Science.gov

Sample records for protein sequence comparison

  1. Protein sequence comparison and protein evolution

    SciTech Connect

    Pearson, W.R.

    1995-12-31

    This tutorial was one of eight tutorials selected to be presented at the Third International Conference on Intelligent Systems for Molecular Biology which was held in the United Kingdom from July 16 to 19, 1995. This tutorial examines how the information conserved during the evolution of a protein molecule can be used to infer reliably homology, and thus a shared proteinfold and possibly a shared active site or function. The authors start by reviewing a geological/evolutionary time scale. Next they look at the evolution of several protein families. During the tutorial, these families will be used to demonstrate that homologous protein ancestry can be inferred with confidence. They also examine different modes of protein evolution and consider some hypotheses that have been presented to explain the very earliest events in protein evolution. The next part of the tutorial will examine the technical aspects of protein sequence comparison. Both optimal and heuristic algorithms and their associated parameters that are used to characterize protein sequence similarities are discussed. Perhaps more importantly, they survey the statistics of local similarity scores, and how these statistics can both be used to improve the selectivity of a search and to evaluate the significance of a match. They them examine distantly related members of three protein families, the serine proteases, the glutathione transferases, and the G-protein-coupled receptors (GCRs). Finally, the discuss how sequence similarity can be used to examine internal repeated or mosaic structures in proteins.

  2. Protein sequence comparison and fold recognition: progress and good-practice benchmarking.

    PubMed

    Söding, Johannes; Remmert, Michael

    2011-06-01

    Protein sequence comparison methods have grown increasingly sensitive during the last decade and can often identify distantly related proteins sharing a common ancestor some 3 billion years ago. Although cellular function is not conserved so long, molecular functions and structures of protein domains often are. In combination with a domain-centered approach to function and structure prediction, modern remote homology detection methods have a great and largely underexploited potential for elucidating protein functions and evolution. Advances during the last few years include nonlinear scoring functions combining various sequence features, the use of sequence context information, and powerful new software packages. Since progress depends on realistically assessing new and existing methods and published benchmarks are often hard to compare, we propose 10 rules of good-practice benchmarking.

  3. A comparison of several similarity indices used in the classification of protein sequences: a multivariate analysis.

    PubMed Central

    Landès, C; Hénaut, A; Risler, J L

    1992-01-01

    The present work describes an attempt to identify reliable criteria which could be used as distance indices between protein sequences. Seven different criteria have been tested: i and ii) the scores of the alignments as given by the BESTFIT and the FASTA programs; iii) the ratio parameter, i.e. the BESTFIT score divided by the length of the aligned peptides; iv and v) the statistical significance (Z-scores) of the scores calculated by BESTFIT and FASTA, as obtained by comparison with shuffled sequences; vi) the Z-scores provided by the program RELATE which performs a segment-by-segment comparison of 2 sequences, and vii) an original distance index calculated by the program DOCMA from all the pairwise dotplots between the sequences. These 7 criteria have been tested against the aminoacid sequences of 39 globins and those of the 20 aminoacyl-tRNA synthetases from E. coli. The distances between the sequences were analyzed by the multivariate analysis techniques. The results show that the distances calculated from the scores of the pairwise alignments are not adequately sensitive. The Z-score from RELATE is not selective enough and too demanding in computer time. Three criteria gave a classification consistent with the known similarities between the sequences in the sets, namely the Z-scores from BESTFIT and FASTA and the multiple dotplot comparison distance index from DOCMA. PMID:1641329

  4. iPBA: a tool for protein structure comparison using sequence alignment strategies

    PubMed Central

    Gelly, Jean-Christophe; Joseph, Agnel Praveen; Srinivasan, Narayanaswamy; de Brevern, Alexandre G.

    2011-01-01

    With the immense growth in the number of available protein structures, fast and accurate structure comparison has been essential. We propose an efficient method for structure comparison, based on a structural alphabet. Protein Blocks (PBs) is a widely used structural alphabet with 16 pentapeptide conformations that can fairly approximate a complete protein chain. Thus a 3D structure can be translated into a 1D sequence of PBs. With a simple Needleman–Wunsch approach and a raw PB substitution matrix, PB-based structural alignments were better than many popular methods. iPBA web server presents an improved alignment approach using (i) specialized PB Substitution Matrices (SM) and (ii) anchor-based alignment methodology. With these developments, the quality of ∼88% of alignments was improved. iPBA alignments were also better than DALI, MUSTANG and GANGSTA+ in >80% of the cases. The webserver is designed to for both pairwise comparisons and database searches. Outputs are given as sequence alignment and superposed 3D structures displayed using PyMol and Jmol. A local alignment option for detecting subs-structural similarity is also embedded. As a fast and efficient ‘sequence-based’ structure comparison tool, we believe that it will be quite useful to the scientific community. iPBA can be accessed at http://www.dsimb.inserm.fr/dsimb_tools/ipba/. PMID:21586582

  5. Thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus species

    NASA Technical Reports Server (NTRS)

    Haney, P. J.; Badger, J. H.; Buldak, G. L.; Reich, C. I.; Woese, C. R.; Olsen, G. J.

    1999-01-01

    The genome sequence of the extremely thermophilic archaeon Methanococcus jannaschii provides a wealth of data on proteins from a thermophile. In this paper, sequences of 115 proteins from M. jannaschii are compared with their homologs from mesophilic Methanococcus species. Although the growth temperatures of the mesophiles are about 50 degrees C below that of M. jannaschii, their genomic G+C contents are nearly identical. The properties most correlated with the proteins of the thermophile include higher residue volume, higher residue hydrophobicity, more charged amino acids (especially Glu, Arg, and Lys), and fewer uncharged polar residues (Ser, Thr, Asn, and Gln). These are recurring themes, with all trends applying to 83-92% of the proteins for which complete sequences were available. Nearly all of the amino acid replacements most significantly correlated with the temperature change are the same relatively conservative changes observed in all proteins, but in the case of the mesophile/thermophile comparison there is a directional bias. We identify 26 specific pairs of amino acids with a statistically significant (P < 0.01) preferred direction of replacement.

  6. Shotgun protein sequencing.

    SciTech Connect

    Faulon, Jean-Loup Michel; Heffelfinger, Grant S.

    2009-06-01

    A novel experimental and computational technique based on multiple enzymatic digestion of a protein or protein mixture that reconstructs protein sequences from sequences of overlapping peptides is described in this SAND report. This approach, analogous to shotgun sequencing of DNA, is to be used to sequence alternative spliced proteins, to identify post-translational modifications, and to sequence genetically engineered proteins.

  7. Microsequence analysis of electroblotted proteins. II. Comparison of sequence performance on different types of PVDF membranes.

    PubMed

    Reim, D F; Speicher, D W

    1992-11-15

    The influence of different types of polyvinylidene difluoride (PVDF) membranes on gas phase sequence performance has been evaluated. These PVDF membranes have been classified as either high retention (Trans-Blot and ProBlott) or low retention membranes (Immobilon-P) based on their ability to bind proteins during electroblotting from gels. Initial yields, repetitive yields, and extraction efficiency of the anilinothiazolinone amino acid derivatives have been compared for several standard proteins that have been either electroblotted or loaded onto PVDF membranes by direct adsorption. These results show that the major differences in initial sequence yields between membranes arise from differences in the amount of protein actually transferred to the membrane rather than sequencer-related factors. In contrast to several previous observations from other laboratories, more tightly bound proteins do not sequence with lower initial yields and initial yields are not affected by the ratio of surface area to protein. The stronger binding on high retention PVDF membranes does not adversely affect recoveries of difficult to extract, or very hydrophobic, amino acid derivatives. Several amino acids, especially tryptophan, are actually recovered in dramatically higher yield on high retention membranes compared with either Immobilon or glass filters. At the same time, the protein and peptide binding properties of high retention membranes will frequently improve the repetitive yield by minimizing sample extraction during the sequencer cycle. Stronger protein binding together with improved electroblotting yields offer substantially improved sequence performance when high retention PVDF membranes are used.

  8. Large-Scale Sequence Comparison.

    PubMed

    Lal, Devi; Verma, Mansi

    2017-01-01

    There are millions of sequences deposited in genomic databases, and it is an important task to categorize them according to their structural and functional roles. Sequence comparison is a prerequisite for proper categorization of both DNA and protein sequences, and helps in assigning a putative or hypothetical structure and function to a given sequence. There are various methods available for comparing sequences, alignment being first and foremost for sequences with a small number of base pairs as well as for large-scale genome comparison. Various tools are available for performing pairwise large sequence comparison. The best known tools either perform global alignment or generate local alignments between the two sequences. In this chapter we first provide basic information regarding sequence comparison. This is followed by the description of the PAM and BLOSUM matrices that form the basis of sequence comparison. We also give a practical overview of currently available methods such as BLAST and FASTA, followed by a description and overview of tools available for genome comparison including LAGAN, MumMER, BLASTZ, and AVID.

  9. Protein Sequence Comparison Based on Physicochemical Properties and the Position-Feature Energy Matrix

    PubMed Central

    Yu, Lulu; Zhang, Yusen; Gutman, Ivan; Shi, Yongtang; Dehmer, Matthias

    2017-01-01

    We develop a novel position-feature-based model for protein sequences by employing physicochemical properties of 20 amino acids and the measure of graph energy. The method puts the emphasis on sequence order information and describes local dynamic distributions of sequences, from which one can get a characteristic B-vector. Afterwards, we apply the relative entropy to the sequences representing B-vectors to measure their similarity/dissimilarity. The numerical results obtained in this study show that the proposed methods leads to meaningful results compared with competitors such as Clustal W. PMID:28393857

  10. Zucchini yellow mosaic virus: biological properties, detection procedures and comparison of coat protein gene sequences.

    PubMed

    Coutts, B A; Kehoe, M A; Webster, C G; Wylie, S J; Jones, R A C

    2011-12-01

    Between 2006 and 2010, 5324 samples from at least 34 weed, two cultivated legume and 11 native species were collected from three cucurbit-growing areas in tropical or subtropical Western Australia. Two new alternative hosts of zucchini yellow mosaic virus (ZYMV) were identified, the Australian native cucurbit Cucumis maderaspatanus, and the naturalised legume species Rhyncosia minima. Low-level (0.7%) seed transmission of ZYMV was found in seedlings grown from seed collected from zucchini (Cucurbita pepo) fruit infected with isolate Cvn-1. Seed transmission was absent in >9500 pumpkin (C. maxima and C. moschata) seedlings from fruit infected with isolate Knx-1. Leaf samples from symptomatic cucurbit plants collected from fields in five cucurbit-growing areas in four Australian states were tested for the presence of ZYMV. When 42 complete coat protein (CP) nucleotide (nt) sequences from the new ZYMV isolates obtained were compared to those of 101 complete CP nt sequences from five other continents, phylogenetic analysis of the 143 ZYMV sequences revealed three distinct groups (A, B and C), with four subgroups in A (I-IV) and two in B (I-II). The new Australian sequences grouped according to collection location, fitting within A-I, A-II and B-II. The 16 new sequences from one isolated location in tropical northern Western Australia all grouped into subgroup B-II, which contained no other isolates. In contrast, the three sequences from the Northern Territory fitted into A-II with 94.6-99.0% nt identities with isolates from the United States, Iran, China and Japan. The 23 new sequences from the central west coast and two east coast locations all fitted into A-I, with 95.9-98.9% nt identities to sequences from Europe and Japan. These findings suggest that (i) there have been at least three separate ZYMV introductions into Australia and (ii) there are few changes to local isolate CP sequences following their establishment in remote growing areas. Isolates from A-I and B

  11. Establishing homologies in protein sequences

    NASA Technical Reports Server (NTRS)

    Dayhoff, M. O.; Barker, W. C.; Hunt, L. T.

    1983-01-01

    Computer-based statistical techniques used to determine homologies between proteins occurring in different species are reviewed. The technique is based on comparison of two protein sequences, either by relating all segments of a given length in one sequence to all segments of the second or by finding the best alignment of the two sequences. Approaches discussed include selection using printed tabulations, identification of very similar sequences, and computer searches of a database. The use of the SEARCH, RELATE, and ALIGN programs (Dayhoff, 1979) is explained; sample data are presented in graphs, diagrams, and tables and the construction of scoring matrices is considered.

  12. Relating Promoter Sequences to the Proteins that Bind to Them: A Comparison Study.

    NASA Astrophysics Data System (ADS)

    Glass, Kimberly

    2007-03-01

    Chromatin Immunoprecipitation (ChIP-on-ChIP) microarray data reveals that the proteins H3K9dimethyl and RNA-Polymerase II are exclusive regarding their binding to the promoter region of genes. When comparing the base pair sequences of the promoters that bind to Pol2 versus H3K9, striking differences appear. The mononucleotides have fundamentally different behaviors in each group. In addition, motifs that cluster before the transcriptional start site also generally have a strong enrichment in one group compared to the other. Using this knowledge a model can be developed that allows one to calculate a probability that a promoter will bind to either H3K9 or Pol2 based on its base pair sequence.

  13. Sequence comparison and phylogenetic analysis by the Maximum Likelihood method of ribosome-inactivating proteins from angiosperms.

    PubMed

    Di Maro, Antimo; Citores, Lucía; Russo, Rosita; Iglesias, Rosario; Ferreras, José Miguel

    2014-08-01

    Ribosome-inactivating proteins (RIPs) from angiosperms are rRNA N-glycosidases that have been proposed as defence proteins against virus and fungi. They have been classified as type 1 RIPs, consisting of single-chain proteins, and type 2 RIPs, consisting of an A chain with RIP properties covalently linked to a B chain with lectin properties. In this work we have carried out a broad search of RIP sequence data banks from angiosperms in order to study their main structural characteristics and phylogenetic evolution. The comparison of the sequences revealed the presence, outside of the active site, of a novel structure that might be involved in the internal protein dynamics linked to enzyme catalysis. Also the B-chains presented another conserved structure that might function either supporting the beta-trefoil structure or in the communication between both sugar-binding sites. A systematic phylogenetic analysis of RIP sequences revealed that the most primitive type 1 RIPs were similar to that of the actual monocots (Poaceae and Asparagaceae). The primitive RIPs evolved to the dicot type 1 related RIPs (like those from Caryophyllales, Lamiales and Euphorbiales). The gene of a type 1 RIP related with the actual Euphorbiaceae type 1 RIPs fused with a double beta trefoil lectin gene similar to the actual Cucurbitaceae lectins to generate the type 2 RIPs and finally this gene underwent deletions rendering either type 1 RIPs (like those from Cucurbitaceae, Rosaceae and Iridaceae) or lectins without A chain (like those from Adoxaceae).

  14. Sequence Comparison and Phylogeny of Nucleotide Sequence of Coat Protein and Nucleic Acid Binding Protein of a Distinct Isolate of Shallot virus X from India.

    PubMed

    Majumder, S; Baranwal, V K

    2011-06-01

    Shallot virus X (ShVX), a type species in the genus Allexivirus of the family Alfaflexiviridae has been associated with shallot plants in India and other shallot growing countries like Russia, Germany, Netherland, and New Zealand. Coat protein (CP) and nucleic acid binding protein (NB) region of the virus was obtained by reverse transcriptase polymerase chain reaction from scales leaves of shallot bulbs. The partial cDNA contained two open reading frames encoding proteins of molecular weights of 28.66 and 14.18 kDa belonging to Flexi_CP super-family and viral NB super-family, respectively. The percent identity and phylogenetic analysis of amino acid sequences of CP and NB region of the virus associated with shallot indicated that it was a distinct isolate of ShVX.

  15. Iranian johnsongrass mosaic virus: the complete genome sequence, molecular and biological characterization, and comparison of coat protein gene sequences.

    PubMed

    Moradi, Zohreh; Mehrvar, Mohsen; Nazifi, Ehsan; Zakiaghl, Mohammad

    2017-02-01

    Iranian johnsongrass mosaic virus (IJMV) is one of the most prevalent viruses causing maize mosaic disease in Iran. An IJMV isolate, Maz-Bah, was obtained from the maize showing mosaic symptoms in Mazandaran, north of Iran. The complete genomic sequence of Maz-Bah is 9544 nucleotides, excluding the poly(A) tail. It contains one single open reading frame of 9165 nucleotides and encodes a large polyprotein of 3054 amino acids, flanked by a 5'-untranslated region (UTR) of 143 nucleotides and a 3'-UTR of 236 nucleotides. The entire genomic sequence of Maz-Bah isolate shares identities of 84.9 and 94.2 % with the IJMV (Shz) isolate, the lone complete genome sequence available in the GenBank at the nucleotide (nt) and deduced amino acid (aa) levels, respectively. The whole genome sequences share identities of 51.5-69.8 and 44.9-74.3 % with those of other Sugarcane mosaic virus (SCMV) subgroup potyviruses at nt and aa levels, respectively. In phylogenetic trees based on the multiple alignments of the entire nt and aa sequences, IJMV isolates formed a separate sublineage of the tree with potyviruses infecting monocotyledons of cereals, indicating that IJMV is a member of SCMV subgroup of potyviruses. IJMV is most closely related to Sorghum mosaic virus and Maize dwarf mosaic virus and less closely related to the Johnsongrass mosaic virus and Cocksfoot streak virus. To further investigate the genetic relationship of IJMV, 9 other isolates from different hosts were cloned and sequenced. The identity of IJMV CP nt and aa sequences of 11 Iranian isolates ranged from 86.4 to 99.8 % and 90.5 to 99.7 %, respectively, indicating a high nt variability in CP gene. Furthermore, in the CP-based phylogenetic tree, IJMV isolates were clustered together with a maize potyvirus described as Zea mosaic virus from Israel (with 86-89 % nt identity), indicating that both isolates probably are the strains of the same virus.

  16. Comparison of Exome and Genome Sequencing Technologies for the Complete Capture of Protein-Coding Regions.

    PubMed

    Lelieveld, Stefan H; Spielmann, Malte; Mundlos, Stefan; Veltman, Joris A; Gilissen, Christian

    2015-08-01

    For next-generation sequencing technologies, sufficient base-pair coverage is the foremost requirement for the reliable detection of genomic variants. We investigated whether whole-genome sequencing (WGS) platforms offer improved coverage of coding regions compared with whole-exome sequencing (WES) platforms, and compared single-base coverage for a large set of exome and genome samples. We find that WES platforms have improved considerably in the last years, but at comparable sequencing depth, WGS outperforms WES in terms of covered coding regions. At higher sequencing depth (95x-160x), WES successfully captures 95% of the coding regions with a minimal coverage of 20x, compared with 98% for WGS at 87-fold coverage. Three different assessments of sequence coverage bias showed consistent biases for WES but not for WGS. We found no clear differences for the technologies concerning their ability to achieve complete coverage of 2,759 clinically relevant genes. We show that WES performs comparable to WGS in terms of covered bases if sequenced at two to three times higher coverage. This does, however, go at the cost of substantially more sequencing biases in WES approaches. Our findings will guide laboratories to make an informed decision on which sequencing platform and coverage to choose.

  17. Protein Structure Comparison and Classification

    NASA Astrophysics Data System (ADS)

    Çamoǧlu, Orhan; Singh, Ambuj K.

    The success of genome projects has generated an enormous amount of sequence data. In order to realize the full value of the data, we need to understand its functional role and its evolutionary origin. Sequence comparison methods are incredibly valuable for this task. However, for sequences falling in the twilight zone (usually between 20 and 35% sequence similarity), we need to resort to structural alignment and comparison for a meaningful analysis. Such a structural approach can be used for classification of proteins, isolation of structural motifs, and discovery of drug targets.

  18. Sequence comparisons via algorithmic mutual information

    SciTech Connect

    Milosavijevic, A.

    1994-12-31

    One of the main problems in DNA and protein sequence comparisons is to decide whether observed similarity of two sequences should be explained by their relatedness or by mere presence of some shared internal structure, e.g., shared internal tandem repeats. The standard methods that are based on statistics or classical information theory can be used to discover either internal structure or mutual sequence similarity, but cannot take into account both. Consequently, currently used methods for sequence comparison employ {open_quotes}masking{close_quotes} techniques that simply eliminate sequences that exhibit internal repetitive structure prior to sequence comparisons. The {open_quotes}masking{close_quotes} approach precludes discovery of homologous sequences of moderate or low complexity, which abound at both DNA and protein levels. As a solution to this problem, we propose a general method that is based on algorithmic information theory and minimal length encoding. We show that algorithmic mutual information factors out the sequence similarity that is due to shared internal structure and thus enables discovery of truly related sequences. We extend the recently developed algorithmic significance method to show that significance depends exponentially on algorithmic mutual information.

  19. Comparison of the sequence of the gene encoding African swine fever virus attachment protein p12 from field virus isolates and viruses passaged in tissue culture.

    PubMed Central

    Angulo, A; Viñuela, E; Alcamí, A

    1992-01-01

    Comparison of the amino acid sequence of the African swine fever virus attachment protein p12 from different field virus isolates, deduced from the nucleotide sequence of the gene, revealed a high degree of conservation. No mutations were found after adaptation to Vero cells, and a polypeptide with similar characteristics was present in an IBRS2-adapted virus. The sequence of the 5' flanking region was conserved among the isolates, whereas sequences downstream of the gene were highly variable in length and contained direct repeats in tandem that may account for the deletions found in different isolates. Protein p12 was synthesized in swine macrophages infected with all of the viruses tested. PMID:1583733

  20. Molecular cloning and sequence analysis of the Sta58 major antigen gene of Rickettsia tsutsugamushi: sequence homology and antigenic comparison of Sta58 to the 60-kilodalton family of stress proteins.

    PubMed Central

    Stover, C K; Marana, D P; Dasch, G A; Oaks, E V

    1990-01-01

    The scrub typhus 58-kilodalton (kDa) antigen (Sta58) of Rickettsia tsutsugamushi is a major protein antigen often recognized by humans infected with scrub typhus rickettsiae. A 2.9-kilobase HindIII fragment containing a complete sta58 gene was cloned in Escherichia coli and found to express the entire Sta58 antigen and a smaller protein with an apparent molecular mass of 11 kDa (Stp11). DNA sequence analysis of the 2.9-kilobase HindIII fragment revealed two adjacent open reading frames encoding proteins of 11 (Stp11) and 60 (Sta58) kDa. Comparisons of deduced amino acid sequences disclosed a high degree of homology between the R. tsutsugamushi proteins Stp11 and Sta58 and the E. coli proteins GroES and GroEL, respectively, and the family of primordial heat shock proteins designated Hsp10 Hsp60. Although the sequence homology between the Sta58 antigen and the Hsp60 protein family is striking, the Sta58 protein appeared to be antigenically distinct among a sample of other bacterial Hsp60 homologs, including the typhus group of rickettsiae. The antigenic uniqueness of the Sta58 antigen indicates that this protein may be a potentially protective antigen and a useful diagnostic reagent for scrub typhus fever. Images PMID:2108930

  1. Evaluation of global sequence comparison and one-to-one FASTA local alignment in regulatory allergenicity assessment of transgenic proteins in food crops.

    PubMed

    Song, Ping; Herman, Rod A; Kumpatla, Siva

    2014-09-01

    To address the high false positive rate using >35% identity over 80 amino acids in the regulatory assessment of transgenic proteins for potential allergenicity and the change of E-value with database size, the Needleman-Wunsch global sequence alignment and a one-to-one (1:1) local FASTA search (one protein in the target database at a time) using FASTA were evaluated by comparing proteins randomly selected from Arabidopsis, rice, corn, and soybean with known allergens in a peer-reviewed allergen database (http://www.allergenonline.org/). Compared with the approach of searching >35%/80aa+, the false positive rate measured by specificity rate for identification of true allergens was reduced by a 1:1 global sequence alignment with a cut-off threshold of ≧30% identity and a 1:1 FASTA local alignment with a cut-off E-value of ≦1.0E-09 while maintaining the same sensitivity. Hence, a 1:1 sequence comparison, especially using the FASTA local alignment tool with a biological relevant E-value of 1.0E-09 as a threshold, is recommended for the regulatory assessment of sequence identities between transgenic proteins in food crops and known allergens.

  2. Molecular Cloning and Sequence Analysis of the Sta58 Major Antigen Gene of Rickettsia tsutsugamushi: Sequence homology and Antigenic Comparison of Sta58 to the 60-Kilodalton Family of Stress Proteins

    DTIC Science & Technology

    1990-05-01

    on the cell envelopes of Rickettsia 29. Messing, J. 1983. New M13 vectors for cloning. Methods prowazekii, Rickettsia rickettsii , and Rickettsia ...gene of Rickettsia tsu sugamushi:Sequence homology and antigenic comparison to the 60-kilodalton family of stresproteins. 12. PERSONAL AUTHOR(S...IuwRnuiy dy "jmber FIELD GROUP S ROUP Rickettsia tsutsugamushi, antigens, molecular cloning,. FIED_ GROU__ SUB-GROUP scrub typhus, heat-shock proteins

  3. Comparisons of Ribosomal Protein Gene Promoters Indicate Superiority of Heterologous Regulatory Sequences for Expressing Transgenes in Phytophthora infestans.

    PubMed

    Poidevin, Laetitia; Andreeva, Kalina; Khachatoorian, Careen; Judelson, Howard S

    2015-01-01

    Molecular genetics approaches in Phytophthora research can be hampered by the limited number of known constitutive promoters for expressing transgenes and the instability of transgene activity. We have therefore characterized genes encoding the cytoplasmic ribosomal proteins of Phytophthora and studied their suitability for expressing transgenes in P. infestans. Phytophthora spp. encode a standard complement of 79 cytoplasmic ribosomal proteins. Several genes are duplicated, and two appear to be pseudogenes. Half of the genes are expressed at similar levels during all stages of asexual development, and we discovered that the majority share a novel promoter motif named the PhRiboBox. This sequence is enriched in genes associated with transcription, translation, and DNA replication, including tRNA and rRNA biogenesis. Promoters from the three P. infestans genes encoding ribosomal proteins S9, L10, and L23 and their orthologs from P. capsici were tested for their ability to drive transgenes in stable transformants of P. infestans. Five of the six promoters yielded strong expression of a GUS reporter, but the stability of expression was higher using the P. capsici promoters. With the RPS9 and RPL10 promoters of P. infestans, about half of transformants stopped making GUS over two years of culture, while their P. capsici orthologs conferred stable expression. Since cross-talk between native and transgene loci may trigger gene silencing, we encourage the use of heterologous promoters in transformation studies.

  4. Comparison of topological clustering within protein networks using edge metrics that evaluate full sequence, full structure, and active site microenvironment similarity

    PubMed Central

    Leuthaeuser, Janelle B; Knutson, Stacy T; Kumar, Kiran; Babbitt, Patricia C; Fetrow, Jacquelyn S

    2015-01-01

    The development of accurate protein function annotation methods has emerged as a major unsolved biological problem. Protein similarity networks, one approach to function annotation via annotation transfer, group proteins into similarity-based clusters. An underlying assumption is that the edge metric used to identify such clusters correlates with functional information. In this contribution, this assumption is evaluated by observing topologies in similarity networks using three different edge metrics: sequence (BLAST), structure (TM-Align), and active site similarity (active site profiling, implemented in DASP). Network topologies for four well-studied protein superfamilies (enolase, peroxiredoxin (Prx), glutathione transferase (GST), and crotonase) were compared with curated functional hierarchies and structure. As expected, network topology differs, depending on edge metric; comparison of topologies provides valuable information on structure/function relationships. Subnetworks based on active site similarity correlate with known functional hierarchies at a single edge threshold more often than sequence- or structure-based networks. Sequence- and structure-based networks are useful for identifying sequence and domain similarities and differences; therefore, it is important to consider the clustering goal before deciding appropriate edge metric. Further, conserved active site residues identified in enolase and GST active site subnetworks correspond with published functionally important residues. Extension of this analysis yields predictions of functionally determinant residues for GST subgroups. These results support the hypothesis that active site similarity-based networks reveal clusters that share functional details and lay the foundation for capturing functionally relevant hierarchies using an approach that is both automatable and can deliver greater precision in function annotation than current similarity-based methods. PMID:26073648

  5. Purification and N-terminal amino acid sequence comparisons of structural proteins from retrovirus-D/Washington and Mason-Pfizer monkey virus.

    PubMed Central

    Henderson, L E; Sowder, R; Smythers, G; Benveniste, R E; Oroszlan, S

    1985-01-01

    A new D-type retrovirus originally designated SAIDS-D/Washington and here referred to as retrovirus-D/Washington (R-D/W) was recently isolated at the University of Washington Primate Center, Seattle, Wash., from a rhesus monkey with an acquired immunodeficiency syndrome and retroperitoneal fibromatosis. To better establish the relationship of this new D-type virus to the prototype D-type virus, Mason-Pfizer monkey virus (MPMV), we have purified and compared six structural proteins from each virus. The proteins purified from each D-type retrovirus include p4, p10, p12, p14, p27, and a phosphoprotein designated pp18 for MPMV and pp20 for R-D/W. Amino acid analysis and N-terminal amino acid sequence analysis show that the p4, p12, p14, and p27 proteins of R-D/W are distinct from the homologous proteins of MPMV but that these proteins from the two different viruses share a high degree of amino acid sequence homology. The p10 proteins from the two viruses have similar amino acid compositions, and both are blocked to N-terminal Edman degradation. The phosphoproteins from the two viruses each contain phosphoserine but are different from each other in amino acid composition, molecular weight, and N-terminal amino acid sequence. The data thus show that each of the R-D/W proteins examined is distinguishable from its MPMV homolog and that a major difference between these two D-type retroviruses is found in the viral phosphoproteins. The N-terminal amino acid sequences of D-type retroviral proteins were used to search for sequence homologies between D-type and other retroviral amino acid sequences. An unexpected amino acid sequence homology was found between R-D/W pp20 (a gag protein) and a 28-residue segment of the env precursor polyprotein of Rous sarcoma virus. The N-terminal amino acid sequences of the D-type major gag protein (p27) and the nucleic acid-binding protein (p14) show only limited amino acid sequence homology to functionally homologous proteins of C

  6. Rosetta stone method for detecting protein function and protein-protein interactions from genome sequences

    DOEpatents

    Eisenberg, David; Marcotte, Edward M.; Pellegrini, Matteo; Thompson, Michael J.; Yeates, Todd O.

    2002-10-15

    A computational method system, and computer program are provided for inferring functional links from genome sequences. One method is based on the observation that some pairs of proteins A' and B' have homologs in another organism fused into a single protein chain AB. A trans-genome comparison of sequences can reveal these AB sequences, which are Rosetta Stone sequences because they decipher an interaction between A' and B. Another method compares the genomic sequence of two or more organisms to create a phylogenetic profile for each protein indicating its presence or absence across all the genomes. The profile provides information regarding functional links between different families of proteins. In yet another method a combination of the above two methods is used to predict functional links.

  7. Distinguishing Proteins From Arbitrary Amino Acid Sequences

    PubMed Central

    Yau, Stephen S.-T.; Mao, Wei-Guang; Benson, Max; He, Rong Lucy

    2015-01-01

    What kinds of amino acid sequences could possibly be protein sequences? From all existing databases that we can find, known proteins are only a small fraction of all possible combinations of amino acids. Beginning with Sanger's first detailed determination of a protein sequence in 1952, previous studies have focused on describing the structure of existing protein sequences in order to construct the protein universe. No one, however, has developed a criteria for determining whether an arbitrary amino acid sequence can be a protein. Here we show that when the collection of arbitrary amino acid sequences is viewed in an appropriate geometric context, the protein sequences cluster together. This leads to a new computational test, described here, that has proved to be remarkably accurate at determining whether an arbitrary amino acid sequence can be a protein. Even more, if the results of this test indicate that the sequence can be a protein, and it is indeed a protein sequence, then its identity as a protein sequence is uniquely defined. We anticipate our computational test will be useful for those who are attempting to complete the job of discovering all proteins, or constructing the protein universe. PMID:25609314

  8. Screening, diversity and partial sequence comparison of vegetative insecticidal protein (vip3A) genes in the local isolates of Bacillus thuringiensis Berliner.

    PubMed

    Asokan, R; Swamy, H M Mahadeva; Arora, D K

    2012-04-01

    Characterization, direct sequencing of the PCR amplicon and phylogenetic relationship was done to discover a novel Vip protein genes of the Bt isolates, to improve the prospects for insect control, more Vip proteins should be sought out and researched to predict their insecticidal activity. Characterization was based on direct sequencing of PCR amplicon using primers specific to vip3A gene was presented here. 12 out of 18 isolates screened were positive for vip gene-specific primers. Homology search for the partial sequences using BLAST showed that 11 isolates had high similarity to vip3Aa gene and only one fragment with vip3Ae gene (25-100% at nucleotide and amino acid level). Phylogenetic analysis showed that the gene sequences were responsible for geographic separation for divergence within vip genes, consistent with the evaluation of distinct bacterial population. Despite the geographical distances, strains harbouring vip genes have originated from common ancestors may significantly contribute to control resistant insect pests. Some strains have evolved to be quite distinct and others remain as members of closely related groups. The reported method is a powerful tool to find novel Vip3A proteins from large-scale Bt strains which is effective in terms of time and cost. Further the Vip proteins produced by different strains of B. thuringiensis are unique in terms of the sequence divergence and hence may also differ in their insecticidal activities.

  9. Method and apparatus for biological sequence comparison

    DOEpatents

    Marr, Thomas G.; Chang, William I-Wei

    1997-01-01

    A method and apparatus for comparing biological sequences from a known source of sequences, with a subject (query) sequence. The apparatus takes as input a set of target similarity levels (such as evolutionary distances in units of PAM), and finds all fragments of known sequences that are similar to the subject sequence at each target similarity level, and are long enough to be statistically significant. The invention device filters out fragments from the known sequences that are too short, or have a lower average similarity to the subject sequence than is required by each target similarity level. The subject sequence is then compared only to the remaining known sequences to find the best matches. The filtering member divides the subject sequence into overlapping blocks, each block being sufficiently large to contain a minimum-length alignment from a known sequence. For each block, the filter member compares the block with every possible short fragment in the known sequences and determines a best match for each comparison. The determined set of short fragment best matches for the block provide an upper threshold on alignment values. Regions of a certain length from the known sequences that have a mean alignment value upper threshold greater than a target unit score are concatenated to form a union. The current block is compared to the union and provides an indication of best local alignment with the subject sequence.

  10. Method and apparatus for biological sequence comparison

    DOEpatents

    Marr, T.G.; Chang, W.I.

    1997-12-23

    A method and apparatus are disclosed for comparing biological sequences from a known source of sequences, with a subject (query) sequence. The apparatus takes as input a set of target similarity levels (such as evolutionary distances in units of PAM), and finds all fragments of known sequences that are similar to the subject sequence at each target similarity level, and are long enough to be statistically significant. The invention device filters out fragments from the known sequences that are too short, or have a lower average similarity to the subject sequence than is required by each target similarity level. The subject sequence is then compared only to the remaining known sequences to find the best matches. The filtering member divides the subject sequence into overlapping blocks, each block being sufficiently large to contain a minimum-length alignment from a known sequence. For each block, the filter member compares the block with every possible short fragment in the known sequences and determines a best match for each comparison. The determined set of short fragment best matches for the block provide an upper threshold on alignment values. Regions of a certain length from the known sequences that have a mean alignment value upper threshold greater than a target unit score are concatenated to form a union. The current block is compared to the union and provides an indication of best local alignment with the subject sequence. 5 figs.

  11. Exploration of sequence space for protein engineering.

    PubMed

    Gustafsson, C; Govindarajan, S; Emig, R

    2001-01-01

    The process of protein engineering is currently evolving towards a heuristic understanding of the sequence-function relationship. Improved DNA sequencing capacity, efficient protein function characterization and improved quality of data points in conjunction with well-established statistical tools from other industries are changing the protein engineering field. Algorithms capturing the heuristic sequence-function relationships will have a drastic impact on the field of protein engineering. In this review, several alternative approaches to quantitatively assess sequence space are discussed and the relatively few examples of wet-lab validation of statistical sequence-function characterization/correlation are described.

  12. A new graphical representation of protein sequences and its applications

    NASA Astrophysics Data System (ADS)

    Hou, Wenbing; Pan, Qiuhui; He, Mingfeng

    2016-02-01

    Sequence analysis is one of the foundations in bioinformatics for the abundant information hidden in the sequences. It is helpful for scientists' study on the function of DNA, proteins and cells. In this paper, we outline a novel method for protein sequences similarity analysis based on the physical-chemical properties of amino acids. We consider the protein sequence as a rigid-body with mass. Then we introduce the moment of inertia to the calculation of similarity of sequences and the sequences are transformed into vectors by the tensor for moment of inertia. The Euclidean distance is employed as a measurement of the similarities. At last, the comparison with other references' results shows our approach is reasonable and effective.

  13. A mathematical framework for protein structure comparison.

    PubMed

    Liu, Wei; Srivastava, Anuj; Zhang, Jinfeng

    2011-02-03

    Comparison of protein structures is important for revealing the evolutionary relationship among proteins, predicting protein functions and predicting protein structures. Many methods have been developed in the past to align two or multiple protein structures. Despite the importance of this problem, rigorous mathematical or statistical frameworks have seldom been pursued for general protein structure comparison. One notable issue in this field is that with many different distances used to measure the similarity between protein structures, none of them are proper distances when protein structures of different sequences are compared. Statistical approaches based on those non-proper distances or similarity scores as random variables are thus not mathematically rigorous. In this work, we develop a mathematical framework for protein structure comparison by treating protein structures as three-dimensional curves. Using an elastic Riemannian metric on spaces of curves, geodesic distance, a proper distance on spaces of curves, can be computed for any two protein structures. In this framework, protein structures can be treated as random variables on the shape manifold, and means and covariance can be computed for populations of protein structures. Furthermore, these moments can be used to build Gaussian-type probability distributions of protein structures for use in hypothesis testing. The covariance of a population of protein structures can reveal the population-specific variations and be helpful in improving structure classification. With curves representing protein structures, the matching is performed using elastic shape analysis of curves, which can effectively model conformational changes and insertions/deletions. We show that our method performs comparably with commonly used methods in protein structure classification on a large manually annotated data set.

  14. The partial sequencing of the genomic RNA of a UK isolate of Pepino mosaic virus and the comparison of the coat protein sequence with other isolates from Europe and Peru.

    PubMed

    Mumford, R A; Metcalfe, E J

    2001-12-01

    A 3599 nucleotide portion of the genomic RNA of a UK isolate of Pepino mosaic virus (PepMV), isolated from tomato, has been sequenced (Accession No. AF340024). The region sequenced includes the 3'-end of the RNA polymerase, the triple gene block (TGB), the coat protein (CP) and 3' untranslated region (UTR). In addition, the CP sequences of another 15 PepMV isolates, including 14 European tomato isolates and a Peruvian pepino isolate, have been determined and compared. This analysis shows that all the tomato isolates share over 99% identity, but only between 96-97% identity with the Peruvian pepino isolate.

  15. [Sequence analysis of the coat protein gene of Chinese soybean mosaic virus strain SC7 and comparison with those of SMV strains from the USA].

    PubMed

    Cai, Chun-Mei; Jiang, Xiao; Zhao, Chun-Mei; Ma, Jian-Xin

    2014-09-01

    To unveil genetic variations between the predominant soybean mosaic virus (SMV) strains in China and in the USA, as well as to reveal the potential relevance between the similarity of gene sequences and the virulence of the viruses, we isolated and sequenced the coat protein (CP) gene of Chinese SMV strain SC7 by RT-PCR and compared the SC7 sequence with those of SMV strains from the USA. Analysis is showed that the CP gene of SC7 was 795 nucleotides in length and encoded 265 in amino acids'. The CP gene of SC7 and those of the strains from the USA exhibited 4%-5% nucleotide diversity and 1%-2% diversity amino acids. The conserved amino-acid sequence associated with aphid spread in the USA strains was DAG, and corresponded to DAD in SC7. The virulence of SC7 was greater than that of the SMV strains from the USA. Nevertheless, no clear relationships between sequence similarity of the CP genes from different strains and their virulence on differential hosts were found.

  16. Comparison of the complete sequences of three different isolates of Pepino mosaic virus: size variability of the TGBp3 protein between tomato and L. peruvianum isolates.

    PubMed

    López, C; Soler, S; Nuez, F

    2005-03-01

    The complete nucleotide sequence of the genomes of two Spanish isolates (LE-2000 and LE-2002) from tomato and one Peruvian isolate (LP-2001) from Lycopersicon peruvianum of the Pepino mosaic virus (PepMV) were determined. The tomato isolates share identities higher than 99%, while the genome of LP-2001 had mean nucleotide identities of 95.6% to 96.0% with tomato isolates. The predicted amino acid sequences showed similarities ranging between 95.2% and 100% with TGBp3 and TGBp2 and CP proteins, respectively. In LP-2001 two main differences were found with respect to the tomato isolates; (i) the 5' untranslated region (UTR) was 2 nt shorter by deletion at position 12-13 and it had some polymorphims at the putative promoter sequence reported for PepMV tomato isolates and other potexviruses, which could be functionally significant for RNA replication, and (ii) the TGBp3 protein had two extra amino acids in the C-terminal region.

  17. Construction of validated, non-redundant composite protein sequence databases.

    PubMed

    Bleasby, A J; Wootton, J C

    1990-01-01

    A strategy has been developed for the construction of a validated, comprehensive composite protein sequence database. Entries are amalgamated from primary source data bases by a largely automated set of processes in which redundant and trivially different entries are eliminated. A modular approach has been adopted to allow scientific judgement to be used at each stage of database processing and amalgamation. Source databases are assigned a priority depending on the quality of sequence validation and commenting. Rejection of entries from the lower priority database, in each pairwise comparison of databases, is carried out according to optionally defined redundancy criteria based on sequence segment mismatches. Efficient algorithms for this methodology are embodied in the COMPO software system. COMPO has been applied for over 2 years in construction and regular updating of the OWL composite protein sequence database from the source databases NBRF-PIR, SWISS-PROT, a GenBank translation retrieved from the feature tables, NBRF-NEW, NEWAT86, PSD-KYOTO and the sequences contained in the Brookhaven protein structure databank. OWL is part of the ISIS integrated data resource of protein sequence and structure [Akrigg et al. (1988) Nature, 335, 745-746]. The modular nature of the integration process greatly facilitates the frequent updating of OWL following releases of the source databases. The extent of redundancy in these sources is revealed by the comparison process. The advantages of a robust composite database for sequence similarity searching and information retrieval are discussed.

  18. A Comparative Study of Protein Sequence Clustering Algorithms

    NASA Astrophysics Data System (ADS)

    Eldin, A. Sharaf; Abdelgaber, S.; Soliman, T.; Kassim, S.; Abdo, A.

    In this paper, we survey four clustering techniques and discuss their advantages and drawbacks. A review of eight different protein sequence clustering algorithms has been accomplished. Moreover, a comparison between the algorithms on the basis of some factors has been presented.

  19. Protein Sequencing with Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Ziady, Assem G.; Kinter, Michael

    The recent introduction of electrospray ionization techniques that are suitable for peptides and whole proteins has allowed for the design of mass spectrometric protocols that provide accurate sequence information for proteins. The advantages gained by these approaches over traditional Edman Degradation sequencing include faster analysis and femtomole, sometimes attomole, sensitivity. The ability to efficiently identify proteins has allowed investigators to conduct studies on their differential expression or modification in response to various treatments or disease states. In this chapter, we discuss the use of electrospray tandem mass spectrometry, a technique whereby protein-derived peptides are subjected to fragmentation in the gas phase, revealing sequence information for the protein. This powerful technique has been instrumental for the study of proteins and markers associated with various disorders, including heart disease, cancer, and cystic fibrosis. We use the study of protein expression in cystic fibrosis as an example.

  20. Finding important sites in protein sequences

    PubMed Central

    Bickel, Peter J.; Kechris, Katherina J.; Spector, Philip C.; Wedemayer, Gary J.; Glazer, Alexander N.

    2002-01-01

    By using sequence information from an aligned protein family, a procedure is exhibited for finding sites that may be functionally or structurally critical to the protein. Features based on sequence conservation within subfamilies in the alignment and associations between sites are used to select the sites. The sites are subject to statistical evaluation correcting for phylogenetic bias in the collection of sequences. This method is applied to two families: the phycobiliproteins, light-harvesting proteins in cyanobacteria, red algae, and cryptomonads, and the globins that function in oxygen storage and transport. The sites identified by the procedure are located in key structural positions and merit further experimental study. PMID:12417758

  1. Sequencing proteins with transverse ionic transport

    NASA Astrophysics Data System (ADS)

    Boynton, Paul; di Ventra, Massimiliano

    2015-03-01

    De novo protein sequencing is essential for understanding cellular processes that govern the function of living organisms. By obtaining the order of the amino acids that composes a given protein one can determine both its secondary and tertiary structures through protein structure prediction, which is used to create models for protein aggregation diseases such as Alzheimer's Disease. Mass spectrometry is the current technique of choice for de novo sequencing, but because some amino acids have the same mass the sequence cannot be completely determined in many cases. In this paper we propose a new technique for de novo protein sequencing that involves translocating a polypeptide through a synthetic nanochannel and measuring the ionic current of each amino acid through an intersecting perpendicular nanochannel, similar to that proposed in for DNA sequencing. Indeed, we find that the distribution of ionic currents for each of the 20 proteinogenic amino acids encoded by eukaryotic genes is statistically distinct, showing this technique's potential for de novo protein sequencing.

  2. Protein structure prediction from sequence variation

    PubMed Central

    Marks, Debora S; Hopf, Thomas A; Sander, Chris

    2015-01-01

    Genomic sequences contain rich evolutionary information about functional constraints on macromolecules such as proteins. This information can be efficiently mined to detect evolutionary couplings between residues in proteins and address the long-standing challenge to compute protein three-dimensional structures from amino acid sequences. Substantial progress has recently been made on this problem owing to the explosive growth in available sequences and the application of global statistical methods. In addition to three-dimensional structure, the improved understanding of covariation may help identify functional residues involved in ligand binding, protein-complex formation and conformational changes. We expect computation of covariation patterns to complement experimental structural biology in elucidating the full spectrum of protein structures, their functional interactions and evolutionary dynamics. PMID:23138306

  3. Alignments of DNA and protein sequences containing frameshift errors.

    PubMed

    Guan, X; Uberbacher, E C

    1996-02-01

    Molecular sequences, like all experimental data, are subject to error. Many current DNA sequencing protocols have very significant error rates and often generate artefactual insertions and deletions of bases (indels) which corrupt the translation of sequences and compromise the detection of protein homologies. The impact of these errors on the utility of molecular sequence data is dependent on the analytic technique used to interpret the data. In the presence of frameshift errors, standard algorithms using six-frame translation can miss important homologies because only subfragments of the correct translation are available in any given frame. We present a new algorithm which can detect and correct frameshift errors in DNA sequences during comparison of translated sequences with protein sequences in the databases. This algorithm can recognize homologous proteins sharing 30% identity even in the presence of a 7% frameshift error rate. Our algorithm uses dynamic programming, producing a guaranteed optimal alignment in the presence of frameshifts, and has a sensitivity equivalent to Smith-Waterman. The computational efficiency of the algorithm is O(nm) where n and m are the sizes of two sequences being compared. The algorithm does not rely on prior knowledge or heuristic rules and performs significantly better than any previously reported method.

  4. Using Dali for structural comparison of proteins.

    PubMed

    Holm, Liisa; Kääriäinen, Sakari; Wilton, Chris; Plewczynski, Dariusz

    2006-07-01

    The Dali program is widely used for carrying out automatic comparisons of protein structures determined by X-ray crystallography or NMR. The most familiar version is the Dali server, which performs a database search comparing a query structure supplied by the user against the database of known structures (PDB) and returns the list of structural neighbors by e-mail. The more recently introduced DaliLite server compares two structures against each other and visualizes the result interactively. The Dali database is a structural classification based on precomputed all-against-all structural similarities within the PDB. The resulting hierarchical classification can be browsed on the Web and is linked to protein sequence classification resources. All Dali resources use an identical algorithm for structure comparison. Users may run Dali using the Web, or the program may be downloaded to be run locally on Linux computers.

  5. Inferring interaction partners from protein sequences

    PubMed Central

    Bitbol, Anne-Florence; Dwyer, Robert S.; Colwell, Lucy J.; Wingreen, Ned S.

    2016-01-01

    Specific protein−protein interactions are crucial in the cell, both to ensure the formation and stability of multiprotein complexes and to enable signal transduction in various pathways. Functional interactions between proteins result in coevolution between the interaction partners, causing their sequences to be correlated. Here we exploit these correlations to accurately identify, from sequence data alone, which proteins are specific interaction partners. Our general approach, which employs a pairwise maximum entropy model to infer couplings between residues, has been successfully used to predict the 3D structures of proteins from sequences. Thus inspired, we introduce an iterative algorithm to predict specific interaction partners from two protein families whose members are known to interact. We first assess the algorithm’s performance on histidine kinases and response regulators from bacterial two-component signaling systems. We obtain a striking 0.93 true positive fraction on our complete dataset without any a priori knowledge of interaction partners, and we uncover the origin of this success. We then apply the algorithm to proteins from ATP-binding cassette (ABC) transporter complexes, and obtain accurate predictions in these systems as well. Finally, we present two metrics that accurately distinguish interacting protein families from noninteracting ones, using only sequence data. PMID:27663738

  6. Sequence information signal processor for local and global string comparisons

    DOEpatents

    Peterson, John C.; Chow, Edward T.; Waterman, Michael S.; Hunkapillar, Timothy J.

    1997-01-01

    A sequence information signal processing integrated circuit chip designed to perform high speed calculation of a dynamic programming algorithm based upon the algorithm defined by Waterman and Smith. The signal processing chip of the present invention is designed to be a building block of a linear systolic array, the performance of which can be increased by connecting additional sequence information signal processing chips to the array. The chip provides a high speed, low cost linear array processor that can locate highly similar global sequences or segments thereof such as contiguous subsequences from two different DNA or protein sequences. The chip is implemented in a preferred embodiment using CMOS VLSI technology to provide the equivalent of about 400,000 transistors or 100,000 gates. Each chip provides 16 processing elements, and is designed to provide 16 bit, two's compliment operation for maximum score precision of between -32,768 and +32,767. It is designed to provide a comparison between sequences as long as 4,194,304 elements without external software and between sequences of unlimited numbers of elements with the aid of external software. Each sequence can be assigned different deletion and insertion weight functions. Each processor is provided with a similarity measure device which is independently variable. Thus, each processor can contribute to maximum value score calculation using a different similarity measure.

  7. Prediction of protein function from protein sequence and structure.

    PubMed

    Whisstock, James C; Lesk, Arthur M

    2003-08-01

    The sequence of a genome contains the plans of the possible life of an organism, but implementation of genetic information depends on the functions of the proteins and nucleic acids that it encodes. Many individual proteins of known sequence and structure present challenges to the understanding of their function. In particular, a number of genes responsible for diseases have been identified but their specific functions are unknown. Whole-genome sequencing projects are a major source of proteins of unknown function. Annotation of a genome involves assignment of functions to gene products, in most cases on the basis of amino-acid sequence alone. 3D structure can aid the assignment of function, motivating the challenge of structural genomics projects to make structural information available for novel uncharacterized proteins. Structure-based identification of homologues often succeeds where sequence-alone-based methods fail, because in many cases evolution retains the folding pattern long after sequence similarity becomes undetectable. Nevertheless, prediction of protein function from sequence and structure is a difficult problem, because homologous proteins often have different functions. Many methods of function prediction rely on identifying similarity in sequence and/or structure between a protein of unknown function and one or more well-understood proteins. Alternative methods include inferring conservation patterns in members of a functionally uncharacterized family for which many sequences and structures are known. However, these inferences are tenuous. Such methods provide reasonable guesses at function, but are far from foolproof. It is therefore fortunate that the development of whole-organism approaches and comparative genomics permits other approaches to function prediction when the data are available. These include the use of protein-protein interaction patterns, and correlations between occurrences of related proteins in different organisms, as

  8. Structural Alphabets for Protein Structure Classification: a Comparison Study

    PubMed Central

    Le, Quan; Pollastri, Gianluca; Koehl, Patrice

    2009-01-01

    Finding structural similarities between proteins often helps revealing shared functionality which otherwise might not be detected by native sequence information alone. Such similarity is usually detected and quantified by protein structure alignment. Determining the optimal alignment between two protein structures remains however a hard problem. An alternative approach is to approximate each protein 3D structure using a sequence of motifs derived from a structural alphabet. Using this approach, structure comparison is performed by comparing the corresponding motif sequences, or structural sequences. In this paper, we measure the performance of such alphabets in the context of the protein structure classification problem. We consider both local and global structural sequences. Each letter of a local structural sequence corresponds to the best matching fragment to the corresponding local segment of the protein structure. The global structural sequence is designed to generate the best possible complete chain that matches the full protein structure. We use an alphabet of 20 letters, corresponding to a library of 20 motifs or protein fragments of size 4 residues. We show that the global structural sequences approximate well the native structures of proteins, with an average cRMS of 0.69 Å over 2225 test proteins. The approximation is best for all α-proteins, while relatively poorer for all β-proteins. We then test the performance of four different sequence representations of proteins (their native sequence, the sequence of their secondary structure elements, and the local and global structural sequences based on our fragment library) with different classifiers in their ability to classify proteins that belong to five distinct folds of CATH. Without surprise, the primary sequence alone performs poorly as a structure classifier. We show that addition of either secondary structure information or local information from the structural sequence considerably improves the

  9. Sequence analysis of the AAA protein family.

    PubMed Central

    Beyer, A.

    1997-01-01

    The AAA protein family, a recently recognized group of Walker-type ATPases, has been subjected to an extensive sequence analysis. Multiple sequence alignments revealed the existence of a region of sequence similarity, the so-called AAA cassette. The borders of this cassette were localized and within it, three boxes of a high degree of conservation were identified. Two of these boxes could be assigned to substantial parts of the ATP binding site (namely, to Walker motifs A and B); the third may be a portion of the catalytic center. Phylogenetic trees were calculated to obtain insights into the evolutionary history of the family. Subfamilies with varying degrees of intra-relatedness could be discriminated; these relationships are also supported by analysis of sequences outside the canonical AAA boxes: within the cassette are regions that are strongly conserved within each subfamily, whereas little or even no similarity between different subfamilies can be observed. These regions are well suited to define fingerprints for subfamilies. A secondary structure prediction utilizing all available sequence information was performed and the result was fitted to the general 3D structure of a Walker A/GTPase. The agreement was unexpectedly high and strongly supports the conclusion that the AAA family belongs to the Walker superfamily of A/GTPases. PMID:9336829

  10. Sequence determinants of protein aggregation: tools to increase protein solubility

    PubMed Central

    Ventura, Salvador

    2005-01-01

    Escherichia coli is one of the most widely used hosts for the production of recombinant proteins. However, very often the target protein accumulates into insoluble aggregates in a misfolded and biologically inactive form. Bacterial inclusion bodies are major bottlenecks in protein production and are hampering the development of top priority research areas such structural genomics. Inclusion body formation was formerly considered to occur via non-specific association of hydrophobic surfaces in folding intermediates. Increasing evidence, however, indicates that protein aggregation in bacteria resembles to the well-studied process of amyloid fibril formation. Both processes appear to rely on the formation of specific, sequence-dependent, intermolecular interactions driving the formation of structured protein aggregates. This similarity in the mechanisms of aggregation will probably allow applying anti-aggregational strategies already tested in the amyloid context to the less explored area of protein aggregation inside bacteria. Specifically, new sequence-based approaches appear as promising tools to tune protein aggregation in biotechnological processes. PMID:15847694

  11. Sequence Analysis of Scaffolding Protein CipC and ORFXp, a New Cohesin-Containing Protein in Clostridium cellulolyticum: Comparison of Various Cohesin Domains and Subcellular Localization of ORFXp

    PubMed Central

    Pagès, Sandrine; Bélaïch, Anne; Fierobe, Henri-Pierre; Tardif, Chantal; Gaudin, Christian; Bélaïch, Jean-Pierre

    1999-01-01

    The gene encoding the scaffolding protein of the cellulosome from Clostridium cellulolyticum, whose partial sequence was published earlier (S. Pagès, A. Bélaïch, C. Tardif, C. Reverbel-Leroy, C. Gaudin, and J.-P. Bélaïch, J. Bacteriol. 178:2279–2286, 1996; C. Reverbel-Leroy, A. Bélaïch, A. Bernadac, C. Gaudin, J. P. Bélaïch, and C. Tardif, Microbiology 142:1013–1023, 1996), was completely sequenced. The corresponding protein, CipC, is composed of a cellulose binding domain at the N terminus followed by one hydrophilic domain (HD1), seven highly homologous cohesin domains (cohesin domains 1 to 7), a second hydrophilic domain, and a final cohesin domain (cohesin domain 8) which is only 57 to 60% identical to the seven other cohesin domains. In addition, a second gene located 8.89 kb downstream of cipC was found to encode a three-domain protein, called ORFXp, which includes a cohesin domain. By using antiserum raised against the latter, it was observed that ORFXp is associated with the membrane of C. cellulolyticum and is not detected in the cellulosome fraction. Western blot and BIAcore experiments indicate that cohesin domains 1 and 8 from CipC recognize the same dockerins and have similar affinity for CelA (Ka = 4.8 × 109 M−1) whereas the cohesin from ORFXp, although it is also able to bind all cellulosome components containing a dockerin, has a 19-fold lower Ka for CelA (2.6 × 108 M−1). Taken together, these data suggest that ORFXp may play a role in cellulosome assembly. PMID:10074072

  12. Benchmarking NMR experiments: A relational database of protein pulse sequences

    NASA Astrophysics Data System (ADS)

    Senthamarai, Russell R. P.; Kuprov, Ilya; Pervushin, Konstantin

    2010-03-01

    Systematic benchmarking of multi-dimensional protein NMR experiments is a critical prerequisite for optimal allocation of NMR resources for structural analysis of challenging proteins, e.g. large proteins with limited solubility or proteins prone to aggregation. We propose a set of benchmarking parameters for essential protein NMR experiments organized into a lightweight (single XML file) relational database (RDB), which includes all the necessary auxiliaries (waveforms, decoupling sequences, calibration tables, setup algorithms and an RDB management system). The database is interfaced to the Spinach library ( http://spindynamics.org), which enables accurate simulation and benchmarking of NMR experiments on large spin systems. A key feature is the ability to use a single user-specified spin system to simulate the majority of deposited solution state NMR experiments, thus providing the (hitherto unavailable) unified framework for pulse sequence evaluation. This development enables predicting relative sensitivity of deposited implementations of NMR experiments, thus providing a basis for comparison, optimization and, eventually, automation of NMR analysis. The benchmarking is demonstrated with two proteins, of 170 amino acids I domain of αXβ2 Integrin and 440 amino acids NS3 helicase.

  13. Los Alamos sequence analysis package for nucleic acids and proteins.

    PubMed Central

    Kanehisa, M I

    1982-01-01

    An interactive system for computer analysis of nucleic acid and protein sequences has been developed for the Los Alamos DNA Sequence Database. It provides a convenient way to search or verify various sequence features, e.g., restriction enzyme sites, protein coding frames, and properties of coded proteins. Further, the comprehensive analysis package on a large-scale database can be used for comparative studies on sequence and structural homologies in order to find unnoted information stored in nucleic acid sequences. PMID:6174934

  14. Diverse nucleotide compositions and sequence fluctuation in Rubisco protein genes

    NASA Astrophysics Data System (ADS)

    Holden, Todd; Dehipawala, S.; Cheung, E.; Bienaime, R.; Ye, J.; Tremberger, G., Jr.; Schneider, P.; Lieberman, D.; Cheung, T.

    2011-10-01

    The Rubisco protein-enzyme is arguably the most abundance protein on Earth. The biology dogma of transcription and translation necessitates the study of the Rubisco genes and Rubisco-like genes in various species. Stronger correlation of fractal dimension of the atomic number fluctuation along a DNA sequence with Shannon entropy has been observed in the studied Rubisco-like gene sequences, suggesting a more diverse evolutionary pressure and constraints in the Rubisco sequences. The strategy of using metal for structural stabilization appears to be an ancient mechanism, with data from the porphobilinogen deaminase gene in Capsaspora owczarzaki and Monosiga brevicollis. Using the chi-square distance probability, our analysis supports the conjecture that the more ancient Rubisco-like sequence in Microcystis aeruginosa would have experienced very different evolutionary pressure and bio-chemical constraint as compared to Bordetella bronchiseptica, the two microbes occupying either end of the correlation graph. Our exploratory study would indicate that high fractal dimension Rubisco sequence would support high carbon dioxide rate via the Michaelis- Menten coefficient; with implication for the control of the whooping cough pathogen Bordetella bronchiseptica, a microbe containing a high fractal dimension Rubisco-like sequence (2.07). Using the internal comparison of chi-square distance probability for 16S rRNA (~ E-22) versus radiation repair Rec-A gene (~ E-05) in high GC content Deinococcus radiodurans, our analysis supports the conjecture that high GC content microbes containing Rubisco-like sequence are likely to include an extra-terrestrial origin, relative to Deinococcus radiodurans. Similar photosynthesis process that could utilize host star radiation would not compete with radiation resistant process from the biology dogma perspective in environments such as Mars and exoplanets.

  15. Comparison of Next-Generation Sequencing Systems

    PubMed Central

    Liu, Lin; Li, Yinhu; Li, Siliang; Hu, Ni; He, Yimin; Pong, Ray; Lin, Danni; Lu, Lihua; Law, Maggie

    2012-01-01

    With fast development and wide applications of next-generation sequencing (NGS) technologies, genomic sequence information is within reach to aid the achievement of goals to decode life mysteries, make better crops, detect pathogens, and improve life qualities. NGS systems are typically represented by SOLiD/Ion Torrent PGM from Life Sciences, Genome Analyzer/HiSeq 2000/MiSeq from Illumina, and GS FLX Titanium/GS Junior from Roche. Beijing Genomics Institute (BGI), which possesses the world's biggest sequencing capacity, has multiple NGS systems including 137 HiSeq 2000, 27 SOLiD, one Ion Torrent PGM, one MiSeq, and one 454 sequencer. We have accumulated extensive experience in sample handling, sequencing, and bioinformatics analysis. In this paper, technologies of these systems are reviewed, and first-hand data from extensive experience is summarized and analyzed to discuss the advantages and specifics associated with each sequencing system. At last, applications of NGS are summarized. PMID:22829749

  16. Giant panda ribosomal protein S14: cDNA, genomic sequence cloning, sequence analysis, and overexpression.

    PubMed

    Wu, G-F; Hou, Y-L; Hou, W-R; Song, Y; Zhang, T

    2010-10-13

    RPS14 is a component of the 40S ribosomal subunit encoded by the RPS14 gene and is required for its maturation. The cDNA and the genomic sequence of RPS14 were cloned successfully from the giant panda (Ailuropoda melanoleuca) using RT-PCR technology and touchdown-PCR, respectively; they were both sequenced and analyzed. The length of the cloned cDNA fragment was 492 bp; it contained an open-reading frame of 456 bp, encoding 151 amino acids. The length of the genomic sequence is 3421 bp; it contains four exons and three introns. Alignment analysis indicates that the nucleotide sequence shares a high degree of homology with those of Homo sapiens, Bos taurus, Mus musculus, Rattus norvegicus, Gallus gallus, Xenopus laevis, and Danio rerio (93.64, 83.37, 92.54, 91.89, 87.28, 84.21, and 84.87%, respectively). Comparison of the deduced amino acid sequences of the giant panda with those of these other species revealed that the RPS14 of giant panda is highly homologous with those of B. taurus, R. norvegicus and D. rerio (85.99, 99.34 and 99.34%, respectively), and is 100% identical with the others. This degree of conservation of RPS14 suggests evolutionary selection. Topology prediction shows that there are two N-glycosylation sites, three protein kinase C phosphorylation sites, two casein kinase II phosphorylation sites, four N-myristoylation sites, two amidation sites, and one ribosomal protein S11 signature in the RPS14 protein of the giant panda. The RPS14 gene can be readily expressed in Escherichia coli. When it was fused with the N-terminally His-tagged protein, it gave rise to accumulation of an expected 22-kDa polypeptide, in good agreement with the predicted molecular weight. The expression product obtained can be purified for studies of its function.

  17. Integrated protein function prediction by mining function associations, sequences, and protein–protein and gene–gene interaction networks

    PubMed Central

    Cao, Renzhi; Cheng, Jianlin

    2016-01-01

    Motivations Protein function prediction is an important and challenging problem in bioinformatics and computational biology. Functionally relevant biological information such as protein sequences, gene expression, and protein–protein interactions has been used mostly separately for protein function prediction. One of the major challenges is how to effectively integrate multiple sources of both traditional and new information such as spatial gene–gene interaction networks generated from chromosomal conformation data together to improve protein function prediction. Results In this work, we developed three different probabilistic scores (MIS, SEQ, and NET score) to combine protein sequence, function associations, and protein–protein interaction and spatial gene–gene interaction networks for protein function prediction. The MIS score is mainly generated from homologous proteins found by PSI-BLAST search, and also association rules between Gene Ontology terms, which are learned by mining the Swiss-Prot database. The SEQ score is generated from protein sequences. The NET score is generated from protein–protein interaction and spatial gene–gene interaction networks. These three scores were combined in a new Statistical Multiple Integrative Scoring System (SMISS) to predict protein function. We tested SMISS on the data set of 2011 Critical Assessment of Function Annotation (CAFA). The method performed substantially better than three base-line methods and an advanced method based on protein profile–sequence comparison, profile–profile comparison, and domain co-occurrence networks according to the maximum F-measure. PMID:26370280

  18. Algorithm, applications and evaluation for protein comparison by Ramanujan Fourier transform.

    PubMed

    Zhao, Jian; Wang, Jiasong; Hua, Wei; Ouyang, Pingkai

    2015-12-01

    The amino acid sequence of a protein determines its chemical properties, chain conformation and biological functions. Protein sequence comparison is of great importance to identify similarities of protein structures and infer their functions. Many properties of a protein correspond to the low-frequency signals within the sequence. Low frequency modes in protein sequences are linked to the secondary structures, membrane protein types, and sub-cellular localizations of the proteins. In this paper, we present Ramanujan Fourier transform (RFT) with a fast algorithm to analyze the low-frequency signals of protein sequences. The RFT method is applied to similarity analysis of protein sequences with the Resonant Recognition Model (RRM). The results show that the proposed fast RFT method on protein comparison is more efficient than commonly used discrete Fourier transform (DFT). RFT can detect common frequencies as significant feature for specific protein families, and the RFT spectrum heat-map of protein sequences demonstrates the information conservation in the sequence comparison. The proposed method offers a new tool for pattern recognition, feature extraction and structural analysis on protein sequences.

