from patient-derived fibroblast conditioned-medium was established. The method is based on the optimization of cell confluency and incubation time conditions. The well-established carrier-based TCA-DOC protein precipitation method was consistently found to give higher protein recovery yield. According to our results, we therefore propose that protein enrichment should be performed by TCA-DOC precipitation method after 48 h at 95% of confluence in a serum-deprived culture medium. Given the importance of secreted proteins as a source to elucidate the pathogenesis of rare diseases, especially neurological disorders, this approach may help to discover novel candidate biomarkers with potential clinical significance. PMID:27064649

  9. Effect of phosphorus levels on the protein profiles of secreted protein and root surface protein of rice.

    PubMed

    Shinano, Takuro; Yoshimura, Tomoko; Watanabe, Toshihiro; Unno, Yusuke; Osaki, Mitsuru; Nanjo, Yohei; Komatsu, Setsuko

    2013-11-01

    Plant roots are complicated organs that absorb water and nutrients from the soil. Roots also play an essential role in protecting plants from attack by soil pathogens and develop a beneficial role with some soil microorganisms. Plant-derived rhizosphere proteins (e.g., root secretory proteins and root surface binding proteins) are considered to play important roles in developing mutual relationships in the rhizosphere. In the rhizosphere, where plant roots meet the surrounding environment, it has been suggested that root secretory protein and root surface binding protein are important factors. Furthermore, it is not known how the physiological status of the plant affects the profile of these proteins. In this study, rice plants were grown aseptically, with or without phosphorus nutrition, and proteins were obtained from root bathing solution (designated as root secretory proteins) and obtained using 0.2 M CaCl2 solution (designated as root surface binding proteins). The total number of identified proteins in the root bathing solution was 458, and the number of root surface binding proteins was 256. More than half of the proteins were observed in both fractions. Most of the proteins were categorized as either having signal peptides or no membrane transport helix sites. The functional categorization suggested that most of the proteins seemed to have secretory pathways and were involved in defense/disease-related functions. These characteristics seem to be unique to rhizosphere proteins, and the latter might be part of the plants strategy to defeat pathogens in the soil. The low phosphorus treatment significantly increased the number of pathogenesis-related proteins in the root secretory proteins, whereas the change was small in the case of the root surface binding proteins. The results suggested that the roots are actively and selectively secreting protein into the rhizosphere. PMID:24083427

  10. Approaches for the identification of potential excreted/secreted proteins of Leishmania major parasites.

    PubMed

    Chenik, M; Lakhal, S; Ben Khalef, N; Zribi, L; Louzir, H; Dellagi, K

    2006-04-01

    Leishmania parasites are able to survive in host macrophages despite the harsh phagolysosomal vacuoles conditions. This could reflect, in part, their capacity to secrete proteins that may play an essential role in the establishment of infection and serve as targets for cellular immune responses. To characterize Leishmania major proteins excreted/secreted early after promastigote entry into the host macrophage, we have generated antibodies against culture supernatants of stationary-phase promastigotes collected 6 h after incubation in conditions that partially reproduce those prevailing in the parasitophorous vacuole. The screening of an L. major cDNA library with these antibodies led us to isolate 33 different cDNA clones that we report here. Sequence analysis revealed that the corresponding proteins could be classified in 3 groups: 9 proteins have been previously described as excreted/secreted in Leishmania and/or other species; 11 correspond to known proteins already characterized in Leishmania and/or other species although it is unknown whether they are excreted/secreted and 13 code for unknown proteins. Interestingly, the latter are transcribed as shown by RT-PCR and some of them are stage regulated. The L. major excreted/secreted proteins may constitute putative virulence factors, vaccine candidates and/or new drug targets.

  11. Delivery of a secreted soluble protein to the vacuole via a membrane anchor

    SciTech Connect

    Barrieu, F.; Chrispeels, M.J.

    1999-08-01

    To further understand how membrane proteins are sorted in the secretory system, the authors devised a strategy that involves the expression of a membrane-anchored yeast invertase in transgenic plants. The construct consisted of a signal peptide followed by the coding region of yeast invertase and the transmembrane domain and cytoplasmic tail of calnexin. The substitution of a lysine near the C terminus of calnexin with a glutamic acid residue ensured progression through the secretory system rather than retention in or return to the endoplasmic reticulum. In the transformed plants, invertase activity and a 70-kD cross-reacting protein were found in the vacuoles. This yeast invertase had plant-specific complex glycans, indicating that transport to the vacuole was mediated by the Golgi apparatus. The microsomal fraction contained a membrane-anchored 90-kD cross-reacting polypeptide, but was devoid of invertase activity. Their results indicate that this membrane-anchored protein proceeds in the secretory system beyond the point where soluble proteins are sorted for secretion, and is detached from its membrane anchor either just before or just after delivery to the vacuole.

  12. The genome of the amoeba symbiont "Candidatus Amoebophilus asiaticus" encodes an afp-like prophage possibly used for protein secretion.

    PubMed

    Penz, Thomas; Horn, Matthias; Schmitz-Esser, Stephan

    2010-01-01

    The recently sequenced genome of the obligate intracellular amoeba symbiont 'Candidatus Amoebophilus asiaticus' is unique among prokaryotic genomes due to its extremely large fraction of genes encoding proteins harboring eukaryotic domains such as ankyrin-repeats, TPR/SEL1 repeats, leucine-rich repeats, as well as F- and U-box domains, most of which likely serve in the interaction with the amoeba host. Here we provide evidence for the presence of additional proteins which are presumably presented extracellularly and should thus also be important for host cell interaction. Surprisingly, we did not find homologues of any of the well-known protein secretion systems required to translocate effector proteins into the host cell in the A. asiaticus genome, and the type six secretion systems seems to be incomplete. Here we describe the presence of a putative prophage in the A. asiaticus genome, which shows similarity to the antifeeding prophage from the insect pathogen Serratia entomophila. In S. entomophila this system is used to deliver toxins into insect hosts. This putative antifeeding-like prophage might thus represent the missing protein secretion apparatus in A. asiaticus. PMID:21178499

  13. Structure of the Type VI secretion system contractile sheath

    PubMed Central

    Kudryashev, Mikhail; Wang, Ray Yu-Ruei; Brackmann, Maximilian; Scherer, Sebastian; Maier, Timm; Baker, David; DiMaio, Frank; Stahlberg, Henning; Egelman, Edward H.; Basler, Marek

    2015-01-01

    Summary Bacteria use rapid contraction of a long sheath of the Type VI secretion system (T6SS) to deliver effectors into a target cell. Here we present an atomic resolution structure of a native contracted Vibrio cholerae sheath determined by cryo-electron microscopy. The sheath subunits, composed of tightly interacting proteins VipA and VipB, assemble into a six-start helix. The helix is stabilized by a core domain assembled from four β-strands donated by one VipA and two VipB molecules. The fold of inner and middle layers is conserved between T6SS and phage sheaths. However, the structure of the outer layer is distinct and suggests a mechanism of interaction of the bacterial sheath with an accessory ATPase, ClpV, that facilitates multiple rounds of effector delivery. Our results provide a mechanistic insight into assembly of contractile nanomachines that bacteria and phages use to translocate macromolecules across membranes. PMID:25723169

  14. Heat shock protein 70 regulates platelet integrin activation, granule secretion and aggregation.

    PubMed

    Rigg, Rachel A; Healy, Laura D; Nowak, Marie S; Mallet, Jérémy; Thierheimer, Marisa L D; Pang, Jiaqing; McCarty, Owen J T; Aslan, Joseph E

    2016-04-01

    Molecular chaperones that support protein quality control, including heat shock protein 70 (Hsp70), participate in diverse aspects of cellular and physiological function. Recent studies have reported roles for specific chaperone activities in blood platelets in maintaining hemostasis; however, the functions of Hsp70 in platelet physiology remain uninvestigated. Here we characterize roles for Hsp70 activity in platelet activation and function. In vitro biochemical, microscopy, flow cytometry, and aggregometry assays of platelet function, as well as ex vivo analyses of platelet aggregate formation in whole blood under shear, were carried out under Hsp70-inhibited conditions. Inhibition of platelet Hsp70 blocked platelet aggregation and granule secretion in response to collagen-related peptide (CRP), which engages the immunoreceptor tyrosine-based activation motif-bearing collagen receptor glycoprotein VI (GPVI)-Fc receptor-γ chain complex. Hsp70 inhibition also reduced platelet integrin-αIIbβ3 activation downstream of GPVI, as Hsp70-inhibited platelets showed reduced PAC-1 and fibrinogen binding. Ex vivo, pharmacological inhibition of Hsp70 in human whole blood prevented the formation of platelet aggregates on collagen under shear. Biochemical studies supported a role for Hsp70 in maintaining the assembly of the linker for activation of T cells signalosome, which couples GPVI-initiated signaling to integrin activation, secretion, and platelet function. Together, our results suggest that Hsp70 regulates platelet activation and function by supporting linker for activation of T cells-associated signaling events downstream of platelet GPVI engagement, suggesting a role for Hsp70 in the intracellular organization of signaling systems that mediate platelet secretion, "inside-out" activation of platelet integrin-αIIbβ3, platelet-platelet aggregation, and, ultimately, hemostatic plug and thrombus formation.

  15. Brucella outer membrane protein Omp25 induces microglial cells in vitro to secrete inflammatory cytokines and inhibit apoptosis

    PubMed Central

    Ma, Qiao-Li; Liu, Ai-Cui; Ma, Xiao-Juan; Wang, Yan-Bai; Hou, Yu-Ting; Wang, Zhen-Hai

    2015-01-01

    Omp25 protein, an outer membrane protein of Brucella, can cause damage to the central nervous system. As one type of macrophage, microglial cells play a role in immune surveillance and immune protection in the central nervous system; therefore, they are major targets of bacterial attack. The present study examined BV2 mouse microglial cells that were stimulated with different concentrations of Omp25 recombinant protein, and the secretion of inflammatory cytokines by the BV2 cells as well as their level of apoptosis were observed. The objective of the study was to preliminarily illustrate the possible mechanism that Omp25 uses to damage the central nervous system. Mouse BV2 microglial cells were incubated with different concentrations of Omp25 for 24 h, and an enzyme-linked immunosorbent assay (ELISA) was used to detect the secretion of the inflammatory cytokines interleukin (IL)-6, tumour necrosis factor (TNF)-α and HMGB1 (high mobility group box-1 protein); reverse transcription polymerase chain reaction (RT-PCR) was used to detect the expression of TLR4 (Toll-like receptor 4) mRNA; Annexin V-fluorescein isothiocyanate (FITC) double staining was used to detect apoptosis in the BV2 cells. After the BV2 cells were stimulated with different concentrations of Omp25, the levels of IL-6, TNF-α and HMGB1 was increased, and the difference was statistically significant compared with the control group (P<0.05). The secretion of TNF-α and HMGB1 showed a trend toward an initial increase followed by a decrease. The expression level of TLR4 mRNA was increased. Omp25 protein can inhibit apoptosis in BV2 cells. The outer membrane protein Omp25 of Brucella promotes microglial cells to secrete inflammatory cytokines and inhibit apoptosis. TLR4 may be involved in the immune response of the central nervous system to Brucella infection. PMID:26770344

  16. The Erwinia chrysanthemi Type III Secretion System Is Required for Multicellular Behavior

    PubMed Central

    Yap, Mee-Ngan; Yang, Ching-Hong; Barak, Jeri D.; Jahn, Courtney E.; Charkowski, Amy O.

    2005-01-01

    Enterobacterial animal pathogens exhibit aggregative multicellular behavior, which is manifested as pellicles on the culture surface and biofilms at the surface-liquid-air interface. Pellicle formation behavior requires production of extracellular polysaccharide, cellulose, and protein filaments, known as curli. Protein filaments analogous to curli are formed by many protein secretion systems, including the type III secretion system (TTSS). Here, we demonstrate that Erwinia chrysanthemi, which does not carry curli genes, requires the TTSS for pellicle formation. These data support a model where cellulose and generic protein filaments, which consist of either curli or TTSS-secreted proteins, are required for enterobacterial aggregative multicellular behavior. Using this assay, we found that hrpY, which encodes a two-component system response regulator homolog, is required for activity of hrpS, which encodes a σ54-dependent enhancer-binding protein homolog. In turn, hrpS is required for activity of the sigma factor homolog hrpL, which activates genes encoding TTSS structural and secreted proteins. Pellicle formation was temperature dependent and pellicles did not form at 36°C, even though TTSS genes were expressed at this temperature. We found that cellulose is a component of the E. chrysanthemi pellicle but that pellicle formation still occurs in a strain with an insertion in a cellulose synthase subunit homolog. Since the TTSS, but not the cellulose synthase subunit, is required for E. chrysanthemi pellicle formation, this inexpensive assay can be used as a high throughput screen for TTSS mutants or inhibitors. PMID:15629935

  17. T3SEdb: data warehousing of virulence effectors secreted by the bacterial Type III Secretion System

    PubMed Central

    2010-01-01

    Background Effectors of Type III Secretion System (T3SS) play a pivotal role in establishing and maintaining pathogenicity in the host and therefore the identification of these effectors is important in understanding virulence. However, the effectors display high level of sequence diversity, therefore making the identification a difficult process. There is a need to collate and annotate existing effector sequences in public databases to enable systematic analyses of these sequences for development of models for screening and selection of putative novel effectors from bacterial genomes that can be validated by a smaller number of key experiments. Results Herein, we present T3SEdb http://effectors.bic.nus.edu.sg/T3SEdb, a specialized database of annotated T3SS effector (T3SE) sequences containing 1089 records from 46 bacterial species compiled from the literature and public protein databases. Procedures have been defined for i) comprehensive annotation of experimental status of effectors, ii) submission and curation review of records by users of the database, and iii) the regular update of T3SEdb existing and new records. Keyword fielded and sequence searches (BLAST, regular expression) are supported for both experimentally verified and hypothetical T3SEs. More than 171 clusters of T3SEs were detected based on sequence identity comparisons (intra-cluster difference up to ~60%). Owing to this high level of sequence diversity of T3SEs, the T3SEdb provides a large number of experimentally known effector sequences with wide species representation for creation of effector predictors. We created a reliable effector prediction tool, integrated into the database, to demonstrate the application of the database for such endeavours. Conclusions T3SEdb is the first specialised database reported for T3SS effectors, enriched with manual annotations that facilitated systematic construction of a reliable prediction model for identification of novel effectors. The T3SEdb represents a

  18. A Library of Functional Recombinant Cell-surface and Secreted P. falciparum Merozoite Proteins*

    PubMed Central

    Crosnier, Cécile; Wanaguru, Madushi; McDade, Brian; Osier, Faith H.; Marsh, Kevin; Rayner, Julian C.; Wright, Gavin J.

    2013-01-01

    Malaria, an infectious disease caused by parasites of the Plasmodium genus, is one of the world's major public health concerns causing up to a million deaths annually, mostly because of P. falciparum infections. All of the clinical symptoms are associated with the blood stage of the disease, an obligate part of the parasite life cycle, when a form of the parasite called the merozoite recognizes and invades host erythrocytes. During erythrocyte invasion, merozoites are directly exposed to the host humoral immune system making the blood stage of the parasite a conceptually attractive therapeutic target. Progress in the functional and molecular characterization of P. falciparum merozoite proteins, however, has been hampered by the technical challenges associated with expressing these proteins in a biochemically active recombinant form. This challenge is particularly acute for extracellular proteins, which are the likely targets of host antibody responses, because they contain structurally critical post-translational modifications that are not added by some recombinant expression systems. Here, we report the development of a method that uses a mammalian expression system to compile a protein resource containing the entire ectodomains of 42 P. falciparum merozoite secreted and cell surface proteins, many of which have not previously been characterized. Importantly, we are able to recapitulate known biochemical activities by showing that recombinant MSP1-MSP7 and P12-P41 directly interact, and that both recombinant EBA175 and EBA140 can bind human erythrocytes in a sialic acid-dependent manner. Finally, we use sera from malaria-exposed immune adults to profile the relative immunoreactivity of the proteins and show that the majority of the antigens contain conformational (heat-labile) epitopes. We envisage that this resource of recombinant proteins will make a valuable contribution toward a molecular understanding of the blood stage of P. falciparum infections and

  19. Role for Golgi reassembly and stacking protein (GRASP) in polysaccharide secretion and fungal virulence

    PubMed Central

    Kmetzsch, Lívia; Joffe, Luna S.; Staats, Charley C.; de Oliveira, Débora L.; Fonseca, Fernanda L.; Cordero, Radames J. B.; Casadevall, Arturo; Nimrichter, Leonardo; Schrank, Augusto; Vainstein, Marilene H.; Rodrigues, Marcio L.

    2011-01-01

    Secretion of virulence factors is a critical mechanism for the establishment of cryptococcosis, a disease caused by the yeast pathogen Cryptococcus neoformans. One key virulence strategy of C. neoformans is the release of glucuronoxylomannan (GXM), a capsule-associated immune-modulatory polysaccharide that reaches the extracellular space through secretory vesicles. Golgi reassembly and stacking protein (GRASP) is required for unconventional protein secretion mechanisms in different eukaryotic cells, but its role in polysaccharide secretion is unknown. This study demonstrates that a C. neoformans functional mutant of a GRASP ortholog had attenuated virulence in an animal model of cryptococcosis, in comparison to wild type (WT) and reconstituted cells. Mutant cells manifested altered Golgi morphology, failed to produce typical polysaccharide capsules and showed a reduced ability to secrete GXM both in vitro and during animal infection. Isolation of GXM from cultures of WT, reconstituted or mutant strains revealed that the GRASP ortholog mutant produced polysaccharides with reduced dimensions. The mutant was also more efficiently associated to and killed by macrophages than WT and reconstituted cells. These results demonstrate that GRASP, a protein involved in unconventional protein secretion, is also required for polysaccharide secretion and virulence in C. neoformans. PMID:21542865

  20. Role for Golgi reassembly and stacking protein (GRASP) in polysaccharide secretion and fungal virulence.

    PubMed

    Kmetzsch, Lívia; Joffe, Luna S; Staats, Charley C; de Oliveira, Débora L; Fonseca, Fernanda L; Cordero, Radames J B; Casadevall, Arturo; Nimrichter, Leonardo; Schrank, Augusto; Vainstein, Marilene H; Rodrigues, Marcio L

    2011-07-01

    Secretion of virulence factors is a critical mechanism for the establishment of cryptococcosis, a disease caused by the yeast pathogen Cryptococcus neoformans. One key virulence strategy of C. neoformans is the release of glucuronoxylomannan (GXM), a capsule-associated immune-modulatory polysaccharide that reaches the extracellular space through secretory vesicles. Golgi reassembly and stacking protein (GRASP) is required for unconventional protein secretion mechanisms in different eukaryotic cells, but its role in polysaccharide secretion is unknown. This study demonstrates that a C. neoformans functional mutant of a GRASP orthologue had attenuated virulence in an animal model of cryptococcosis, in comparison with wild-type (WT) and reconstituted cells. Mutant cells manifested altered Golgi morphology, failed to produce typical polysaccharide capsules and showed a reduced ability to secrete GXM both in vitro and during animal infection. Isolation of GXM from cultures of WT, reconstituted or mutant strains revealed that the GRASP orthologue mutant produced polysaccharides with reduced dimensions. The mutant was also more efficiently associated to and killed by macrophages than WT and reconstituted cells. These results demonstrate that GRASP, a protein involved in unconventional protein secretion, is also required for polysaccharide secretion and virulence in C. neoformans.

  1. Nasal Secretion Protein Responses in Patients with Wild-Type Adenovirus Disease

    PubMed Central

    McCormick, David P.; Wenzel, Richard P.; Davies, John A.; Beam, Walter E.