  19. New developments of alignment-free sequence comparison: measures, statistics and next-generation sequencing

    PubMed Central

    Song, Kai; Ren, Jie; Reinert, Gesine; Deng, Minghua

    2014-01-01

    With the development of next-generation sequencing (NGS) technologies, a large amount of short read data has been generated. Assembly of these short reads can be challenging for genomes and metagenomes without template sequences, making alignment-based genome sequence comparison difficult. In addition, sequence reads from NGS can come from different regions of various genomes and they may not be alignable. Sequence signature-based methods for genome comparison based on the frequencies of word patterns in genomes and metagenomes can potentially be useful for the analysis of short reads data from NGS. Here we review the recent development of alignment-free genome and metagenome comparison based on the frequencies of word patterns with emphasis on the dissimilarity measures between sequences, the statistical power of these measures when two sequences are related and the applications of these measures to NGS data. PMID:24064230

  20. Parallel Computation of Multiple Biological Sequence Comparisons

    DTIC Science & Technology

    1989-07-01

    Stearothermophilus 408 Bacillus Megaterium 411 Bacillus Brevis 354 Pseudomonas Fluorescens 375 Salmonella Typhi 377 Escherichia Coli 282 Saccharomyces Octosporus...This included implied secondary structure and conservation of pairs of nucleotides that are complementary. The first four sequences are all Bacillus ...need to obtain sequences of ribonuclease P RNA from additional species to provide a more 13 Length Name 401 Bacillus Subtilis 417 Bacillus

  1. Sequence-Based Prediction of Type III Secreted Proteins

    PubMed Central

    Arnold, Roland; Brandmaier, Stefan; Kleine, Frederick; Tischler, Patrick; Heinz, Eva; Behrens, Sebastian; Niinikoski, Antti; Mewes, Hans-Werner; Horn, Matthias; Rattei, Thomas

    2009-01-01

    The type III secretion system (TTSS) is a key mechanism for host cell interaction used by a variety of bacterial pathogens and symbionts of plants and animals including humans. The TTSS represents a molecular syringe with which the bacteria deliver effector proteins directly into the host cell cytosol. Despite the importance of the TTSS for bacterial pathogenesis, recognition and targeting of type III secreted proteins has up until now been poorly understood. Several hypotheses are discussed, including an mRNA-based signal, a chaperon-mediated process, or an N-terminal signal peptide. In this study, we systematically analyzed the amino acid composition and secondary structure of N-termini of 100 experimentally verified effector proteins. Based on this, we developed a machine-learning approach for the prediction of TTSS effector proteins, taking into account N-terminal sequence features such as frequencies of amino acids, short peptides, or residues with certain physico-chemical properties. The resulting computational model revealed a strong type III secretion signal in the N-terminus that can be used to detect effectors with sensitivity of ∼71% and selectivity of ∼85%. This signal seems to be taxonomically universal and conserved among animal pathogens and plant symbionts, since we could successfully detect effector proteins if the respective group was excluded from training. The application of our prediction approach to 739 complete bacterial and archaeal genome sequences resulted in the identification of between 0% and 12% putative TTSS effector proteins. Comparison of effector proteins with orthologs that are not secreted by the TTSS showed no clear pattern of signal acquisition by fusion, suggesting convergent evolutionary processes shaping the type III secretion signal. The newly developed program EffectiveT3 (http://www.chlamydiaedb.org) is the first universal in silico prediction program for the identification of novel TTSS effectors. Our findings will

  2. Database Independent Protein Sequencing (DiPS) enables full-length de-novo protein and antibody sequence determination.

    PubMed

    Savidor, Alon; Barzilay, Rotem; Elinger, Dalia; Yarden, Yosef; Lindzen, Moshit; Gabashvili, Alexandra; Adiv Tal, Ophir; Levin, Yishai

    2017-03-27

    Traditional 'bottom-up' proteomics approaches use proteolytic digestion, LC-MS/MS and database searching to elucidate peptide identities and their parent proteins. Protein sequences absent from the database cannot be identified, and even if present in the database, complete sequence coverage is rarely achieved even for the most abundant proteins in the sample. Thus, sequencing of unknown proteins such as antibodies or constituents of metaproteomes remains a challenging problem. To date, there is no available method for full-length protein sequencing, independent of a reference database, in high throughput. Here we present Database Independent Protein Sequencing (DiPS), a method for unambiguous, rapid, database independent, full-length protein sequencing. The method is a novel combination of non-enzymatic, semi-random cleavage of the protein, LC-MS/MS analysis, peptide de novo sequencing, extraction of peptide tags, and their assembly into a consensus sequence using an algorithm named "Peptide Tag Assembler" (pTA). As proof-of-concept, the method was applied to samples of three known proteins representing three size classes and to a previously un-sequenced, clinically relevant, monoclonal antibody. Excluding leucine/isoleucine and glutamic-acid/deamidated glutamine ambiguities, end-to-end, full-length de novo sequencing was achieved with 99-100% accuracy for all benchmarking proteins and the antibody light chain. Accuracy of the sequenced antibody heavy chain, including the entire variable region, was also 100% but there was a 23 residue gap in the constant region sequence.

  3. Miraculous catch of iron-sulfur protein sequences in the Sargasso Sea.

    PubMed

    Meyer, Jacques

    2004-07-16

    Recent shotgun sequencing of filtered Sargasso Sea water samples has yielded data in astounding amount and diversity. Iron-sulfur proteins, which are ancient, diverse and ubiquitous, have been implemented here to further probe the sequence diversity of the Sargasso Sea database (SSDB). Sequence searches and comparisons confirm that the SSDB by and large equals in diversity the combined currently available databases. The data thus suggest that microbial diversity has so far been underestimated by orders of magnitude.

  4. Sequence specific binding of chlamydial histone H1-like protein.

    PubMed Central

    Kaul, R; Allen, M; Bradbury, E M; Wenman, W M

    1996-01-01

    Chlamydia trachomatis is one of the few prokaryotic organisms known to contain proteins that bear homology to eukaryotic histone H1. Changes in macromolecular conformation of DNA mediated by the histone H1-like protein (Hc1) appear to regulate stage specific differentiation. We have developed a cross-linking immunoprecipitation protocol to examine in vivo protein-DNA interaction by immune precipitating chlamydial Hc1 cross linked to DNA. Our results strongly support the presence of sequence specific binding sites on the chlamydial plasmid and hc1 gene upstream of its open reading frame. The preferential binding sites were mapped to 520 bp BamHI-XhoI and 547 bp BamHI-DraI DNA fragments on the plasmid and hc1 respectively. Comparison of these two DNA sequences using Bestfit program has identified a 24 bp region with >75% identity that is unique to the chlamydial genome. Double-stranded DNA prepared by annealing complementary oligonucleotides corresponding to the conserved 24 bp region bind Hc1, in contrast to control sequences with similar A+T ratios. Further, Hc1 binds to DNA in a strand specific fashion, with preferential binding for only one strand. The site specific affinity to plasmid DNA was also demonstrated by atomic force microscopy data images. Binding was always followed by coiling, shrinking and aggregation of the affected DNA. Very low protein-DNA ratio was required if incubations were carried out in solution. However, if DNA was partially immobilized on mica substrate individual strands with dark foci were still visible even after the addition of excess Hc1. PMID:8760883

  5. Proteins: sequence to structure and function--current status.

    PubMed

    Shenoy, Sandhya R; Jayaram, B

    2010-11-01

    In an era that has been dominated by Structural Biology for the last 30-40 years, a dramatic change of focus towards sequence analysis has spurred the advent of the genome projects and the resultant diverging sequence/structure deficit. The central challenge of Computational Structural Biology is therefore to rationalize the mass of sequence information into biochemical and biophysical knowledge and to decipher the structural, functional and evolutionary clues encoded in the language of biological sequences. In investigating the meaning of sequences, two distinct analytical themes have emerged: in the first approach, pattern recognition techniques are used to detect similarity between sequences and hence to infer related structures and functions; in the second ab initio prediction methods are used to deduce 3D structure, and ultimately to infer function, directly from the linear sequence. In this article, we attempt to provide a critical assessment of what one may and may not expect from the biological sequences and to identify major issues yet to be resolved. The presentation is organized under several subtitles like protein sequences, pattern recognition techniques, protein tertiary structure prediction, membrane protein bioinformatics, human proteome, protein-protein interactions, metabolic networks, potential drug targets based on simple sequence properties, disordered proteins, the sequence-structure relationship and chemical logic of protein sequences.

  6. Protein Sequence Annotation Tool (PSAT): A centralized web-based meta-server for high-throughput sequence annotations

    SciTech Connect

    Leung, Elo; Huang, Amy; Cadag, Eithon; Montana, Aldrin; Soliman, Jan Lorenz; Zhou, Carol L. Ecale

    2016-01-20

    In this study, we introduce the Protein Sequence Annotation Tool (PSAT), a web-based, sequence annotation meta-server for performing integrated, high-throughput, genome-wide sequence analyses. Our goals in building PSAT were to (1) create an extensible platform for integration of multiple sequence-based bioinformatics tools, (2) enable functional annotations and enzyme predictions over large input protein fasta data sets, and (3) provide a web interface for convenient execution of the tools. In this paper, we demonstrate the utility of PSAT by annotating the predicted peptide gene products of Herbaspirillum sp. strain RV1423, importing the results of PSAT into EC2KEGG, and using the resulting functional comparisons to identify a putative catabolic pathway, thereby distinguishing RV1423 from a well annotated Herbaspirillum species. This analysis demonstrates that high-throughput enzyme predictions, provided by PSAT processing, can be used to identify metabolic potential in an otherwise poorly annotated genome. Lastly, PSAT is a meta server that combines the results from several sequence-based annotation and function prediction codes, and is available at http://psat.llnl.gov/psat/. PSAT stands apart from other sequencebased genome annotation systems in providing a high-throughput platform for rapid de novo enzyme predictions and sequence annotations over large input protein sequence data sets in FASTA. PSAT is most appropriately applied in annotation of large protein FASTA sets that may or may not be associated with a single genome.

  7. Protein Sequence Annotation Tool (PSAT): A centralized web-based meta-server for high-throughput sequence annotations

    DOE PAGES

    Leung, Elo; Huang, Amy; Cadag, Eithon; ...

    2016-01-20

    In this study, we introduce the Protein Sequence Annotation Tool (PSAT), a web-based, sequence annotation meta-server for performing integrated, high-throughput, genome-wide sequence analyses. Our goals in building PSAT were to (1) create an extensible platform for integration of multiple sequence-based bioinformatics tools, (2) enable functional annotations and enzyme predictions over large input protein fasta data sets, and (3) provide a web interface for convenient execution of the tools. In this paper, we demonstrate the utility of PSAT by annotating the predicted peptide gene products of Herbaspirillum sp. strain RV1423, importing the results of PSAT into EC2KEGG, and using the resultingmore » functional comparisons to identify a putative catabolic pathway, thereby distinguishing RV1423 from a well annotated Herbaspirillum species. This analysis demonstrates that high-throughput enzyme predictions, provided by PSAT processing, can be used to identify metabolic potential in an otherwise poorly annotated genome. Lastly, PSAT is a meta server that combines the results from several sequence-based annotation and function prediction codes, and is available at http://psat.llnl.gov/psat/. PSAT stands apart from other sequencebased genome annotation systems in providing a high-throughput platform for rapid de novo enzyme predictions and sequence annotations over large input protein sequence data sets in FASTA. PSAT is most appropriately applied in annotation of large protein FASTA sets that may or may not be associated with a single genome.« less

  8. Genomic Sequence Comparisons, 1987-2003 Final Report

    SciTech Connect

    George M. Church

    2004-07-29

    This project was to develop new DNA sequencing and RNA and protein quantitation methods and related genome annotation tools. The project began in 1987 with the development of multiplex sequencing (published in Science in 1988), and one of the first automated sequencing methods. This lead to the first commercial genome sequence in 1994 and to the establishment of the main commercial participants (GTC then Agencourt) in the public DOE/NIH genome project. In collaboration with GTC we contributed to one of the first complete DOE genome sequences, in 1997, that of Methanobacterium thermoautotropicum, a species of great relevance to energy-rich gas production.

  9. The bioinformatics of nucleotide sequence coding for proteins requiring metal coenzymes and proteins embedded with metals

    NASA Astrophysics Data System (ADS)

    Tremberger, G.; Dehipawala, Sunil; Cheung, E.; Holden, T.; Sullivan, R.; Nguyen, A.; Lieberman, D.; Cheung, T.

    2015-09-01

    All metallo-proteins need post-translation metal incorporation. In fact, the isotope ratio of Fe, Cu, and Zn in physiology and oncology have emerged as an important tool. The nickel containing F430 is the prosthetic group of the enzyme methyl coenzyme M reductase which catalyzes the release of methane in the final step of methano-genesis, a prime energy metabolism candidate for life exploration space mission in the solar system. The 3.5 Gyr early life sulfite reductase as a life switch energy metabolism had Fe-Mo clusters. The nitrogenase for nitrogen fixation 3 billion years ago had Mo. The early life arsenite oxidase needed for anoxygenic photosynthesis energy metabolism 2.8 billion years ago had Mo and Fe. The selection pressure in metal incorporation inside a protein would be quantifiable in terms of the related nucleotide sequence complexity with fractal dimension and entropy values. Simulation model showed that the studied metal-required energy metabolism sequences had at least ten times more selection pressure relatively in comparison to the horizontal transferred sequences in Mealybug, guided by the outcome histogram of the correlation R-sq values. The metal energy metabolism sequence group was compared to the circadian clock KaiC sequence group using magnesium atomic level bond shifting mechanism in the protein, and the simulation model would suggest a much higher selection pressure for the energy life switch sequence group. The possibility of using Kepler 444 as an example of ancient life in Galaxy with the associated exoplanets has been proposed and is further discussed in this report. Examples of arsenic metal bonding shift probed by Synchrotron-based X-ray spectroscopy data and Zn controlled FOXP2 regulated pathways in human and chimp brain studied tissue samples are studied in relationship to the sequence bioinformatics. The analysis results suggest that relatively large metal bonding shift amount is associated with low probability correlation R

  10. Sequence space and the ongoing expansion of the protein universe.

    PubMed

    Povolotskaya, Inna S; Kondrashov, Fyodor A

    2010-06-17

    The need to maintain the structural and functional integrity of an evolving protein severely restricts the repertoire of acceptable amino-acid substitutions. However, it is not known whether these restrictions impose a global limit on how far homologous protein sequences can diverge from each other. Here we explore the limits of protein evolution using sequence divergence data. We formulate a computational approach to study the rate of divergence of distant protein sequences and measure this rate for ancient proteins, those that were present in the last universal common ancestor. We show that ancient proteins are still diverging from each other, indicating an ongoing expansion of the protein sequence universe. The slow rate of this divergence is imposed by the sparseness of functional protein sequences in sequence space and the ruggedness of the protein fitness landscape: approximately 98 per cent of sites cannot accept an amino-acid substitution at any given moment but a vast majority of all sites may eventually be permitted to evolve when other, compensatory, changes occur. Thus, approximately 3.5 x 10(9) yr has not been enough to reach the limit of divergent evolution of proteins, and for most proteins the limit of sequence similarity imposed by common function may not exceed that of random sequences.

  11. UFO: a web server for ultra-fast functional profiling of whole genome protein sequences

    PubMed Central

    Meinicke, Peter

    2009-01-01

    Background Functional profiling is a key technique to characterize and compare the functional potential of entire genomes. The estimation of profiles according to an assignment of sequences to functional categories is a computationally expensive task because it requires the comparison of all protein sequences from a genome with a usually large database of annotated sequences or sequence families. Description Based on machine learning techniques for Pfam domain detection, the UFO web server for ultra-fast functional profiling allows researchers to process large protein sequence collections instantaneously. Besides the frequencies of Pfam and GO categories, the user also obtains the sequence specific assignments to Pfam domain families. In addition, a comparison with existing genomes provides dissimilarity scores with respect to 821 reference proteomes. Considering the underlying UFO domain detection, the results on 206 test genomes indicate a high sensitivity of the approach. In comparison with current state-of-the-art HMMs, the runtime measurements show a considerable speed up in the range of four orders of magnitude. For an average size prokaryotic genome, the computation of a functional profile together with its comparison typically requires about 10 seconds of processing time. Conclusion For the first time the UFO web server makes it possible to get a quick overview on the functional inventory of newly sequenced organisms. The genome scale comparison with a large number of precomputed profiles allows a first guess about functionally related organisms. The service is freely available and does not require user registration or specification of a valid email address. PMID:19725959

  12. Orpinomyces cellulase celf protein and coding sequences

    DOEpatents

    Li, Xin-Liang; Chen, Huizhong; Ljungdahl, Lars G.

    2000-09-05

    A cDNA (1,520 bp), designated celF, consisting of an open reading frame (ORF) encoding a polypeptide (CelF) of 432 amino acids was isolated from a cDNA library of the anaerobic rumen fungus Orpinomyces PC-2 constructed in Escherichia coli. Analysis of the deduced amino acid sequence showed that starting from the N-terminus, CelF consists of a signal peptide, a cellulose binding domain (CBD) followed by an extremely Asn-rich linker region which separate the CBD and the catalytic domains. The latter is located at the C-terminus. The catalytic domain of CelF is highly homologous to CelA and CelC of Orpinomyces PC-2, to CelA of Neocallimastix patriciarum and also to cellobiohydrolase IIs (CBHIIs) from aerobic fungi. However, Like CelA of Neocallimastix patriciarum, CelF does not have the noncatalytic repeated peptide domain (NCRPD) found in CelA and CelC from the same organism. The recombinant protein CelF hydrolyzes cellooligosaccharides in the pattern of CBHII, yielding only cellobiose as product with cellotetraose as the substrate. The genomic celF is interrupted by a 111 bp intron, located within the region coding for the CBD. The intron of the celF has features in common with genes from aerobic filamentous fungi.

  13. De novo sequencing of unique sequence tags for discovery of post-translational modifications of proteins

    SciTech Connect

    Shen, Yufeng; Tolic, Nikola; Hixson, Kim K.; Purvine, Samuel O.; Anderson, Gordon A.; Smith, Richard D.

    2008-10-15

    De novo sequencing has a promise to discover the protein post-translation modifications; however, such approach is still in their infancy and not widely applied for proteomics practices due to its limited reliability. In this work, we describe a de novo sequencing approach for discovery of protein modifications through identification of the UStags (Anal. Chem. 2008, 80, 1871-1882). The de novo information was obtained from Fourier-transform tandem mass spectrometry for peptides and polypeptides in a yeast lysate, and the de novo sequences obtained were filtered to define a more limited set of UStags. The DNA-predicted database protein sequences were then compared to the UStags, and the differences observed across or in the UStags (i.e., the UStags’ prefix and suffix sequences and the UStags themselves) were used to infer the possible sequence modifications. With this de novo-UStag approach, we uncovered some unexpected variances of yeast protein sequences due to amino acid mutations and/or multiple modifications to the predicted protein sequences. Random matching of the de novo sequences to the predicted sequences were examined with use of two random (false) databases, and ~3% false discovery rates were estimated for the de novo-UStag approach. The factors affecting the reliability (e.g., existence of de novo sequencing noise residues and redundant sequences) and the sensitivity are described. The de novo-UStag complements the UStag method previously reported by enabling discovery of new protein modifications.

  14. Intra-species sequence comparisons for annotating genomes

    SciTech Connect

    Boffelli, Dario; Weer, Claire V.; Weng, Li; Lewis, Keith D.; Shoukry, Malak I.; Pachter, Lior; Keys, David N.; Rubin, Edward M.

    2004-07-15

    Analysis of sequence variation among members of a single species offers a potential approach to identify functional DNA elements responsible for biological features unique to that species. Due to its high rate of allelic polymorphism and ease of genetic manipulability, we chose the sea squirt, Ciona intestinalis, to explore intra-species sequence comparisons for genome annotation. A large number of C. intestinalis specimens were collected from four continents and a set of genomic intervals amplified, resequenced and analyzed to determine the mutation rates at each nucleotide in the sequence. We found that regions with low mutation rates efficiently demarcated functionally constrained sequences: these include a set of noncoding elements, which we showed in C intestinalis transgenic assays to act as tissue-specific enhancers, as well as the location of coding sequences. This illustrates that comparisons of multiple members of a species can be used for genome annotation, suggesting a path for the annotation of the sequenced genomes of organisms occupying uncharacterized phylogenetic branches of the animal kingdom and raises the possibility that the resequencing of a large number of Homo sapiens individuals might be used to annotate the human genome and identify sequences defining traits unique to our species. The sequence data from this study has been submitted to GenBank under accession nos. AY667278-AY667407.

  15. Prediction of Protein Structural Classes for Low-Similarity Sequences Based on Consensus Sequence and Segmented PSSM.

    PubMed

    Liang, Yunyun; Liu, Sanyang; Zhang, Shengli

    2015-01-01

    Prediction of protein structural classes for low-similarity sequences is useful for understanding fold patterns, regulation, functions, and interactions of proteins. It is well known that feature extraction is significant to prediction of protein structural class and it mainly uses protein primary sequence, predicted secondary structure sequence, and position-specific scoring matrix (PSSM). Currently, prediction solely based on the PSSM has played a key role in improving the prediction accuracy. In this paper, we propose a novel method called CSP-SegPseP-SegACP by fusing consensus sequence (CS), segmented PsePSSM, and segmented autocovariance transformation (ACT) based on PSSM. Three widely used low-similarity datasets (1189, 25PDB, and 640) are adopted in this paper. Then a 700-dimensional (700D) feature vector is constructed and the dimension is decreased to 224D by using principal component analysis (PCA). To verify the performance of our method, rigorous jackknife cross-validation tests are performed on 1189, 25PDB, and 640 datasets. Comparison of our results with the existing PSSM-based methods demonstrates that our method achieves the favorable and competitive performance. This will offer an important complementary to other PSSM-based methods for prediction of protein structural classes for low-similarity sequences.

  16. Cloning and sequence of DNA encoding structural proteins of the autonomous parvovirus feline panleukopenia virus.

    PubMed Central

    Carlson, J; Rushlow, K; Maxwell, I; Maxwell, F; Winston, S; Hahn, W

    1985-01-01

    Approximately 80% of the genome of feline panleukopenia virus was cloned into pBR322. This DNA included the transcription unit for the major viral mRNA species. The nucleotide sequence of the cloned portion of the genome was determined. Comparison of the feline panleukopenia virus sequence with the sequences of the parvoviruses minute virus of mice and H-1 revealed considerable homology between the three viruses on both the nucleic acid and protein levels. Based on this homology, a model for the generation of the two size classes of viral structural proteins (VP1 and VP2') is proposed. Images PMID:2991581

  17. Searching gene and protein sequence databases.

    PubMed

    Barsalou, T; Brutlag, D L

    1991-01-01

    A large-scale effort to map and sequence the human genome is now under way. Crucial to the success of this research is a group of computer programs that analyze and compare data on molecular sequences. This article describes the classic algorithms for similarity searching and sequence alignment. Because good performance of these algorithms is critical to searching very large and growing databases, we analyze the running times of the algorithms and discuss recent improvements in this area.

  18. Design of multispecific protein sequences using probabilistic graphical modeling.

    PubMed

    Fromer, Menachem; Yanover, Chen; Linial, Michal

    2010-02-15

    In nature, proteins partake in numerous protein- protein interactions that mediate their functions. Moreover, proteins have been shown to be physically stable in multiple structures, induced by cellular conditions, small ligands, or covalent modifications. Understanding how protein sequences achieve this structural promiscuity at the atomic level is a fundamental step in the drug design pipeline and a critical question in protein physics. One way to investigate this subject is to computationally predict protein sequences that are compatible with multiple states, i.e., multiple target structures or binding to distinct partners. The goal of engineering such proteins has been termed multispecific protein design. We develop a novel computational framework to efficiently and accurately perform multispecific protein design. This framework utilizes recent advances in probabilistic graphical modeling to predict sequences with low energies in multiple target states. Furthermore, it is also geared to specifically yield positional amino acid probability profiles compatible with these target states. Such profiles can be used as input to randomly bias high-throughput experimental sequence screening techniques, such as phage display, thus providing an alternative avenue for elucidating the multispecificity of natural proteins and the synthesis of novel proteins with specific functionalities. We prove the utility of such multispecific design techniques in better recovering amino acid sequence diversities similar to those resulting from millions of years of evolution. We then compare the approaches of prediction of low energy ensembles and of amino acid profiles and demonstrate their complementarity in providing more robust predictions for protein design.

  19. Detecting remotely related proteins by their interactions and sequence similarity

    PubMed Central

    Espadaler, Jordi; Aragüés, Ramón; Eswar, Narayanan; Marti-Renom, Marc A.; Querol, Enrique; Avilés, Francesc X.; Sali, Andrej; Oliva, Baldomero

    2005-01-01

    The function of an uncharacterized protein is usually inferred either from its homology to, or its interactions with, characterized proteins. Here, we use both sequence similarity and protein interactions to identify relationships between remotely related protein sequences. We rely on the fact that homologous sequences share similar interactions, and, therefore, the set of interacting partners of the partners of a given protein is enriched by its homologs. The approach was benchmarked by assigning the fold and functional family to test sequences of known structure. Specifically, we relied on 1,434 proteins with known folds, as defined in the Structural Classification of Proteins (SCOP) database, and with known interacting partners, as defined in the Database of Interacting Proteins (DIP). For this subset, the specificity of fold assignment was increased from 54% for position-specific iterative blast to 75% for our approach, with a concomitant increase in sensitivity for a few percentage points. Similarly, the specificity of family assignment at the e-value threshold of 10-8 was increased from 70% to 87%. The proposed method would be a useful tool for large-scale automated discovery of remote relationships between protein sequences, given its unique reliance on sequence similarity and protein-protein interactions. PMID:15883372

  20. Nucleotide sequence of the coat protein gene of canine parvovirus.

    PubMed Central

    Rhode, S L

    1985-01-01

    The nucleotide sequence of the canine parvovirus (CPV2) from map units 33 to 95 has been determined. This includes the entire coat protein gene and noncoding sequences at the 3' end of the gene, exclusive of the terminal inverted repeat. The predicted capsid protein structures are discussed and compared with those of the rodent parvoviruses H-1 and MVM. PMID:3989914

  1. Alignment-free sequence comparison based on next-generation sequencing reads.

    PubMed

    Song, Kai; Ren, Jie; Zhai, Zhiyuan; Liu, Xuemei; Deng, Minghua; Sun, Fengzhu

    2013-02-01

    Next-generation sequencing (NGS) technologies have generated enormous amounts of shotgun read data, and assembly of the reads can be challenging, especially for organisms without template sequences. We study the power of genome comparison based on shotgun read data without assembly using three alignment-free sequence comparison statistics, D(2), D(*)(2) and D(s)(2), both theoretically and by simulations. Theoretical formulas for the power of detecting the relationship between two sequences related through a common motif model are derived. It is shown that both D(*)(2) and D(s)(2), outperform D(2) for detecting the relationship between two sequences based on NGS data. We then study the effects of length of the tuple, read length, coverage, and sequencing error on the power of D(*)(2) and D(s)(2). Finally, variations of these statistics, d(2), d(*)(2) and d(s)(2), respectively, are used to first cluster five mammalian species with known phylogenetic relationships, and then cluster 13 tree species whose complete genome sequences are not available using NGS shotgun reads. The clustering results using d(s)(2) are consistent with biological knowledge for the 5 mammalian and 13 tree species, respectively. Thus, the statistic d(s)(2) provides a powerful alignment-free comparison tool to study the relationships among different organisms based on NGS read data without assembly.

  2. Fold Recognition Using Sequence Fingerprints of Protein Local Substructures

    SciTech Connect

    Kryshtafovych, A A; Hvidsten, T; Komorowski, J; Fidelis, K

    2003-06-04

    A protein local substructure (descriptor) is a set of several short non-overlapping fragments of the polypeptide chain. Each descriptor describes local environment of a particular residue and includes only those segments that are located in the proximity of this residue. Similar descriptors from the representative set of proteins were analyzed to reveal links between the substructures and sequences of their segments. Using detected sequence-based fingerprints specific geometrical conformations are assigned to new sequences. The ability of the approach to recognize correct SCOP folds was tested on 273 sequences from the 49 most popular folds. Good predictions were obtained in 85% of cases. No performance drop was observed with decreasing sequence similarity between target sequences and sequences from the training set of proteins.

  3. Improved K-means clustering algorithm for exploring local protein sequence motifs representing common structural property.

    PubMed

    Zhong, Wei; Altun, Gulsah; Harrison, Robert; Tai, Phang C; Pan, Yi

    2005-09-01

    Information about local protein sequence motifs is very important to the analysis of biologically significant conserved regions of protein sequences. These conserved regions can potentially determine the diverse conformation and activities of proteins. In this work, recurring sequence motifs of proteins are explored with an improved K-means clustering algorithm on a new dataset. The structural similarity of these recurring sequence clusters to produce sequence motifs is studied in order to evaluate the relationship between sequence motifs and their structures. To the best of our knowledge, the dataset used by our research is the most updated dataset among similar studies for sequence motifs. A new greedy initialization method for the K-means algorithm is proposed to improve traditional K-means clustering techniques. The new initialization method tries to choose suitable initial points, which are well separated and have the potential to form high-quality clusters. Our experiments indicate that the improved K-means algorithm satisfactorily increases the percentage of sequence segments belonging to clusters with high structural similarity. Careful comparison of sequence motifs obtained by the improved and traditional algorithms also suggests that the improved K-means clustering algorithm may discover some relatively weak and subtle sequence motifs, which are undetectable by the traditional K-means algorithms. Many biochemical tests reported in the literature show that these sequence motifs are biologically meaningful. Experimental results also indicate that the improved K-means algorithm generates more detailed sequence motifs representing common structures than previous research. Furthermore, these motifs are universally conserved sequence patterns across protein families, overcoming some weak points of other popular sequence motifs. The satisfactory result of the experiment suggests that this new K-means algorithm may be applied to other areas of bioinformatics

  4. Does protein relatedness require sequence matching? Alignment via networks in sequence space.

    PubMed

    Frenkel, Zakharia M

    2008-10-01

    To establish possible function of a newly discovered protein, alignment of its sequence with other known sequences is required. When the similarity is marginal, the function remains uncertain. A principally new approach is suggested: to use networks in the protein sequence space. The functionality of the protein is firmly established via networks forming chains of consecutive pair-wise matching fragments. The distant relatives are, thus, considered as relatives, though in some cases, there is even no sequence match between the ends of the chain, while the entire chain belongs to the same functional and structural network.

  5. Sequencing proteins with transverse ionic transport in nanochannels

    NASA Astrophysics Data System (ADS)

    Boynton, Paul; di Ventra, Massimiliano

    2016-05-01

    De novo protein sequencing is essential for understanding cellular processes that govern the function of living organisms and all sequence modifications that occur after a protein has been constructed from its corresponding DNA code. By obtaining the order of the amino acids that compose a given protein one can then determine both its secondary and tertiary structures through structure prediction, which is used to create models for protein aggregation diseases such as Alzheimer’s Disease. Here, we propose a new technique for de novo protein sequencing that involves translocating a polypeptide through a synthetic nanochannel and measuring the ionic current of each amino acid through an intersecting perpendicular nanochannel. We find that the distribution of ionic currents for each of the 20 proteinogenic amino acids encoded by eukaryotic genes is statistically distinct, showing this technique’s potential for de novo protein sequencing.

  6. Sequencing proteins with transverse ionic transport in nanochannels

    PubMed Central

    Boynton, Paul; Di Ventra, Massimiliano

    2016-01-01

    De novo protein sequencing is essential for understanding cellular processes that govern the function of living organisms and all sequence modifications that occur after a protein has been constructed from its corresponding DNA code. By obtaining the order of the amino acids that compose a given protein one can then determine both its secondary and tertiary structures through structure prediction, which is used to create models for protein aggregation diseases such as Alzheimer’s Disease. Here, we propose a new technique for de novo protein sequencing that involves translocating a polypeptide through a synthetic nanochannel and measuring the ionic current of each amino acid through an intersecting perpendicular nanochannel. We find that the distribution of ionic currents for each of the 20 proteinogenic amino acids encoded by eukaryotic genes is statistically distinct, showing this technique’s potential for de novo protein sequencing. PMID:27140520

  7. Comparison of mitochondrial genome sequences of pangolins (Mammalia, Pholidota).

    PubMed

    Hassanin, Alexandre; Hugot, Jean-Pierre; van Vuuren, Bettine Jansen

    2015-04-01

    The complete mitochondrial genome was sequenced for three species of pangolins, Manis javanica, Phataginus tricuspis, and Smutsia temminckii, and comparisons were made with two other species, Manis pentadactyla and Phataginus tetradactyla. The genome of Manidae contains the 37 genes found in a typical mammalian genome, and the structure of the control region is highly conserved among species. In Manis, the overall base composition differs from that found in African genera. Phylogenetic analyses support the monophyly of the genera Manis, Phataginus, and Smutsia, as well as the basal division between Maninae and Smutsiinae. Comparisons with GenBank sequences reveal that the reference genomes of M. pentadactyla and P. tetradactyla (accession numbers NC_016008 and NC_004027) were sequenced from misidentified taxa, and that a new species of tree pangolin should be described in Gabon.

  8. Protein sequence classification with improved extreme learning machine algorithms.

    PubMed

    Cao, Jiuwen; Xiong, Lianglin

    2014-01-01

    Precisely classifying a protein sequence from a large biological protein sequences database plays an important role for developing competitive pharmacological products. Comparing the unseen sequence with all the identified protein sequences and returning the category index with the highest similarity scored protein, conventional methods are usually time-consuming. Therefore, it is urgent and necessary to build an efficient protein sequence classification system. In this paper, we study the performance of protein sequence classification using SLFNs. The recent efficient extreme learning machine (ELM) and its invariants are utilized as the training algorithms. The optimal pruned ELM is first employed for protein sequence classification in this paper. To further enhance the performance, the ensemble based SLFNs structure is constructed where multiple SLFNs with the same number of hidden nodes and the same activation function are used as ensembles. For each ensemble, the same training algorithm is adopted. The final category index is derived using the majority voting method. Two approaches, namely, the basic ELM and the OP-ELM, are adopted for the ensemble based SLFNs. The performance is analyzed and compared with several existing methods using datasets obtained from the Protein Information Resource center. The experimental results show the priority of the proposed algorithms.

  9. Amino acid sequences of proteins from Leptospira serovar pomona.

    PubMed

    Alves, S F; Lefebvre, R B; Probert, W

    2000-01-01

    This report describes a partial amino acid sequences from three putative outer envelope proteins from Leptospira serovar pomona. In order to obtain internal fragments for protein sequencing, enzymatic and chemical digestion was performed. The enzyme clostripain was used to digest the proteins 32 and 45 kDa. In situ digestion of 40 kDa molecular weight protein was accomplished using cyanogen bromide. The 32 kDa protein generated two fragments, one of 21 kDa and another of 10 kDa that yielded five residues. A fragment of 24 kDa that yielded nineteen residues of amino acids was obtained from 45 kDa protein. A fragment with a molecular weight of 20 kDa, yielding a twenty amino acids sequence from the 40 kDa protein.

  10. A 3D sequence-independent representation of the protein data bank.

    PubMed

    Fischer, D; Tsai, C J; Nussinov, R; Wolfson, H

    1995-10-01

    Here we address the following questions. How many structurally different entries are there in the Protein Data Bank (PDB)? How do the proteins populate the structural universe? To investigate these questions a structurally non-redundant set of representative entries was selected from the PDB. Construction of such a dataset is not trivial: (i) the considerable size of the PDB requires a large number of comparisons (there were more than 3250 structures of protein chains available in May 1994); (ii) the PDB is highly redundant, containing many structurally similar entries, not necessarily with significant sequence homology, and (iii) there is no clear-cut definition of structural similarity. The latter depend on the criteria and methods used. Here, we analyze structural similarity ignoring protein topology. To date, representative sets have been selected either by hand, by sequence comparison techniques which ignore the three-dimensional (3D) structures of the proteins or by using sequence comparisons followed by linear structural comparison (i.e. the topology, or the sequential order of the chains, is enforced in the structural comparison). Here we describe a 3D sequence-independent automated and efficient method to obtain a representative set of protein molecules from the PDB which contains all unique structures and which is structurally non-redundant. The method has two novel features. The first is the use of strictly structural criteria in the selection process without taking into account the sequence information. To this end we employ a fast structural comparison algorithm which requires on average approximately 2 s per pairwise comparison on a workstation. The second novel feature is the iterative application of a heuristic clustering algorithm that greatly reduces the number of comparisons required. We obtain a representative set of 220 chains with resolution better than 3.0 A, or 268 chains including lower resolution entries, NMR entries and models. The

  11. A new method to analyze protein sequence similarity using Dynamic Time Warping.

    PubMed

    Hou, Wenbing; Pan, Qiuhui; Peng, Qianying; He, Mingfeng

    2017-03-01

    Sequences similarity analysis is one of the major topics in bioinformatics. It helps researchers to reveal evolution relationships of different species. In this paper, we outline a new method to analyze the similarity of proteins by Discrete Fourier Transform (DFT) and Dynamic Time Warping (DTW). The original symbol sequences are converted to numerical sequences according to their physico-chemical properties. We obtain the power spectra of sequences from DFT and extend the spectra to the same length to calculate the distance between different sequences by DTW. Our method is tested in different datasets and the results are compared with that of other software algorithms. In the comparison we find our scheme could amend some wrong classifications appear in other software. The comparison shows our approach is reasonable and effective.

  12. Metabolic pathways variability and sequence/networks comparisons

    PubMed Central

    Tun, Kyaw; Dhar, Pawan K; Palumbo, Maria Concetta; Giuliani, Alessandro

    2006-01-01

    Background In this work a simple method for the computation of relative similarities between homologous metabolic network modules is presented. The method is similar to classical sequence alignment and allows for the generation of phenotypic trees amenable to be compared with correspondent sequence based trees. The procedure can be applied to both single metabolic modules and whole metabolic network data without the need of any specific assumption. Results We demonstrate both the ability of the proposed method to build reliable biological classification of a set of microrganisms and the strong correlation between the metabolic network wiringand involved enzymes sequence space. Conclusion The method represents a valuable tool for the investigation of genotype/phenotype correlationsallowing for a direct comparison of different species as for their metabolic machinery. In addition the detection of enzymes whose sequence space is maximally correlated with the metabolicnetwork space gives an indication of the most crucial (on an evolutionary viewpoint) steps of the metabolic process. PMID:16420696

  13. Amphioxus mitochondrial DNA, chordate phylogeny, and the limits of inference based on comparisons of sequences.

    PubMed

    Naylor, G J; Brown, W M

    1998-03-01

    Analyses of both the nucleotide and amino acid sequences derived from all 13 mitochondrial protein-encoding genes (12,234 bp) of 19 metazoan species, including that of the lancelet Branchiostoma floridae ("amphioxus"), fail to yield the widely accepted phylogeny for chordates and, within chordates, for vertebrates. Given the breadth and the compelling nature of the data supporting that phylogeny, relationships supported by the mitochondrial sequence comparisons are almost certainly incorrect, despite their being supported by equally weighted parsimony, distance, and maximum-likelihood analyses. The incorrect groupings probably result in part from convergent base-compositional similarities among some of the taxa, similarities that are strong enough to overwhelm the historical signal. Comparisons among very distantly related taxa are likely to be particularly susceptible to such artifacts, because the historical signal is already greatly attenuated. Empirical results underscore the need for approaches to phylogenetic inference that go beyond simple site-by-site comparison of aligned sequences. This study and others indicate that, once a sequence sample of reasonable size has been obtained, accurate phylogenetic estimation may be better served by incorporating knowledge of molecular structures and processes into inference models and by seeking additional higher order characters embedded in those sequences, than by gathering ever larger sequence samples from the same organisms in he hope that the historical signal will eventually prevail.

  14. A convenient and adaptable microcomputer environment for DNA and protein sequence manipulation and analysis.

    PubMed Central

    Pustell, J; Kafatos, F C

    1986-01-01

    We describe the further development of a widely used package of DNA and protein sequence analysis programs for microcomputers (1,2,3). The package now provides a screen oriented user interface, and an enhanced working environment with powerful formatting, disk access, and memory management tools. The new GenBank floppy disk database is supported transparently to the user and a similar version of the NBRF protein database is provided. The programs can use sequence file annotation to automatically annotate printouts and translate or extract specified regions from sequences by name. The sequence comparison programs can now perform a 5000 X 5000 bp analysis in 12 minutes on an IBM PC. A program to locate potential protein coding regions in nucleic acids, a digitizer interface, and other additions are also described. PMID:3753784

  15. What Makes a Protein Sequence a Prion?

    PubMed Central

    Sabate, Raimon; Rousseau, Frederic; Schymkowitz, Joost; Ventura, Salvador

    2015-01-01

    Typical amyloid diseases such as Alzheimer's and Parkinson's were thought to exclusively result from de novo aggregation, but recently it was shown that amyloids formed in one cell can cross-seed aggregation in other cells, following a prion-like mechanism. Despite the large experimental effort devoted to understanding the phenomenon of prion transmissibility, it is still poorly understood how this property is encoded in the primary sequence. In many cases, prion structural conversion is driven by the presence of relatively large glutamine/asparagine (Q/N) enriched segments. Several studies suggest that it is the amino acid composition of these regions rather than their specific sequence that accounts for their priogenicity. However, our analysis indicates that it is instead the presence and potency of specific short amyloid-prone sequences that occur within intrinsically disordered Q/N-rich regions that determine their prion behaviour, modulated by the structural and compositional context. This provides a basis for the accurate identification and evaluation of prion candidate sequences in proteomes in the context of a unified framework for amyloid formation and prion propagation. PMID:25569335

  16. Base-sequence-dependent sliding of proteins on DNA.

    PubMed

    Barbi, M; Place, C; Popkov, V; Salerno, M

    2004-10-01

    The possibility that the sliding motion of proteins on DNA is influenced by the base sequence through a base pair reading interaction, is considered. Referring to the case of the T7 RNA-polymerase, we show that the protein should follow a noise-influenced sequence-dependent motion which deviate from the standard random walk usually assumed. The general validity and the implications of the results are discussed.

  17. Can computationally designed protein sequences improve secondary structure prediction?

    PubMed

    Bondugula, Rajkumar; Wallqvist, Anders; Lee, Michael S

    2011-05-01

    Computational sequence design methods are used to engineer proteins with desired properties such as increased thermal stability and novel function. In addition, these algorithms can be used to identify an envelope of sequences that may be compatible with a particular protein fold topology. In this regard, we hypothesized that sequence-property prediction, specifically secondary structure, could be significantly enhanced by using a large database of computationally designed sequences. We performed a large-scale test of this hypothesis with 6511 diverse protein domains and 50 designed sequences per domain. After analysis of the inherent accuracy of the designed sequences database, we realized that it was necessary to put constraints on what fraction of the native sequence should be allowed to change. With mutational constraints, accuracy was improved vs. no constraints, but the diversity of designed sequences, and hence effective size of the database, was moderately reduced. Overall, the best three-state prediction accuracy (Q(3)) that we achieved was nearly a percentage point improved over using a natural sequence database alone, well below the theoretical possibility for improvement of 8-10 percentage points. Furthermore, our nascent method was used to augment the state-of-the-art PSIPRED program by a percentage point.

  18. Nucleotide sequences of the coat protein genes of two Japanese zucchini yellow mosaic virus isolates.

    PubMed

    Kundu, A K; Ohshima, K; Sako, N

    1997-10-01

    The nucleotide (nt) sequences of the coat protein (CP) genes of two Japanese zucchini yellow mosaic virus (ZYMV) isolates (ZYMV-169 and ZYMV-M) were determined. The CP genes of both isolates were 837 nt long and encoded 279 amino acids (aa). The nt and deduced aa sequence similarities between the two isolates were 92% and 94.6%, respectively. The deduced aa sequences of CPs of the Japanese isolates were compared with those of previously reported ZYMV isolates by phylogenetic analysis. This comparison lead us to divide all ZMYV isolates into 3 groups in which ZYMV-169 formed its own distinct group.

  19. An enhanced algorithm for multiple sequence alignment of protein sequences using genetic algorithm

    PubMed Central

    Kumar, Manish

    2015-01-01

    One of the most fundamental operations in biological sequence analysis is multiple sequence alignment (MSA). The basic of multiple sequence alignment problems is to determine the most biologically plausible alignments of protein or DNA sequences. In this paper, an alignment method using genetic algorithm for multiple sequence alignment has been proposed. Two different genetic operators mainly crossover and mutation were defined and implemented with the proposed method in order to know the population evolution and quality of the sequence aligned. The proposed method is assessed with protein benchmark dataset, e.g., BALIBASE, by comparing the obtained results to those obtained with other alignment algorithms, e.g., SAGA, RBT-GA, PRRP, HMMT, SB-PIMA, CLUSTALX, CLUSTAL W, DIALIGN and PILEUP8 etc. Experiments on a wide range of data have shown that the proposed algorithm is much better (it terms of score) than previously proposed algorithms in its ability to achieve high alignment quality. PMID:27065770

  20. Nucleotide sequence of a cloned woodchuck hepatitis virus genome: comparison with the hepatitis B virus sequence.

    PubMed Central

    Galibert, F; Chen, T N; Mandart, E

    1982-01-01

    The complete nucleotide sequence of a woodchuck hepatitis virus genome cloned in Escherichia coli was determined by the method of Maxam and Gilbert. This sequence was found to be 3,308 nucleotides long. Potential ATG initiator triplets and nonsense codons were identified and used to locate regions with a substantial coding capacity. A striking similarity was observed between the organization of human hepatitis B virus and woodchuck hepatitis virus. Nucleotide sequences of these open regions in the woodchuck virus were compared with corresponding regions present in hepatitis B virus. This allowed the location of four viral genes on the L strand and indicated the absence of protein coded by the S strand. Evolution rates of the various parts of the genome as well as of the four different proteins coded by hepatitis B virus and woodchuck hepatitis virus were compared. These results indicated that: (i) the core protein has evolved slightly less rapidly than the other proteins; and (ii) when a region of DNA codes for two different proteins, there is less freedom for the DNA to evolve and, moreover, one of the proteins can evolve more rapidly than the other. A hairpin structure, very well conserved in the two genomes, was located in the only region devoid of coding function, suggesting the location of the origin of replication of the viral DNA. Images PMID:7086958

  1. Protein 3D structure computed from evolutionary sequence variation.

    PubMed

    Marks, Debora S; Colwell, Lucy J; Sheridan, Robert; Hopf, Thomas A; Pagnani, Andrea; Zecchina, Riccardo; Sander, Chris

    2011-01-01

    The evolutionary trajectory of a protein through sequence space is constrained by its function. Collections of sequence homologs record the outcomes of millions of evolutionary experiments in which the protein evolves according to these constraints. Deciphering the evolutionary record held in these sequences and exploiting it for predictive and engineering purposes presents a formidable challenge. The potential benefit of solving this challenge is amplified by the advent of inexpensive high-throughput genomic sequencing.In this paper we ask whether we can infer evolutionary constraints from a set of sequence homologs of a protein. The challenge is to distinguish true co-evolution couplings from the noisy set of observed correlations. We address this challenge using a maximum entropy model of the protein sequence, constrained by the statistics of the multiple sequence alignment, to infer residue pair couplings. Surprisingly, we find that the strength of these inferred couplings is an excellent predictor of residue-residue proximity in folded structures. Indeed, the top-scoring residue couplings are sufficiently accurate and well-distributed to define the 3D protein fold with remarkable accuracy.We quantify this observation by computing, from sequence alone, all-atom 3D structures of fifteen test proteins from different fold classes, ranging in size from 50 to 260 residues, including a G-protein coupled receptor. These blinded inferences are de novo, i.e., they do not use homology modeling or sequence-similar fragments from known structures. The co-evolution signals provide sufficient information to determine accurate 3D protein structure to 2.7-4.8 Å C(α)-RMSD error relative to the observed structure, over at least two-thirds of the protein (method called EVfold, details at http://EVfold.org). This discovery provides insight into essential interactions constraining protein evolution and will facilitate a comprehensive survey of the universe of protein structures

  2. Evolutionary bridges to new protein folds: design of C-terminal Cro protein chameleon sequences.

    PubMed

    Anderson, William J; Van Dorn, Laura O; Ingram, Wendy M; Cordes, Matthew H J

    2011-09-01

    Regions of amino-acid sequence that are compatible with multiple folds may facilitate evolutionary transitions in protein structure. In a previous study, we described a heuristically designed chameleon sequence (SASF1, structurally ambivalent sequence fragment 1) that could adopt either of two naturally occurring conformations (α-helical or β-sheet) when incorporated as part of the C-terminal dimerization subdomain of two structurally divergent transcription factors, P22 Cro and λ Cro. Here we describe longer chameleon designs (SASF2 and SASF3) that in the case of SASF3 correspond to the full C-terminal half of the ordered region of a P22 Cro/λ Cro sequence alignment (residues 34-57). P22-SASF2 and λ(WDD)-SASF2 show moderate thermal stability in denaturation curves monitored by circular dichroism (T(m) values of 46 and 55°C, respectively), while P22-SASF3 and λ(WDD)-SASF3 have somewhat reduced stability (T(m) values of 33 and 49°C, respectively). (13)C and (1)H NMR secondary chemical shift analysis confirms two C-terminal α-helices for P22-SASF2 (residues 36-45 and 54-57) and two C-terminal β-strands for λ(WDD)-SASF2 (residues 40-45 and 50-52), corresponding to secondary structure locations in the two parent sequences. Backbone relaxation data show that both chameleon sequences have a relatively well-ordered structure. Comparisons of (15)N-(1)H correlation spectra for SASF2 and SASF3-containing proteins strongly suggest that SASF3 retains the chameleonism of SASF2. Both Cro C-terminal conformations can be encoded in a single sequence, showing the plausibility of linking different Cro folds by smooth evolutionary transitions. The N-terminal subdomain, though largely conserved in structure, also exerts an important contextual influence on the structure of the C-terminal region.

  3. Automatic identification of highly conserved family regions and relationships in genome wide datasets including remote protein sequences.

    PubMed

    Doğan, Tunca; Karaçalı, Bilge

    2013-01-01

    Identifying shared sequence segments along amino acid sequences generally requires a collection of closely related proteins, most often curated manually from the sequence datasets to suit the purpose at hand. Currently developed statistical methods are strained, however, when the collection contains remote sequences with poor alignment to the rest, or sequences containing multiple domains. In this paper, we propose a completely unsupervised and automated method to identify the shared sequence segments observed in a diverse collection of protein sequences including those present in a smaller fraction of the sequences in the collection, using a combination of sequence alignment, residue conservation scoring and graph-theoretical approaches. Since shared sequence fragments often imply conserved functional or structural attributes, the method produces a table of associations between the sequences and the identified conserved regions that can reveal previously unknown protein families as well as new members to existing ones. We evaluated the biological relevance of the method by clustering the proteins in gold standard datasets and assessing the clustering performance in comparison with previous methods from the literature. We have then applied the proposed method to a genome wide dataset of 17793 human proteins and generated a global association map to each of the 4753 identified conserved regions. Investigations on the major conserved regions revealed that they corresponded strongly to annotated structural domains. This suggests that the method can be useful in predicting novel domains on protein sequences.

  4. 3D structures of membrane proteins from genomic sequencing

    PubMed Central

    Hopf, Thomas A.; Colwell, Lucy J.; Sheridan, Robert; Rost, Burkhard; Sander, Chris; Marks, Debora S.

    2012-01-01

    Summary We show that amino acid co-variation in proteins, extracted from the evolutionary sequence record, can be used to fold transmembrane proteins. We use this technique to predict previously unknown, 3D structures for 11 transmembrane proteins (with up to 14 helices) from their sequences alone. The prediction method (EVfold_membrane), applies a maximum entropy approach to infer evolutionary co-variation in pairs of sequence positions within a protein family and then generates all-atom models with the derived pairwise distance constraints. We benchmark the approach with blinded, de novo computation of known transmembrane protein structures from 23 families, demonstrating unprecedented accuracy of the method for large transmembrane proteins. We show how the method can predict oligomerization, functional sites, and conformational changes in transmembrane proteins. With the rapid rise in large-scale sequencing, more accurate and more comprehensive information on evolutionary constraints can be decoded from genetic variation, greatly expanding the repertoire of transmembrane proteins amenable to modelling by this method. PMID:22579045

  5. Comparison of solution-based exome capture methods for next generation sequencing

    PubMed Central

    2011-01-01

    Background Techniques enabling targeted re-sequencing of the protein coding sequences of the human genome on next generation sequencing instruments are of great interest. We conducted a systematic comparison of the solution-based exome capture kits provided by Agilent and Roche NimbleGen. A control DNA sample was captured with all four capture methods and prepared for Illumina GAII sequencing. Sequence data from additional samples prepared with the same protocols were also used in the comparison. Results We developed a bioinformatics pipeline for quality control, short read alignment, variant identification and annotation of the sequence data. In our analysis, a larger percentage of the high quality reads from the NimbleGen captures than from the Agilent captures aligned to the capture target regions. High GC content of the target sequence was associated with poor capture success in all exome enrichment methods. Comparison of mean allele balances for heterozygous variants indicated a tendency to have more reference bases than variant bases in the heterozygous variant positions within the target regions in all methods. There was virtually no difference in the genotype concordance compared to genotypes derived from SNP arrays. A minimum of 11× coverage was required to make a heterozygote genotype call with 99% accuracy when compared to common SNPs on genome-wide association arrays. Conclusions Libraries captured with NimbleGen kits aligned more accurately to the target regions. The updated NimbleGen kit most efficiently covered the exome with a minimum coverage of 20×, yet none of the kits captured all the Consensus Coding Sequence annotated exons. PMID:21955854

  6. Using sequence similarity networks for visualization of relationships across diverse protein superfamilies.

    PubMed

    Atkinson, Holly J; Morris, John H; Ferrin, Thomas E; Babbitt, Patricia C

    2009-01-01

    The dramatic increase in heterogeneous types of biological data--in particular, the abundance of new protein sequences--requires fast and user-friendly methods for organizing this information in a way that enables functional inference. The most widely used strategy to link sequence or structure to function, homology-based function prediction, relies on the fundamental assumption that sequence or structural similarity implies functional similarity. New tools that extend this approach are still urgently needed to associate sequence data with biological information in ways that accommodate the real complexity of the problem, while being accessible to experimental as well as computational biologists. To address this, we have examined the application of sequence similarity networks for visualizing functional trends across protein superfamilies from the context of sequence similarity. Using three large groups of homologous proteins of varying types of structural and functional diversity--GPCRs and kinases from humans, and the crotonase superfamily of enzymes--we show that overlaying networks with orthogonal information is a powerful approach for observing functional themes and revealing outliers. In comparison to other primary methods, networks provide both a good representation of group-wise sequence similarity relationships and a strong visual and quantitative correlation with phylogenetic trees, while enabling analysis and visualization of much larger sets of sequences than trees or multiple sequence alignments can easily accommodate. We also define important limitations and caveats in the application of these networks. As a broadly accessible and effective tool for the exploration of protein superfamilies, sequence similarity networks show great potential for generating testable hypotheses about protein structure-function relationships.

  7. Molecular sled sequences are common in mammalian proteins

    PubMed Central

    Xiong, Kan; Blainey, Paul C.

    2016-01-01

    Recent work revealed a new class of molecular machines called molecular sleds, which are small basic molecules that bind and slide along DNA with the ability to carry cargo along DNA. Here, we performed biochemical and single-molecule flow stretching assays to investigate the basis of sliding activity in molecular sleds. In particular, we identified the functional core of pVIc, the first molecular sled characterized; peptide functional groups that control sliding activity; and propose a model for the sliding activity of molecular sleds. We also observed widespread DNA binding and sliding activity among basic polypeptide sequences that implicate mammalian nuclear localization sequences and many cell penetrating peptides as molecular sleds. These basic protein motifs exhibit weak but physiologically relevant sequence-nonspecific DNA affinity. Our findings indicate that many mammalian proteins contain molecular sled sequences and suggest the possibility that substantial undiscovered sliding activity exists among nuclear mammalian proteins. PMID:26857546

  8. Nucleotide sequence of the gene encoding the nitrogenase iron protein of Thiobacillus ferrooxidans

    SciTech Connect

    Pretorius, I.M.; Rawlings, D.E.; O'Neill, E.G.; Jones, W.A.; Kirby, R.; Woods, D.R.

    1987-01-01

    The DNA sequence was determined for the cloned Thiobacillus ferrooxidans nifH and part of the nifD genes. The DNA chains were radiolabeled with (..cap alpha..-/sup 32/P)dCTP (3000 Ci/mmol) or (..cap alpha..-/sup 35/S)dCTP (400 Ci/mmol). A putative T. ferrooxidans nifH promoter was identified whose sequences showed perfect consensus with those of the Klebsiella pneumoniae nif promoter. Two putative consensus upstream activator sequences were also identified. The amino acid sequence was deduced from the DNA sequence. In a comparison of nifH DNA sequences from T. ferrooxidans and eight other nitrogen-fixing microbes, a Rhizobium sp. isolated from Parasponia andersonii showed the greatest homology (74%) and Clostridium pasteurianum (nifH1) showed the least homology (54%). In the comparison of the amino acid sequences of the Fe proteins, the Rhizobium sp. and Rhizobium japonicum showed the greatest homology (both 86%) and C. pasteurianum (nifH1 gene product) demonstrated the least homology (56%) to the T. ferrooxidans Fe protein.

  9. In silico comparative analysis of DNA and amino acid sequences for prion protein gene.

    PubMed

    Kim, Y; Lee, J; Lee, C

    2008-01-01

    Genetic variability might contribute to species specificity of prion diseases in various organisms. In this study, structures of the prion protein gene (PRNP) and its amino acids were compared among species of which sequence data were available. Comparisons of PRNP DNA sequences among 12 species including human, chimpanzee, monkey, bovine, ovine, dog, mouse, rat, wallaby, opossum, chicken and zebrafish allowed us to identify candidate regulatory regions in intron 1 and 3'-untranslated region (UTR) in addition to the coding region. Highly conserved putative binding sites for transcription factors, such as heat shock factor 2 (HSF2) and myocite enhancer factor 2 (MEF2), were discovered in the intron 1. In 3'-UTR, the functional sequence (ATTAAA) for nucleus-specific polyadenylation was found in all the analysed species. The functional sequence (TTTTTAT) for maturation-specific polyadenylation was identically observed only in ovine, and one or two nucleotide mismatches in the other species. A comparison of the amino acid sequences in 53 species revealed a large sequence identity. Especially the octapeptide repeat region was observed in all the species but frog and zebrafish. Functional changes and susceptibility to prion diseases with various isoforms of prion protein could be caused by numeric variability and conformational changes discovered in the repeat sequences.

  10. Classification of Myoviridae bacteriophages using protein sequence similarity

    PubMed Central

    2009-01-01

    Background We advocate unifying classical and genomic classification of bacteriophages by integration of proteomic data and physicochemical parameters. Our previous application of this approach to the entirely sequenced members of the Podoviridae fully supported the current phage classification of the International Committee on Taxonomy of Viruses (ICTV). It appears that horizontal gene transfer generally does not totally obliterate evolutionary relationships between phages. Results CoreGenes/CoreExtractor proteome comparison techniques applied to 102 Myoviridae suggest the establishment of three subfamilies (Peduovirinae, Teequatrovirinae, the Spounavirinae) and eight new independent genera (Bcep781, BcepMu, FelixO1, HAP1, Bzx1, PB1, phiCD119, and phiKZ-like viruses). The Peduovirinae subfamily, derived from the P2-related phages, is composed of two distinct genera: the "P2-like viruses", and the "HP1-like viruses". At present, the more complex Teequatrovirinae subfamily has two genera, the "T4-like" and "KVP40-like viruses". In the genus "T4-like viruses" proper, four groups sharing >70% proteins are distinguished: T4-type, 44RR-type, RB43-type, and RB49-type viruses. The Spounavirinae contain the "SPO1-"and "Twort-like viruses." Conclusion The hierarchical clustering of these groupings provide biologically significant subdivisions, which are consistent with our previous analysis of the Podoviridae. PMID:19857251

  11. Sequence walkers: a graphical method to display how binding proteins interact with DNA or RNA sequences.

    PubMed Central

    Schneider, T D

    1997-01-01

    A graphical method is presented for displaying how binding proteins and other macromolecules interact with individual bases of nucleotide sequences. Characters representing the sequence are either oriented normally and placed above a line indicating favorable contact, or upside-down and placed below the line indicating unfavorable contact. The positive or negative height of each letter shows the contribution of that base to the average sequence conservation of the binding site, as represented by a sequence logo. These sequence 'walkers' can be stepped along raw sequence data to visually search for binding sites. Many walkers, for the same or different proteins, can be simultaneously placed next to a sequence to create a quantitative map of a complex genetic region. One can alter the sequence to quantitatively engineer binding sites. Database anomalies can be visualized by placing a walker at the recorded positions of a binding molecule and by comparing this to locations found by scanning the nearby sequences. The sequence can also be altered to predict whether a change is a polymorphism or a mutation for the recognizer being modeled. PMID:9336476

  12. Delineation of modular proteins: domain boundary prediction from sequence information.

    PubMed

    Kong, Lesheng; Ranganathan, Shoba

    2004-06-01

    The delineation of domain boundaries of a given sequence in the absence of known 3D structures or detectable sequence homology to known domains benefits many areas in protein science, such as protein engineering, protein 3D structure determination and protein structure prediction. With the exponential growth of newly determined sequences, our ability to predict domain boundaries rapidly and accurately from sequence information alone is both essential and critical from the viewpoint of gene function annotation. Anyone attempting to predict domain boundaries for a single protein sequence is invariably confronted with a plethora of databases that contain boundary information available from the internet and a variety of methods for domain boundary prediction. How are these derived and how well do they work? What definition of 'domain' do they use? We will first clarify the different definitions of protein domains, and then describe the available public databases with domain boundary information. Finally, we will review existing domain boundary prediction methods and discuss their strengths and weaknesses.

  13. MIPS: a database for genomes and protein sequences.

    PubMed

    Mewes, H W; Frishman, D; Güldener, U; Mannhaupt, G; Mayer, K; Mokrejs, M; Morgenstern, B; Münsterkötter, M; Rudd, S; Weil, B

    2002-01-01

    The Munich Information Center for Protein Sequences (MIPS-GSF, Neuherberg, Germany) continues to provide genome-related information in a systematic way. MIPS supports both national and European sequencing and functional analysis projects, develops and maintains automatically generated and manually annotated genome-specific databases, develops systematic classification schemes for the functional annotation of protein sequences, and provides tools for the comprehensive analysis of protein sequences. This report updates the information on the yeast genome (CYGD), the Neurospora crassa genome (MNCDB), the databases for the comprehensive set of genomes (PEDANT genomes), the database of annotated human EST clusters (HIB), the database of complete cDNAs from the DHGP (German Human Genome Project), as well as the project specific databases for the GABI (Genome Analysis in Plants) and HNB (Helmholtz-Netzwerk Bioinformatik) networks. The Arabidospsis thaliana database (MATDB), the database of mitochondrial proteins (MITOP) and our contribution to the PIR International Protein Sequence Database have been described elsewhere [Schoof et al. (2002) Nucleic Acids Res., 30, 91-93; Scharfe et al. (2000) Nucleic Acids Res., 28, 155-158; Barker et al. (2001) Nucleic Acids Res., 29, 29-32]. All databases described, the protein analysis tools provided and the detailed descriptions of our projects can be accessed through the MIPS World Wide Web server (http://mips.gsf.de).

  14. Protein sequences bound to mineral surfaces persist into deep time

    PubMed Central

    Demarchi, Beatrice; Hall, Shaun; Roncal-Herrero, Teresa; Freeman, Colin L; Woolley, Jos; Crisp, Molly K; Wilson, Julie; Fotakis, Anna; Fischer, Roman; Kessler, Benedikt M; Rakownikow Jersie-Christensen, Rosa; Olsen, Jesper V; Haile, James; Thomas, Jessica; Marean, Curtis W; Parkington, John; Presslee, Samantha; Lee-Thorp, Julia; Ditchfield, Peter; Hamilton, Jacqueline F; Ward, Martyn W; Wang, Chunting Michelle; Shaw, Marvin D; Harrison, Terry; Domínguez-Rodrigo, Manuel; MacPhee, Ross DE; Kwekason, Amandus; Ecker, Michaela; Kolska Horwitz, Liora; Chazan, Michael; Kröger, Roland; Thomas-Oates, Jane; Harding, John H; Cappellini, Enrico; Penkman, Kirsty; Collins, Matthew J

    2016-01-01

    Proteins persist longer in the fossil record than DNA, but the longevity, survival mechanisms and substrates remain contested. Here, we demonstrate the role of mineral binding in preserving the protein sequence in ostrich (Struthionidae) eggshell, including from the palaeontological sites of Laetoli (3.8 Ma) and Olduvai Gorge (1.3 Ma) in Tanzania. By tracking protein diagenesis back in time we find consistent patterns of preservation, demonstrating authenticity of the surviving sequences. Molecular dynamics simulations of struthiocalcin-1 and -2, the dominant proteins within the eggshell, reveal that distinct domains bind to the mineral surface. It is the domain with the strongest calculated binding energy to the calcite surface that is selectively preserved. Thermal age calculations demonstrate that the Laetoli and Olduvai peptides are 50 times older than any previously authenticated sequence (equivalent to ~16 Ma at a constant 10°C). DOI: http://dx.doi.org/10.7554/eLife.17092.001 PMID:27668515

  15. Increasing Sequence Diversity with Flexible Backbone Protein Design: The Complete Redesign of a Protein Hydrophobic Core

    SciTech Connect

    Murphy, Grant S.; Mills, Jeffrey L.; Miley, Michael J.; Machius, Mischa; Szyperski, Thomas; Kuhlman, Brian

    2015-10-15

    Protein design tests our understanding of protein stability and structure. Successful design methods should allow the exploration of sequence space not found in nature. However, when redesigning naturally occurring protein structures, most fixed backbone design algorithms return amino acid sequences that share strong sequence identity with wild-type sequences, especially in the protein core. This behavior places a restriction on functional space that can be explored and is not consistent with observations from nature, where sequences of low identity have similar structures. Here, we allow backbone flexibility during design to mutate every position in the core (38 residues) of a four-helix bundle protein. Only small perturbations to the backbone, 12 {angstrom}, were needed to entirely mutate the core. The redesigned protein, DRNN, is exceptionally stable (melting point >140C). An NMR and X-ray crystal structure show that the side chains and backbone were accurately modeled (all-atom RMSD = 1.3 {angstrom}).