    1972-01-01

    Proteins were studied in nasal secretions obtained from Marine Corps trainees infected with wild adenovirus type 7 both during the acute phase of illness and after recovery. Illness was associated with a marked increase in the concentration of serum proteins in the secretions, and during inflammation there was no apparent barrier to the passage of large molecules (molecular weight 775,000) from the serum into the respiratory passages. At the time of virus isolation, trainees requiring hospitalization had less immunoglobulin A (IgA) in their secretions even though they had greater quantities of immunoglobin G (P < 0.05) and albumin than trainees followed in the field, whose secretions were also tested at the time of virus isolation. Base-line IgA and protein concentrations were lower (P < 0.05) in hospitalized trainees than in trainees followed prospectively in the field. The results suggest a nonspecific protective function for secretion protein, although we have not excluded the possibility that field study trainees were protected by specific neutralizing antibody present in the nasal secretion. PMID:4344395

  2. Culture of outer epithelial cells from mantle tissue to study shell matrix protein secretion for biomineralization.

    PubMed

    Gong, Ningping; Li, Qi; Huang, Jing; Fang, Zi; Zhang, Guiyou; Xie, Liping; Zhang, Rongqing

    2008-09-01

    Mantle tissue plays an important role in shell biomineralization by secreting matrix proteins for shell formation. However, the mechanism by which it regulates matrix protein secretion is poorly understood, largely because of the lack of cellular tools for in vitro study and techniques to evaluate matrix protein secretion. We have isolated the outer epithelial cells of the mantle of the pearl oyster, Pinctada fucata, and evaluated cellular metabolism by measuring the secretion of the matrix protein, nacrein. A novel sensitive sandwich enzyme-linked immunosorbent assay (ELISA) was established to quantify nacrein. Mantle explant culture was demonstrated to provide dissociated tissue cells with high viability. Single dissociated cell types from explant culture were separated by density in a discontinuous Percoll gradient. The outer epithelial cells were isolated from other cell types by their higher density and identified by immunolabeling and ultrastructure analysis. ELISA assays revealed that the outer epithelial cells retained the ability to secrete nacrein in vitro. Moreover, increased nacrein secretion resulted from an increased Ca(2+) concentration in the culture media of the outer epithelial cells, in a concentration-dependent manner. These results confirm that outer epithelial cell culture and the ELISA method are useful tools for studying the regulatory mechanisms of shell biomineralization.

  3. Control of airway tube diameter and integrity by secreted chitin-binding proteins in Drosophila.

    PubMed

    Tiklová, Katarína; Tsarouhas, Vasilios; Samakovlis, Christos

    2013-01-01

    The transporting function of many branched tubular networks like our lungs and circulatory system depend on the sizes and shapes of their branches. Understanding the mechanisms of tube size control during organ development may offer new insights into a variety of human pathologies associated with stenoses or cystic dilations in tubular organs. Here, we present the first secreted luminal proteins involved in tube diametric expansion in the Drosophila airways. obst-A and gasp are conserved among insect species and encode secreted proteins with chitin binding domains. We show that the widely used tracheal marker 2A12, recognizes the Gasp protein. Analysis of obst-A and gasp single mutants and obst-A; gasp double mutant shows that both genes are primarily required for airway tube dilation. Similarly, Obst-A and Gasp control epidermal cuticle integrity and larval growth. The assembly of the apical chitinous matrix of the airway tubes is defective in gasp and obst-A mutants. The defects become exaggerated in double mutants indicating that the genes have partially redundant functions in chitin structure modification. The phenotypes in luminal chitin assembly in the airway tubes are accompanied by a corresponding reduction in tube diameter in the mutants. Conversely, overexpression of Obst-A and Gasp causes irregular tube expansion and interferes with tube maturation. Our results suggest that the luminal levels of matrix binding proteins determine the extent of diametric growth. We propose that Obst-A and Gasp organize luminal matrix assembly, which in turn controls the apical shapes of adjacent cells during tube diameter expansion. PMID:23826295

  4. Correlation of secretion of retinol and protein by the lacrimal gland

    SciTech Connect

    Ubels, J.L.; Rismondo, V.

    1986-03-01

    Retinol, which is present in tears, is secreted by the lacrimal gland. Retinol secretion is stimulated by cholinergic drugs and vasoactive intestinal peptide with characteristics very similar to the exocytotic secretion of protein by the lacrimal gland, suggesting that retinol and protein are secreted by similar mechanisms. The authors investigated this by cannulating the lacrimal gland ducts of rabbits and collecting lacrimal gland fluid (LGF) under conditions of maximal flow stimulated by IV injection of pilocarpine (400 ..mu..g/kg) every 20 min for 4.5 hr. Over this period LGF protein concentration decreased 36.4% from 22.8 +/- 1.94 mg/ml to 8.29 1.86 mg/ml while retinol decreased 37% from 55.1 +/- 16.2 ng/ml to 20.4 +/- 6.5 ng/ml. The retinol/protein ratio remained constant at 2.88 ng/mg. This demonstrates a strong correlation between retinol and protein secretion, suggesting that retinol may be protein bound. To investigate binding of retinol to LGF protein, LGF was incubated with /sup 3/H-retinol. The bound and unbound retinol were separated on a Lipidex 1000 column. Retinol binding was linear over a range of 1.25-200 nM /sup 3/H-retinol. Binding was not inhibited by PCMBS or addition of a 100-fold excess of unlabeled retinol and was not increased by prior extraction of endogenous retinol from the LGF. This indicates that the binding of retinol to LGF protein is non-specific. Retinol therefore appears to be secreted by the lacrimal gland cells in non-specific association with protein.

  5. Channel-tunnels: outer membrane components of type I secretion systems and multidrug efflux pumps of Gram-negative bacteria.

    PubMed

    Andersen, C

    2003-01-01

    For translocation across the cell envelope of Gram-negative bacteria, substances have to overcome two permeability barriers, the inner and outer membrane. Channel-tunnels are outer membrane proteins, which are central to two distinct export systems: the type I secretion system exporting proteins such as toxins or proteases, and efflux pumps discharging antibiotics, dyes, or heavy metals and thus mediating drug resistance. Protein secretion is driven by an inner membrane ATP-binding cassette (ABC) transporter while drug efflux occurs via an inner membrane proton antiporter. Both inner membrane transporters are associated with a periplasmic accessory protein that recruits an outer membrane channel-tunnel to form a functional export complex. Prototypes of these export systems are the hemolysin secretion system and the AcrAB/TolC drug efflux pump of Escherichia coli, which both employ TolC as an outer membrane component. Its remarkable conduit-like structure, protruding 100 A into the periplasmic space, reveals how both systems are capable of transporting substrates across both membranes directly from the cytosol into the external environment. Proteins of the channel-tunnel family are widespread within Gram-negative bacteria. Their involvement in drug resistance and in secretion of pathogenic factors makes them an interesting system for further studies. Understanding the mechanism of the different export apparatus could help to develop new drugs, which block the efflux pumps or the secretion system.

  6. N-acyl-L-homoserine lactone-mediated regulation of the lip secretion system in Serratia liquefaciens MG1.

    PubMed

    Riedel, K; Ohnesorg, T; Krogfelt, K A; Hansen, T S; Omori, K; Givskov, M; Eberl, L

    2001-03-01

    The analysis of Serratia liquefaciens MG1 'luxAB insertion mutants that are responsive to N-butanoyl-L-homoserine lactone revealed that expression of lipB is controlled by the swr quorum-sensing system. LipB is part of the Lip exporter, a type I secretion system, which is responsible for the secretion of extracellular lipase, metalloprotease, and S-layer protein.

  7. Influence of secretagogues on asynchronous secretion of newly synthesized pancreatic proteins in the conscious rat

    SciTech Connect

    Keim, V.; Rohr, G.

    1987-01-01

    The secretion of newly synthesized pancreatic enzymes was studied in pancreatic duct cannulated rats after intravenous injection of 100 microCi of (/sup 35/S)methionine. Secretion rate was stimulated by intravenous infusion of either cerulein (0.2 microgram/kg h) or carbachol (10 nmol/kg h) starting simultaneously with or 180 min before the injection of the labeled methionine. Secretory proteins were analyzed by sodium dodecyl sulfate (SDS) gel electrophoresis or by nondenaturing gel electrophoresis followed by determination of the radioactivity associated with the individual proteins. Similar to unstimulated controls in all experiments, an early secretion of newly synthesized trypsinogen and chymotrypsinogen was found, whereas amylase and lipase were secreted only after a certain lag period. The results suggest that the intracellular transit of endoproteases is faster than that of other enzymes, irrespective of whether or not secretagogues were applied.

  8. Selective secretion of annexin 1, a protein without a signal sequence, by the human prostate gland.

    PubMed

    Christmas, P; Callaway, J; Fallon, J; Jones, J; Haigler, H T

    1991-02-01

    Annexins are primarily intracellular proteins as would be predicted from their lack of hydrophobic signal sequences. However, we now report that the human prostate gland selectively secretes high concentrations of annexin 1 (also called lipocortin 1 and p35) and a proteolytic cleavage product, des1-29-annexin 1, into seminal plasma. Secreted annexin 1 had a blocked amino terminus and was structurally indistinguishable from intracellular annexin 1. Although annexin 1 and the structurally related protein, annexin 4, co-localized to many of the same cells of the ductal epithelium of the prostate, annexin 4 was not secreted. Thus, the secretion of annexin 1 appears to involve a highly selective mechanism that does not involve targeting to the endoplasmic reticulum by a hydrophobic signal sequence.

  9. Secretion of human interleukin-2 fused with green fluorescent protein in recombinant Pichia pastoris.

    PubMed

    Cha, Hyung Joon; Dalal, Nimish N; Bentley, William E

    2005-07-01

    Methylotrophic yeast Pichia pastoris is convenient for the expression of eukaryotic foreign proteins owing to its potential for posttranslational modifications, protein folding, and facile culturing. In this work, human interleukin (hIL)-2 was successfully produced as a secreted fusion form in recombinant P. pastoris. By employing green fluorescent protein (GFP) as a monitoring fusion partner, clear identification of fusion protein expression and quantification of intracellular hIL-2 were possible even though there was no correlation between culture supernatant fluorescence and secreted hIL-2 owing to high media interference. Importantly, by the addition of casamino acids in basal medium, we were able to enhance threefold amount of secreted hIL-2, which was present both as a fusion and as a clipped fragment. PMID:16014994

  10. Sec-Secretion and Sortase-Mediated Anchoring of Proteins in Gram-Postive Bacteria

    PubMed Central

    Schneewind, Olaf; Missiakas, Dominique

    2014-01-01

    Signal peptide-driven secretion of precursor proteins directs polypeptides across the plasma membrane of bacteria. Two pathways, Sec- and SRP-dependent, converge at the SecYEG translocon to thread unfolded precursor proteins across the membrane, whereas folded preproteins are routed via the Tat secretion pathway. Gram-positive bacteria lack an outer membrane and are surrounded by a rigid layer of peptidoglycan. Interactions with their environment are mediated by proteins that are retained in the cell wall, often through covalent attachment to the peptidoglycan. In this review, we describe the mechanisms for both Sec-dependent secretion and sortase-dependent assembly of proteins in the envelope of Gram-positive bacteria. PMID:24269844

  11. Microfluidic screening and whole-genome sequencing identifies mutations associated with improved protein secretion by yeast

    PubMed Central

    Huang, Mingtao; Bai, Yunpeng; Sjostrom, Staffan L.; Hallström, Björn M.; Liu, Zihe; Petranovic, Dina; Uhlén, Mathias; Joensson, Haakan N.; Andersson-Svahn, Helene; Nielsen, Jens

    2015-01-01

    There is an increasing demand for biotech-based production of recombinant proteins for use as pharmaceuticals in the food and feed industry and in industrial applications. Yeast Saccharomyces cerevisiae is among preferred cell factories for recombinant protein production, and there is increasing interest in improving its protein secretion capacity. Due to the complexity of the secretory machinery in eukaryotic cells, it is difficult to apply rational engineering for construction of improved strains. Here we used high-throughput microfluidics for the screening of yeast libraries, generated by UV mutagenesis. Several screening and sorting rounds resulted in the selection of eight yeast clones with significantly improved secretion of recombinant α-amylase. Efficient secretion was genetically stable in the selected clones. We performed whole-genome sequencing of the eight clones and identified 330 mutations in total. Gene ontology analysis of mutated genes revealed many biological processes, including some that have not been identified before in the context of protein secretion. Mutated genes identified in this study can be potentially used for reverse metabolic engineering, with the objective to construct efficient cell factories for protein secretion. The combined use of microfluidics screening and whole-genome sequencing to map the mutations associated with the improved phenotype can easily be adapted for other products and cell types to identify novel engineering targets, and this approach could broadly facilitate design of novel cell factories. PMID:26261321

  12. Structural models of intrinsically disordered and calcium-bound folded states of a protein adapted for secretion

    PubMed Central

    O’Brien, Darragh P.; Hernandez, Belen; Durand, Dominique; Hourdel, Véronique; Sotomayor-Pérez, Ana-Cristina; Vachette, Patrice; Ghomi, Mahmoud; Chamot-Rooke, Julia; Ladant, Daniel; Brier, Sébastien; Chenal, Alexandre

    2015-01-01

    Many Gram-negative bacteria use Type I secretion systems, T1SS, to secrete virulence factors that contain calcium-binding Repeat-in-ToXin (RTX) motifs. Here, we present structural models of an RTX protein, RD, in both its intrinsically disordered calcium-free Apo-state and its folded calcium-bound Holo-state. Apo-RD behaves as a disordered polymer chain comprising several statistical elements that exhibit local rigidity with residual secondary structure. Holo-RD is a folded multi-domain protein with an anisometric shape. RTX motifs thus appear remarkably adapted to the structural and mechanistic constraints of the secretion process. In the low calcium environment of the bacterial cytosol, Apo-RD is an elongated disordered coil appropriately sized for transport through the narrow secretion machinery. The progressive folding of Holo-RD in the extracellular calcium-rich environment as it emerges form the T1SS may then favor its unidirectional export through the secretory channel. This process is relevant for hundreds of bacterial species producing virulent RTX proteins. PMID:26374675

  13. Interactions between Trypanosoma cruzi Secreted Proteins and Host Cell Signaling Pathways

    PubMed Central

    Watanabe Costa, Renata; da Silveira, Jose F.; Bahia, Diana

    2016-01-01

    Chagas disease is one of the prevalent neglected tropical diseases, affecting at least 6–7 million individuals in Latin America. It is caused by the protozoan parasite Trypanosoma cruzi, which is transmitted to vertebrate hosts by blood-sucking insects. After infection, the parasite invades and multiplies in the myocardium, leading to acute myocarditis that kills around 5% of untreated individuals. T. cruzi secretes proteins that manipulate multiple host cell signaling pathways to promote host cell invasion. The primary secreted lysosomal peptidase in T. cruzi is cruzipain, which has been shown to modulate the host immune response. Cruzipain hinders macrophage activation during the early stages of infection by interrupting the NF-kB P65 mediated signaling pathway. This allows the parasite to survive and replicate, and may contribute to the spread of infection in acute Chagas disease. Another secreted protein P21, which is expressed in all of the developmental stages of T. cruzi, has been shown to modulate host phagocytosis signaling pathways. The parasite also secretes soluble factors that exert effects on host extracellular matrix, such as proteolytic degradation of collagens. Finally, secreted phospholipase A from T. cruzi contributes to lipid modifications on host cells and concomitantly activates the PKC signaling pathway. Here, we present a brief review of the interaction between secreted proteins from T. cruzi and the host cells, emphasizing the manipulation of host signaling pathways during invasion. PMID:27065960

  14. An integrated microfluidic chip system for single-cell secretion profiling of rare circulating tumor cells.

    PubMed

    Deng, Yuliang; Zhang, Yu; Sun, Shuai; Wang, Zhihua; Wang, Minjiao; Yu, Beiqin; Czajkowsky, Daniel M; Liu, Bingya; Li, Yan; Wei, Wei; Shi, Qihui

    2014-12-16

    Genetic and transcriptional profiling, as well as surface marker identification of single circulating tumor cells (CTCs) have been demonstrated. However, quantitatively profiling of functional proteins at single CTC resolution has not yet been achieved, owing to the limited purity of the isolated CTC populations and a lack of single-cell proteomic approaches to handle and analyze rare CTCs. Here, we develop an integrated microfluidic system specifically designed for streamlining isolation, purification and single-cell secretomic profiling of CTCs from whole blood. Key to this platform is the use of photocleavable ssDNA-encoded antibody conjugates to enable a highly purified CTC population with <75 'contaminated' blood cells. An enhanced poly-L-lysine barcode pattern is created on the single-cell barcode chip for efficient capture rare CTC cells in microchambers for subsequent secreted protein profiling. This system was extensively evaluated and optimized with EpCAM-positive HCT116 cells seeded into whole blood. Patient blood samples were employed to assess the utility of the system for isolation, purification and single-cell secretion profiling of CTCs. The CTCs present in patient blood samples exhibit highly heterogeneous secretion profile of IL-8 and VEGF. The numbers of secreting CTCs are found not in accordance with CTC enumeration based on immunostaining in the parallel experiments.

  15. Genetically distinct pathways guide effector export through the type VI secretion system

    PubMed Central

    Whitney, John C.; Beck, Christina M.; Goo, Young Ah; Russell, Alistair B.; Harding, Brittany; De Leon, Justin A.; Cunningham, David A.; Tran, Bao Q.; Low, David A.; Goodlett, David R.; Hayes, Christopher S.; Mougous, Joseph D.

    2014-01-01

    Summary Bacterial secretion systems often employ molecular chaperones to recognize and facilitate export of their substrates. Recent work demonstrated that a secreted component of the type VI secretion system (T6SS), hemolysin co-regulated protein (Hcp), binds directly to effectors, enhancing their stability in the bacterial cytoplasm. Herein, we describe a quantitative cellular proteomics screen for T6S substrates that exploits this chaperone-like quality of Hcp. Application of this approach to the Hcp secretion island I-encoded T6SS (H1-T6SS) of Pseudomonas aeruginosa led to the identification of a novel effector protein, termed Tse4 (type VI secretion exported 4), subsequently shown to act as a potent intra-specific H1-T6SS-delivered antibacterial toxin. Interestingly, our screen failed to identify two predicted H1-T6SS effectors, Tse5 and Tse6, which differ from Hcp-stabilized substrates by the presence of toxin-associated PAAR-repeat motifs and genetic linkage to members of the valine-glycine repeat protein G (vgrG) genes. Genetic studies further distinguished these two groups of effectors: Hcp-stabilized effectors were found to display redundancy in interbacterial competition with respect to the requirement for the two H1-T6SS-exported VgrG proteins, whereas Tse5 and Tse6 delivery strictly required a cognate VgrG. Together, we propose that interaction with either VgrG or Hcp defines distinct pathways for T6S effector export. PMID:24589350

  16. A Type II Protein Secretory Pathway Required for Levansucrase Secretion by Gluconacetobacter diazotrophicus

    PubMed Central

    Arrieta, Juan G.; Sotolongo, Mailin; Menéndez, Carmen; Alfonso, Dubiel; Trujillo, Luis E.; Soto, Melvis; Ramírez, Ricardo; Hernández, Lázaro

    2004-01-01

    The endophytic diazotroph Gluconacetobacter diazotrophicus secretes a constitutively expressed levansucrase (LsdA, EC 2.4.1.10) to utilize plant sucrose. LsdA, unlike other extracellular levansucrases from gram-negative bacteria, is transported to the periplasm by a signal-peptide-dependent pathway. We identified an unusually organized gene cluster encoding at least the components LsdG, -O, -E, -F, -H, -I, -J, -L, -M, -N, and -D of a type II secretory system required for LsdA translocation across the outer membrane. Another open reading frame, designated lsdX, is located between the operon promoter and lsdG, but it was not identified in BLASTX searches of the DDBJ/EMBL/GenBank databases. The lsdX, -G, and -O genes were isolated from a cosmid library of strain SRT4 by complementation of an ethyl methanesulfonate mutant unable to transport LsdA across the outer membrane. The downstream genes lsdE, -F, -H, -I, -J, -L, -M, -N, and -D were isolated through chromosomal walking. The high G+C content (64 to 74%) and the codon usage of the genes identified are consistent with the G+C content and codon usage of the standard G. diazotrophicus structural gene. Sequence analysis of the gene cluster indicated that a polycistronic transcript is synthesized. Targeted disruption of lsdG, lsdO, or lsdF blocked LsdA secretion, and the bacterium failed to grow on sucrose. Replacement of Cys162 by Gly at the C terminus of the pseudopilin LsdG abolished the protein functionality, suggesting that there is a relationship with type IV pilins. Restriction fragment length polymorphism analysis revealed conservation of the type II secretion operon downstream of the levansucrase-levanase (lsdA-lsdB) locus in 14 G. diazotrophicus strains representing 11 genotypes recovered from four different host plants in diverse geographical regions. To our knowledge, this is the first report of a type II pathway for protein secretion in the Acetobacteraceae. PMID:15262940

  17. Anaplasma phagocytophilum AnkA secreted by type IV secretion system is tyrosine phosphorylated by Abl-1 to facilitate infection.

    PubMed

    Lin, Mingqun; den Dulk-Ras, Amke; Hooykaas, Paul J J; Rikihisa, Yasuko

    2007-11-01

    Anaplasma phagocytophilum, the agent of human granulocytic anaplasmosis, is an obligate intracellular bacterium of granulocytes. A. phagocytophilum specifically induces tyrosine phosphorylation of a 160 kDa protein (P160) in host cells. However, identity of P160, kinases involved, and effects of tyrosine phosphorylation on bacterial infection remain largely unknown. Here, we demonstrated through proteomic analysis that P160, an abundant and rapidly tyrosine-phosphorylated protein throughout infection, was AnkA of bacterial origin. Differential centrifugation and confocal microscopy revealed that AnkA was rarely retained within A. phagocytophilum or its inclusion, but localized mainly in the cytoplasm of infected cells. Using Cre recombinase reporter assay of Agrobacterium tumefaciens, we proved that AnkA could be secreted by VirB/D4-dependent type IV secretion (T4S) system. Yeast two-hybrid and coimmunoprecipitation analyses demonstrated that AnkA could bind to Abl-interactor 1 (Abi-1), an adaptor protein that interacts with Abl-1 tyrosine kinase, thus mediating AnkA phosphorylation. AnkA and Abl-1 were critical for bacterial infection, as infection was inhibited upon host cytoplasmic delivery of anti-AnkA antibody, Abl-1 knockdown with targeted siRNA, or treatment with a specific pharmacological inhibitor of Abl-1. These data establish AnkA as the first proven T4S substrate in members of obligate intracellular alpha-proteobacteria; furthermore, it demonstrated that AnkA plays an important role in facilitating intracellular infection by activating Abl-1 signalling pathway, and suggest a novel approach to treatment of human granulocytic anaplasmosis through inhibition of host cell signalling pathways. PMID:17587335

  18. Iron starvation regulates the type III secretion system in Bordetella bronchiseptica.

    PubMed

    Kurushima, Jun; Kuwae, Asaomi; Abe, Akio

    2012-06-01

    The type III secretion system (T3SS) plays a key role in the exertion of full virulence by Bordetella bronchiseptica. However, little is known about the environmental stimuli that induce expression of T3SS genes. Here, it is reported that iron starvation is a signal for T3SS gene expression in B. bronchiseptica. It was found that, when B. bronchiseptica is cultured under iron-depleted conditions, secretion of type III secreted proteins is greater than that in bacteria grown under iron-replete conditions. Furthermore, it was confirmed that induction of T3SS-dependent host cell cytotoxicity and hemolytic activity is greatly enhanced by infection with iron-depleted Bordetella. In contrast, production of filamentous hemagglutinin is reduced in iron-depleted Bordetella. Thus, B. bronchiseptica controls the expression of virulence genes in response to iron starvation.

  19. DsbA2 (27 kDa Com1-like protein) of Legionella pneumophila catalyses extracytoplasmic disulphide-bond formation in proteins including the Dot/Icm type IV secretion system.

    PubMed

    Jameson-Lee, Max; Garduño, Rafael A; Hoffman, Paul S

    2011-05-01

    In Gram-negative bacteria, thiol oxidoreductases catalyse the formation of disulphide bonds (DSB) in extracytoplasmic proteins. In this study, we sought to identify DSB-forming proteins required for assembly of macromolecular structures in Legionella pneumophila. Here we describe two DSB-forming proteins, one annotated as dsbA1 and the other annotated as a 27 kDa outer membrane protein similar to Com1 of Coxiella burnetii, which we designate as dsbA2. Both proteins are predicted to be periplasmic, and while dsbA1 mutants were readily isolated and without phenotype, dsbA2 mutants were not obtained. To advance studies of DsbA2, a cis-proline residue at position 198 was replaced with threonine that enables formation of stable disulphide-bond complexes with substrate proteins. Expression of DsbA2 P198T mutant protein from an inducible promoter produced dominant-negative effects on DsbA2 function that resulted in loss of infectivity for amoeba and HeLa cells and loss of Dot/Icm T4SS-mediated contact haemolysis of erythrocytes. Analysis of captured DsbA2 P198T-substrate complexes from L. pneumophila by mass spectrometry identified periplasmic and outer membrane proteins that included components of the Dot/Icm T4SS. More broadly, our studies establish a DSB oxidoreductase function for the Com1 lineage of DsbA2-like proteins which appear to be conserved among those bacteria also expressing T4SS. PMID:21375592

  20. DsbA2 (27-kDa Com1-Like Protein) of Legionella pneumophila Catalyses Extracytoplasmic Disulfide-Bond Formation in Proteins Including the Dot/Icm Type IV Secretion System

    PubMed Central

    Jameson-Lee, Max; Garduno, Rafael A.; Hoffman, Paul S.

    2011-01-01

    Summary In Gram negative bacteria, thiol oxidoreductases catalyze the formation of disulfide bonds (DSB) in extracytoplasmic proteins. In this study, we sought to identify DSB-forming proteins required for assembly of macromolecular structures in Legionella pneumophila. Here we describe two DSB forming proteins, one annotated as dsbA1 and the other annotated as a 27-kDa outer membrane protein similar to Com1 of Coxiella burnetii, which we designate as dsbA2. Both proteins are predicted to be periplasmic, and while dsbA1 mutants were readily isolated and without phenotype, dsbA2 mutants were not obtained. To advance studies of DsbA2, a cis-proline residue at position 198 was replaced with threonine that enables formation of stable disulfide-bond complexes with substrate proteins. Expression of DsbA2 P198T-mutant protein from an inducible promoter produced dominant-negative effects on DsbA2 function that resulted in loss of infectivity for amoeba and HeLa cells and loss of Dot/Icm T4SS-mediated contact hemolysis of erythrocytes. Analysis of captured DsbA2 P198T-substrate complexes from L. pneumophila by mass spectrometry identified periplasmic and outer membrane proteins that included components of the Dot/Icm T4SS. More broadly, our studies establish a DSB oxidoreductase function for the Com1 lineage of DsbA2-like proteins which appear to be conserved among those bacteria also expressing T4SS. PMID:21375592

  1. Miraculin, a taste-modifying protein is secreted into intercellular spaces in plant cells.

    PubMed

    Hirai, Tadayoshi; Sato, Mayuko; Toyooka, Kiminari; Sun, Hyeon-Jin; Yano, Megumu; Ezura, Hiroshi

    2010-02-15

    A taste-modifying protein, miraculin, is highly accumulated in ripe fruit of miracle fruit (Richadella dulcifica) and the content can reach up to 10% of the total soluble protein in these fruits. Although speculated for decades that miraculin is secreted into intercellular spaces in miracle fruit, no evidence exists of its cellular localization. To study the cellular localization of miraculin in plant cells, using miracle fruit and transgenic tomato that constitutively express miraculin, immunoelectron microscopy, imaging GFP fusion proteins, and immunological detection of secreted proteins in culture medium of transgenic tomato were carried out. Immunoelectron microscopy showed the specific accumulation of miraculin in the intercellular layers of both miracle fruit and transgenic tomato. Imaging GFP fusion protein demonstrated that the miraculin-GFP fusion protein was accumulated in the intercellular spaces of tomato epidermal cells. Immunological detection of secreted proteins in culture medium of transgenic tomato indicated that miraculin was secreted from the roots of transgenic tomato expressing miraculin. This study firstly showed the evidences of the intercellular localization of miraculin, and provided a new insight of biological roles of miraculin in plants. PMID:19712996

  2. A model system for the study of stimulus - enzyme secretion coupling in rat pancreatic acinar cells.

    PubMed

    Guderley, H; Heisler, S

    1980-08-01

    A superfusion technique was developed as a model system for the study of stimulus-secretion coupling in collagenase-dispersed rat pancreatic acinar cells. Cells (10(7)) were combined with a slurry of Biogel P-4 beads and the mixture was decanted into a plastic column (1.5 cm X 8.5 cm) and perfused with Krebs-Ringer. Amylase activity was determined in sequentially collected effusate fractions and used to estimate the secretory rate. Carbachol, carbachol plus dibutyryl cyclic AMP, cholecystokinin-pancreozymin, and the ionophore A-23187 all stimulated a rapid increase in the rate of secretion. Cell integrity was unaffected by these stimulants as evidenced microscopically and by the lack of lactate dehydrogenase activity in the effusates. Enzymes secreted in response to secretagogues were collected, concentrated, and isoelectrofocused on polyacrylamide gels. A film detection technique was developed to localize amylase activity. The model system has the following advantages: (1) secreted proteolytic products are removed from the vicinity of cells, thereby preventing direct cellular damage and hydrolysis of peptide agonist; (2) the need to add trypsin inhibitors is eliminated and only a minimal addition of albumin (0.001%) is required, thus allowing the separation and distortion-free analysis of secreted proteins; (3) the perfusion conditions can be changed rapidly without disturbing the cells. The model described is therefore well suited to the study of both molecular and kinetic events involved in the enzyme secretory phenomenon in exocrine pancreas. PMID:6164455

  3. Regulation of conjunctival goblet cell secretion by Ca(2+)and protein kinase C.

    PubMed

    Dartt, D A; Rios, J D; Kanno, H; Rawe, I M; Zieske, J D; Ralda, N; Hodges, R R; Zoukhri, D; Rios, J R

    2000-12-01

    Conjunctival goblet cells secrete mucus in response to cholinergic (muscarinic) agonists, but the underlying signaling pathways activated in this tissue are not well understood. Cholinergic agonists usually activate phospholipase C to produce inositol 1,4,5 trisphosphate and diacylglycerol. Inositol 1,4,5 trisphosphate increases the intracellular Ca(2+)concentration ([Ca2(+)](i)) while diacylglycerol activates protein kinase C (PKC). PKC and Ca(2+), either by itself or with calmodulin, activate cellular functions. Goblet cell glycoprotein secretion, our index of mucin secretion, was measured from pieces of rat conjunctiva with an enzyme-linked lectin assay using the lectin Ulex europaeus agglutinin I (UEA-I). UEA-I selectively recognizes high molecular weight glycoproteins secreted by the goblet cells. Increasing the [Ca(+)](i)with the Ca(2+)ionophore ionomycin stimulated glycoprotein secretion from conjunctival goblet cells. Cholinergic agonist-induced secretion was completely blocked by chelation of extracellular Ca(2+)and by the Ca(2+)/calmodulin-dependent protein kinase inhibitors KN93 and W7 as well as their inactive analogs KN92 and W5. Activation of classical and novel PKC isozymes by phorbol 12-myristate 13-acetate and phorbol 12,13-dibutyrate stimulated goblet cell glycoprotein secretion. When ionomycin and PMA were added simultaneously, secretion was additive. PKC isozymes were identified by Western blotting analyses with antibodies specific to nine of the 11 PKC isozymes (PKCgamma and zeta were not tested). All nine PKC isozymes were identified in the conjunctival epithelium. The cellular location of the PKC isozymes was determined by immunofluorescence microscopy. Goblet cells contained the classical PKC isozymes PKCalpha, -betaI and -betaII, the novel PKC isozymes PKCepsilon, -theta;, and - mu, and the atypical PKC isozyme PKCzeta. We were unable to determine if PKC activation is required for cholinergic-agonist induced secretion because the PKC

  4. Comparative analyses of secreted proteins from the phytopathogenic fungus Verticillium dahliae in response to nitrogen starvation.

    PubMed

    Chu, Jun; Li, Wei-Fang; Cheng, Wang; Lu, Mo; Zhou, Ke-Hai; Zhu, He-Qin; Li, Fu-Guang; Zhou, Cong-Zhao

    2015-05-01

    The soilborne fungus Verticillium dahliae is the major pathogen that causes the verticillium wilt disease of plants, which leads to huge economic loss worldwide. At the early stage of infection, growth of the pathogen is subject to the nutrition stress of limited nitrogen. To investigate the secreted pathogenic proteins that play indispensable roles during invasion at this stage, we compared the profiles of secreted proteins of V. dahliae under nitrogen starvation and normal conditions by using in-gel and in-solution digestion combined with liquid chromatography-nano-electrospray ionization tandem mass spectrometry (LC-nanoESI-MS). In total, we identified 212 proteins from the supernatant of liquid medium, including 109 putative secreted proteins. Comparative analysis indicated that the expression of 76 proteins was induced, whereas that of 9 proteins was suppressed under nitrogen starvation. Notably, 24 proteins are constitutively expressed. Further bioinformatic exploration enabled us to classify the stress-induced proteins into seven functional groups: cell wall degradation (10.5%), reactive oxygen species (ROS) scavenging and stress response (11.8%), lipid effectors (5.3%), protein metabolism (21.1%), carbohydrate metabolism (15.8%), electron-proton transport and energy metabolism (14.5%), and other (21.0%). In addition, most stress-suppressed proteins are involved in the cell-wall remodeling. Taken together, our analyses provide insights into the pathogenesis of V. dahliae and might give hints for the development of novel strategy against the verticillium wilt disease.

  5. Protein malnutrition potentiates the amplifying pathway of insulin secretion in adult obese mice.

    PubMed

    Leite, Nayara Carvalho; de Paula, Flávia; Borck, Patrícia Cristine; Vettorazzi, Jean Franciesco; Branco, Renato Chaves Souto; Lubaczeuski, Camila; Boschero, Antonio Carlos; Zoppi, Claudio Cesar; Carneiro, Everardo Magalhães

    2016-01-01

    Pancreatic beta cell (β) dysfunction is an outcome of malnutrition. We assessed the role of the amplifying pathway (AMP PATH) in β cells in malnourished obese mice. C57Bl-6 mice were fed a control (C) or a low-protein diet (R). The groups were then fed a high-fat diet (CH and RH). AMP PATH contribution to insulin secretion was assessed upon incubating islets with diazoxide and KCl. CH and RH displayed increased glucose intolerance, insulin resistance and glucose-stimulated insulin secretion. Only RH showed a higher contribution of the AMP PATH. The mitochondrial membrane potential of RH was decreased, and ATP flux was unaltered. In RH islets, glutamate dehydrogenase (GDH) protein content and activity increased, and the AMP PATH contribution was reestablished when GDH was blunted. Thus, protein malnutrition induces mitochondrial dysfunction in β cells, leading to an increased contribution of the AMP PATH to insulin secretion through the enhancement of GDH content and activity.

  6. Protein malnutrition potentiates the amplifying pathway of insulin secretion in adult obese mice

    PubMed Central

    Leite, Nayara Carvalho; de Paula, Flávia; Borck, Patrícia Cristine; Vettorazzi, Jean Franciesco; Branco, Renato Chaves Souto; Lubaczeuski, Camila; Boschero, Antonio Carlos; Zoppi, Claudio Cesar; Carneiro, Everardo Magalhães

    2016-01-01

    Pancreatic beta cell (β) dysfunction is an outcome of malnutrition. We assessed the role of the amplifying pathway (AMP PATH) in β cells in malnourished obese mice. C57Bl-6 mice were fed a control (C) or a low-protein diet (R). The groups were then fed a high-fat diet (CH and RH). AMP PATH contribution to insulin secretion was assessed upon incubating islets with diazoxide and KCl. CH and RH displayed increased glucose intolerance, insulin resistance and glucose-stimulated insulin secretion. Only RH showed a higher contribution of the AMP PATH. The mitochondrial membrane potential of RH was decreased, and ATP flux was unaltered. In RH islets, glutamate dehydrogenase (GDH) protein content and activity increased, and the AMP PATH contribution was reestablished when GDH was blunted. Thus, protein malnutrition induces mitochondrial dysfunction in β cells, leading to an increased contribution of the AMP PATH to insulin secretion through the enhancement of GDH content and activity. PMID:27633083

  7. Protein malnutrition potentiates the amplifying pathway of insulin secretion in adult obese mice.

    PubMed

    Leite, Nayara Carvalho; de Paula, Flávia; Borck, Patrícia Cristine; Vettorazzi, Jean Franciesco; Branco, Renato Chaves Souto; Lubaczeuski, Camila; Boschero, Antonio Carlos; Zoppi, Claudio Cesar; Carneiro, Everardo Magalhães

    2016-01-01

    Pancreatic beta cell (β) dysfunction is an outcome of malnutrition. We assessed the role of the amplifying pathway (AMP PATH) in β cells in malnourished obese mice. C57Bl-6 mice were fed a control (C) or a low-protein diet (R). The groups were then fed a high-fat diet (CH and RH). AMP PATH contribution to insulin secretion was assessed upon incubating islets with diazoxide and KCl. CH and RH displayed increased glucose intolerance, insulin resistance and glucose-stimulated insulin secretion. Only RH showed a higher contribution of the AMP PATH. The mitochondrial membrane potential of RH was decreased, and ATP flux was unaltered. In RH islets, glutamate dehydrogenase (GDH) protein content and activity increased, and the AMP PATH contribution was reestablished when GDH was blunted. Thus, protein malnutrition induces mitochondrial dysfunction in β cells, leading to an increased contribution of the AMP PATH to insulin secretion through the enhancement of GDH content and activity. PMID:27633083

  8. Aim, Load, Fire: The Type VI Secretion System, a Bacterial Nanoweapon.

    PubMed

    Cianfanelli, Francesca R; Monlezun, Laura; Coulthurst, Sarah J

    2016-01-01

    Bacteria utilise specialised protein secretion systems to interact with host organisms, competitor bacteria, and the environment. The Type VI secretion system (T6SS) is a versatile weapon deployed by many bacterial species to target either host cells or rival bacteria. The widespread occurrence and significance of the T6SS is becoming increasingly appreciated, as is its intriguing mode of action. The T6SS delivers multiple, diverse effector proteins directly into target cells using a dynamic 'firing' mechanism related to the action of contractile bacteriophage tails. Here, we summarise the contribution of recent findings to our developing picture of how the T6SS assembles and fires, how it is loaded with different types of effectors, and how it can be aimed towards an incoming assault. PMID:26549582

  9. Systematic Identification of Cyclic-di-GMP Binding Proteins in Vibrio cholerae Reveals a Novel Class of Cyclic-di-GMP-Binding ATPases Associated with Type II Secretion Systems.

    PubMed

    Roelofs, Kevin G; Jones, Christopher J; Helman, Sarah R; Shang, Xiaoran; Orr, Mona W; Goodson, Jonathan R; Galperin, Michael Y; Yildiz, Fitnat H; Lee, Vincent T

    2015-10-01

    Cyclic-di-GMP (c-di-GMP) is a ubiquitous bacterial signaling molecule that regulates a variety of complex processes through a diverse set of c-di-GMP receptor proteins. We have utilized a systematic approach to identify c-di-GMP receptors from the pathogen Vibrio cholerae using the Differential Radial Capillary Action of Ligand Assay (DRaCALA). The DRaCALA screen identified a majority of known c-di-GMP binding proteins in V. cholerae and revealed a novel c-di-GMP binding protein, MshE (VC0405), an ATPase associated with the mannose sensitive hemagglutinin (MSHA) type IV pilus. The known c-di-GMP binding proteins identified by DRaCALA include diguanylate cyclases, phosphodiesterases, PilZ domain proteins and transcription factors VpsT and VpsR, indicating that the DRaCALA-based screen of open reading frame libraries is a feasible approach to uncover novel receptors of small molecule ligands. Since MshE lacks the canonical c-di-GMP-binding motifs, a truncation analysis was utilized to locate the c-di-GMP binding activity to the N-terminal T2SSE_N domain. Alignment of MshE homologs revealed candidate conserved residues responsible for c-di-GMP binding. Site-directed mutagenesis of these candidate residues revealed that the Arg9 residue is required for c-di-GMP binding. The ability of c-di-GMP binding to MshE to regulate MSHA dependent processes was evaluated. The R9A allele, in contrast to the wild type MshE, was unable to complement the ΔmshE mutant for the production of extracellular MshA to the cell surface, reduction in flagella swimming motility, attachment to surfaces and formation of biofilms. Testing homologs of MshE for binding to c-di-GMP identified the type II secretion ATPase of Pseudomonas aeruginosa (PA14_29490) as a c-di-GMP receptor, indicating that type II secretion and type IV pili are both regulated by c-di-GMP. PMID:26506097

  10. Systematic Identification of Cyclic-di-GMP Binding Proteins in Vibrio cholerae Reveals a Novel Class of Cyclic-di-GMP-Binding ATPases Associated with Type II Secretion Systems

    PubMed Central

    Shang, Xiaoran; Orr, Mona W.; Goodson, Jonathan R.; Galperin, Michael Y.; Yildiz, Fitnat H.; Lee, Vincent T.