  16. A logical sequence search for S100B target proteins.

    PubMed Central

    McClintock, K. A.; Shaw, G. S.

    2000-01-01

    The EF-hand calcium-binding protein S100B has been shown to interact in vitro in a calcium-sensitive manner with many substrates. These potential S100B target proteins have been screened for the preservation of a previously identified consensus sequence across species. The results were compared to known structural and in vitro properties of the proteins to rationalize choices for potential binding partners. Our approach uncovered four oligomeric proteins tubulin (alpha and beta), glial fibrillary acidic protein (GFAP), desmin, and vimentin that have conserved regions matching the consensus sequence. In the type III intermediate filament proteins (GFAP, vimentin, and desmin), this region corresponds to a portion of a coiled-coil (helix 2A), the structural element responsible for their assembly. In tubulin, the sequence matches correspond to regions of alpha and beta tubulin found at the alpha beta tubulin interface. In both cases, these consensus sequence matches provide a logical explanation for in vitro observations that S100B is able to inhibit oligomerization of these proteins. PMID:11106180

  17. N-terminal sequence analysis of proteins and peptides.

    PubMed

    Reim, D F; Speicher, D W

    2001-05-01

    Amino-terminal (N-terminal) sequence analysis is used to identify the order of amino acids of proteins or peptides, starting at their N-terminal end. This unit describes the sequence analysis of protein or peptide samples in solution or bound to PVDF membranes using a Perkin-Elmer Procise Sequencer. Sequence analysis of protein or peptide samples in solution or bound to PVDF membranes using a Hewlett-Packard Model G1005A sequencer is also described. Methods are provided for optimizing separation of PTH amino acid derivatives on Perkin-Elmer instruments and for increasing the proportion of sample injected onto the PTH analyzer on older Perkin-Elmer instruments by installing a modified sample loop. The amount of data obtained from a single sequencer run is substantial, and careful interpretation of this data by an experienced scientist familiar with the current operation performance of the instrument used for this analysis is critically important. A discussion of data interpretation is therefore provided. Finally, discussion of optimization of sequencer performance as well as possible solutions to frequently encountered problems is included.

  18. Can natural proteins designed with 'inverted' peptide sequences adopt native-like protein folds?

    PubMed

    Sridhar, Settu; Guruprasad, Kunchur

    2014-01-01

    We have carried out a systematic computational analysis on a representative dataset of proteins of known three-dimensional structure, in order to evaluate whether it would possible to 'swap' certain short peptide sequences in naturally occurring proteins with their corresponding 'inverted' peptides and generate 'artificial' proteins that are predicted to retain native-like protein fold. The analysis of 3,967 representative proteins from the Protein Data Bank revealed 102,677 unique identical inverted peptide sequence pairs that vary in sequence length between 5-12 and 18 amino acid residues. Our analysis illustrates with examples that such 'artificial' proteins may be generated by identifying peptides with 'similar structural environment' and by using comparative protein modeling and validation studies. Our analysis suggests that natural proteins may be tolerant to accommodating such peptides.

  19. Single-molecule protein sequencing through fingerprinting: computational assessment

    NASA Astrophysics Data System (ADS)

    Yao, Yao; Docter, Margreet; van Ginkel, Jetty; de Ridder, Dick; Joo, Chirlmin

    2015-10-01

    Proteins are vital in all biological systems as they constitute the main structural and functional components of cells. Recent advances in mass spectrometry have brought the promise of complete proteomics by helping draft the human proteome. Yet, this commonly used protein sequencing technique has fundamental limitations in sensitivity. Here we propose a method for single-molecule (SM) protein sequencing. A major challenge lies in the fact that proteins are composed of 20 different amino acids, which demands 20 molecular reporters. We computationally demonstrate that it suffices to measure only two types of amino acids to identify proteins and suggest an experimental scheme using SM fluorescence. When achieved, this highly sensitive approach will result in a paradigm shift in proteomics, with major impact in the biological and medical sciences.

  20. WildSpan: mining structured motifs from protein sequences

    PubMed Central

    2011-01-01

    Background Automatic extraction of motifs from biological sequences is an important research problem in study of molecular biology. For proteins, it is desired to discover sequence motifs containing a large number of wildcard symbols, as the residues associated with functional sites are usually largely separated in sequences. Discovering such patterns is time-consuming because abundant combinations exist when long gaps (a gap consists of one or more successive wildcards) are considered. Mining algorithms often employ constraints to narrow down the search space in order to increase efficiency. However, improper constraint models might degrade the sensitivity and specificity of the motifs discovered by computational methods. We previously proposed a new constraint model to handle large wildcard regions for discovering functional motifs of proteins. The patterns that satisfy the proposed constraint model are called W-patterns. A W-pattern is a structured motif that groups motif symbols into pattern blocks interleaved with large irregular gaps. Considering large gaps reflects the fact that functional residues are not always from a single region of protein sequences, and restricting motif symbols into clusters corresponds to the observation that short motifs are frequently present within protein families. To efficiently discover W-patterns for large-scale sequence annotation and function prediction, this paper first formally introduces the problem to solve and proposes an algorithm named WildSpan (sequential pattern mining across large wildcard regions) that incorporates several pruning strategies to largely reduce the mining cost. Results WildSpan is shown to efficiently find W-patterns containing conserved residues that are far separated in sequences. We conducted experiments with two mining strategies, protein-based and family-based mining, to evaluate the usefulness of W-patterns and performance of WildSpan. The protein-based mining mode of WildSpan is developed for

  1. Bioinformatics comparison of sulfate-reducing metabolism nucleotide sequences

    NASA Astrophysics Data System (ADS)

    Tremberger, G.; Dehipawala, Sunil; Nguyen, A.; Cheung, E.; Sullivan, R.; Holden, T.; Lieberman, D.; Cheung, T.

    2015-09-01

    The sulfate-reducing bacteria can be traced back to 3.5 billion years ago. The thermodynamics details of the sulfur cycle have been well documented. A recent sulfate-reducing bacteria report (Robator, Jungbluth, et al , 2015 Jan, Front. Microbiol) with Genbank nucleotide data has been analyzed in terms of the sulfite reductase (dsrAB) via fractal dimension and entropy values. Comparison to oil field sulfate-reducing sequences was included. The AUCG translational mass fractal dimension versus ATCG transcriptional mass fractal dimension for the low temperature dsrB and dsrA sequences reported in Reference Thirteen shows correlation R-sq ~ 0.79 , with a probably of about 3% in simulation. A recent report of using Cystathionine gamma-lyase sequence to produce CdS quantum dot in a biological method, where the sulfur is reduced just like in the H2S production process, was included for comparison. The AUCG mass fractal dimension versus ATCG mass fractal dimension for the Cystathionine gamma-lyase sequences was found to have R-sq of 0.72, similar to the low temperature dissimilatory sulfite reductase dsr group with 3% probability, in contrary to the oil field group having R-sq ~ 0.94, a high probable outcome in the simulation. The other two simulation histograms, namely, fractal dimension versus entropy R-sq outcome values, and di-nucleotide entropy versus mono-nucleotide entropy R-sq outcome values are also discussed in the data analysis focusing on low probability outcomes.

  2. Protein structure comparison using the markov transition model of evolution.

    PubMed

    Kawabata, T; Nishikawa, K

    2000-10-01

    A number of automatic protein structure comparison methods have been proposed; however, their similarity score functions are often decided by the researchers' intuition and trial-and-error, and not by theoretical background. We propose a novel theory to evaluate protein structure similarity, which is based on the Markov transition model of evolution. Our similarity score between structures i and j is defined as log P(j --> i)/P(i), where P(j --> i) is the probability that structure j changes to structure i during the evolutionary process, and P(i) is the probability that structure i appears by chance. This is a reasonable definition of structure similarity, especially for finding evolutionarily related (homologous) similarity. The probability P(j --> i) is estimated by the Markov transition model, which is similar to the Dayhoff's substitution model between amino acids. To estimate the parameters of the model, homologous protein structure pairs are collected using sequence similarity, and the numbers of structure transitions within the pairs are counted. Next these numbers are transformed to a transition probability matrix of the Markov transition. Transition probabilities for longer time are obtained by multiplying the probability matrix by itself several times. In this study, we generated three types of structure similarity scores: an environment score, a residue-residue distance score, and a secondary structure elements (SSE) score. Using these scores, we developed the structure comparison program, Matras (MArkovian TRAnsition of protein Structure). It employs a hierarchical alignment algorithm, in which a rough alignment is first obtained by SSEs, and then is improved with more detailed functions. We attempted an all-versus-all comparison of the SCOP database, and evaluated its ability to recognize a superfamily relationship, which was manually assigned to be homologous in the SCOP database. A comparison with the FSSP database shows that our program can

  3. Alignment of Helical Membrane Protein Sequences Using AlignMe

    PubMed Central

    Khafizov, Kamil; Forrest, Lucy R.

    2013-01-01

    Few sequence alignment methods have been designed specifically for integral membrane proteins, even though these important proteins have distinct evolutionary and structural properties that might affect their alignments. Existing approaches typically consider membrane-related information either by using membrane-specific substitution matrices or by assigning distinct penalties for gap creation in transmembrane and non-transmembrane regions. Here, we ask whether favoring matching of predicted transmembrane segments within a standard dynamic programming algorithm can improve the accuracy of pairwise membrane protein sequence alignments. We tested various strategies using a specifically designed program called AlignMe. An updated set of homologous membrane protein structures, called HOMEP2, was used as a reference for optimizing the gap penalties. The best of the membrane-protein optimized approaches were then tested on an independent reference set of membrane protein sequence alignments from the BAliBASE collection. When secondary structure (S) matching was combined with evolutionary information (using a position-specific substitution matrix (P)), in an approach we called AlignMePS, the resultant pairwise alignments were typically among the most accurate over a broad range of sequence similarities when compared to available methods. Matching transmembrane predictions (T), in addition to evolutionary information, and secondary-structure predictions, in an approach called AlignMePST, generally reduces the accuracy of the alignments of closely-related proteins in the BAliBASE set relative to AlignMePS, but may be useful in cases of extremely distantly related proteins for which sequence information is less informative. The open source AlignMe code is available at https://sourceforge.net/projects/alignme/, and at http://www.forrestlab.org, along with an online server and the HOMEP2 data set. PMID:23469223

  4. Using principal component analysis and support vector machine to predict protein structural class for low-similarity sequences via PSSM.

    PubMed

    Zhang, Shengli; Ye, Feng; Yuan, Xiguo

    2012-01-01

    The accurate identification of protein structure class solely using extracted information from protein sequence is a complicated task in the current computational biology. Prediction of protein structural class for low-similarity sequences remains a challenging problem. In this study, the new computational method has been developed to predict protein structural class by fusing the sequence information and evolution information to represent a protein sample. To evaluate the performance of the proposed method, jackknife cross-validation tests are performed on two widely used benchmark data-sets, 1189 and 25PDB with sequence similarity lower than 40 and 25%, respectively. Comparison of our results with other methods shows that the proposed method by us is very promising and may provide a cost-effective alternative to predict protein structural class in particular for low-similarity data-sets.

  5. Internal organization of large protein families: relationship between the sequence, structure, and function-based clustering.

    PubMed

    Cai, Xiao-Hui; Jaroszewski, Lukasz; Wooley, John; Godzik, Adam

    2011-08-01

    The protein universe can be organized in families that group proteins sharing common ancestry. Such families display variable levels of structural and functional divergence, from homogenous families, where all members have the same function and very similar structure, to very divergent families, where large variations in function and structure are observed. For practical purposes of structure and function prediction, it would be beneficial to identify sub-groups of proteins with highly similar structures (iso-structural) and/or functions (iso-functional) within divergent protein families. We compared three algorithms in their ability to cluster large protein families and discuss whether any of these methods could reliably identify such iso-structural or iso-functional groups. We show that clustering using profile-sequence and profile-profile comparison methods closely reproduces clusters based on similarities between 3D structures or clusters of proteins with similar biological functions. In contrast, the still commonly used sequence-based methods with fixed thresholds result in vast overestimates of structural and functional diversity in protein families. As a result, these methods also overestimate the number of protein structures that have to be determined to fully characterize structural space of such families. The fact that one can build reliable models based on apparently distantly related templates is crucial for extracting maximal amount of information from new sequencing projects.

  6. Cytochrome oxidase subunit III from Arbacia lixula: detection of functional constraints by comparison with homologous sequences.

    PubMed

    De Giorgi, C; Martiradonna, A; Saccone, C

    1993-01-01

    In this paper we report the comparison of the sequences of the cytochrome oxidase subunit III from three different sea urchin species. Both nucleotide and amino acid sequences have been analyzed. The nucleotide sequence analysis reveals that the sea urchin sequences obey some rules already found in mammals. The base substitution analysis carried out on the sequences of the three species pairs, shows that the evolutionary dynamics of the first and the second codon positions are so slow that do not allow a quantitative measurement of their genetic distances, thus demonstrating that also in these species the COIII gene is strongly conserved during evolution. Changes occurring at the third codon positions indicate that the three species evolved from a common ancestor under different directional mutational pressure. The multi-alignment of the sea urchin proteins indicates the existence of the amino acid sequence motif N R T that represents a possible glycosylation site. Another glycosylation site has been detected in the mammalian cytochrome oxidase subunit III, in a position slightly different. Such an analysis revealed, for the first time, a new functional aspect of this sequence.

  7. PFP: Automated prediction of gene ontology functional annotations with confidence scores using protein sequence data.

    PubMed

    Hawkins, Troy; Chitale, Meghana; Luban, Stanislav; Kihara, Daisuke

    2009-02-15

    Protein function prediction is a central problem in bioinformatics, increasing in importance recently due to the rapid accumulation of biological data awaiting interpretation. Sequence data represents the bulk of this new stock and is the obvious target for consideration as input, as newly sequenced organisms often lack any other type of biological characterization. We have previously introduced PFP (Protein Function Prediction) as our sequence-based predictor of Gene Ontology (GO) functional terms. PFP interprets the results of a PSI-BLAST search by extracting and scoring individual functional attributes, searching a wide range of E-value sequence matches, and utilizing conventional data mining techniques to fill in missing information. We have shown it to be effective in predicting both specific and low-resolution functional attributes when sufficient data is unavailable. Here we describe (1) significant improvements to the PFP infrastructure, including the addition of prediction significance and confidence scores, (2) a thorough benchmark of performance and comparisons to other related prediction methods, and (3) applications of PFP predictions to genome-scale data. We applied PFP predictions to uncharacterized protein sequences from 15 organisms. Among these sequences, 60-90% could be annotated with a GO molecular function term at high confidence (>or=80%). We also applied our predictions to the protein-protein interaction network of the Malaria plasmodium (Plasmodium falciparum). High confidence GO biological process predictions (>or=90%) from PFP increased the number of fully enriched interactions in this dataset from 23% of interactions to 94%. Our benchmark comparison shows significant performance improvement of PFP relative to GOtcha, InterProScan, and PSI-BLAST predictions. This is consistent with the performance of PFP as the overall best predictor in both the AFP-SIG '05 and CASP7 function (FN) assessments. PFP is available as a web service at http://dragon.bio.purdue.edu/pfp/.

  8. Structure and Sequence Search on Aptamer-Protein Docking

    NASA Astrophysics Data System (ADS)

    Xiao, Jiajie; Bonin, Keith; Guthold, Martin; Salsbury, Freddie

    2015-03-01

    Interactions between proteins and deoxyribonucleic acid (DNA) play a significant role in the living systems, especially through gene regulation. However, short nucleic acids sequences (aptamers) with specific binding affinity to specific proteins exhibit clinical potential as therapeutics. Our capillary and gel electrophoresis selection experiments show that specific sequences of aptamers can be selected that bind specific proteins. Computationally, given the experimentally-determined structure and sequence of a thrombin-binding aptamer, we can successfully dock the aptamer onto thrombin in agreement with experimental structures of the complex. In order to further study the conformational flexibility of this thrombin-binding aptamer and to potentially develop a predictive computational model of aptamer-binding, we use GPU-enabled molecular dynamics simulations to both examine the conformational flexibility of the aptamer in the absence of binding to thrombin, and to determine our ability to fold an aptamer. This study should help further de-novo predictions of aptamer sequences by enabling the study of structural and sequence-dependent effects on aptamer-protein docking specificity.

  9. Patterns in protein primary sequences: classification, display and analysis.

    PubMed Central

    Saurugger, P. N.; Metfessel, B. A.

    1991-01-01

    The protein folding code, which is contained in the amino acid chain of a protein, has so far eluded elucidation. However, patterns of hydrophobic residues have previously been identified which show a specificity towards certain secondary structural elements. We are developing an analysis toolkit to find, visualize, and analyze patterns in primary sequences. Preliminary results show that there exist patterns in primary sequences which are useful for predicting the structural class of amino acid chains, performing especially well for the all-alpha helix and all-beta sheet classes. PMID:1807631

  10. Improving pairwise sequence alignment accuracy using near-optimal protein sequence alignments

    PubMed Central

    2010-01-01

    Background While the pairwise alignments produced by sequence similarity searches are a powerful tool for identifying homologous proteins - proteins that share a common ancestor and a similar structure; pairwise sequence alignments often fail to represent accurately the structural alignments inferred from three-dimensional coordinates. Since sequence alignment algorithms produce optimal alignments, the best structural alignments must reflect suboptimal sequence alignment scores. Thus, we have examined a range of suboptimal sequence alignments and a range of scoring parameters to understand better which sequence alignments are likely to be more structurally accurate. Results We compared near-optimal protein sequence alignments produced by the Zuker algorithm and a set of probabilistic alignments produced by the probA program with structural alignments produced by four different structure alignment algorithms. There is significant overlap between the solution spaces of structural alignments and both the near-optimal sequence alignments produced by commonly used scoring parameters for sequences that share significant sequence similarity (E-values < 10-5) and the ensemble of probA alignments. We constructed a logistic regression model incorporating three input variables derived from sets of near-optimal alignments: robustness, edge frequency, and maximum bits-per-position. A ROC analysis shows that this model more accurately classifies amino acid pairs (edges in the alignment path graph) according to the likelihood of appearance in structural alignments than the robustness score alone. We investigated various trimming protocols for removing incorrect edges from the optimal sequence alignment; the most effective protocol is to remove matches from the semi-global optimal alignment that are outside the boundaries of the local alignment, although trimming according to the model-generated probabilities achieves a similar level of improvement. The model can also be used to

  11. Extracting protein alignment models from the sequence database.

    PubMed Central

    Neuwald, A F; Liu, J S; Lipman, D J; Lawrence, C E

    1997-01-01

    Biologists often gain structural and functional insights into a protein sequence by constructing a multiple alignment model of the family. Here a program called Probe fully automates this process of model construction starting from a single sequence. Central to this program is a powerful new method to locate and align only those, often subtly, conserved patterns essential to the family as a whole. When applied to randomly chosen proteins, Probe found on average about four times as many relationships as a pairwise search and yielded many new discoveries. These include: an obscure subfamily of globins in the roundworm Caenorhabditis elegans ; two new superfamilies of metallohydrolases; a lipoyl/biotin swinging arm domain in bacterial membrane fusion proteins; and a DH domain in the yeast Bud3 and Fus2 proteins. By identifying distant relationships and merging families into superfamilies in this way, this analysis further confirms the notion that proteins evolved from relatively few ancient sequences. Moreover, this method automatically generates models of these ancient conserved regions for rapid and sensitive screening of sequences. PMID:9108146

  12. Comparison of latent and nominal rabbit Ig VHa1 allotype cDNA sequences.

    PubMed

    McCormack, W T; Dhanarajan, P; Roux, K H

    1988-09-15

    The genetic basis for the expression of a latent VH allotype in the rabbit was investigated. VH region cDNA libraries were produced from spleen mRNA derived from a homozygous a2a2 rabbit expressing an induced latent VHa1 allotype and, for comparison, from a normal homozygus a1a1 rabbit expressing nominal VHa1 allotype. The deduced amino acid sequences of the nominal VHa1 cDNA were concordant with previously published VHa1 protein sequences. A comparison of two complete VH-DH-JH and six partial VHa1 sequences reveals highly conserved sequence within VH framework regions (FR) and considerable diversity in complementarity-determining regions and D region sequences. Two functional JH genes or alleles are evident. Amino acid sequencing of the N-terminal 15 residues of pooled affinity-purified latent VHa1 H chain showed complete sequence identity with the nominal VHa1 sequences. Possible latent VHa1-encoding cDNA clones, derived from the a2a2 rabbit, were selected by hybridization with oligonucleotide probes corresponding to the VHa1 allotype-associated segments of the first and third framework regions (FR1 and FR3). cDNA sequence analysis reveals that the 5' untranslated regions of nominal and latent VHa1 cDNA were virtually identical to each other and to previously reported sequences associated with VHa2 and VHa-negative genes. Moreover, some latent VHa1 genes encode FR1 segments that are essentially homologous to the corresponding segment of a nominal VHa1 allotype. In contrast, other putative latent genes display blocks of VHa1 sequence in either FR1 or FR3 that are flanked by blocks of sequence identical to other rabbit VH genes (i.e., VHa2 or VHa-negative). These composite sequences may be directly encoded by composite germ-line VH genes or may be the products of somatically generated recombination or gene conversion between genes encoding latent and nominal allotypes. The data do not support the hypothesis that latent genes are the result of extensive modification

  13. Purification and sequencing of the active site tryptic peptide from penicillin-binding protein 1b of Escherichia coli

    SciTech Connect

    Nicholas, R.A.; Suzuki, H.; Hirota, Y.; Strominger, J.L.

    1985-07-02

    This paper reports the sequence of the active site peptide of penicillin-binding protein 1b from Escherichia coli. Purified penicillin-binding protein 1b was labeled with (/sup 14/C)penicillin G, digested with trypsin, and partially purified by gel filtration. Upon further purification by high-pressure liquid chromatography, two radioactive peaks were observed, and the major peak, representing over 75% of the applied radioactivity, was submitted to amino acid analysis and sequencing. The sequence Ser-Ile-Gly-Ser-Leu-Ala-Lys was obtained. The active site nucleophile was identified by digesting the purified peptide with aminopeptidase M and separating the radioactive products on high-pressure liquid chromatography. Amino acid analysis confirmed that the serine residue in the middle of the sequence was covalently bonded to the (/sup 14/C)penicilloyl moiety. A comparison of this sequence to active site sequences of other penicillin-binding proteins and beta-lactamases is presented.

  14. EST2Prot: Mapping EST sequences to proteins

    PubMed Central

    Shafer, Paul; Lin, David M; Yona, Golan

    2006-01-01

    Background EST libraries are used in various biological studies, from microarray experiments to proteomic and genetic screens. These libraries usually contain many uncharacterized ESTs that are typically ignored since they cannot be mapped to known genes. Consequently, new discoveries are possibly overlooked. Results We describe a system (EST2Prot) that uses multiple elements to map EST sequences to their corresponding protein products. EST2Prot uses UniGene clusters, substring analysis, information about protein coding regions in existing DNA sequences and protein database searches to detect protein products related to a query EST sequence. Gene Ontology terms, Swiss-Prot keywords, and protein similarity data are used to map the ESTs to functional descriptors. Conclusion EST2Prot extends and significantly enriches the popular UniGene mapping by utilizing multiple relations between known biological entities. It produces a mapping between ESTs and proteins in real-time through a simple web-interface. The system is part of the Biozon database and is accessible at . PMID:16515706

  15. One common structural feature of "words" in protein sequences and human texts.

    PubMed

    Zemková, M; Trifonov, E N; Zahradník, D

    2014-01-01

    Frequently discussed analogy between genetic and human texts is explored by comparison of alternation of polar and non-polar amino-acid residues in proteins and alternation of consonants and vowels in human texts. In human languages, the usage of possible combinations of consonants and vowels is influenced by pronounceability of the combinations. Similarly, oligopeptide composition of proteins is influenced by requirements of protein folding and stability. One special type of structure often present in proteins is amphipathic α-helices in which polar and non-polar amino acids alternate with the period 3.5 residues, not unlike alternation of consonants and vowels. In this study, we evaluated the contribution made by amphipathic alternations to the protein sequence texts (20-24%). Their proportion is lower than respective values for alternating words in human texts (57-89%). The proteomes (full sets of proteins for selected organisms) were transformed into ranked sequences of n-grams (words of length n), including periodical amphipathic structures. Similarly, human texts were transformed into sequences of alternating consonants and vowels. Analysis of the vocabularies shows that in both types of texts (human languages and proteins) the alternating words are dominant or highly preferred, thus, strengthening the analogy between these two types of texts. The contribution of amphipathic words in the upper parts of the ranked lists for 10 analyzed proteomes varies between 58 and 74%. In human texts respective values range between 90 and 100%.

  16. Identification of staphylococcal species based on variations in protein sequences (mass spectrometry) and DNA sequence (sodA microarray).

    PubMed

    Kooken, Jennifer; Fox, Karen; Fox, Alvin; Altomare, Diego; Creek, Kim; Wunschel, David; Pajares-Merino, Sara; Martínez-Ballesteros, Ilargi; Garaizar, Javier; Oyarzabal, Omar; Samadpour, Mansour

    2014-02-01

    This report is among the first using sequence variation in newly discovered protein markers for staphylococcal (or indeed any other bacterial) speciation. Variation, at the DNA sequence level, in the sodA gene (commonly used for staphylococcal speciation) provided excellent correlation. Relatedness among strains was also assessed using protein profiling using microcapillary electrophoresis and pulsed field electrophoresis. A total of 64 strains were analyzed including reference strains representing the 11 staphylococcal species most commonly isolated from man (Staphylococcus aureus and 10 coagulase negative species [CoNS]). Matrix assisted time of flight ionization/ionization mass spectrometry (MALDI TOF MS) and liquid chromatography-electrospray ionization tandem mass spectrometry (LC ESI MS/MS) were used for peptide analysis of proteins isolated from gel bands. Comparison of experimental spectra of unknowns versus spectra of peptides derived from reference strains allowed bacterial identification after MALDI TOF MS analysis. After LC-MS/MS analysis of gel bands bacterial speciation was performed by comparing experimental spectra versus virtual spectra using the software X!Tandem. Finally LC-MS/MS was performed on whole proteomes and data analysis also employing X!tandem. Aconitate hydratase and oxoglutarate dehydrogenase served as marker proteins on focused analysis after gel separation. Alternatively on full proteomics analysis elongation factor Tu generally provided the highest confidence in staphylococcal speciation.

  17. Intermediate divergence levels maximize the strength of structure-sequence correlations in enzymes and viral proteins.

    PubMed

    Jackson, Eleisha L; Shahmoradi, Amir; Spielman, Stephanie J; Jack, Benjamin R; Wilke, Claus O

    2016-07-01

    Structural properties such as solvent accessibility and contact number predict site-specific sequence variability in many proteins. However, the strength and significance of these structure-sequence relationships vary widely among different proteins, with absolute correlation strengths ranging from 0 to 0.8. In particular, two recent works have made contradictory observations. Yeh et al. (Mol. Biol. Evol. 31:135-139, 2014) found that both relative solvent accessibility (RSA) and weighted contact number (WCN) are good predictors of sitewise evolutionary rate in enzymes, with WCN clearly out-performing RSA. Shahmoradi et al. (J. Mol. Evol. 79:130-142, 2014) considered these same predictors (as well as others) in viral proteins and found much weaker correlations and no clear advantage of WCN over RSA. Because these two studies had substantial methodological differences, however, a direct comparison of their results is not possible. Here, we reanalyze the datasets of the two studies with one uniform analysis pipeline, and we find that many apparent discrepancies between the two analyses can be attributed to the extent of sequence divergence in individual alignments. Specifically, the alignments of the enzyme dataset are much more diverged than those of the virus dataset, and proteins with higher divergence exhibit, on average, stronger structure-sequence correlations. However, the highest structure-sequence correlations are observed at intermediate divergence levels, where both highly conserved and highly variable sites are present in the same alignment.

  18. Neural network and SVM classifiers accurately predict lipid binding proteins, irrespective of sequence homology.

    PubMed

    Bakhtiarizadeh, Mohammad Reza; Moradi-Shahrbabak, Mohammad; Ebrahimi, Mansour; Ebrahimie, Esmaeil

    2014-09-07

    Due to the central roles of lipid binding proteins (LBPs) in many biological processes, sequence based identification of LBPs is of great interest. The major challenge is that LBPs are diverse in sequence, structure, and function which results in low accuracy of sequence homology based methods. Therefore, there is a need for developing alternative functional prediction methods irrespective of sequence similarity. To identify LBPs from non-LBPs, the performances of support vector machine (SVM) and neural network were compared in this study. Comprehensive protein features and various techniques were employed to create datasets. Five-fold cross-validation (CV) and independent evaluation (IE) tests were used to assess the validity of the two methods. The results indicated that SVM outperforms neural network. SVM achieved 89.28% (CV) and 89.55% (IE) overall accuracy in identification of LBPs from non-LBPs and 92.06% (CV) and 92.90% (IE) (in average) for classification of different LBPs classes. Increasing the number and the range of extracted protein features as well as optimization of the SVM parameters significantly increased the efficiency of LBPs class prediction in comparison to the only previous report in this field. Altogether, the results showed that the SVM algorithm can be run on broad, computationally calculated protein features and offers a promising tool in detection of LBPs classes. The proposed approach has the potential to integrate and improve the common sequence alignment based methods.

  19. Amino acid sequence of band-3 protein from rainbow trout erythrocytes derived from cDNA.

    PubMed Central

    Hübner, S; Michel, F; Rudloff, V; Appelhans, H

    1992-01-01

    In this report we present the first complete band-3 cDNA sequence of a poikilothermic lower vertebrate. The primary structure of the anion-exchange protein band 3 (AE1) from rainbow trout erythrocytes was determined by nucleotide sequencing of cDNA clones. The overlapping clones have a total length of 3827 bp with a 5'-terminal untranslated region of 150 bp, a 2754 bp open reading frame and a 3'-untranslated region of 924 bp. Band-3 protein from trout erythrocytes consists of 918 amino acid residues with a calculated molecular mass of 101 827 Da. Comparison of its amino acid sequence revealed a 60-65% identity within the transmembrane spanning sequence of band-3 proteins published so far. An additional insertion of 24 amino acid residues within the membrane-associated domain of trout band-3 protein was identified, which until now was thought to be a general feature only of mammalian band-3-related proteins. PMID:1637296

  20. A Comparison of Rosetta Stones in Adapter Protein Families

    PubMed Central

    Kumar, Hulikal Shivashankara Santosh; Kumar, Vadlapudi

    2016-01-01

    The inventory of proteins used in different kingdoms appears surprisingly similar in all sequenced eukaryotic genome. Protein domains represent the basic evolutionary units that form proteins. Domain duplication and shuffling by recombination are probably the most important forces driving protein evolution and hence the complexity of the proteome. While the duplication of whole genes as well as domain encoding exons increases the abundance of domains in the proteome, domain shuffling increases versatility, i.e. the number of distinct contexts in which a domain can occur. In this study we considered five important adapter domain families namely WD40, KELCH, Ankyrin, PDZ and Pleckstrin Homology (PH domain) family for the comparison of Domain versatility, Abundance and domain sharing between them. We used ecological statistics methods such as Jaccard’s Similarity Index (JSI), Detrended Correspondence Analysis, k-Means clustering for the domain distribution data. We found high propensity of domain sharing between PH and PDZ. We found higher abundance of only few selected domains in PH, PDZ, ANK and KELCH families. We also found WD40 family with high versatility and less redundant domain occurrence, with less domain sharing. Hence, the assignments of functions to more orphan WD40 proteins that will help in the identification of suitable drug targets. PMID:28246462

  1. Data repository mapping for influenza protein sequence analysis

    NASA Astrophysics Data System (ADS)

    Pellegrino, Donald; Chen, Chaomei

    2011-01-01

    This paper introduces a new method for creating an interactive sequence similarity map of all known influenza virus protein sequences and integrating the map with existing general purpose analytical tools. The NCBI data model was designed to provide a high degree of interconnectedness amongst data objects. Substantial and continuous increase in data volume has led to a large and highly connected information space. Researchers seeking to explore this space are challenged to identify a starting point. They often choose data that is popular in the literature. Reference in the literature follow a power law distribution and popular data points may bias explorers toward paths that lead only to a dead-end of what is already known. To help discover the unexpected we developed an interactive visual analytics system to map the information space of influenza protein sequence data. The design is motivated by the needs of eScience researchers.

  2. Protein stability: computation, sequence statistics, and new experimental methods

    PubMed Central

    Magliery, Thomas J.

    2015-01-01

    Calculating protein stability and predicting stabilizing mutations remain exceedingly difficult tasks, largely due to the inadequacy of potential functions, the difficulty of modeling entropy and the unfolded state, and challenges of sampling, particularly of backbone conformations. Yet, computational design has produced some remarkably stable proteins in recent years, apparently owing to near ideality in structure and sequence features. With caveats, computational prediction of stability can be used to guide mutation, and mutations derived from consensus sequence analysis, especially improved by recent co-variation filters, are very likely to stabilize without sacrificing function. The combination of computational and statistical approaches with library approaches, including new technologies such as deep sequencing and high throughput stability measurements, point to a very exciting near term future for stability engineering, even with difficult computational issues remaining. PMID:26497286

  3. Analysis and organization of protein sequence data: a retrospective spanning four decades.

    PubMed

    Barker, W C; Hunt, L T

    1997-07-01

    Protein sequence data are as useful and valuable today as was envisioned by pioneering sequencers and by the organizers of the first sequence database. Sequence analysis was first the province of specialists who developed search, comparison, and tree-building methods. Microcomputers, communication satellites, and the Internet have made these methods accessible to any scientist. The rapid increase in the data has driven a succession of changes in how databases are compiled, distributed, and accessed. Large public databases have become international collaborations. Although they need to develop still more efficient ways to accumulate, organize, annotate, and standardize huge amounts of data, inadequate support is available for such efforts. Thus there will be greater reliance on direct input from the scientific community. The World Wide Web is essential but not sufficient for integrated access to related databases.

  4. Sequence-structure analysis of FAD-containing proteins.

    PubMed

    Dym, O; Eisenberg, D

    2001-09-01

    We have analyzed structure-sequence relationships in 32 families of flavin adenine dinucleotide (FAD)-binding proteins, to prepare for genomic-scale analyses of this family. Four different FAD-family folds were identified, each containing at least two or more protein families. Three of these families, exemplified by glutathione reductase (GR), ferredoxin reductase (FR), and p-cresol methylhydroxylase (PCMH) were previously defined, and a family represented by pyruvate oxidase (PO) is newly defined. For each of the families, several conserved sequence motifs have been characterized. Several newly recognized sequence motifs are reported here for the PO, GR, and PCMH families. Each FAD fold can be uniquely identified by the presence of distinctive conserved sequence motifs. We also analyzed cofactor properties, some of which are conserved within a family fold while others display variability. Among the conserved properties is cofactor directionality: in some FAD-structural families, the adenine ring of the FAD points toward the FAD-binding domain, whereas in others the isoalloxazine ring points toward this domain. In contrast, the FAD conformation and orientation are conserved in some families while in others it displays some variability. Nevertheless, there are clear correlations among the FAD-family fold, the shape of the pocket, and the FAD conformation. Our general findings are as follows: (a) no single protein 'pharmacophore' exists for binding FAD; (b) in every FAD-binding family, the pyrophosphate moiety binds to the most strongly conserved sequence motif, suggesting that pyrophosphate binding is a significant component of molecular recognition; and (c) sequence motifs can identify proteins that bind phosphate-containing ligands.

  5. Predict protein structural class for low-similarity sequences by evolutionary difference information into the general form of Chou's pseudo amino acid composition.

    PubMed

    Zhang, Lichao; Zhao, Xiqiang; Kong, Liang

    2014-08-21

    Knowledge of protein structural class plays an important role in characterizing the overall folding type of a given protein. At present, it is still a challenge to extract sequence information solely using protein sequence for protein structural class prediction with low similarity sequence in the current computational biology. In this study, a novel sequence representation method is proposed based on position specific scoring matrix for protein structural class prediction. By defined evolutionary difference formula, varying length proteins are expressed as uniform dimensional vectors, which can represent evolutionary difference information between the adjacent residues of a given protein. To perform and evaluate the proposed method, support vector machine and jackknife tests are employed on three widely used datasets, 25PDB, 1189 and 640 datasets with sequence similarity lower than 25%, 40% and 25%, respectively. Comparison of our results with the previous methods shows that our method may provide a promising method to predict protein structural class especially for low-similarity sequences.

  6. Engineering modular protein interaction switches by sequence overlap.

    PubMed

    Sallee, Nathan A; Yeh, Brian J; Lim, Wendell A

    2007-04-18

    Many cellular signaling pathways contain proteins whose interactions change in response to upstream inputs, allowing for conditional activation or repression of the interaction based on the presence of the input molecule. The ability to engineer similar regulation into protein interaction elements would provide us with powerful tools for controlling cell signaling. Here we describe an approach for engineering diverse synthetic protein interaction switches. Specifically, by overlapping the sequences of pairs of protein interaction domains and peptides, we have been able to generate mutually exclusive regulation over their interactions. Thus, the hybrid protein (which is composed of the two overlapped interaction modules) can bind to either of the two respective ligands for those modules, but not to both simultaneously. We show that these synthetic switch proteins can be used to regulate specific protein-protein interactions in vivo. These switches allow us to disrupt an interaction with the addition or activation of a protein input that has no natural connection to the interaction in question. Therefore, they give us the ability to make novel connections between normally unrelated signaling pathways and to rewire the input/output relationships of cellular behaviors. Our experiments also suggest a possible mechanism by which complex regulatory proteins might have evolved from simpler components.

  7. Finding sequence motifs in groups of functionally related proteins.

    PubMed

    Smith, H O; Annau, T M; Chandrasegaran, S

    1990-01-01

    We have developed a method for rapidly finding patterns of conserved amino acid residues (motifs) in groups of functionally related proteins. All 3-amino acid patterns in a group of proteins of the type aa1 d1 aa2 d2 aa3, where d1 and d2 are distances that can be varied in a range up to 24 residues, are accumulated into an array. Segments of the proteins containing those patterns that occur most frequently are aligned on each other by a scoring method that obtains an average relatedness value for all the amino acids in each column of the aligned sequence block based on the Dayhoff relatedness odds matrix. The automated method successfully finds and displays nearly all of the sequence motifs that have been previously reported to occur in 33 reverse transcriptases, 18 DNA integrases, and 30 DNA methyltransferases.

  8. Sequence heterogeneity accelerates protein search for targets on DNA

    NASA Astrophysics Data System (ADS)

    Shvets, Alexey A.; Kolomeisky, Anatoly B.

    2015-12-01

    The process of protein search for specific binding sites on DNA is fundamentally important since it marks the beginning of all major biological processes. We present a theoretical investigation that probes the role of DNA sequence symmetry, heterogeneity, and chemical composition in the protein search dynamics. Using a discrete-state stochastic approach with a first-passage events analysis, which takes into account the most relevant physical-chemical processes, a full analytical description of the search dynamics is obtained. It is found that, contrary to existing views, the protein search is generally faster on DNA with more heterogeneous sequences. In addition, the search dynamics might be affected by the chemical composition near the target site. The physical origins of these phenomena are discussed. Our results suggest that biological processes might be effectively regulated by modifying chemical composition, symmetry, and heterogeneity of a genome.

  9. Sequence heterogeneity accelerates protein search for targets on DNA

    SciTech Connect

    Shvets, Alexey A.; Kolomeisky, Anatoly B.

    2015-12-28

    The process of protein search for specific binding sites on DNA is fundamentally important since it marks the beginning of all major biological processes. We present a theoretical investigation that probes the role of DNA sequence symmetry, heterogeneity, and chemical composition in the protein search dynamics. Using a discrete-state stochastic approach with a first-passage events analysis, which takes into account the most relevant physical-chemical processes, a full analytical description of the search dynamics is obtained. It is found that, contrary to existing views, the protein search is generally faster on DNA with more heterogeneous sequences. In addition, the search dynamics might be affected by the chemical composition near the target site. The physical origins of these phenomena are discussed. Our results suggest that biological processes might be effectively regulated by modifying chemical composition, symmetry, and heterogeneity of a genome.

  10. Mathematical Characterization of Protein Sequences Using Patterns as Chemical Group Combinations of Amino Acids.

    PubMed

    Das, Jayanta Kumar; Das, Provas; Ray, Korak Kumar; Choudhury, Pabitra Pal; Jana, Siddhartha Sankar

    2016-01-01

    Comparison of amino acid sequence similarity is the fundamental concept behind the protein phylogenetic tree formation. By virtue of this method, we can explain the evolutionary relationships, but further explanations are not possible unless sequences are studied through the chemical nature of individual amino acids. Here we develop a new methodology to characterize the protein sequences on the basis of the chemical nature of the amino acids. We design various algorithms for studying the variation of chemical group transitions and various chemical group combinations as patterns in the protein sequences. The amino acid sequence of conventional myosin II head domain of 14 family members are taken to illustrate this new approach. We find two blocks of maximum length 6 aa as 'FPKATD' and 'Y/FTNEKL' without repeating the same chemical nature and one block of maximum length 20 aa with the repetition of chemical nature which are common among all 14 members. We also check commonality with another motor protein sub-family kinesin, KIF1A. Based on our analysis we find a common block of length 8 aa both in myosin II and KIF1A. This motif is located in the neck linker region which could be responsible for the generation of mechanical force, enabling us to find the unique blocks which remain chemically conserved across the family. We also validate our methodology with different protein families such as MYOI, Myosin light chain kinase (MLCK) and Rho-associated protein kinase (ROCK), Na+/K+-ATPase and Ca2+-ATPase. Altogether, our studies provide a new methodology for investigating the conserved amino acids' pattern in different proteins.

  11. Mathematical Characterization of Protein Sequences Using Patterns as Chemical Group Combinations of Amino Acids

    PubMed Central

    Choudhury, Pabitra Pal; Jana, Siddhartha Sankar

    2016-01-01

    Comparison of amino acid sequence similarity is the fundamental concept behind the protein phylogenetic tree formation. By virtue of this method, we can explain the evolutionary relationships, but further explanations are not possible unless sequences are studied through the chemical nature of individual amino acids. Here we develop a new methodology to characterize the protein sequences on the basis of the chemical nature of the amino acids. We design various algorithms for studying the variation of chemical group transitions and various chemical group combinations as patterns in the protein sequences. The amino acid sequence of conventional myosin II head domain of 14 family members are taken to illustrate this new approach. We find two blocks of maximum length 6 aa as ‘FPKATD’ and ‘Y/FTNEKL’ without repeating the same chemical nature and one block of maximum length 20 aa with the repetition of chemical nature which are common among all 14 members. We also check commonality with another motor protein sub-family kinesin, KIF1A. Based on our analysis we find a common block of length 8 aa both in myosin II and KIF1A. This motif is located in the neck linker region which could be responsible for the generation of mechanical force, enabling us to find the unique blocks which remain chemically conserved across the family. We also validate our methodology with different protein families such as MYOI, Myosin light chain kinase (MLCK) and Rho-associated protein kinase (ROCK), Na+/K+-ATPase and Ca2+-ATPase. Altogether, our studies provide a new methodology for investigating the conserved amino acids’ pattern in different proteins. PMID:27930687

  12. Sequence comparison and classification of beet luteovirus isolates.

    PubMed

    de Miranda, J R; Stevens, M; de Bruyne, E; Smith, H G; Bird, C; Hull, R

    1995-01-01

    Three distinct sequence groups were found among partial nucleotide sequences of 38 isolates of beet western yellows virus (BWYV) and beet mild yellowing virus (BMYV) from Europe, Iran and the USA. The first group contains both sugar beet and oilseed rape specific isolates, and the differentiating characteristic linked to this host range specificity are 2 single base pair changes in a 1,200 nucleotide region of the genome. It is proposed that the European BWYV strains that can be transferred at low frequency between rape and sugar beet belong to this group. Also belonging to this group are the published BWYV sequences of Veidt et al. and of the California BWYV-ST9 isolate. The second group contains mostly rape-derived isolates which have an intergenic region highly distinct from that of group-1 isolates but similar polymerase and coat protein regions. It is proposed that the rape-specific BWYV isolates which cannot be transmitted to sugar beet belong to this group. The third group contains mostly beet-specific isolates from Southern Europe and Iran, and may be adapted to the Mediterranean climate and flora. It is distinct from groups 1 and 2 in all three genome regions investigated and its polymerase and intergenic regions are as much related to those of potato leafroll virus (PLRV) and curcurbit aphid borne yellows virus (CABYV) as they are to those of group-1 and group-2. On the basis of sequence similarities and established nomenclature it is proposed to use BWYV for groups 1 and 2 (BWYV-1 and BWYV-2 respectively) and to use BMYV for group-3 isolates, which are distinct enough from the other two groups to merit a separate nomenclature.

  13. Phosphorylation of the transit sequence of chloroplast precursor proteins.

    PubMed

    Waegemann, K; Soll, J

    1996-03-15

    A protein kinase was located in the cytosol of pea mesophyll cells. The protein kinase phosphorylates, in an ATP-dependent manner, chloroplast-destined precursor proteins but not precursor proteins, which are located to plant mitochondria or plant peroxisomes. The phosphorylation occurs on either serine or threonine residues, depending on the precursor protein used. We demonstrate the specific phosphorylation of the precursor forms of the chloroplast stroma proteins ferredoxin (preFd), small subunit of ribulose-bisphosphate-carboxylase (preSSU), the thylakoid localized light-harvesting chlorophyll a/b-binding protein (preLHCP), and the thylakoid lumen-localized proteins of the oxygen-evolving complex of 23 kDa (preOE23) and 33 kDa (preOE33). In the case of thylakoid lumen proteins which possess bipartite transit sequences, the phosphorylation occurs within the stroma-targeting domain. By using single amino acid substitution within the presequences of preSSU, preOE23, and preOE33, we were able to tentatively identify a consensus motif for the precursor protein protein kinase. This motif is (P/G)X(n)(R/K)X(n)(S/T)X(n) (S*/T*), were n = 0-3 amino acids spacer and S*/T* represents the phosphate acceptor. The precursor protein protein kinase is present only in plant extracts, e.g. wheat germ and pea, but not in a reticulocyte lysate. Protein import experiments into chloroplasts revealed that phosphorylated preSSU binds to the organelles, but dephosphorylation seems required to complete the translocation process and to obtain complete import. These results suggest that a precursor protein protein phosphatase is involved in chloroplast import and represents a so far unidentified component of the import machinery. In contrast to sucrose synthase, a cytosolic marker protein, the precursor protein protein kinase seems to adhere partially to the chloroplast surface. A phosphorylation-dephosphorylation cycle of chloroplast-destined precursor proteins might represent one step

  14. Interrogating noise in protein sequences from the perspective of protein-protein interactions prediction.

    PubMed

    Wang, Yongcui; Ren, Xianwen; Zhang, Chunhua; Deng, Naiyang; Zhang, Xiangsun

    2012-12-21

    The past decades witnessed extensive efforts to study the relationship among proteins. Particularly, sequence-based protein-protein interactions (PPIs) prediction is fundamentally important in speeding up the process of mapping interactomes of organisms. High-throughput experimental methodologies make many model organism's PPIs known, which allows us to apply machine learning methods to learn understandable rules from the available PPIs. Under the machine learning framework, the composition vectors are usually applied to encode proteins as real-value vectors. However, the composition vector value might be highly correlated to the distribution of amino acids, i.e., amino acids which are frequently observed in nature tend to have a large value of composition vectors. Thus formulation to estimate the noise induced by the background distribution of amino acids may be needed during representations. Here, we introduce two kinds of denoising composition vectors, which were successfully used in construction of phylogenetic trees, to eliminate the noise. When validating these two denoising composition vectors on Escherichia coli (E. coli), Saccharomyces cerevisiae (S. cerevisiae) and human PPIs datasets, surprisingly, the predictive performance is not improved, and even worse than non-denoised prediction. These results suggest that the noise in phylogenetic tree construction may be valuable information in PPIs prediction.

  15. Sequence analysis and structural implications of rotavirus capsid proteins.

    PubMed

    Parbhoo, N; Dewar, J B; Gildenhuys, S

    Rotavirus is the major cause of severe virus-associated gastroenteritis worldwide in children aged 5 and younger. Many children lose their lives annually due to this infection and the impact is particularly pronounced in developing countries. The mature rotavirus is a non-enveloped triple-layered nucleocapsid containing 11 double stranded RNA segments. Here a global view on the sequence and structure of the three main capsid proteins, VP2, VP6 and VP7 is shown by generating a consensus sequence for each of these rotavirus proteins, for each species obtained from published data of representative rotavirus genotypes from across the world and across species. Degree of conservation between species was represented on homology models for each of the proteins. VP7 shows the highest level of variation with 14-45 amino acids showing conservation of less than 60%. These changes are localised to the outer surface alluding to a possible mechanism in evading the immune system. The middle layer, VP6 shows lower variability with only 14-32 sites having lower than 70% conservation. The inner structural layer made up of VP2 showed the lowest variability with only 1-16 sites having less than 70% conservation across species. The results correlate with each protein's multiple structural roles in the infection cycle. Thus, although the nucleotide sequences vary due to the error-prone nature of replication and lack of proof reading, the corresponding amino acid sequence of VP2, 6 and 7 remain relatively conserved. Benefits of this knowledge about the conservation include the ability to target proteins at sites that cannot undergo mutational changes without influencing viral fitness; as well as possibility to study systems that are highly evolved for structure and function in order to determine how to generate and manipulate such systems for use in various biotechnological applications.

  16. Predicting the tolerated sequences for proteins and protein interfaces using RosettaBackrub flexible backbone design.

    PubMed

    Smith, Colin A; Kortemme, Tanja

    2011-01-01

    Predicting the set of sequences that are tolerated by a protein or protein interface, while maintaining a desired function, is useful for characterizing protein interaction specificity and for computationally designing sequence libraries to engineer proteins with new functions. Here we provide a general method, a detailed set of protocols, and several benchmarks and analyses for estimating tolerated sequences using flexible backbone protein design implemented in the Rosetta molecular modeling software suite. The input to the method is at least one experimentally determined three-dimensional protein structure or high-quality model. The starting structure(s) are expanded or refined into a conformational ensemble using Monte Carlo simulations consisting of backrub backbone and side chain moves in Rosetta. The method then uses a combination of simulated annealing and genetic algorithm optimization methods to enrich for low-energy sequences for the individual members of the ensemble. To emphasize certain functional requirements (e.g. forming a binding interface), interactions between and within parts of the structure (e.g. domains) can be reweighted in the scoring function. Results from each backbone structure are merged together to create a single estimate for the tolerated sequence space. We provide an extensive description of the protocol and its parameters, all source code, example analysis scripts and three tests applying this method to finding sequences predicted to stabilize proteins or protein interfaces. The generality of this method makes many other applications possible, for example stabilizing interactions with small molecules, DNA, or RNA. Through the use of within-domain reweighting and/or multistate design, it may also be possible to use this method to find sequences that stabilize particular protein conformations or binding interactions over others.

  17. FAB overlapping: a strategy for sequencing homologous proteins

    NASA Astrophysics Data System (ADS)

    Ferranti, P.; Malorni, A.; Marino, G.; Pucci, P.; di Luccia, A.; Ferrara, L.

    1991-12-01

    Extensive similarity has been shown to exist between the primary structures of closely related proteins from different species, the only differences being restricted to a few amino acid variations. A new mass spectrometric procedure, which has been called FAB-overlapping, has been developed for sequencing highly homologous proteins based on the detection of these small differences as compared with a known protein used as a reference. Several complementary peptide maps are constructed using fast atom bombardment mass spectrometry (FAB-MS) analysis of different proteolytic digests of the unknown protein and the mass values are related to those expected on the basis of the sequence of the reference protein. The mass signals exhibiting unusual mass values identify those regions where variations have taken place; fine location of the mutations can be obtained by coupling simple protein chemistry methodologies with FAB-MS. Using the FAB-overlapping procedure, it was possible to determine the sequence of [alpha]1, [alpha]3 and [beta] globins from water buffalo (Bubalus bubalis hemoglobins (phenotype AA). Two amino acid substitutions were detected in the buffalo [beta] chain (Lys16 --> His and Asn118 --> His) whereas the [alpha]1 chains were found the [alpha]1 and [alpha]3 chains were found to contain four amino acid replacements, three of which were identical (Glu23 --> Asp, Glu71 --> Gly, Phe117 --> Cys), and the insertion of an alanine residue in position 124. The only differences between [alpha]1 and [alpha]3 globins were identified in the C -terminal region; [alpha]1 contains a Phe residue at position 130 whereas [alpha]3 shows serine at position 132.

  18. Incremental Window-based Protein Sequence Alignment Algorithms

    DTIC Science & Technology

    2006-03-23

    Huzefa Rangwala and George Karypis March 23, 2006 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of... Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Incremental Window-based Protein Sequence Alignment Algorithms Huzefa Rangwala and George Karypis...Then it per- forms a series of iterations in which it performs the following three steps: First, it extracts from ’ the residue-pair with the highest

  19. Functional analysis of bipartite begomovirus coat protein promoter sequences

    SciTech Connect

    Lacatus, Gabriela; Sunter, Garry

    2008-06-20

    We demonstrate that the AL2 gene of Cabbage leaf curl virus (CaLCuV) activates the CP promoter in mesophyll and acts to derepress the promoter in vascular tissue, similar to that observed for Tomato golden mosaic virus (TGMV). Binding studies indicate that sequences mediating repression and activation of the TGMV and CaLCuV CP promoter specifically bind different nuclear factors common to Nicotiana benthamiana, spinach and tomato. However, chromatin immunoprecipitation demonstrates that TGMV AL2 can interact with both sequences independently. Binding of nuclear protein(s) from different crop species to viral sequences conserved in both bipartite and monopartite begomoviruses, including TGMV, CaLCuV, Pepper golden mosaic virus and Tomato yellow leaf curl virus suggests that bipartite begomoviruses bind common host factors to regulate the CP promoter. This is consistent with a model in which AL2 interacts with different components of the cellular transcription machinery that bind viral sequences important for repression and activation of begomovirus CP promoters.

  20. Graphical representation and mathematical characterization of protein sequences and applications to viral proteins.

    PubMed

    Ghosh, Ambarnil; Nandy, Ashesh

    2011-01-01

    Graphical representation and numerical characterization (GRANCH) of nucleotide and protein sequences is a new field that is showing a lot of promise in analysis of such sequences. While formulation and applications of GRANCH techniques for DNA/RNA sequences started just over a decade ago, analyses of protein sequences by these techniques are of more recent origin. The emphasis is still on developing the underlying technique, but significant results have been achieved in using these methods for protein phylogeny, mass spectral data of proteins and protein serum profiles in parasites, toxicoproteomics, determination of different indices for use in QSAR studies, among others. We briefly mention these in this chapter, with some details on protein phylogeny and viral diseases. In particular, we cover a systematic method developed in GRANCH to determine conserved surface exposed peptide segments in selected viral proteins that can be used for drug and vaccine targeting. The new GRANCH techniques and applications for DNAs and proteins are covered briefly to provide an overview to this nascent field.

  1. Substrate-Driven Mapping of the Degradome by Comparison of Sequence Logos

    PubMed Central

    Fuchs, Julian E.; von Grafenstein, Susanne; Huber, Roland G.; Kramer, Christian; Liedl, Klaus R.

    2013-01-01

    Sequence logos are frequently used to illustrate substrate preferences and specificity of proteases. Here, we employed the compiled substrates of the MEROPS database to introduce a novel metric for comparison of protease substrate preferences. The constructed similarity matrix of 62 proteases can be used to intuitively visualize similarities in protease substrate readout via principal component analysis and construction of protease specificity trees. Since our new metric is solely based on substrate data, we can engraft the protease tree including proteolytic enzymes of different evolutionary origin. Thereby, our analyses confirm pronounced overlaps in substrate recognition not only between proteases closely related on sequence basis but also between proteolytic enzymes of different evolutionary origin and catalytic type. To illustrate the applicability of our approach we analyze the distribution of targets of small molecules from the ChEMBL database in our substrate-based protease specificity trees. We observe a striking clustering of annotated targets in tree branches even though these grouped targets do not necessarily share similarity on protein sequence level. This highlights the value and applicability of knowledge acquired from peptide substrates in drug design of small molecules, e.g., for the prediction of off-target effects or drug repurposing. Consequently, our similarity metric allows to map the degradome and its associated drug target network via comparison of known substrate peptides. The substrate-driven view of protein-protein interfaces is not limited to the field of proteases but can be applied to any target class where a sufficient amount of known substrate data is available. PMID:24244149

  2. Successful Recovery of Nuclear Protein-Coding Genes from Small Insects in Museums Using Illumina Sequencing

    PubMed Central

    Dasenko, Mark A.

    2015-01-01

    In this paper we explore high-throughput Illumina sequencing of nuclear protein-coding, ribosomal, and mitochondrial genes in small, dried insects stored in natural history collections. We sequenced one tenebrionid beetle and 12 carabid beetles ranging in size from 3.7 to 9.7 mm in length that have been stored in various museums for 4 to 84 years. Although we chose a number of old, small specimens for which we expected low sequence recovery, we successfully recovered at least some low-copy nuclear protein-coding genes from all specimens. For example, in one 56-year-old beetle, 4.4 mm in length, our de novo assembly recovered about 63% of approximately 41,900 nucleotides in a target suite of 67 nuclear protein-coding gene fragments, and 70% using a reference-based assembly. Even in the least successfully sequenced carabid specimen, reference-based assembly yielded fragments that were at least 50% of the target length for 34 of 67 nuclear protein-coding gene fragments. Exploration of alternative references for reference-based assembly revealed few signs of bias created by the reference. For all specimens we recovered almost complete copies of ribosomal and mitochondrial genes. We verified the general accuracy of the sequences through comparisons with sequences obtained from PCR and Sanger sequencing, including of conspecific, fresh specimens, and through phylogenetic analysis that tested the placement of sequences in predicted regions. A few possible inaccuracies in the sequences were detected, but these rarely affected the phylogenetic placement of the samples. Although our sample sizes are low, an exploratory regression study suggests that the dominant factor in predicting success at recovering nuclear protein-coding genes is a high number of Illumina reads, with success at PCR of COI and killing by immersion in ethanol being secondary factors; in analyses of only high-read samples, the primary significant explanatory variable was body length, with small beetles

  3. The S-layer protein from Campylobacter rectus: sequence determination and function of the recombinant protein.

    PubMed

    Miyamoto, M; Maeda, H; Kitanaka, M; Kokeguchi, S; Takashiba, S; Murayama, Y

    1998-09-15

    The gene encoding the crystalline surface layer (S-layer) protein from Campylobacter rectus, designated slp, was sequenced and the recombinant gene product was expressed in Escherichia coli. The gene consisted of 4086 nucleotides encoding a protein with 1361 amino acids. The N-terminal amino acid sequence revealed that Slp did not contain a signal sequence, but that the initial methionine residue was processed. The deduced amino acid sequence displayed some common characteristic features of S-layer proteins previously reported. A homology search showed a high similarity to the Campylobacter fetus S-layer proteins, especially in their N-terminus. The C-terminal third of Slp exhibited homology with the RTX toxins from Gram-negative bacteria via the region including the glycine-rich repeats. The Slp protein had the same N-terminal sequence as a 104-kDa cytotoxin isolated from the culture supernatants of C. rectus. However, neither native nor recombinant Slp showed cytotoxicity against HL-60 cells or human peripheral white blood cells. These data support the idea that the N-terminus acts as an anchor to the cell surface components and that the C-terminus is involved in the assembly and/or transport of the protein.

  4. Properties of Sequence Conservation in Upstream Regulatory and Protein Coding Sequences among Paralogs in Arabidopsis thaliana

    NASA Astrophysics Data System (ADS)

    Richardson, Dale N.; Wiehe, Thomas

    Whole genome duplication (WGD) has catalyzed the formation of new species, genes with novel functions, altered expression patterns, complexified signaling pathways and has provided organisms a level of genetic robustness. We studied the long-term evolution and interrelationships of 5’ upstream regulatory sequences (URSs), protein coding sequences (CDSs) and expression correlations (EC) of duplicated gene pairs in Arabidopsis. Three distinct methods revealed significant evolutionary conservation between paralogous URSs and were highly correlated with microarray-based expression correlation of the respective gene pairs. Positional information on exact matches between sequences unveiled the contribution of micro-chromosomal rearrangements on expression divergence. A three-way rank analysis of URS similarity, CDS divergence and EC uncovered specific gene functional biases. Transcription factor activity was associated with gene pairs exhibiting conserved URSs and divergent CDSs, whereas a broad array of metabolic enzymes was found to be associated with gene pairs showing diverged URSs but conserved CDSs.

  5. A rhodopsin-like protein in Cyanophora paradoxa: gene sequence and protein immunolocalization.

    PubMed

    Frassanito, Anna Maria; Barsanti, Laura; Passarelli, Vincenzo; Evangelista, Valtere; Gualtieri, Paolo

    2010-03-01

    Here, we report the DNA sequence of the rhodopsin gene in the alga Cyanophora paradoxa (Glaucophyta). The primers were designed according to the conserved regions of prokaryotic and eukaryotic rhodopsin-like proteins deposited in the GenBank. The sequence consists of 1,272 bp comprised of 5 introns. The correspondent protein, named Cyanophopsin, showed high identity to rhodopsin-like proteins of Archea, Bacteria, Fungi, and Algae. At the N-terminal, the protein is characterized by a region with no transmembrane alpha-helices (80 aa), followed by a region with 7alpha-helices (219 aa) and a shorter 35-aa C-terminal region. The DNA sequence of the N-terminal region was expressed in E. coli and the recombinant purified peptide was used as antigen in hens to obtain polyclonal antibodies. Indirect immunofluorescence in C. paradoxa cells showed a marked labeling of the muroplast (aka cyanelle) membrane.

  6. Isolation and characterization of adrenoleukodystrophy protein (ALDP) related sequences in the human genome

    SciTech Connect

    Geraghty, M.T.; Stetten, G.; Kearns, W.

    1994-09-01

    X-linked adrenoleukodystrophy (ALD) is a disorder of peroxisomal {beta}-oxidation of very long chain fatty acids. It presents either as progressive dementia in childhood or as progressive paraparesis in later years. Adrenal insufficiency occurs in both phenotypes. The gene of the ALD protein has been mapped to Xq28 and has recently been cloned and characterized. The ALD protein has significant homology to the peroxisomal membrane protein, PMP70 and belongs to the ATP binding cassette superfamily of transporters. We screened a human genomic library with an ALDP cDNA and isolated 5 different but highly similar clones containing sequences corresponding to the 3{prime} end of the ALDP gene. Comparison of the sequences over the region corresponding to exon 9 through the 3{prime} end of the ALDP gene reveals {approximately}96% nucleotide identity in both exonic and intronic regions. Splice sites and open reading frames are maintained. Using both FISH and human-rodent DNA mapping panels, we positively assign these ALDP-related sequences to chromosomes 2, 16 and 22, and provisionally to 1 and 20. Southern blot of primate DNA probed with a partial ALDP cDNA (exon 2-10) shows that expansion of ALDP-related sequences occurred in higher primates (chimp, gorilla and human). Although Northern blots show multiple ALDP-hybridizing transcripts in certain tissues, we have no evidence to date for expression of these ALDP-related sequences. In conclusion, our data show there has been an unusual and recent dispersal to multiple chromosomes of structural gene sequences related to the ALDP gene. The functional significance of these sequences remains to be determined but their existence complicates PCR and mutation analysis of the ALDP gene.