    2015-01-01

    Cyclic-di-GMP (c-di-GMP) is a ubiquitous bacterial signaling molecule that regulates a variety of complex processes through a diverse set of c-di-GMP receptor proteins. We have utilized a systematic approach to identify c-di-GMP receptors from the pathogen Vibrio cholerae using the Differential Radial Capillary Action of Ligand Assay (DRaCALA). The DRaCALA screen identified a majority of known c-di-GMP binding proteins in V. cholerae and revealed a novel c-di-GMP binding protein, MshE (VC0405), an ATPase associated with the mannose sensitive hemagglutinin (MSHA) type IV pilus. The known c-di-GMP binding proteins identified by DRaCALA include diguanylate cyclases, phosphodiesterases, PilZ domain proteins and transcription factors VpsT and VpsR, indicating that the DRaCALA-based screen of open reading frame libraries is a feasible approach to uncover novel receptors of small molecule ligands. Since MshE lacks the canonical c-di-GMP-binding motifs, a truncation analysis was utilized to locate the c-di-GMP binding activity to the N-terminal T2SSE_N domain. Alignment of MshE homologs revealed candidate conserved residues responsible for c-di-GMP binding. Site-directed mutagenesis of these candidate residues revealed that the Arg9 residue is required for c-di-GMP binding. The ability of c-di-GMP binding to MshE to regulate MSHA dependent processes was evaluated. The R9A allele, in contrast to the wild type MshE, was unable to complement the ΔmshE mutant for the production of extracellular MshA to the cell surface, reduction in flagella swimming motility, attachment to surfaces and formation of biofilms. Testing homologs of MshE for binding to c-di-GMP identified the type II secretion ATPase of Pseudomonas aeruginosa (PA14_29490) as a c-di-GMP receptor, indicating that type II secretion and type IV pili are both regulated by c-di-GMP. PMID:26506097

  11. Systematic Identification of Cyclic-di-GMP Binding Proteins in Vibrio cholerae Reveals a Novel Class of Cyclic-di-GMP-Binding ATPases Associated with Type II Secretion Systems.

    PubMed

    Roelofs, Kevin G; Jones, Christopher J; Helman, Sarah R; Shang, Xiaoran; Orr, Mona W; Goodson, Jonathan R; Galperin, Michael Y; Yildiz, Fitnat H; Lee, Vincent T

    2015-10-01

    Cyclic-di-GMP (c-di-GMP) is a ubiquitous bacterial signaling molecule that regulates a variety of complex processes through a diverse set of c-di-GMP receptor proteins. We have utilized a systematic approach to identify c-di-GMP receptors from the pathogen Vibrio cholerae using the Differential Radial Capillary Action of Ligand Assay (DRaCALA). The DRaCALA screen identified a majority of known c-di-GMP binding proteins in V. cholerae and revealed a novel c-di-GMP binding protein, MshE (VC0405), an ATPase associated with the mannose sensitive hemagglutinin (MSHA) type IV pilus. The known c-di-GMP binding proteins identified by DRaCALA include diguanylate cyclases, phosphodiesterases, PilZ domain proteins and transcription factors VpsT and VpsR, indicating that the DRaCALA-based screen of open reading frame libraries is a feasible approach to uncover novel receptors of small molecule ligands. Since MshE lacks the canonical c-di-GMP-binding motifs, a truncation analysis was utilized to locate the c-di-GMP binding activity to the N-terminal T2SSE_N domain. Alignment of MshE homologs revealed candidate conserved residues responsible for c-di-GMP binding. Site-directed mutagenesis of these candidate residues revealed that the Arg9 residue is required for c-di-GMP binding. The ability of c-di-GMP binding to MshE to regulate MSHA dependent processes was evaluated. The R9A allele, in contrast to the wild type MshE, was unable to complement the ΔmshE mutant for the production of extracellular MshA to the cell surface, reduction in flagella swimming motility, attachment to surfaces and formation of biofilms. Testing homologs of MshE for binding to c-di-GMP identified the type II secretion ATPase of Pseudomonas aeruginosa (PA14_29490) as a c-di-GMP receptor, indicating that type II secretion and type IV pili are both regulated by c-di-GMP.

  12. γCOP Is Required for Apical Protein Secretion and Epithelial Morphogenesis in Drosophila melanogaster

    PubMed Central

    Grieder, Nicole C.; Caussinus, Emmanuel; Parker, David S.; Cadigan, Kenneth; Affolter, Markus; Luschnig, Stefan

    2008-01-01

    Background There is increasing evidence that tissue-specific modifications of basic cellular functions play an important role in development and disease. To identify the functions of COPI coatomer-mediated membrane trafficking in Drosophila development, we were aiming to create loss-of-function mutations in the γCOP gene, which encodes a subunit of the COPI coatomer complex. Principal Findings We found that γCOP is essential for the viability of the Drosophila embryo. In the absence of zygotic γCOP activity, embryos die late in embryogenesis and display pronounced defects in morphogenesis of the embryonic epidermis and of tracheal tubes. The coordinated cell rearrangements and cell shape changes during tracheal tube morphogenesis critically depend on apical secretion of certain proteins. Investigation of tracheal morphogenesis in γCOP loss-of-function mutants revealed that several key proteins required for tracheal morphogenesis are not properly secreted into the apical lumen. As a consequence, γCOP mutants show defects in cell rearrangements during branch elongation, in tube dilation, as well as in tube fusion. We present genetic evidence that a specific subset of the tracheal defects in γCOP mutants is due to the reduced secretion of the Zona Pellucida protein Piopio. Thus, we identified a critical target protein of COPI-dependent secretion in epithelial tube morphogenesis. Conclusions/Significance These studies highlight the role of COPI coatomer-mediated vesicle trafficking in both general and tissue-specific secretion in a multicellular organism. Although COPI coatomer is generally required for protein secretion, we show that the phenotypic effect of γCOP mutations is surprisingly specific. Importantly, we attribute a distinct aspect of the γCOP phenotype to the effect on a specific key target protein. PMID:18802472

  13. Identification of secreted proteins that reflect autophagy dynamics within tumor cells.

    PubMed

    Kraya, Adam A; Piao, Shengfu; Xu, Xiaowei; Zhang, Gao; Herlyn, Meenhard; Gimotty, Phyllis; Levine, Beth; Amaravadi, Ravi K; Speicher, David W

    2015-01-01

    Macroautophagy, a catabolic process of cellular self-digestion, is an important tumor cell survival mechanism and a potential target in antineoplastic therapies. Recent discoveries have implicated autophagy in the cellular secretory process, but potential roles of autophagy-mediated secretion in modifying the tumor microenvironment are poorly understood. Furthermore, efforts to inhibit autophagy in clinical trials have been hampered by suboptimal methods to quantitatively measure tumor autophagy levels. Here, we leveraged the autophagy-based involvement in cellular secretion to identify shed proteins associated with autophagy levels in melanoma. The secretome of low-autophagy WM793 melanoma cells was compared to its highly autophagic metastatic derivative, 1205Lu in physiological 3-dimensional cell culture using quantitative proteomics. These comparisons identified candidate autophagy biomarkers IL1B (interleukin 1, β), CXCL8 (chemokine (C-X-C motif) ligand 8), LIF (leukemia inhibitory factor), FAM3C (family with sequence similarity 3, member C), and DKK3 (dickkopf WNT signaling pathway inhibitor 3) with known roles in inflammation and tumorigenesis, and these proteins were subsequently shown to be elevated in supernatants of an independent panel of high-autophagy melanoma cell lines. Secretion levels of these proteins increased when low-autophagy melanoma cells were treated with the autophagy-inducing tat-BECN1 (Beclin 1) peptide and decreased when ATG7 (autophagy-related 7) was silenced in high-autophagy cells, thereby supporting a mechanistic link between these secreted proteins and autophagy. In addition, serum from metastatic melanoma patients with high tumor autophagy levels exhibited higher levels of these proteins than serum from patients with low-autophagy tumors. These results suggest that autophagy-related secretion affects the tumor microenvironment and measurement of autophagy-associated secreted proteins in plasma and possibly in tumors can serve as

  14. Interaction of Ca(2+)-dependent activator protein for secretion 1 (CAPS1) with septin family proteins in mouse brain.

    PubMed

    Hosono, Mayu; Shinoda, Yo; Hirano, Touko; Ishizaki, Yasuki; Furuichi, Teiichi; Sadakata, Tetsushi

    2016-03-23

    The Ca(2+)-dependent activator protein for secretion 1 (CAPS1) protein plays a regulatory role in the dense-core vesicle exocytosis pathway. To clarify the functions of this protein in the brain, we searched for novel interaction partners of CAPS1 by mass spectrometry. We identified a specific interaction of CAPS1 with septin family proteins. We also demonstrated that the C-terminal region of the CAPS1 protein binds to part of the deduced GTP-binding domain of septin proteins. It is possible that a tertiary complex of septin, CAPS, and syntaxin contributes to dense-core vesicle trafficking and exocytosis in neurons.

  15. On the path to uncover the bacterial type II secretion system

    PubMed Central

    Douzi, Badreddine; Filloux, Alain; Voulhoux, Romé

    2012-01-01

    Gram-negative bacteria have evolved several secretory pathways to release enzymes or toxins into the surrounding environment or into the target cells. The type II secretion system (T2SS) is conserved in Gram-negative bacteria and involves a set of 12 to 16 different proteins. Components of the T2SS are located in both the inner and outer membranes where they assemble into a supramolecular complex spanning the bacterial envelope, also called the secreton. The T2SS substrates transiently go through the periplasm before they are translocated across the outer membrane and exposed to the extracellular milieu. The T2SS is unique in its ability to promote secretion of large and sometimes multimeric proteins that are folded in the periplasm. The present review describes recently identified protein–protein interactions together with structural and functional advances in the field that have contributed to improve our understanding on how the type II secretion apparatus assembles and on the role played by individual proteins of this highly sophisticated system. PMID:22411978

  16. Proteomic analysis of secreted proteins by human bronchial epithelial cells in response to cadmium toxicity.

    PubMed

    Chen, De-Ju; Xu, Yan-Ming; Zheng, Wei; Huang, Dong-Yang; Wong, Wing-Yan; Tai, William Chi-Shing; Cho, Yong-Yeon; Lau, Andy T Y

    2015-09-01

    For years, many studies have been conducted to investigate the intracellular response of cells challenged with toxic metal(s), yet, the corresponding secretome responses, especially in human lung cells, are largely unexplored. Here, we provide a secretome analysis of human bronchial epithelial cells (BEAS-2B) treated with cadmium chloride (CdCl2 ), with the aim of identifying secreted proteins in response to Cd toxicity. Proteins from control and spent media were separated by two-dimensional electrophoresis and visualized by silver staining. Differentially-secreted proteins were identified by MALDI-TOF-MS analysis and database searching. We characterized, for the first time, the extracellular proteome changes of BEAS-2B dosed with Cd. Our results unveiled that Cd treatment led to the marked upregulation of molecular chaperones, antioxidant enzymes, enzymes associated with glutathione metabolic process, proteins involved in cellular energy metabolism, as well as tumor-suppressors. Pretreatment of cells with the thiol antioxidant glutathione before Cd treatment effectively abrogated the secretion of these proteins and prevented cell death. Taken together, our results demonstrate that Cd causes oxidative stress-induced cytotoxicity; and the differentially-secreted protein signatures could be considered as targets for potential use as extracellular biomarkers upon Cd exposure.

  17. Apoplastic exosome-like vesicles: A new way of protein secretion in plants?

    PubMed Central

    Regente, Mariana; Pinedo, Marcela; Elizalde, Mercedes; de la Canal, Laura

    2012-01-01

    The presence of apoplastic proteins without predicted signal peptide in the gene sequence suggests the existence of protein secretion independent of the ER/Golgi classical route. In animals, one of the pathways proposed for alternative protein secretion involves the release of exosomes to the extracellular space. Although this pathway has not been dissected in plants some indirect evidence is emerging. We have reported that apoplastic fractions of sunflower seeds contain exosome-like vesicles. Besides, these vesicles are enriched in the lectin Helja, which is immunolocalized in the extracellular space even if it the protein has no predicted signal peptide. Here we show that Helja is not glycosylated and its secretion is insensitive to brefeldin A, two of the major characteristics to discard ER/Golgi-mediated protein transport. Moreover, the levels of Helja in sunflower extracellular vesicles are not affected by brefeldin A treatment. Our results suggest that Helja could be exported through an exosome-mediated pathway and point out that this mechanism may be responsible for the secretion of at least part of the leaderless proteins detected in the extracellular compartment of plants. PMID:22516827

  18. Adiporedoxin, an upstream regulator of ER oxidative folding and protein secretion in adipocytes

    PubMed Central

    Jedrychowski, Mark P.; Liu, Libin; Laflamme, Collette J.; Karastergiou, Kalypso; Meshulam, Tova; Ding, Shi-Ying; Wu, Yuanyuan; Lee, Mi-Jeong; Gygi, Steven P.; Fried, Susan K.; Pilch, Paul F.

    2015-01-01

    Objective Adipocytes are robust protein secretors, most notably of adipokines, hormone-like polypeptides, which act in an endocrine and paracrine fashion to affect numerous physiological processes such as energy balance and insulin sensitivity. To understand how such proteins are assembled for secretion we describe the function of a novel endoplasmic reticulum oxidoreductase, adiporedoxin (Adrx). Methods Adrx knockdown and overexpressing 3T3-L1 murine adipocyte cell lines and a knockout mouse model were used to assess the influence of Adrx on secreted proteins as well as the redox state of ER resident chaperones. The metabolic phenotypes of Adrx null mice were characterized and compared to WT mice. The correlation of Adrx levels BMI, adiponectin levels, and other inflammatory markers from adipose tissue of human subjects was also studied. Results Adiporedoxin functions via a CXXC active site, and is upstream of protein disulfide isomerase whose direct function is disulfide bond formation, and ultimately protein secretion. Over and under expression of Adrx in vitro enhances and reduces, respectively, the secretion of the disulfide-bonded proteins including adiponectin and collagen isoforms. On a chow diet, Adrx null mice have normal body weights, and glucose tolerance, are moderately hyperinsulinemic, have reduced levels of circulating adiponectin and are virtually free of adipocyte fibrosis resulting in a complex phenotype tending towards insulin resistance. Adrx protein levels in human adipose tissue correlate positively with adiponectin levels and negatively with the inflammatory marker phospho-Jun kinase. Conclusion These data support the notion that Adrx plays a critical role in adipocyte biology and in the regulation of mouse and human metabolism via its modulation of adipocyte protein secretion. PMID:26629401

  19. Diffusely Adhering Escherichia coli Strains Induce Attaching and Effacing Phenotypes and Secrete Homologs of Esp Proteins

    PubMed Central

    Beinke, Christina; Laarmann, Sven; Wachter, Clemens; Karch, Helge; Greune, Lilo; Schmidt, M. Alexander

    1998-01-01

    Recent epidemiological studies indicate that Escherichia coli strains which exhibit the diffuse-adherence phenotype (DAEC strains) represent a potential cause of diarrhea in infants. We investigated the interaction of DAEC strains isolated from diarrhea patients in Brazil and in Germany with epithelial cells in tissue culture. The investigated strains were identified as DAEC strains by (i) their attachment pattern, (ii) presence of genes associated with the Dr family of adhesins, and (iii) lack of genetic markers for other diarrhea-associated E. coli categories. Several clinical DAEC isolates were shown to secrete similar patterns of proteins into tissue culture medium. Protein secretion was found to be regulated by environmental parameters, namely, medium, temperature, pH, and iron concentration. DAEC strains secreting these proteins induced accumulation of actin and tyrosine-phosphorylated proteins at sites of bacterial attachment, leading to the formation of pedestals and/or extended surface structures. These changes were phenotypically similar to the attaching and effacing (A/E) lesions observed with enteropathogenic and some enterohemorrhagic E. coli strains carrying the locus of enterocyte effacement (LEE) pathogenicity island. Proteins homologous to the EspA, EspB, and EspD proteins, necessary for signal transduction events inducing A/E lesions, were identified by sequence analysis and cross-reaction of specific antibodies. However, initially nonadhering strains secreting these proteins induced signal transduction events only after prolonged infection. These results indicate that secretion of the Esp proteins alone is not sufficient for efficient signal transduction. This study further shows that some DAEC strains are likely to contain a homolog(s) of the LEE locus which may contribute to the pathogenic potential of DAEC. PMID:9453606

  20. Microtubules and protein secretion in rat lacrimal glands: localization of short-term effects of colchicine on the secretory process

    PubMed Central

    1982-01-01

    The pathway and kinetics of the secretory protein transport in rat lacrimal exorbital gland have been established by an in vitro time- course radioautographic study of pulse-labeled protein secretion. The colchicine-sensitive steps have been localized by using the drug at various times with respect to the pulse labeling of proteins. Colchicine (10 microM) does not block any step of the secretory protein transport, but when introduced before the pulse it decreases the transfer of labeled proteins from the rough endoplasmic reticulum to the Golgi area, suppressing their temporary accumulation in the Golgi area before any alteration of this organelle is detectable. Moreover, colchicine inhibits protein release only from the secretory granules formed in its presence because the peroxidase discharge is diminished 1 h after colchicine addition, and the secretion of newly synthesized proteins is strongly inhibited only when colchicine is introduced before secretory granule formation. Morphometric studies show that there is a great increase of secondary lysosomes, related to crinophagy, as early as 40-50 min after colchicine is added. However, changes in lysosomal enzymatic activities remained biochemically undetectable. We conclude that: (a) the labile microtubular system does not seem indispensable for protein transport in the rough endoplasmic reticulum-Golgi area but may facilitate this step, perhaps by maintaining the spatial organization of this area; and (b) in the lacrimal gland, colchicine inhibits protein release not by acting on the steps of secretion following the secretory granule formation, but by acting chiefly on the steps preceding secretory granule formation, perhaps by making the secretory granules formed in its presence incapable of discharging their content. PMID:7142282

  1. Repair of hair bundles in sea anemones by secreted proteins.

    PubMed

    Watson, G M; Mire, P; Hudson, R R

    1998-01-01

    Sea anemones are sessile invertebrates that detect movements of prey using numerous hair bundles located on tentacles surrounding their mouth. Previously we found that hair bundles of anemones are structurally and functionally similar to those of vertebrates. After 10-15 min exposure to calcium depleted buffers, hair bundles in chickens suffer moderate damage from which they recover in 12 h without requiring new protein synthesis [Zhao, Yamoah and Gillespie, Proc. Natl. Acad. Sci. USA 94 (1996) 15469-15474]. We find that after 1 h exposure to calcium free seawater, hair bundles of anemones suffer extensive damage from which they recover in 4 h, apparently because of newly synthesized, secretory proteins called 'repair proteins'. Recovery is delayed in a dose dependent fashion by cycloheximide. In the presence of exogenously added repair proteins, recovery occurs within 8 min and is cycloheximide insensitive. Recovery is ascertained by a bioassay performed on intact specimens, by electrophysiology, and by timelapse video microscopy. Fraction beta, a chromatographic fraction with bioactivity comparable to the complete mixture of repair proteins, consists of complexes having an estimated mass of 2000 kDa. Avidin based cytochemistry suggests that biotinylated fraction beta binds to damaged hair bundles. SDS-PAGE gel electrophoresis demonstrates that fraction beta contains 8-10 polypeptides of 90 kDa or smaller. At least four of these polypeptides apparently are consumed during the repair process. Negatively stained samples of fraction beta are shown by transmission electron microscopy to include filamentous structures similar in length (150 nm) and width (6 nm) to linkages between stereocilia. The filamentous structures can be associated with globular structures (20 nm in diameter). A model is presented wherein repair proteins comprise replacement linkages and enzymes that attach linkages to appropriate membrane proteins. PMID:9472741

  2. Native-state stability determines the extent of degradation relative to secretion of protein variants from Pichia pastoris.