  7. A map of the protein space--an automatic hierarchical classification of all protein sequences.

    PubMed

    Yona, G; Linial, N; Tishby, N; Linial, M

    1998-01-01

    We investigate the space of all protein sequences. We combine the standard measures of similarity (SW, FASTA, BLAST), to associate with each sequence an exhaustive list of neighboring sequences. These lists induce a (weighted directed) graph whose vertices are the sequences. The weight of an edge connecting two sequences represents their degree of similarity. This graph encodes much of the fundamental properties of the sequence space. We look for clusters of related proteins in this graph. These clusters correspond to strongly connected sets of vertices. Two main ideas underlie our work: i) Interesting homologies among proteins can be deduced by transitivity. ii) Transitivity should be applied restrictively in order to prevent unrelated proteins from clustering together. Our analysis starts from a very conservative classification, based on very significant similarities, that has many classes. Subsequently, classes are merged to include less significant similarities. Merging is performed via a novel two phase algorithm. First, the algorithm identifies groups of possibly related clusters (based on transitivity and strong connectivity) using local considerations, and merges them. Then, a global test is applied to identify nuclei of strong relationships within these groups of clusters, and the classification is refined accordingly. This process takes place at varying thresholds of statistical significance, where at each step the algorithm is applied on the classes of the previous classification, to obtain the next one, at the more permissive threshold. Consequently, a hierarchical organization of all proteins is obtained. The resulting classification splits the space of all protein sequences into well defined groups of proteins. The results show that the automatically induced sets of proteins are closely correlated with natural biological families and super families. The hierarchical organization reveals finer sub-families that make up known families of proteins as

  8. A sequence alignment-independent method for protein classification.

    PubMed

    Vries, John K; Munshi, Rajan; Tobi, Dror; Klein-Seetharaman, Judith; Benos, Panayiotis V; Bahar, Ivet

    2004-01-01

    Annotation of the rapidly accumulating body of sequence data relies heavily on the detection of remote homologues and functional motifs in protein families. The most popular methods rely on sequence alignment. These include programs that use a scoring matrix to compare the probability of a potential alignment with random chance and programs that use curated multiple alignments to train profile hidden Markov models (HMMs). Related approaches depend on bootstrapping multiple alignments from a single sequence. However, alignment-based programs have limitations. They make the assumption that contiguity is conserved between homologous segments, which may not be true in genetic recombination or horizontal transfer. Alignments also become ambiguous when sequence similarity drops below 40%. This has kindled interest in classification methods that do not rely on alignment. An approach to classification without alignment based on the distribution of contiguous sequences of four amino acids (4-grams) was developed. Interest in 4-grams stemmed from the observation that almost all theoretically possible 4-grams (20(4)) occur in natural sequences and the majority of 4-grams are uniformly distributed. This implies that the probability of finding identical 4-grams by random chance in unrelated sequences is low. A Bayesian probabilistic model was developed to test this hypothesis. For each protein family in Pfam-A and PIR-PSD, a feature vector called a probe was constructed from the set of 4-grams that best characterised the family. In rigorous jackknife tests, unknown sequences from Pfam-A and PIR-PSD were compared with the probes for each family. A classification result was deemed a true positive if the probe match with the highest probability was in first place in a rank-ordered list. This was achieved in 70% of cases. Analysis of false positives suggested that the precision might approach 85% if selected families were clustered into subsets. Case studies indicated that the 4

  9. Sequences of the recA gene and protein.

    PubMed

    Sancar, A; Stachelek, C; Konigsberg, W; Rupp, W D

    1980-05-01

    We have determined the nucleotide sequence of the recA gene of Escherichia coli; this permits the formulation of the primary structure for the recA protein. This structure is consistent with the amino acid composition of the tryptic peptides obtained from the recA protein. The coding region of the recA gene has 1059 base pairs, which specify 352 amino acids. The recA protein has alanine and phenylalanine as its NH2- and COOH-terminal amino acids, respectively, and has the following amino acid composition: Cys3 Asp20 Asn15 Met9 Thr17 Ser20 Glu30 Gln13 Pro10 Gly35 Ala38 Val22 Ile27 Leu31 Tyr7 Phe10 His2Lys27 Trp2 Arg14. Of the three cysteine residues, only two can be alkylated under reducing and denaturing conditions. The molecular weight of the recA polypeptide is 37,842.

  10. Identification of Sequences Encoding Symbiodinium minutum Mitochondrial Proteins

    PubMed Central

    Butterfield, Erin R.; Howe, Christopher J.; Nisbet, R. Ellen R.

    2016-01-01

    The dinoflagellates are an extremely diverse group of algae closely related to the Apicomplexa and the ciliates. Much work has previously been undertaken to determine the presence of various biochemical pathways within dinoflagellate mitochondria. However, these studies were unable to identify several key transcripts including those encoding proteins involved in the pyruvate dehydrogenase complex, iron–sulfur cluster biosynthesis, and protein import. Here, we analyze the draft nuclear genome of the dinoflagellate Symbiodinium minutum, as well as RNAseq data to identify nuclear genes encoding mitochondrial proteins. The results confirm the presence of a complete tricarboxylic acid cycle in the dinoflagellates. Results also demonstrate the difficulties in using the genome sequence for the identification of genes due to the large number of introns, but show that it is highly useful for the determination of gene duplication events. PMID:26798115

  11. Synthesis of peptide sequences derived from fibril-forming proteins.

    PubMed

    Scanlon, Denis B; Karas, John A

    2011-01-01

    The pathogenesis of a large number of diseases, including Alzheimer's Disease, Parkinson's Disease, and Creutzfeldt-Jakob Disease (CJD), is associated with protein aggregation and the formation of amyloid, fibrillar deposits. Peptide fragments of amyloid-forming proteins have been found to form fibrils in their own right and have become important tools for unlocking the mechanism of amyloid fibril formation and the pathogenesis of amyloid diseases. The synthesis and purification of peptide sequences derived from amyloid fibril-forming proteins can be extremely challenging. The synthesis may not proceed well, generating a very low quality crude product which can be difficult to purify. Even clean crude peptides can be difficult to purify, as they are often insoluble or form fibrils rapidly in solution. This chapter presents methods to recognise and to overcome the difficulties associated with the synthesis, and purification of fibril-forming peptides, illustrating the points with three synthetic examples.

  12. Identification of Sequences Encoding Symbiodinium minutum Mitochondrial Proteins.

    PubMed

    Butterfield, Erin R; Howe, Christopher J; Nisbet, R Ellen R

    2016-01-21

    The dinoflagellates are an extremely diverse group of algae closely related to the Apicomplexa and the ciliates. Much work has previously been undertaken to determine the presence of various biochemical pathways within dinoflagellate mitochondria. However, these studies were unable to identify several key transcripts including those encoding proteins involved in the pyruvate dehydrogenase complex, iron-sulfur cluster biosynthesis, and protein import. Here, we analyze the draft nuclear genome of the dinoflagellate Symbiodinium minutum, as well as RNAseq data to identify nuclear genes encoding mitochondrial proteins. The results confirm the presence of a complete tricarboxylic acid cycle in the dinoflagellates. Results also demonstrate the difficulties in using the genome sequence for the identification of genes due to the large number of introns, but show that it is highly useful for the determination of gene duplication events.

  13. DNA topology confers sequence specificity to nonspecific architectural proteins.

    PubMed

    Wei, Juan; Czapla, Luke; Grosner, Michael A; Swigon, David; Olson, Wilma K

    2014-11-25

    Topological constraints placed on short fragments of DNA change the disorder found in chain molecules randomly decorated by nonspecific, architectural proteins into tightly organized 3D structures. The bacterial heat-unstable (HU) protein builds up, counter to expectations, in greater quantities and at particular sites along simulated DNA minicircles and loops. Moreover, the placement of HU along loops with the "wild-type" spacing found in the Escherichia coli lactose (lac) and galactose (gal) operons precludes access to key recognition elements on DNA. The HU protein introduces a unique spatial pathway in the DNA upon closure. The many ways in which the protein induces nearly the same closed circular configuration point to the statistical advantage of its nonspecificity. The rotational settings imposed on DNA by the repressor proteins, by contrast, introduce sequential specificity in HU placement, with the nonspecific protein accumulating at particular loci on the constrained duplex. Thus, an architectural protein with no discernible DNA sequence-recognizing features becomes site-specific and potentially assumes a functional role upon loop formation. The locations of HU on the closed DNA reflect long-range mechanical correlations. The protein responds to DNA shape and deformability—the stiff, naturally straight double-helical structure—rather than to the unique features of the constituent base pairs. The structures of the simulated loops suggest that HU architecture, like nucleosomal architecture, which modulates the ability of regulatory proteins to recognize their binding sites in the context of chromatin, may influence repressor-operator interactions in the context of the bacterial nucleoid.

  14. Size and sequence and the volume change of protein folding.

    PubMed

    Rouget, Jean-Baptiste; Aksel, Tural; Roche, Julien; Saldana, Jean-Louis; Garcia, Angel E; Barrick, Doug; Royer, Catherine A

    2011-04-20

    The application of hydrostatic pressure generally leads to protein unfolding, implying, in accordance with Le Chatelier's principle, that the unfolded state has a smaller molar volume than the folded state. However, the origin of the volume change upon unfolding, ΔV(u), has yet to be determined. We have examined systematically the effects of protein size and sequence on the value of ΔV(u) using as a model system a series of deletion variants of the ankyrin repeat domain of the Notch receptor. The results provide strong evidence in support of the notion that the major contributing factor to pressure effects on proteins is their imperfect internal packing in the folded state. These packing defects appear to be specifically localized in the 3D structure, in contrast to the uniformly distributed effects of temperature and denaturants that depend upon hydration of exposed surface area upon unfolding. Given its local nature, the extent to which pressure globally affects protein structure can inform on the degree of cooperativity and long-range coupling intrinsic to the folded state. We also show that the energetics of the protein's conformations can significantly modulate their volumetric properties, providing further insight into protein stability.

  15. Predicting protein ligand binding sites by combining evolutionary sequence conservation and 3D structure.

    PubMed

    Capra, John A; Laskowski, Roman A; Thornton, Janet M; Singh, Mona; Funkhouser, Thomas A

    2009-12-01

    Identifying a protein's functional sites is an important step towards characterizing its molecular function. Numerous structure- and sequence-based methods have been developed for this problem. Here we introduce ConCavity, a small molecule binding site prediction algorithm that integrates evolutionary sequence conservation estimates with structure-based methods for identifying protein surface cavities. In large-scale testing on a diverse set of single- and multi-chain protein structures, we show that ConCavity substantially outperforms existing methods for identifying both 3D ligand binding pockets and individual ligand binding residues. As part of our testing, we perform one of the first direct comparisons of conservation-based and structure-based methods. We find that the two approaches provide largely complementary information, which can be combined to improve upon either approach alone. We also demonstrate that ConCavity has state-of-the-art performance in predicting catalytic sites and drug binding pockets. Overall, the algorithms and analysis presented here significantly improve our ability to identify ligand binding sites and further advance our understanding of the relationship between evolutionary sequence conservation and structural and functional attributes of proteins. Data, source code, and prediction visualizations are available on the ConCavity web site (http://compbio.cs.princeton.edu/concavity/).

  16. Origin and spread of photosynthesis based upon conserved sequence features in key bacteriochlorophyll biosynthesis proteins.

    PubMed

    Gupta, Radhey S

    2012-11-01

    The origin of photosynthesis and how this capability has spread to other bacterial phyla remain important unresolved questions. I describe here a number of conserved signature indels (CSIs) in key proteins involved in bacteriochlorophyll (Bchl) biosynthesis that provide important insights in these regards. The proteins BchL and BchX, which are essential for Bchl biosynthesis, are derived by gene duplication in a common ancestor of all phototrophs. More ancient gene duplication gave rise to the BchX-BchL proteins and the NifH protein of the nitrogenase complex. The sequence alignment of NifH-BchX-BchL proteins contain two CSIs that are uniquely shared by all NifH and BchX homologs, but not by any BchL homologs. These CSIs and phylogenetic analysis of NifH-BchX-BchL protein sequences strongly suggest that the BchX homologs are ancestral to BchL and that the Bchl-based anoxygenic photosynthesis originated prior to the chlorophyll (Chl)-based photosynthesis in cyanobacteria. Another CSI in the BchX-BchL sequence alignment that is uniquely shared by all BchX homologs and the BchL sequences from Heliobacteriaceae, but absent in all other BchL homologs, suggests that the BchL homologs from Heliobacteriaceae are primitive in comparison to all other photosynthetic lineages. Several other identified CSIs in the BchN homologs are commonly shared by all proteobacterial homologs and a clade consisting of the marine unicellular Cyanobacteria (Clade C). These CSIs in conjunction with the results of phylogenetic analyses and pair-wise sequence similarity on the BchL, BchN, and BchB proteins, where the homologs from Clade C Cyanobacteria and Proteobacteria exhibited close relationship, provide strong evidence that these two groups have incurred lateral gene transfers. Additionally, phylogenetic analyses and several CSIs in the BchL-N-B proteins that are uniquely shared by all Chlorobi and Chloroflexi homologs provide evidence that the genes for these proteins have also been

  17. Quantitative assessment of protein function prediction from metagenomics shotgun sequences.

    PubMed

    Harrington, E D; Singh, A H; Doerks, T; Letunic, I; von Mering, C; Jensen, L J; Raes, J; Bork, P

    2007-08-28

    To assess the potential of protein function prediction in environmental genomics data, we analyzed shotgun sequences from four diverse and complex habitats. Using homology searches as well as customized gene neighborhood methods that incorporate intergenic and evolutionary distances, we inferred specific functions for 76% of the 1.4 million predicted ORFs in these samples (83% when nonspecific functions are considered). Surprisingly, these fractions are only slightly smaller than the corresponding ones in completely sequenced genomes (83% and 86%, respectively, by using the same methodology) and considerably higher than previously thought. For as many as 75,448 ORFs (5% of the total), only neighborhood methods can assign functions, illustrated here by a previously undescribed gene associated with the well characterized heme biosynthesis operon and a potential transcription factor that might regulate a coupling between fatty acid biosynthesis and degradation. Our results further suggest that, although functions can be inferred for most proteins on earth, many functions remain to be discovered in numerous small, rare protein families.

  18. Sequence Heterogeneity Accelerates Protein Search for Targets on DNA

    NASA Astrophysics Data System (ADS)

    Shvets, Alexey; Kolomeisky, Anatoly

    The process of protein search for specific binding sites on DNA is fundamentally important since it marks the beginning of all major biological processes. We present a theoretical investigation that probes the role of DNA sequence symmetry, heterogeneity and chemical composition in the protein search dynamics. Using a discrete-state stochastic approach with a first-passage events analysis, which takes into account the most relevant physical-chemical processes, a full analytical description of the search dynamics is obtained. It is found that, contrary to existing views, the protein search is generally faster on DNA with more heterogeneous sequences. In addition, the search dynamics might be affected by the chemical composition near the target site. The physical origins of these phenomena are discussed. Our results suggest that biological processes might be effectively regulated by modifying chemical composition, symmetry and heterogeneity of a genome. The work was supported by the Welch Foundation (Grant C-1559), by the NSF (Grant CHE-1360979), and by the Center for Theoretical Biological Physics sponsored by the NSF (Grant PHY-1427654).

  19. Comparison of the Folding Mechanism of Highly Homologous Proteins in the Lipid-binding Protein Family

    EPA Science Inventory

    The folding mechanism of two closely related proteins in the intracellular lipid binding protein family, human bile acid binding protein (hBABP) and rat bile acid binding protein (rBABP) were examined. These proteins are 77% identical (93% similar) in sequence Both of these singl...

  20. NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins.

    PubMed

    Pruitt, Kim D; Tatusova, Tatiana; Maglott, Donna R

    2005-01-01

    The National Center for Biotechnology Information (NCBI) Reference Sequence (RefSeq) database (http://www.ncbi.nlm.nih.gov/RefSeq/) provides a non-redundant collection of sequences representing genomic data, transcripts and proteins. Although the goal is to provide a comprehensive dataset representing the complete sequence information for any given species, the database pragmatically includes sequence data that are currently publicly available in the archival databases. The database incorporates data from over 2400 organisms and includes over one million proteins representing significant taxonomic diversity spanning prokaryotes, eukaryotes and viruses. Nucleotide and protein sequences are explicitly linked, and the sequences are linked to other resources including the NCBI Map Viewer and Gene. Sequences are annotated to include coding regions, conserved domains, variation, references, names, database cross-references, and other features using a combined approach of collaboration and other input from the scientific community, automated annotation, propagation from GenBank and curation by NCBI staff.

  1. Protein Sequence Alignment Taking the Structure of Peptide Bond

    NASA Astrophysics Data System (ADS)

    Hara, Toshihide; Sato, Keiko; Ohya, Masanori

    2013-01-01

    In a previous paper1 we proposed a new method for performing pairwise alignment of protein sequences. The method, called MTRAP, achieves the highest performance compared with other alignment methods such as ClustalW22,3 on two benchmarks for alignment accuracy. In this paper, we introduce a new measure between two amino acids based on the formation of peptide bonds. The measure is implemented into MTRAP software to further improve alignment accuracy. Our alignment software is available at

  2. Sequence-Specific Solvent Accessibilities of Protein Residues in Unfolded Protein Ensembles

    PubMed Central

    Bernadó, Pau; Blackledge, Martin; Sancho, Javier

    2006-01-01

    Protein stability cannot be understood without the correct description of the unfolded state. We present here an efficient method for accurate calculation of atomic solvent exposures for denatured protein ensembles. The method used to generate the ensembles has been shown to reproduce diverse biophysical experimental data corresponding to natively and chemically unfolded proteins. Using a data set of 19 nonhomologous proteins containing from 98 to 579 residues, we report average accessibilities for all residue types. These averaged accessibilities are considerably lower than those previously reported for tripeptides and close to the lower limit reported by Creamer and co-workers. Of importance, we observe remarkable sequence dependence for the exposure to solvent of all residue types, which indicates that average residue solvent exposures can be inappropriate to interpret mutational studies. In addition, we observe smaller influences of both protein size and protein amino acid composition in the averaged residue solvent exposures for individual proteins. Calculating residue-specific solvent accessibilities within the context of real sequences is thus necessary and feasible. The approach presented here may allow a more precise parameterization of protein energetics as a function of polar- and apolar-area burial and opens new ways to investigate the energetics of the unfolded state of proteins. PMID:17012314

  3. Engineering the Dynamic Properties of Protein Networks through Sequence Variation

    PubMed Central

    2016-01-01

    The dynamic behavior of macromolecular networks dominates the mechanical properties of soft materials and influences biological processes at multiple length scales. In hydrogels prepared from self-assembling artificial proteins, stress relaxation and energy dissipation arise from the transient character of physical network junctions. Here we show that subtle changes in sequence can be used to program the relaxation behavior of end-linked networks of engineered coiled-coil proteins. Single-site substitutions in the coiled-coil domains caused shifts in relaxation time over 5 orders of magnitude as demonstrated by dynamic oscillatory shear rheometry and stress relaxation measurements. Networks with multiple relaxation time scales were also engineered. This work demonstrates how time-dependent mechanical responses of macromolecular materials can be encoded in genetic information. PMID:27924309

  4. No Genome-Wide Protein Sequence Convergence for Echolocation

    PubMed Central

    Zou, Zhengting; Zhang, Jianzhi

    2015-01-01

    Toothed whales and two groups of bats independently acquired echolocation, the ability to locate and identify objects by reflected sound. Echolocation requires physiologically complex and coordinated vocal, auditory, and neural functions, but the molecular basis of the capacity for echolocation is not well understood. A recent study suggested that convergent amino acid substitutions widespread in the proteins of echolocators underlay the convergent origins of mammalian echolocation. Here, we show that genomic signatures of molecular convergence between echolocating lineages are generally no stronger than those between echolocating and comparable nonecholocating lineages. The same is true for the group of 29 hearing-related proteins claimed to be enriched with molecular convergence. Reexamining the previous selection test reveals several flaws and invalidates the asserted evidence for adaptive convergence. Together, these findings indicate that the reported genomic signatures of convergence largely reflect the background level of sequence convergence unrelated to the origins of echolocation. PMID:25631925

  5. No genome-wide protein sequence convergence for echolocation.

    PubMed

    Zou, Zhengting; Zhang, Jianzhi

    2015-05-01

    Toothed whales and two groups of bats independently acquired echolocation, the ability to locate and identify objects by reflected sound. Echolocation requires physiologically complex and coordinated vocal, auditory, and neural functions, but the molecular basis of the capacity for echolocation is not well understood. A recent study suggested that convergent amino acid substitutions widespread in the proteins of echolocators underlay the convergent origins of mammalian echolocation. Here, we show that genomic signatures of molecular convergence between echolocating lineages are generally no stronger than those between echolocating and comparable nonecholocating lineages. The same is true for the group of 29 hearing-related proteins claimed to be enriched with molecular convergence. Reexamining the previous selection test reveals several flaws and invalidates the asserted evidence for adaptive convergence. Together, these findings indicate that the reported genomic signatures of convergence largely reflect the background level of sequence convergence unrelated to the origins of echolocation.

  6. Sequence studies of proteins from larval and pupal cuticle of the yellow meal worm, Tenebrio molitor.

    PubMed

    Andersen, S O; Rafn, K; Roepstorff, P

    1997-02-01

    Complete amino acid sequences have been determined for six larval-pupal cuticular proteins from Tenebrio molitor. The sequenced proteins are major components in both larval and pupal cuticle, and both basic and slightly acidic proteins are represented. The proteins show pronounced similarities to some of the proteins sequenced from other insect cuticles. Three slightly acidic larval-pupal Tenebrio cuticular proteins contain a 66-residue central, hydrophilic region, resembling regions in cuticular proteins from insect species of four different orders (Coleoptera, Diptera, Lepidoptera and Orthoptera), and three basic proteins from larval-pupal Tenebrio cuticle have a 51-residue hydrophilic region in common with two proteins from cuticle of pharate adult locusts (Locusta migratoria). The Tenebrio larval-pupal cuticular proteins are also similar to locust adult cuticular proteins, by frequent occurrence of the short sequence motif Ala-Ala-Pro-Ala/Val. The pronounced sequence similarities between cuticular proteins from different insect orders indicate that the conserved regions are functionally important.

  7. An Integrated Sequence-Structure Database incorporating matching mRNA sequence, amino acid sequence and protein three-dimensional structure data.

    PubMed Central

    Adzhubei, I A; Adzhubei, A A; Neidle, S

    1998-01-01

    We have constructed a non-homologous database, termed the Integrated Sequence-Structure Database (ISSD) which comprises the coding sequences of genes, amino acid sequences of the corresponding proteins, their secondary structure and straight phi,psi angles assignments, and polypeptide backbone coordinates. Each protein entry in the database holds the alignment of nucleotide sequence, amino acid sequence and the PDB three-dimensional structure data. The nucleotide and amino acid sequences for each entry are selected on the basis of exact matches of the source organism and cell environment. The current version 1.0 of ISSD is available on the WWW at http://www.protein.bio.msu.su/issd/ and includes 107 non-homologous mammalian proteins, of which 80 are human proteins. The database has been used by us for the analysis of synonymous codon usage patterns in mRNA sequences showing their correlation with the three-dimensional structure features in the encoded proteins. Possible ISSD applications include optimisation of protein expression, improvement of the protein structure prediction accuracy, and analysis of evolutionary aspects of the nucleotide sequence-protein structure relationship. PMID:9399866

  8. Phenotypic comparisons of consensus variants versus laboratory resurrections of Precambrian proteins.

    PubMed

    Risso, Valeria A; Gavira, Jose A; Gaucher, Eric A; Sanchez-Ruiz, Jose M

    2014-06-01

    Consensus-sequence engineering has generated protein variants with enhanced stability, and sometimes, with modulated biological function. Consensus mutations are often interpreted as the introduction of ancestral amino acid residues. However, the precise relationship between consensus engineering and ancestral protein resurrection is not fully understood. Here, we report the properties of proteins encoded by consensus sequences derived from a multiple sequence alignment of extant, class A β-lactamases, as compared with the properties of ancient Precambrian β-lactamases resurrected in the laboratory. These comparisons considered primary sequence, secondary, and tertiary structure, as well as stability and catalysis against different antibiotics. Out of the three consensus variants generated, one could not be expressed and purified (likely due to misfolding and/or low stability) and only one displayed substantial stability having substrate promiscuity, although to a lower extent than ancient β-lactamases. These results: (i) highlight the phenotypic differences between consensus variants and laboratory resurrections of ancestral proteins; (ii) question interpretations of consensus proteins as phenotypic proxies of ancestral proteins; and (iii) support the notion that ancient proteins provide a robust approach toward the preparation of protein variants having large numbers of mutational changes while possessing unique biomolecular properties.

  9. Sequence analysis and location of capsid proteins within RNA 2 of strawberry latent ringspot virus.

    PubMed

    Kreiah, S; Strunk, G; Cooper, J I

    1994-09-01

    The nucleotide sequence of the RNA 2 of a strawberry isolate (H) of strawberry latent ringspot virus (SLRSV) comprised 3824 nucleotides and contained one long open reading frame with a theoretical coding capacity of 890 amino acids equivalent to a protein of 98.8K. The N-terminal amino acid sequences of virion-derived proteins were determined by Edman degradation allowing the capsid coding regions to be located and serine/glycine cleavage sites to be identified within the polyprotein. The amino acid sequence in the capsid coding region of an isolate of SLRSV from flowering cherry in New Zealand was 97% identical to that of SLRSV-H. Except in the 3' and 5' terminal non-coding sequences, computer-based alignment and comparison algorithms did not reveal any substantial homologies between RNA 2 of SLRSV-H and the equivalent genomic segments in the nepoviruses arabis mosaic, cherry leaf roll, grapevine fanleaf, raspberry ringspot, grapevine hungarian chrome mosaic, tomato blackring, tomato ringspot, tobacco ringspot, or in the comoviruses cowpea mosaic and red clover mottle. Despite the similarities in overall genome organization, data from RNA 2 remain insufficient for unambiguous positioning of SLRSV in relation to species/genera in the Comoviridae.

  10. Cloning and sequencing of a cDNA encoding a heat-stable sweet protein, mabinlin II.

    PubMed

    Nirasawa, S; Masuda, Y; Nakaya, K; Kurihara, Y

    1996-11-28

    A cDNA clone encoding a heat-stable sweet protein, mabinlin II (MAB), was isolated and sequenced. The encoded precursor to MAB was composed of 155 amino acid (aa) residues, including a signal sequence of 20 aa, an N-terminal extension peptide of 15 aa, a linker peptide of 14 aa and one residue of C-terminal extension. Comparison of the proteolytic cleavage sites during post-translational processing of MAB precursor with those of like 2S seed-storage proteins of Arabidopsis thaliana, Brassica napus and Bertholletia excelsa shows that the three individual cleavage sites between respective species are conserved.

  11. Fibronectin-binding protein of Streptococcus pyogenes: sequence of the binding domain involved in adherence of streptococci to epithelial cells.

    PubMed Central

    Talay, S R; Valentin-Weigand, P; Jerlström, P G; Timmis, K N; Chhatwal, G S

    1992-01-01

    The sequence of the fibronectin-binding domain of the fibronectin-binding protein of Streptococcus pyogenes (Sfb protein) was determined, and its role in streptococcal adherence was investigated by use of an Sfb fusion protein in adherence studies. A 1-kb DNA fragment coding for the binding domain of Sfb protein was cloned into the expression vector pEX31 to produce an Sfb fusion protein consisting of the N-terminal part of MS2 polymerase and a C-terminal fragment of the streptococcal protein. Induction of the vector promoter resulted in hyperexpression of fibronectin-binding fusion protein in the cytoplasm of the recombinant Escherichia coli cells. Sequence determination of the cloned 1-kb fragment revealed an in-frame reading frame for a 268-amino-acid peptide composed of a 37-amino-acid sequence which is completely repeated three times and incompletely repeated a fourth time. Cloning of one repeat into pEX31 resulted in expression of small fusion peptides that show fibronectin-binding activity, indicating that one repeat contains at least one binding domain. Each repeat exhibits two charged domains and shows high homology with the 38-amino-acid D3 repeat of the fibronectin-binding protein of Staphylococcus aureus. Sequence comparison with other streptococcal ligand-binding surface proteins, including M protein, failed to reveal significant homology, which suggests that Sfb protein represents a novel type of functional protein in S. pyogenes. The Sfb fusion protein isolated from the cytoplasm of recombinant cells was purified by fast protein liquid chromatography. It showed a strong competitive inhibition of fibronectin binding to S. pyogenes and of the adherence of bacteria to cultured epithelial cells. In contrast, purified streptococcal lipoteichoic acid showed only a weak inhibition of fibronectin binding and streptococcal adherence. These results demonstrate that Sfb protein is directly involved in the fibronectin-mediated adherence of S. pyogenes to

  12. Nucleotide and derived amino acid sequences of the major porin of Comamonas acidovorans and comparison of porin primary structures.

    PubMed Central

    Gerbl-Rieger, S; Peters, J; Kellermann, J; Lottspeich, F; Baumeister, W

    1991-01-01

    The DNA sequence of the gene which codes for the major outer membrane porin (Omp32) of Comamonas acidovorans has been determined. The structural gene encodes a precursor consisting of 351 amino acid residues with a signal peptide of 19 amino acid residues. Comparisons with amino acid sequences of outer membrane proteins and porins from several other members of the class Proteobacteria and of the Chlamydia trachomatis porin and the Neurospora crassa mitochondrial porin revealed a motif of eight regions of local homology. The results of this analysis are discussed with regard to common structural features of porins. PMID:1848840

  13. Sequence of a cDNA encoding nitrite reductase from the tree Betula pendula and identification of conserved protein regions.

    PubMed

    Friemann, A; Brinkmann, K; Hachtel, W

    1992-02-01

    The sequence of an mRNA encoding nitrite reductase (NiR, EC 1.7.7.1.) from the tree Betula pendula was determined. A cDNA library constructed from leaf poly(A)+ mRNA was screened with an oligonucleotide probe deduced from NiR sequences from spinach and maize. A 2.5 kb cDNA was isolated that hybridized to an mRNA, the steady-state level of which increased markedly upon induction with nitrate. The nucleotide sequence of the cDNA contains a reading frame encoding a protein of 583 amino acids that reveals 79% identity with NiR from spinach. The transit peptide of the NiR precursor from birch was determined to be 22 amino acids in size by sequence comparison with NiR from spinach and maize and is the shortest transit peptide reported so far. A graphical evaluation of identities found in the NiR sequence alignment revealed nine well conserved sections each exceeding ten amino acids in size. Sequence comparisons with related redox proteins identified essential residues involved in cofactor binding. A putative binding site for ferredoxin was found in the N-terminal half of the protein.

  14. Numerical characteristics of word frequencies and their application to dissimilarity measure for sequence comparison.

    PubMed

    Dai, Qi; Liu, Xiaoqing; Yao, Yuhua; Zhao, Fukun

    2011-05-07

    Sequence comparison is one of the major tasks in bioinformatics, which can be used to study structural and functional conservation, as well as evolutionary relations among the sequences. Numerous dissimilarity measures achieve promising results in sequence comparison, but challenges remain. This paper studied numerical characteristics of word frequencies and proposed a novel dissimilarity measure for sequence comparison. Instead of using the word frequencies directly, the proposed measure considers both the word frequencies and overlapping structures of words. To verify the effectiveness of the proposed measure, we tested it with two experiments and further compared it with alignment-based and alignment-free measures. The results demonstrate that the proposed measure extracting more information on the overlapping structures of the words improves the efficiency of sequence comparison.

  15. Transitive Homology-Guided Structural Studies Lead to Discovery of Cro Proteins With 40% Sequence Identify But Different Folds

    SciTech Connect

    Roessler, C.G.; Hall, B.M.; Anderson, W.J.; Ingram, W.M.; Roberts, S.A.; Montfort, W.R.; Cordes, M.H.J.

    2009-05-27

    Proteins that share common ancestry may differ in structure and function because of divergent evolution of their amino acid sequences. For a typical diverse protein superfamily, the properties of a few scattered members are known from experiment. A satisfying picture of functional and structural evolution in relation to sequence changes, however, may require characterization of a larger, well chosen subset. Here, we employ a 'stepping-stone' method, based on transitive homology, to target sequences intermediate between two related proteins with known divergent properties. We apply the approach to the question of how new protein folds can evolve from preexisting folds and, in particular, to an evolutionary change in secondary structure and oligomeric state in the Cro family of bacteriophage transcription factors, initially identified by sequence-structure comparison of distant homologs from phages P22 and {lambda}. We report crystal structures of two Cro proteins, Xfaso 1 and Pfl 6, with sequences intermediate between those of P22 and {lambda}. The domains show 40% sequence identity but differ by switching of {alpha}-helix to {beta}-sheet in a C-terminal region spanning {approx}25 residues. Sedimentation analysis also suggests a correlation between helix-to-sheet conversion and strengthened dimerization.

  16. Direct Chloroplast Sequencing: Comparison of Sequencing Platforms and Analysis Tools for Whole Chloroplast Barcoding

    PubMed Central

    Brozynska, Marta; Furtado, Agnelo; Henry, Robert James

    2014-01-01

    Direct sequencing of total plant DNA using next generation sequencing technologies generates a whole chloroplast genome sequence that has the potential to provide a barcode for use in plant and food identification. Advances in DNA sequencing platforms may make this an attractive approach for routine plant identification. The HiSeq (Illumina) and Ion Torrent (Life Technology) sequencing platforms were used to sequence total DNA from rice to identify polymorphisms in the whole chloroplast genome sequence of a wild rice plant relative to cultivated rice (cv. Nipponbare). Consensus chloroplast sequences were produced by mapping sequence reads to the reference rice chloroplast genome or by de novo assembly and mapping of the resulting contigs to the reference sequence. A total of 122 polymorphisms (SNPs and indels) between the wild and cultivated rice chloroplasts were predicted by these different sequencing and analysis methods. Of these, a total of 102 polymorphisms including 90 SNPs were predicted by both platforms. Indels were more variable with different sequencing methods, with almost all discrepancies found in homopolymers. The Ion Torrent platform gave no apparent false SNP but was less reliable for indels. The methods should be suitable for routine barcoding using appropriate combinations of sequencing platform and data analysis. PMID:25329378

  17. Partial amino acid sequence of human pancreatic stone protein, a novel pancreatic secretory protein.

    PubMed Central

    Montalto, G; Bonicel, J; Multigner, L; Rovery, M; Sarles, H; De Caro, A

    1986-01-01

    Pancreatic stone protein (PSP) is the major organic component of human pancreatic stones. With the use of monoclonal antibody immunoadsorbents, five immunoreactive forms (PSP-S) with close Mr values (14,000-19,000) were isolated from normal pancreatic juice. By CM-Trisacryl M chromatography the lowest-Mr form (PSP-S1) was separated from the others and some of its molecular characteristics were investigated. The Mr of the PSP-S1 polypeptide chain calculated from the amino acid composition was about 16,100. The N-terminal sequences (40 residues) of PSP and PSP-S1 are identical, which suggests that the peptide backbone is the same for both of these polypeptides. The PSP-S1 sequence was determined up to residue 65 and was found to be different from all other known protein sequences. Images Fig. 1. PMID:3541906

  18. Protein multiple sequence alignment by hybrid bio-inspired algorithms.

    PubMed

    Cutello, Vincenzo; Nicosia, Giuseppe; Pavone, Mario; Prizzi, Igor

    2011-03-01

    This article presents an immune inspired algorithm to tackle the Multiple Sequence Alignment (MSA) problem. MSA is one of the most important tasks in biological sequence analysis. Although this paper focuses on protein alignments, most of the discussion and methodology may also be applied to DNA alignments. The problem of finding the multiple alignment was investigated in the study by Bonizzoni and Vedova and Wang and Jiang, and proved to be a NP-hard (non-deterministic polynomial-time hard) problem. The presented algorithm, called Immunological Multiple Sequence Alignment Algorithm (IMSA), incorporates two new strategies to create the initial population and specific ad hoc mutation operators. It is based on the 'weighted sum of pairs' as objective function, to evaluate a given candidate alignment. IMSA was tested using both classical benchmarks of BAliBASE (versions 1.0, 2.0 and 3.0), and experimental results indicate that it is comparable with state-of-the-art multiple alignment algorithms, in terms of quality of alignments, weighted Sums-of-Pairs (SP) and Column Score (CS) values. The main novelty of IMSA is its ability to generate more than a single suboptimal alignment, for every MSA instance; this behaviour is due to the stochastic nature of the algorithm and of the populations evolved during the convergence process. This feature will help the decision maker to assess and select a biologically relevant multiple sequence alignment. Finally, the designed algorithm can be used as a local search procedure to properly explore promising alignments of the search space.

  19. De Novo Sequencing of Top-Down Tandem Mass Spectra: A Next Step towards Retrieving a Complete Protein Sequence

    PubMed Central

    Vyatkina, Kira

    2017-01-01

    De novo sequencing of tandem (MS/MS) mass spectra represents the only way to determine the sequence of proteins from organisms with unknown genomes, or the ones not directly inscribed in a genome—such as antibodies, or novel splice variants. Top-down mass spectrometry provides new opportunities for analyzing such proteins; however, retrieving a complete protein sequence from top-down MS/MS spectra still remains a distant goal. In this paper, we review the state-of-the-art on this subject, and enhance our previously developed Twister algorithm for de novo sequencing of peptides from top-down MS/MS spectra to derive longer sequence fragments of a target protein. PMID:28248257

  20. A horizontal alignment tool for numerical trend discovery in sequence data: application to protein hydropathy.

    PubMed

    Hadzipasic, Omar; Wrabl, James O; Hilser, Vincent J

    2013-01-01

    An algorithm is presented that returns the optimal pairwise gapped alignment of two sets of signed numerical sequence values. One distinguishing feature of this algorithm is a flexible comparison engine (based on both relative shape and absolute similarity measures) that does not rely on explicit gap penalties. Additionally, an empirical probability model is developed to estimate the significance of the returned alignment with respect to randomized data. The algorithm's utility for biological hypothesis formulation is demonstrated with test cases including database search and pairwise alignment of protein hydropathy. However, the algorithm and probability model could possibly be extended to accommodate other diverse types of protein or nucleic acid data, including positional thermodynamic stability and mRNA translation efficiency. The algorithm requires only numerical values as input and will readily compare data other than protein hydropathy. The tool is therefore expected to complement, rather than replace, existing sequence and structure based tools and may inform medical discovery, as exemplified by proposed similarity between a chlamydial ORFan protein and bacterial colicin pore-forming domain. The source code, documentation, and a basic web-server application are available.

  1. Initial sequence of the chimpanzee genome and comparison with the human genome.

    PubMed

    2005-09-01

    Here we present a draft genome sequence of the common chimpanzee (Pan troglodytes). Through comparison with the human genome, we have generated a largely complete catalogue of the genetic differences that have accumulated since the human and chimpanzee species diverged from our common ancestor, constituting approximately thirty-five million single-nucleotide changes, five million insertion/deletion events, and various chromosomal rearrangements. We use this catalogue to explore the magnitude and regional variation of mutational forces shaping these two genomes, and the strength of positive and negative selection acting on their genes. In particular, we find that the patterns of evolution in human and chimpanzee protein-coding genes are highly correlated and dominated by the fixation of neutral and slightly deleterious alleles. We also use the chimpanzee genome as an outgroup to investigate human population genetics and identify signatures of selective sweeps in recent human evolution.

  2. Predicting protein-protein interactions from sequence using correlation coefficient and high-quality interaction dataset.

    PubMed

    Shi, Ming-Guang; Xia, Jun-Feng; Li, Xue-Ling; Huang, De-Shuang

    2010-03-01

    Identifying protein-protein interactions (PPIs) is critical for understanding the cellular function of the proteins and the machinery of a proteome. Data of PPIs derived from high-throughput technologies are often incomplete and noisy. Therefore, it is important to develop computational methods and high-quality interaction dataset for predicting PPIs. A sequence-based method is proposed by combining correlation coefficient (CC) transformation and support vector machine (SVM). CC transformation not only adequately considers the neighboring effect of protein sequence but describes the level of CC between two protein sequences. A gold standard positives (interacting) dataset MIPS Core and a gold standard negatives (non-interacting) dataset GO-NEG of yeast Saccharomyces cerevisiae were mined to objectively evaluate the above method and attenuate the bias. The SVM model combined with CC transformation yielded the best performance with a high accuracy of 87.94% using gold standard positives and gold standard negatives datasets. The source code of MATLAB and the datasets are available on request under smgsmg@mail.ustc.edu.cn.

  3. Large Ribosomal Protein 4 Increases Efficiency of Viral Recoding Sequences

    PubMed Central

    Green, Lisa; Houck-Loomis, Brian; Yueh, Andrew

    2012-01-01

    Expression of retroviral replication enzymes (Pol) requires a controlled translational recoding event to bypass the stop codon at the end of gag. This recoding event occurs either by direct suppression of termination via the insertion of an amino acid at the stop codon (readthrough) or by alteration of the mRNA reading frame (frameshift). Here we report the effects of a host protein, large ribosomal protein 4 (RPL4), on the efficiency of recoding. Using a dual luciferase reporter assay, we found that transfection of cells with a plasmid encoding RPL4 cDNA increases recoding efficiency in a dose-dependent manner, with a maximal enhancement of nearly twofold. Expression of RPL4 increases recoding of reporters containing retroviral readthrough and frameshift sequences, as well as the Sindbis virus leaky termination signal. RPL4-induced enhancement of recoding is cell line specific and appears to be specific to RPL4 among ribosomal proteins. Cotransfection of RPL4 cDNA with Moloney murine leukemia proviral DNA results in Gag processing defects and a reduction of viral particle formation, presumably caused by the RPL4-dependent alteration of the Gag-to-Gag-Pol ratio required for virion assembly and release. PMID:22718819

  4. Generic comparison of protein inference engines.

    PubMed

    Claassen, Manfred; Reiter, Lukas; Hengartner, Michael O; Buhmann, Joachim M; Aebersold, Ruedi

    2012-04-01

    Protein identifications, instead of peptide-spectrum matches, constitute the biologically relevant result of shotgun proteomics studies. How to appropriately infer and report protein identifications has triggered a still ongoing debate. This debate has so far suffered from the lack of appropriate performance measures that allow us to objectively assess protein inference approaches. This study describes an intuitive, generic and yet formal performance measure and demonstrates how it enables experimentalists to select an optimal protein inference strategy for a given collection of fragment ion spectra. We applied the performance measure to systematically explore the benefit of excluding possibly unreliable protein identifications, such as single-hit wonders. Therefore, we defined a family of protein inference engines by extending a simple inference engine by thousands of pruning variants, each excluding a different specified set of possibly unreliable identifications. We benchmarked these protein inference engines on several data sets representing different proteomes and mass spectrometry platforms. Optimally performing inference engines retained all high confidence spectral evidence, without posterior exclusion of any type of protein identifications. Despite the diversity of studied data sets consistently supporting this rule, other data sets might behave differently. In order to ensure maximal reliable proteome coverage for data sets arising in other studies we advocate abstaining from rigid protein inference rules, such as exclusion of single-hit wonders, and instead consider several protein inference approaches and assess these with respect to the presented performance measure in the specific application context.

  5. The amino acid sequence of protein CM-3 from Dendroaspis polylepis polylepis (black mamba) venom.

    PubMed

    Joubert, F J

    1985-01-01

    Protein CM-3 from Dendroaspis polylepis polylepis venom was purified by gel filtration and ion exchange chromatography. It comprises 65 amino acids including eight half-cystines. The complete amino acid sequence of protein CM-3 has been elucidated. The sequence (residues 1-50) resembles that of the N-terminal sequence of the subunits of a synergistic type protein and residues 51-65 that of the C-terminal sequence of an angusticeps type protein. Mixtures of protein CM-3 and angusticeps type proteins showed no apparent synergistic effect, in that their toxicity in combination was no greater than the sum of their individual toxicities.

  6. A parallel computing approach to genetic sequence comparison: the master-worker paradigm with interworker communication.

    PubMed

    Sittig, D F; Foulser, D; Carriero, N; McCorkle, G; Miller, P L

    1991-04-01

    We have implemented a parallel version of a dynamic programming biological sequence comparison algorithm to study the potential applicability of using parallel computers for genetic sequence comparisons. Our parallel program is built using C-Linda, a machine-independent parallel programming language, and was tested on both a 10 CPU Sequent Symmetry and a 64 CPU Intel Hypercube. C-Linda implements a shared associative memory model, "tuple space," through which multiple processes can communicate and coordinate control. In our master-worker (MW) parallel implementation, a master process creates several worker processes, extracts a test sequence and multiple library sequences from a database and stores them in tuple space. Each worker reads the test sequence and then repeatedly extracts library strings from tuple space, performs pairwise sequence comparison using a local comparison algorithm to generate a similarity score, and returns the similarity scores to tuple space. The master collects the scores from tuple space and identifies the best match over all library sequences. We also implemented a method of global interworker communication to reduce the total search time by stopping those string comparisons that had no chance of improving on the current best match. Comparisons of the total run time, speedup, and efficiency were made for parallel and sequential versions of a basic MW implementation as well as versions with the global abort threshold.

  7. Design of Protein Multi-specificity Using an Independent Sequence Search Reduces the Barrier to Low Energy Sequences

    PubMed Central

    Sevy, Alexander M.; Jacobs, Tim M.; Crowe, James E.; Meiler, Jens

    2015-01-01

    Computational protein design has found great success in engineering proteins for thermodynamic stability, binding specificity, or enzymatic activity in a ‘single state’ design (SSD) paradigm. Multi-specificity design (MSD), on the other hand, involves considering the stability of multiple protein states simultaneously. We have developed a novel MSD algorithm, which we refer to as REstrained CONvergence in multi-specificity design (RECON). The algorithm allows each state to adopt its own sequence throughout the design process rather than enforcing a single sequence on all states. Convergence to a single sequence is encouraged through an incrementally increasing convergence restraint for corresponding positions. Compared to MSD algorithms that enforce (constrain) an identical sequence on all states the energy landscape is simplified, which accelerates the search drastically. As a result, RECON can readily be used in simulations with a flexible protein backbone. We have benchmarked RECON on two design tasks. First, we designed antibodies derived from a common germline gene against their diverse targets to assess recovery of the germline, polyspecific sequence. Second, we design “promiscuous”, polyspecific proteins against all binding partners and measure recovery of the native sequence. We show that RECON is able to efficiently recover native-like, biologically relevant sequences in this diverse set of protein complexes. PMID:26147100

  8. Design of Protein Multi-specificity Using an Independent Sequence Search Reduces the Barrier to Low Energy Sequences.

    PubMed

    Sevy, Alexander M; Jacobs, Tim M; Crowe, James E; Meiler, Jens

    2015-07-01

    Computational protein design has found great success in engineering proteins for thermodynamic stability, binding specificity, or enzymatic activity in a 'single state' design (SSD) paradigm. Multi-specificity design (MSD), on the other hand, involves considering the stability of multiple protein states simultaneously. We have developed a novel MSD algorithm, which we refer to as REstrained CONvergence in multi-specificity design (RECON). The algorithm allows each state to adopt its own sequence throughout the design process rather than enforcing a single sequence on all states. Convergence to a single sequence is encouraged through an incrementally increasing convergence restraint for corresponding positions. Compared to MSD algorithms that enforce (constrain) an identical sequence on all states the energy landscape is simplified, which accelerates the search drastically. As a result, RECON can readily be used in simulations with a flexible protein backbone. We have benchmarked RECON on two design tasks. First, we designed antibodies derived from a common germline gene against their diverse targets to assess recovery of the germline, polyspecific sequence. Second, we design "promiscuous", polyspecific proteins against all binding partners and measure recovery of the native sequence. We show that RECON is able to efficiently recover native-like, biologically relevant sequences in this diverse set of protein complexes.

  9. Integration of latex protein sequence data provides comprehensive functional overview of latex proteins.

    PubMed

    Cho, Won Kyong; Jo, Yeonhwa; Chu, Hyosub; Park, Sang-Ho; Kim, Kook-Hyung

    2014-03-01

    The laticiferous system is one of the most important conduit systems in higher plants, which produces a milky-like sap known as latex. Latex contains diverse secondary metabolites with various ecological functions. To obtain a comprehensive overview of the latex proteome, we integrated available latex proteins sequences and constructed a comprehensive dataset composed of 1,208 non-redundant latex proteins from 20 various latex-bearing plants. The results of functional analyses revealed that latex proteins are involved in various biological processes, including transcription, translation, protein degradation and the plant response to environmental stimuli. The results of the comparative analysis showed that the functions of the latex proteins are similar to those of phloem, suggesting the functional conservation of plant vascular proteins. The presence of latex proteins in mitochondria and plastids suggests the production of diverse secondary metabolites. Furthermore, using a BLAST search, we identified 854 homologous latex proteins in eight plant species, including three latex-bearing plants, such as papaya, caster bean and cassava, suggesting that latex proteins were newly evolved in vascular plants. Taken together, this study is the largest and most comprehensive in silico analysis of the latex proteome. The results obtained here provide useful resources and information for characterizing the evolution of the latex proteome.

  10. Species-specific protein sequence and fold optimizations

    PubMed Central

    Dumontier, Michel; Michalickova, Katerina; Hogue, Christopher WV

    2002-01-01

    Background An organism's ability to adapt to its particular environmental niche is of fundamental importance to its survival and proliferation. In the largest study of its kind, we sought to identify and exploit the amino-acid signatures that make species-specific protein adaptation possible across 100 complete genomes. Results Environmental niche was determined to be a significant factor in variability from correspondence analysis using the amino acid composition of over 360,000 predicted open reading frames (ORFs) from 17 archae, 76 bacteria and 7 eukaryote complete genomes. Additionally, we found clusters of phylogenetically unrelated archae and bacteria that share similar environments by amino acid composition clustering. Composition analyses of conservative, domain-based homology modeling suggested an enrichment of small hydrophobic residues Ala, Gly, Val and charged residues Asp, Glu, His and Arg across all genomes. However, larger aromatic residues Phe, Trp and Tyr are reduced in folds, and these results were not affected by low complexity biases. We derived two simple log-odds scoring functions from ORFs (CG) and folds (CF) for each of the complete genomes. CF achieved an average cross-validation success rate of 85 ± 8% whereas the CG detected 73 ± 9% species-specific sequences when competing against all other non-redundant CG. Continuously updated results are available at . Conclusion Our analysis of amino acid compositions from the complete genomes provides stronger evidence for species-specific and environmental residue preferences in genomic sequences as well as in folds. Scoring functions derived from this work will be useful in future protein engineering experiments and possibly in identifying horizontal transfer events. PMID:12487631

  11. Extracting features from protein sequences to improve deep extreme learning machine for protein fold recognition.

    PubMed

    Ibrahim, Wisam; Abadeh, Mohammad Saniee

    2017-03-27

    Protein fold recognition is an important problem in bioinformatics to predict three-dimensional structure of a protein. One of the most challenging tasks in protein fold recognition problem is the extraction of efficient features from the amino-acid sequences to obtain better classifiers. In this paper, we have proposed six descriptors to extract features from protein sequences. These descriptors are applied in the first stage of a three-stage framework PCA-DELM-LDA to extract feature vectors from the amino-acid sequences. Principal Component Analysis PCA has been implemented to reduce the number of extracted features. The extracted feature vectors have been used with original features to improve the performance of the Deep Extreme Learning Machine DELM in the second stage. Four new features have been extracted from the second stage and used in the third stage by Linear Discriminant Analysis LDA to classify the instances into 27 folds. The proposed framework is implemented on the independent and combined feature sets in SCOP datasets. The experimental results show that extracted feature vectors in the first stage could improve the performance of DELM in extracting new useful features in second stage.

  12. Sequence-Specific Protein Aggregation Generates Defined Protein Knockdowns in Plants1[OPEN

    PubMed Central

    Vuylsteke, Marnik; Aesaert, Stijn; Rombaut, Debbie; De Smet, Frederik; Xu, Jie; Van Lijsebettens, Mieke; Rousseau, Frederic

    2016-01-01

    Protein aggregation is determined by short (5–15 amino acids) aggregation-prone regions (APRs) of the polypeptide sequence that self-associate in a specific manner to form β-structured inclusions. Here, we demonstrate that the sequence specificity of APRs can be exploited to selectively knock down proteins with different localization and function in plants. Synthetic aggregation-prone peptides derived from the APRs of either the negative regulators of the brassinosteroid (BR) signaling, the glycogen synthase kinase 3/Arabidopsis SHAGGY-like kinases (GSK3/ASKs), or the starch-degrading enzyme α-glucan water dikinase were designed. Stable expression of the APRs in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays) induced aggregation of the target proteins, giving rise to plants displaying constitutive BR responses and increased starch content, respectively. Overall, we show that the sequence specificity of APRs can be harnessed to generate aggregation-associated phenotypes in a targeted manner in different subcellular compartments. This study points toward the potential application of induced targeted aggregation as a useful tool to knock down protein functions in plants and, especially, to generate beneficial traits in crops. PMID:27208282

  13. Sequence analysis and expression of the M1 and M2 matrix protein genes of hirame rhabdovirus (HIRRV)

    USGS Publications Warehouse

    Nishizawa, T.; Kurath, G.; Winton, J.R.

    1997-01-01

    We have cloned and sequenced a 2318 nucleotide region of the genomic RNA of hirame rhabdovirus (HIRRV), an important viral pathogen of Japanese flounder Paralichthys olivaceus. This region comprises approximately two-thirds of the 3' end of the nucleocapsid protein (N) gene and the complete matrix protein (M1 and M2) genes with the associated intergenic regions. The partial N gene sequence was 812 nucleotides in length with an open reading frame (ORF) that encoded the carboxyl-terminal 250 amino acids of the N protein. The M1 and M2 genes were 771 and 700 nucleotides in length, respectively, with ORFs encoding proteins of 227 and 193 amino acids. The M1 gene sequence contained an additional small ORF that could encode a highly basic, arginine-rich protein of 25 amino acids. Comparisons of the N, M1, and M2 gene sequences of HIRRV with the corresponding sequences of the fish rhabdoviruses, infectious hematopoietic necrosis virus (IHNV) or viral hemorrhagic septicemia virus (VHSV) indicated that HIRRV was more closely related to IHNV than to VHSV, but was clearly distinct from either. The putative consensus gene termination sequence for IHNV and VHSV, AGAYAG(A)(7), was present in the N-M1, M1-M2, and M2-G intergenic regions of HIRRV as were the putative transcription initiation sequences YGGCAC and AACA. An Escherichia coli expression system was used to produce recombinant proteins from the M1 and M2 genes of HIRRV. These were the same size as the authentic M1 and M2 proteins and reacted with anti-HIRRV rabbit serum in western blots. These reagents can be used for further study of the fish immune response and to test novel control methods.

  14. Impaired nuclear import of mammalian Dlx4 proteins as a consequence of rapid sequence divergence

    SciTech Connect

    Coubrough, Melissa L.; Bendall, Andrew J. . E-mail: abendall@uoguelph.ca

    2006-11-15

    Dlx genes encode a developmentally important family of transcription factors with a variety of functions and sites of action during vertebrate embryogenesis. The murine Dlx4 gene is an enigmatic member of the family; little is known about the normal developmental function(s) of Dlx4. Here, we show that Dlx4 is expressed in the murine placenta and in a trophoblast cell line where the protein localizes to both the nucleus and cytoplasm. Despite the presence of several leucine/valine-rich motifs that match known nuclear export sequences, cytoplasmic Dlx4 is not due to CRM-1-mediated nuclear export. Rather, nuclear import of Dlx4 is compromised by specific residues that flank the nuclear localization signal. One of these residues represents a novel conserved feature of the Dlx4 protein in placental mammals, and the second represents novel variation within mouse Dlx4 isoforms. Comparison of orthologous protein sequences reveals a particularly high rate of non-synonymous change in the coding regions of mammalian Dlx4 genes. Since impaired nuclear localization is unlikely to enhance the function of a nuclear transcription factor, these data point to reduced selection pressure as the basis for the rapid divergence of the Dlx4 gene within the mammalian clade.

  15. Patterns of sequence conservation in the S-Layer proteins and related sequences in Clostridium difficile.

    PubMed

    Calabi, Emanuela; Fairweather, Neil

    2002-07-01

    Clostridium difficile is the etiological agent of antibiotic-associated diarrhea. Among the factors that may play a role in infection are S-layer proteins (SLPs). Previous work has shown these to consist mainly of two components, resulting from the cleavage of a precursor encoded by the slpA gene. The high-molecular-weight (MW) subunit is related both to amidases from B. subtilis and to at least another 28 gene products in C. difficile strain 630. To gain insight into the functions of the SLPs and related proteins, we have further investigated the pattern of variability both at the slpA locus and at six nearby paralogs. Sequencing of the slpA gene from an S-layer group II strain and a variant S-layer group strain confirms a high degree of divergence in the low-MW SLP, which may result from diversifying selection. A highly conserved motif, however, is found at the C terminus in all low-MW subunits and may be essential for SlpA precursor cleavage. In strain 167, a variant cleavage product is present, suggesting a secondary processing site. Southern blotting analysis shows slpA-like open reading frames (ORFs) 2 to 7 to be conserved in all nine strains tested, with one exception: ORF2, which encodes a 66-kDa polypeptide coextracted at low pH with the main SLPs in strain 630, may be partially deleted in strain 167. Polymorphism within the slpA-ORF7 cluster may be more pronounced in the region proximal to the slpA gene. Unexpectedly, a high-MW subunit probe cross hybridizes to sequences outside the slpA locus, which appear to vary in number in different strains.

  16. Comparison of simple sequence repeats in 19 Archaea.

    PubMed

    Trivedi, S

    2006-12-05

    All organisms that have been studied until now have been found to have differential distribution of simple sequence repeats (SSRs), with more SSRs in intergenic than in coding sequences. SSR distribution was investigated in Archaea genomes where complete chromosome sequences of 19 Archaea were analyzed with the program SPUTNIK to find di- to penta-nucleotide repeats. The number of repeats was determined for the complete chromosome sequences and for the coding and non-coding sequences. Different from what has been found for other groups of organisms, there is an abundance of SSRs in coding regions of the genome of some Archaea. Dinucleotide repeats were rare and CG repeats were found in only two Archaea. In general, trinucleotide repeats are the most abundant SSR motifs; however, pentanucleotide repeats are abundant in some Archaea. Some of the tetranucleotide and pentanucleotide repeat motifs are organism specific. In general, repeats are short and CG-rich repeats are present in Archaea having a CG-rich genome. Among the 19 Archaea, SSR density was not correlated with genome size or with optimum growth temperature. Pentanucleotide density had an inverse correlation with the CG content of the genome.

  17. Revision of Begomovirus taxonomy based on pairwise sequence comparisons.

    PubMed

    Brown, Judith K; Zerbini, F Murilo; Navas-Castillo, Jesús; Moriones, Enrique; Ramos-Sobrinho, Roberto; Silva, José C F; Fiallo-Olivé, Elvira; Briddon, Rob W; Hernández-Zepeda, Cecilia; Idris, Ali; Malathi, V G; Martin, Darren P; Rivera-Bustamante, Rafael; Ueda, Shigenori; Varsani, Arvind

    2015-06-01

    Viruses of the genus Begomovirus (family Geminiviridae) are emergent pathogens of crops throughout the tropical and subtropical regions of the world. By virtue of having a small DNA genome that is easily cloned, and due to the recent innovations in cloning and low-cost sequencing, there has been a dramatic increase in the number of available begomovirus genome sequences. Even so, most of the available sequences have been obtained from cultivated plants and are likely a small and phylogenetically unrepresentative sample of begomovirus diversity, a factor constraining taxonomic decisions such as the establishment of operationally useful species demarcation criteria. In addition, problems in assigning new viruses to established species have highlighted shortcomings in the previously recommended mechanism of species demarcation. Based on the analysis of 3,123 full-length begomovirus genome (or DNA-A component) sequences available in public databases as of December 2012, a set of revised guidelines for the classification and nomenclature of begomoviruses are proposed. The guidelines primarily consider a) genus-level biological characteristics and b) results obtained using a standardized classification tool, Sequence Demarcation Tool, which performs pairwise sequence alignments and identity calculations. These guidelines are consistent with the recently published recommendations for the genera Mastrevirus and Curtovirus of the family Geminiviridae. Genome-wide pairwise identities of 91 % and 94 % are proposed as the demarcation threshold for begomoviruses belonging to different species and strains, respectively. Procedures and guidelines are outlined for resolving conflicts that may arise when assigning species and strains to categories wherever the pairwise identity falls on or very near the demarcation threshold value.

  18. The Bioinformatics Report of Mutation Outcome on NADPH Flavin Oxidoreductase Protein Sequence in Clinical Isolates of H. pylori.

    PubMed

    Mirzaei, Nasrin; Poursina, Farkhondeh; Moghim, Sharareh; Ghaempanah, Abdol Majid; Safaei, Hajieh Ghasemian

    2016-05-01

    frxA gene has been implicated in the metronidazole nitro reduction by H. pylori. Alternatively, frxA is expected to contribute to the protection of urease and to the in vivo survival of H. pylori. The aim of present study is to report the mutation effects on the frxA protein sequence in clinical isolates of H. pylori in our community. Metronidazole resistance was proven in 27 of 48 isolates. glmM and frxA genes were used for molecular confirmation of H. pylori isolates. The primer set for detection of whole sequence of frxA gene for the effect of mutation on protein sequence was used. DNA and protein sequence evaluation and analysis were done by blast, Clustal Omega, and T COFFEE programs. Then, FrxA protein sequences from six metronidazole-resistant clinical isolates were analyzed by web-based bioinformatics tools. The result of six metronidazole-resistant clinical isolates in comparison with strain 26695 showed ten missense mutations. The result with the STRING program revealed that no change was seen after alterations in these sequences. According to consensus data involving four methods, residue substitutions at 40, 13, and 141 increase the stability of protein sequence after mutation, while other alterations decrease. Residue substitutions at 40, 43, 141, 138, 169, and 179 are deleterious, while, V7I, Q10R, V34I, and V96I alterations are neutral. As FrxA contribute to survival of bacterium and in regard to the effect of mutations on protein function, it might affect the survival and bacterium phenotype and it need to be studied more. Also, none of the stability prediction tool is perfect; iStable is the best predictor method among all methods.

  19. Snake venom. The amino acid sequence of protein A from Dendroaspis polylepis polylepis (black mamba) venom.

    PubMed

    Joubert, F J; Strydom, D J

    1980-12-01

    Protein A from Dendroaspis polylepis polylepis venom comprises 81 amino acids, including ten half-cystine residues. The complete primary structures of protein A and its variant A' were elucidated. The sequences of proteins A and A', which differ in a single position, show no homology with various neurotoxins and non-neurotoxic proteins and represent a new type of elapid venom protein.

  20. A Guaranteed Similarity Metric Learning Framework for Biological Sequence Comparison.

    PubMed

    Hua, Keru; Yu, Qin; Zhang, Ruiming

    2016-01-01

    Similarity of sequences is a key mathematical notion for Classification and Phylogenetic studies in Biology. The distance and similarity between two sequence are very important and widely studied. During the last decades, Similarity(distance) metric learning is one of the hottest topics of machine learning/data mining as well as their applications in the bioinformatics field. It is feasible to introduce machine learning technology to learn similarity metric from biological data. In this paper, we propose a novel framework of guaranteed similarity metric learning (GMSL) to perform alignment of biology sequences in any feature vector space. It introduces the (ϵ, γ, τ)-goodness similarity theory to Mahalanobis metric learning. As a theoretical guaranteed similarity metric learning approach, GMSL guarantees that the learned similarity function performs well in classification and clustering. Our experiments on the most used datasets demonstrate that our approach outperforms the state-of-the-art biological sequences alignment methods and other similarity metric learning algorithms in both accuracy and stability.

  1. The SBASE protein domain library, release 2.0: a collection of annotated protein sequence segments.

    PubMed Central

    Pongor, S; Skerl, V; Cserzö, M; Hátsági, Z; Simon, G; Bevilacqua, V

    1993-01-01

    SBASE 2.0 is the second release of SBASE, a collection of annotated protein domain sequences. SBASE entries represent various structural, functional, ligand-binding and topogenic segments of proteins [Pongor, S. et al. (1993) Prot. Eng., in press]. This release contains 34,518 entries provided with standardized names and it is cross-referenced to the major protein and nucleic acid databanks as well as to the PROSITE catalog of protein sequence patterns [Bairoch, A. (1992) Nucl. Acids Res., 20 suppl, 2013-2018]. SBASE can be used for establishing domain homologies using different database-search tools such as FASTA [Lipman and Pearson (1985) Science, 227, 1436-1441], FASTDB [Brutlag et al. (1990) Comp. Appl. Biosci., 6, 237-245] or BLAST3 [Altschul and Lipman (1990) Proc. Natl. Acad. Sci. USA, 87, 5509-5513] which is especially useful in the case of loosely defined domain types for which efficient consensus patterns can not be established. SBASE 2.0 and a set of search and retrieval tools are freely available on request to the authors or by anonymous 'ftp' file transfer from mean value of ftp.icgeb.trieste.it. PMID:8332532

  2. Weighting in sequence space: A comparison of methods in terms of generalized sequences

    SciTech Connect

    Vingron, M. ); Sibbald, P.R. )

    1993-10-01

    Four methods for weighting aligned biological sequences have recently appeared that differ mathematically, philosophically, and in their results. Thus, while there is consensus about the need to weight sequences, the method to use is contentious. A geometric analysis based on a continuous sequence space is presented that provides a common framework in which to compare the methods. It is concluded that there are two best' methods. When the sequences are known to be phylogenetically related and a tree can be generated without introducing excessive stress into the data, the method of Altschul et al. [Altschul, S.F., Carroll, R.J. Lipman, D.J. (1989) J. Mol. Biol. 207, 647-653] is appropriate. When the sequences are not known to be phylogenetically related or a tree cannot be produced without unduly distorting the distances between the sequences, a modification of the method of Sibbald and Argos [Sibbald, P.R. Argos, p. (1990) J. Mol. Biol. 216, 813-818] is preferable. 29 refs., 3 figs., 2 tabs.

  3. Poliovirus replication proteins: RNA sequence encoding P3-1b and the sites of proteolytic processing

    SciTech Connect

    Semler, B.L.; Anderson, C.W.; Kitamura, N.; Rothberg, P.G.; Wishart, W.L.; Wimmer, E.

    1981-06-01

    A partial amino-terminal amino acid sequence of each of the major proteins encoded by the replicase region of the poliovirus genome has been determined. A comparison of this sequence information with the amino acid sequence predicted from the RNA sequence that has been determined for the 3' region of the poliovirus genome has allowed us to locate precisely the proteolytic cleavage sites at which the initial polyprotein is processed to create the poliovirus products P3-1b (NCVP1b), P3-2 (NCVP2), P3-4b (NCVP4b), and P3-7c (NCVP7c). For each of these products, as well as for the small genome-linked protein VPg, proteolytic cleavage occurs between a glutamine and a glycine residue to create the amino terminus of each protein. This result suggests that a single proteinase may be responsible for all of these cleavages. The sequence data also allow the precise positioning of the genome-linked protein VPg within the precursor P3-1b just proximal to the amino terminus of polypeptide P3-2.

  4. Relationship between sequence conservation and three-dimensional structure in a large family of esterases, lipases, and related proteins.

    PubMed Central

    Cygler, M.; Schrag, J. D.; Sussman, J. L.; Harel, M.; Silman, I.; Gentry, M. K.; Doctor, B. P.

    1993-01-01

    Based on the recently determined X-ray structures of Torpedo californica acetylcholinesterase and Geotrichum candidum lipase and on their three-dimensional superposition, an improved alignment of a collection of 32 related amino acid sequences of other esterases, lipases, and related proteins was obtained. On the basis of this alignment, 24 residues are found to be invariant in 29 sequences of hydrolytic enzymes, and an additional 49 are well conserved. The conservation in the three remaining sequences is somewhat lower. The conserved residues include the active site, disulfide bridges, salt bridges, and residues in the core of the proteins. Most invariant residues are located at the edges of secondary structural elements. A clear structural basis for the preservation of many of these residues can be determined from comparison of the two X-ray structures. PMID:8453375

  5. Malakite: an automatic tool for characterisation of structure of reliable blocks in multiple alignments of protein sequences.

    PubMed

    Burkov, Boris; Nagaev, Boris; Spirin, Sergei; Alexeevski, Andrei

    2010-06-01

    It makes sense to speak of alignment of protein sequences only within the regions, where the sequences are related to each other. This simple consideration is often disregarded by programs of multiple alignment construction. A package for alignment analysis MAlAKiTE (Multiple Alignment Automatic Kinship Tiling Engine) is introduced. It aims to find the blocks of reliable alignment, which contain related regions only, within the whole alignment and allows for dealing with them. The validity of the detection of reliable blocks' was verified by comparison with structural data.

  6. 3D reconstruction software comparison for short sequences

    NASA Astrophysics Data System (ADS)

    Strupczewski, Adam; Czupryński, BłaŻej

    2014-11-01

    Large scale multiview reconstruction is recently a very popular area of research. There are many open source tools that can be downloaded and run on a personal computer. However, there are few, if any, comparisons between all the available software in terms of accuracy on small datasets that a single user can create. The typical datasets for testing of the software are archeological sites or cities, comprising thousands of images. This paper presents a comparison of currently available open source multiview reconstruction software for small datasets. It also compares the open source solutions with a simple structure from motion pipeline developed by the authors from scratch with the use of OpenCV and Eigen libraries.

  7. Comparison of immunoturbidimetric and immunonephelometric assays for specific proteins.

    PubMed

    Mali, Bahera; Armbruster, David; Serediak, Ernie; Ottenbreit, Tammy

    2009-10-01

    Immunoturbidimetric assays for specific proteins are available on "open system" clinical chemistry analyzers. The analytical performance of nine immunoturbidimetric specific protein assays (C3, C4, CRP, Haptoglobin, IgA, IgG, IgM, RF, and Transferrin) was compared to immunonephelometry. Testing was performed on the Abbott ARCHITECT ci8200 and the Dade Behring BNII nephelometer and evaluated for precision, linearity, limit of detection, prozone phenomenon, method comparison, workflow, and proficiency testing survey comparison. Immunoturbidimetric assays performance was satisfactory for total precision, linearity, limit of detection and the prozone effect was not observed. Method comparison was acceptable for the immunoglobulins, CRP and transferrin but less favorable for the other assays, likely due to methodology and antibody specificity differences. Immunourbidimetric specific protein assays allow for efficient test consolidation on a general purpose clinical chemistry analyzer.

  8. Evolution of EF-hand calcium-modulated proteins. III. Exon sequences confirm most dendrograms based on protein sequences: calmodulin dendrograms show significant lack of parallelism

    NASA Technical Reports Server (NTRS)

    Nakayama, S.; Kretsinger, R. H.

    1993-01-01

    In the first report in this series we presented dendrograms based on 152 individual proteins of the EF-hand family. In the second we used sequences from 228 proteins, containing 835 domains, and showed that eight of the 29 subfamilies are congruent and that the EF-hand domains of the remaining 21 subfamilies have diverse evolutionary histories. In this study we have computed dendrograms within and among the EF-hand subfamilies using the encoding DNA sequences. In most instances the dendrograms based on protein and on DNA sequences are very similar. Significant differences between protein and DNA trees for calmodulin remain unexplained. In our fourth report we evaluate the sequences and the distribution of introns within the EF-hand family and conclude that exon shuffling did not play a significant role in its evolution.

  9. Exhaustive comparison and classification of ligand-binding surfaces in proteins

    PubMed Central

    Murakami, Yoichi; Kinoshita, Kengo; Kinjo, Akira R; Nakamura, Haruki

    2013-01-01

    Many proteins function by interacting with other small molecules (ligands). Identification of ligand-binding sites (LBS) in proteins can therefore help to infer their molecular functions. A comprehensive comparison among local structures of LBSs was previously performed, in order to understand their relationships and to classify their structural motifs. However, similar exhaustive comparison among local surfaces of LBSs (patches) has never been performed, due to computational complexity. To enhance our understanding of LBSs, it is worth performing such comparisons among patches and classifying them based on similarities of their surface configurations and electrostatic potentials. In this study, we first developed a rapid method to compare two patches. We then clustered patches corresponding to the same PDB chemical component identifier for a ligand, and selected a representative patch from each cluster. We subsequently exhaustively as compared the representative patches and clustered them using similarity score, PatSim. Finally, the resultant PatSim scores were compared with similarities of atomic structures of the LBSs and those of the ligand-binding protein sequences and functions. Consequently, we classified the patches into ∼2000 well-characterized clusters. We found that about 63% of these clusters are used in identical protein folds, although about 25% of the clusters are conserved in distantly related proteins and even in proteins with cross-fold similarity. Furthermore, we showed that patches with higher PatSim score have potential to be involved in similar biological processes. PMID:23934772

  10. The evolution of proteins from random amino acid sequences: II. Evidence from the statistical distributions of the lengths of modern protein sequences.

    PubMed

    White, S H

    1994-04-01

    This paper continues an examination of the hypothesis that modern proteins evolved from random heteropeptide sequences. In support of the hypothesis, White and Jacobs (1993, J Mol Evol 36:79-95) have shown that any sequence chosen randomly from a large collection of nonhomologous proteins has a 90% or better chance of having a lengthwise distribution of amino acids that is indistinguishable from the random expectation regardless of amino acid type. The goal of the present study was to investigate the possibility that the random-origin hypothesis could explain the lengths of modern protein sequences without invoking specific mechanisms such as gene duplication or exon splicing. The sets of sequences examined were taken from the 1989 PIR database and consisted of 1,792 "super-family" proteins selected to have little sequence identity, 623 E. coli sequences, and 398 human sequences. The length distributions of the proteins could be described with high significance by either of two closely related probability density functions: The gamma distribution with parameter 2 or the distribution for the sum of two exponential random independent variables. A simple theory for the distributions was developed which assumes that (1) protoprotein sequences had exponentially distributed random independent lengths, (2) the length dependence of protein stability determined which of these protoproteins could fold into compact primitive proteins and thereby attain the potential for biochemical activity, (3) the useful protein sequences were preserved by the primitive genome, and (4) the resulting distribution of sequence lengths is reflected by modern proteins. The theory successfully predicts the two observed distributions which can be distinguished by the functional form of the dependence of protein stability on length. The theory leads to three interesting conclusions. First, it predicts that a tetra-nucleotide was the signal for primitive translation termination. This prediction is

  11. A local average distance descriptor for flexible protein structure comparison

    PubMed Central

    2014-01-01

    Background Protein structures are flexible and often show conformational changes upon binding to other molecules to exert biological functions. As protein structures correlate with characteristic functions, structure comparison allows classification and prediction of proteins of undefined functions. However, most comparison methods treat proteins as rigid bodies and cannot retrieve similarities of proteins with large conformational changes effectively. Results In this paper, we propose a novel descriptor, local average distance (LAD), based on either the geodesic distances (GDs) or Euclidean distances (EDs) for pairwise flexible protein structure comparison. The proposed method was compared with 7 structural alignment methods and 7 shape descriptors on two datasets comprising hinge bending motions from the MolMovDB, and the results have shown that our method outperformed all other methods regarding retrieving similar structures in terms of precision-recall curve, retrieval success rate, R-precision, mean average precision and F1-measure. Conclusions Both ED- and GD-based LAD descriptors are effective to search deformed structures and overcome the problems of self-connection caused by a large bending motion. We have also demonstrated that the ED-based LAD is more robust than the GD-based descriptor. The proposed algorithm provides an alternative approach for blasting structure database, discovering previously unknown conformational relationships, and reorganizing protein structure classification. PMID:24694083

  12. Beta.-glucosidase coding sequences and protein from orpinomyces PC-2

    DOEpatents

    Li, Xin-Liang; Ljungdahl, Lars G.; Chen, Huizhong; Ximenes, Eduardo A.

    2001-02-06

    Provided is a novel .beta.-glucosidase from Orpinomyces sp. PC2, nucleotide sequences encoding the mature protein and the precursor protein, and methods for recombinant production of this .beta.-glucosidase.

  13. Sequence-specific binding of simian virus 40 A protein to nonorigin and cellular DNA.

    PubMed Central

    Wright, P J; DeLucia, A L; Tegtmeyer, P

    1984-01-01

    The simian virus 40 A protein (T antigen) recognized and bound to the consensus sequence 5'-GAGGC-3' in DNA from many sources. Sequence-specific binding to single pentanucleotides in randomly chosen DNA predominated over binding to nonspecific sequences. The asymmetric orientation of protein bound to nonorigin recognition sequences also resembled that of protein bound to the origin region of simian virus 40 DNA. Sequence variations in the DNA adjacent to single pentanucleotides influenced binding affinities even though methylation interference and protection studies did not reveal specific interactions outside of pentanucleotides. Thus, potential locations of A protein bound to any DNA can be predicted although the determinants of binding affinity are not yet understood. Sequence-specific binding of A protein to cellular DNA would provide a mechanism for specific alterations of host gene expression that facilitate viral function. Images PMID:6570189

  14. Molecular cloning and sequencing of the gene encoding the fimbrial subunit protein of Bacteroides gingivalis.

    PubMed Central

    Dickinson, D P; Kubiniec, M A; Yoshimura, F; Genco, R J

    1988-01-01

    The gene encoding the fimbrial subunit protein of Bacteroides gingivalis 381, fimbrilin, has been cloned and sequenced. The gene was present as a single copy on the bacterial chromosome, and the codon usage in the gene conformed closely to that expected for an abundant protein. The predicted size of the mature protein was 35,924 daltons, and the secretory form may have had a 10-amino-acid, hydrophilic leader sequence similar to the leader sequences of the MePhe fimbriae family. The protein sequence had no marked similarity to known fimbrial sequences, and no homologous sequences could be found in other black-pigmented Bacteroides species, suggesting that fimbrillin represents a class of fimbrial subunit protein of limited distribution. Images PMID:2895100

  15. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins.

    PubMed

    Pruitt, Kim D; Tatusova, Tatiana; Maglott, Donna R

    2007-01-01

    NCBI's reference sequence (RefSeq) database (http://www.ncbi.nlm.nih.gov/RefSeq/) is a curated non-redundant collection of sequences representing genomes, transcripts and proteins. The database includes 3774 organisms spanning prokaryotes, eukaryotes and viruses, and has records for 2,879,860 proteins (RefSeq release 19). RefSeq records integrate information from multiple sources, when additional data are available from those sources and therefore represent a current description of the sequence and its features. Annotations include coding regions, conserved domains, tRNAs, sequence tagged sites (STS), variation, references, gene and protein product names, and database cross-references. Sequence is reviewed and features are added using a combined approach of collaboration and other input from the scientific community, prediction, propagation from GenBank and curation by NCBI staff. The format of all RefSeq records is validated, and an increasing number of tests are being applied to evaluate the quality of sequence and annotation, especially in the context of complete genomic sequence.

  16. Determination of the sequences of protein-derived peptides and peptide mixtures by mass spectrometry

    PubMed Central

    Morris, Howard R.; Williams, Dudley H.; Ambler, Richard P.

    1971-01-01

    Micro-quantities of protein-derived peptides have been converted into N-acetylated permethyl derivatives, and their sequences determined by low-resolution mass spectrometry without prior knowledge of their amino acid compositions or lengths. A new strategy is suggested for the mass spectrometric sequencing of oligopeptides or proteins, involving gel filtration of protein hydrolysates and subsequent sequence analysis of peptide mixtures. Finally, results are given that demonstrate for the first time the use of mass spectrometry for the analysis of a protein-derived peptide mixture, again without prior knowledge of the protein or components within the mixture. PMID:5158904

  17. Close Sequence Comparisons are Sufficient to Identify Humancis-Regulatory Elements

    SciTech Connect

    Prabhakar, Shyam; Poulin, Francis; Shoukry, Malak; Afzal, Veena; Rubin, Edward M.; Couronne, Olivier; Pennacchio, Len A.

    2005-12-01

    Cross-species DNA sequence comparison is the primary method used to identify functional noncoding elements in human and other large genomes. However, little is known about the relative merits of evolutionarily close and distant sequence comparisons, due to the lack of a universal metric for sequence conservation, and also the paucity of empirically defined benchmark sets of cis-regulatory elements. To address this problem, we developed a general-purpose algorithm (Gumby) that detects slowly-evolving regions in primate, mammalian and more distant comparisons without requiring adjustment of parameters, and ranks conserved elements by P-value using Karlin-Altschul statistics. We benchmarked Gumby predictions against previously identified cis-regulatory elements at diverse genomic loci, and also tested numerous extremely conserved human-rodent sequences for transcriptional enhancer activity using reporter-gene assays in transgenic mice. Human regulatory elements were identified with acceptable sensitivity and specificity by comparison with 1-5 other eutherian mammals or 6 other simian primates. More distant comparisons (marsupial, avian, amphibian and fish) failed to identify many of the empirically defined functional noncoding elements. We derived an intuitive relationship between ancient and recent noncoding sequence conservation from whole genome comparative analysis, which explains some of these findings. Lastly, we determined that, in addition to strength of conservation, genomic location and/or density of surrounding conserved elements must also be considered in selecting candidate enhancers for testing at embryonic time points.

  18. Proteomic Analysis of Lyme Disease: Global Protein Comparison of Three Strains of Borrelia burgdorferi

    SciTech Connect

    Jacobs, Jon M.; Yang, Xiaohua; Luft, Benjamin J.; Dunn, John J.; Camp, David G.; Smith, Richard D.

    2005-04-01

    The Borrelia burgdorferi spirochete is the causative agent of Lyme disease, the most common tick-borne disease in the United States. It has been studied extensively to help understand its pathogenicity of infection and how it can persist in different mammalian hosts. We report the proteomic analysis of the archetype B. burgdorferi B31 strain and two other strains (ND40, and JD-1) having different Borrelia pathotypes using strong cation exchange fractionation of proteolytic peptides followed by high-resolution, reversed phase capillary liquid chromatography coupled with ion trap tandem mass spectrometric (LC-MS/MS) analysis. Protein identification was facilitated by the availability of the complete B31 genome sequence. A total of 665 Borrelia proteins were identified representing ~38 % coverage of the theoretical B31 proteome. A significant overlap was observed between the identified proteins in direct comparisons between any two strains (>72%), but distinct differences were observed among identified hypothetical and outer membrane proteins of the three strains. Such a concurrent proteomic overview of three Borrelia strains based upon only the B31 genome sequence is shown to provide significant insights into the presence or absence of specific proteins and a broad overall comparison among strains.

  19. A comparison of protein quantitation assays for biopharmaceutical applications.

    PubMed

    Noble, J E; Knight, A E; Reason, A J; Di Matola, A; Bailey, M J A

    2007-10-01

    Dye-based protein determination assays are widely used to estimate protein concentration, however various reports suggest that the response is dependent on the composition and sequence of the protein, limiting confidence in the resulting concentration estimates. In this study a diverse set of model proteins representing various sizes of protein and covalent modifications, some typical of biopharmaceuticals have been used to assess the utility of dye-based protein concentration assays. The protein concentration assays (Bicinchoninic acid (BCA), Bradford, 3-(4-carboxybenzoyl)quinoline-2-carboxaldehyde (CBQCA), DC, Fluorescamine and Quant-i) were compared to the 'gold standard' assay, quantitative amino acid analysis (AAA). The assays that displayed the lowest variability between proteins, BCA and DC, also generated improved estimates when BSA was used as a standard, when compared to AAA derived concentrations. Assays read out by absorbance tended to display enhanced robustness and repeatability, whereas the fluorescence based assays had wider quantitation ranges and lower limits of detection. Protein modification, in the form of glycosylation and PEGylation, and the addition of excipients, were found to affect the estimation of protein concentration for some of the assays when compared to the unmodified protein. We discuss the suitability and limitations of the selected assays for the estimation of protein concentration in biopharmaceutical applications.

  20. Basal Murphy belt and Chilhowee Group -- Sequence stratigraphic comparison

    SciTech Connect

    Aylor, J.G. Jr. . Dept. of Geology)

    1994-03-01

    The lower Murphy belt in the central western Blue Ridge is interpreted to be correlative to the Early Cambrian Chilhowee Group of the westernmost Blue Ridge and Appalachian fold and thrust belt. Basal Murphy belt depositional sequence stratigraphy represents a second-order, type-2 transgressive systems tract initiated with deposition of lowstand turbidites of the Dean Formation. These transgressive deposits of the Nantahala and Brasstown Formations are interpreted as middle to outer continental shelf deposits. Cyclic and stacked third-order regressive, coarsening upwards sequences of the Nantahala Formation display an overall increase in feldspar content stratigraphically upsection. These transgressive siliciclastic deposits are interpreted to be conformably overlain by a carbonate highstand systems tract of the Murphy Marble. Palinspastic reconstruction indicates that the Nantahala and Brasstown Formations possibly represent a basinward extension of up to 3 km thick siliciclastic wedge. The wedge tapers to the southwest along the strike of the Murphy belt at 10[degree] and thins northwestward to 2 km in the Tennessee depocenter where it is represented by the Chilhowee Group. The Murphy belt basin is believed to represent a transitional rift-to-drift facies deposited on the lower plate of the southern Blue Ridge rift zone.

  1. Molecular Evolution of the Escherichia Coli Chromosome. IV. Sequence Comparisons

    PubMed Central

    Milkman, R.; Bridges, M. M.

    1993-01-01

    DNA sequences have been compared in a 4,400-bp region for Escherichia coli K12 and 36 ECOR strains. Discontinuities in degree of similarity, previously inferred, are confirmed in detail. Three clonal frames are described on the basis of the present local high-resolution data, as well as previous analyses of restriction fragment length polymorphism (RFLP) and of multilocus enzyme electrophoresis (MLEE) covering small regions more widely dispersed on the chromosome. These three approaches show important consistency. The data illustrate the fact that, in the limited context of intraspecific genomic sequence variation, clonality and homology are synonymous. Two estimable quantitative properties are defined: recency of common ancestry (the reciprocal of the log(10) of the number of generations since the most recent common ancestor), and the number of nucleotide pairs over which a given recency of common ancestry applies. In principle, these parameters are measures of the degree and physical extent of homology. The small size of apparent recombinational replacements, together with the observation that they occasionally occur in discontinuous series, raises the question of whether they result from the superimposition of replacements of much larger size (as expected from an elementary interpretation of conjugation and transduction in experimental E. coli systems) or via an alternative mechanism. Length polymorphisms of several sorts are described. PMID:8095913

  2. Comparison of Metalloproteinase Protein and Activity Profiling

    PubMed Central

    Giricz, Orsi; Lauer, Janelle L.; Fields, Gregg B.

    2010-01-01

    Proteolytic enzymes play fundamental roles in many biological processes. Members of the matrix metalloproteinase (MMP) family have been shown to take part in processes crucial in disease progression. The present study used the ExcelArray Human MMP/TIMP Array to quantify MMP and tissue inhibitor of metalloproteinase (TIMP) production in the lysates and media of 14 cancer and one normal cell line. The overall patterns were very similar in terms of which MMPs and TIMPs were secreted in the media versus associated with the cells in the individual samples. However, more MMP was found in the media, both in amount and in variety. TIMP-1 was produced in all cell lines. MMP activity assays with three different FRET substrates were then utilized to determine if protein production correlated with function for the WM-266-4 and BJ cell lines. Metalloproteinase activity was observed for both cell lines with a general MMP substrate (Knight SSP), consistent with protein production data. However, although both cell lines promoted the hydrolysis of a more selective MMP substrate (NFF-3), metalloproteinase activity was only confirmed in the BJ cell line. The use of inhibitors to confirm metalloproteinase activities pointed to the strengths and weaknesses of in situ FRET substrate assays. PMID:20920458

  3. Shark myelin basic protein: amino acid sequence, secondary structure, and self-association.

    PubMed

    Milne, T J; Atkins, A R; Warren, J A; Auton, W P; Smith, R

    1990-09-01

    Myelin basic protein (MBP) from the Whaler shark (Carcharhinus obscurus) has been purified from acid extracts of a chloroform/methanol pellet from whole brains. The amino acid sequence of the majority of the protein has been determined and compared with the sequences of other MBPs. The shark protein has only 44% homology with the bovine protein, but, in common with other MBPs, it has basic residues distributed throughout the sequence and no extensive segments that are predicted to have an ordered secondary structure in solution. Shark MBP lacks the triproline sequence previously postulated to form a hairpin bend in the molecule. The region containing the putative consensus sequence for encephalitogenicity in the guinea pig contains several substitutions, thus accounting for the lack of activity of the shark protein. Studies of the secondary structure and self-association have shown that shark MBP possesses solution properties similar to those of the bovine protein, despite the extensive differences in primary structure.

  4. A Statistical Model of Protein Sequence Similarity and Function Similarity Reveals Overly-Specific Function Predictions

    PubMed Central

    Kolker, Eugene

    2009-01-01

    Background Predicting protein function from primary sequence is an important open problem in modern biology. Not only are there many thousands of proteins of unknown function, current approaches for predicting function must be improved upon. One problem in particular is overly-specific function predictions which we address here with a new statistical model of the relationship between protein sequence similarity and protein function similarity. Methodology Our statistical model is based on sets of proteins with experimentally validated functions and numeric measures of function specificity and function similarity derived from the Gene Ontology. The model predicts the similarity of function between two proteins given their amino acid sequence similarity measured by statistics from the BLAST sequence alignment algorithm. A novel aspect of our model is that it predicts the degree of function similarity shared between two proteins over a continuous range of sequence similarity, facilitating prediction of function with an appropriate level of specificity. Significance Our model shows nearly exact function similarity for proteins with high sequence similarity (bit score >244.7, e-value >1e−62, non-redundant NCBI protein database (NRDB)) and only small likelihood of specific function match for proteins with low sequence similarity (bit score <54.6, e-value <1e−05, NRDB). For sequence similarity ranges in between our annotation model shows an increasing relationship between function similarity and sequence similarity, but with considerable variability. We applied the model to a large set of proteins of unknown function, and predicted functions for thousands of these proteins ranging from general to very specific. We also applied the model to a data set of proteins with previously assigned, specific functions that were electronically based. We show that, on average, these prior function predictions are more specific (quite possibly overly-specific) compared to

  5. Alignment-free Transcriptomic and Metatranscriptomic Comparison Using Sequencing Signatures with Variable Length Markov Chains

    PubMed Central

    Liao, Weinan; Ren, Jie; Wang, Kun; Wang, Shun; Zeng, Feng; Wang, Ying; Sun, Fengzhu

    2016-01-01

    The comparison between microbial sequencing data is critical to understand the dynamics of microbial communities. The alignment-based tools analyzing metagenomic datasets require reference sequences and read alignments. The available alignment-free dissimilarity approaches model the background sequences with Fixed Order Markov Chain (FOMC) yielding promising results for the comparison of microbial communities. However, in FOMC, the number of parameters grows exponentially with the increase of the order of Markov Chain (MC). Under a fixed high order of MC, the parameters might not be accurately estimated owing to the limitation of sequencing depth. In our study, we investigate an alternative to FOMC to model background sequences with the data-driven Variable Length Markov Chain (VLMC) in metatranscriptomic data. The VLMC originally designed for long sequences was extended to apply to high-throughput sequencing reads and the strategies to estimate the corresponding parameters were developed. The flexible number of parameters in VLMC avoids estimating the vast number of parameters of high-order MC under limited sequencing depth. Different from the manual selection in FOMC, VLMC determines the MC order adaptively. Several beta diversity measures based on VLMC were applied to compare the bacterial RNA-Seq and metatranscriptomic datasets. Experiments show that VLMC outperforms FOMC to model the background sequences in transcriptomic and metatranscriptomic samples. A software pipeline is available at https://d2vlmc.codeplex.com. PMID:27876823

  6. Reconstruction of an ancestral Yersinia pestis genome and comparison with an ancient sequence

    PubMed Central

    2015-01-01

    Background We propose the computational reconstruction of a whole bacterial ancestral genome at the nucleotide scale, and its validation by a sequence of ancient DNA. This rare possibility is offered by an ancient sequence of the late middle ages plague agent. It has been hypothesized to be ancestral to extant Yersinia pestis strains based on the pattern of nucleotide substitutions. But the dynamics of indels, duplications, insertion sequences and rearrangements has impacted all genomes much more than the substitution process, which makes the ancestral reconstruction task challenging. Results We use a set of gene families from 13 Yersinia species, construct reconciled phylogenies for all of them, and determine gene orders in ancestral species. Gene trees integrate information from the sequence, the species tree and gene order. We reconstruct ancestral sequences for ancestral genic and intergenic regions, providing nearly a complete genome sequence for the ancestor, containing a chromosome and three plasmids. Conclusion The comparison of the ancestral and ancient sequences provides a unique opportunity to assess the quality of ancestral genome reconstruction methods. But the quality of the sequencing and assembly of the ancient sequence can also be questioned by this comparison. PMID:26450112

  7. Overlapping Genes Produce Proteins with Unusual Sequence Properties and Offer Insight into De Novo Protein Creation▿ †

    PubMed Central

    Rancurel, Corinne; Khosravi, Mahvash; Dunker, A. Keith; Romero, Pedro R.; Karlin, David

    2009-01-01

    It is widely assumed that new proteins are created by duplication, fusion, or fission of existing coding sequences. Another mechanism of protein birth is provided by overlapping genes. They are created de novo by mutations within a coding sequence that lead to the expression of a novel protein in another reading frame, a process called “overprinting.” To investigate this mechanism, we have analyzed the sequences of the protein products of manually curated overlapping genes from 43 genera of unspliced RNA viruses infecting eukaryotes. Overlapping proteins have a sequence composition globally biased toward disorder-promoting amino acids and are predicted to contain significantly more structural disorder than nonoverlapping proteins. By analyzing the phylogenetic distribution of overlapping proteins, we were able to confirm that 17 of these had been created de novo and to study them individually. Most proteins created de novo are orphans (i.e., restricted to one species or genus). Almost all are accessory proteins that play a role in viral pathogenicity or spread, rather than proteins central to viral replication or structure. Most proteins created de novo are predicted to be fully disordered and have a highly unusual sequence composition. This suggests that some viral overlapping reading frames encoding hypothetical proteins with highly biased composition, often discarded as noncoding, might in fact encode proteins. Some proteins created de novo are predicted to be ordered, however, and whenever a three-dimensional structure of such a protein has been solved, it corresponds to a fold previously unobserved, suggesting that the study of these proteins could enhance our knowledge of protein space. PMID:19640978

  8. Hydrophobic-cluster analysis of plant protein sequences. A domain homology between storage and lipid-transfer proteins.

    PubMed Central

    Henrissat, B; Popineau, Y; Kader, J C

    1988-01-01

    Hydrophobic-cluster analysis was used to characterize a conserved domain located near the C-terminal amino acid sequence of wheat (Triticum aestivum) storage proteins. This domain was transformed into a linear template for a global search for similarities in over 5200 protein sequences. In addition to proteins that had already been found to exhibit homology to wheat storage proteins, a previously unreported homology was found with non-specific lipid-transfer proteins from castor bean (Ricinus communis) and from spinach (Spinacia oleracea) leaf. Hydrophobic-cluster analysis of various members of the present protein group clearly shows a typical domain structure where (i) variable and conserved domains are located along the sequence at precise positions, (ii) the conserved domains probably reflect a common ancestor, and (iii) the unique properties of a given protein (chain cut into subunits, repetitive domains, trypsin-inhibitor active site) are associated with the variable domains. PMID:3214430

  9. Conservation of Shannon's redundancy for proteins. [information theory applied to amino acid sequences

    NASA Technical Reports Server (NTRS)

    Gatlin, L. L.

    1974-01-01

    Concepts of information theory are applied to examine various proteins in terms of their redundancy in natural originators such as animals and plants. The Monte Carlo method is used to derive information parameters for random protein sequences. Real protein sequence parameters are compared with the standard parameters of protein sequences having a specific length. The tendency of a chain to contain some amino acids more frequently than others and the tendency of a chain to contain certain amino acid pairs more frequently than other pairs are used as randomness measures of individual protein sequences. Non-periodic proteins are generally found to have random Shannon redundancies except in cases of constraints due to short chain length and genetic codes. Redundant characteristics of highly periodic proteins are discussed. A degree of periodicity parameter is derived.

  10. Microwave-assisted acid and base hydrolysis of intact proteins containing disulfide bonds for protein sequence analysis by mass spectrometry.

    PubMed

    Reiz, Bela; Li, Liang

    2010-09-01

    Controlled hydrolysis of proteins to generate peptide ladders combined with mass spectrometric analysis of the resultant peptides can be used for protein sequencing. In this paper, two methods of improving the microwave-assisted protein hydrolysis process are described to enable rapid sequencing of proteins containing disulfide bonds and increase sequence coverage, respectively. It was demonstrated that proteins containing disulfide bonds could be sequenced by MS analysis by first performing hydrolysis for less than 2 min, followed by 1 h of reduction to release the peptides originally linked by disulfide bonds. It was shown that a strong base could be used as a catalyst for microwave-assisted protein hydrolysis, producing complementary sequence information to that generated by microwave-assisted acid hydrolysis. However, using either acid or base hydrolysis, amide bond breakages in small regions of the polypeptide chains of the model proteins (e.g., cytochrome c and lysozyme) were not detected. Dynamic light scattering measurement of the proteins solubilized in an acid or base indicated that protein-protein interaction or aggregation was not the cause of the failure to hydrolyze certain amide bonds. It was speculated that there were some unknown local structures that might play a role in preventing an acid or base from reacting with the peptide bonds therein.

  11. Quantitative Assessment of RNA-Protein Interactions with High Throughput Sequencing - RNA Affinity Profiling (HiTS-RAP)

    PubMed Central

    Ozer, Abdullah; Tome, Jacob M.; Friedman, Robin C.; Gheba, Dan; Schroth, Gary P.; Lis, John T.

    2016-01-01

    Because RNA-protein interactions play a central role in a wide-array of biological processes, methods that enable a quantitative assessment of these interactions in a high-throughput manner are in great demand. Recently, we developed the High Throughput Sequencing-RNA Affinity Profiling (HiTS-RAP) assay, which couples sequencing on an Illumina GAIIx with the quantitative assessment of one or several proteins’ interactions with millions of different RNAs in a single experiment. We have successfully used HiTS-RAP to analyze interactions of EGFP and NELF-E proteins with their corresponding canonical and mutant RNA aptamers. Here, we provide a detailed protocol for HiTS-RAP, which can be completed in about a month (8 days hands-on time) including the preparation and testing of recombinant proteins and DNA templates, clustering DNA templates on a flowcell, high-throughput sequencing and protein binding with GAIIx, and finally data analysis. We also highlight aspects of HiTS-RAP that can be further improved and points of comparison between HiTS-RAP and two other recently developed methods, RNA-MaP and RBNS. A successful HiTS-RAP experiment provides the sequence and binding curves for approximately 200 million RNAs in a single experiment. PMID:26182240

  12. Efficient Multicriteria Protein Structure Comparison on Modern Processor Architectures.

    PubMed

    Sharma, Anuj; Manolakos, Elias S

    2015-01-01

    Fast increasing computational demand for all-to-all protein structures comparison (PSC) is a result of three confounding factors: rapidly expanding structural proteomics databases, high computational complexity of pairwise protein comparison algorithms, and the trend in the domain towards using multiple criteria for protein structures comparison (MCPSC) and combining results. We have developed a software framework that exploits many-core and multicore CPUs to implement efficient parallel MCPSC in modern processors based on three popular PSC methods, namely, TMalign, CE, and USM. We evaluate and compare the performance and efficiency of the two parallel MCPSC implementations using Intel's experimental many-core Single-Chip Cloud Computer (SCC) as well as Intel's Core i7 multicore processor. We show that the 48-core SCC is more efficient than the latest generation Core i7, achieving a speedup factor of 42 (efficiency of 0.9), making many-core processors an exciting emerging technology for large-scale structural proteomics. We compare and contrast the performance of the two processors on several datasets and also show that MCPSC outperforms its component methods in grouping related domains, achieving a high F-measure of 0.91 on the benchmark CK34 dataset. The software implementation for protein structure comparison using the three methods and combined MCPSC, along with the developed underlying rckskel algorithmic skeletons library, is available via GitHub.

  13. Efficient Multicriteria Protein Structure Comparison on Modern Processor Architectures

    PubMed Central

    Sharma, Anuj; Manolakos, Elias S.

    2015-01-01

    Fast increasing computational demand for all-to-all protein structures comparison (PSC) is a result of three confounding factors: rapidly expanding structural proteomics databases, high computational complexity of pairwise protein comparison algorithms, and the trend in the domain towards using multiple criteria for protein structures comparison (MCPSC) and combining results. We have developed a software framework that exploits many-core and multicore CPUs to implement efficient parallel MCPSC in modern processors based on three popular PSC methods, namely, TMalign, CE, and USM. We evaluate and compare the performance and efficiency of the two parallel MCPSC implementations using Intel's experimental many-core Single-Chip Cloud Computer (SCC) as well as Intel's Core i7 multicore processor. We show that the 48-core SCC is more efficient than the latest generation Core i7, achieving a speedup factor of 42 (efficiency of 0.9), making many-core processors an exciting emerging technology for large-scale structural proteomics. We compare and contrast the performance of the two processors on several datasets and also show that MCPSC outperforms its component methods in grouping related domains, achieving a high F-measure of 0.91 on the benchmark CK34 dataset. The software implementation for protein structure comparison using the three methods and combined MCPSC, along with the developed underlying rckskel algorithmic skeletons library, is available via GitHub. PMID:26605332

  14. Sensitive protein comparisons with profiles and hidden Markov models.

    PubMed

    Hofmann, K

    2000-05-01

    Sequence database searches have become an important tool for the life sciences in general and for gene discovery-driven biotechnology in particular. Both the functional assignment of newly found proteins and the mining of genome databases for functional candidates are equally important tasks typically addressed by database searches. Sensitivity and reliability of the search methods are of crucial importance. The overall performance of sequence alignments and database searches can be enhanced considerably, when profiles or hidden Markov models (HMMs) derived from protein families are used as query objects instead of single sequences. This review discusses the concept of profiles, generalised profiles and profile-HMMs, the methods how they are constructed and the scope of possible applications in gene discovery and gene functional assignment.

  15. Protein identities from 'Graphocephala atropunctata' expressed sequence tags: Expanding leafhopper vector biology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heat shock proteins and 44 protein sequences from the blue-green sharpshooter, BGSS, were produced and identified. The sequences were submitted and published under accession numbers: DQ445499-DQ445542, in the National Center for Biotechnology Information, NCBI, Public Database. The blue-green sharps...

  16. Improvements to pairwise sequence comparison (PASC): a genome-based web tool for virus classification.

    PubMed

    Bao, Yiming; Chetvernin, Vyacheslav; Tatusova, Tatiana

    2014-12-01

    The number of viral genome sequences in the public databases is increasing dramatically, and these sequences are playing an important role in virus classification. Pairwise sequence comparison is a sequence-based virus classification method. A program using this method calculates the pairwise identities of virus sequences within a virus family and displays their distribution, and visual analysis helps to determine demarcations at different taxonomic levels such as strain, species, genus and subfamily. Subsequent comparison of new sequences against existing ones allows viruses from which the new sequences were derived to be classified. Although this method cannot be used as the only criterion for virus classification in some cases, it is a quantitative method and has many advantages over conventional virus classification methods. It has been applied to several virus families, and there is an increasing interest in using this method for other virus families/groups. The Pairwise Sequence Comparison (PASC) classification tool was created at the National Center for Biotechnology Information. The tool's database stores pairwise identities for complete genomes/segments of 56 virus families/groups. Data in the system are updated every day to reflect changes in virus taxonomy and additions of new virus sequences to the public database. The web interface of the tool ( http://www.ncbi.nlm.nih.gov/sutils/pasc/ ) makes it easy to navigate and perform analyses. Multiple new viral genome sequences can be tested simultaneously with this system to suggest the taxonomic position of virus isolates in a specific family. PASC eliminates potential discrepancies in the results caused by different algorithms and/or different data used by researchers.

  17. Protein identification with N and C-terminal sequence tags in proteome projects.

    PubMed

    Wilkins, M R; Gasteiger, E; Tonella, L; Ou, K; Tyler, M; Sanchez, J C; Gooley, A A; Walsh, B J; Bairoch, A; Appel, R D; Williams, K L; Hochstrasser, D F

    1998-05-08

    Genome sequences are available for increasing numbers of organisms. The proteomes (protein complement expressed by the genome) of many such organisms are being studied with two-dimensional (2D) gel electrophoresis. Here we have investigated the application of short N-terminal and C-terminal sequence tags to the identification of proteins separated on 2D gels. The theoretical N and C termini of 15, 519 proteins, representing all SWISS-PROT entries for the organisms Mycoplasma genitalium, Bacillus subtilis, Escherichia coli, Saccharomyces cerevisiae and human, were analysed. Sequence tags were found to be surprisingly specific, with N-terminal tags of four amino acid residues found to be unique for between 43% and 83% of proteins, and C-terminal tags of four amino acid residues unique for between 74% and 97% of proteins, depending on the species studied. Sequence tags of five amino acid residues were found to be even more specific. To utilise this specificity of sequence tags for protein identification, we created a world-wide web-accessible protein identification program, TagIdent (http://www.expasy.ch/www/tools.html), which matches sequence tags of up to six amino acid residues as well as estimated protein pI and mass against proteins in the SWISS-PROT database. We demonstrate the utility of this identification approach with sequence tags generated from 91 different E. coli proteins purified by 2D gel electrophoresis. Fifty-one proteins were unambiguously identified by virtue of their sequence tags and estimated pI and mass, and a further 11 proteins identified when sequence tags were combined with protein amino acid composition data. We conlcude that the TagIdent identification approach is best suited to the identification of proteins from prokaryotes whose complete genome sequences are available. The approach is less well suited to proteins from eukaryotes, as many eukaryotic proteins are not amenable to sequencing via Edman degradation, and tag protein

  18. Protein sequences from mastodon and Tyrannosaurus rex revealed by mass spectrometry.

    PubMed

    Asara, John M; Schweitzer, Mary H; Freimark, Lisa M; Phillips, Matthew; Cantley, Lewis C

    2007-04-13

    Fossilized bones from extinct taxa harbor the potential for obtaining protein or DNA sequences that could reveal evolutionary links to extant species. We used mass spectrometry to obtain protein sequences from bones of a 160,000- to 600,000-year-old extinct mastodon (Mammut americanum) and a 68-million-year-old dinosaur (Tyrannosaurus rex). The presence of T. rex sequences indicates that their peptide bonds were remarkably stable. Mass spectrometry can thus be used to determine unique sequences from ancient organisms from peptide fragmentation patterns, a valuable tool to study the evolution and adaptation of ancient taxa from which genomic sequences are unlikely to be obtained.

  19. An efficient binomial model-based measure for sequence comparison and its application.

    PubMed

    Liu, Xiaoqing; Dai, Qi; Li, Lihua; He, Zerong

    2011-04-01

    Sequence comparison is one of the major tasks in bioinformatics, which could serve as evidence of structural and functional conservation, as well as of evolutionary relations. There are several similarity/dissimilarity measures for sequence comparison, but challenges remains. This paper presented a binomial model-based measure to analyze biological sequences. With help of a random indicator, the occurrence of a word at any position of sequence can be regarded as a random Bernoulli variable, and the distribution of a sum of the word occurrence is well known to be a binomial one. By using a recursive formula, we computed the binomial probability of the word count and proposed a binomial model-based measure based on the relative entropy. The proposed measure was tested by extensive experiments including classification of HEV genotypes and phylogenetic analysis, and further compared with alignment-based and alignment-free measures. The results demonstrate that the proposed measure based on binomial model is more efficient.

  20. Reprint of "Identification of staphylococcal species based on variations in protein sequences (mass spectrometry) and DNA sequence (sodA microarray)".

    PubMed

    Kooken, Jennifer; Fox, Karen; Fox, Alvin; Altomare, Diego; Creek, Kim; Wunschel, David; Pajares-Merino, Sara; Martínez-Ballesteros, Ilargi; Garaizar, Javier; Oyarzabal, Omar; Samadpour, Mansour

    2014-01-01

    This report is among the first using sequence variation in newly discovered protein markers for staphylococcal (or indeed any other bacterial) speciation. Variation, at the DNA sequence level, in the sodA gene (commonly used for staphylococcal speciation) provided excellent correlation. Relatedness among strains was also assessed using protein profiling using microcapillary electrophoresis and pulsed field electrophoresis. A total of 64 strains were analyzed including reference strains representing the 11 staphylococcal species most commonly isolated from man (Staphylococcus aureus and 10 coagulase negative species [CoNS]). Matrix assisted time of flight ionization/ionization mass spectrometry (MALDI TOF MS) and liquid chromatography-electrospray ionization tandem mass spectrometry (LC ESI MS/MS) were used for peptide analysis of proteins isolated from gel bands. Comparison of experimental spectra of unknowns versus spectra of peptides derived from reference strains allowed bacterial identification after MALDI TOF MS analysis. After LC-MS/MS analysis of gel bands bacterial speciation was performed by comparing experimental spectra versus virtual spectra using the software X!Tandem. Finally LC-MS/MS was performed on whole proteomes and data analysis also employing X!tandem. Aconitate hydratase and oxoglutarate dehydrogenase served as marker proteins on focused analysis after gel separation. Alternatively on full proteomics analysis elongation factor Tu generally provided the highest confidence in staphylococcal speciation.

  1. Hydrophobic Blocks Facilitate Lipid Compatibility and Translocon Recognition of Transmembrane Protein Sequences

    PubMed Central

    2016-01-01

    Biophysical hydrophobicity scales suggest that partitioning of a protein segment from an aqueous phase into a membrane is governed by its perceived segmental hydrophobicity but do not establish specifically (i) how the segment is identified in vivo for translocon-mediated insertion or (ii) whether the destination lipid bilayer is biochemically receptive to the inserted sequence. To examine the congruence between these dual requirements, we designed and synthesized a library of Lys-tagged peptides of a core length sufficient to span a bilayer but with varying patterns of sequence, each composed of nine Leu residues, nine Ser residues, and one (central) Trp residue. We found that peptides containing contiguous Leu residues (Leu-block peptides, e.g., LLLLLLLLLWSSSSSSSSS), in comparison to those containing discontinuous stretches of Leu residues (non-Leu-block peptides, e.g., SLSLLSLSSWSLLSLSLLS), displayed greater helicity (circular dichroism spectroscopy), traveled slower during sodium dodecyl sulfate–polyacrylamide gel electrophoresis, had longer reverse phase high-performance liquid chromatography retention times on a C-18 column, and were helical when reconstituted into 1-palmitoyl-2-oleoylglycero-3-phosphocholine liposomes, each observation indicating superior lipid compatibility when a Leu-block is present. These parameters were largely paralleled in a biological membrane insertion assay using microsomal membranes from dog pancreas endoplasmic reticulum, where we found only the Leu-block sequences successfully inserted; intriguingly, an amphipathic peptide (SLLSSLLSSWLLSSLLSSL; Leu face, Ser face) with biophysical properties similar to those of Leu-block peptides failed to insert. Our overall results identify local sequence lipid compatibility rather than average hydrophobicity as a principal determinant of transmembrane segment potential, while demonstrating that further subtleties of hydrophobic and helical patterning, such as circumferential hydrophobicity

  2. Hydrophobic blocks facilitate lipid compatibility and translocon recognition of transmembrane protein sequences.

    PubMed

    Stone, Tracy A; Schiller, Nina; von Heijne, Gunnar; Deber, Charles M

    2015-02-24

    Biophysical hydrophobicity scales suggest that partitioning of a protein segment from an aqueous phase into a membrane is governed by its perceived segmental hydrophobicity but do not establish specifically (i) how the segment is identified in vivo for translocon-mediated insertion or (ii) whether the destination lipid bilayer is biochemically receptive to the inserted sequence. To examine the congruence between these dual requirements, we designed and synthesized a library of Lys-tagged peptides of a core length sufficient to span a bilayer but with varying patterns of sequence, each composed of nine Leu residues, nine Ser residues, and one (central) Trp residue. We found that peptides containing contiguous Leu residues (Leu-block peptides, e.g., LLLLLLLLLWSSSSSSSSS), in comparison to those containing discontinuous stretches of Leu residues (non-Leu-block peptides, e.g., SLSLLSLSSWSLLSLSLLS), displayed greater helicity (circular dichroism spectroscopy), traveled slower during sodium dodecyl sulfate-polyacrylamide gel electrophoresis, had longer reverse phase high-performance liquid chromatography retention times on a C-18 column, and were helical when reconstituted into 1-palmitoyl-2-oleoylglycero-3-phosphocholine liposomes, each observation indicating superior lipid compatibility when a Leu-block is present. These parameters were largely paralleled in a biological membrane insertion assay using microsomal membranes from dog pancreas endoplasmic reticulum, where we found only the Leu-block sequences successfully inserted; intriguingly, an amphipathic peptide (SLLSSLLSSWLLSSLLSSL; Leu face, Ser face) with biophysical properties similar to those of Leu-block peptides failed to insert. Our overall results identify local sequence lipid compatibility rather than average hydrophobicity as a principal determinant of transmembrane segment potential, while demonstrating that further subtleties of hydrophobic and helical patterning, such as circumferential hydrophobicity in

  3. Nucleotide sequence variation of the envelope protein gene identifies two distinct genotypes of yellow fever virus.

    PubMed Central

    Chang, G J; Cropp, B C; Kinney, R M; Trent, D W; Gubler, D J

    1995-01-01

    The evolution of yellow fever virus over 67 years was investigated by comparing the nucleotide sequences of the envelope (E) protein genes of 20 viruses isolated in Africa, the Caribbean, and South America. Uniformly weighted parsimony algorithm analysis defined two major evolutionary yellow fever virus lineages designated E genotypes I and II. E genotype I contained viruses isolated from East and Central Africa. E genotype II viruses were divided into two sublineages: IIA viruses from West Africa and IIB viruses from America, except for a 1979 virus isolated from Trinidad (TRINID79A). Unique signature patterns were identified at 111 nucleotide and 12 amino acid positions within the yellow fever virus E gene by signature pattern analysis. Yellow fever viruses from East and Central Africa contained unique signatures at 60 nucleotide and five amino acid positions, those from West Africa contained unique signatures at 25 nucleotide and two amino acid positions, and viruses from America contained such signatures at 30 nucleotide and five amino acid positions in the E gene. The dissemination of yellow fever viruses from Africa to the Americas is supported by the close genetic relatedness of genotype IIA and IIB viruses and genetic evidence of a possible second introduction of yellow fever virus from West Africa, as illustrated by the TRINID79A virus isolate. The E protein genes of American IIB yellow fever viruses had higher frequencies of amino acid substitutions than did genes of yellow fever viruses of genotypes I and IIA on the basis of comparisons with a consensus amino acid sequence for the yellow fever E gene. The great variation in the E proteins of American yellow fever virus probably results from positive selection imposed by virus interaction with different species of mosquitoes or nonhuman primates in the Americas. PMID:7637022

  4. A simple and fast approach to prediction of protein secondary structure from multiply aligned sequences with accuracy above 70%.

    PubMed Central

    Mehta, P. K.; Heringa, J.; Argos, P.

    1995-01-01

    To improve secondary structure predictions in protein sequences, the information residing in multiple sequence alignments of substituted but structurally related proteins is exploited. A database comprised of 70 protein families and a total of 2,500 sequences, some of which were aligned by tertiary structural superpositions, was used to calculate residue exchange weight matrices within alpha-helical, beta-strand, and coil substructures, respectively. Secondary structure predictions were made based on the observed residue substitutions in local regions of the multiple alignments and the largest possible associated exchange weights in each of the three matrix types. Comparison of the observed and predicted secondary structure on a per-residue basis yielded a mean accuracy of 72.2%. Individual alpha-helix, beta-strand, and coil states were respectively predicted at 66.7, and 75.8% correctness, representing a well-balanced three-state prediction. The accuracy level, verified by cross-validation through jack-knife tests on all protein families, dropped, on average, to only 70.9%, indicating the rigor of the prediction procedure. On the basis of robustness, conceptual clarity, accuracy, and executable efficiency, the method has considerable advantage, especially with its sole reliance on amino acid substitutions within structurally related proteins. PMID:8580842

  5. The amino-acid sequence of the 2S sulphur-rich proteins from seeds of Brazil nut (Bertholletia excelsa H.B.K.).

    PubMed

    Ampe, C; Van Damme, J; de Castro, L A; Sampaio, M J; Van Montagu, M; Vandekerckhove, J

    1986-09-15

    Storage proteins of the albumin solubility fraction from seeds of Bertholletia excelsa H.B.K. were separated by reversed-phase high-performance liquid chromatography and their primary structures were determined by gas-phase sequencing on intact polypeptides and on the overlapping tryptic and thermolysin peptides. The 2S storage proteins consist of two subunits linked by disulphide bridges. The large subunit (8.5 kDa) is expressed in at least six different isoforms while the small subunit (3.6 kDa) consists of only one form. These proteins are extremely rich in glutamine, glutamic acid, arginine and the sulphur-containing amino acids cysteine and methionine. One of the variants even contains a sequence of six methionine residues in a row. Comparison with known sequences of 2S proteins of other dicotyledonous plants shows limited but distinct sequence homology. In particular, the positions of the cysteine residues relative to each other appear to be completely conserved, suggesting that tertiary structure constraints imposed by disulphide bridges dominate sequence conservation. It has been proposed that the two subunits of a related protein (the Brassica napus storage protein) is cleaved from a precursor polypeptide [Crouch, M. L., Tenbarge, K. M., Simon, A. E. & Ferl, R. (1983) J. Mol. Appl. Genet. 2,273-283]. The amino acid sequence homology of the Brazil nut protein with the former suggests that a similar protein processing event could occur.

  6. Transporter taxonomy - a comparison of different transport protein classification schemes.

    PubMed

    Viereck, Michael; Gaulton, Anna; Digles, Daniela; Ecker, Gerhard F

    2014-06-01

    Currently, there are more than 800 well characterized human membrane transport proteins (including channels and transporters) and there are estimates that about 10% (approx. 2000) of all human genes are related to transport. Membrane transport proteins are of interest as potential drug targets, for drug delivery, and as a cause of side effects and drug–drug interactions. In light of the development of Open PHACTS, which provides an open pharmacological space, we analyzed selected membrane transport protein classification schemes (Transporter Classification Database, ChEMBL, IUPHAR/BPS Guide to Pharmacology, and Gene Ontology) for their ability to serve as a basis for pharmacology driven protein classification. A comparison of these membrane transport protein classification schemes by using a set of clinically relevant transporters as use-case reveals the strengths and weaknesses of the different taxonomy approaches.

  7. Unravelling the relationship between protein sequence and low-complexity regions entropies: Interactome implications.

    PubMed

    Martins, F; Gonçalves, R; Oliveira, J; Cruz-Monteagudo, M; Nieto-Villar, J M; Paz-y-Miño, C; Rebelo, I; Tejera, E

    2015-10-07

    Low-complexity regions are sub-sequences of biased composition in a protein sequence. The influence of these regions over protein evolution, specific functions and highly interactive capacities is well known. Although protein sequence entropy has been largely studied, its relationship with low-complexity regions and the subsequent effects on protein function remains unclear. In this work we propose a theoretical and empirical model integrating the sequence entropy with local complexity parameters. Our results indicate that the protein sequence entropy is related with the protein length, the entropies inside and outside the low-complexity regions as well as their number and average size. We found a small but significant increment in the sequence entropy of hubs proteins. In agreement with our theoretical model, this increment is highly dependent of the balance between the increment of protein length and average size of the low-complexity regions. Finally, our models and proteins analysis provide evidence supporting that modifications in the average size is more relevant in hubs proteins than changes in the number of low-complexity regions.

  8. Nucleic acid (cDNA) and amino acid sequences of the maize endosperm protein glutelin-2.

    PubMed Central

    Prat, S; Cortadas, J; Puigdomènech, P; Palau, J

    1985-01-01

    The cDNA coding for a glutelin-2 protein from maize endosperm has been cloned and the complete amino acid sequence of the protein derived for the first time. An immature maize endosperm cDNA bank was screened for the expression of a beta-lactamase:glutelin-2 (G2) fusion polypeptide by using antibodies against the purified 28 kd G2 protein. A clone corresponding to the 28 kd G2 protein was sequenced and the primary structure of this protein was derived. Five regions can be defined in the protein sequence: an 11 residue N-terminal part, a repeated region formed by eight units of the sequence Pro-Pro-Pro-Val-His-Leu, an alternating Pro-X stretch 21 residues long, a Cys rich domain and a C-terminal part rich in Gln. The protein sequence is preceded by 19 residues which have the characteristics of the signal peptide found in secreted proteins. Unlike zeins, the main maize storage proteins, 28 kd glutelin-2 has several homologous sequences in common with other cereal storage proteins. Images PMID:3839076

  9. An optimistic protein assembly from sequence reads salvaged an uncharacterized segment of mouse picobirnavirus

    PubMed Central

    Gonzalez, Gabriel; Sasaki, Michihito; Burkitt-Gray, Lucy; Kamiya, Tomonori; Tsuji, Noriko M.; Sawa, Hirofumi; Ito, Kimihito

    2017-01-01

    Advances in Next Generation Sequencing technologies have enabled the generation of millions of sequences from microorganisms. However, distinguishing the sequence of a novel species from sequencing errors remains a technical challenge when the novel species is highly divergent from the closest known species. To solve such a problem, we developed a new method called Optimistic Protein Assembly from Reads (OPAR). This method is based on the assumption that protein sequences could be more conserved than the nucleotide sequences encoding them. By taking advantage of metagenomics, bioinformatics and conventional Sanger sequencing, our method successfully identified all coding regions of the mouse picobirnavirus for the first time. The salvaged sequences indicated that segment 1 of this virus was more divergent from its homologues in other Picobirnaviridae species than segment 2. For this reason, only segment 2 of mouse picobirnavirus has been detected in previous studies. OPAR web tool is available at http://bioinformatics.czc.hokudai.ac.jp/opar/. PMID:28071766

  10. Development of a protein microarray using sequence-specific DNA binding domain on DNA chip surface

    SciTech Connect

    Choi, Yoo Seong; Pack, Seung Pil; Yoo, Young Je . E-mail: yjyoo@snu.ac.kr

    2005-04-22

    A protein microarray based on DNA microarray platform was developed to identify protein-protein interactions in vitro. The conventional DNA chip surface by 156-bp PCR product was prepared for a substrate of protein microarray. High-affinity sequence-specific DNA binding domain, GAL4 DNA binding domain, was introduced to the protein microarray as fusion partner of a target model protein, enhanced green fluorescent protein. The target protein was oriented immobilized directly on the DNA chip surface. Finally, monoclonal antibody of the target protein was used to identify the immobilized protein on the surface. This study shows that the conventional DNA chip can be used to make a protein microarray directly, and this novel protein microarray can be applicable as a tool for identifying protein-protein interactions.

  11. Nucleotide sequence of murine PCNA: interspecies comparison of the cDNA and the 5' flanking region of the gene.

    PubMed

    Shipman-Appasamy, P M; Cohen, K S; Prystowsky, M B

    1991-01-01

    Proliferating cell nuclear antigen (PCNA) RNA levels are regulated by transcription as well as changes in stability, in growing cells. We have cloned the murine PCNA cDNA and a fragment of the murine PCNA gene flanking the transcription initiation site. Comparison of the murine deduced amino acid sequence with the PCNA sequence from rat, human, Drosophila, Saccharomyces cerevisiae, and higher plants, reveals extensive homology between species. The homology is likely to be related to the fundamental role of PCNA as an auxiliary protein for DNA replication. Consensus sequences for transcriptional regulatory factors identified within 520 bp 5' of the cap site of the murine PCNA gene include: an inverted CCAAT site, an enhancer core element (EBP-1), three cAMP-response elements (CRE-BP), one AP-2 site, three Sp1 sites, and two octamer sequences. The first 20 bp of the transcriptional unit are homologous to an initiator element, which may direct transcription from RNA polymerase II in the absence of a TATAA box. The consensus elements in the murine PCNA gene are similar in sequence and/or location to elements identified in the genes for human, Drosophilia, and yeast PCNA.

  12. HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment.

    PubMed

    Remmert, Michael; Biegert, Andreas; Hauser, Andreas; Söding, Johannes

    2011-12-25

    Sequence-based protein function and structure prediction depends crucially on sequence-search sensitivity and accuracy of the resulting sequence alignments. We present an open-source, general-purpose tool that represents both query and database sequences by profile hidden Markov models (HMMs): 'HMM-HMM-based lightning-fast iterative sequence search' (HHblits; http://toolkit.genzentrum.lmu.de/hhblits/). Compared to the sequence-search tool PSI-BLAST, HHblits is faster owing to its discretized-profile prefilter, has 50-100% higher sensitivity and generates more accurate alignments.

  13. Full validation of therapeutic antibody sequences by middle-up mass measurements and middle-down protein sequencing.

    PubMed

    Resemann, Anja; Jabs, Wolfgang; Wiechmann, Anja; Wagner, Elsa; Colas, Olivier; Evers, Waltraud; Belau, Eckhard; Vorwerg, Lars; Evans, Catherine; Beck, Alain; Suckau, Detlev

    2016-01-01

    The regulatory bodies request full sequence data assessment both for innovator and biosimilar monoclonal antibodies (mAbs). Full sequence coverage is typically used to verify the integrity of the analytical data obtained following the combination of multiple LC-MS/MS datasets from orthogonal protease digests (so called "bottom-up" approaches). Top-down or middle-down mass spectrometric approaches have the potential to minimize artifacts, reduce overall analysis time and provide orthogonality to this traditional approach. In this work we report a new combined approach involving middle-up LC-QTOF and middle-down LC-MALDI in-source decay (ISD) mass spectrometry. This was applied to cetuximab, panitumumab and natalizumab, selected as representative US Food and Drug Administration- and European Medicines Agency-approved mAbs. The goal was to unambiguously confirm their reference sequences and examine the general applicability of this approach. Furthermore, a new measure for assessing the integrity and validity of results from middle-down approaches is introduced - the "Sequence Validation Percentage." Full sequence data assessment of the 3 antibodies was achieved enabling all 3 sequences to be fully validated by a combination of middle-up molecular weight determination and middle-down protein sequencing. Three errors in the reference amino acid sequence of natalizumab, causing a cumulative mass shift of only -2 Da in the natalizumab Fd domain, were corrected as a result of this work.

  14. Full validation of therapeutic antibody sequences by middle-up mass measurements and middle-down protein sequencing

    PubMed Central

    Resemann, Anja; Jabs, Wolfgang; Wiechmann, Anja; Wagner, Elsa; Colas, Olivier; Evers, Waltraud; Belau, Eckhard; Vorwerg, Lars; Evans, Catherine; Beck, Alain; Suckau, Detlev

    2016-01-01

    ABSTRACT The regulatory bodies request full sequence data assessment both for innovator and biosimilar monoclonal antibodies (mAbs). Full sequence coverage is typically used to verify the integrity of the analytical data obtained following the combination of multiple LC-MS/MS datasets from orthogonal protease digests (so called “bottom-up” approaches). Top-down or middle-down mass spectrometric approaches have the potential to minimize artifacts, reduce overall analysis time and provide orthogonality to this traditional approach. In this work we report a new combined approach involving middle-up LC-QTOF and middle-down LC-MALDI in-source decay (ISD) mass spectrometry. This was applied to cetuximab, panitumumab and natalizumab, selected as representative US Food and Drug Administration- and European Medicines Agency-approved mAbs. The goal was to unambiguously confirm their reference sequences and examine the general applicability of this approach. Furthermore, a new measure for assessing the integrity and validity of results from middle-down approaches is introduced – the “Sequence Validation Percentage.” Full sequence data assessment of the 3 antibodies was achieved enabling all 3 sequences to be fully validated by a combination of middle-up molecular weight determination and middle-down protein sequencing. Three errors in the reference amino acid sequence of natalizumab, causing a cumulative mass shift of only −2 Da in the natalizumab Fd domain, were corrected as a result of this work. PMID:26760197

  15. Investigation of the protein osteocalcin of Camelops hesternus: Sequence, structure and phylogenetic implications

    NASA Astrophysics Data System (ADS)

    Humpula, James F.; Ostrom, Peggy H.; Gandhi, Hasand; Strahler, John R.; Walker, Angela K.; Stafford, Thomas W.; Smith, James J.; Voorhies, Michael R.; George Corner, R.; Andrews, Phillip C.

    2007-12-01

    Ancient DNA sequences offer an extraordinary opportunity to unravel the evolutionary history of ancient organisms. Protein sequences offer another reservoir of genetic information that has recently become tractable through the application of mass spectrometric techniques. The extent to which ancient protein sequences resolve phylogenetic relationships, however, has not been explored. We determined the osteocalcin amino acid sequence from the bone of an extinct Camelid (21 ka, Camelops hesternus) excavated from Isleta Cave, New Mexico and three bones of extant camelids: bactrian camel ( Camelus bactrianus); dromedary camel ( Camelus dromedarius) and guanaco ( Llama guanacoe) for a diagenetic and phylogenetic assessment. There was no difference in sequence among the four taxa. Structural attributes observed in both modern and ancient osteocalcin include a post-translation modification, Hyp 9, deamidation of Gln 35 and Gln 39, and oxidation of Met 36. Carbamylation of the N-terminus in ancient osteocalcin may result in blockage and explain previous difficulties in sequencing ancient proteins via Edman degradation. A phylogenetic analysis using osteocalcin sequences of 25 vertebrate taxa was conducted to explore osteocalcin protein evolution and the utility of osteocalcin sequences for delineating phylogenetic relationships. The maximum likelihood tree closely reflected generally recognized taxonomic relationships. For example, maximum likelihood analysis recovered rodents, birds and, within hominins, the Homo-Pan-Gorilla trichotomy. Within Artiodactyla, character state analysis showed that a substitution of Pro 4 for His 4 defines the Capra-Ovis clade within Artiodactyla. Homoplasy in our analysis indicated that osteocalcin evolution is not a perfect indicator of species evolution. Limited sequence availability prevented assigning functional significance to sequence changes. Our preliminary analysis of osteocalcin evolution represents an initial step towards a

  16. Comparison of alignment software for genome-wide bisulphite sequence data

    PubMed Central

    Chatterjee, Aniruddha; Stockwell, Peter A.; Rodger, Euan J.; Morison, Ian M.

    2012-01-01

    Recent advances in next generation sequencing (NGS) technology now provide the opportunity to rapidly interrogate the methylation status of the genome. However, there are challenges in handling and interpretation of the methylation sequence data because of its large volume and the consequences of bisulphite modification. We sequenced reduced representation human genomes on the Illumina platform and efficiently mapped and visualized the data with different pipelines and software packages. We examined three pipelines for aligning bisulphite converted sequencing reads and compared their performance. We also comment on pre-processing and quality control of Illumina data. This comparison highlights differences in methods for NGS data processing and provides guidance to advance sequence-based methylation data analysis for molecular biologists. PMID:22344695

  17. A Comparison of Base-calling Algorithms for Illumina Sequencing Technology.

    PubMed

    Cacho, Ashley; Smirnova, Ekaterina; Huzurbazar, Snehalata; Cui, Xinping

    2016-09-01

    Recent advances in next-generation sequencing technology have yielded increasing cost-effectiveness and higher throughput produced per run, in turn, greatly influencing the analysis of DNA sequences. Among the various sequencing technologies, Illumina is by far the most widely used platform. However, the Illumina sequencing platform suffers from several imperfections that can be attributed to the chemical processes inherent to the sequencing-by-synthesis technology. With the enormous amounts of reads produced, statistical methodologies and computationally efficient algorithms are required to improve the accuracy and speed of base-calling. Over the past few years, several papers have proposed methods to model the various imperfections, giving rise to accurate and/or efficient base-calling algorithms. In this article, we provide a comprehensive comparison of the performance of recently developed base-callers and we present a general statistical model that unifies a large majority of these base-callers.

  18. Chaos game representation of functional protein sequences, and simulation and multifractal analysis of induced measures

    NASA Astrophysics Data System (ADS)

    Yu, Zu-Guo; Xiao, Qian-Jun; Shi, Long; Yu, Jun-Wu; Vo, Anh

    2010-06-01

    Investigating the biological function of proteins is a key aspect of protein studies. Bioinformatic methods become important for studying the biological function of proteins. In this paper, we first give the chaos game representation (CGR) of randomly-linked functional protein sequences, then propose the use of the recurrent iterated function systems (RIFS) in fractal theory to simulate the measure based on their chaos game representations. This method helps to extract some features of functional protein sequences, and furthermore the biological functions of these proteins. Then multifractal analysis of the measures based on the CGRs of randomly-linked functional protein sequences are performed. We find that the CGRs have clear fractal patterns. The numerical results show that the RIFS can simulate the measure based on the CGR very well. The relative standard error and the estimated probability matrix in the RIFS do not depend on the order to link the functional protein sequences. The estimated probability matrices in the RIFS with different biological functions are evidently different. Hence the estimated probability matrices in the RIFS can be used to characterise the difference among linked functional protein sequences with different biological functions. From the values of the Dq curves, one sees that these functional protein sequences are not completely random. The Dq of all linked functional proteins studied are multifractal-like and sufficiently smooth for the Cq (analogous to specific heat) curves to be meaningful. Furthermore, the Dq curves of the measure μ based on their CGRs for different orders to link the functional protein sequences are almost identical if q >= 0. Finally, the Cq curves of all linked functional proteins resemble a classical phase transition at a critical point.

  19. CAMELOT: A machine learning approach for coarse-grained simulations of aggregation of block-copolymeric protein sequences

    SciTech Connect

    Ruff, Kiersten M.; Harmon, Tyler S.; Pappu, Rohit V.