    PubMed

    Whyteside, Graham; Alcocer, Marcos J C; Kumita, Janet R; Dobson, Christopher M; Lazarou, Maria; Pleass, Richard J; Archer, David B

    2011-01-01

    We have investigated the relationship between the stability and secreted yield of a series of mutational variants of human lysozyme (HuL) in Pichia pastoris. We show that genes directly involved in the unfolded protein response (UPR), ER-associated degradation (ERAD) and ER-phagy are transcriptionally up-regulated more quickly and to higher levels in response to expression of more highly-destabilised HuL variants and those variants are secreted to lower yield. We also show that the less stable variants are retained within the cell and may also be targeted for degradation. To explore the relationship between stability and secretion further, two different single-chain-variable-fragment (scFv) antibodies were also expressed in P. pastoris, but only one of the scFvs gave rise to secreted protein. The non-secreted scFv was detected within the cell and the UPR indicators were pronounced, as they were for the poorly-secreted HuL variants. The non-secreted scFv was modified by changing either the framework regions or the linker to improve the predicted stability of the scFv and secretion was then achieved and the levels of UPR indicators were lowered Our data support the hypothesis that less stable proteins are targeted for degradation over secretion and that this accounts for the decrease in the yields observed. We discuss the secretion of proteins in relation to lysozyme amyloidosis, in particular, and optimised protein secretion, in general. PMID:21818368

  3. Sec-mediated secretion by Coxiella burnetii

    PubMed Central

    2013-01-01

    Background Coxiella burnetii is a Gram-negative intracellular bacterial pathogen that replicates within a phagolysosome-like parasitophorous vacuole (PV) of macrophages. PV formation requires delivery of effector proteins directly into the host cell cytoplasm by a type IVB secretion system. However, additional secretion systems are likely responsible for modification of the PV lumen microenvironment that promote pathogen replication. Results To assess the potential of C. burnetii to secrete proteins into the PV, we analyzed the protein content of modified acidified citrate cysteine medium for the presence of C. burnetii proteins following axenic (host cell-free) growth. Mass spectrometry generated a list of 105 C. burnetii proteins that could be secreted. Based on bioinformatic analysis, 55 proteins were selected for further study by expressing them in C. burnetii with a C-terminal 3xFLAG-tag. Secretion of 27 proteins by C. burnetii transformants was confirmed by immunoblotting culture supernatants. Tagged proteins expressed by C. burnetii transformants were also found in the soluble fraction of infected Vero cells, indicating secretion occurs ex vivo. All secreted proteins contained a signal sequence, and deletion of this sequence from selected proteins abolished secretion. These data indicate protein secretion initially requires translocation across the inner-membrane into the periplasm via the activity of the Sec translocase. Conclusions C. burnetii secretes multiple proteins, in vitro and ex vivo, in a Sec-dependent manner. Possible roles for secreted proteins and secretion mechanisms are discussed. PMID:24093460

  4. What's the point of the type III secretion system needle?

    PubMed Central

    Blocker, Ariel J.; Deane, Janet E.; Veenendaal, Andreas K. J.; Roversi, Pietro; Hodgkinson, Julie L.; Johnson, Steven; Lea, Susan M.

    2008-01-01

    Recent work by several groups has significantly expanded our knowledge of the structure, regulation of assembly, and function of components of the extracellular portion of the type III secretion system (T3SS) of Gram-negative bacteria. This perspective presents a structure-informed analysis of functional data and discusses three nonmutually exclusive models of how a key aspect of T3SS biology, the sensing of host cells, may be performed. PMID:18458349

  5. Secretion systems and signal exchange between nitrogen-fixing rhizobia and legumes

    PubMed Central

    Nelson, Matthew S.; Sadowsky, Michael J.

    2015-01-01

    The formation of symbiotic nitrogen-fixing nodules on the roots and/or stem of leguminous plants involves a complex signal exchange between both partners. Since many microorganisms are present in the soil, legumes and rhizobia must recognize and initiate communication with each other to establish symbioses. This results in the formation of nodules. Rhizobia within nodules exchange fixed nitrogen for carbon from the legume. Symbiotic relationships can become non-beneficial if one partner ceases to provide support to the other. As a result, complex signal exchange mechanisms have evolved to ensure continued, beneficial symbioses. Proper recognition and signal exchange is also the basis for host specificity. Nodule formation always provides a fitness benefit to rhizobia, but does not always provide a fitness benefit to legumes. Therefore, legumes have evolved a mechanism to regulate the number of nodules that are formed, this is called autoregulation of nodulation. Sequencing of many different rhizobia have revealed the presence of several secretion systems - and the Type III, Type IV, and Type VI secretion systems are known to be used by pathogens to transport effector proteins. These secretion systems are also known to have an effect on host specificity and are a determinant of overall nodule number on legumes. This review focuses on signal exchange between rhizobia and legumes, particularly focusing on the role of secretion systems involved in nodule formation and host specificity. PMID:26191069

  6. Secretion systems and signal exchange between nitrogen-fixing rhizobia and legumes.

    PubMed

    Nelson, Matthew S; Sadowsky, Michael J

    2015-01-01

    The formation of symbiotic nitrogen-fixing nodules on the roots and/or stem of leguminous plants involves a complex signal exchange between both partners. Since many microorganisms are present in the soil, legumes and rhizobia must recognize and initiate communication with each other to establish symbioses. This results in the formation of nodules. Rhizobia within nodules exchange fixed nitrogen for carbon from the legume. Symbiotic relationships can become non-beneficial if one partner ceases to provide support to the other. As a result, complex signal exchange mechanisms have evolved to ensure continued, beneficial symbioses. Proper recognition and signal exchange is also the basis for host specificity. Nodule formation always provides a fitness benefit to rhizobia, but does not always provide a fitness benefit to legumes. Therefore, legumes have evolved a mechanism to regulate the number of nodules that are formed, this is called autoregulation of nodulation. Sequencing of many different rhizobia have revealed the presence of several secretion systems - and the Type III, Type IV, and Type VI secretion systems are known to be used by pathogens to transport effector proteins. These secretion systems are also known to have an effect on host specificity and are a determinant of overall nodule number on legumes. This review focuses on signal exchange between rhizobia and legumes, particularly focusing on the role of secretion systems involved in nodule formation and host specificity.

  7. Secretion systems and signal exchange between nitrogen-fixing rhizobia and legumes.

    PubMed

    Nelson, Matthew S; Sadowsky, Michael J

    2015-01-01

    The formation of symbiotic nitrogen-fixing nodules on the roots and/or stem of leguminous plants involves a complex signal exchange between both partners. Since many microorganisms are present in the soil, legumes and rhizobia must recognize and initiate communication with each other to establish symbioses. This results in the formation of nodules. Rhizobia within nodules exchange fixed nitrogen for carbon from the legume. Symbiotic relationships can become non-beneficial if one partner ceases to provide support to the other. As a result, complex signal exchange mechanisms have evolved to ensure continued, beneficial symbioses. Proper recognition and signal exchange is also the basis for host specificity. Nodule formation always provides a fitness benefit to rhizobia, but does not always provide a fitness benefit to legumes. Therefore, legumes have evolved a mechanism to regulate the number of nodules that are formed, this is called autoregulation of nodulation. Sequencing of many different rhizobia have revealed the presence of several secretion systems - and the Type III, Type IV, and Type VI secretion systems are known to be used by pathogens to transport effector proteins. These secretion systems are also known to have an effect on host specificity and are a determinant of overall nodule number on legumes. This review focuses on signal exchange between rhizobia and legumes, particularly focusing on the role of secretion systems involved in nodule formation and host specificity. PMID:26191069

  8. Expression and secretion of a biologically active mouse sonic hedgehog protein by the methylotrophic yeast Pichia pastoris.

    PubMed

    Sakuma, Y; Kimura, M; Takabatake, T; Takeshima, K; Fujimura, H

    1999-09-01

    We have successfully secreted the amino-terminal functional domain of mouse sonic hedgehog protein (SHH) into culture fluid using a yeast Pichia pastoris expression system. A cDNA fragment encoding the amino-terminal domain of mouse SHH was inserted downstream of the Saccharomyces cerevisiae alpha-mating factor secretion signal. The DNA fragment was introduced into the host genome by the spheroplast transformation method. Transformants were selected based on their resistance to G418: His+ transformants which showed resistance to over 8 mg G418/ml were selected and analyzed for determination of the plasmid copy number. One His+ clone which has eight copies of the expression cassette per genome was cultured in minimal medium deficient for histidine, and further cultured in buffered medium supplemented with methanol which activates the AOX1 promoter. SDS-PAGE analysis indicated efficient expression and secretion of mouse SHH into culture fluid. The yield of secreted SHH was estimated to be 50 micrograms/ml. Purified protein was assayed for biological activity and found to activate the transcription of the Patched genes (Ptc-1 and Ptc-2) encoding receptors for SHH. PMID:10531654

  9. Onchocerca spp: a "family" of secreted acidic proteins expressed by infective larvae in blackflies.

    PubMed

    Bianco, A E; Wu, Y; Jenkins, R E

    1995-11-01

    Biosynthetic labeling of developing larvae of Onchocerca in blackflies has been used to characterize a group of stage-specific, secreted proteins produced by vector-stage parasites. These are highly acidic molecules (pI 4.4-5.1) present in at least three members of the genus (O. volvulus, O. lienalis, O. ochengi) that exhibit minor heterogeneity among species in apparent molecular mass (between 18 and 23 kDa). In O. volvulus, there are two polypeptides that run as a doublet of 18 and 20 kDa. In O. lienalis and O. ochengi, single polypeptides of 23 and 20 kDa were detected. The processes of synthesis and secretion appear to be temperature-sensitive and dissociated events. Experiments with O. volvulus in Simulium damnosum sl revealed that synthesis is initiated in second stage larvae and increases in infective-stage parasites: Secretion occurs when larvae leave the vector and enter the phase of development associated with the vertebrate host. Third-stage larvae of O. lienalis were shown to continue to express and accumulate the 23-kDa protein with age. The primary organ of secretion, as indicated by dissection, was the glandular esophagus. These data point to an important biological role for this group of molecules and suggest that they may belong to a family of related products. Because they have the distinctive characteristics of being secreted larval acidic proteins, we propose the acronym SLAP pending further insights into their functional properties.

  10. Human Primary Keratinocytes as a Tool for the Analysis of Caspase-1-Dependent Unconventional Protein Secretion.

    PubMed

    Strittmatter, Gerhard E; Garstkiewicz, Martha; Sand, Jennifer; Grossi, Serena; Beer, Hans-Dietmar

    2016-01-01

    Inflammasomes comprise a group of protein complexes, which activate the protease caspase-1 upon sensing a variety of stress factors. Active caspase-1 in turn cleaves and thereby activates the pro-inflammatory cytokines prointerleukin (IL)-1β and -18, and induces unconventional protein secretion (UPS) of mature IL-1β, IL-18, as well as of many other proteins involved in and required for induction of inflammation. Human primary keratinocytes (HPKs) represent epithelial cells able to activate caspase-1 in an inflammasome-dependent manner upon irradiation with a physiological dose of ultraviolet B (UVB) light. Here, we describe the isolation of keratinocytes from human skin, their cultivation, and induction of caspase-1-dependent UPS upon UVB irradiation as well as its siRNA- and chemical-mediated inhibition. In contrast to inflammasome activation of professional immune cells, UVB-irradiated HPKs represent a robust and physiological cell culture system for the analysis of UPS induced by active caspase-1. PMID:27665556

  11. EepR Mediates Secreted-Protein Production, Desiccation Survival, and Proliferation in a Corneal Infection Model

    PubMed Central

    Brothers, Kimberly M.; Stella, Nicholas A.; Romanowski, Eric G.; Kowalski, Regis P.

    2015-01-01

    Serratia marcescens is a soil- and water-derived bacterium that secretes several host-directed factors and causes hospital infections and community-acquired ocular infections. The putative two-component regulatory system composed of EepR and EepS regulates hemolysis and swarming motility through transcriptional control of the swrW gene and pigment production through control of the pigA-pigN operon. Here, we identify and characterize a role for EepR in regulation of exoenzyme production, stress survival, cytotoxicity to human epithelial cells, and virulence. Genetic analysis supports the model that EepR is in a common pathway with the widely conserved cyclic-AMP receptor protein that regulates protease production. Together, these data introduce a novel regulator of host-pathogen interactions and secreted-protein production. PMID:26324535

  12. The Secreted Form of Transmembrane Protein 98 Promotes the Differentiation of T Helper 1 Cells

    PubMed Central

    Fu, Weiwei; Cheng, Yingying; Zhang, Yanfei; Mo, Xiaoning; Li, Ting; Liu, Yuanfeng; Wang, Pingzhang; Pan, Wen; Chen, Yingyu; Xue, Yintong; Ma, Dalong; Zhang, Yu

    2015-01-01

    Cytokines mediate the interaction of immune cells. Discovery of novel potential cytokines is of great value for both basic research and clinical application. In this study, we identified a novel immune-related molecule, transmembrane protein 98 (TMEM98), through a high-throughput screening platform for novel potential cytokines at a genome-wide level using the strategy of immunogenomics. So far, there is no characteristic and immune-related functional report about it. In this study, we demonstrate that TMEM98 exists as a type II transmembrane protein both in the ectopically and endogenously expressed systems. Interestingly, TMEM98 could also be secreted through exosomes. Moreover, the native secreted form of TMEM98 could be detected in the supernatants of activated human peripheral blood mononuclear cells and mouse CD4+ T cells. Further expression profile analysis showed TMEM98 was upregulated during the activation and differentiation of T helper (Th) 1 cells. Function analysis showed that eukaryotic recombinant TMEM98 (rTMEM98) promoted the differentiation of Th1 cells under both antigen-nonspecific and antigen-specific Th1-skewing conditions. These findings were further confirmed in vivo as prokaryotic rTMEM98 administration significantly increased antigen-specific IFN-γ production and serum antigen-specific IgG2a in the methylated bovine serum albumin-induced delayed-type hypersensitivity model. Overall, these observations emphasize the characteristics and essential roles of TMEM98 for the first time and will be helpful in further understanding the development of Th1 cells. PMID:25946230

  13. Secretion of Human Protein C in Mouse Milk

    PubMed Central

    Park, Chae-Won; Kang, Myung-Hwa; Min, Kwan-Sik

    2015-01-01

    To determine the production of recombinant human protein C (rec-hPC) in milk, we created two homozygous mice lines for the goat β-casein/hPC transgene. Females and males of both lines (#10 and #11) displayed normal growth, fertility, and lactated normally. The copy number of the transgene was about fivefold higher in #10 line as compared to #11 line. mRNA expression of the transgene was only detected in the mammary glands of both lines. Furthermore, mRNA expression was fourfold higher on day 7 than on day 1 during lactation. Northern blot analysis of mRNA expression in the #10 line of transgenic (Tg) mice indicated a strong expression of the transgene in the mammary glands after seven days of lactation. Comparison of rec-hPC protein level with that of mRNA in the mammary glands showed a very similar pattern. A 52-kDa band corresponding to the hPC protein was strongly detected in mammary glands of the #10 line during lactation. We also detected two bands of heavy chain and one weak band of light chain in the milk of the #10 and #11 lines. One single band at 52 kDa was detected from CHO cells transfected with hPC cDNA. hPC was mainly localized in the alveolar epithelial cell of the mammary glands. The protein is strongly expressed in the cytoplasm of the cultured mammary gland tissue. hPC protein produced in milk ranged from 2 to 28 ng/mL. These experiments indicated that rec-hPC can be produced at high levels in mice mammary glands. PMID:25749471

  14. Fusaric acid modulates Type Three Secretion System of Salmonella enterica serovar Typhimurium.

    PubMed

    Li, Jianfang; Sun, Weiyang; Guo, Zhixing; Lu, Chunhua; Shen, Yuemao

    2014-07-11

    Natural small-molecule products are promising lead compounds for developing a generation of novel antimicrobials agents to meet the challenge of antibiotic-resistant pathogens. To facilitate the search for novel anti-virulence agents, we chose a virulence factor of Type Three Secretion System (T3SS) as a drug target to screen candidates from a small-molecule library in our laboratory. This study demonstrated fusaric acid had dramatically inhibitory effects on secretion of Salmonella island 1 (SPI-1) effector proteins and invasion of Salmonella into HeLa cells. Moreover, fusaric acid had no inhibitory effects on bacterial growth and viability of host cells. Protein HilA is a key regulator of SPI-1 in Salmonella, which affects transcription of SPI-1 effectors and SPI-1 apparatus genes. In this study, fusaric acid (FA) did not affect secretion of SPI-1 effectors in HilA over-expressed strain, suggesting it did not affect the transcription of SPI-1. In addition, fusaric acid did not affect the protein level of apparatus protein PrgH in SPI-1 needle complex. As a result, we proposed fusaric acid had an inhibitory effect on SPI-1 probably depending on its influence on SicA/InvF. In summary, fusaric acid is a novel inhibitor of T3SS with potential for further developing novel anti-virulence agents.

  15. Crystal Structure of Hcp from Acinetobacter baumannii: A Component of the Type VI Secretion System

    PubMed Central

    Ruiz, Federico M.; Santillana, Elena; Spínola-Amilibia, Mercedes; Torreira, Eva; Culebras, Esther; Romero, Antonio

    2015-01-01

    The type VI secretion system (T6SS) is a bacterial macromolecular machine widely distributed in Gram-negative bacteria, which transports effector proteins into eukaryotic host cells or other bacteria. Membrane complexes and a central tubular structure, which resembles the tail of contractile bacteriophages, compose the T6SS. One of the proteins forming this tube is the hemolysin co-regulated protein (Hcp), which acts as virulence factor, as transporter of effectors and as a chaperone. In this study, we present the structure of Hcp from Acinetobacter baumannii, together with functional and oligomerization studies. The structure of this protein exhibits a tight β barrel formed by two β sheets and flanked at one side by a short α-helix. Six Hcp molecules associate to form a donut-shaped hexamer, as observed in both the crystal structure and solution. These results emphasize the importance of this oligomerization state in this family of proteins, despite the low similarity of sequence among them. The structure presented in this study is the first one for a protein forming part of a functional T6SS from A. baumannii. These results will help us to understand the mechanism and function of this secretion system in this opportunistic nosocomial pathogen. PMID:26079269

  16. Stimulus-dependent secretion of plasma proteins from human neutrophils.

    PubMed Central

    Borregaard, N; Kjeldsen, L; Rygaard, K; Bastholm, L; Nielsen, M H; Sengeløv, H; Bjerrum, O W; Johnsen, A H

    1992-01-01

    In search for matrix proteins released from secretory vesicles of human neutrophils, a prominent 67-kD protein was identified in the extracellular medium of neutrophils stimulated by the chemotactic peptide, FMLP. The protein was purified to apparent homogeneity and partially sequenced. The sequence of the first 32 NH2-terminal amino acids was identical to the sequence of albumin. mRNA for human albumin could not be detected in bone marrow cells, nor could biosynthetic labeling of albumin be demonstrated in bone marrow cells during incubation with [14C]leucine. Immunofluorescence studies on single cells demonstrated the presence of intracellular albumin in fixed permeabilized neutrophils. Light microscopy of immunogold-silver-stained cryosections visualized albumin in cytoplasmic "granules." The morphology of these was determined by immunoelectron microscopy as vesicles of varying form and size. Subcellular fractionation studies on unstimulated neutrophils demonstrated the presence of albumin in the low density pre-gamma and gamma-regions that contain secretory vesicles, but are devoid of specific granules and azurophil granules. Albumin was readily released from these structures during activation of neutrophils with inflammatory mediators. Immunoblotting demonstrated the presence of immunoglobulin and transferrin along with albumin in exocytosed material from stimulated neutrophils. This indicates that secretory vesicles are unique endocytic vesicles that can be triggered to exocytose by inflammatory stimuli. Images PMID:1378856

  17. Human IgG Fc promotes expression, secretion and immunogenicity of enterovirus 71 VP1 protein.

    PubMed

    Xu, Juan; Zhang, Chunhua

    2016-05-01

    Enterovirus (EV71) can cause severe neurological diseases, but the underlying pathogenesis remains unclear. The capsid protein, viral protein 1 (VP1), plays a critical role in the pathogenicity of EV71. High level expression and secretion of VP1 protein are necessary for structure, function and immunogenicity in its natural conformation. In our previous studies, 5 codon-optimized VP1 DNA vaccines, including wt-VP1, tPA-VP1, VP1-d, VP1-hFc and VP1-mFc, were constructed and analyzed. They expressed VP1 protein, but the levels of secretion and immunogenicity of these VP1 constructs were significantly different (P<0.05). In this study, we further investigated the protein levels of these constructs and determined that all of these constructs expressed VP1 protein. The secretion level was increased by including a tPA leader sequence, which was further increased by fusing human IgG Fc (hFc) to VP1. VP1-hFc demonstrated the most potent immunogenicity in mice. Furthermore, hFc domain could be used to purify VP1-hFc protein for additional studies. PMID:27533931

  18. Unconventional secretion of Pichia pastoris Acb1 is dependent on GRASP protein, peroxisomal functions, and autophagosome formation.