    2015-12-28

    We report the development and deployment of a coarse-graining method that is well suited for computer simulations of aggregation and phase separation of protein sequences with block-copolymeric architectures. Our algorithm, named CAMELOT for Coarse-grained simulations Aided by MachinE Learning Optimization and Training, leverages information from converged all atom simulations that is used to determine a suitable resolution and parameterize the coarse-grained model. To parameterize a system-specific coarse-grained model, we use a combination of Boltzmann inversion, non-linear regression, and a Gaussian process Bayesian optimization approach. The accuracy of the coarse-grained model is demonstrated through direct comparisons to results from all atom simulations. We demonstrate the utility of our coarse-graining approach using the block-copolymeric sequence from the exon 1 encoded sequence of the huntingtin protein. This sequence comprises of 17 residues from the N-terminal end of huntingtin (N17) followed by a polyglutamine (polyQ) tract. Simulations based on the CAMELOT approach are used to show that the adsorption and unfolding of the wild type N17 and its sequence variants on the surface of polyQ tracts engender a patchy colloid like architecture that promotes the formation of linear aggregates. These results provide a plausible explanation for experimental observations, which show that N17 accelerates the formation of linear aggregates in block-copolymeric N17-polyQ sequences. The CAMELOT approach is versatile and is generalizable for simulating the aggregation and phase behavior of a range of block-copolymeric protein sequences.

  20. CAMELOT: A machine learning approach for coarse-grained simulations of aggregation of block-copolymeric protein sequences

    PubMed Central

    Ruff, Kiersten M.; Harmon, Tyler S.; Pappu, Rohit V.

    2015-01-01

    We report the development and deployment of a coarse-graining method that is well suited for computer simulations of aggregation and phase separation of protein sequences with block-copolymeric architectures. Our algorithm, named CAMELOT for Coarse-grained simulations Aided by MachinE Learning Optimization and Training, leverages information from converged all atom simulations that is used to determine a suitable resolution and parameterize the coarse-grained model. To parameterize a system-specific coarse-grained model, we use a combination of Boltzmann inversion, non-linear regression, and a Gaussian process Bayesian optimization approach. The accuracy of the coarse-grained model is demonstrated through direct comparisons to results from all atom simulations. We demonstrate the utility of our coarse-graining approach using the block-copolymeric sequence from the exon 1 encoded sequence of the huntingtin protein. This sequence comprises of 17 residues from the N-terminal end of huntingtin (N17) followed by a polyglutamine (polyQ) tract. Simulations based on the CAMELOT approach are used to show that the adsorption and unfolding of the wild type N17 and its sequence variants on the surface of polyQ tracts engender a patchy colloid like architecture that promotes the formation of linear aggregates. These results provide a plausible explanation for experimental observations, which show that N17 accelerates the formation of linear aggregates in block-copolymeric N17-polyQ sequences. The CAMELOT approach is versatile and is generalizable for simulating the aggregation and phase behavior of a range of block-copolymeric protein sequences. PMID:26723608

  1. CAMELOT: A machine learning approach for coarse-grained simulations of aggregation of block-copolymeric protein sequences

    NASA Astrophysics Data System (ADS)

    Ruff, Kiersten M.; Harmon, Tyler S.; Pappu, Rohit V.

    2015-12-01

    We report the development and deployment of a coarse-graining method that is well suited for computer simulations of aggregation and phase separation of protein sequences with block-copolymeric architectures. Our algorithm, named CAMELOT for Coarse-grained simulations Aided by MachinE Learning Optimization and Training, leverages information from converged all atom simulations that is used to determine a suitable resolution and parameterize the coarse-grained model. To parameterize a system-specific coarse-grained model, we use a combination of Boltzmann inversion, non-linear regression, and a Gaussian process Bayesian optimization approach. The accuracy of the coarse-grained model is demonstrated through direct comparisons to results from all atom simulations. We demonstrate the utility of our coarse-graining approach using the block-copolymeric sequence from the exon 1 encoded sequence of the huntingtin protein. This sequence comprises of 17 residues from the N-terminal end of huntingtin (N17) followed by a polyglutamine (polyQ) tract. Simulations based on the CAMELOT approach are used to show that the adsorption and unfolding of the wild type N17 and its sequence variants on the surface of polyQ tracts engender a patchy colloid like architecture that promotes the formation of linear aggregates. These results provide a plausible explanation for experimental observations, which show that N17 accelerates the formation of linear aggregates in block-copolymeric N17-polyQ sequences. The CAMELOT approach is versatile and is generalizable for simulating the aggregation and phase behavior of a range of block-copolymeric protein sequences.

  2. In Silico Characterization of Pectate Lyase Protein Sequences from Different Source Organisms

    PubMed Central

    Dubey, Amit Kumar; Yadav, Sangeeta; Kumar, Manish; Singh, Vinay Kumar; Sarangi, Bijaya Ketan; Yadav, Dinesh

    2010-01-01

    A total of 121 protein sequences of pectate lyases were subjected to homology search, multiple sequence alignment, phylogenetic tree construction, and motif analysis. The phylogenetic tree constructed revealed different clusters based on different source organisms representing bacterial, fungal, plant, and nematode pectate lyases. The multiple accessions of bacterial, fungal, nematode, and plant pectate lyase protein sequences were placed closely revealing a sequence level similarity. The multiple sequence alignment of these pectate lyase protein sequences from different source organisms showed conserved regions at different stretches with maximum homology from amino acid residues 439–467, 715–816, and 829–910 which could be used for designing degenerate primers or probes specific for pectate lyases. The motif analysis revealed a conserved Pec_Lyase_C domain uniformly observed in all pectate lyases irrespective of variable sources suggesting its possible role in structural and enzymatic functions. PMID:21048874

  3. Comparison and quantitative verification of mapping algorithms for whole genome bisulfite sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Coupling bisulfite conversion with next-generation sequencing (Bisulfite-seq) enables genome-wide measurement of DNA methylation, but poses unique challenges for mapping. However, despite a proliferation of Bisulfite-seq mapping tools, no systematic comparison of their genomic coverage and quantitat...

  4. Structure-based evaluation of sequence comparison and fold recognition alignment accuracy.

    PubMed

    Domingues, F S; Lackner, P; Andreeva, A; Sippl, M J

    2000-04-07

    The biological role, biochemical function, and structure of uncharacterized protein sequences is often inferred from their similarity to known proteins. A constant goal is to increase the reliability, sensitivity, and accuracy of alignment techniques to enable the detection of increasingly distant relationships. Development, tuning, and testing of these methods benefit from appropriate benchmarks for the assessment of alignment accuracy.Here, we describe a benchmark protocol to estimate sequence-to-sequence and sequence-to-structure alignment accuracy. The protocol consists of structurally related pairs of proteins and procedures to evaluate alignment accuracy over the whole set. The set of protein pairs covers all the currently known fold types. The benchmark is challenging in the sense that it consists of proteins lacking clear sequence similarity. Correct target alignments are derived from the three-dimensional structures of these pairs by rigid body superposition. An evaluation engine computes the accuracy of alignments obtained from a particular algorithm in terms of alignment shifts with respect to the structure derived alignments. Using this benchmark we estimate that the best results can be obtained from a combination of amino acid residue substitution matrices and knowledge-based potentials.

  5. SCOWLP classification: Structural comparison and analysis of protein binding regions

    PubMed Central

    Teyra, Joan; Paszkowski-Rogacz, Maciej; Anders, Gerd; Pisabarro, M Teresa

    2008-01-01

    classification of PBRs is implemented into the SCOWLP database and extends the SCOP classification with three additional family sub-levels: Binding Region, Interface and Contacting Domains. SCOWLP contains 9,334 binding regions distributed within 2,561 families. In 65% of the cases we observe families containing more than one binding region. Besides, 22% of the regions are forming complex with more than one different protein family. Conclusion The current SCOWLP classification and its web application represent a framework for the study of protein interfaces and comparative analysis of protein family binding regions. This comparison can be performed at atomic level and allows the user to study interactome conservation and variability. The new SCOWLP classification may be of great utility for reconstruction of protein complexes, understanding protein networks and ligand design. SCOWLP will be updated with every SCOP release. The web application is available at . PMID:18182098

  6. Sequence and structural similarities between the leucine-specific binding protein and leucyl-tRNA synthetase of Escherichia coli.

    PubMed Central

    Williamson, R M; Oxender, D L

    1990-01-01

    A role for the leucyl-tRNA synthetase (EC 6.1.1.4) has been established for regulating the transport of leucine across the inner membrane of Escherichia coli by the leucine, isoleucine, valine (LIV-I) transport system. This transport system is mediated by interactions of periplasmic binding proteins with a complex of membrane-associated proteins, and transcription of the high-affinity branched-chain amino acid transport system genes is repressed by growth of E. coli on high levels of leucine. We now report results from sequence comparisons and structural modeling studies, which indicate that the leucine-specific binding protein, one of the periplasmic components of the LIV-I transport system, contains a 121-residue stretch, representing 36% of the mature protein, which displays both sequence and structural similarities to a region within the putative nucleotide-binding domain of leucyl-tRNA synthetase. Early fusion events between ancestral genes for the leucine-specific binding protein and leucyl-tRNA synthetase could account for the similarity and suggest that processes of aminoacylation and transport for leucine in E. coli may be performed by evolutionarily interrelated proteins. PMID:2191293

  7. Comparison of surface and hydrogel-based protein microchips.

    PubMed

    Zubtsov, D A; Savvateeva, E N; Rubina, A Yu; Pan'kov, S V; Konovalova, E V; Moiseeva, O V; Chechetkin, V R; Zasedatelev, A S

    2007-09-15

    Protein microchips are designed for high-throughput evaluation of the concentrations and activities of various proteins. The rapid advance in microchip technology and a wide variety of existing techniques pose the problem of unified approach to the assessment and comparison of different platforms. Here we compare the characteristics of protein microchips developed for quantitative immunoassay with those of antibodies immobilized on glass surfaces and in hemispherical gel pads. Spotting concentrations of antibodies used for manufacturing of microchips of both types and concentrations of antigen in analyte solution were identical. We compared the efficiency of antibody immobilization, the intensity of fluorescence signals for both direct and sandwich-type immunoassays, and the reaction-diffusion kinetics of the formation of antibody-antigen complexes for surface and gel-based microchips. Our results demonstrate higher capacity and sensitivity for the hydrogel-based protein microchips, while fluorescence saturation kinetics for the two types of microarrays was comparable.

  8. Beyond Linear Sequence Comparisons: The use of genome-levelcharacters for phylogenetic reconstruction

    SciTech Connect

    Boore, Jeffrey L.

    2004-11-27

    Although the phylogenetic relationships of many organisms have been convincingly resolved by the comparisons of nucleotide or amino acid sequences, others have remained equivocal despite great effort. Now that large-scale genome sequencing projects are sampling many lineages, it is becoming feasible to compare large data sets of genome-level features and to develop this as a tool for phylogenetic reconstruction that has advantages over conventional sequence comparisons. Although it is unlikely that these will address a large number of evolutionary branch points across the broad tree of life due to the infeasibility of such sampling, they have great potential for convincingly resolving many critical, contested relationships for which no other data seems promising. However, it is important that we recognize potential pitfalls, establish reasonable standards for acceptance, and employ rigorous methodology to guard against a return to earlier days of scenario-driven evolutionary reconstructions.

  9. Gene sequence and predicted amino acid sequence of the motA protein, a membrane-associated protein required for flagellar rotation in Escherichia coli.

    PubMed Central

    Dean, G E; Macnab, R M; Stader, J; Matsumura, P; Burks, C

    1984-01-01

    The motA and motB gene products of Escherichia coli are integral membrane proteins necessary for flagellar rotation. We determined the DNA sequence of the region containing the motA gene and its promoter. Within this sequence, there is an open reading frame of 885 nucleotides, which with high probability (98% confidence level) meets criteria for a coding sequence. The 295-residue amino acid translation product had a molecular weight of 31,974, in good agreement with the value determined experimentally by gel electrophoresis. The amino acid sequence, which was quite hydrophobic, was subjected to a theoretical analysis designed to predict membrane-spanning alpha-helical segments of integral membrane proteins; four such hydrophobic helices were predicted by this treatment. Additional amphipathic helices may also be present. A remarkable feature of the sequence is the existence of two segments of high uncompensated charge density, one positive and the other negative. Possible organization of the protein in the membrane is discussed. Asymmetry in the amino acid composition of translated DNA sequences was used to distinguish between two possible initiation codons. The use of this method as a criterion for authentication of coding regions is described briefly in an Appendix. PMID:6090403

  10. Establishing knowledge on the sequence arrangement pattern of nucleated protein folding

    PubMed Central

    Leng, Fei; Xu, Chao; Xia, Xia-Yu; Pan, Xian-Ming

    2017-01-01

    The heat-tolerance mechanisms of (hyper)thermophilic proteins provide a unique opportunity to investigate the unsolved protein folding problem. In an attempt to determine whether the interval between residues in sequence might play a role in determining thermostability, we constructed a sequence interval-dependent value function to calculate the residue pair frequency. Additionally, we identified a new sequence arrangement pattern, where like-charged residues tend to be adjacently assembled, while unlike-charged residues are distributed over longer intervals, using statistical analysis of a large sequence database. This finding indicated that increasing the intervals between unlike-charged residues can increase protein thermostability, with the arrangement patterns of these charged residues serving as thermodynamically favorable nucleation points for protein folding. Additionally, we identified that the residue pairs K-E, R-E, L-V and V-V involving long sequence intervals play important roles involving increased protein thermostability. This work demonstrated a novel approach for considering sequence intervals as keys to understanding protein folding. Our findings of novel relationships between residue arrangement and protein thermostability can be used in industry and academia to aid the design of thermostable proteins. PMID:28273143

  11. CSA: comprehensive comparison of pairwise protein structure alignments

    PubMed Central

    Wohlers, Inken; Malod-Dognin, Noël; Andonov, Rumen; Klau, Gunnar W.

    2012-01-01

    CSA is a web server for the computation, evaluation and comprehensive comparison of pairwise protein structure alignments. Its exact alignment engine computes either optimal, top-scoring alignments or heuristic alignments with quality guarantee for the inter-residue distance-based scorings of contact map overlap, PAUL, DALI and MATRAS. These and additional, uploaded alignments are compared using a number of quality measures and intuitive visualizations. CSA brings new insight into the structural relationship of the protein pairs under investigation and is a valuable tool for studying structural similarities. It is available at http://csa.project.cwi.nl. PMID:22553365

  12. CSA: comprehensive comparison of pairwise protein structure alignments.

    PubMed

    Wohlers, Inken; Malod-Dognin, Noël; Andonov, Rumen; Klau, Gunnar W

    2012-07-01

    CSA is a web server for the computation, evaluation and comprehensive comparison of pairwise protein structure alignments. Its exact alignment engine computes either optimal, top-scoring alignments or heuristic alignments with quality guarantee for the inter-residue distance-based scorings of contact map overlap, PAUL, DALI and MATRAS. These and additional, uploaded alignments are compared using a number of quality measures and intuitive visualizations. CSA brings new insight into the structural relationship of the protein pairs under investigation and is a valuable tool for studying structural similarities. It is available at http://csa.project.cwi.nl.

  13. A comparative study of Whi5 and retinoblastoma proteins: from sequence and structure analysis to intracellular networks

    PubMed Central

    Hasan, Md Mehedi; Brocca, Stefania; Sacco, Elena; Spinelli, Michela; Papaleo, Elena; Lambrughi, Matteo; Alberghina, Lilia; Vanoni, Marco

    2014-01-01

    Cell growth and proliferation require a complex series of tight-regulated and well-orchestrated events. Accordingly, proteins governing such events are evolutionary conserved, even among distant organisms. By contrast, it is more singular the case of “core functions” exerted by functional analogous proteins that are not homologous and do not share any kind of structural similarity. This is the case of proteins regulating the G1/S transition in higher eukaryotes–i.e., the retinoblastoma (Rb) tumor suppressor Rb—and budding yeast, i.e., Whi5. The interaction landscape of Rb and Whi5 is quite large, with more than one hundred proteins interacting either genetically or physically with each protein. The Whi5 interactome has been used to construct a concept map of Whi5 function and regulation. Comparison of physical and genetic interactors of Rb and Whi5 allows highlighting a significant core of conserved, common functionalities associated with the interactors indicating that structure and function of the network—rather than individual proteins—are conserved during evolution. A combined bioinformatics and biochemical approach has shown that the whole Whi5 protein is highly disordered, except for a small region containing the protein family signature. The comparison with Whi5 homologs from Saccharomycetales has prompted the hypothesis of a modular organization of structural disorder, with most evolutionary conserved regions alternating with highly variable ones. The finding of a consensus sequence points to the conservation of a specific phosphorylation rhythm along with two disordered sequence motifs, probably acting as phosphorylation-dependent seeds in Whi5 folding/unfolding. Thus, the widely disordered Whi5 appears to act as a hierarchical, “date hub” that has evolutionary assayed an original way of modular organization before being supplanted by the globular, multi-domain structured Rb, more suitable to cover the role of a “party hub”. PMID

  14. Detection of Weakly Conserved Ancestral Mammalian RegulatorySequences by Primate Comparisons

    SciTech Connect

    Wang, Qian-fei; Prabhakar, Shyam; Chanan, Sumita; Cheng,Jan-Fang; Rubin, Edward M.; Boffelli, Dario

    2006-06-01

    Genomic comparisons between human and distant, non-primatemammals are commonly used to identify cis-regulatory elements based onconstrained sequence evolution. However, these methods fail to detectcryptic functional elements, which are too weakly conserved among mammalsto distinguish from nonfunctional DNA. To address this problem, weexplored the potential of deep intra-primate sequence comparisons. Wesequenced the orthologs of 558 kb of human genomic sequence, coveringmultiple loci involved in cholesterol homeostasis, in 6 nonhumanprimates. Our analysis identified 6 noncoding DNA elements displayingsignificant conservation among primates, but undetectable in more distantcomparisons. In vitro and in vivo tests revealed that at least three ofthese 6 elements have regulatory function. Notably, the mouse orthologsof these three functional human sequences had regulatory activity despitetheir lack of significant sequence conservation, indicating that they arecryptic ancestral cis-regulatory elements. These regulatory elementscould still be detected in a smaller set of three primate speciesincluding human, rhesus and marmoset. Since the human and rhesus genomesequences are already available, and the marmoset genome is activelybeing sequenced, the primate-specific conservation analysis describedhere can be applied in the near future on a whole-genome scale, tocomplement the annotation provided by more distant speciescomparisons.

  15. Fast computational methods for predicting protein structure from primary amino acid sequence

    DOEpatents

    Agarwal, Pratul Kumar

    2011-07-19

    The present invention provides a method utilizing primary amino acid sequence of a protein, energy minimization, molecular dynamics and protein vibrational modes to predict three-dimensional structure of a protein. The present invention also determines possible intermediates in the protein folding pathway. The present invention has important applications to the design of novel drugs as well as protein engineering. The present invention predicts the three-dimensional structure of a protein independent of size of the protein, overcoming a significant limitation in the prior art.

  16. A protein block based fold recognition method for the annotation of twilight zone sequences.

    PubMed

    Suresh, V; Ganesan, K; Parthasarathy, S

    2013-03-01

    The description of protein backbone was recently improved with a group of structural fragments called Structural Alphabets instead of the regular three states (Helix, Sheet and Coil) secondary structure description. Protein Blocks is one of the Structural Alphabets used to describe each and every region of protein backbone including the coil. According to de Brevern (2000) the Protein Blocks has 16 structural fragments and each one has 5 residues in length. Protein Blocks fragments are highly informative among the available Structural Alphabets and it has been used for many applications. Here, we present a protein fold recognition method based on Protein Blocks for the annotation of twilight zone sequences. In our method, we align the predicted Protein Blocks of a query amino acid sequence with a library of assigned Protein Blocks of 953 known folds using the local pair-wise alignment. The alignment results with z-value ≥ 2.5 and P-value ≤ 0.08 are predicted as possible folds. Our method is able to recognize the possible folds for nearly 35.5% of the twilight zone sequences with their predicted Protein Block sequence obtained by pb_prediction, which is available at Protein Block Export server.

  17. The Use of Peptide Markers of Carp and Herring Allergens as an Example of Detection of Sequenced and Non-Sequenced Proteins

    PubMed Central

    Minkiewicz, Piotr

    2016-01-01

    Summary The objective of this study is to identify fish protein markers for detecting multiple species based on a comparative proteomic approach that relies on fragments with identical sequences. The possibilities and challenges of the use of peptides obtained from carp (Cyprinus carpio) and herring (Clupea harengus) proteins are discussed. A bioinformatic analysis was followed by an LC-MS/MS experiment to identify markers predicting the presence of fish allergenic proteins. Selected myosin peptides were found in carp protein hydrolysates with known sequences and in herring protein hydrolysates with unknown sequences. The results obtained for carp and herring proteins myosin and parvalbumin indicate that proteins with unknown sequences can be identified by peptide markers. Such markers can be designed by disregarding the principle that peptides should be unique (present in one sequence). The challenge is to determine a group of proteins that can be detected by peptide identification. PMID:27956857

  18. Structure- and Sequence-Based Function Prediction for Non-Homologous Proteins

    PubMed Central

    Sael, Lee; Chitale, Meghana; Kihara, Daisuke

    2012-01-01

    The structural genomics projects have been accumulating an increasing number of protein structures, many of which remain functionally unknown. In parallel effort to experimental methods, computational methods are expected to make a significant contribution for functional elucidation of such proteins. However, conventional computational methods that transfer functions from homologous proteins do not help much for these uncharacterized protein structures because they do not have apparent structural or sequence similarity with the known proteins. Here, we briefly review two avenues of computational function prediction methods, i.e. structure-based methods and sequence-based methods. The focus is on our recently developments of local structure-based methods and sequence-based methods, which can effectively extract function information from distantly related proteins. Two structure-based methods, Pocket-Surfer and Patch-Surfer, identify similar known ligand binding sites for pocket regions in a query protein without using global protein fold similarity information. Two sequence-based methods, PFP and ESG, make use of weakly similar sequences that are conventionally discarded in homology based function annotation. Combined together with experimental methods we hope that computational methods will make leading contribution in functional elucidation of the protein structures. PMID:22270458

  19. Primary structure of streptococcal Pep M5 protein: Absence of extensive sequence repeats

    PubMed Central

    Manjula, Belur N.; Mische, Sheenah M.; Fischetti, Vincent A.

    1983-01-01

    Extensive sequence repeats have been observed in a biologically active fragment of type 24 streptococcal M protein, namely Pep M24 [Beachey, E. H., Sayer, J. M. & Kang, A. H. (1978) Proc. Natl. Acad. Sci. USA 75, 3163-3167]. To determine whether such extensive repetition in sequence is a common characteristic of the antiphagocytic streptococcal M proteins, we have determined the sequences of the clostripain peptides of Pep M5, a biologically active fragment of the type 5 M protein that is analogous to Pep M24. These sequences, together with the amino-terminal sequence of the whole molecule, accounted for nearly two thirds of the Pep M5 molecule. However, extensive identical repeats of the kind observed in Pep M24 were not present in Pep M5. Preliminary study of the amino acid sequence analysis of the M protein from type 6 Streptococcus has also indicated the absence of sequence repeats within the regions of this molecule examined so far. These results suggest that extensive sequence repeats may not be a common characteristic of M-protein molecules. On the other hand, the seven-residue periodicity of the nonpolar residues, a characteristic of α-helical coiled-coil structures, appeared to extend over most of the Pep M5 molecule. This feature has been observed previously for the partial sequences of three M protein serotypes. Thus, the important element of the M-protein structure appears to be the seven-residue periodicity necessary for the maintenance of the coiled-coil structure rather than extensive identical amino acid sequence repeats. PMID:16593365

  20. Contributions of the Prion Protein Sequence, Strain, and Environment to the Species Barrier*

    PubMed Central

    Sharma, Aditi; Bruce, Kathryn L.; Chen, Buxin; Gyoneva, Stefka; Behrens, Sven H.; Bommarius, Andreas S.; Chernoff, Yury O.

    2016-01-01

    Amyloid propagation requires high levels of sequence specificity so that only molecules with very high sequence identity can form cross-β-sheet structures of sufficient stringency for incorporation into the amyloid fibril. This sequence specificity presents a barrier to the transmission of prions between two species with divergent sequences, termed a species barrier. Here we study the relative effects of protein sequence, seed conformation, and environment on the species barrier strength and specificity for the yeast prion protein Sup35p from three closely related species of the Saccharomyces sensu stricto group; namely, Saccharomyces cerevisiae, Saccharomyces bayanus, and Saccharomyces paradoxus. Through in vivo plasmid shuffle experiments, we show that the major characteristics of the transmission barrier and conformational fidelity are determined by the protein sequence rather than by the cellular environment. In vitro data confirm that the kinetics and structural preferences of aggregation of the S. paradoxus and S. bayanus proteins are influenced by anions in accordance with their positions in the Hofmeister series, as observed previously for S. cerevisiae. However, the specificity of the species barrier is primarily affected by the sequence and the type of anion present during the formation of the initial seed, whereas anions present during the seeded aggregation process typically influence kinetics rather than the specificity of prion conversion. Therefore, our work shows that the protein sequence and the conformation variant (strain) of the prion seed are the primary determinants of cross-species prion specificity both in vivo and in vitro. PMID:26565023

  1. Bacterial-like PPP protein phosphatases: novel sequence alterations in pathogenic eukaryotes and peculiar features of bacterial sequence similarity.

    PubMed

    Kerk, David; Uhrig, R Glen; Moorhead, Greg B

    2013-01-01

    Reversible phosphorylation is a widespread modification affecting the great majority of eukaryotic cellular proteins, and whose effects influence nearly every cellular function. Protein phosphatases are increasingly recognized as exquisitely regulated contributors to these changes. The PPP (phosphoprotein phosphatase) family comprises enzymes, which catalyze dephosphorylation at serine and threonine residues. Nearly a decade ago, "bacterial-like" enzymes were recognized with similarity to proteins from various bacterial sources: SLPs (Shewanella-like phosphatases), RLPHs (Rhizobiales-like phosphatases), and ALPHs (ApaH-like phosphatases). A recent article from our laboratory appearing in Plant Physiology characterizes their extensive organismal distribution, abundance in plant species, predicted subcellular localization, motif organization, and sequence evolution. One salient observation is the distinct evolutionary trajectory followed by SLP genes and proteins in photosynthetic eukaryotes vs. animal and plant pathogens derived from photosynthetic ancestors. We present here a closer look at sequence data that emphasizes the distinctiveness of pathogen SLP proteins and that suggests that they might represent novel drug targets. A second observation in our original report was the high degree of similarity between the bacterial-like PPPs of eukaryotes and closely related proteins of the "eukaryotic-like" phyla Myxococcales and Planctomycetes. We here reflect on the possible implications of these observations and their importance for future research.

  2. Using the Relevance Vector Machine Model Combined with Local Phase Quantization to Predict Protein-Protein Interactions from Protein Sequences.

    PubMed

    An, Ji-Yong; Meng, Fan-Rong; You, Zhu-Hong; Fang, Yu-Hong; Zhao, Yu-Jun; Zhang, Ming

    2016-01-01

    We propose a novel computational method known as RVM-LPQ that combines the Relevance Vector Machine (RVM) model and Local Phase Quantization (LPQ) to predict PPIs from protein sequences. The main improvements are the results of representing protein sequences using the LPQ feature representation on a Position Specific Scoring Matrix (PSSM), reducing the influence of noise using a Principal Component Analysis (PCA), and using a Relevance Vector Machine (RVM) based classifier. We perform 5-fold cross-validation experiments on Yeast and Human datasets, and we achieve very high accuracies of 92.65% and 97.62%, respectively, which is significantly better than previous works. To further evaluate the proposed method, we compare it with the state-of-the-art support vector machine (SVM) classifier on the Yeast dataset. The experimental results demonstrate that our RVM-LPQ method is obviously better than the SVM-based method. The promising experimental results show the efficiency and simplicity of the proposed method, which can be an automatic decision support tool for future proteomics research.

  3. Using the Relevance Vector Machine Model Combined with Local Phase Quantization to Predict Protein-Protein Interactions from Protein Sequences

    PubMed Central

    An, Ji-Yong; Meng, Fan-Rong; You, Zhu-Hong; Fang, Yu-Hong; Zhao, Yu-Jun; Zhang, Ming

    2016-01-01

    We propose a novel computational method known as RVM-LPQ that combines the Relevance Vector Machine (RVM) model and Local Phase Quantization (LPQ) to predict PPIs from protein sequences. The main improvements are the results of representing protein sequences using the LPQ feature representation on a Position Specific Scoring Matrix (PSSM), reducing the influence of noise using a Principal Component Analysis (PCA), and using a Relevance Vector Machine (RVM) based classifier. We perform 5-fold cross-validation experiments on Yeast and Human datasets, and we achieve very high accuracies of 92.65% and 97.62%, respectively, which is significantly better than previous works. To further evaluate the proposed method, we compare it with the state-of-the-art support vector machine (SVM) classifier on the Yeast dataset. The experimental results demonstrate that our RVM-LPQ method is obviously better than the SVM-based method. The promising experimental results show the efficiency and simplicity of the proposed method, which can be an automatic decision support tool for future proteomics research. PMID:27314023

  4. Analysis of protein function and its prediction from amino acid sequence.

    PubMed

    Clark, Wyatt T; Radivojac, Predrag

    2011-07-01

    Understanding protein function is one of the keys to understanding life at the molecular level. It is also important in the context of human disease because many conditions arise as a consequence of alterations of protein function. The recent availability of relatively inexpensive sequencing technology has resulted in thousands of complete or partially sequenced genomes with millions of functionally uncharacterized proteins. Such a large volume of data, combined with the lack of high-throughput experimental assays to functionally annotate proteins, attributes to the growing importance of automated function prediction. Here, we study proteins annotated by Gene Ontology (GO) terms and estimate the accuracy of functional transfer from protein sequence only. We find that the transfer of GO terms by pairwise sequence alignments is only moderately accurate, showing a surprisingly small influence of sequence identity (SID) in a broad range (30-100%). We developed and evaluated a new predictor of protein function, functional annotator (FANN), from amino acid sequence. The predictor exploits a multioutput neural network framework which is well suited to simultaneously modeling dependencies between functional terms. Experiments provide evidence that FANN-GO (predictor of GO terms; available from http://www.informatics.indiana.edu/predrag) outperforms standard methods such as transfer by global or local SID as well as GOtcha, a method that incorporates the structure of GO.

  5. PAirwise Sequence Comparison (PASC) and its application in the classification of filoviruses.

    PubMed

    Bao, Yiming; Chetvernin, Vyacheslav; Tatusova, Tatiana

    2012-08-01

    PAirwise Sequence Comparison (PASC) is a tool that uses genome sequence similarity to help with virus classification. The PASC tool at NCBI uses two methods: local alignment based on BLAST and global alignment based on Needleman-Wunsch algorithm. It works for complete genomes of viruses of several families/groups, and for the family of Filoviridae, it currently includes 52 complete genomes available in GenBank. It has been shown that BLAST-based alignment approach works better for filoviruses, and therefore is recommended for establishing taxon demarcations criteria. When more genome sequences with high divergence become available, these demarcation will most likely become more precise. The tool can compare new genome sequences of filoviruses with the ones already in the database, and propose their taxonomic classification.

  6. Prediction of Spontaneous Protein Deamidation from Sequence-Derived Secondary Structure and Intrinsic Disorder

    PubMed Central

    Lorenzo, J. Ramiro; Alonso, Leonardo G.; Sánchez, Ignacio E.

    2015-01-01

    Asparagine residues in proteins undergo spontaneous deamidation, a post-translational modification that may act as a molecular clock for the regulation of protein function and turnover. Asparagine deamidation is modulated by protein local sequence, secondary structure and hydrogen bonding. We present NGOME, an algorithm able to predict non-enzymatic deamidation of internal asparagine residues in proteins in the absence of structural data, using sequence-based predictions of secondary structure and intrinsic disorder. Compared to previous algorithms, NGOME does not require three-dimensional structures yet yields better predictions than available sequence-only methods. Four case studies of specific proteins show how NGOME may help the user identify deamidation-prone asparagine residues, often related to protein gain of function, protein degradation or protein misfolding in pathological processes. A fifth case study applies NGOME at a proteomic scale and unveils a correlation between asparagine deamidation and protein degradation in yeast. NGOME is freely available as a webserver at the National EMBnet node Argentina, URL: http://www.embnet.qb.fcen.uba.ar/ in the subpage “Protein and nucleic acid structure and sequence analysis”. PMID:26674530

  7. Prediction of Spontaneous Protein Deamidation from Sequence-Derived Secondary Structure and Intrinsic Disorder.

    PubMed

    Lorenzo, J Ramiro; Alonso, Leonardo G; Sánchez, Ignacio E

    2015-01-01

    Asparagine residues in proteins undergo spontaneous deamidation, a post-translational modification that may act as a molecular clock for the regulation of protein function and turnover. Asparagine deamidation is modulated by protein local sequence, secondary structure and hydrogen bonding. We present NGOME, an algorithm able to predict non-enzymatic deamidation of internal asparagine residues in proteins in the absence of structural data, using sequence-based predictions of secondary structure and intrinsic disorder. Compared to previous algorithms, NGOME does not require three-dimensional structures yet yields better predictions than available sequence-only methods. Four case studies of specific proteins show how NGOME may help the user identify deamidation-prone asparagine residues, often related to protein gain of function, protein degradation or protein misfolding in pathological processes. A fifth case study applies NGOME at a proteomic scale and unveils a correlation between asparagine deamidation and protein degradation in yeast. NGOME is freely available as a webserver at the National EMBnet node Argentina, URL: http://www.embnet.qb.fcen.uba.ar/ in the subpage "Protein and nucleic acid structure and sequence analysis".

  8. eMatchSite: Sequence Order-Independent Structure Alignments of Ligand Binding Pockets in Protein Models

    PubMed Central

    Brylinski, Michal

    2014-01-01

    Detecting similarities between ligand binding sites in the absence of global homology between target proteins has been recognized as one of the critical components of modern drug discovery. Local binding site alignments can be constructed using sequence order-independent techniques, however, to achieve a high accuracy, many current algorithms for binding site comparison require high-quality experimental protein structures, preferably in the bound conformational state. This, in turn, complicates proteome scale applications, where only various quality structure models are available for the majority of gene products. To improve the state-of-the-art, we developed eMatchSite, a new method for constructing sequence order-independent alignments of ligand binding sites in protein models. Large-scale benchmarking calculations using adenine-binding pockets in crystal structures demonstrate that eMatchSite generates accurate alignments for almost three times more protein pairs than SOIPPA. More importantly, eMatchSite offers a high tolerance to structural distortions in ligand binding regions in protein models. For example, the percentage of correctly aligned pairs of adenine-binding sites in weakly homologous protein models is only 4–9% lower than those aligned using crystal structures. This represents a significant improvement over other algorithms, e.g. the performance of eMatchSite in recognizing similar binding sites is 6% and 13% higher than that of SiteEngine using high- and moderate-quality protein models, respectively. Constructing biologically correct alignments using predicted ligand binding sites in protein models opens up the possibility to investigate drug-protein interaction networks for complete proteomes with prospective systems-level applications in polypharmacology and rational drug repositioning. eMatchSite is freely available to the academic community as a web-server and a stand-alone software distribution at http://www.brylinski.org/ematchsite. PMID

  9. Sequence determines degree of knottedness in a coarse-grained protein model.

    PubMed

    Wüst, Thomas; Reith, Daniel; Virnau, Peter

    2015-01-16

    Knots are abundant in globular homopolymers but rare in globular proteins. To shed new light on this long-standing conundrum, we study the influence of sequence on the formation of knots in proteins under native conditions within the framework of the hydrophobic-polar lattice protein model. By employing large-scale Wang-Landau simulations combined with suitable Monte Carlo trial moves we show that even though knots are still abundant on average, sequence introduces large variability in the degree of self-entanglements. Moreover, we are able to design sequences which are either almost always or almost never knotted. Our findings serve as proof of concept that the introduction of just one additional degree of freedom per monomer (in our case sequence) facilitates evolution towards a protein universe in which knots are rare.

  10. Alignment-free ultra-high-throughput comparison of druggable protein-ligand binding sites.

    PubMed

    Weill, Nathanaël; Rognan, Didier

    2010-01-01

    Inferring the biological function of a protein from its three-dimensional structure as well as explaining why a drug may bind to various targets is of crucial importance to modern drug discovery. Here we present a generic 4833-integer vector describing druggable protein-ligand binding sites that can be applied to any protein and any binding cavity. The fingerprint registers counts of pharmacophoric triplets from the Calpha atomic coordinates of binding-site-lining residues. Starting from a customized data set of diverse protein-ligand binding site pairs, the most appropriate metric and a similarity threshold could be defined for similar binding sites. The method (FuzCav) has been used in various scenarios: (i) screening a collection of 6000 binding sites for similarity to different queries; (ii) classifying protein families (serine endopeptidases, protein kinases) by binding site diversity; (iii) discriminating adenine-binding cavities from decoys. The fingerprint generation and comparison supports ultra-high throughput (ca. 1000 measures/s), does not require prior alignment of protein binding sites, and is able to detect local similarity among subpockets. It is thus particularly well suited to the functional annotation of novel genomic structures with low sequence identity to known X-ray templates.

  11. Sequence-related human proteins cluster by degree of evolutionary conservation

    NASA Astrophysics Data System (ADS)

    Mrowka, Ralf; Patzak, Andreas; Herzel, Hanspeter; Holste, Dirk

    2004-11-01

    Gene duplication followed by adaptive evolution is thought to be a central mechanism for the emergence of novel genes. To illuminate the contribution of duplicated protein-coding sequences to the complexity of the human genome, we study the connectivity of pairwise sequence-related human proteins and construct a network (N) of linked protein sequences with shared similarities. We find that (i) the connectivity distribution P(k) for k sequence-related proteins decays as a power law P(k)˜k-γ with γ≈1.2 , (ii) the top rank of N consists of a single large cluster of proteins (≈70%) , while bottom ranks consist of multiple isolated clusters, and (iii) structural characteristics of N show both a high degree of clustering and an intermediate connectivity (“small-world” features). We gain further insight into structural properties of N by studying the relationship between the connectivity distribution and the phylogenetic conservation of proteins in bacteria, plants, invertebrates, and vertebrates. We find that (iv) the proportion of sequence-related proteins increases with increasing extent of evolutionary conservation. Our results support that small-world network properties constitute a footprint of an evolutionary mechanism and extend the traditional interpretation of protein families.

  12. A second rhodopsin-like protein in Cyanophora paradoxa: gene sequence and protein expression in a cell-free system.

    PubMed

    Frassanito, Anna Maria; Barsanti, Laura; Passarelli, Vincenzo; Evangelista, Valtere; Gualtieri, Paolo

    2013-08-05

    Here we report the identification and expression of a second rhodopsin-like protein in the alga Cyanophora paradoxa (Glaucophyta), named Cyanophopsin_2. This new protein was identified due to a serendipity event, since the RACE reaction performed to complete the sequence of Cyanophopsin_1, (the first rhodopsin-like protein of C. paradoxa identified in 2009 by our group), amplified a 619 bp sequence corresponding to a portion of a new gene of the same protein family. The full sequence consists of 1175 bp consisting of 849 bp coding DNA sequence and 4 introns of 326 bp. The protein is characterized by an N-terminal region of 47 amino acids, followed by a region with 7 α-helices of 213 amino acids and a C-terminal region of 22 amino acids. This protein showed high identity with Cyanophopsin_1 and other rhodopsin-like proteins of Archea, Bacteria, Fungi and Algae. Cyanophosin_2 (CpR2) was expressed in a cell-free expression system, and characterized by means of absorption spectroscopy.

  13. rasbhari: Optimizing Spaced Seeds for Database Searching, Read Mapping and Alignment-Free Sequence Comparison

    PubMed Central

    Hahn, Lars; Leimeister, Chris-André; Morgenstern, Burkhard

    2016-01-01

    Many algorithms for sequence analysis rely on word matching or word statistics. Often, these approaches can be improved if binary patterns representing match and don’t-care positions are used as a filter, such that only those positions of words are considered that correspond to the match positions of the patterns. The performance of these approaches, however, depends on the underlying patterns. Herein, we show that the overlap complexity of a pattern set that was introduced by Ilie and Ilie is closely related to the variance of the number of matches between two evolutionarily related sequences with respect to this pattern set. We propose a modified hill-climbing algorithm to optimize pattern sets for database searching, read mapping and alignment-free sequence comparison of nucleic-acid sequences; our implementation of this algorithm is called rasbhari. Depending on the application at hand, rasbhari can either minimize the overlap complexity of pattern sets, maximize their sensitivity in database searching or minimize the variance of the number of pattern-based matches in alignment-free sequence comparison. We show that, for database searching, rasbhari generates pattern sets with slightly higher sensitivity than existing approaches. In our Spaced Words approach to alignment-free sequence comparison, pattern sets calculated with rasbhari led to more accurate estimates of phylogenetic distances than the randomly generated pattern sets that we previously used. Finally, we used rasbhari to generate patterns for short read classification with CLARK-S. Here too, the sensitivity of the results could be improved, compared to the default patterns of the program. We integrated rasbhari into Spaced Words; the source code of rasbhari is freely available at http://rasbhari.gobics.de/ PMID:27760124

  14. mtDNAprofiler: a Web application for the nomenclature and comparison of human mitochondrial DNA sequences.

    PubMed

    Yang, In Seok; Lee, Hwan Young; Yang, Woo Ick; Shin, Kyoung-Jin

    2013-07-01

    Mitochondrial DNA (mtDNA) is a valuable tool in the fields of forensic, population, and medical genetics. However, recording and comparing mtDNA control region or entire genome sequences would be difficult if researchers are not familiar with mtDNA nomenclature conventions. Therefore, mtDNAprofiler, a Web application, was designed for the analysis and comparison of mtDNA sequences in a string format or as a list of mtDNA single-nucleotide polymorphisms (mtSNPs). mtDNAprofiler which comprises four mtDNA sequence-analysis tools (mtDNA nomenclature, mtDNA assembly, mtSNP conversion, and mtSNP concordance-check) supports not only the accurate analysis of mtDNA sequences via an automated nomenclature function, but also consistent management of mtSNP data via direct comparison and validity-check functions. Since mtDNAprofiler consists of four tools that are associated with key steps of mtDNA sequence analysis, mtDNAprofiler will be helpful for researchers working with mtDNA. mtDNAprofiler is freely available at http://mtprofiler.yonsei.ac.kr.

  15. Truly Absorbed Microbial Protein Synthesis, Rumen Bypass Protein, Endogenous Protein, and Total Metabolizable Protein from Starchy and Protein-Rich Raw Materials: Model Comparison and Predictions.

    PubMed

    Parand, Ehsan; Vakili, Alireza; Mesgaran, Mohsen Danesh; van Duinkerken, Gert; Yu, Peiqiang

    2015-07-29

    This study was carried out to measure truly absorbed microbial protein synthesis, rumen bypass protein, and endogenous protein loss, as well as total metabolizable protein, from starchy and protein-rich raw feed materials with model comparisons. Predictions by the DVE2010 system as a more mechanistic model were compared with those of two other models, DVE1994 and NRC-2001, that are frequently used in common international feeding practice. DVE1994 predictions for intestinally digestible rumen undegradable protein (ARUP) for starchy concentrates were higher (27 vs 18 g/kg DM, p < 0.05, SEM = 1.2) than predictions by the NRC-2001, whereas there was no difference in predictions for ARUP from protein concentrates among the three models. DVE2010 and NRC-2001 had highest estimations of intestinally digestible microbial protein for starchy (92 g/kg DM in DVE2010 vs 46 g/kg DM in NRC-2001 and 67 g/kg DM in DVE1994, p < 0.05 SEM = 4) and protein concentrates (69 g/kg DM in NRC-2001 vs 31 g/kg DM in DVE1994 and 49 g/kg DM in DVE2010, p < 0.05 SEM = 4), respectively. Potential protein supplies predicted by tested models from starchy and protein concentrates are widely different, and comparable direct measurements are needed to evaluate the actual ability of different models to predict the potential protein supply to dairy cows from different feedstuffs.

  16. Sequence and Comparative Genomic Analysis of Actin-related ProteinsD⃞

    PubMed Central

    Muller, Jean; Oma, Yukako; Vallar, Laurent; Friederich, Evelyne; Poch, Olivier; Winsor, Barbara

    2005-01-01

    Actin-related proteins (ARPs) are key players in cytoskeleton activities and nuclear functions. Two complexes, ARP2/3 and ARP1/11, also known as dynactin, are implicated in actin dynamics and in microtubule-based trafficking, respectively. ARP4 to ARP9 are components of many chromatin-modulating complexes. Conventional actins and ARPs codefine a large family of homologous proteins, the actin superfamily, with a tertiary structure known as the actin fold. Because ARPs and actin share high sequence conservation, clear family definition requires distinct features to easily and systematically identify each subfamily. In this study we performed an in depth sequence and comparative genomic analysis of ARP subfamilies. A high-quality multiple alignment of ∼700 complete protein sequences homologous to actin, including 148 ARP sequences, allowed us to extend the ARP classification to new organisms. Sequence alignments revealed conserved residues, motifs, and inserted sequence signatures to define each ARP subfamily. These discriminative characteristics allowed us to develop ARPAnno (http://bips.u-strasbg.fr/ARPAnno), a new web server dedicated to the annotation of ARP sequences. Analyses of sequence conservation among actins and ARPs highlight part of the actin fold and suggest interactions between ARPs and actin-binding proteins. Finally, analysis of ARP distribution across eukaryotic phyla emphasizes the central importance of nuclear ARPs, particularly the multifunctional ARP4. PMID:16195354

  17. Enzyme sequence similarity improves the reaction alignment method for cross-species pathway comparison

    SciTech Connect

    Ovacik, Meric A.; Androulakis, Ioannis P.

    2013-09-15

    Pathway-based information has become an important source of information for both establishing evolutionary relationships and understanding the mode of action of a chemical or pharmaceutical among species. Cross-species comparison of pathways can address two broad questions: comparison in order to inform evolutionary relationships and to extrapolate species differences used in a number of different applications including drug and toxicity testing. Cross-species comparison of metabolic pathways is complex as there are multiple features of a pathway that can be modeled and compared. Among the various methods that have been proposed, reaction alignment has emerged as the most successful at predicting phylogenetic relationships based on NCBI taxonomy. We propose an improvement of the reaction alignment method by accounting for sequence similarity in addition to reaction alignment method. Using nine species, including human and some model organisms and test species, we evaluate the standard and improved comparison methods by analyzing glycolysis and citrate cycle pathways conservation. In addition, we demonstrate how organism comparison can be conducted by accounting for the cumulative information retrieved from nine pathways in central metabolism as well as a more complete study involving 36 pathways common in all nine species. Our results indicate that reaction alignment with enzyme sequence similarity results in a more accurate representation of pathway specific cross-species similarities and differences based on NCBI taxonomy.

  18. Classification of mouse VK groups based on the partial amino acid sequence to the first invariant tryptophan: impact of 14 new sequences from IgG myeloma proteins.

    PubMed

    Potter, M; Newell, J B; Rudikoff, S; Haber, E

    1982-12-01

    Fourteen new VK sequences derived from BALB/c IgG myeloma proteins were determined to the first invariant tryptophan (Trp 35). These partial sequences were compared with 65 other published VK sequences using a computer program. The 79 sequences were organized according to the length of the sequence from the amino terminus to the first invariant tryptophan (Trp 35), into seven groups (33, 34, 35, 36, 39, 40 and 41aa). A distance matrix of all 79 sequences was then computed, i.e. the number of amino acid substitutions necessary to convert one sequence to another was determined. From these data a dendrogram was constructed. Most of the VK sequences fell into clusters or closely related groups. The definition of a sequence group is arbitrary but facilitates the classification of VK proteins. We used 12 substitutions as the basis for defining a sequence group based on the known number of substitutions that are found in the VK21 proteins. By this criterion there were 18 groups in the Trp 35 dendrogram. Twelve of the 14 new sequences fell into one of these sequence groups; two formed new sequence groups. Collective amino acid sequencing is still encountering new VK structures indicating more sequences will be required to attain an accurate estimate of the total number of VK groups. Updated dendrograms can be quickly generated to include newly generated sequences.

  19. Discovery of Chromatin-Associated Proteins via Sequence-Specific Capture and Mass Spectrometric Protein Identification in Saccharomyces cerevisiae.

    PubMed

    Kennedy-Darling, Julia; Guillen-Ahlers, Hector; Shortreed, Michael R; Scalf, Mark; Frey, Brian L; Kendziorski, Christina; Olivier, Michael; Gasch, Audrey P; Smith, Lloyd M

    2014-08-01

    DNA-protein interactions play critical roles in the control of genome expression and other fundamental processes. An essential element in understanding how these systems function is to identify their molecular components. We present here a novel strategy, Hybridization Capture of Chromatin Associated Proteins for Proteomics (HyCCAPP), to identify proteins that are interacting with any given region of the genome. This technology identifies and quantifies the proteins that are specifically interacting with a genomic region of interest by sequence-specific hybridization capture of the target region from in vivo cross-linked chromatin, followed by mass spectrometric identification and quantification of associated proteins. We demonstrate the utility of HyCCAPP by identifying proteins associated with three multicopy and one single-copy loci in yeast. In each case, a locus-specific pattern of target-associated proteins was revealed. The binding of previously unknown proteins was confirmed by ChIP in 11 of 17 cases. The identification of many previously known proteins at each locus provides strong support for the ability of HyCCAPP to correctly identify DNA-associated proteins in a sequence-specific manner, while the discovery of previously unknown proteins provides new biological insights into transcriptional and regulatory processes at the target locus.

  20. Characterization and cloning of a Tenebrio molitor hemolymph protein with sequence similarity to insect odorant-binding proteins.

    PubMed

    Graham, L A; Tang, W; Baust, J G; Liou, Y C; Reid, T S; Davies, P L

    2001-04-27

    The yellow mealworm beetle, Tenebrio molitor, produces a number of moderately abundant low molecular weight hemolymph proteins ( approximately 12 kDa) which behave in a similar manner during purification and share antigenic epitopes. The cDNA sequence of the major component (THP12) was determined and the deduced protein sequence was found to be similar to those of insect odorant-binding proteins. Southern blot analysis suggests that at least some of the diversity in this family of proteins is encoded at the gene level. Both northern and western blot analysis indicate that THP12 is present in a variety of developmental stages and both sexes. THP12 was originally classified as an antifreeze protein, but the lack of antifreeze activity in the recombinant protein, as well as the clear separation of the antifreeze activity from THP12 following HPLC purification, has ruled out this function. The abundance of THP12, the similarity of THP12 to insect odorant-binding proteins, and the presence of hydrophobic cavities inside the protein (Rothemund et al., A new class of hexahelical insect proteins revealed as putative carriers of small hydrophobic ligands. Structure, 7 (1999) 1325-1332.) suggest that THP12 may function to carry non-water soluble compounds in the hemolymph. THP12 is also similar, particularly in structurally important regions, to other insect proteins from non-sensory tissues, suggesting the existence of a large family of carrier proteins which may perform diverse functions throughout the insect.

  1. Use of Synthetic Signal Sequences to Explore the Protein Export Machinery

    PubMed Central

    Clérico, Eugenia M.; Maki, Jenny L.; Gierasch, Lila M.

    2010-01-01

    The information for correct localization of newly synthesized proteins in both prokaryotes and eukaryotes resides in self-contained, often transportable targeting sequences. Of these, signal sequences specify that a protein should be secreted from a cell or incorporated into the cytoplasmic membrane. A central puzzle is presented by the lack of primary structural homology among signal sequences, although they share common features in their sequences. Synthetic signal peptides have enabled a wide range of studies of how these “zipcodes” for protein secretion are decoded and used to target proteins to the protein machinery that facilitates their translocation across and integration into membranes. We review research on how the information in signal sequences enables their passenger proteins to be correctly and efficiently localized. Synthetic signal peptides have made possible binding and crosslinking studies to explore how selectivity is achieved in recognition by the signal sequence-binding receptors, signal recognition particle, or SRP, which functions in all organisms, and SecA, which functions in prokaryotes and some organelles of prokaryotic origins. While progress has been made, the absence of atomic resolution structures for complexes of signal peptides and their receptors has definitely left many questions to be answered in the future. PMID:17918185

  2. Optimal sequence selection in proteins of known structure by simulated evolution.

    PubMed Central

    Hellinga, H W; Richards, F M

    1994-01-01

    Rational design of protein structure requires the identification of optimal sequences to carry out a particular function within a given backbone structure. A general solution to this problem requires that a potential function describing the energy of the system as a function of its atomic coordinates be minimized simultaneously over all available sequences and their three-dimensional atomic configurations. Here we present a method that explicitly minimizes a semiempirical potential function simultaneously in these two spaces, using a simulated annealing approach. The method takes the fixed three-dimensional coordinates of a protein backbone and stochastically generates possible sequences through the introduction of random mutations. The corresponding three-dimensional coordinates are constructed for each sequence by "redecorating" the backbone coordinates of the original structure with the corresponding side chains. These are then allowed to vary in their structure by random rotations around free torsional angles to generate a stochastic walk in configurational space. We have named this method protein simulated evolution, because, in loose analogy with natural selection, it randomly selects for allowed solutions in the sequence of a protein subject to the "selective pressure" of a potential function. Energies predicted by this method for sequences of a small group of residues in the hydrophobic core of the phage lambda cI repressor correlate well with experimentally determined biological activities. This "genetic selection by computer" approach has potential applications in protein engineering, rational protein design, and structure-based drug discovery. PMID:8016069

  3. Draft versus finished sequence data for DNA and protein diagnostic signature development

    SciTech Connect

    Gardner, S N; Lam, M W; Smith, J R; Torres, C L; Slezak, T R

    2004-10-29

    Sequencing pathogen genomes is costly, demanding careful allocation of limited sequencing resources. We built a computational Sequencing Analysis Pipeline (SAP) to guide decisions regarding the amount of genomic sequencing necessary to develop high-quality diagnostic DNA and protein signatures. SAP uses simulations to estimate the number of target genomes and close phylogenetic relatives (near neighbors, or NNs) to sequence. We use SAP to assess whether draft data is sufficient or finished sequencing is required using Marburg and variola virus sequences. Simulations indicate that intermediate to high quality draft with error rates of 10{sup -3}-10{sup -5} ({approx} 8x coverage) of target organisms is suitable for DNA signature prediction. Low quality draft with error rates of {approx} 1% (3x to 6x coverage) of target isolates is inadequate for DNA signature prediction, although low quality draft of NNs is sufficient, as long as the target genomes are of high quality. For protein signature prediction, sequencing errors in target genomes substantially reduce the detection of amino acid sequence conservation, even if the draft is of high quality. In summary, high quality draft of target and low quality draft of NNs appears to be a cost-effective investment for DNA signature prediction, but may lead to underestimation of predicted protein signatures.

  4. Sequence studies on post-ecdysial cuticular proteins from pupae of the yellow mealworm, Tenebrio molitor.

    PubMed

    Baernholdt, D; Anderson, S O

    1998-07-01

    Proteins were extracted from the cuticle mid-instar pupae of Tenebrio and purified by column chromatography. The protein pattern obtained by two-dimensional gel-electrophoresis was different from that obtained from pharate pupal cuticle, indicating that Tenebrio during the post-ecdysial pupal deposits cuticular proteins different from those deposited during the preecdysial period. The complete amino acid sequence was determined for four of the urea-extractable proteins from Tenebrio midinstar pupal cuticle. They range from 5.8 to 16.7 kDa in molecular weights and from 5.2 to 7.9 in isoelectric points. Little similarity was observed between the sequenced post-and pre-ecdysial cuticular proteins from Tenebrio pupae. Only one of the sequenced post-ecdysial proteins contains the Ala-Ala-Pro-Ala/Val motif common in proteins from Tenebrio larval/pupal pharate cuticle and from locust pharate cuticle. None of the post-ecdysial proteins contains the conserved hydrophilic sequence regions described for Tenebrio pharate cuticular proteins.

  5. The importance of sequence diversity in the aggregation and evolution of proteins.

    PubMed

    Wright, Caroline F; Teichmann, Sarah A; Clarke, Jane; Dobson, Christopher M

    2005-12-08

    Incorrect folding of proteins, leading to aggregation and amyloid formation, is associated with a group of highly debilitating medical conditions including Alzheimer's disease and late-onset diabetes. The issue of how unwanted protein association is normally avoided in a living system is particularly significant in the context of the evolution of multidomain proteins, which account for over 70% of all eukaryotic proteins, where the effective local protein concentration in the vicinity of each domain is very high. Here we describe the aggregation kinetics of multidomain protein constructs of immunoglobulin domains and the ability of different homologous domains to aggregate together. We show that aggregation of these proteins is a specific process and that the efficiency of coaggregation between different domains decreases markedly with decreasing sequence identity. Thus, whereas immunoglobulin domains with more than about 70% identity are highly prone to coaggregation, those with less than 30-40% sequence identity do not detectably interact. A bioinformatics analysis of consecutive homologous domains in large multidomain proteins shows that such domains almost exclusively have sequence identities of less than 40%, in other words below the level at which coaggregation is likely to be efficient. We propose that such low sequence identities could have a crucial and general role in safeguarding proteins against misfolding and aggregation.

  6. Definition and Analysis of a System for the Automated Comparison of Curriculum Sequencing Algorithms in Adaptive Distance Learning

    ERIC Educational Resources Information Center

    Limongelli, Carla; Sciarrone, Filippo; Temperini, Marco; Vaste, Giulia

    2011-01-01

    LS-Lab provides automatic support to comparison/evaluation of the Learning Object Sequences produced by different Curriculum Sequencing Algorithms. Through this framework a teacher can verify the correspondence between the behaviour of different sequencing algorithms and her pedagogical preferences. In fact the teacher can compare algorithms…

  7. Comparative Genome Sequence Analysis Reveals the Extent of Diversity and Conservation for Glycan-Associated Proteins in Burkholderia spp.

    PubMed Central

    Ong, Hui San; Mohamed, Rahmah; Firdaus-Raih, Mohd

    2012-01-01

    Members of the Burkholderia family occupy diverse ecological niches. In pathogenic family members, glycan-associated proteins are often linked to functions that include virulence, protein conformation maintenance, surface recognition, cell adhesion, and immune system evasion. Comparative analysis of available Burkholderia genomes has revealed a core set of 178 glycan-associated proteins shared by all Burkholderia of which 68 are homologous to known essential genes. The genome sequence comparisons revealed insights into species-specific gene acquisitions through gene transfers, identified an S-layer protein, and proposed that significantly reactive surface proteins are associated to sugar moieties as a potential means to circumvent host defense mechanisms. The comparative analysis using a curated database of search queries enabled us to gain insights into the extent of conservation and diversity, as well as the possible virulence-associated roles of glycan-associated proteins in members of the Burkholderia spp. The curated list of glycan-associated proteins used can also be directed to screen other genomes for glycan-associated homologs. PMID:22991502

  8. A Primary Sequence Analysis of the ARGONAUTE Protein Family in Plants.

    PubMed

    Rodríguez-Leal, Daniel; Castillo-Cobián, Amanda; Rodríguez-Arévalo, Isaac; Vielle-Calzada, Jean-Philippe

    2016-01-01

    Small RNA (sRNA)-mediated gene silencing represents a conserved regulatory mechanism controlling a wide diversity of developmental processes through interactions of sRNAs with proteins of the ARGONAUTE (AGO) family. On the basis of a large phylogenetic analysis that includes 206 AGO genes belonging to 23 plant species, AGO genes group into four clades corresponding to the phylogenetic distribution proposed for the ten family members of Arabidopsis thaliana. A primary analysis of the corresponding protein sequences resulted in 50 sequences of amino acids (blocks) conserved across their linear length. Protein members of the AGO4/6/8/9 and AGO1/10 clades are more conserved than members of the AGO5 and AGO2/3/7 clades. In addition to blocks containing components of the PIWI, PAZ, and DUF1785 domains, members of the AGO2/3/7 and AGO4/6/8/9 clades possess other consensus block sequences that are exclusive of members within these clades, suggesting unforeseen functional specialization revealed by their primary sequence. We also show that AGO proteins of animal and plant kingdoms share linear sequences of blocks that include motifs involved in posttranslational modifications such as those regulating AGO2 in humans and the PIWI protein AUBERGINE in Drosophila. Our results open possibilities for exploring new structural and functional aspects related to the evolution of AGO proteins within the plant kingdom, and their convergence with analogous proteins in mammals and invertebrates.

  9. Prediction of protein function improving sequence remote alignment search by a fuzzy logic algorithm.

    PubMed

    Gómez, Antonio; Cedano, Juan; Espadaler, Jordi; Hermoso, Antonio; Piñol, Jaume; Querol, Enrique

    2008-02-01

    The functional annotation of the new protein sequences represents a major drawback for genomic science. The best way to suggest the function of a protein from its sequence is by finding a related one for which biological information is available. Current alignment algorithms display a list of protein sequence stretches presenting significant similarity to different protein targets, ordered by their respective mathematical scores. However, statistical and biological significance do not always coincide, therefore, the rearrangement of the program output according to more biological characteristics than the mathematical scoring would help functional annotation. A new method that predicts the putative function for the protein integrating the results from the PSI-BLAST program and a fuzzy logic algorithm is described. Several protein sequence characteristics have been checked in their ability to rearrange a PSI-BLAST profile according more to their biological functions. Four of them: amino acid content, matched segment length and hydropathic and flexibility profiles positively contributed, upon being integrated by a fuzzy logic algorithm into a program, BYPASS, to the accurate prediction of the function of a protein from its sequence.

  10. A Primary Sequence Analysis of the ARGONAUTE Protein Family in Plants

    PubMed Central

    Rodríguez-Leal, Daniel; Castillo-Cobián, Amanda; Rodríguez-Arévalo, Isaac; Vielle-Calzada, Jean-Philippe

    2016-01-01

    Small RNA (sRNA)-mediated gene silencing represents a conserved regulatory mechanism controlling a wide diversity of developmental processes through interactions of sRNAs with proteins of the ARGONAUTE (AGO) family. On the basis of a large phylogenetic analysis that includes 206 AGO genes belonging to 23 plant species, AGO genes group into four clades corresponding to the phylogenetic distribution proposed for the ten family members of Arabidopsis thaliana. A primary analysis of the corresponding protein sequences resulted in 50 sequences of amino acids (blocks) conserved across their linear length. Protein members of the AGO4/6/8/9 and AGO1/10 clades are more conserved than members of the AGO5 and AGO2/3/7 clades. In addition to blocks containing components of the PIWI, PAZ, and DUF1785 domains, members of the AGO2/3/7 and AGO4/6/8/9 clades possess other consensus block sequences that are exclusive of members within these clades, suggesting unforeseen functional specialization revealed by their primary sequence. We also show that AGO proteins of animal and plant kingdoms share linear sequences of blocks that include motifs involved in posttranslational modifications such as those regulating AGO2 in humans and the PIWI protein AUBERGINE in Drosophila. Our results open possibilities for exploring new structural and functional aspects related to the evolution of AGO proteins within the plant kingdom, and their convergence with analogous proteins in mammals and invertebrates. PMID:27635128

  11. Elucidation of the sequence of canine (pro)-calcitonin. A molecular biological and protein chemical approach.

    PubMed

    Mol, J A; Kwant, M M; Arnold, I C; Hazewinkel, H A

    1991-09-03

    From the canine thyroid gland a calcitonin (CT) immunoreactive peptide was purified by successive aqueous acid acetone extraction, gel filtration and HPLC. Gas-phase sequencing of the purified peptide showed that the first 25 amino acids had 65% sequence homology with the amino-terminus of the human CT prohormone. A canine cDNA library was then made from the thyroid gland. A plasmid was isolated containing a sequence that is homologous to part of exon 3, and the complete sequence of exon 4 of the human mRNA encoding preproCT. From this cDNA the amino acid sequence of canine CT is predicted. In comparison with well-known CT sequences of other species, the strongest homology exists with bovine, porcine and ovine CT.

  12. The new sequencer on the block: comparison of Life Technology's Proton sequencer to an Illumina HiSeq for whole-exome sequencing.

    PubMed

    Boland, Joseph F; Chung, Charles C; Roberson, David; Mitchell, Jason; Zhang, Xijun; Im, Kate M; He, Ji; Chanock, Stephen J; Yeager, Meredith; Dean, Michael

    2013-10-01

    We assessed the performance of the new Life Technologies Proton sequencer by comparing whole-exome sequence data in a Centre d'Etude du Polymorphisme Humain trio (family 1463) to the Illumina HiSeq instrument. To simulate a typical user's results, we utilized the standard capture, alignment and variant calling methods specific to each platform. We restricted data analysis to include the capture region common to both methods. The Proton produced high quality data at a comparable average depth and read length, and the Ion Reporter variant caller identified 96 % of single nucleotide polymorphisms (SNPs) detected by the HiSeq and GATK pipeline. However, only 40 % of small insertion and deletion variants (indels) were identified by both methods. Usage of the trio structure and segregation of platform-specific alleles supported this result. Further comparison of the trio data with Complete Genomics sequence data and Illumina SNP microarray genotypes documented high concordance and accurate SNP genotyping of both Proton and Illumina platforms. However, our study underscored the problem of accurate detection of indels for both the Proton and HiSeq platforms.

  13. Genomic sequence of 'Candidatus Liberibacter solanacearum' haplotype C and its comparison with haplotype A and B genomes

    PubMed Central

    Haapalainen, Minna; Schott, Thomas; Thompson, Sarah M.; Smith, Grant R.; Nissinen, Anne I.; Pirhonen, Minna

    2017-01-01

    Haplotypes A and B of ‘Candidatus Liberibacter solanacearum’ (CLso) are associated with diseases of solanaceous plants, especially Zebra chip disease of potato, and haplotypes C, D and E are associated with symptoms on apiaceous plants. To date, one complete genome of haplotype B and two high quality draft genomes of haplotype A have been obtained for these unculturable bacteria using metagenomics from the psyllid vector Bactericera cockerelli. Here, we present the first genomic sequences obtained for the carrot-associated CLso. These two genomic sequences of haplotype C, FIN114 (1.24 Mbp) and FIN111 (1.20 Mbp), were obtained from carrot psyllids (Trioza apicalis) harboring CLso. Genomic comparisons between the haplotypes A, B and C revealed that the genome organization differs between these haplotypes, due to large inversions and other recombinations. Comparison of protein-coding genes indicated that the core genome of CLso consists of 885 ortholog groups, with the pan-genome consisting of 1327 ortholog groups. Twenty-seven ortholog groups are unique to CLso haplotype C, whilst 11 ortholog groups shared by the haplotypes A and B, are not found in the haplotype C. Some of these ortholog groups that are not part of the core genome may encode functions related to interactions with the different host plant and psyllid species. PMID:28158295

  14. Amino acid sequences of two nonspecific lipid-transfer proteins from germinated castor bean.

    PubMed

    Takishima, K; Watanabe, S; Yamada, M; Suga, T; Mamiya, G

    1988-11-01

    The amino acid sequence of two nonspecific lipid-transfer proteins (nsLTP) B and C from germinated castor bean seeds have been determined. Both the proteins consist of 92 residues, as for nsLTP previously reported, and their calculated Mr values are 9847 and 9593 for nsLTP-B and nsLTP-C, respectively. The sequences of nsLTP-B and nsLTP-C, compared to the known sequence of nsLTP-A from the same source, are 68% and 35% similar, respectively. No variation was found at the positions of the cysteine residues, indicating that they might be involved in disulfide bridges.

  15. Enhancing the pharmaceutical properties of protein drugs by ancestral sequence reconstruction

    PubMed Central

    Zakas, Philip M.; Brown, Harrison C.; Knight, Kristopher; Meeks, Shannon L.; Spencer, H. Trent; Gaucher, Eric A.; Doering, Christopher B.

    2016-01-01

    Optimization of a protein’s pharmaceutical properties is usually carried out by rational design and/or directed evolution. Here we test an alternative approach based on ancestral sequence reconstruction. Using available genomic sequence data on coagulation factor VIII and predictive models of molecular evolution, we engineer protein variants with improved activity, stability. biosynthesis potential, and reduced inhibition by clinical anti-drug antibodies. In principle, this approach can be applied to any protein drug based on a conserved gene sequence. PMID:27669166

  16. 5' sequences of rubella virus RNA stimulate translation of chimeric RNAs and specifically interact with two host-encoded proteins.

    PubMed Central

    Pogue, G P; Cao, X Q; Singh, N K; Nakhasi, H L

    1993-01-01

    Sequences at the 5' and 3' ends of the rubella virus (RV) genomic RNA can potentially form stable stem-loop (SL) structures that are postulated to be involved in virus replication. We have analyzed the function of these putative SL structures in RNA translation by constructing chimeric chloramphenicol acetyltransferase (CAT) RNAs, flanked either by both 5'- and 3'-terminal sequence domains from the RV genome or several deletion derivatives of the same sequences. After in vitro transcription of chimeric RNAs, the translational efficiencies of these RNAs were compared by the rabbit reticulocyte lysate translation system. For in vivo translation studies, the level of CAT activity was measured for chimeric RV/CAT RNAs expressed in transfected cells by the adenovirus major late promoter. Both in vivo and in vitro translation activities of the chimeric RNAs revealed that the presence of 5' and 3' SL sequences of RV RNA, in correct (+) orientation and context [5'(+)SL and 3'(+)SL, respectively] was necessary for efficient translation of chimeric RV/CAT RNAs. The presence of the RV 5'(+)SL sequence had the primary enhancing effect on translation. To identify host proteins which interact with the 5'(+)SL which may be involved in RV RNA translation, RNA gel-shift and UV cross-linking assays were employed. Two host proteins 59 and 52 kDa in size, present in cytosolic extracts from both uninfected and RV-infected cells, specifically interacted with the RV 5'(+)SL RNA. Direct binding comparisons between wild-type and mutant 5'(+)SL RNAs demonstrated that sequences in and around the bulge region of the terminal stem domain of this structure constituted a protein binding determinant. Human serum, qualified for anti-Ro/SS-A antigen specificity, immunoprecipitated 59- and 52-kDa protein-RNA complexes containing the RV 5'(+)SL RNA. However, poly- and monoclonal antisera raised against the recombinant 60- and 52-kDa Ro proteins failed to precipitate complexes containing the 5'(+)SL

  17. Adhesive proteins of stalked and acorn barnacles display homology with low sequence similarities.

    PubMed

    Jonker, Jaimie-Leigh; Abram, Florence; Pires, Elisabete; Varela Coelho, Ana; Grunwald, Ingo; Power, Anne Marie

    2014-01-01

    Barnacle adhesion underwater is an important phenomenon to understand for the prevention of biofouling and potential biotechnological innovations, yet so far, identifying what makes barnacle glue proteins 'sticky' has proved elusive. Examination of a broad range of species within the barnacles may be instructive to identify conserved adhesive domains. We add to extensive information from the acorn barnacles (order Sessilia) by providing the first protein analysis of a stalked barnacle adhesive, Lepas anatifera (order Lepadiformes). It was possible to separate the L. anatifera adhesive into at least 10 protein bands using SDS-PAGE. Intense bands were present at approximately 30, 70, 90 and 110 kilodaltons (kDa). Mass spectrometry for protein identification was followed by de novo sequencing which detected 52 peptides of 7-16 amino acids in length. None of the peptides matched published or unpublished transcriptome sequences, but some amino acid sequence similarity was apparent between L. anatifera and closely-related Dosima fascicularis. Antibodies against two acorn barnacle proteins (ab-cp-52k and ab-cp-68k) showed cross-reactivity in the adhesive glands of L. anatifera. We also analysed the similarity of adhesive proteins across several barnacle taxa, including Pollicipes pollicipes (a stalked barnacle in the order Scalpelliformes). Sequence alignment of published expressed sequence tags clearly indicated that P. pollicipes possesses homologues for the 19 kDa and 100 kDa proteins in acorn barnacles. Homology aside, sequence similarity in amino acid and gene sequences tended to decline as taxonomic distance increased, with minimum similarities of 18-26%, depending on the gene. The results indicate that some adhesive proteins (e.g. 100 kDa) are more conserved within barnacles than others (20 kDa).

  18. Adhesive Proteins of Stalked and Acorn Barnacles Display Homology with Low Sequence Similarities

    PubMed Central

    Jonker, Jaimie-Leigh; Abram, Florence; Pires, Elisabete; Varela Coelho, Ana; Grunwald, Ingo; Power, Anne Marie

    2014-01-01

    Barnacle adhesion underwater is an important phenomenon to understand for the prevention of biofouling and potential biotechnological innovations, yet so far, identifying what makes barnacle glue proteins ‘sticky’ has proved elusive. Examination of a broad range of species within the barnacles may be instructive to identify conserved adhesive domains. We add to extensive information from the acorn barnacles (order Sessilia) by providing the first protein analysis of a stalked barnacle adhesive, Lepas anatifera (order Lepadiformes). It was possible to separate the L. anatifera adhesive into at least 10 protein bands using SDS-PAGE. Intense bands were present at approximately 30, 70, 90 and 110 kilodaltons (kDa). Mass spectrometry for protein identification was followed by de novo sequencing which detected 52 peptides of 7–16 amino acids in length. None of the peptides matched published or unpublished transcriptome sequences, but some amino acid sequence similarity was apparent between L. anatifera and closely-related Dosima fascicularis. Antibodies against two acorn barnacle proteins (ab-cp-52k and ab-cp-68k) showed cross-reactivity in the adhesive glands of L. anatifera. We also analysed the similarity of adhesive proteins across several barnacle taxa, including Pollicipes pollicipes (a stalked barnacle in the order Scalpelliformes). Sequence alignment of published expressed sequence tags clearly indicated that P. pollicipes possesses homologues for the 19 kDa and 100 kDa proteins in acorn barnacles. Homology aside, sequence similarity in amino acid and gene sequences tended to decline as taxonomic distance increased, with minimum similarities of 18–26%, depending on the gene. The results indicate that some adhesive proteins (e.g. 100 kDa) are more conserved within barnacles than others (20 kDa). PMID:25295513

  19. AMS 4.0: consensus prediction of post-translational modifications in protein sequences.

    PubMed

    Plewczynski, Dariusz; Basu, Subhadip; Saha, Indrajit

    2012-08-01

    We present here the 2011 update of the AutoMotif Service (AMS 4.0) that predicts the wide selection of 88 different types of the single amino acid post-translational modifications (PTM) in protein sequences. The selection of experimentally confirmed modifications is acquired from the latest UniProt and Phospho.ELM databases for training. The sequence vicinity of each modified residue is represented using amino acids physico-chemical features encoded using high quality indices (HQI) obtaining by automatic clustering of known indices extracted from AAindex database. For each type of the numerical representation, the method builds the ensemble of Multi-Layer Perceptron (MLP) pattern classifiers, each optimising different objectives during the training (for example the recall, precision or area under the ROC curve (AUC)). The consensus is built using brainstorming technology, which combines multi-objective instances of machine learning algorithm, and the data fusion of different training objects representations, in order to boost the overall prediction accuracy of conserved short sequence motifs. The performance of AMS 4.0 is compared with the accuracy of previous versions, which were constructed using single machine learning methods (artificial neural networks, support vector machine). Our software improves the average AUC score of the earlier version by close to 7 % as calculated on the test datasets of all 88 PTM types. Moreover, for the selected most-difficult sequence motifs types it is able to improve the prediction performance by almost 32 %, when compared with previously used single machine learning methods. Summarising, the brainstorming consensus meta-learning methodology on the average boosts the AUC score up to around 89 %, averaged over all 88 PTM types. Detailed results for single machine learning methods and the consensus methodology are also provided, together with the comparison to previously published methods and state-of-the-art software tools. The

  20. Protein identification from two-dimensional gel electrophoresis analysis of Klebsiella pneumoniae by combined use of mass spectrometry data and raw genome sequences

    PubMed Central

    Wang, Wei; Sun, Jibin; Nimtz, Manfred; Deckwer, Wolf-Dieter; Zeng, An-Ping

    2003-01-01

    Separation of proteins by two-dimensional gel electrophoresis (2-DE) coupled with identification of proteins through peptide mass fingerprinting (PMF) by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is the widely used technique for proteomic analysis. This approach relies, however, on the presence of the proteins studied in public-accessible protein databases or the availability of annotated genome sequences of an organism. In this work, we investigated the reliability of using raw genome sequences for identifying proteins by PMF without the need of additional information such as amino acid sequences. The method is demonstrated for proteomic analysis of Klebsiella pneumoniae grown anaerobically on glycerol. For 197 spots excised from 2-DE gels and submitted for mass spectrometric analysis 164 spots were clearly identified as 122 individual proteins. 95% of the 164 spots can be successfully identified merely by using peptide mass fingerprints and a strain-specific protein database (ProtKpn) constructed from the raw genome sequences of K. pneumoniae. Cross-species protein searching in the public databases mainly resulted in the identification of 57% of the 66 high expressed protein spots in comparison to 97% by using the ProtKpn database. 10 dha regulon related proteins that are essential for the initial enzymatic steps of anaerobic glycerol metabolism were successfully identified using the ProtKpn database, whereas none of them could be identified by cross-species searching. In conclusion, the use of strain-specific protein database constructed from raw genome sequences makes it possible to reliably identify most of the proteins from 2-DE analysis simply through peptide mass fingerprinting. PMID:14653859

  1. High-sensitivity gas phase sequence analysis of proteins and peptides on PVDF membranes using short cycle times.

    PubMed

    Reim, D F; Speicher, D W

    1993-10-01

    An optimized sequencer program with a cycle time of 38 min which is specifically tailored for analysis using polyvinylidene difluoride (PVDF) membranes has been developed. The program was developed using a pulsed liquid-phase instrument which was converted to gas-phase acid delivery. Gas-phase acid delivery minimized sample extraction from PVDF membranes and improved tryptophan yields in at least some cases. Other modifications which contributed to reliable high sensitivity sequencer performance included use of a Blott cartridge, substitution of ethyl acetate:heptane (1:1, v/v) instead of butyl chloride as the extraction solvent, use of a modified 100-microliters injection loop with an internal restrictor to reliably inject nearly 90% of the sample, and an HPLC gradient which resolved tryptophan from diphenylurea. These shortened cycle times were achieved at the conventional gas-phase reaction temperature. A slight increase in lag or carryover at prolines was compensated by reduced background from nonspecific acid cleavage which facilitated extended and/or high sensitivity sequencing of large proteins. Reproducible high initial and repetitive cycle yields were obtained with a wide range of experimental peptides which were electroblotted from either 1D or 2D polyacrylamide gels onto high retention PVDF membranes. Initial yields of the majority of the experimental samples analyzed with this program were less than 5 pmol. In addition, most samples with initial yields below 1-2 pmol yielded sufficient sequence information to identify the protein by comparison to protein sequence data-bases or to design oligonucleotide probes.

  2. A comparison of methods for determining total body protein.

    PubMed

    Brooks, S P; Lampi, B J; Sarwar, G; Botting, H G

    1995-03-20

    The aim of the study was to find the optimal method (with respect to convenience and accuracy) for determining total protein in whole-body homogenates of rats. Three different protein extraction methods and five different protein concentration methods were assessed. The results were compared against a reference value measured by complete amino acid analysis after acid hydrolysis. The data demonstrated that extraction with 5% (w/v) sodium dodecylsulfate (SDS) in 0.5 N NaOH was far superior to that with water alone or to 6 N guanidine-HCl. A comparison of the Biuret, Bradford, and bicinchoninic acid methods on the SDS-NaOH-extracted samples showed that the Biuret method was optimal, giving a value that was 90% of the reference value with a small variation (2.4% of the mean). The Kjeldahl method gave the correct protein concentration only when a nitrogen factor of 5.51 +/- 0.03 (N = 5) was applied. The results suggest that extraction with SDS-NaOH followed by the Biuret procedure is a good method for measuring protein concentrations in whole body rat homogenates.

  3. Flexible structural protein alignment by a sequence of local transformations

    PubMed Central

    Rocha, Jairo; Segura, Joan; Wilson, Richard C.; Dasgupta, Swagata

    2009-01-01

    Motivation: Throughout evolution, homologous proteins have common regions that stay semi-rigid relative to each other and other parts that vary in a more noticeable way. In order to compare the increasing number of structures in the PDB, flexible geometrical alignments are needed, that are reliable and easy to use. Results: We present a protein structure alignment method whose main feature is the ability to consider different rigid transformations at different sites, allowing for deformations beyond a global rigid transformation. The performance of the method is comparable with that of the best ones from 10 aligners tested, regarding both the quality of the alignments with respect to hand curated ones, and the classification ability. An analysis of some structure pairs from the literature that need to be matched in a flexible fashion are shown. The use of a series of local transformations can be exported to other classifiers, and a future golden protein similarity measure could benefit from it. Availability: A public server for the program is available at http://dmi.uib.es/ProtDeform/. Contact: jairo@uib.es Supplementary information: All data used, results and examples are available at http://dmi.uib.es/people/jairo/bio/ProtDeform.Supplementary data are available at Bioinformatics online. PMID:19417057

  4. Amino-terminal precursor sequence modulates canine distemper virus fusion protein function.

    PubMed

    von Messling, Veronika; Cattaneo, Roberto

    2002-05-01

    The fusion (F) proteins of most paramyxoviruses are classical type I glycoproteins with a short hydrophobic leader sequence closely following the translation initiation codon. The predicted reading frame of the canine distemper virus (CDV) F protein is more complex, with a short hydrophobic sequence beginning 115 codons downstream of the first AUG. To verify if the sequence between the first AUG and the hydrophobic region is translated, we produced a specific antiserum that indeed detected a short-lived F protein precursor that we named PreF(0). A peptide resulting from PreF(0) cleavage was identified and named Pre, and its half-life was measured to be about 30 min. PreF(0) cleavage was completed before proteolytic activation of F(0) into its F(1) and F(2) subunits by furin. To test the hypothesis that the Pre peptide may influence protein activity, we compared the function of F proteins synthesized with that peptide to that of F proteins synthesized with a shorter amino-terminal signal sequence. F proteins synthesized with the Pre peptide were more stable and less active. Thus, the Pre peptide modulates the function of the CDV F protein. Interestingly, a distinct two-hit activation process has been recently described for human respiratory syncytial virus, another paramyxovirus.

  5. Protein sequence conservation and stable molecular evolution reveals influenza virus nucleoprotein as a universal druggable target.

    PubMed

    Babar, Mustafeez Mujtaba; Zaidi, Najam-us-Sahar Sadaf

    2015-08-01

    The high mutation rate in influenza virus genome and appearance of drug resistance calls for a constant effort to identify alternate drug targets and develop new antiviral strategies. The internal proteins of the virus can be exploited as a potential target for therapeutic interventions. Among these, the nucleoprotein (NP) is the most abundant protein that provides structural and functional support to the viral replication machinery. The current study aims at analysis of protein sequence polymorphism patterns, degree of molecular evolution and sequence conservation as a function of potential druggability of nucleoprotein. We analyzed a universal set of amino acid sequences, (n=22,000) and, in order to identify and correlate the functionally conserved, druggable regions across different parameters, classified them on the basis of host organism, strain type and continental region of sample isolation. The results indicated that around 95% of the sequence length was conserved, with at least 7 regions conserved across the protein among various classes. Moreover, the highly variable regions, though very limited in number, were found to be positively selected indicating, thereby, the high degree of protein stability against various hosts and spatio-temporal references. Furthermore, on mapping the conserved regions on the protein, 7 drug binding pockets in the functionally important regions of the protein were revealed. The results, therefore, collectively indicate that nucleoprotein is a highly conserved and stable viral protein that can potentially be exploited for development of broadly effective antiviral strategies.

  6. Protein evolution analysis of S-hydroxynitrile lyase by complete sequence design utilizing the INTMSAlign software.

    PubMed

    Nakano, Shogo; Asano, Yasuhisa

    2015-02-03

    Development of software and methods for design of complete sequences of functional proteins could contribute to studies of protein engineering and protein evolution. To this end, we developed the INTMSAlign software, and used it to design functional proteins and evaluate their usefulness. The software could assign both consensus and correlation residues of target proteins. We generated three protein sequences with S-selective hydroxynitrile lyase (S-HNL) activity, which we call designed S-HNLs; these proteins folded as efficiently as the native S-HNL. Sequence and biochemical analysis of the designed S-HNLs suggested that accumulation of neutral mutations occurs during the process of S-HNLs evolution from a low-activity form to a high-activity (native) form. Taken together, our results demonstrate that our software and the associated methods could be applied not only to design of complete sequences, but also to predictions of protein evolution, especially within families such as esterases and S-HNLs.

  7. Preparative Protein Production from Inclusion Bodies and Crystallization: A Seven-Week Biochemistry Sequence

    ERIC Educational Resources Information Center

    Peterson, Megan J.; Snyder, W. Kalani; Westerman, Shelley; McFarland, Benjamin J.

    2011-01-01

    We describe how to produce and purify proteins from "Escherichia coli" inclusion bodies by adapting versatile, preparative-scale techniques to the undergraduate laboratory schedule. This 7-week sequence of experiments fits into an annual cycle of research activity in biochemistry courses. Recombinant proteins are expressed as inclusion bodies,…

  8. Effect of single-point sequence alterations on the aggregationpropensity of a model protein

    SciTech Connect

    Bratko, Dusan; Cellmer, Troy; Prausnitz, John M.; Blanch, Harvey W.

    2005-10-07

    Sequences of contemporary proteins are believed to have evolved through process that optimized their overall fitness including their resistance to deleterious aggregation. Biotechnological processing may expose therapeutic proteins to conditions that are much more conducive to aggregation than those encountered in a cellular environment. An important task of protein engineering is to identify alternative sequences that would protect proteins when processed at high concentrations without altering their native structure associated with specific biological function. Our computational studies exploit parallel tempering simulations of coarse-grained model proteins to demonstrate that isolated amino-acid residue substitutions can result in significant changes in the aggregation resistance of the protein in a crowded environment while retaining protein structure in isolation. A thermodynamic analysis of protein clusters subject to competing processes of folding and association shows that moderate mutations can produce effects similar to those caused by changes in system conditions, including temperature, concentration, and solvent composition that affect the aggregation propensity. The range of conditions where a protein can resist aggregation can therefore be tuned by sequence alterations although the protein generally may retain its generic ability for aggregation.

  9. Protein design by optimization of a sequence-structure quality function

    SciTech Connect

    Brenner, S.E. |; Berry, A. |

    1994-12-31

    An automated procedure for protein design by optimization of a sequence-structure quality has been developed. The method selects a statistically optimal sequence for a particular structure, on the assumption that such a protein will adopt the desired structure. We present two optimization algorithms: one provides an exact optimization while the other uses a combinatorial technique for comparatively rapid results. Both are suitable for massively parallel computers. A prototype system was used to design sequences which should adopt the four-helix bundle conformation of myohemerythrin. These appear satisfactory to secondary structure and profile analysis. Detailed inspection reveals that the sequences are generally plausible but, as expected, lack some specific structural features. The design parameters provide some insight into the general determinants of protein structure.

  10. Proximity of AUG sequences to initiation codon in genomic 5' UTR regulates mammalian protein expression.

    PubMed

    Al-Ali, Ruslan; González-Sarmiento, Rogelio

    2016-12-15

    Protein expression can be controlled via AUG sequences located upstream to the initiation codon in the 5' end untranslated region (5' UTR). Our study was focused on the effect of distance between the initiation codon and the first upstream AUG. An inhibitory effect on protein expression was established when AUG exists in 5' UTR, and this effect is increased when multiple AUG sequences occur there. The study was performed with ATG16L2, a non-lethal gene with no introns or upstream AUG sequence to avoid any interference. New mutations were generated at different locations within the promoter region of ATG16L2 gene and added to a plasmid construct containing a luciferase gene reporter gene. The results show a clear relationship between the distance of the novel AUGs from initiation codon and protein expression. The inhibitory effect was even stronger when multiple AUG sequences were present in 5' UTR.

  11. Hydrogen Exchange Mass Spectrometry of Related Proteins with Divergent Sequences: A Comparative Study of HIV-1 Nef Allelic Variants

    NASA Astrophysics Data System (ADS)

    Wales, Thomas E.; Poe, Jerrod A.; Emert-Sedlak, Lori; Morgan, Christopher R.; Smithgall, Thomas E.; Engen, John R.

    2016-06-01

    Hydrogen exchange mass spectrometry can be used to compare the conformation and dynamics of proteins that are similar in tertiary structure. If relative deuterium levels are measured, differences in sequence, deuterium forward- and back-exchange, peptide retention time, and protease digestion patterns all complicate the data analysis. We illustrate what can be learned from such data sets by analyzing five variants (Consensus G2E, SF2, NL4-3, ELI, and LTNP4) of the HIV-1 Nef protein, both alone and when bound to the human Hck SH3 domain. Regions with similar sequence could be compared between variants. Although much of the hydrogen exchange features were preserved across the five proteins, the kinetics of Nef binding to Hck SH3 were not the same. These observations may be related to biological function, particularly for ELI Nef where we also observed an impaired ability to downregulate CD4 surface presentation. The data illustrate some of the caveats that must be considered for comparison experiments and provide a framework for investigations of other protein relatives, families, and superfamilies with HX MS.

  12. A critical comparison of protein microarray fabrication technologies.

    PubMed

    Romanov, Valentin; Davidoff, S Nikki; Miles, Adam R; Grainger, David W; Gale, Bruce K; Brooks, Benjamin D

    2014-03-21

    Of the diverse analytical tools used in proteomics, protein microarrays possess the greatest potential for providing fundamental information on protein, ligand, analyte, receptor, and antibody affinity-based interactions, binding partners and high-throughput analysis. Microarrays have been used to develop tools for drug screening, disease diagnosis, biochemical pathway mapping, protein-protein interaction analysis, vaccine development, enzyme-substrate profiling, and immuno-profiling. While the promise of the technology is intriguing, it is yet to be realized. Many challenges remain to be addressed to allow these methods to meet technical and research expectations, provide reliable assay answers, and to reliably diversify their capabilities. Critical issues include: (1) inconsistent printed microspot morphologies and uniformities, (2) low signal-to-noise ratios due to factors such as complex surface capture protocols, contamination, and static or no-flow mass transport conditions, (3) inconsistent quantification of captured signal due to spot uniformity issues, (4) non-optimal protocol conditions such as pH, temperature, drying that promote variability in assay kinetics, and lastly (5) poor protein (e.g., antibody) printing, storage, or shelf-life compatibility with common microarray assay fabrication methods, directly related to microarray protocols. Conventional printing approaches, including contact (e.g., quill and solid pin), non-contact (e.g., piezo and inkjet), microfluidics-based, microstamping, lithography, and cell-free protein expression microarrays, have all been used with varying degrees of success with figures of merit often defined arbitrarily without comparisons to standards, or analytical or fiduciary controls. Many microarray performance reports use bench top analyte preparations lacking real-world relevance, akin to "fishing in a barrel", for proof of concept and determinations of figures of merit. This review critiques current protein

  13. A Comparison of the First Two Sequenced Chloroplast Genomes in Asteraceae: Lettuce and Sunflower

    SciTech Connect

    Timme, Ruth E.; Kuehl, Jennifer V.; Boore, Jeffrey L.; Jansen, Robert K.

    2006-01-20

    Asteraceae is the second largest family of plants, with over 20,000 species. For the past few decades, numerous phylogenetic studies have contributed to our understanding of the evolutionary relationships within this family, including comparisons of the fast evolving chloroplast gene, ndhF, rbcL, as well as non-coding DNA from the trnL intron plus the trnLtrnF intergenic spacer, matK, and, with lesser resolution, psbA-trnH. This culminated in a study by Panero and Funk in 2002 that used over 13,000 bp per taxon for the largest taxonomic revision of Asteraceae in over a hundred years. Still, some uncertainties remain, and it would be very useful to have more information on the relative rates of sequence evolution among various genes and on genome structure as a potential set of phylogenetic characters to help guide future phylogenetic structures. By way of contributing to this, we report the first two complete chloroplast genome sequences from members of the Asteraceae, those of Helianthus annuus and Lactuca sativa. These plants belong to two distantly related subfamilies, Asteroideae and Cichorioideae, respectively. In addition to these, there is only one other published chloroplast genome sequence for any plant within the larger group called Eusterids II, that of Panax ginseng (Araliaceae, 156,318 bps, AY582139). Early chloroplast genome mapping studies demonstrated that H. annuus and L. sativa share a 22 kb inversion relative to members of the subfamily Barnadesioideae. By comparison to outgroups, this inversion was shown to be derived, indicating that the Asteroideae and Cichorioideae are more closely related than either is to the Barnadesioideae. Later sequencing study found that taxa that share this 22 kb inversion also contain within this region a second, smaller, 3.3 kb inversion. These sequences also enable an analysis of patterns of shared repeats in the genomes at fine level and of RNA editing by comparison to available EST sequences. In addition, since

  14. Sortase A as a novel molecular "stapler" for sequence-specific protein conjugation.

    PubMed

    Parthasarathy, Ranganath; Subramanian, Shyamsundar; Boder, Eric T

    2007-01-01

    The Sortase family of transpeptidase enzymes catalyzes sequence-specific ligation of proteins to the cell wall of Gram-positive bacteria. Here, we describe the application of recombinant Staphylococcus aureus Sortase A to attach a tagged model protein substrate (green fluorescent protein) to polystyrene beads chemically modified with either alkylamine or the in vivo Sortase A ligand, Gly-Gly-Gly, on their surfaces. Furthermore, we show that Sortase A can be used to sequence-specifically ligate eGFP to amino-terminated poly(ethylene glycol) and to generate protein oligomers and cyclized monomers using suitably tagged eGFP. We find that an alkylamine can substitute for the natural Gly3 substrate, which suggests the possibility of using the enzyme in materials applications. The highly specific and mild Sortase A-catalyzed reaction, based on small recognition tags unlikely to interfere with protein expression, thus represents a useful addition to the protein immobilization and modification tool kit.

  15. Sequence heuristics to encode phase behaviour in intrinsically disordered protein polymers

    PubMed Central

    Quiroz, Felipe García; Chilkoti, Ashutosh

    2015-01-01

    Proteins and synthetic polymers that undergo aqueous phase transitions mediate self-assembly in nature and in man-made material systems. Yet little is known about how the phase behaviour of a protein is encoded in its amino acid sequence. Here, by synthesizing intrinsically disordered, repeat proteins to test motifs that we hypothesized would encode phase behaviour, we show that the proteins can be designed to exhibit tunable lower or upper critical solution temperature (LCST and UCST, respectively) transitions in physiological solutions. We also show that mutation of key residues at the repeat level abolishes phase behaviour or encodes an orthogonal transition. Furthermore, we provide heuristics to identify, at the proteome level, proteins that might exhibit phase behaviour and to design novel protein polymers consisting of biologically active peptide repeats that exhibit LCST or UCST transitions. These findings set the foundation for the prediction and encoding of phase behaviour at the sequence level. PMID:26390327

  16. Sequence heuristics to encode phase behaviour in intrinsically disordered protein polymers.

    PubMed

    Quiroz, Felipe García; Chilkoti, Ashutosh

    2015-11-01

    Proteins and synthetic polymers that undergo aqueous phase transitions mediate self-assembly in nature and in man-made material systems. Yet little is known about how the phase behaviour of a protein is encoded in its amino acid sequence. Here, by synthesizing intrinsically disordered, repeat proteins to test motifs that we hypothesized would encode phase behaviour, we show that the proteins can be designed to exhibit tunable lower or upper critical solution temperature (LCST and UCST, respectively) transitions in physiological solutions. We also show that mutation of key residues at the repeat level abolishes phase behaviour or encodes an orthogonal transition. Furthermore, we provide heuristics to identify, at the proteome level, proteins that might exhibit phase behaviour and to design novel protein polymers consisting of biologically active peptide repeats that exhibit LCST or UCST transitions. These findings set the foundation for the prediction and encoding of phase behaviour at the sequence level.

  17. Human and Tree Shrew Alpha-synuclein: Comparative cDNA Sequence and Protein Structure Analysis.

    PubMed

    Wu, Zheng-Cun; Huang, Zhang-Qiong; Jiang, Qin-Fang; Dai, Jie-Jie; Zhang, Ying; Gao, Jia-Hong; Sun, Xiao-Mei; Chen, Nai-Hong; Yuan, Yu-He; Li, Cong; Han, Yuan-Yuan; Li, Yun; Ma, Kai-Li

    2015-10-01

    The synaptic protein alpha-synuclein (α-syn) is associated with a number of neurodegenerative diseases, and homology analyses among many species have been reported. Nevertheless, little is known about the cDNA sequence and protein structure of α-syn in tree shrews, and this information might contribute to our understanding of its role in both health and disease. We designed primers to the human α-syn cDNA sequence; then, tree shrew α-syn cDNA was obtained by RT-PCR and sequenced. Based on the acquired tree shrew α-syn cDNA sequence, both the amino acid sequence and the spatial structure of α-syn were predicted and analyzed. The homology analysis results showed that the tree shrew cDNA sequence matches the human cDNA sequence exactly except at nucleotide positions 45, 60, 65, 69, 93, 114, 147, 150, 157, 204, 252, 270, 284, 298, 308, and 324. Further protein sequence analysis revealed that the tree shrew α-syn protein sequence is 97.1 % identical to that of human α-syn. The secondary protein structure of tree shrew α-syn based on random coils and α-helices is the same as that of the human structure. The phosphorylation sites are highly conserved, except the site at position 103 of tree shrew α-syn. The predicted spatial structure of tree shrew α-syn is identical to that of human α-syn. Thus, α-syn might have a similar function in tree shrew and in human, and tree shrew might be a potential animal model for studying the pathogenesis of α-synucleinopathies.

  18. Sequence and structural implications of a bovine corneal keratan sulfate proteoglycan core protein. Protein 37B represents bovine lumican and proteins 37A and 25 are unique

    NASA Technical Reports Server (NTRS)

    Funderburgh, J. L.; Funderburgh, M. L.; Brown, S. J.; Vergnes, J. P.; Hassell, J. R.; Mann, M. M.; Conrad, G. W.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    Amino acid sequence from tryptic peptides of three different bovine corneal keratan sulfate proteoglycan (KSPG) core proteins (designated 37A, 37B, and 25) showed similarities to the sequence of a chicken KSPG core protein lumican. Bovine lumican cDNA was isolated from a bovine corneal expression library by screening with chicken lumican cDNA. The bovine cDNA codes for a 342-amino acid protein, M(r) 38,712, containing amino acid sequences identified in the 37B KSPG core protein. The bovine lumican is 68% identical to chicken lumican, with an 83% identity excluding the N-terminal 40 amino acids. Location of 6 cysteine and 4 consensus N-glycosylation sites in the bovine sequence were identical to those in chicken lumican. Bovine lumican had about 50% identity to bovine fibromodulin and 20% identity to bovine decorin and biglycan. About two-thirds of the lumican protein consists of a series of 10 amino acid leucine-rich repeats that occur in regions of calculated high beta-hydrophobic moment, suggesting that the leucine-rich repeats contribute to beta-sheet formation in these proteins. Sequences obtained from 37A and 25 core proteins were absent in bovine lumican, thus predicting a unique primary structure and separate mRNA for each of the three bovine KSPG core proteins.

  19. Combining phage display with de novo protein sequencing for reverse engineering of monoclonal antibodies.

    PubMed

    Rickert, Keith W; Grinberg, Luba; Woods, Robert M; Wilson, Susan; Bowen, Michael A; Baca, Manuel

    2016-01-01

    The enormous diversity created by gene recombination and somatic hypermutation makes de novo protein sequencing of monoclonal antibodies a uniquely challenging problem. Modern mass spectrometry-based sequencing will rarely, if ever, provide a single unambiguous sequence for the variable domains. A more likely outcome is computation of an ensemble of highly similar sequences that can satisfy the experimental data. This outcome can result in the need for empirical testing of many candidate sequences, sometimes iteratively, to identity one which can replicate the activity of the parental antibody. Here we describe an improved approach to antibody protein sequencing by using phage display technology to generate a combinatorial library of sequences that satisfy the mass spectrometry data, and selecting for functional candidates that bind antigen. This approach was used to reverse engineer 2 commercially-obtained monoclonal antibodies against murine CD137. Proteomic data enabled us to assign the majority of the variable domain sequences, with the exception of 3-5% of the sequence located within or adjacent to complementarity-determining regions. To efficiently resolve the sequence in these regions, small phage-displayed libraries were generated and subjected to antigen binding selection. Following enrichment of antigen-binding clones, 2 clones were selected for each antibody and recombinantly expressed as antigen-binding fragments (Fabs). In both cases, the reverse-engineered Fabs exhibited identical antigen binding affinity, within error, as Fabs produced from the commercial IgGs. This combination of proteomic and protein engineering techniques provides a useful approach to simplifying the technically challenging process of reverse engineering monoclonal antibodies from protein material.

  20. Combining phage display with de novo protein sequencing for reverse engineering of monoclonal antibodies

    PubMed Central

    Rickert, Keith W.; Grinberg, Luba; Woods, Robert M.; Wilson, Susan; Bowen, Michael A.; Baca, Manuel

    2016-01-01

    ABSTRACT The enormous diversity created by gene recombination and somatic hypermutation makes de novo protein sequencing of monoclonal antibodies a uniquely challenging problem. Modern mass spectrometry-based sequencing will rarely, if ever, provide a single unambiguous sequence for the variable domains. A more likely outcome is computation of an ensemble of highly similar sequences that can satisfy the experimental data. This outcome can result in the need for empirical testing of many candidate sequences, sometimes iteratively, to identity one which can replicate the activity of the parental antibody. Here we describe an improved approach to antibody protein sequencing by using phage display technology to generate a combinatorial library of sequences that satisfy the mass spectrometry data, and selecting for functional candidates that bind antigen. This approach was used to reverse engineer 2 commercially-obtained monoclonal antibodies against murine CD137. Proteomic data enabled us to assign the majority of the variable domain sequences, with the exception of 3–5% of the sequence located within or adjacent to complementarity-determining regions. To efficiently resolve the sequence in these regions, small phage-displayed libraries were generated and subjected to antigen binding selection. Following enrichment of antigen-binding clones, 2 clones were selected for each antibody and recombinantly expressed as antigen-binding fragments (Fabs). In both cases, the reverse-engineered Fabs exhibited identical antigen binding affinity, within error, as Fabs produced from the commercial IgGs. This combination of proteomic and protein engineering techniques provides a useful approach to simplifying the technically challenging process of reverse engineering monoclonal antibodies from protein material. PMID:26852694

  1. Prediction of high-risk types of human papillomaviruses using statistical model of protein "sequence space".

    PubMed

    Wang, Cong; Hai, Yabing; Liu, Xiaoqing; Liu, Nanfang; Yao, Yuhua; He, Pingan; Dai, Qi

    2015-01-01

    Discrimination of high-risk types of human papillomaviruses plays an important role in the diagnosis and remedy of cervical cancer. Recently, several computational methods have been proposed based on protein sequence-based and structure-based information, but the information of their related proteins has not been used until now. In this paper, we proposed using protein "sequence space" to explore this information and used it to predict high-risk types of HPVs. The proposed method was tested on 68 samples with known HPV types and 4 samples without HPV types and further compared with the available approaches. The results show that the proposed method achieved the best performance among all the evaluated methods with accuracy 95.59% and F1-score 90.91%, which indicates that protein "sequence space" could potentially be used to improve prediction of high-risk types of HPVs.

  2. Top-down analysis of protein samples by de novo sequencing techniques

    SciTech Connect

    Vyatkina, Kira; Wu, Si; Dekker, Lennard J. M.; VanDuijn, Martijn M.; Liu, Xiaowen; Tolić, Nikola; Luider, Theo M.; Paša-Tolić, Ljiljana; Pevzner, Pavel A.

    2016-05-14

    MOTIVATION: Recent technological advances have made high-resolution mass spectrometers affordable to many laboratories, thus boosting rapid development of top-down mass spectrometry, and implying a need in efficient methods for analyzing this kind of data. RESULTS: We describe a method for analysis of protein samples from top-down tandem mass spectrometry data, which capitalizes on de novo sequencing of fragments of the proteins present in the sample. Our algorithm takes as input a set of de novo amino acid strings derived from the given mass spectra using the recently proposed Twister approach, and combines them into aggregated strings endowed with offsets. The former typically constitute accurate sequence fragments of sufficiently well-represented proteins from the sample being analyzed, while the latter indicate their location in the protein sequence, and also bear information on post-translational modifications and fragmentation patterns.

  3. CATH: an expanded resource to predict protein function through structure and sequence

    PubMed Central

    Dawson, Natalie L.; Lewis, Tony E.; Das, Sayoni; Lees, Jonathan G.; Lee, David; Ashford, Paul; Orengo, Christine A.; Sillitoe, Ian

    2017-01-01

    The latest version of the CATH-Gene3D protein structure classification database has recently been released (version 4.1, http://www.cathdb.info). The resource comprises over 300 000 domain structures and over 53 million protein domains classified into 2737 homologous superfamilies, doubling the number of predicted protein domains in the previous version. The daily-updated CATH-B, which contains our very latest domain assignment data, provides putative classifications for over 100 000 additional protein domains. This article describes developments to the CATH-Gene3D resource over the last two years since the publication in 2015, including: significant increases to our structural and sequence coverage; expansion of the functional families in CATH; building a support vector machine (SVM) to automatically assign domains to superfamilies; improved search facilities to return alignments of query sequences against multiple sequence alignments; the redesign of the web pages and download site. PMID:27899584

  4. Identification of Sequence Similarities among Isomerization Hotspots in Crystallin Proteins

    PubMed Central

    2017-01-01

    The eye lens crystallins represent an ideal target for studying the effects of aging on protein structure. Herein we examine separately the water-soluble (WS) and water-insoluble (WI) crystallin fractions and identify sites of isomerization and epimerization. Both collision-induced dissociation and radical-directed dissociation are needed for detection of these non-mass-shifting post-translational modifications. Isomerization levels differ significantly between the WS and the WI fractions from sheep, pig, and cow eye lenses. Residues that are most susceptible to isomerization are identified site-specifically and are found to reside in structurally disordered regions. However, isomerization in structured domains, although less common, often yields more dramatic effects on solubility. Numerous isomerization hotspots were also identified and occur in regions with aspartic acid and serine repeats. For example, 128KMEIVDDDVPSLW140 in βB3 crystallin contains three sequential aspartic acid residues and is isomerized heavily in the WI fractions, while it is not modified at all in the WS fractions. Potential causes for enhanced isomerization at sites with acidic residue repeats are presented. The importance of acidic residue repeats extends beyond the lens, as they are found in many other long-lived proteins associated with disease. PMID:28234481

  5. Cross-species protein sequence and gene structure prediction with fine-tuned Webscipio 2.0 and Scipio

    PubMed Central

    2011-01-01

    Background Obtaining transcripts of homologs of closely related organisms and retrieving the reconstructed exon-intron patterns of the genes is a very important process during the analysis of the evolution of a protein family and the comparative analysis of the exon-intron structure of a certain gene from different species. Due to the ever-increasing speed of genome sequencing, the gap to genome annotation is growing. Thus, tools for the correct prediction and reconstruction of genes in related organisms become more and more important. The tool Scipio, which can also be used via the graphical interface WebScipio, performs significant hit processing of the output of the Blat program to account for sequencing errors, missing sequence, and fragmented genome assemblies. However, Scipio has so far been limited to high sequence similarity and unable to reconstruct short exons. Results Scipio and WebScipio have fundamentally been extended to better reconstruct very short exons and intron splice sites and to be better suited for cross-species gene structure predictions. The Needleman-Wunsch algorithm has been implemented for the search for short parts of the query sequence that were not recognized by Blat. Those regions might either be short exons, divergent sequence at intron splice sites, or very divergent exons. We have shown the benefit and use of new parameters with several protein examples from completely different protein families in searches against species from several kingdoms of the eukaryotes. The performance of the new Scipio version has been tested in comparison with several similar tools. Conclusions With the new version of Scipio very short exons, terminal and internal, of even just one amino acid can correctly be reconstructed. Scipio is also able to correctly predict almost all genes in cross-species searches even if the ancestors of the species separated more than 100 Myr ago and if the protein sequence identity is below 80%. For our test cases Scipio

  6. Identification, N-terminal region sequencing and similarity analysis of differentially expressed proteins in Paracoccidioides brasiliensis.

    PubMed

    Cunha, A F; Sousa, M V; Silva, S P; Jesuíno, R S; Soares, C M; Felipe, M S

    1999-04-01

    Paracoccidioides brasiliensis is the causal agent of paracoccidioidomycosis, which is a systemic mycosis in Latin America. This human pathogen is a dimorphic fungus existing as mycelium (26 degrees C) and in infected tissues as a yeast form (36 degrees C). The in vitro differentiation process is reversible and dependent on temperature shift. In the present study, the total proteins from both forms of P. brasiliensis (isolate Pb01) were analysed by two-dimensional electrophoresis. Differentially expressed proteins were identified. Two of these proteins, PbM46 (mycelium) and PbY20 (yeast), were submitted to automated protein sequencing of their N-terminal regions. The 15 amino acid residue sequence of PbM46, AITKIFALKVYDSSG, is similar to enolases from several sources, and specially those from Saccharomyces cerevisiae (80%) and Candida albicans (67%), when compared to the NR database at NCBI using the BLASTP program. The 34 amino acid residue sequence of PbY20, APKIAIVFYSLYGHIQKLAEAQKKGIEAAGGTAD, could probably represent an allergen protein since it is very similar (90%) to the minor allergen protein of Alternaria alternata and 82% similar to the allergen protein of Cladosporium herbarum. This comparative analysis of proteins from mycelium and yeast forms has allowed the identification and characterization of differentially expressed proteins, probably related to differential gene expression in P. brasiliensis.

  7. Prediction of Functional Class of Proteins and Peptides Irrespective of Sequence Homology by Support Vector Machines

    PubMed Central

    Tang, Zhi Qun; Lin, Hong Huang; Zhang, Hai Lei; Han, Lian Yi; Chen, Xin; Chen, Yu Zong

    2007-01-01

    Various computational methods have been used for the prediction of protein and peptide function based on their sequences. A particular challenge is to derive functional properties from sequences that show low or no homology to proteins of known function. Recently, a machine learning method, support vector machines (SVM), have been explored for predicting functional class of proteins and peptides from amino acid sequence derived properties independent of sequence similarity, which have shown promising potential for a wide spectrum of protein and peptide classes including some of the low- and non-homologous proteins. This method can thus be explored as a potential tool to complement alignment-based, clustering-based, and structure-based methods for predicting protein function. This article reviews the strategies, current progresses, and underlying difficulties in using SVM for predicting the functional class of proteins. The relevant software and web-servers are described. The reported prediction performances in the application of these methods are also presented. PMID:20066123

  8. The MPI Bioinformatics Toolkit for protein sequence analysis

    PubMed Central

    Biegert, Andreas; Mayer, Christian; Remmert, Michael; Söding, Johannes; Lupas, Andrei N.

    2006-01-01

    The MPI Bioinformatics Toolkit is an interactive web service which offers access to a great variety of public and in-house bioinformatics tools. They are grouped into different sections that support sequence searches, multiple alignment, secondary and tertiary structure prediction and classification. Several public tools are offered in customized versions that extend their functionality. For example, PSI-BLAST can be run against regularly updated standard databases, customized user databases or selectable sets of genomes. Another tool, Quick2D, integrates the results of various secondary structure, transmembrane and disorder prediction programs into one view. The Toolkit provides a friendly and intuitive user interface with an online help facility. As a key feature, various tools are interconnected so that the results of one tool can be forwarded to other tools. One could run PSI-BLAST, parse out a multiple alignment of selected hits and send the results to a cluster analysis tool. The Toolkit framework and the tools developed in-house will be packaged and freely available under the GNU Lesser General Public Licence (LGPL). The Toolkit can be accessed at . PMID:16845021

  9. The MPI Bioinformatics Toolkit for protein sequence analysis.

    PubMed

    Biegert, Andreas; Mayer, Christian; Remmert, Michael; Söding, Johannes; Lupas, Andrei N

    2006-07-01

    The MPI Bioinformatics Toolkit is an interactive web service which offers access to a great variety of public and in-house bioinformatics tools. They are grouped into different sections that support sequence searches, multiple alignment, secondary and tertiary structure prediction and classification. Several public tools are offered in customized versions that extend their functionality. For example, PSI-BLAST can be run against regularly updated standard databases, customized user databases or selectable sets of genomes. Another tool, Quick2D, integrates the results of various secondary structure, transmembrane and disorder prediction programs into one view. The Toolkit provides a friendly and intuitive user interface with an online help facility. As a key feature, various tools are interconnected so that the results of one tool can be forwarded to other tools. One could run PSI-BLAST, parse out a multiple alignment of selected hits and send the results to a cluster analysis tool. The Toolkit framework and the tools developed in-house will be packaged and freely available under the GNU Lesser General Public Licence (LGPL). The Toolkit can be accessed at http://toolkit.tuebingen.mpg.de.

  10. Orpinomyces cellulase CelE protein and coding sequences

    DOEpatents

    Li, Xin-Liang; Ljungdahl, Lars G.; Chen, Huizhong

    2000-08-29

    A CDNA designated celE cloned from Orpinomyces PC-2 encodes a polypeptide (CelE) of 477 amino acids. CelE is highly homologous to CelB of Orpinomyces (72.3% identity) and Neocallimastix (67.9% identity), and like them, it has a non-catalytic repeated peptide domain (NCRPD) at the C-terminal end. The catalytic domain of CelE is homologous to glycosyl hydrolases of Family 5, found in several anaerobic bacteria. The gene of celE is devoid of introns. The recombinant proteins CelE and CelB of Orpinomyces PC-2 randomly hydrolyze carboxymethylcellulose and cello-oligosaccharides in the pattern of endoglucanases.

  11. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega

    PubMed Central

    Sievers, Fabian; Wilm, Andreas; Dineen, David; Gibson, Toby J; Karplus, Kevin; Li, Weizhong; Lopez, Rodrigo; McWilliam, Hamish; Remmert, Michael; Söding, Johannes; Thompson, Julie D; Higgins, Desmond G

    2011-01-01

    Multiple sequence alignments are fundamental to many sequence analysis methods. Most alignments are computed using the progressive alignment heuristic. These methods are starting to become a bottleneck in some analysis pipelines when faced with data sets of the size of many thousands of sequences. Some methods allow computation of larger data sets while sacrificing quality, and others produce high-quality alignments, but scale badly with the number of sequences. In this paper, we describe a new program called Clustal Omega, which can align virtually any number of protein sequences quickly and that delivers accurate alignments. The accuracy of the package on smaller test cases is similar to that of the high-quality aligners. On larger data sets, Clustal Omega outperforms other packages in terms of execution time and quality. Clustal Omega also has powerful features for adding sequences to and exploiting information in existing alignments, making use of the vast amount of precomputed information in public databases like Pfam. PMID:21988835

  12. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega.

    PubMed

    Sievers, Fabian; Wilm, Andreas; Dineen, David; Gibson, Toby J; Karplus, Kevin; Li, Weizhong; Lopez, Rodrigo; McWilliam, Hamish; Remmert, Michael; Söding, Johannes; Thompson, Julie D; Higgins, Desmond G

    2011-10-11

    Multiple sequence alignments are fundamental to many sequence analysis methods. Most alignments are computed using the progressive alignment heuristic. These methods are starting to become a bottleneck in some analysis pipelines when faced with data sets of the size of many thousands of sequences. Some methods allow computation of larger data sets while sacrificing quality, and others produce high-quality alignments, but scale badly with the number of sequences. In this paper, we describe a new program called Clustal Omega, which can align virtually any number of protein sequences quickly and that delivers accurate alignments. The accuracy of the package on smaller test cases is similar to that of the high-quality aligners. On larger data sets, Clustal Omega outperforms other packages in terms of execution time and quality. Clustal Omega also has powerful features for adding sequences to and exploiting information in existing alignments, making use of the vast amount of precomputed information in public databases like Pfam.

  13. Characterization and sequence of tomato 2S seed albumin: a storage protein with sequence similarities to the fruit lectin.

    PubMed

    Oguri, Suguru; Kamoshida, Mayumi; Nagata, Yoshiho; Momonoki, Yoshie S; Kamimura, Hideo

    2003-04-01

    We found a 2S storage albumin from the seed of tomato ( Lycopersicon esculentum L. cv. Cherry) that cross-reacted with antiserum to the fruit lectin, and named it Lec2SA. According to its size and basicity, Lec2SA was classified into four isoforms. These isoforms have an M(r) of approximately 12,000, and are composed of a small subunit (M(r) 4,000) and a large subunit (M(r) 8,000) linked by disulfide bonds. The complete amino acid sequence of Lec2SA was determined. The small subunit was composed of 32 amino acids, whereas the large subunit contained 70 amino acids with a pyroglutamine as the N-terminal residue. The sequence of Lec2SA was similar to that of 2S albumins from different plants, such as Brazil nut and castor beans. Furthermore, a sequence similarity was found between the large subunit of Lec2SA and the peptide sequence from tomato lectin. Although these similarities were found, Lec2SA did not show hemagglutinating activity or sugar-chain-binding activity, indicating that Lec2SA lacks the carbohydrate-binding domain. These results suggest that tomato lectin is a chimeric lectin sharing the seed storage protein-like domain that is incorporated into the gene encoding tomato lectin through gene fusion.

  14. Cloud computing for protein-ligand binding site comparison.

    PubMed

    Hung, Che-Lun; Hua, Guan-Jie

    2013-01-01

    The proteome-wide analysis of protein-ligand binding sites and their interactions with ligands is important in structure-based drug design and in understanding ligand cross reactivity and toxicity. The well-known and commonly used software, SMAP, has been designed for 3D ligand binding site comparison and similarity searching of a structural proteome. SMAP can also predict drug side effects and reassign existing drugs to new indications. However, the computing scale of SMAP is limited. We have developed a high availability, high performance system that expands the comparison scale of SMAP. This cloud computing service, called Cloud-PLBS, combines the SMAP and Hadoop frameworks and is deployed on a virtual cloud computing platform. To handle the vast amount of experimental data on protein-ligand binding site pairs, Cloud-PLBS exploits the MapReduce paradigm as a management and parallelizing tool. Cloud-PLBS provides a web portal and scalability through which biologists can address a wide range of computer-intensive questions in biology and drug discovery.

  15. Combining sequence and Gene Ontology for protein module detection in the Weighted Network.

    PubMed

    Yu, Yang; Liu, Jie; Feng, Nuan; Song, Bo; Zheng, Zeyu

    2017-01-07

    Studies of protein modules in a Protein-Protein Interaction (PPI) network contribute greatly to the understanding of biological mechanisms. With the development of computing science, computational approaches have played an important role in locating protein modules. In this paper, a new approach combining Gene Ontology and amino acid background frequency is introduced to detect the protein modules in the weighted PPI networks. The proposed approach mainly consists of three parts: the feature extraction, the weighted graph construction and the protein complex detection. Firstly, the topology-sequence information is utilized to present the feature of protein complex. Secondly, six types of the weighed graph are constructed by combining PPI network and Gene Ontology information. Lastly, protein complex algorithm is applied to the weighted graph, which locates the clusters based on three conditions, including density, network diameter and the included angle cosine. Experiments have been conducted on two protein complex benchmark sets for yeast and the results show that the approach is more effective compared to five typical algorithms with the performance of f-measure and precision. The combination of protein interaction network with sequence and gene ontology data is helpful to improve the performance and provide a optional method for protein module detection.

  16. Combining Sequence and Gene Ontology for Protein Module Detection in the Weighted Network.

    PubMed

    Yu, Yang; Liu, Jie; Feng, Nuan; Song, Bo; Zheng, Zeyu

    2016-10-29

    Studies of protein modules in a Protein-Protein Interaction (PPI) network contribute greatly to the understanding of biological mechanisms. With the development of computing science, computational approaches have played an important role in locating protein modules. In this paper, a new approach combining Gene Ontology and amino acid background frequency is introduced to detect the protein modules in the weighted PPI networks. The proposed approach mainly consists of three parts: the feature extraction, the weighted graph construction and the protein complex detection. Firstly, the topology-sequence information is utilized to present the feature of protein complex. Secondly, six types of the weighed graph are constructed by combining PPI network and Gene Ontology information. Lastly, protein complex algorithm is applied to the weighted graph, which locates the clusters based on three conditions, including density, network diameter and the included angle cosine. Experiments have been conducted on two protein complex benchmark sets for yeast and the results show that the approach is more effective compared to five typical algorithms with the performance of f-measure and precision. The combination of protein interaction network with sequence and gene ontology data is helpful to improve the performance and provide a optional method for protein module detection.

  17. A theoretical method to compute sequence dependent configurational properties in charged polymers and proteins

    SciTech Connect

    Sawle, Lucas; Ghosh, Kingshuk

    2015-08-28

    A general formalism to compute configurational properties of proteins and other heteropolymers with an arbitrary sequence of charges and non-uniform excluded volume interaction is presented. A variational approach is utilized to predict average distance between any two monomers in the chain. The presented analytical model, for the first time, explicitly incorporates the role of sequence charge distribution to determine relative sizes between two sequences that vary not only in total charge composition but also in charge decoration (even when charge composition is fixed). Furthermore, the formalism is general enough to allow variation in excluded volume interactions between two monomers. Model predictions are benchmarked against the all-atom Monte Carlo studies of Das and Pappu [Proc. Natl. Acad. Sci. U. S. A. 110, 13392 (2013)] for 30 different synthetic sequences of polyampholytes. These sequences possess an equal number of glutamic acid (E) and lysine (K) residues but differ in the patterning within the sequence. Without any fit parameter, the model captures the strong sequence dependence of the simulated values of the radius of gyration with a correlation coefficient of R{sup 2} = 0.9. The model is then applied to real proteins to compare the unfolded state dimensions of 540 orthologous pairs of thermophilic and mesophilic proteins. The excluded volume parameters are assumed similar under denatured conditions, and only electrostatic effects encoded in the sequence are accounted for. With these assumptions, thermophilic proteins are found—with high statistical significance—to have more compact disordered ensemble compared to their mesophilic counterparts. The method presented here, due to its analytical nature, is capable of making such high throughput analysis of multiple proteins and will have broad applications in proteomic studies as well as in other heteropolymeric systems.

  18. A theoretical method to compute sequence dependent configurational properties in charged polymers and proteins

    NASA Astrophysics Data System (ADS)

    Sawle, Lucas; Ghosh, Kingshuk

    2015-08-01

    A general formalism to compute configurational properties of proteins and other heteropolymers with an arbitrary sequence of charges and non-uniform excluded volume interaction is presented. A variational approach is utilized to predict average distance between any two monomers in the chain. The presented analytical model, for the first time, explicitly incorporates the role of sequence charge distribution to determine relative sizes between two sequences that vary not only in total charge composition but also in charge decoration (even when charge composition is fixed). Furthermore, the formalism is general enough to allow variation in excluded volume interactions between two monomers. Model predictions are benchmarked against the all-atom Monte Carlo studies of Das and Pappu [Proc. Natl. Acad. Sci. U. S. A. 110, 13392 (2013)] for 30 different synthetic sequences of polyampholytes. These sequences possess an equal number of glutamic acid (E) and lysine (K) residues but differ in the patterning within the sequence. Without any fit parameter, the model captures the strong sequence dependence of the simulated values of the radius of gyration with a correlation coefficient of R2 = 0.9. The model is then applied to real proteins to compare the unfolded state dimensions of 540 orthologous pairs of thermophilic and mesophilic proteins. The excluded volume parameters are assumed similar under denatured conditions, and only electrostatic effects encoded in the sequence are accounted for. With these assumptions, thermophilic proteins are found—with high statistical significance—to have more compact disordered ensemble compared to their mesophilic counterparts. The method presented here, due to its analytical nature, is capable of making such high throughput analysis of multiple proteins and will have broad applications in proteomic studies as well as in other heteropolymeric systems.

  19. DNA-protein recognition and sequence-dependent variations of DNA conformational properties

    NASA Astrophysics Data System (ADS)

    Vologodskii, Alexander

    2015-03-01

    Parameters of B-DNA, the major form of the double helix, depend on its sequence. This dependence can contribute to the recognition of specific DNA sequences by proteins. Here we try to analyze this contribution quantitatively. In the first approach to this goal we used experimental data on the sequence dependence of DNA bending rigidity and its helical repeat. The solution data on these parameters of B-DNA were derived from the experiments on cyclization of short DNA fragments with specially designed sequences. The data allowed calculating the sequence variations of DNA bending energy, as well as the variations of the energy of torsional deformation of the double helix associated with a protein binding. The results show that DNA conformational parameters can have very limited influence on the sequence specificity of protein binding. In the second approach we analyzed the experimental data on the binding affinity of the nucleosome core with DNA fragments of different sequences. The conclusions derived in these two approaches are in a good agreement with one another.

  20. EST-PAC a web package for EST annotation and protein sequence prediction.

    PubMed

    Strahm, Yvan; Powell, David; Lefèvre, Christophe

    2006-10-12

    With the decreasing cost of DNA sequencing technology and the vast diversity of biological resources, researchers increasingly face the basic challenge of annotating a larger number of expressed sequences tags (EST) from a variety of species. This typically consists of a series of repetitive tasks, which should be automated and easy to use. The results of these annotation tasks need to be stored and organized in a consistent way. All these operations should be self-installing, platform independent, easy to customize and amenable to using distributed bioinformatics resources available on the Internet. In order to address these issues, we present EST-PAC a web oriented multi-platform software package for expressed sequences tag (EST) annotation. EST-PAC provides a solution for the administration of EST and protein sequence annotations accessible through a web interface. Three aspects of EST annotation are automated: 1) searching local or remote biological databases for sequence similarities using Blast services, 2) predicting protein coding sequence from EST data and, 3) annotating predicted protein sequences with functional domain predictions. In practice, EST-PAC integrates the BLASTALL suite, EST-Scan2 and HMMER in a relational database system accessible through a simple web interface. EST-PAC also takes advantage of the relational database to allow consistent storage, powerful queries of results and, management of the annotation process. The system allows users to customize annotation strategies and provides an open-source data-management environment for research and education in bioinformatics.

  1. GPU-based Point Cloud Superpositioning for Structural Comparisons of Protein Binding Sites.

    PubMed

    Leinweber, Matthias; Fober, Thomas; Freisleben, Bernd

    2016-11-07

    In this paper, we present a novel approach to solve the labeled point cloud superpositioning problem for performing structural comparisons of protein binding sites. The solution is based on a parallel evolution strategy that operates on large populations and runs on GPU hardware. The proposed evolution strategy reduces the likelihood of getting stuck in a local optimum of the multimodal real-valued optimization problem represented by labeled point cloud superpositioning. The performance of the GPU-based parallel evolution strategy is compared to a previously proposed CPU-based sequential approach for labeled point cloud superpositioning, indicating that the GPU-based parallel evolution strategy leads to qualitatively better results and significantly shorter runtimes, with speed improvements of up to a factor of 1,500 for large populations. Binary classification tests based on the ATP, NADH and FAD protein subsets of CavBase, a database containing putative binding sites, show average classification rate improvements from about 92% (CPU) to 96% (GPU). Further experiments indicate that the proposed GPU-based labeled point cloud superpositioning approach can be superior to traditional protein comparison approaches based on sequence alignments.

  2. Prediction of Protein–Protein Interaction Sites in Sequences and 3D Structures by Random Forests

    PubMed Central

    Šikić, Mile; Tomić, Sanja; Vlahoviček, Kristian

    2009-01-01

    Identifying interaction sites in proteins provides important clues to the function of a protein and is becoming increasingly relevant in topics such as systems biology and drug discovery. Although there are numerous papers on the prediction of interaction sites using information derived from structure, there are only a few case reports on the prediction of interaction residues based solely on protein sequence. Here, a sliding window approach is combined with the Random Forests method to predict protein interaction sites using (i) a combination of sequence- and structure-derived parameters and (ii) sequence information alone. For sequence-based prediction we achieved a precision of 84% with a 26% recall and an F-measure of 40%. When combined with structural information, the prediction performance increases to a precision of 76% and a recall of 38% with an F-measure of 51%. We also present an attempt to rationalize the sliding window size and demonstrate that a nine-residue window is the most suitable for predictor construction. Finally, we demonstrate the applicability of our prediction methods by modeling the Ras–Raf complex using predicted interaction sites as target binding interfaces. Our results suggest that it is possible to predict protein interaction sites with quite a high accuracy using only sequence information. PMID:19180183

  3. Ab initio protein folding simulations using atomic burials as informational intermediates between sequence and structure.

    PubMed

    van der Linden, Marx Gomes; Ferreira, Diogo César; de Oliveira, Leandro Cristante; Onuchic, José N; de Araújo, Antônio F Pereira

    2014-07-01

    The three-dimensional structure of proteins is determined by their linear amino acid sequences but decipherment of the underlying protein folding code has remained elusive. Recent studies have suggested that burials, as expressed by atomic distances to the molecular center, are sufficiently informative for structural determination while potentially obtainable from sequences. Here we provide direct evidence for this distinctive role of burials in the folding code, demonstrating that burial propensities estimated from local sequence can indeed be used to fold globular proteins in ab initio simulations. We have used a statistical scheme based on a Hidden Markov Model (HMM) to classify all heavy atoms of a protein into a small number of burial atomic types depending on sequence context. Molecular dynamics simulations were then performed with a potential that forces all atoms of each type towards their predicted burial level, while simple geometric constraints were imposed on covalent structure and hydrogen bond formation. The correct folded conformation was obtained and distinguished in simulations that started from extended chains for a selection of structures comprising all three folding classes and high burial prediction quality. These results demonstrate that atomic burials can act as informational intermediates between sequence and structure, providing a new conceptual framework for improving structural prediction and understanding the fundamentals of protein folding.

  4. Identification of an extended N-acetylated sequence adjacent to the protein-linkage region of fibroblast heparan sulphate.

    PubMed Central

    Lyon, M; Steward, W P; Hampson, I N; Gallagher, J T

    1987-01-01

    The distribution of N-sulphate groups within fibroblast heparan sulphate chains was investigated. The detergent-extractable heparan sulphate proteoglycan from adult human skin fibroblasts, radiolabelled with [3H]glucosamine and [35S]sulphate, was coupled to CNBr-activated Sepharose 4B. After partial depolymerization of the heparan sulphate with nitrous acid, the remaining Sepharose-bound fragments were removed by treatment with alkali. These fragments, of various sizes, but all containing an intact reducing xylose residue, were fractionated on Sephacryl S-300 and the distribution of the 3H and 35S radiolabels was analysed. A decreased degree of sulphation was observed towards the reducing termini of the chains. After complete nitrous acid hydrolysis of the Sepharose-bound proteoglycan, analysis of the proximity of N-sulphation to the reducing end revealed the existence of an extended N-acetylated sequence directly adjacent to the protein-linkage sequence. The size of this N-acetylated domain was estimated by gel filtration to be approximately eight disaccharide units. This domain appears to be highly conserved, being present in virtually all the chains derived from this proteoglycan, implying the existence of a mechanism capable of generating such a non-random sequence during the post-polymeric modification of heparan sulphate. Comparison with the corresponding situation in heparin suggests that different mechanisms regulate polymer N-sulphation in the vicinity of the protein-linkage region of these chemically related glycosaminoglycans. PMID:2954540

  5. Sequence conservation in the C-terminal region of spider silk proteins (Spidroin) from Nephila clavipes (Tetragnathidae) and Araneus bicentenarius (Araneidae).

    PubMed

    Beckwitt, R; Arcidiacono, S

    1994-03-04

    The polymerase chain reaction (PCR) has been used to amplify the portion of the Spidroin 1 gene that codes for the C-terminal part of the silk protein of the spider Nephila clavipes. Along with some substitution mutations of minor consequence, the PCR-derived sequence reveals an additional base missing from the previously published Nephila Spidroin 1 sequence. Comparison of the PCR-derived sequence with the equivalent region of Spidroin 2 indicates that the insertion of this single base results in greatly increased similarity in the resulting amino acid sequences of Spidroin 1 and Spidroin 2 (75% over 97 amino acids). The same PCR primers also amplified a fragment of the same length from Araneus bicentenarius. This sequence is also very similar to Spidroin 1 of Nephila (71% over 238 bases excluding the PCR primers, which translates into 76% over 79 amino acids).