    PubMed

    Manjithaya, Ravi; Anjard, Christophe; Loomis, William F; Subramani, Suresh

    2010-02-22

    In contrast to the enormous advances made regarding mechanisms of conventional protein secretion, mechanistic insights into the unconventional secretion of proteins are lacking. Acyl coenzyme A (CoA)-binding protein (ACBP; AcbA in Dictyostelium discoideum), an unconventionally secreted protein, is dependent on Golgi reassembly and stacking protein (GRASP) for its secretion. We discovered, surprisingly, that the secretion, processing, and function of an AcbA-derived peptide, SDF-2, are conserved between the yeast Pichia pastoris and D. discoideum. We show that in yeast, the secretion of SDF-2-like activity is GRASP dependent, triggered by nitrogen starvation, and requires autophagy proteins as well as medium-chain fatty acyl CoA generated by peroxisomes. Additionally, a phospholipase D implicated in soluble N-ethyl-maleimide sensitive fusion protein attachment protein receptor-mediated vesicle fusion at the plasma membrane is necessary, but neither peroxisome turnover nor fusion between autophagosomes and the vacuole is essential. Moreover, yeast Acb1 and several proteins required for its secretion are necessary for sporulation in P. pastoris. Our findings implicate currently unknown, evolutionarily conserved pathways in unconventional secretion. PMID:20156962

  19. An integrated transcriptomic and proteomic analysis of sea star epidermal secretions identifies proteins involved in defense and adhesion.

    PubMed

    Hennebert, Elise; Leroy, Baptiste; Wattiez, Ruddy; Ladurner, Peter

    2015-10-14

    Sea stars rely on epidermal secretions to cope with their benthic life. Their integument produces a mucus, which represents the first barrier against invaders; and their tube feet produce adhesive secretions to pry open mussels and attach strongly but temporarily to rocks. In this study, we combined high-throughput sequencing of expressed mRNA and mass-spectrometry-based identification of proteins to establish the first proteome of mucous and adhesive secretions from the sea star Asterias rubens. We show that the two secretions differ significantly, the major adhesive proteins being only present in trace amounts in the mucus secretion. Except for 41 proteins which were present in both secretions, a total of 34 and 244 proteins were identified as specific of adhesive secretions and mucus, respectively. We discuss the role of some of these proteins in the adhesion of sea stars as well as in their protection against oxygen reactive species and microorganisms. In addition, 58% of the proteins identified in adhesive secretions did not present significant similarity to other known proteins, revealing a list of potential novel sea star adhesive proteins uncharacterized so far. The panel of proteins identified in this study offers unprecedented opportunities for the development of sea star-inspired biomimetic materials.

  20. Artemisinin Induces Calcium-Dependent Protein Secretion in the Protozoan Parasite Toxoplasma gondii▿ †

    PubMed Central

    Nagamune, Kisaburo; Beatty, Wandy L.; Sibley, L. David

    2007-01-01

    Intracellular calcium controls several crucial cellular events in apicomplexan parasites, including protein secretion, motility, and invasion into and egress from host cells. The plant compound thapsigargin inhibits the sarcoplasmic-endoplasmic reticulum calcium ATPase (SERCA), resulting in elevated calcium and induction of protein secretion in Toxoplasma gondii. Artemisinins are natural products that show potent and selective activity against parasites, making them useful for the treatment of malaria. While the mechanism of action is uncertain, previous studies have suggested that artemisinin may inhibit SERCA, thus disrupting calcium homeostasis. We cloned the single-copy gene encoding SERCA in T. gondii (TgSERCA) and demonstrate that the protein localizes to the endoplasmic reticulum in the parasite. In extracellular parasites, TgSERCA partially relocalized to the apical pole, a highly active site for regulated secretion of micronemes. TgSERCA complemented a calcium ATPase-defective yeast mutant, and this activity was inhibited by either thapsigargin or artemisinin. Treatment of T. gondii with artemisinin triggered calcium-dependent secretion of microneme proteins, similar to the SERCA inhibitor thapsigargin. Artemisinin treatment also altered intracellular calcium in parasites by increasing the periodicity of calcium oscillations and inducing recurrent, strong calcium spikes, as imaged using Fluo-4 labeling. Collectively, these results demonstrate that artemisinin perturbs calcium homeostasis in T. gondii, supporting the idea that Ca2+-ATPases are potential drug targets in parasites. PMID:17766463

  1. Coiled-coil domain of enteropathogenic Escherichia coli type III secreted protein EspD is involved in EspA filament-mediated cell attachment and hemolysis.

    PubMed

    Daniell, S J; Delahay, R M; Shaw, R K; Hartland, E L; Pallen, M J; Booy, F; Ebel, F; Knutton, S; Frankel, G

    2001-06-01

    Many animal and plant pathogens use type III secretion systems to secrete key virulence factors, some directly into the host cell cytosol. However, the basis for such protein translocation has yet to be fully elucidated for any type III secretion system. We have previously shown that in enteropathogenic and enterohemorrhagic Escherichia coli the type III secreted protein EspA is assembled into a filamentous organelle that attaches the bacterium to the plasma membrane of the host cell. Formation of EspA filaments is dependent on expression of another type III secreted protein, EspD. The carboxy terminus of EspD, a protein involved in formation of the translocation pore in the host cell membrane, is predicted to adopt a coiled-coil conformation with 99% probability. Here, we demonstrate EspD-EspD protein interaction using the yeast two-hybrid system and column overlays. Nonconservative triple amino acid substitutions of specific EspD carboxy-terminal residues generated an enteropathogenic E. coli mutant that was attenuated in its ability to induce attaching and effacing lesions on HEp-2 cells. Although the mutation had no effect on EspA filament biosynthesis, it also resulted in reduced binding to and reduced hemolysis of red blood cells. These results segregate, for the first time, functional domains of EspD that control EspA filament length from EspD-mediated cell attachment and pore formation.

  2. ( sup 3 H)protein secretion in rat parotid gland: Substance P-. beta. -adrenergic synergism

    SciTech Connect

    Dreux, C.; Imhoff, V.; Rossignol, B. )

    1987-12-01

    In parotid fragment ({sup 3}H)protein, secretion induced by substance P was moderate, but strongly Ca dependent. However, secretion induced by isoproterenol was large and Ca independent. Potentiation of protein secretion was observed when substance P (SP) and isoproterenol (ISO) acted together. Addition of 10{sup {minus}8} M SP caused a shift to the left in the secretion dose-response curve caused by ISO, but did not enhance ISO-induced maximal response. The potentiating effect seems to be a postreceptor event, since it can be mimicked by forskolin (FK), known to induce directly cAMP accumulation, thus bypassing the {beta}-adrenergic receptor. The synergism described above was, therefore, investigated at the second messenger production level. Stimulation of parotid gland fragments by simultaneous addition of SP plus ISO or FK did not modify cAMP nor inositol trisphosphate (IP{sub 3}) accumulation induced independently by each secretagogue alone. The ionophore A23187 was also able to potentiate secretion induced by a {beta}-adrenergic agonist, this effect being totally abolished by external calcium omission, thus suggesting a role for external calcium in this potentiation phenomenon. These results suggest that the potentiation phenomenon observed is a postreceptor event that occurs at a step distal from the second messenger production.

  3. Preconcentrating (within the broth) secreted extracellular proteins during a bakers' yeast fermentation

    SciTech Connect

    Effler, W.T. Jr.; Pandey, N.K.; Tanner, R.D.; Malaney, G.W.; Scott, C.D.

    1986-01-01

    Proteins secreted by yeast during the fermentation process are spacially fractionated (concentrated at a particular vertical position) within the fermentation vessel due to the phenomenon of bubble fractionation, despite moderately vigorous mixing. The degree of fractionation is influenced by the conditions in which the fermentation takes place. The broth pH strongly influences the extent of fractionation of specific proteins. In addition fractionation is enhanced under anaerobic conditions, presumably because there are more CO2 bubbles present for hydrophobic protein adsorption. The addition of moderate levels of salt to the broth reduces the fractionation for most (but not all) of the proteins.

  4. Decreased cholinergic stimulation of insulin secretion by islets from rats fed a low protein diet is associated with reduced protein kinase calpha expression.

    PubMed

    Ferreira, Fabiano; Filiputti, Eliane; Arantes, Vanessa C; Stoppiglia, Luis F; Araújo, Eliana P; Delghingaro-Augusto, Viviane; Latorraca, Márcia Q; Toyama, Marcos H; Boschero, Antonio C; Carneiro, Everardo M

    2003-03-01

    Undernutrition has been shown to affect the autonomic nervous system, leading to permanent alterations in insulin secretion. To understand these interactions better, we investigated the effects of carbamylcholine (CCh) and phorbol 12-myristate 13-acetate (PMA) on insulin secretion in pancreatic islets from rats fed a normal (17%; NP) or low (6%; LP) protein diet for 8 wk. Isolated islets were incubated for 1 h in Krebs-bicarbonate solution containing 8.3 mmol glucose/L, with or without PMA (400 nmol/L) and CCh. Increasing concentrations of CCh (0.1-1000 micro mol/L) dose dependently increased insulin secretion by islets from both groups of rats. However, insulin secretion by islets from rats fed the NP diet was significantly higher than that of rats fed the LP diet, and the dose-response curve to CCh was shifted to the right in islets from rats fed LP with a 50% effective concentration (EC(50)) of 2.15 +/- 0.7 and 4.64 +/- 0.1 micro mol CCh/L in islets of rats fed NP and LP diets, respectively (P < 0.05). PMA-induced insulin secretion was higher in islets of rats fed NP compared with those fed LP. Western blotting revealed that the protein kinase (PK)Calpha and phospholipase (PL)Cbeta(1) contents of islets of rats fed LP were 30% lower than those of islets of rats fed NP (P < 0.05). In addition, PKCalpha mRNA expression was reduced by 50% in islets from rats fed LP. In conclusion, a reduced expression of PKCalpha and PLCbeta(1) may be involved in the decreased insulin secretion by islets from LP rats after stimulation with CCh and PMA. PMID:12612139

  5. Proteomic Profiling of Cereal Aphid Saliva Reveals Both Ubiquitous and Adaptive Secreted Proteins

    PubMed Central

    Wilkinson, Tom L.

    2013-01-01

    The secreted salivary proteins from two cereal aphid species, Sitobion avenae and Metopolophium dirhodum, were collected from artificial diets and analysed by tandem mass spectrometry. Protein identification was performed by searching MS data against the official protein set from the current pea aphid (Acyrthosiphon pisum) genome assembly and revealed 12 and 7 proteins in the saliva of S. avenae and M. dirhodum, respectively. When combined with a comparable dataset from A. pisum, only three individual proteins were common to all the aphid species; two paralogues of the GMC oxidoreductase family (glucose dehydrogenase; GLD) and ACYPI009881, an aphid specific protein previously identified as a putative component of the salivary sheath. Antibodies were designed from translated protein sequences obtained from partial cDNA sequences for ACYPI009881 and both saliva associated GLDs. The antibodies detected all parent proteins in secreted saliva from the three aphid species, but could only detect ACYPI009881, and not saliva associated GLDs, in protein extractions from the salivary glands. This result was confirmed by immunohistochemistry using whole and sectioned salivary glands, and in addition, localised ACYPI009881 to specific cell types within the principal salivary gland. The implications of these findings for the origin of salivary components and the putative role of the proteins identified are discussed in the context of our limited understanding of the functional relationship between aphid saliva and the plants they feed on. The mass spectrometry data have been deposited to the ProteomeXchange and can be accessed under the identifier PXD000113. PMID:23460852

  6. Extracellular secretion of the Borrelia burgdorferi Oms28 porin and Bgp, a glycosaminoglycan binding protein.

    PubMed

    Cluss, Robert G; Silverman, Damon A; Stafford, Thomas R

    2004-11-01

    Borrelia burgdorferi, the Lyme disease pathogen, cycles between its Ixodes tick vector and vertebrate hosts, adapting to vastly different biochemical environments. Spirochete gene expression as a function of temperature, pH, growth phase, and host milieu is well studied, and recent work suggests that regulatory networks are involved. Here, we examine the release of Borrelia burgdorferi strain B31 proteins into conditioned medium. Spirochetes intrinsically radiolabeled at concentrations ranging from 10(7) to 10(9) cells per ml secreted Oms28, a previously characterized outer membrane porin, into RPMI medium. As determined by immunoblotting, this secretion was not associated with outer membrane blebs or cytoplasmic contamination. A similar profile of secreted proteins was obtained for spirochetes radiolabeled in mixtures of RPMI medium and serum-free Barbour-Stoenner-Kelly (BSK II) medium. Proteomic liquid chromatography-tandem mass spectrometry analysis of tryptic fragments derived from strain B31 culture supernatants confirmed the identity of the 28-kDa species as Oms28 and revealed a 26-kDa protein as 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase (Pfs-2), previously described as Bgp, a glycosaminoglycan-binding protein. The release of Oms28 into the culture medium is more selective when the spirochetes are in logarithmic phase of growth compared to organisms obtained from stationary phase. As determined by immunoblotting, stationary-phase spirochetes released OspA, OspB, and flagellin. Oms28 secreted by strains B31, HB19, and N40 was also recovered by radioimmunoprecipitation. This is the first report of B. burgdorferi protein secretion into the extracellular environment. The possible roles of Oms28 and Bgp in the host-pathogen interaction are considered.

  7. Apocrine Secretion in Drosophila Salivary Glands: Subcellular Origin, Dynamics, and Identification of Secretory Proteins

    PubMed Central

    Farkaš, Robert; Ďatková, Zuzana; Mentelová, Lucia; Löw, Péter; Beňová-Liszeková, Denisa; Beňo, Milan; Sass, Miklós; Řehulka, Pavel; Řehulková, Helena; Raška, Otakar; Kováčik, Lubomír; Šmigová, Jana; Raška, Ivan; Mechler, Bernard M.

    2014-01-01

    In contrast to the well defined mechanism of merocrine exocytosis, the mechanism of apocrine secretion, which was first described over 180 years ago, remains relatively uncharacterized. We identified apocrine secretory activity in the late prepupal salivary glands of Drosophila melanogaster just prior to the execution of programmed cell death (PCD). The excellent genetic tools available in Drosophila provide an opportunity to dissect for the first time the molecular and mechanistic aspects of this process. A prerequisite for such an analysis is to have pivotal immunohistochemical, ultrastructural, biochemical and proteomic data that fully characterize the process. Here we present data showing that the Drosophila salivary glands release all kinds of cellular proteins by an apocrine mechanism including cytoskeletal, cytosolic, mitochondrial, nuclear and nucleolar components. Surprisingly, the apocrine release of these proteins displays a temporal pattern with the sequential release of some proteins (e.g. transcription factor BR-C, tumor suppressor p127, cytoskeletal β-tubulin, non-muscle myosin) earlier than others (e.g. filamentous actin, nuclear lamin, mitochondrial pyruvate dehydrogenase). Although the apocrine release of proteins takes place just prior to the execution of an apoptotic program, the nuclear DNA is never released. Western blotting indicates that the secreted proteins remain undegraded in the lumen. Following apocrine secretion, the salivary gland cells remain quite vital, as they retain highly active transcriptional and protein synthetic activity. PMID:24732043

  8. Digestive physiology of the pig symposium: G protein-coupled receptors in nutrient chemosensation and gastrointestinal hormone secretion.

    PubMed

    Liou, A P

    2013-05-01

    The gastrointestinal tract is a highly effective and efficient organ system that digests and absorbs nutrients, contributes to the regulation of glucose homeostasis, and signals postprandial satiety. A network of enteroendocrine cells orchestrates these events through the release of neuropeptide hormones secreted in response to the specific nutrient components within the intraluminal milieu. Nutrient chemosensing by these cells is mediated by cell membrane proteins that have been localized to hormone-producing cells. However, functional studies of the nutrient detection abilities of the endocrine cell population have been limited due to its rare and singly distributed cell type. Recent technological advances have enabled investigations with primary endocrine cells that promise to enhance our current understanding of enteroendocrine cell biology. This review focuses on a particular subset of chemosensing receptors, the G protein-coupled receptors (GPCR), that have been identified as putative nutrient sensors of the major macronutrients, lipids, proteins, and carbohydrates by enteroendocrine cells. The contributions of these receptors in directly activating and stimulating hormone secretion in several subsets of enteroendocrine cells will be discussed, based on evidence gathered by functional studies in animal models, in vitro studies in endocrine cell lines, and newly described findings in primary endocrine cells. Key insights in chemosensory detection and hormone secretion from enteroendocrine cells may help further the studies in larger animal models and guide the formulation of feed or supplements to influence the gastrointestinal signals regulating optimal food intake, absorptive capacity, and growth. PMID:23230119

  9. Improving Protein Production on the Level of Regulation of both Expression and Secretion Pathways in Bacillus subtilis.

    PubMed

    Song, Yafeng; Nikoloff, Jonas M; Zhang, Dawei

    2015-07-01

    The well-characterized gram-positive bacterium Bacillus subtilis is an outstanding industrial candidate for protein expression owing to its single membrane and high capacity of secretion, simplifying the downstream processing of secretory proteins. During the last few years, there has been continuous progress in the illustration of secretion mechanisms and application of this robust host in various fields of life science, such as enzyme production, feed additives, and food and pharmaceutical industries. Here, we review the developments of Bacillus subtilis as a highly promising expression system illuminating strong chemical- and temperatureinducible and other types of promoters, strategies for ribosome-binding-site utilization, and the novel approach of signal peptide selection. Furthermore, we outline the main steps of the Sec pathway and the relevant elements as well as their interactions. In addition, we introduce the latest discoveries of Tat-related complex structures and functions and the countless applications of this full-folded protein secretion pathway. This review also lists some of the current understandings of ATP-binding cassette transporters. According to the extensive knowledge on the genetic modification strategies and molecular biology of Bacillus subtilis, we propose some suggestions and strategies for improving the yield of intended productions. We expect this to promote striking future developments in the optimization and application of this bacterium.

  10. Lack of a surface layer in Tannerella forsythia mutants deficient in the type IX secretion system

    PubMed Central

    Narita, Yuka; Sato, Keiko; Yukitake, Hideharu; Shoji, Mikio; Nakane, Daisuke; Nagano, Keiji; Yoshimura, Fuminobu; Naito, Mariko

    2014-01-01

    Tannerella forsythia, a Gram-negative anaerobic bacterium, is an important pathogen in periodontal disease. This bacterium possesses genes encoding all known components of the type IX secretion system (T9SS). T. forsythia mutants deficient in genes orthologous to the T9SS-encoding genes porK, porT and sov were constructed. All porK, porT and sov single mutants lacked the surface layer (S-layer) and expressed less-glycosylated versions of the S-layer glycoproteins TfsA and TfsB. In addition, these mutants exhibited decreased haemagglutination and increased biofilm formation. Comparison of the proteins secreted by the porK and WT strains revealed that the secretion of several proteins containing C-terminal domain (CTD)-like sequences is dependent on the porK gene. These results indicate that the T9SS is functional in T. forsythia and contributes to the translocation of CTD proteins to the cell surface or into the extracellular milieu. PMID:25023245

  11. The Effect of α-Mating Factor Secretion Signal Mutations on Recombinant Protein Expression in Pichia pastoris

    PubMed Central

    Lin-Cereghino, Geoff P.; Stark, Carolyn M.; Kim, Daniel; Chang, Jennifer; Shaheen, Nadia; Poerwanto, Hansel; Agari, Kimiko; Moua, Pachai; Low, Lauren K.; Tran, Namphuong; Huang, Amy D.; Nattestad, Maria; Oshiro, Kristin T.; Chang, John William; Chavan, Archana; Tsai, Jerry W.; Lin-Cereghino, Joan

    2013-01-01

    The methylotrophic yeast, Pichia pastoris, has been genetically engineered to produce many heterologous proteins for industrial and research purposes. In order to secrete proteins for easier purification from the extracellular medium, the coding sequence of recombinant proteins are initially fused to the Saccharomyces cerevisiae α-mating factor secretion signal leader. Extensive site-directed mutagenesis of the prepro region of the α-mating factor secretion signal sequence was performed in order to determine the effects of various deletions and substitutions on expression. Though some mutations clearly dampened protein expression, deletion of amino acids 57-70, corresponding to the predicted 3rd alpha helix of α-mating factor secretion signal, increased secretion of reporter proteins horseradish peroxidase and lipase at least 50% in small-scale cultures. These findings raise the possibility that the secretory efficiency of the leader can be further enhanced in the future. PMID:23454485

  12. Kin of IRRE-like Protein 2 Is a Phosphorylated Glycoprotein That Regulates Basal Insulin Secretion*

    PubMed Central

    Yesildag, Burcak; Bock, Thomas; Herrmanns, Karolin; Wollscheid, Bernd; Stoffel, Markus

    2015-01-01

    Direct interactions among pancreatic β-cells via cell surface proteins inhibit basal and enhance stimulated insulin secretion. Here, we functionally and biochemically characterized Kirrel2, an immunoglobulin superfamily protein with β-cell-specific expression in the pancreas. Our results show that Kirrel2 is a phosphorylated glycoprotein that co-localizes and interacts with the adherens junction proteins E-cadherin and β-catenin in MIN6 cells. We further demonstrate that the phosphosites Tyr595–596 are functionally relevant for the regulation of Kirrel2 stability and localization. Analysis of the extracellular and intracellular domains of Kirrel2 revealed that it is cleaved and shed from MIN6 cells and that the remaining membrane spanning cytoplasmic domain is processed by γ-secretase complex. Kirrel2 knockdown with RNA interference in MIN6 cells and ablation of Kirrel2 from mice with genetic deletion resulted in increased basal insulin secretion from β-cells, with no immediate influence on stimulated insulin secretion, total insulin content, or whole body glucose metabolism. Our results show that in pancreatic β-cells Kirrel2 localizes to adherens junctions, is regulated by multiple post-translational events, including glycosylation, extracellular cleavage, and phosphorylation, and engages in the regulation of basal insulin secretion. PMID:26324709

  13. Regulation of chloride secretion in dog tracheal epithelium by protein kinase C

    SciTech Connect

    Barthelson, R.A.; Jacoby, D.B.; Widdicombe, J.H. )

    1987-12-01

    The effects of stimulating protein kinase C on Cl{sup {minus}} secretion across dog tracheal epithelium were investigated. The phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), and the synthetic diacylglycerol, 1-oleolyl-2-acetylglycerol (OAG), which stimulate protein kinase C (PKC), both stimulated short-circuit current (I{sub sc}) with K{sub d} of 10 nM and 1 {mu}M, respectively. In Cl{sup {minus}}-free solution, the increases in I{sub sc} were virtually abolished, suggesting that these compounds stimulate Cl{sup {minus}} secretion, a hypothesis confirmed for TPA by measurement of {sup 36}Cl{sup {minus}} fluxes. The stimulations of Cl{sup {minus}} secretion were not sensitive to indomethacin, nor were cAMP levels elevated during stimulation. In addition to its transient stimulatory effect, TPA at high doses caused the eventual lowering of the base-line I{sub sc} and a block of subsequent stimulation by cAMP-mediated agonists. This was probably not the result of toxicity or an effect on adenylate cyclase or on cAMP-dependent protein kinase. Cell extracts from both cultured and native dog tracheal epithelial cells showed strong PKC activities. These results suggest that PKC may play a role in regulating Cl{sup {minus}} secretion across dog tracheal epithelium.

  14. Lipids and proteins in the Rathke's gland secretions of the North American mud turtle (Kinosternon subrubrum)

    USGS Publications Warehouse

    Seifert, W.E.; Gotte, S.W.; Leto, T.L.; Weldon, P.J.

    1994-01-01

    Lipids and proteins in the Rathke's gland secretions of the North American mud turtle (Kinosternon subrubrum, Kinosternidae) were analyzed by gas chromatography-mass spectrometry (GC-MS) and SDS-polyacrylamide gel electrophoresis (SDS-PAGE), respectively. Analysis by GC-MS indicates 2,3-dihydroxypropanal and C3?C24 free or esterified fatty acids. Analysis by SDS-PAGE indicates a major protein component with an approximate molecular mass of 60 kDa and minor components ranging from ca. 23 to 34 kDa. The major component of K. subrubrum glandular secretions exhibits a mobility that matches that of the Kemp's ridley sea turtle (Lepidochelys kempi, Cheloniidae), suggesting that these proteins are evolutionarily conserved.

  15. Mussel adhesion is dictated by time-regulated secretion and molecular conformation of mussel adhesive proteins

    PubMed Central

    Petrone, Luigi; Kumar, Akshita; Sutanto, Clarinda N.; Patil, Navinkumar J.; Kannan, Srinivasaraghavan; Palaniappan, Alagappan; Amini, Shahrouz; Zappone, Bruno; Verma, Chandra; Miserez, Ali

    2015-01-01

    Interfacial water constitutes a formidable barrier to strong surface bonding, hampering the development of water-resistant synthetic adhesives. Notwithstanding this obstacle, the Asian green mussel Perna viridis attaches firmly to underwater surfaces via a proteinaceous secretion (byssus). Extending beyond the currently known design principles of mussel adhesion, here we elucidate the precise time-regulated secretion of P. viridis mussel adhesive proteins. The vanguard 3,4-dihydroxy-L-phenylalanine (Dopa)-rich protein Pvfp-5 acts as an adhesive primer, overcoming repulsive hydration forces by displacing surface-bound water and generating strong surface adhesion. Using homology modelling and molecular dynamics simulations, we find that all mussel adhesive proteins are largely unordered, with Pvfp-5 adopting a disordered structure and elongated conformation whereby all Dopa residues reside on the protein surface. Time-regulated secretion and structural disorder of mussel adhesive proteins appear essential for optimizing extended nonspecific surface interactions and byssus' assembly. Our findings reveal molecular-scale principles to help the development of wet-resistant adhesives. PMID:26508080

  16. Proteomics informed by transcriptomics identifies novel secreted proteins in Dermacentor andersoni saliva

    SciTech Connect

    Mudenda, Lwiindi; Aguilar Pierle, Sebastian; Turse, Joshua E.; Scoles, Glen A.; Purvine, Samuel O.; Nicora, Carrie D.; Clauss, Therese RW; Ueti, Massaro W.; Brown, Wendy C.; Brayton, Kelly A.

    2014-08-07

    Dermacentor andersoni, known as the Rocky Mountain wood tick, is found in the western United States and transmits pathogens that cause diseases of veterinary and public health importance including Rocky Mountain spotted fever, tularemia, Colorado tick fever and bovine anaplasmosis. Tick saliva is known to modulate both innate and acquired immune responses, enabling ticks to feed for several days without detection. During feeding ticks subvert host defences such as hemostasis and inflammation, which would otherwise result in coagulation, wound repair and rejection of the tick. Molecular characterization of the proteins and pharmacological molecules secreted in tick saliva offers an opportunity to develop tick vaccines as an alternative to the use of acaricides, as well as new anti-inflammatory drugs. We performed proteomics informed by transcriptomics to identify D. andersoni saliva proteins that are secreted during feeding. The transcript data generated a database of 21,797 consensus sequences, which we used to identify 677 proteins secreted in the saliva of D. andersoni ticks fed for 2 and 5 days, following proteomic investigations of whole saliva using mass spectrometry. Salivary gland transcript levels of unfed ticks were compared with 2 and 5 day fed ticks to identify genes upregulated early during tick feeding. We cross-referenced the proteomic data with the transcriptomic data to identify 157 proteins of interest for immunomodulation and blood feeding. Proteins of unknown function as well as known immunomodulators were identified.

  17. Mussel adhesion is dictated by time-regulated secretion and molecular conformation of mussel adhesive proteins

    NASA Astrophysics Data System (ADS)

    Petrone, Luigi; Kumar, Akshita; Sutanto, Clarinda N.; Patil, Navinkumar J.; Kannan, Srinivasaraghavan; Palaniappan, Alagappan; Amini, Shahrouz; Zappone, Bruno; Verma, Chandra; Miserez, Ali

    2015-10-01

    Interfacial water constitutes a formidable barrier to strong surface bonding, hampering the development of water-resistant synthetic adhesives. Notwithstanding this obstacle, the Asian green mussel Perna viridis attaches firmly to underwater surfaces via a proteinaceous secretion (byssus). Extending beyond the currently known design principles of mussel adhesion, here we elucidate the precise time-regulated secretion of P. viridis mussel adhesive proteins. The vanguard 3,4-dihydroxy-L-phenylalanine (Dopa)-rich protein Pvfp-5 acts as an adhesive primer, overcoming repulsive hydration forces by displacing surface-bound water and generating strong surface adhesion. Using homology modelling and molecular dynamics simulations, we find that all mussel adhesive proteins are largely unordered, with Pvfp-5 adopting a disordered structure and elongated conformation whereby all Dopa residues reside on the protein surface. Time-regulated secretion and structural disorder of mussel adhesive proteins appear essential for optimizing extended nonspecific surface interactions and byssus' assembly. Our findings reveal molecular-scale principles to help the development of wet-resistant adhesives.

  18. Proteomics informed by transcriptomics identifies novel secreted proteins in Dermacentor andersoni saliva.

    PubMed

    Mudenda, Lwiindi; Pierlé, Sebastián Aguilar; Turse, Joshua E; Scoles, Glen A; Purvine, Samuel O; Nicora, Carrie D; Clauss, Therese R W; Ueti, Massaro W; Brown, Wendy C; Brayton, Kelly A

    2014-11-01

    Dermacentor andersoni, known as the Rocky Mountain wood tick, is found in the western United States and transmits pathogens that cause diseases of veterinary and public health importance including Rocky Mountain spotted fever, tularemia, Colorado tick fever and bovine anaplasmosis. Tick saliva is known to modulate both innate and acquired immune responses, enabling ticks to feed for several days without detection. During feeding ticks subvert host defences such as hemostasis and inflammation, which would otherwise result in coagulation, wound repair and rejection of the tick. Molecular characterization of the proteins and pharmacological molecules secreted in tick saliva offers an opportunity to develop tick vaccines as an alternative to the use of acaricides, as well as new anti-inflammatory drugs. We performed proteomics informed by transcriptomics to identify D. andersoni saliva proteins that are secreted during feeding. The transcript data generated a database of 21,797 consensus sequences, which we used to identify 677 proteins secreted in the saliva of D. andersoni ticks fed for 2 and 5days, following proteomic investigations of whole saliva using mass spectrometry. Salivary gland transcript levels of unfed ticks were compared with 2 and 5day fed ticks to identify genes upregulated early during tick feeding. We cross-referenced the proteomic data with the transcriptomic data to identify 157 proteins of interest for immunomodulation and blood feeding. Proteins of unknown function as well as known immunomodulators were identified. PMID:25110293

  19. Selective condensation drives partitioning and sequential secretion of cyst wall proteins in differentiating Giardia lamblia.

    PubMed

    Konrad, Christian; Spycher, Cornelia; Hehl, Adrian B

    2010-04-01

    Controlled secretion of a protective extracellular matrix is required for transmission of the infective stage of a large number of protozoan and metazoan parasites. Differentiating trophozoites of the highly minimized protozoan parasite Giardia lamblia secrete the proteinaceous portion of the cyst wall material (CWM) consisting of three paralogous cyst wall proteins (CWP1-3) via organelles termed encystation-specific vesicles (ESVs). Phylogenetic and molecular data indicate that Diplomonads have lost a classical Golgi during reductive evolution. However, neogenesis of ESVs in encysting Giardia trophozoites transiently provides basic Golgi functions by accumulating presorted CWM exported from the ER for maturation. Based on this "minimal Golgi" hypothesis we predicted maturation of ESVs to a trans Golgi-like stage, which would manifest as a sorting event before regulated secretion of the CWM. Here we show that proteolytic processing of pro-CWP2 in maturing ESVs coincides with partitioning of CWM into two fractions, which are sorted and secreted sequentially with different kinetics. This novel sorting function leads to rapid assembly of a structurally defined outer cyst wall, followed by slow secretion of the remaining components. Using live cell microscopy we find direct evidence for condensed core formation in maturing ESVs. Core formation suggests that a mechanism controlled by phase transitions of the CWM from fluid to condensed and back likely drives CWM partitioning and makes sorting and sequential secretion possible. Blocking of CWP2 processing by a protease inhibitor leads to mis-sorting of a CWP2 reporter. Nevertheless, partitioning and sequential secretion of two portions of the CWM are unaffected in these cells. Although these cysts have a normal appearance they are not water resistant and therefore not infective. Our findings suggest that sequential assembly is a basic architectural principle of protective wall formation and requires minimal Golgi sorting

  20. Selective Condensation Drives Partitioning and Sequential Secretion of Cyst Wall Proteins in Differentiating Giardia lamblia

    PubMed Central

    Konrad, Christian; Spycher, Cornelia; Hehl, Adrian B.

    2010-01-01

    Controlled secretion of a protective extracellular matrix is required for transmission of the infective stage of a large number of protozoan and metazoan parasites. Differentiating trophozoites of the highly minimized protozoan parasite Giardia lamblia secrete the proteinaceous portion of the cyst wall material (CWM) consisting of three paralogous cyst wall proteins (CWP1–3) via organelles termed encystation-specific vesicles (ESVs). Phylogenetic and molecular data indicate that Diplomonads have lost a classical Golgi during reductive evolution. However, neogenesis of ESVs in encysting Giardia trophozoites transiently provides basic Golgi functions by accumulating presorted CWM exported from the ER for maturation. Based on this “minimal Golgi” hypothesis we predicted maturation of ESVs to a trans Golgi-like stage, which would manifest as a sorting event before regulated secretion of the CWM. Here we show that proteolytic processing of pro-CWP2 in maturing ESVs coincides with partitioning of CWM into two fractions, which are sorted and secreted sequentially with different kinetics. This novel sorting function leads to rapid assembly of a structurally defined outer cyst wall, followed by slow secretion of the remaining components. Using live cell microscopy we find direct evidence for condensed core formation in maturing ESVs. Core formation suggests that a mechanism controlled by phase transitions of the CWM from fluid to condensed and back likely drives CWM partitioning and makes sorting and sequential secretion possible. Blocking of CWP2 processing by a protease inhibitor leads to mis-sorting of a CWP2 reporter. Nevertheless, partitioning and sequential secretion of two portions of the CWM are unaffected in these cells. Although these cysts have a normal appearance they are not water resistant and therefore not infective. Our findings suggest that sequential assembly is a basic architectural principle of protective wall formation and requires minimal Golgi

  1. A genome-wide RNA interference screen uncovers two p24 proteins as regulators of Wingless secretion.

    PubMed

    Port, Fillip; Hausmann, George; Basler, Konrad

    2011-11-01

    Wnt proteins are secreted, lipid-modified glycoproteins that control animal development and adult tissue homeostasis. Secretion of Wnt proteins is at least partly regulated by a dedicated machinery. Here, we report a genome-wide RNA interference screen for genes involved in the secretion of Wingless (Wg), a Drosophila Wnt. We identify three new genes required for Wg secretion. Of these, Emp24 and Eclair are required for proper export of Wg from the endoplasmic reticulum (ER). We propose that Emp24 and Eca act as specific cargo receptors for Wg to concentrate it in forming vesicles at sites of ER export. PMID:21886182

  2. Comparison of different signal peptides for secretion of heterologous proteins in fission yeast

    SciTech Connect

    Kjaerulff, Soren

    2005-10-28

    In the fission yeast Schizosaccharomyces pombe, there are relatively few signal peptides available and most reports of their activity have not been comparative. Using sequence information from the S. pombe genome database we have identified three putative signal peptides, designated Cpy, Amy and Dpp, and compared their ability to support secretion of green fluorescent protein (GFP). In the comparison we also included the two well-described secretion signals derived from the precursors of, respectively, the Saccharomyces cerevisiae {alpha}-factor and the S. pombe P-factor. The capability of the tested signal peptides to direct secretion of GFP varied greatly. The {alpha}-factor signal did not confer secretion to GFP and all the produced GFP was trapped intracellular. In contrast, the Cpy signal peptide supported efficient secretion of GFP with yields approximating 10 mg/L. We also found that the use of an attenuated version of the S. cerevisiae URA3 marker substantially increases vector copy number and expression yield in fission yeast.

  3. AtlasT4SS: A curated database for type IV secretion systems

    PubMed Central

    2012-01-01

    Background The type IV secretion system (T4SS) can be classified as a large family of macromolecule transporter systems, divided into three recognized sub-families, according to the well-known functions. The major sub-family is the conjugation system, which allows transfer of genetic material, such as a nucleoprotein, via cell contact among bacteria. Also, the conjugation system can transfer genetic material from bacteria to eukaryotic cells; such is the case with the T-DNA transfer of Agrobacterium tumefaciens to host plant cells. The system of effector protein transport constitutes the second sub-family, and the third one corresponds to the DNA uptake/release system. Genome analyses have revealed numerous T4SS in Bacteria and Archaea. The purpose of this work was to organize, classify, and integrate the T4SS data into a single database, called AtlasT4SS - the first public database devoted exclusively to this prokaryotic secretion system. Description The AtlasT4SS is a manual curated database that describes a large number of proteins related to the type IV secretion system reported so far in Gram-negative and Gram-positive bacteria, as well as in Archaea. The database was created using the RDBMS MySQL and the Catalyst Framework based in the Perl programming language and using the Model-View-Controller (MVC) design pattern for Web. The current version holds a comprehensive collection of 1,617 T4SS proteins from 58 Bacteria (49 Gram-negative and 9 Gram-Positive), one Archaea and 11 plasmids. By applying the bi-directional best hit (BBH) relationship in pairwise genome comparison, it was possible to obtain a core set of 134 clusters of orthologous genes encoding T4SS proteins. Conclusions In our database we present one way of classifying orthologous groups of T4SSs in a hierarchical classification scheme with three levels. The first level comprises four classes that are based on the organization of genetic determinants, shared homologies, and evolutionary

  4. The marine bacteria Shewanella frigidimarina NCIMB400 upregulates the type VI secretion system during early biofilm formation.

    PubMed

    Linares, Denis; Jean, Natacha; Van Overtvelt, Perrine; Ouidir, Tassadit; Hardouin, Julie; Blache, Yves; Molmeret, Maëlle

    2016-02-01

    Shewanella sp. are facultative anaerobic Gram-negative bacteria, extensively studied for their electron transfer ability. Shewanella frigidimarina has been detected and isolated from marine environments, and in particular, from biofilms. However, its ability to adhere to surfaces and form a biofilm is poorly understood. In this study, we show that the ability to adhere and to form a biofilm of S. frigidimarina NCIMB400 is significantly higher than that of Shewanella oneidensis in our conditions. We also show that this strain forms a biofilm in artificial seawater, whereas in Luria-Bertani, this capacity is reduced. To identify proteins involved in early biofilm formation, a proteomic analysis of sessile versus planktonic membrane-enriched fractions allowed the identification of several components of the same type VI secretion system gene cluster: putative Hcp1 and ImpB proteins as well as a forkhead-associated domain-containing protein. The upregulation of Hcp1 a marker of active translocation has been confirmed using quantitative reverse transcription polymerase chain reaction. Our data demonstrated the presence of a single and complete type VI secretion system in S. frigidimarina NCIMB400 genome, upregulated in sessile compared with planktonic conditions. The fact that three proteins including the secreted protein Hcp1 have been identified may suggest that this type VI secretion system is functional. PMID:26617163

  5. Apparent inhibition of. beta. -fructosidase secretion by tunicamycin may be explained by breakdown of the unglycosylated protein during secretion. [Daucus carota

    SciTech Connect

    Faye, L. ); Chrispeels, M.J. )

    1989-03-01

    Suspension-cultured carrot (Daucus carota) cells synthesize and secrete {beta}-fructosidase, a glycoprotein with asparagine-linked glycans. Treatment of the cells with tunicamycin completely inhibits the apparent secretion of {beta}-fructosidase as measured by the accumulation of the {sup 35}S-labelled protein in the cell wall or the culture medium. In the past, such a result has been interpreted as an inhibition of secretion by tunicamycin, but we suggest another explanation based on the following results. In the presence of tunicamycin, unglycosylated {beta}-fructosidase is synthesized and is associated with an endoplasmic-reticulum-rich microsomal fraction. Pulse-chase experiments show that the unglycosylated {beta}-fructosidase does not remain in the cells and appears to be secreted in the same way as glycosylated {beta}-fructosidase; however, no radioactive, unglycosylated {beta}-fructosidase accumulates extracellularly (cell wall or medium). Protoplasts obtained from carrot cells secrete {beta}-fructosidase protein and activity, and treatment of the protoplasts with tunicamycin results in the synthesis of unglycosylated {beta}-fructosidase. In the presence of tunicamycin, there is no accumulation of {beta}-fructosidase activity or unglycosylated {beta}-fructosidase polypeptide in the protoplast incubation medium. These results are consistent with the interpretation that the glycans of {beta}-fructosidase are necessary for its stability, and that in these suspension-cultured cells, the unglycosylated enzyme is degraded during the last stage(s) of secretion, or immediately after its arrival in the wall.

  6. Comparative Analysis of Secretomes from Ectomycorrhizal Fungi with an Emphasis on Small-Secreted Proteins

    PubMed Central

    Pellegrin, Clement; Morin, Emmanuelle; Martin, Francis M.; Veneault-Fourrey, Claire

    2015-01-01

    Fungi are major players in the carbon cycle in forest ecosystems due to the wide range of interactions they have with plants either through soil degradation processes by litter decayers or biotrophic interactions with pathogenic and ectomycorrhizal symbionts. Secretion of fungal proteins mediates these interactions by allowing the fungus to interact with its environment and/or host. Ectomycorrhizal (ECM) symbiosis independently appeared several times throughout evolution and involves approximately 80% of trees. Despite extensive physiological studies on ECM symbionts, little is known about the composition and specificities of their secretomes. In this study, we used a bioinformatics pipeline to predict and analyze the secretomes of 49 fungal species, including 11 ECM fungi, wood and soil decayers and pathogenic fungi to tackle the following questions: (1) Are there differences between the secretomes of saprophytic and ECM fungi? (2) Are small-secreted proteins (SSPs) more abundant in biotrophic fungi than in saprophytic fungi? and (3) Are there SSPs shared between ECM, saprotrophic and pathogenic fungi? We showed that the number of predicted secreted proteins is similar in the surveyed species, independently of their lifestyle. The secretome from ECM fungi is characterized by a restricted number of secreted CAZymes, but their repertoires of secreted proteases and lipases are similar to those of saprotrophic fungi. Focusing on SSPs, we showed that the secretome of ECM fungi is enriched in SSPs compared with other species. Most of the SSPs are coded by orphan genes with no known PFAM domain or similarities to known sequences in databases. Finally, based on the clustering analysis, we identified shared- and lifestyle-specific SSPs between saprotrophic and ECM fungi. The presence of SSPs is not limited to fungi interacting with living plants as the genome of saprotrophic fungi also code for numerous SSPs. ECM fungi shared lifestyle-specific SSPs likely involved in

  7. Comparative analysis of secretomes from Ectomycorrhizal fungi with an emphasis on small-secreted proteins

    DOE PAGES

    Pellegrin, Clement; Morin, Emmanuelle; Martin, Francis M.; Veneault-Fourrey, Claire

    2015-11-18

    Fungi are major players in the carbon cycle in forest ecosystems due to the wide range of interactions they have with plants either through soil degradation processes by litter decayers or biotrophic interactions with pathogenic and ectomycorrhizal symbionts. Secretion of fungal proteins mediates these interactions by allowing the fungus to interact with its environment and/or host. Ectomycorrhizal (ECM) symbiosis independently appeared several times throughout evolution and involves approximately 80% of trees. Despite extensive physiological studies on ECM symbionts, little is known about the composition and specificities of their secretomes. In this study, we used a bioinformatics pipeline to predict andmore » analyze the secretomes of 49 fungal species, including 11 ECM fungi, wood and soil decayers and pathogenic fungi to tackle the following questions: (1) Are there differences between the secretomes of saprophytic and ECM fungi? (2) Are small-secreted proteins (SSPs) more abundant in biotrophic fungi than in saprophytic fungi? and (3) Are there SSPs shared between ECM, saprotrophic and pathogenic fungi? We showed that the number of predicted secreted proteins is similar in the surveyed species, independently of their lifestyle. The secretome from ECM fungi is characterized by a restricted number of secreted CAZymes, but their repertoires of secreted proteases and lipases are similar to those of saprotrophic fungi. Focusing on SSPs, we showed that the secretome of ECM fungi is enriched in SSPs compared with other species. Most of the SSPs are coded by orphan genes with no known PFAM domain or similarities to known sequences in databases. Finally, based on the clustering analysis, we identified shared- and lifestyle-specific SSPs between saprotrophic and ECM fungi. The presence of SSPs is not limited to fungi interacting with living plants as the genome of saprotrophic fungi also code for numerous SSPs. As a result, ECM fungi shared lifestyle-specific SSPs

  8. Comparative analysis of secretomes from Ectomycorrhizal fungi with an emphasis on small-secreted proteins

    SciTech Connect

    Pellegrin, Clement; Morin, Emmanuelle; Martin, Francis M.; Veneault-Fourrey, Claire

    2015-11-18

    Fungi are major players in the carbon cycle in forest ecosystems due to the wide range of interactions they have with plants either through soil degradation processes by litter decayers or biotrophic interactions with pathogenic and ectomycorrhizal symbionts. Secretion of fungal proteins mediates these interactions by allowing the fungus to interact with its environment and/or host. Ectomycorrhizal (ECM) symbiosis independently appeared several times throughout evolution and involves approximately 80% of trees. Despite extensive physiological studies on ECM symbionts, little is known about the composition and specificities of their secretomes. In this study, we used a bioinformatics pipeline to predict and analyze the secretomes of 49 fungal species, including 11 ECM fungi, wood and soil decayers and pathogenic fungi to tackle the following questions: (1) Are there differences between the secretomes of saprophytic and ECM fungi? (2) Are small-secreted proteins (SSPs) more abundant in biotrophic fungi than in saprophytic fungi? and (3) Are there SSPs shared between ECM, saprotrophic and pathogenic fungi? We showed that the number of predicted secreted proteins is similar in the surveyed species, independently of their lifestyle. The secretome from ECM fungi is characterized by a restricted number of secreted CAZymes, but their repertoires of secreted proteases and lipases are similar to those of saprotrophic fungi. Focusing on SSPs, we showed that the secretome of ECM fungi is enriched in SSPs compared with other species. Most of the SSPs are coded by orphan genes with no known PFAM domain or similarities to known sequences in databases. Finally, based on the clustering analysis, we identified shared- and lifestyle-specific SSPs between saprotrophic and ECM fungi. The presence of SSPs is not limited to fungi interacting with living plants as the genome of saprotrophic fungi also code for numerous SSPs. As a result, ECM fungi shared lifestyle-specific SSPs likely

  9. Comparative Analysis of Secretomes from Ectomycorrhizal Fungi with an Emphasis on Small-Secreted Proteins.

    PubMed

    Pellegrin, Clement; Morin, Emmanuelle; Martin, Francis M; Veneault-Fourrey, Claire

    2015-01-01

    Fungi are major players in the carbon cycle in forest ecosystems due to the wide range of interactions they have with plants either through soil degradation processes by litter decayers or biotrophic interactions with pathogenic and ectomycorrhizal symbionts. Secretion of fungal proteins mediates these interactions by allowing the fungus to interact with its environment and/or host. Ectomycorrhizal (ECM) symbiosis independently appeared several times throughout evolution and involves approximately 80% of trees. Despite extensive physiological studies on ECM symbionts, little is known about the composition and specificities of their secretomes. In this study, we used a bioinformatics pipeline to predict and analyze the secretomes of 49 fungal species, including 11 ECM fungi, wood and soil decayers and pathogenic fungi to tackle the following questions: (1) Are there differences between the secretomes of saprophytic and ECM fungi? (2) Are small-secreted proteins (SSPs) more abundant in biotrophic fungi than in saprophytic fungi? and (3) Are there SSPs shared between ECM, saprotrophic and pathogenic fungi? We showed that the number of predicted secreted proteins is similar in the surveyed species, independently of their lifestyle. The secretome from ECM fungi is characterized by a restricted number of secreted CAZymes, but their repertoires of secreted proteases and lipases are similar to those of saprotrophic fungi. Focusing on SSPs, we showed that the secretome of ECM fungi is enriched in SSPs compared with other species. Most of the SSPs are coded by orphan genes with no known PFAM domain or similarities to known sequences in databases. Finally, based on the clustering analysis, we identified shared- and lifestyle-specific SSPs between saprotrophic and ECM fungi. The presence of SSPs is not limited to fungi interacting with living plants as the genome of saprotrophic fungi also code for numerous SSPs. ECM fungi shared lifestyle-specific SSPs likely involved in

  10. The secreted effector protein of Salmonella dublin, SopA, is translocated into eukaryotic cells and influences the induction of enteritis.

    PubMed

    Wood, M W; Jones, M A; Watson, P R; Siber, A M; McCormick, B A; Hedges, S; Rosqvist, R; Wallis, T S; Galyov, E E

    2000-08-01

    Salmonella-induced enteritis is associated with the induction of an acute intestinal inflammatory response and net fluid secretion into the lumen of infected mucosa. Proteins secreted by the Inv/Spa type III secretion system of Salmonella play a key role in the induction of these responses. We have demonstrated recently that the Inv/Spa-secreted SopB and SopD effector proteins are translocated into eukaryotic cells via a Sip-dependent pathway and act in concert to mediate inflammation and fluid secretion in infected ileal mucosa. Mutations of both sopB and sopD significantly reduced, but did not abrogate, the enteropathogenic phenotype. This indicated that other virulence factors are involved in the induction of enteritis. In this work, we characterize SopA, a secreted protein belonging to the family of Sop effectors of Salmonella dublin. We demonstrate that SopA is translocated into eukaryotic cells and provide evidence suggesting that SopA has a role in the induction of enteritis.

  11. A low-protein diet during pregnancy alters glucose metabolism and insulin secretion.

    PubMed

    Souza, Denise de Fátima I; Ignácio-Souza, Letícia M; Reis, Sílvia Regina de L; Reis, Marise Auxiliadora de B; Stoppiglia, Luiz Fabrizio; Carneiro, Everardo Magalhães; Boschero, Antonio Carlos; Arantes, Vanessa Cristina; Latorraca, Márcia Queiroz

    2012-03-01

    In pancreatic islets, glucose metabolism is a key process for insulin secretion, and pregnancy requires an increase in insulin secretion to compensate for the typical insulin resistance at the end of this period. Because a low-protein diet decreases insulin secretion, this type of diet could impair glucose homeostasis, leading to gestational diabetes. In pancreatic islets, we investigated GLUT2, glucokinase and hexokinase expression patterns as well as glucose uptake, utilization and oxidation rates. Adult control non-pregnant (CNP) and control pregnant (CP) rats were fed a normal protein diet (17%), whereas low-protein non-pregnant (LPNP) and low-protein pregnant (LPP) rats were fed a low-protein diet (6%) from days 1 to 15 of pregnancy. The insulin secretion in 2.8 mmol l(-1) of glucose was higher in islets from LPP rats than that in islets from CP, CNP and LPNP rats. Maximal insulin release was obtained at 8.3 and 16.7 mmol l(-1) of glucose in LPP and CP groups, respectively. The glucose dose-response curve from LPNP group was shifted to the right in relation to the CNP group. In the CP group, the concentration-response curve to glucose was shifted to the left compared with the CNP group. The LPP groups exhibited an "inverted U-shape" dose-response curve. The alterations in the GLUT2, glucokinase and hexokinase expression patterns neither impaired glucose metabolism nor correlated with glucose islet sensitivity, suggesting that β-cell sensitivity to glucose requires secondary events other than the observed metabolic/molecular events. PMID:22034157

  12. Calcium-containing phosphopeptides pave the secretory pathway for efficient protein traffic and secretion in fungi.

    PubMed

    Martín, Juan F

    2014-01-01

    Casein phosphopeptides (CPPs) containing chelated calcium drastically increase the secretion of extracellular homologous and heterologous proteins in filamentous fungi. Casein phosphopeptides released by digestion of alpha - and beta-casein are rich in phosphoserine residues (SerP). They stimulate enzyme secretion in the gastrointestinal tract and enhance the immune response in mammals, and are used as food supplements. It is well known that casein phosphopeptides transport Ca2+ across the membranes and play an important role in Ca2+ homeostasis in the cells. Addition of CPPs drastically increases the production of heterologous proteins in Aspergillus as host for industrial enzyme production. Recent proteomics studies showed that CPPs alter drastically the vesicle-mediated secretory pathway in filamentous fungi, apparently because they change the calcium concentration in organelles that act as calcium reservoirs. In the organelles calcium homeostasis a major role is played by the pmr1 gene, that encodes a Ca2+/Mn2+ transport ATPase, localized in the Golgi complex; this transporter controls the balance between intra-Golgi and cytoplasmic Ca2+ concentrations. A Golgi-located casein kinase (CkiA) governs the ER to Golgi directionality of the movement of secretory proteins by interacting with the COPII coat of secretory vesicles when they reach the Golgi. Mutants defective in the casein-2 kinase CkiA show abnormal targeting of some secretory proteins, including cytoplasmic membrane amino acid transporters that in ckiA mutants are miss-targeted to vacuolar membranes. Interestingly, addition of CPPs increases a glyceraldehyde-3-phpshate dehydrogenase protein that is known to associate with microtubules and act as a vesicle/membrane fusogenic agent. In summary, CPPs alter the protein secretory pathway in fungi adapting it to a deregulated protein traffic through the organelles and vesicles what results in a drastic increase in secretion of heterologous and also of

  13. Epididymal protein synthesis and secretion in strains of mice bearing single gene mutations which affect fertility.

    PubMed

    Holland, M K; Orgebin-Crist, M C

    1988-03-01

    Mice bearing gene mutations that, among other effects, render the males infertile were examined. Serum testosterone was within the normal range (0.8-1.8 ng/ml), and sperm numbers in the testis and epididymis were not different between mutant animals and coisogenic wild types. All mutants, except mocha and achondroplasia, displayed normal mating behavior. However, in all genotypes, fewer fertilized eggs were recovered from females mated by mutants. In vitro fertilization tests showed that all mutants--except bouncy--fertilized similar numbers of eggs to wild types. Spermatozoa from bouncy mutants also bound to eggs in lower numbers. These findings indicate that spermatozoa from the bouncy mutant have a severe defect in sperm-zona interaction. When bouncy spermatozoa were tested for sperm-vitelline membrane interaction at a low (10:1) sperm to egg ratio, they penetrated fewer zona-free hamster eggs. Epididymal protein synthesis and secretion were comparable between wild-type animals from all genotypes. However, while the regional pattern of protein synthesis was comparable among all mutants, the absolute rate of protein synthesis (cpm per mg tissue) was lower in some cases. Nevertheless, the proportion of the proteins synthesized that appeared in the medium remained constant. When the regional profile of proteins secreted by mutants was compared to that of their coisogenic wild types, three types of differences were noted: (1) changes in the abundance of a protein, (2) changes in the region of the epididymis from which a protein was secreted, or (3) the absence of a protein.

  14. Rapid Evolution of the Sequences and Gene Repertoires of Secreted Proteins in Bacteria

    PubMed Central

    Rocha, Eduardo P. C.

    2012-01-01

    Proteins secreted to the extracellular environment or to the periphery of the cell envelope, the secretome, play essential roles in foraging, antagonistic and mutualistic interactions. We hypothesize that arms races, genetic conflicts and varying selective pressures should lead to the rapid change of sequences and gene repertoires of the secretome. The analysis of 42 bacterial pan-genomes shows that secreted, and especially extracellular proteins, are predominantly encoded in the accessory genome, i.e. among genes not ubiquitous within the clade. Genes encoding outer membrane proteins might engage more frequently in intra-chromosomal gene conversion because they are more often in multi-genic families. The gene sequences encoding the secretome evolve faster than the rest of the genome and in particular at non-synonymous positions. Cell wall proteins in Firmicutes evolve particularly fast when compared with outer membrane proteins of Proteobacteria. Virulence factors are over-represented in the secretome, notably in outer membrane proteins, but cell localization explains more of the variance in substitution rates and gene repertoires than sequence homology to known virulence factors. Accordingly, the repertoires and sequences of the genes encoding the secretome change fast in the clades of obligatory and facultative pathogens and also in the clades of mutualists and free-living bacteria. Our study shows that cell localization shapes genome evolution. In agreement with our hypothesis, the repertoires and the sequences of genes encoding secreted proteins evolve fast. The particularly rapid change of extracellular proteins suggests that these public goods are key players in bacterial adaptation. PMID:23189144

  15. Type III secretion systems: the bacterial flagellum and the injectisome

    PubMed Central

    Diepold, Andreas; Armitage, Judith P.

    2015-01-01

    The flagellum and the injectisome are two of the most complex and fascinating bacterial nanomachines. At their core, they share a type III secretion system (T3SS), a transmembrane export complex that forms the extracellular appendages, the flagellar filament and the injectisome needle. Recent advances, combining structural biology, cryo-electron tomography, molecular genetics, in vivo imaging, bioinformatics and biophysics, have greatly increased our understanding of the T3SS, especially the structure of its transmembrane and cytosolic components, the transcriptional, post-transcriptional and functional regulation and the remarkable adaptivity of the system. This review aims to integrate these new findings into our current knowledge of the evolution, function, regulation and dynamics of the T3SS, and to highlight commonalities and differences between the two systems, as well as their potential applications. PMID:26370933

  16. Cross-Talk between the Aeromonas hydrophila Type III Secretion System and Lateral Flagella System.

    PubMed

    Zhao, Yu-Hang; Shaw, Jonathan G

    2016-01-01

    Aeromonas hydrophila is responsible for aeromonad septicaemia in fish, and gastroenteritis and wound infections in humans. The type III secretion system (T3SS) is utilized by aeromonads to inject protein effectors directly into host cells. One of the major genetic regulators of the T3SS in several bacterial species is the AraC-like protein ExsA. Previous studies have suggested a link between T3SS regulation and lateral flagella expression. The aim of this study was to determine the genetic regulation of the T3SS and its potential interaction with the lateral flagella system in A. hydrophila. To investigate the genes encoding the T3SS regulatory components exsA, exsD, exsC, and exsE were mutated and the activities of the T3SS promoters were measured in wild type and mutant backgrounds demonstrating a regulatory network. The Exs proteins were shown to interact with each other by BACTH assay and Far-Western Blot. The findings suggested a regulatory cascade in which ExsE was bound to the chaperone protein ExsC. When ExsC was free it sequestered the anti-activator ExsD thus stopping the inhibition of the T3SS master regulator ExsA allowing T3SS expression. The T3SS regulatory components were also shown to affect the expression of the lateral flagella system. The activities of the lateral flagella promoters were shown to be repressed by the absence of ExsD and ExsE, suggesting that the T3SS master regulator ExsA was a negative regulator of the lateral flagella system. PMID:27656180</