  6. Similarity between the sequences of taxol-selected peptides and the disordered loop of the anti-apoptotic protein, Bcl-2.

    PubMed

    Rodi, D J; Makowski, L

    1999-01-01

    The anti-cancer drug taxol is known to bind to and induce the polymerization of tubulin and has recently been shown to bind to the anti-apoptotic protein Bcl-2, but not to its homolog, Bcl-XL. Libraries of random peptides displayed on the surface of a bacteriophage were screened to select those exhibiting affinity for taxol. The sequences of these peptides were compared to sequences of proteins involved in mitosis and apoptosis. No significant similarities were detected between the sequences of tubulins and the taxol-selected peptides. However, a high level of similarity exists between the selected peptides and the disordered loop of Bcl-2. Conversely, there was little similarity between the sequences of the selected peptides and Bcl-XL. These results indicate that peptides displayed on the surface of a bacteriophage can mimic the ligand-binding behavior of a disordered protein loop and that comparison of the sequences of affinity-selected peptides with protein sequences can be predictive for ligand binding.

  7. Gleaning structural and functional information from correlations in protein multiple sequence alignments.

    PubMed

    Neuwald, Andrew F

    2016-06-01

    The availability of vast amounts of protein sequence data facilitates detection of subtle statistical correlations due to imposed structural and functional constraints. Recent breakthroughs using Direct Coupling Analysis (DCA) and related approaches have tapped into correlations believed to be due to compensatory mutations. This has yielded some remarkable results, including substantially improved prediction of protein intra- and inter-domain 3D contacts, of membrane and globular protein structures, of substrate binding sites, and of protein conformational heterogeneity. A complementary approach is Bayesian Partitioning with Pattern Selection (BPPS), which partitions related proteins into hierarchically-arranged subgroups based on correlated residue patterns. These correlated patterns are presumably due to structural and functional constraints associated with evolutionary divergence rather than to compensatory mutations. Hence joint application of DCA- and BPPS-based approaches should help sort out the structural and functional constraints contributing to sequence correlations.

  8. Understanding sequence similarity and framework analysis between centromere proteins using computational biology.

    PubMed

    Doss, C George Priya; Chakrabarty, Chiranjib; Debajyoti, C; Debottam, S

    2014-11-01

    Certain mysteries pointing toward their recruitment pathways, cell cycle regulation mechanisms, spindle checkpoint assembly, and chromosome segregation process are considered the centre of attraction in cancer research. In modern times, with the established databases, ranges of computational platforms have provided a platform to examine almost all the physiological and biochemical evidences in disease-associated phenotypes. Using existing computational methods, we have utilized the amino acid residues to understand the similarity within the evolutionary variance of different associated centromere proteins. This study related to sequence similarity, protein-protein networking, co-expression analysis, and evolutionary trajectory of centromere proteins will speed up the understanding about centromere biology and will create a road map for upcoming researchers who are initiating their work of clinical sequencing using centromere proteins.

  9. Myelin protein zero gene sequencing diagnoses Charcot-Marie-Tooth Type 1B disease

    SciTech Connect

    Su, Y.; Zhang, H.; Madrid, R.

    1994-09-01

    Charcot-Marie-Tooth disease (CMT), the most common genetic neuropathy, affects about 1 in 2600 people in Norway and is found worldwide. CMT Type 1 (CMT1) has slow nerve conduction with demyelinated Schwann cells. Autosomal dominant CMT Type 1B (CMT1B) results from mutations in the myelin protein zero gene which directs the synthesis of more than half of all Schwann cell protein. This gene was mapped to the chromosome 1q22-1q23.1 borderline by fluorescence in situ hybridization. The first 7 of 7 reported CMT1B mutations are unique. Thus the most effective means to identify CMT1B mutations in at-risk family members and fetuses is to sequence the entire coding sequence in dominant or sporadic CMT patients without the CMT1A duplication. Of the 19 primers used in 16 pars to uniquely amplify the entire MPZ coding sequence, 6 primer pairs were used to amplify and sequence the 6 exons. The DyeDeoxy Terminator cycle sequencing method used with four different color fluorescent lables was superior to manual sequencing because it sequences more bases unambiguously from extracted genomic DNA samples within 24 hours. This protocol was used to test 28 CMT and Dejerine-Sottas patients without CMT1A gene duplication. Sequencing MPZ gene-specific amplified fragments identified 9 polymorphic sites within the 6 exons that encode the 248 amino acid MPZ protein. The large number of major CMT1B mutations identified by single strand sequencing are being verified by reverse strand sequencing and when possible, by restriction enzyme analysis. This protocol can be used to distringuish CMT1B patients from othre CMT phenotypes and to determine the CMT1B status of relatives both presymptomatically and prenatally.

  10. Characterization of tannase protein sequences of bacteria and fungi: an in silico study.

    PubMed

    Banerjee, Amrita; Jana, Arijit; Pati, Bikash R; Mondal, Keshab C; Das Mohapatra, Pradeep K

    2012-04-01

    The tannase protein sequences of 149 bacteria and 36 fungi were retrieved from NCBI database. Among them only 77 bacterial and 31 fungal tannase sequences were taken which have different amino acid compositions. These sequences were analysed for different physical and chemical properties, superfamily search, multiple sequence alignment, phylogenetic tree construction and motif finding to find out the functional motif and the evolutionary relationship among them. The superfamily search for these tannase exposed the occurrence of proline iminopeptidase-like, biotin biosynthesis protein BioH, O-acetyltransferase, carboxylesterase/thioesterase 1, carbon-carbon bond hydrolase, haloperoxidase, prolyl oligopeptidase, C-terminal domain and mycobacterial antigens families and alpha/beta hydrolase superfamily. Some bacterial and fungal sequence showed similarity with different families individually. The multiple sequence alignment of these tannase protein sequences showed conserved regions at different stretches with maximum homology from amino acid residues 389-469 and 482-523 which could be used for designing degenerate primers or probes specific for tannase producing bacterial and fungal species. Phylogenetic tree showed two different clusters; one has only bacteria and another have both fungi and bacteria showing some relationship between these different genera. Although in second cluster near about all fungal species were found together in a corner which indicates the sequence level similarity among fungal genera. The distributions of fourteen motifs analysis revealed Motif 1 with a signature amino acid sequence of 29 amino acids, i.e. GCSTGGREALKQAQRWPHDYDGIIANNPA, was uniformly observed in 83.3 % of studied tannase sequences representing its participation with the structure and enzymatic function.

  11. Integrating mRNA and protein sequencing enables the detection and quantitative profiling of natural protein sequence variants of Populus trichocarpa

    DOE PAGES

    Abraham, Paul E.; Wang, Xiaojing; Ranjan, Priya; ...

    2015-10-20

    The availability of next-generation sequencing technologies has rapidly transformed our ability to link genotypes to phenotypes, and as such, promises to facilitate the dissection of genetic contribution to complex traits. Although discoveries of genetic associations will further our understanding of biology, once candidate variants have been identified, investigators are faced with the challenge of characterizing the functional effects on proteins encoded by such genes. Here we show how next-generation RNA sequencing data can be exploited to construct genotype-specific protein sequence databases, which provide a clearer picture of the molecular toolbox underlying cellular and organismal processes and their variation in amore » natural population. For this study, we used two individual genotypes (DENA-17-3 and VNDL-27-4) from a recent genome wide association (GWA) study of Populus trichocarpa, an obligate outcrosser that exhibits tremendous phenotypic variation across the natural population. This strategy allowed us to comprehensively catalogue proteins containing single amino acid polymorphisms (SAAPs) and insertions and deletions (INDELS). Based on large-scale identification of SAAPs, we profiled the frequency of 128 types of naturally occurring amino acid substitutions, with a subset of SAAPs occurring in regions of the genome having strong polymorphism patterns consistent with recent positive and/or divergent selection. In addition, we were able to explore the diploid landscape of Populus at the proteome-level, allowing the characterization of heterozygous variants.« less

  12. Integrating mRNA and protein sequencing enables the detection and quantitative profiling of natural protein sequence variants of Populus trichocarpa

    SciTech Connect

    Abraham, Paul E.; Wang, Xiaojing; Ranjan, Priya; Zhang, Bing; Tuskan, Gerald A.; Robert L. Hettich; Nookaew, Intawat

    2015-10-20

    The availability of next-generation sequencing technologies has rapidly transformed our ability to link genotypes to phenotypes, and as such, promises to facilitate the dissection of genetic contribution to complex traits. Although discoveries of genetic associations will further our understanding of biology, once candidate variants have been identified, investigators are faced with the challenge of characterizing the functional effects on proteins encoded by such genes. Here we show how next-generation RNA sequencing data can be exploited to construct genotype-specific protein sequence databases, which provide a clearer picture of the molecular toolbox underlying cellular and organismal processes and their variation in a natural population. For this study, we used two individual genotypes (DENA-17-3 and VNDL-27-4) from a recent genome wide association (GWA) study of Populus trichocarpa, an obligate outcrosser that exhibits tremendous phenotypic variation across the natural population. This strategy allowed us to comprehensively catalogue proteins containing single amino acid polymorphisms (SAAPs) and insertions and deletions (INDELS). Based on large-scale identification of SAAPs, we profiled the frequency of 128 types of naturally occurring amino acid substitutions, with a subset of SAAPs occurring in regions of the genome having strong polymorphism patterns consistent with recent positive and/or divergent selection. In addition, we were able to explore the diploid landscape of Populus at the proteome-level, allowing the characterization of heterozygous variants.

  13. Identification of physicochemical selective pressure on protein encoding nucleotide sequences

    PubMed Central

    Wong, Wendy SW; Sainudiin, Raazesh; Nielsen, Rasmus

    2006-01-01

    Background Statistical methods for identifying positively selected sites in protein coding regions are one of the most commonly used tools in evolutionary bioinformatics. However, they have been limited by not taking the physiochemical properties of amino acids into account. Results We develop a new codon-based likelihood model for detecting site-specific selection pressures acting on specific physicochemical properties. Nonsynonymous substitutions are divided into substitutions that differ with respect to the physicochemical properties of interest, and those that do not. The substitution rates of these two types of changes, relative to the synonymous substitution rate, are then described by two parameters, γ and ω respectively. The new model allows us to perform likelihood ratio tests for positive selection acting on specific physicochemical properties of interest. The new method is first used to analyze simulated data and is shown to have good power and accuracy in detecting physicochemical selective pressure. We then re-analyze data from the class-I alleles of the human Major Histocompatibility Complex (MHC) and from the abalone sperm lysine. Conclusion Our new method allows a more flexible framework to identify selection pressure on particular physicochemical properties. PMID:16542458

  14. Sequence co-evolution gives 3D contacts and structures of protein complexes

    PubMed Central

    Hopf, Thomas A; Schärfe, Charlotta P I; Rodrigues, João P G L M; Green, Anna G; Kohlbacher, Oliver; Sander, Chris; Bonvin, Alexandre M J J; Marks, Debora S

    2014-01-01

    Protein–protein interactions are fundamental to many biological processes. Experimental screens have identified tens of thousands of interactions, and structural biology has provided detailed functional insight for select 3D protein complexes. An alternative rich source of information about protein interactions is the evolutionary sequence record. Building on earlier work, we show that analysis of correlated evolutionary sequence changes across proteins identifies residues that are close in space with sufficient accuracy to determine the three-dimensional structure of the protein complexes. We evaluate prediction performance in blinded tests on 76 complexes of known 3D structure, predict protein–protein contacts in 32 complexes of unknown structure, and demonstrate how evolutionary couplings can be used to distinguish between interacting and non-interacting protein pairs in a large complex. With the current growth of sequences, we expect that the method can be generalized to genome-wide elucidation of protein–protein interaction networks and used for interaction predictions at residue resolution. DOI: http://dx.doi.org/10.7554/eLife.03430.001 PMID:25255213

  15. Isolation and N-terminal sequencing of a novel cadmium-binding protein from Boletus edulis

    NASA Astrophysics Data System (ADS)

    Collin-Hansen, C.; Andersen, R. A.; Steinnes, E.

    2003-05-01

    A Cd-binding protein was isolated from the popular edible mushroom Boletus edulis, which is a hyperaccumulator of both Cd and Hg. Wild-growing samples of B. edulis were collected from soils rich in Cd. Cd radiotracer was added to the crude protein preparation obtained from ethanol precipitation of heat-treated cytosol. Proteins were then further separated in two consecutive steps; gel filtration and anion exchange chromatography. In both steps the Cd radiotracer profile showed only one distinct peak, which corresponded well with the profiles of endogenous Cd obtained by atomic absorption spectrophotometry (AAS). Concentrations of the essential elements Cu and Zn were low in the protein fractions high in Cd. N-terminal sequencing performed on the Cd-binding protein fractions revealed a protein with a novel amino acid sequence, which contained aromatic amino acids as well as proline. Both the N-terminal sequencing and spectrofluorimetric analysis with EDTA and ABD-F (4-aminosulfonyl-7-fluoro-2, 1, 3-benzoxadiazole) failed to detect cysteine in the Cd-binding fractions. These findings conclude that the novel protein does not belong to the metallothionein family. The results suggest a role for the protein in Cd transport and storage, and they are of importance in view of toxicology and food chemistry, but also for environmental protection.

  16. alpha. -Amylase of Clostridium thermosulfurogenes EM1: Nucleotide sequence of the gene, processing of the enzyme, and comparison to other. alpha. -amylases

    SciTech Connect

    Bahl, H.; Burchhardt, G.; Spreinat, A.; Haeckel, K.; Wienecke, A.; Antranikian, G.; Schmidt, B. )

    1991-05-01

    The nucleotide sequence of the {alpha}-amylase gene (amyA) from Clostridium thermosulfurogenes EM1 cloned in Escherichia coli was determined. The reading frame of the gene consisted of 2,121 bp. Comparison of the DNA sequence data with the amino acid sequence of the N terminus of the purified secreted protein of C. thermosulfurogenes Em1 suggested that the {alpha}-amylase is translated form mRNA as a secretory precursor with a signal peptide of 27 amino acid residues. The deduced amino acid sequence of the mature {alpha}-amylase contained 679 residues, resulting in a protein with a molecular mass of 75,112 Da. In E. coli the enzyme was transported to the periplasmic space and the signal peptide was cleaved at exactly the same site between two alanine residues. Comparison of the amino acid sequence of the C. thermosulfurogenes EM1 {alpha}-amylase with those from other bacterial and eukaryotic {alpha}-amylases showed several homologous regions, probably in the enzymatically functioning regions. The tentative Ca{sup 2+}-binding site (consensus region I) of this Ca{sub 2+}-independent enzyme showed only limited homology. The deduced amino acid sequence of a second obviously truncated open reading frame showed significant homology to the malG gene product of E. coli. Comparison of the {alpha}-amylase gene region of C. thermosulfurogenes EM1 (DSM3896) with the {beta}-amylase gene region of C. thermosulfurogenes (ATCC 33743) indicated that both genes have been exchanged with each other at identical sites in the chromosomes of these strains.

  17. alpha-Amylase of Clostridium thermosulfurogenes EM1: nucleotide sequence of the gene, processing of the enzyme, and comparison of other alpha-amylases.

    PubMed Central

    Bahl, H; Burchhardt, G; Spreinat, A; Haeckel, K; Wienecke, A; Schmidt, B; Antranikian, G

    1991-01-01

    The nucleotide sequence of the alpha-amylase gene (amyA) from Clostridium thermosulfurogenes EM1 cloned in Escherichia coli was determined. The reading frame of the gene consisted of 2,121 bp. Comparison of the DNA sequence data with the amino acid sequence of the N terminus of the purified secreted protein of C. thermosulfurogenes EM1 suggested that the alpha-amylase is translated from mRNA as a secretory precursor with a signal peptide of 27 amino acid residues. The deduced amino acid sequence of the mature alpha-amylase contained 679 residues, resulting in a protein with a molecular mass of 75,112 Da. In E. coli the enzyme was transported to the periplasmic space and the signal peptide was cleaved at exactly the same site between two alanine residues. Comparison of the amino acid sequence of the C. thermosulfurogenes EM1 alpha-amylase with those from other bacterial and eucaryotic alpha-amylases showed several homologous regions, probably in the enzymatically functioning regions. The tentative Ca(2+)-binding site (consensus region I) of this Ca(2+)-independent enzyme showed only limited homology. The deduced amino acid sequence of a second obviously truncated open reading frame showed significant homology to the malG gene product of E. coli. Comparison of the alpha-amylase gene region of C. thermosulfurogenes EM1 (DSM3896) with the beta-amylase gene region of C. thermosulfurogenes (ATCC 33743) indicated that both genes have been exchanged with each other at identical sites in the chromosomes of these strains. PMID:1854207

  18. Hibiscus virus S is a new subgroup II tobamovirus: evidence from its unique coat protein and movement protein sequences.

    PubMed

    Srinivasan, K G; Narendrakumar, R; Wong, S M

    2002-08-01

    The coat protein (CP) and movement protein (MP) sequences of a new tobamovirus infecting Hibiscus rosa-sinensis L were determined. The CP gene encodes 163 amino acid (aa) residues and with a theoretical molecular weight of 18.19 kDa. The MP gene encodes 282 amino acids and its theoretical molecular weight is 30.36 kDa. The nucleotide (nt) and aa sequences of the CP were 46.88 % to 51.63 % and 45.34 % to 57.06 % identical to other tobamoviruses, respectively. The nt and aa sequence identities of MP ranged from 38.81 % to 43.90 % and 30.85 % to 37.88 %, respectively. The predicted virion origin of assembly (OAS) was located in the CP gene. Phylogenetic trees generated based on the nt and aa sequences of both CP and MP genes indicate that this new virus clusters with members of subgroup II of tobamoviruses. Although this hibiscus virus shared a high nt and aa sequence identity with Sunn-hemp mosaic virus (SHMV), Western analysis showed that it is serologically unrelated to SHMV. We propose the name Hibiscus virus S (HVS) for this Singapore isolate. This is the first report on partial nt sequence of a tobamovirus that infects hibiscus.

  19. Protein similarity networks reveal relationships among sequence, structure, and function within the Cupin superfamily.

    PubMed

    Uberto, Richard; Moomaw, Ellen W

    2013-01-01

    The cupin superfamily is extremely diverse and includes catalytically inactive seed storage proteins, sugar-binding metal-independent epimerases, and metal-dependent enzymes possessing dioxygenase, decarboxylase, and other activities. Although numerous proteins of this superfamily have been structurally characterized, the functions of many of them have not been experimentally determined. We report the first use of protein similarity networks (PSNs) to visualize trends of sequence and structure in order to make functional inferences in this remarkably diverse superfamily. PSNs provide a way to visualize relatedness of structure and sequence among a given set of proteins. Structure- and sequence-based clustering of cupin members reflects functional clustering. Networks based only on cupin domains and networks based on the whole proteins provide complementary information. Domain-clustering supports phylogenetic conclusions that the N- and C-terminal domains of bicupin proteins evolved independently. Interestingly, although many functionally similar enzymatic cupin members bind the same active site metal ion, the structure and sequence clustering does not correlate with the identity of the bound metal. It is anticipated that the application of PSNs to this superfamily will inform experimental work and influence the functional annotation of databases.

  20. Nucleotide binding database NBDB – a collection of sequence motifs with specific protein-ligand interactions

    PubMed Central

    Zheng, Zejun; Goncearenco, Alexander; Berezovsky, Igor N.

    2016-01-01

    NBDB database describes protein motifs, elementary functional loops (EFLs) that are involved in binding of nucleotide-containing ligands and other biologically relevant cofactors/coenzymes, including ATP, AMP, ATP, GMP, GDP, GTP, CTP, PAP, PPS, FMN, FAD(H), NAD(H), NADP, cAMP, cGMP, c-di-AMP and c-di-GMP, ThPP, THD, F-420, ACO, CoA, PLP and SAM. The database is freely available online at http://nbdb.bii.a-star.edu.sg. In total, NBDB contains data on 249 motifs that work in interactions with 24 ligands. Sequence profiles of EFL motifs were derived de novo from nonredundant Uniprot proteome sequences. Conserved amino acid residues in the profiles interact specifically with distinct chemical parts of nucleotide-containing ligands, such as nitrogenous bases, phosphate groups, ribose, nicotinamide, and flavin moieties. Each EFL profile in the database is characterized by a pattern of corresponding ligand–protein interactions found in crystallized ligand–protein complexes. NBDB database helps to explore the determinants of nucleotide and cofactor binding in different protein folds and families. NBDB can also detect fragments that match to profiles of particular EFLs in the protein sequence provided by user. Comprehensive information on sequence, structures, and interactions of EFLs with ligands provides a foundation for experimental and computational efforts on design of required protein functions. PMID:26507856

  1. Naked but Not Hairless: The Pitfalls of Analyses of Molecular Adaptation Based on Few Genome Sequence Comparisons

    PubMed Central

    Delsuc, Frédéric; Tilak, Marie-Ka

    2015-01-01

    The naked mole-rat (Heterocephalus glaber) is the only rodent species that naturally lacks fur. Genome sequencing of this atypical rodent species recently shed light on a number of its morphological and physiological adaptations. More specifically, its hairless phenotype has been traced back to a single amino acid change (C397W) in the hair growth associated (HR) protein (or Hairless). By considering the available species diversity, we show that this specific position is in fact variable across mammals, including in the horse that was misleadingly reported to have the ancestral Cysteine. Moreover, by sequencing the corresponding HR exon in additional rodent species, we demonstrate that the C397W substitution is actually not a peculiarity of the naked mole-rat. Instead, this specific amino acid substitution is present in all hystricognath rodents investigated, which are all fully furred, including the naked mole-rat closest relative, the Damaraland mole-rat (Fukomys damarensis). Overall, we found no statistical correlation between amino acid changes at position 397 of the HR protein and reduced pilosity across the mammalian phylogeny. This demonstrates that this single amino acid change does not explain the naked mole-rat hairless phenotype. Our case study calls for caution before making strong claims regarding the molecular basis of phenotypic adaptation based on the screening of specific amino acid substitutions using only few model species in genome sequence comparisons. It also exposes the more general problem of the dilution of essential information in the supplementary material of genome papers thereby increasing the probability that misleading results will escape the scrutiny of editors, reviewers, and ultimately readers. PMID:25714745

  2. Naked but not Hairless: the pitfalls of analyses of molecular adaptation based on few genome sequence comparisons.

    PubMed

    Delsuc, Frédéric; Tilak, Marie-Ka

    2015-02-20

    The naked mole-rat (Heterocephalus glaber) is the only rodent species that naturally lacks fur. Genome sequencing of this atypical rodent species recently shed light on a number of its morphological and physiological adaptations. More specifically, its hairless phenotype has been traced back to a single amino acid change (C397W) in the hair growth associated (HR) protein (or Hairless). By considering the available species diversity, we show that this specific position is in fact variable across mammals, including in the horse that was misleadingly reported to have the ancestral Cysteine. Moreover, by sequencing the corresponding HR exon in additional rodent species, we demonstrate that the C397W substitution is actually not a peculiarity of the naked mole-rat. Instead, this specific amino acid substitution is present in all hystricognath rodents investigated, which are all fully furred, including the naked mole-rat closest relative, the Damaraland mole-rat (Fukomys damarensis). Overall, we found no statistical correlation between amino acid changes at position 397 of the HR protein and reduced pilosity across the mammalian phylogeny. This demonstrates that this single amino acid change does not explain the naked mole-rat hairless phenotype. Our case study calls for caution before making strong claims regarding the molecular basis of phenotypic adaptation based on the screening of specific amino acid substitutions using only few model species in genome sequence comparisons. It also exposes the more general problem of the dilution of essential information in the supplementary material of genome papers thereby increasing the probability that misleading results will escape the scrutiny of editors, reviewers, and ultimately readers.

  3. Comparison and correlation of Simple Sequence Repeats distribution in genomes of Brucella species

    PubMed Central

    Kiran, Jangampalli Adi Pradeep; Chakravarthi, Veeraraghavulu Praveen; Kumar, Yellapu Nanda; Rekha, Somesula Swapna; Kruti, Srinivasan Shanthi; Bhaskar, Matcha

    2011-01-01

    Computational genomics is one of the important tools to understand the distribution of closely related genomes including simple sequence repeats (SSRs) in an organism, which gives valuable information regarding genetic variations. The central objective of the present study was to screen the SSRs distributed in coding and non-coding regions among different human Brucella species which are involved in a range of pathological disorders. Computational analysis of the SSRs in the Brucella indicates few deviations from expected random models. Statistical analysis also reveals that tri-nucleotide SSRs are overrepresented and tetranucleotide SSRs underrepresented in Brucella genomes. From the data, it can be suggested that over expressed tri-nucleotide SSRs in genomic and coding regions might be responsible in the generation of functional variation of proteins expressed which in turn may lead to different pathogenicity, virulence determinants, stress response genes, transcription regulators and host adaptation proteins of Brucella genomes. Abbreviations SSRs - Simple Sequence Repeats, ORFs - Open Reading Frames. PMID:21738309

  4. Tough Coating Proteins: Subtle Sequence Variation Modulates Cohesion

    PubMed Central

    Das, Saurabh; Miller, Dusty R.; Kaufman, Yair; Martinez Rodriguez, Nadine R.; Pallaoro, Alessia; Harrington, Matthew J.; Gylys, Maryte; Israelachvili, Jacob N.; Waite, J. Herbert

    2015-01-01

    Mussel foot protein-1 (mfp-1) is an essential constituent of the protective cuticle covering all exposed portions of the byssus (plaque and the thread) that marine mussels use to attach to intertidal rocks. The reversible complexation of Fe3+ by the 3,4-dihydroxyphenylalanine (Dopa) side chains in mfp-1 in Mytilus californianus cuticle is responsible for its high extensibility (120%) as well as its stiffness (2 GPa) due to the formation of sacrificial bonds that help to dissipate energy and avoid accumulation of stresses in the material. We have investigated the interactions between Fe3+ and mfp-1 from two mussel species, M. californianus (Mc) and M. edulis (Me), using both surface sensitive and solution phase techniques. Our results show that although mfp-1 homologues from both species bind Fe3+, mfp-1 (Mc) contains Dopa with two distinct Fe3+-binding tendencies and prefers to form intramolecular complexes with Fe3+. In contrast, mfp-1 (Me) is better adapted to intermolecular Fe3+ binding by Dopa. Addition of Fe3+ did not significantly increase the cohesion energy between the mfp-1 (Mc) films at pH 5.5. However, iron appears to stabilize the cohesive bridging of mfp-1 (Mc) films at the physiologically relevant pH of 7.5, where most other mfps lose their ability to adhere reversibly. Understanding the molecular mechanisms underpinning the capacity of M. californianus cuticle to withstand twice the strain of M. edulis cuticle is important for engineering of tunable strain tolerant composite coatings for biomedical applications. PMID:25692318

  5. Variation in the prion protein sequence in Dutch goat breeds.

    PubMed

    Windig, J J; Hoving, R A H; Priem, J; Bossers, A; van Keulen, L J M; Langeveld, J P M

    2016-10-01

    Scrapie is a neurodegenerative disease occurring in goats and sheep. Several haplotypes of the prion protein increase resistance to scrapie infection and may be used in selective breeding to help eradicate scrapie. In this study, frequencies of the allelic variants of the PrP gene are determined for six goat breeds in the Netherlands. Overall frequencies in Dutch goats were determined from 768 brain tissue samples in 2005, 766 in 2008 and 300 in 2012, derived from random sampling for the national scrapie surveillance without knowledge of the breed. Breed specific frequencies were determined in the winter 2013/2014 by sampling 300 breeding animals from the main breeders of the different breeds. Detailed analysis of the scrapie-resistant K222 haplotype was carried out in 2014 for 220 Dutch Toggenburger goats and in 2015 for 942 goats from the Saanen derived White Goat breed. Nine haplotypes were identified in the Dutch breeds. Frequencies for non-wild type haplotypes were generally low. Exception was the K222 haplotype in the Dutch Toggenburger (29%) and the S146 haplotype in the Nubian and Boer breeds (respectively 7 and 31%). The frequency of the K222 haplotype in the Toggenburger was higher than for any other breed reported in literature, while for the White Goat breed it was with 3.1% similar to frequencies of other Saanen or Saanen derived breeds. Further evidence was found for the existence of two M142 haplotypes, M142 /S240 and M142 /P240 . Breeds vary in haplotype frequencies but frequencies of resistant genotypes are generally low and consequently selective breeding for scrapie resistance can only be slow but will benefit from animals identified in this study. The unexpectedly high frequency of the K222 haplotype in the Dutch Toggenburger underlines the need for conservation of rare breeds in order to conserve genetic diversity rare or absent in other breeds.

  6. Protein domain architectures provide a fast, efficient and scalable alternative to sequence-based methods for comparative functional genomics

    PubMed Central

    Koehorst, Jasper J.; Saccenti, Edoardo; Schaap, Peter J.; Martins dos Santos, Vitor A. P.; Suarez-Diez, Maria

    2016-01-01

    A functional comparative genome analysis is essential to understand the mechanisms underlying bacterial evolution and adaptation. Detection of functional orthologs using standard global sequence similarity methods faces several problems; the need for defining arbitrary acceptance thresholds for similarity and alignment length, lateral gene acquisition and the high computational cost for finding bi-directional best matches at a large scale. We investigated the use of protein domain architectures for large scale functional comparative analysis as an alternative method. The performance of both approaches was assessed through functional comparison of 446 bacterial genomes sampled at different taxonomic levels. We show that protein domain architectures provide a fast and efficient alternative to methods based on sequence similarity to identify groups of functionally equivalent proteins within and across taxonomic boundaries. As the computational cost scales linearly, and not quadratically with the number of genomes, it is suitable for large scale comparative analysis. Running both methods in parallel pinpoints potential functional adaptations that may add to bacterial fitness. PMID:27703668

  7. Ancient origin for Hawaiian Drosophilinae inferred from protein comparisons.

    PubMed Central

    Beverley, S M; Wilson, A C

    1985-01-01

    Immunological comparisons of a larval hemolymph protein enabled us to build a tree relating major groups of drosophiline flies in Hawaii to one another and to continental flies. The tree agrees in topology with that based on internal anatomy. Relative rate tests suggest that evolution of hemolymph proteins has been about as fast in Hawaii as on continents. Since the absolute rate of evolution of hemolymph proteins in continental flies is known, one can erect an approximate time scale for Hawaiian fly evolution. According to this scale, the Hawaiian fly fauna stems from a colonist that landed on the archipelago about 42 million years ago-i.e., before any of the present islands harboring drosophilines formed. This date fits with the geological history of the archipelago, which has witnessed the sequential rise and erosion of many islands during the past 70 million years. We discuss the bearing of the molecular time scale on views about rates of organismal evolution in the Hawaiian flies. PMID:3860822

  8. Cloning and sequencing of a cDNA encoding a taste-modifying protein, miraculin.

    PubMed

    Masuda, Y; Nirasawa, S; Nakaya, K; Kurihara, Y

    1995-08-19

    A cDNA clone encoding a taste-modifying protein, miraculin (MIR), was isolated and sequenced. The encoded precursor to MIR was composed of 220 amino acid (aa) residues, including a possible signal sequence of 29 aa. Northern blot analysis showed that the mRNA encoding MIR was already expressed in fruits of Richadella dulcifica at 3 weeks after pollination and was present specifically in the pulp.

  9. A Java applet for multiple linked visualization of protein structure and sequence.

    PubMed

    Oldfield, Thomas J

    2004-04-01

    The amount of biological data available from experimental techniques is huge, and rapidly expanding. The ability to make sense of this vast amount of data requires that we make correlations between distinct biological disciplines using visualization techniques to highlight the critical information. This article describes the visualization techniques of dynamic data brushing, view context maintenance, fisheye sequence view, and a magic lens that have been developed to display protein structure and sequence information.

  10. Prediction of flexible/rigid regions from protein sequences using k-spaced amino acid pairs

    PubMed Central

    Chen, Ke; Kurgan, Lukasz A; Ruan, Jishou

    2007-01-01

    Background Traditionally, it is believed that the native structure of a protein corresponds to a global minimum of its free energy. However, with the growing number of known tertiary (3D) protein structures, researchers have discovered that some proteins can alter their structures in response to a change in their surroundings or with the help of other proteins or ligands. Such structural shifts play a crucial role with respect to the protein function. To this end, we propose a machine learning method for the prediction of the flexible/rigid regions of proteins (referred to as FlexRP); the method is based on a novel sequence representation and feature selection. Knowledge of the flexible/rigid regions may provide insights into the protein folding process and the 3D structure prediction. Results The flexible/rigid regions were defined based on a dataset, which includes protein sequences that have multiple experimental structures, and which was previously used to study the structural conservation of proteins. Sequences drawn from this dataset were represented based on feature sets that were proposed in prior research, such as PSI-BLAST profiles, composition vector and binary sequence encoding, and a newly proposed representation based on frequencies of k-spaced amino acid pairs. These representations were processed by feature selection to reduce the dimensionality. Several machine learning methods for the prediction of flexible/rigid regions and two recently proposed methods for the prediction of conformational changes and unstructured regions were compared with the proposed method. The FlexRP method, which applies Logistic Regression and collocation-based representation with 95 features, obtained 79.5% accuracy. The two runner-up methods, which apply the same sequence representation and Support Vector Machines (SVM) and Naïve Bayes classifiers, obtained 79.2% and 78.4% accuracy, respectively. The remaining considered methods are characterized by accuracies below 70

  11. Efficient use of unlabeled data for protein sequence classification: a comparative study

    PubMed Central

    Kuksa, Pavel; Huang, Pai-Hsi; Pavlovic, Vladimir

    2009-01-01

    Background Recent studies in computational primary protein sequence analysis have leveraged the power of unlabeled data. For example, predictive models based on string kernels trained on sequences known to belong to particular folds or superfamilies, the so-called labeled data set, can attain significantly improved accuracy if this data is supplemented with protein sequences that lack any class tags–the unlabeled data. In this study, we present a principled and biologically motivated computational framework that more effectively exploits the unlabeled data by only using the sequence regions that are more likely to be biologically relevant for better prediction accuracy. As overly-represented sequences in large uncurated databases may bias the estimation of computational models that rely on unlabeled data, we also propose a method to remove this bias and improve performance of the resulting classifiers. Results Combined with state-of-the-art string kernels, our proposed computational framework achieves very accurate semi-supervised protein remote fold and homology detection on three large unlabeled databases. It outperforms current state-of-the-art methods and exhibits significant reduction in running time. Conclusion The unlabeled sequences used under the semi-supervised setting resemble the unpolished gemstones; when used as-is, they may carry unnecessary features and hence compromise the classification accuracy but once cut and polished, they improve the accuracy of the classifiers considerably. PMID:19426450

  12. Gene3D: Multi-domain annotations for protein sequence and comparative genome analysis.

    PubMed

    Lees, Jonathan G; Lee, David; Studer, Romain A; Dawson, Natalie L; Sillitoe, Ian; Das, Sayoni; Yeats, Corin; Dessailly, Benoit H; Rentzsch, Robert; Orengo, Christine A

    2014-01-01

    Gene3D (http://gene3d.biochem.ucl.ac.uk) is a database of protein domain structure annotations for protein sequences. Domains are predicted using a library of profile HMMs from 2738 CATH superfamilies. Gene3D assigns domain annotations to Ensembl and UniProt sequence sets including >6000 cellular genomes and >20 million unique protein sequences. This represents an increase of 45% in the number of protein sequences since our last publication. Thanks to improvements in the underlying data and pipeline, we see large increases in the domain coverage of sequences. We have expanded this coverage by integrating Pfam and SUPERFAMILY domain annotations, and we now resolve domain overlaps to provide highly comprehensive composite multi-domain architectures. To make these data more accessible for comparative genome analyses, we have developed novel search algorithms for searching genomes to identify related multi-domain architectures. In addition to providing domain family annotations, we have now developed a pipeline for 3D homology modelling of domains in Gene3D. This has been applied to the human genome and will be rolled out to other major organisms over the next year.

  13. Hfqs in Bacillus anthracis: Role of protein sequence variation in the structure and function of proteins in the Hfq family.

    PubMed

    Vrentas, Catherine; Ghirlando, Rodolfo; Keefer, Andrea; Hu, Zonglin; Tomczak, Aurelie; Gittis, Apostolos G; Murthi, Athulaprabha; Garboczi, David N; Gottesman, Susan; Leppla, Stephen H

    2015-11-01

    Hfq proteins in Gram-negative bacteria play important roles in bacterial physiology and virulence, mediated by binding of the Hfq hexamer to small RNAs and/or mRNAs to post-transcriptionally regulate gene expression. However, the physiological role of Hfqs in Gram-positive bacteria is less clear. Bacillus anthracis, the causative agent of anthrax, uniquely expresses three distinct Hfq proteins, two from the chromosome (Hfq1, Hfq2) and one from its pXO1 virulence plasmid (Hfq3). The protein sequences of Hfq1 and 3 are evolutionarily distinct from those of Hfq2 and of Hfqs found in other Bacilli. Here, the quaternary structure of each B. anthracis Hfq protein, as produced heterologously in Escherichia coli, was characterized. While Hfq2 adopts the expected hexamer structure, Hfq1 does not form similarly stable hexamers in vitro. The impact on the monomer-hexamer equilibrium of varying Hfq C-terminal tail length and other sequence differences among the Hfqs was examined, and a sequence region of the Hfq proteins that was involved in hexamer formation was identified. It was found that, in addition to the distinct higher-order structures of the Hfq homologs, they give rise to different phenotypes. Hfq1 has a disruptive effect on the function of E. coli Hfq in vivo, while Hfq3 expression at high levels is toxic to E. coli but also partially complements Hfq function in E. coli. These results set the stage for future studies of the roles of these proteins in B. anthracis physiology and for the identification of sequence determinants of phenotypic complementation.

  14. Prediction of human rotavirus serotype by nucleotide sequence analysis of the VP7 protein gene.

    PubMed Central

    Green, K Y; Sears, J F; Taniguchi, K; Midthun, K; Hoshino, Y; Gorziglia, M; Nishikawa, K; Urasawa, S; Kapikian, A Z; Chanock, R M

    1988-01-01

    Human rotavirus field isolates were characterized by direct sequence analysis of the gene encoding the serotype-specific major neutralization protein (VP7). Single-stranded RNA transcripts were prepared from virus particles obtained directly from stool specimens or after two or three passages in MA-104 cells. Two regions of the gene (nucleotides 307 through 351 and 670 through 711) which had previously been shown to contain regions of sequence divergence among rotavirus serotypes were sequenced by the dideoxynucleotide method with two different synthetic oligonucleotide primers. The resulting nucleotide sequences were compared with the corresponding sequences from rotaviruses of known serotype (serotype 1, 2, 3, or 4). A total of 25 field isolates and 10 laboratory strains examined by this method exhibited marked sequence identity in both areas of the gene with the corresponding regions of 1 of the 4 reference strains. In addition, the predicted serotype from the sequence analysis correlated in each case with the serotype determined when the rotaviruses were examined by plaque reduction neutralization or reactivity with serotype-specific monoclonal antibodies. These data suggest that as a result of the high degree of sequence conservation observed among rotaviruses of the same serotype, it is possible to predict the serotype of a rotavirus isolate by direct sequence analysis of its VP7 gene. PMID:2833626

  15. Unraveling the sequence and structure of the protein osteocalcin from a 42 ka fossil horse

    NASA Astrophysics Data System (ADS)

    Ostrom, Peggy H.; Gandhi, Hasand; Strahler, John R.; Walker, Angela K.; Andrews, Philip C.; Leykam, Joseph; Stafford, Thomas W.; Kelly, Robert L.; Walker, Danny N.; Buckley, Mike; Humpula, James

    2006-04-01

    We report the first complete amino acid sequence and evidence of secondary structure for osteocalcin from a temperate fossil. The osteocalcin derives from a 42 ka equid bone excavated from Juniper Cave, Wyoming. Results were determined by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-MS) and Edman sequencing with independent confirmation of the sequence in two laboratories. The ancient sequence was compared to that of three modern taxa: horse ( Equus caballus), zebra ( Equus grevyi), and donkey ( Equus asinus). Although there was no difference in sequence among modern taxa, MALDI-MS and Edman sequencing show that residues 48 and 49 of our modern horse are Thr, Ala rather than Pro, Val as previously reported (Carstanjen B., Wattiez, R., Armory, H., Lepage, O.M., Remy, B., 2002. Isolation and characterization of equine osteocalcin. Ann. Med. Vet.146(1), 31-38). MALDI-MS and Edman sequencing data indicate that the osteocalcin sequence of the 42 ka fossil is similar to that of modern horse. Previously inaccessible structural attributes for ancient osteocalcin were observed. Glu 39 rather than Gln 39 is consistent with deamidation, a process known to occur during fossilization and aging. Two post-translational modifications were documented: Hyp 9 and a disulfide bridge. The latter suggests at least partial retention of secondary structure. As has been done for ancient DNA research, we recommend standards for preparation and criteria for authenticating results of ancient protein sequencing.

  16. Nucleotide sequences of the cylindrical inclusion protein genes of two Japanese zucchini yellow mosaic virus isolates.

    PubMed

    Kundu, A K; Ohshima, K; Sako, N; Yaegashi, H

    1999-02-01

    The nucleotide sequences of the cylindrical inclusion protein (CIP) genes of two Japanese zucchini yellow mosaic virus (ZYMV) isolates (ZYMV-169 and ZYMV-M) were determined. The CIP genes of both isolates comprised 1902 nucleotides and encoded 634 amino acids containing consensus nucleotide binding motif. The sequence similarities between the two isolates at the nucleotide and amino acid levels were 91% and 98%, respectively. When the CIP gene sequences of the Japanese ZYMV isolates were compared with those of previously reported ZYMV isolates, the nucleotide and amino acid sequence similarities ranged between 81% and 97%, and between 95% and 97%, respectively. Phylogenetic analysis of the deduced amino acid sequences of the CIP genes indicated that the Japanese ZYMV isolates were closely related to those of other ZYMV isolates.

  17. Complete amino acid sequence and structure characterization of the taste-modifying protein, miraculin.

    PubMed

    Theerasilp, S; Hitotsuya, H; Nakajo, S; Nakaya, K; Nakamura, Y; Kurihara, Y

    1989-04-25

    The taste-modifying protein, miraculin, has the unusual property of modifying sour taste into sweet taste. The complete amino acid sequence of miraculin purified from miracle fruits by a newly developed method (Theerasilp, S., and Kurihara, Y. (1988) J. Biol. Chem. 263, 11536-11539) was determined by an automatic Edman degradation method. Miraculin was a single polypeptide with 191 amino acid residues. The calculated molecular weight based on the amino acid sequence and the carbohydrate content (13.9%) was 24,600. Asn-42 and Asn-186 were linked N-glycosidically to carbohydrate chains. High homology was found between the amino acid sequences of miraculin and soybean trypsin inhibitor.

  18. A comparison of the VP7 gene sequences of human and bovine rotaviruses.

    PubMed

    Gerna, G; Steele, A D; Hoshino, Y; Sereno, M; Garcia, D; Sarasini, A; Flores, J

    1994-07-01

    The sequences of the gene encoding VP7 (the major outer capsid protein) from one bovine and three human rotavirus strains were determined because of their unusual VP7 specificities. Two of the human strains (PA 169 and PA 151) had VP7 serotype 6 specificity whereas the two other strains, recovered from a child (HAL 1166) and a calf (678) belonged to VP7 serotype 8. The serotype 8 strains exhibited a high degree of sequence conservation when compared with each other and with other serotype 8 strains previously sequenced. The serotype 6 human strains shared a greater degree of sequence similarity with previously reported serotype 6 bovine strains than with other rotavirus serotypes; however the degree of sequence similarity among PA 169, PA 151 and the bovine strains was lower than had been previously reported for strains belonging to the same serotype. The demonstration of rotavirus serotypes that are shared between human and animal species supports the concept that interspecies transmission occurs and may play a role in rotavirus evolution.

  19. Gene tree discordance of wild and cultivated Asian rice deciphered by genome-wide sequence comparison.

    PubMed

    Yang, Ching-chia; Sakai, Hiroaki; Numa, Hisataka; Itoh, Takeshi

    2011-05-15

    Although a large number of genes are expected to correctly solve a phylogenetic relationship, inconsistent gene tree topologies have been observed. This conflicting evidence in gene tree topologies, known as gene tree discordance, becomes increasingly important as advanced sequencing technologies produce an enormous amount of sequence information for phylogenomic studies among closely related species. Here, we aim to characterize the gene tree discordance of the Asian cultivated rice Oryza sativa and its progenitor, O. rufipogon, which will be an ideal case study of gene tree discordance. Using genome and cDNA sequences of O. sativa and O. rufipogon, we have conducted the first in-depth analyses of gene tree discordance in Asian rice. Our comparison of full-length cDNA sequences of O. rufipogon with the genome sequences of the japonica and indica cultivars of O. sativa revealed that 60% of the gene trees showed a topology consistent with the expected one, whereas the remaining genes supported significantly different topologies. Moreover, the proportions of the topologies deviated significantly from expectation, suggesting at least one hybridization event between the two subgroups of O. sativa, japonica and indica. In fact, a genome-wide alignment between japonica and indica indicated that significant portions of the indica genome are derived from japonica. In addition, literature concerning the pedigree of the indica cultivar strongly supported the hybridization hypothesis. Our molecular evolutionary analyses deciphered complicated evolutionary processes in closely related species. They also demonstrated the importance of gene tree discordance in the era of high-speed DNA sequencing.

  20. The sequence of carnation etched ring virus DNA: comparison with cauliflower mosaic virus and retroviruses

    PubMed Central

    Hull, R.; Sadler, J.; Longstaff, M.

    1986-01-01

    Carnation etched ring virus (CERV) DNA comprises 7932 bp. CERV primer binding sites and overall genome organization are similar to those of the related cauliflower mosaic virus (CaMV). The six open reading frames of CERV showed amino acid homology (50-80%) with CaMV ORFs I-VI; no homologues of CaMV ORFs VII or VIII were found. CERV ORFs 1-5 interface each other with the sequence ATGA. The comparison of CERV ORF5 with CaMV ORFV highlighted regions which show homologies to retrovirus gag/pol protease, RNase H and DNA polymerase domains; the possibility that the DNA polymerase domain comprises two subdomains, operating off different templates, is discussed. Both CERV and CaMV ORFs I have sequence homology to tobacco mosaic virus P30 and plastocyanin. PMID:16453731

  1. Biophysical Models of Protein Evolution: Understanding the Patterns of Evolutionary Sequence Divergence.

    PubMed

    Echave, Julian; Wilke, Claus O

    2017-03-15

    For decades, rates of protein evolution have been interpreted in terms of the vague concept of functional importance. Slowly evolving proteins or sites within proteins were assumed to be more functionally important and thus subject to stronger selection pressure. More recently, biophysical models of protein evolution, which combine evolutionary theory with protein biophysics, have completely revolutionized our view of the forces that shape sequence divergence. Slowly evolving proteins have been found to evolve slowly because of selection against toxic misfolding and misinteractions, linking their rate of evolution primarily to their abundance. Similarly, most slowly evolving sites in proteins are not directly involved in function, but mutating these sites has a large impact on protein structure and stability. In this article, we review the studies in the emerging field of biophysical protein evolution that have shaped our current understanding of sequence divergence patterns. We also propose future research directions to develop this nascent field. Expected final online publication date for the Annual Review of Biophysics Volume 46 is May 20, 2017. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  2. Evidence of mineralization activity and supramolecular assembly by the N-terminal sequence of ACCBP, a biomineralization protein that is homologous to the acetylcholine binding protein family.

    PubMed

    Amos, Fairland F; Ndao, Moise; Evans, John Spencer

    2009-12-14

    Several biomineralization proteins that exhibit intrinsic disorder also possess sequence regions that are homologous to nonmineral associated folded proteins. One such protein is the amorphous calcium carbonate binding protein (ACCBP), one of several proteins that regulate the formation of the oyster shell and exhibit 30% conserved sequence identity to the acetylcholine binding protein sequences. To gain a better understanding of the ACCBP protein, we utilized bioinformatic approaches to identify the location of disordered and folded regions within this protein. In addition, we synthesized a 50 AA polypeptide, ACCN, representing the N-terminal domain of the mature processed ACCBP protein. We then utilized this polypeptide to determine the mineralization activity and qualitative structure of the N-terminal region of ACCBP. Our bioinformatic studies indicate that ACCBP consists of a ten-stranded beta-sandwich structure that includes short disordered sequence blocks, two of which reside within the primarily helical and surface-accessible ACCN sequence. Circular dichroism studies reveal that ACCN is partially disordered in solution; however, ACCN can be induced to fold into an alpha helix in the presence of TFE. Furthermore, we confirm that the ACCN sequence is multifunctional; this sequence promotes radial calcite polycrystal growth on Kevlar threads and forms supramolecular assemblies in solution that contain amorphous-appearing deposits. We conclude that the partially disordered ACCN sequence is a putative site for mineralization activity within the ACCBP protein and that the presence of short disordered sequence regions within the ACCBP fold are essential for function.

  3. Identification and sequence analysis of grain softness protein in selected wheat, rye and triticale.

    PubMed

    Kharrazi, M A S; Bobojonov, V

    2012-08-16

    Grain softness protein (GSP) is an important protein for overcoming milling and grain defenses in the innate immunity systems of cereals. The objective of this study was to evaluate and understand GSP sequences in selected wheat, rye and triticale. Using sequences for this gene from a sequence database, we performed clustering analysis to compare the sequences obtained from 3 germplasms with other studied sequences for GSP. The maximum difference between the Hirmand GSP genotype in wheat and the database sequences was 23% in EF109396 and EF109399. Most amino acid variation between the GSP sequences involved the same amino acids. The Nikita rye GSP gene showed 64% identity with DQ269918 and AY667063. The isoelectric point in the GSP of wheat and Lasko triticale was significantly higher than that of rye GSP. In addition, parameters such as optical density, grand average of hydrophobicity, percentage of hydrophobicity and hydrophilic amino acids, and number of alpha helices and beta sheets in GSP were similar in wheat and triticale but not in wheat and rye.

  4. Increased functional protein expression using nucleotide sequence features enriched in highly expressed genes in zebrafish.

    PubMed

    Horstick, Eric J; Jordan, Diana C; Bergeron, Sadie A; Tabor, Kathryn M; Serpe, Mihaela; Feldman, Benjamin; Burgess, Harold A

    2015-04-20

    Many genetic manipulations are limited by difficulty in obtaining adequate levels of protein expression. Bioinformatic and experimental studies have identified nucleotide sequence features that may increase expression, however it is difficult to assess the relative influence of these features. Zebrafish embryos are rapidly injected with calibrated doses of mRNA, enabling the effects of multiple sequence changes to be compared in vivo. Using RNAseq and microarray data, we identified a set of genes that are highly expressed in zebrafish embryos and systematically analyzed for enrichment of sequence features correlated with levels of protein expression. We then tested enriched features by embryo microinjection and functional tests of multiple protein reporters. Codon selection, releasing factor recognition sequence and specific introns and 3' untranslated regions each increased protein expression between 1.5- and 3-fold. These results suggested principles for increasing protein yield in zebrafish through biomolecular engineering. We implemented these principles for rational gene design in software for codon selection (CodonZ) and plasmid vectors incorporating the most active non-coding elements. Rational gene design thus significantly boosts expression in zebrafish, and a similar approach will likely elevate expression in other animal models.

  5. Folding pathways of proteins with increasing degree of sequence identities but different structure and function.

    PubMed

    Giri, Rajanish; Morrone, Angela; Travaglini-Allocatelli, Carlo; Jemth, Per; Brunori, Maurizio; Gianni, Stefano

    2012-10-30

    Much experimental work has been devoted in comparing the folding behavior of proteins sharing the same fold but different sequence. The recent design of proteins displaying very high sequence identities but different 3D structure allows the unique opportunity to address the protein-folding problem from a complementary perspective. Here we explored by Φ-value analysis the pathways of folding of three different heteromorphic pairs, displaying increasingly high-sequence identity (namely, 30%, 77%, and 88%), but different structures called G(A) (a 3-α helix fold) and G(B) (an α/β fold). The analysis, based on 132 site-directed mutants, is fully consistent with the idea that protein topology is committed very early along the pathway of folding. Furthermore, data reveals that when folding approaches a perfect two-state scenario, as in the case of the G(A) domains, the structural features of the transition state appear very robust to changes in sequence composition. On the other hand, when folding is more complex and multistate, as for the G(B)s, there are alternative nuclei or accessible pathways that can be alternatively stabilized by altering the primary structure. The implications of our results in the light of previous work on the folding of different members belonging to the same protein family are discussed.

  6. Comparison of exon 5 sequences from 35 class I genes of the BALB/c mouse

    PubMed Central

    1989-01-01

    DNA sequences of the fifth exon, which encodes the transmembrane domain, were determined for the BALB/c mouse class I MHC genes and used to study the relationships between them. Based on nucleotide sequence similarity, the exon 5 sequences can be divided into seven groups. Although most members within each group are at least 80% similar to each other, comparison between groups reveals that the groups share little similarity. However, in spite of the extensive variation of the fifth exon sequences, analysis of their predicted amino acid translations reveals that only four class I gene fifth exons have frameshifts or stop codons that terminate their translation and prevent them from encoding a domain that is both hydrophobic and long enough to span a lipid bilayer. Exactly 27 of the remaining fifth exons could encode a domain that is similar to those of the transplantation antigens in that it consists of a proline-rich connecting peptide, a transmembrane segment, and a cytoplasmic portion with membrane- anchoring basic residues. The conservation of this motif in the majority of the fifth exon translations in spite of extensive variation suggests that selective pressure exists for these exons to maintain their ability to encode a functional transmembrane domain, raising the possibility that many of the nonclassical class I genes encode functionally important products. PMID:2584927

  7. CDvist: A webserver for identification and visualization of conserved domains in protein sequences

    SciTech Connect

    Adebali, Ogun; Ortega, Davi R.; Zhulin, Igor B.

    2014-12-18

    Identification of domains in protein sequences allows their assigning to biological functions. Several webservers exist for identification of protein domains using similarity searches against various databases of protein domain models. However, none of them provides comprehensive domain coverage while allowing bulk querying and their visualization schemes can be improved. To address these issues, we developed CDvist (a comprehensive domain visualization tool), which combines the best available search algorithms and databases into a user-friendly framework. First, a given protein sequence is matched to domain models using high-specificity tools and only then unmatched segments are subjected to more sensitive algorithms resulting in a best possible comprehensive coverage. In conclusion, bulk querying and rich visualization and download options provide improved functionality to domain architecture analysis.

  8. CDvist: A webserver for identification and visualization of conserved domains in protein sequences

    DOE PAGES

    Adebali, Ogun; Ortega, Davi R.; Zhulin, Igor B.

    2014-12-18

    Identification of domains in protein sequences allows their assigning to biological functions. Several webservers exist for identification of protein domains using similarity searches against various databases of protein domain models. However, none of them provides comprehensive domain coverage while allowing bulk querying and their visualization schemes can be improved. To address these issues, we developed CDvist (a comprehensive domain visualization tool), which combines the best available search algorithms and databases into a user-friendly framework. First, a given protein sequence is matched to domain models using high-specificity tools and only then unmatched segments are subjected to more sensitive algorithms resulting inmore » a best possible comprehensive coverage. In conclusion, bulk querying and rich visualization and download options provide improved functionality to domain architecture analysis.« less

  9. Parameters of the proteome evolution from the distribution of sequence identities of paralogous proteins

    NASA Astrophysics Data System (ADS)

    Yan, Koon-Kiu; Axelsen, Jacob; Maslov, Sergei

    2006-03-01

    The evolution of the full repertoire of proteins encoded in a given genome is driven by gene duplications, deletions and modifications of amino-acid sequences of already existing proteins. The information about relative rates and other intrinsic parameters of these three basic processes is contained in the distribution of sequence identities of pairs of paralogous proteins. We introduced a simple mathematical framework that allows one to extract some of this hidden information. It was then applied to the proteome-wide set of paralogous proteins in H. pylori, E. coli, S. cerevisiae, C. elegans, D. melanogaster and H. sapiens. We estimated the stationary per-gene deletion and duplication rates, the distribution of amino-acid substitution rate of these organisms. The validity of our mathematical framework was further confirmed by numerical simulations of a simple evolutionary model of a fixed-size proteome.

  10. Complete genome sequence and in planta subcellular localization of maize fine streak virus proteins.

    PubMed

    Tsai, Chi-Wei; Redinbaugh, Margaret G; Willie, Kristen J; Reed, Sharon; Goodin, Michael; Hogenhout, Saskia A

    2005-05-01

    The genome of the nucleorhabdovirus maize fine streak virus (MFSV) consists of 13,782 nucleotides of nonsegmented, negative-sense, single-stranded RNA. The antigenomic strand consisted of seven open reading frames (ORFs), and transcripts of all ORFs were detected in infected plants. ORF1, ORF6, and ORF7 had significant similarities to the nucleocapsid protein (N), glycoprotein (G), and polymerase (L) genes of other rhabdoviruses, respectively, whereas the ORF2, ORF3, ORF4, and ORF5 proteins had no significant similarities. The N (ORF1), ORF4, and ORF5 proteins localized to nuclei, consistent with the presence of nuclear localization signals (NLSs) in these proteins. ORF5 likely encodes the matrix protein (M), based on its size, the position of its NLS, and the localization of fluorescent protein fusions to the nucleus. ORF2 probably encodes the phosphoprotein (P) because, like the P protein of Sonchus yellow net virus (SYNV), it was spread throughout the cell when expressed alone but was relocalized to a subnuclear locus when coexpressed with the MFSV N protein. Unexpectedly, coexpression of the MFSV N and P proteins, but not the orthologous proteins of SYNV, resulted in accumulations of both proteins in the nucleolus. The N and P protein relocalization was specific to cognate proteins of each virus. The subcellular localizations of the MFSV ORF3 and ORF4 proteins were distinct from that of the SYNV sc4 protein, suggesting different functions. To our knowledge, this is the first comparative study of the cellular localizations of plant rhabdoviral proteins. This study indicated that plant rhabdoviruses are diverse in genome sequence and viral protein interactions.

  11. A Comparison Study for DNA Motif Modeling on Protein Binding Microarray.

    PubMed

    Wong, Ka-Chun; Li, Yue; Peng, Chengbin; Wong, Hau-San

    2016-01-01

    Transcription factor binding sites (TFBSs) are relatively short (5-15 bp) and degenerate. Identifying them is a computationally challenging task. In particular, protein binding microarray (PBM) is a high-throughput platform that can measure the DNA binding preference of a protein in a comprehensive and unbiased manner; for instance, a typical PBM experiment can measure binding signal intensities of a protein to all possible DNA k-mers (k = 8∼10). Since proteins can often bind to DNA with different binding intensities, one of the major challenges is to build TFBS (also known as DNA motif) models which can fully capture the quantitative binding affinity data. To learn DNA motif models from the non-convex objective function landscape, several optimization methods are compared and applied to the PBM motif model building problem. In particular, representative methods from different optimization paradigms have been chosen for modeling performance comparison on hundreds of PBM datasets. The results suggest that the multimodal optimization methods are very effective for capturing the binding preference information from PBM data. In particular, we observe a general performance improvement if choosing di-nucleotide modeling over mono-nucleotide modeling. In addition, the models learned by the best-performing method are applied to two independent applications: PBM probe rotation testing and ChIP-Seq peak sequence prediction, demonstrating its biological applicability.

  12. Restriction of Nonpermissive RUNX3 Protein Expression in T Lymphocytes by the Kozak Sequence.

    PubMed

    Kim, Byungil; Sasaki, Yo; Egawa, Takeshi

    2015-08-15

    The transcription factor Runx3 promotes differentiation of naive CD4(+) T cells into type-1 effector T (TH1) cells at the expense of TH2. TH1 cells as well as CD8(+) T cells express a subset-specific Runx3 transcript from a distal promoter, which is necessary for high protein expression. However, all T cell subsets, including naive CD4(+) T cells and TH2 cells, express a distinct transcript of Runx3 that is derived from a proximal promoter and that produces functional protein in neurons. Therefore, accumulation of RUNX3 protein generated from the proximal transcript needs to be repressed at the posttranscriptional level to preserve CD4(+) T cell capability of differentiating into TH2 cells. In this article, we show that expression of RUNX3 protein from the proximal Runx3 transcript is blocked at the level of translational initiation in T cells. A coding sequence for the proximal Runx3 mRNA is preceded by a nonoptimal context sequence for translational initiation, known as the Kozak sequence, and thus generates protein at low efficiencies and with multiple alternative translational initiations. Editing the endogenous initiation context to an "optimal" Kozak sequence in a human T cell line resulted in enhanced translation of a single RUNX3 protein derived from the proximal transcript. Furthermore, RUNX3 protein represses transcription from the proximal promoter in T cells. These results suggest that nonpermissive expression of RUNX3 protein is restricted at the translational level, and that the repression is further enforced by a transcriptional regulation for maintenance of diverse developmental plasticity of T cells for different effector subsets.

  13. How the Sequence of a Gene Specifies Structural Symmetry in Proteins

    PubMed Central

    Shen, Xiaojuan; Huang, Tongcheng; Wang, Guanyu; Li, Guanglin

    2015-01-01

    Internal symmetry is commonly observed in the majority of fundamental protein folds. Meanwhile, sufficient evidence suggests that nascent polypeptide chains of proteins have the potential to start the co-translational folding process and this process allows mRNA to contain additional information on protein structure. In this paper, we study the relationship between gene sequences and protein structures from the viewpoint of symmetry to explore how gene sequences code for structural symmetry in proteins. We found that, for a set of two-fold symmetric proteins from left-handed beta-helix fold, intragenic symmetry always exists in their corresponding gene sequences. Meanwhile, codon usage bias and local mRNA structure might be involved in modulating translation speed for the formation of structural symmetry: a major decrease of local codon usage bias in the middle of the codon sequence can be identified as a common feature; and major or consecutive decreases in local mRNA folding energy near the boundaries of the symmetric substructures can also be observed. The results suggest that gene duplication and fusion may be an evolutionarily conserved process for this protein fold. In addition, the usage of rare codons and the formation of higher order of secondary structure near the boundaries of symmetric substructures might have coevolved as conserved mechanisms to slow down translation elongation and to facilitate effective folding of symmetric substructures. These findings provide valuable insights into our understanding of the mechanisms of translation and its evolution, as well as the design of proteins via symmetric modules. PMID:26641668

  14. Large-scale analysis of intrinsic disorder flavors and associated functions in the protein sequence universe.

    PubMed

    Necci, Marco; Piovesan, Damiano; Tosatto, Silvio C E

    2016-12-01

    Intrinsic disorder (ID) in proteins has been extensively described for the last decade; a large-scale classification of ID in proteins is mostly missing. Here, we provide an extensive analysis of ID in the protein universe on the UniProt database derived from sequence-based predictions in MobiDB. Almost half the sequences contain an ID region of at least five residues. About 9% of proteins have a long ID region of over 20 residues which are more abundant in Eukaryotic organisms and most frequently cover less than 20% of the sequence. A small subset of about 67,000 (out of over 80 million) proteins is fully disordered and mostly found in Viruses. Most proteins have only one ID, with short ID evenly distributed along the sequence and long ID overrepresented in the center. The charged residue composition of Das and Pappu was used to classify ID proteins by structural propensities and corresponding functional enrichment. Swollen Coils seem to be used mainly as structural components and in biosynthesis in both Prokaryotes and Eukaryotes. In Bacteria, they are confined in the nucleoid and in Viruses provide DNA binding function. Coils & Hairpins seem to be specialized in ribosome binding and methylation activities. Globules & Tadpoles bind antigens in Eukaryotes but are involved in killing other organisms and cytolysis in Bacteria. The Undefined class is used by Bacteria to bind toxic substances and mediate transport and movement between and within organisms in Viruses. Fully disordered proteins behave similarly, but are enriched for glycine residues and extracellular structures.

  15. C-Terminal DxD-Containing Sequences within Paramyxovirus Nucleocapsid Proteins Determine Matrix Protein Compatibility and Can Direct Foreign Proteins into Budding Particles

    PubMed Central

    Ray, Greeshma; Schmitt, Phuong Tieu

    2016-01-01

    ABSTRACT Paramyxovirus particles are formed by a budding process coordinated by viral matrix (M) proteins. M proteins coalesce at sites underlying infected cell membranes and induce other viral components, including viral glycoproteins and viral ribonucleoprotein complexes (vRNPs), to assemble at these locations from which particles bud. M proteins interact with the nucleocapsid (NP or N) components of vRNPs, and these interactions enable production of infectious, genome-containing virions. For the paramyxoviruses parainfluenza virus 5 (PIV5) and mumps virus, M-NP interaction also contributes to efficient production of virus-like particles (VLPs) in transfected cells. A DLD sequence near the C-terminal end of PIV5 NP protein was previously found to be necessary for M-NP interaction and efficient VLP production. Here, we demonstrate that 15-residue-long, DLD-containing sequences derived from either the PIV5 or Nipah virus nucleocapsid protein C-terminal ends are sufficient to direct packaging of a foreign protein, Renilla luciferase, into budding VLPs. Mumps virus NP protein harbors DWD in place of the DLD sequence found in PIV5 NP protein, and consequently, PIV5 NP protein is incompatible with mumps virus M protein. A single amino acid change converting DLD to DWD within PIV5 NP protein induced compatibility between these proteins and allowed efficient production of mumps VLPs. Our data suggest a model in which paramyxoviruses share an overall common strategy for directing M-NP interactions but with important variations contained within DLD-like sequences that play key roles in defining M/NP protein compatibilities. IMPORTANCE Paramyxoviruses are responsible for a wide range of diseases that affect both humans and animals. Paramyxovirus pathogens include measles virus, mumps virus, human respiratory syncytial virus, and the zoonotic paramyxoviruses Nipah virus and Hendra virus. Infectivity of paramyxovirus particles depends on matrix-nucleocapsid protein

  16. Comparative genomic analysis of equilibrative nucleoside transporters suggests conserved protein structure despite limited sequence identity.

    PubMed

    Sankar, Narendra; Machado, Jerry; Abdulla, Parween; Hilliker, Arthur J; Coe, Imogen R

    2002-10-15

    Equilibrative nucleoside transporters (ENTs) are a recently characterized and poorly understood group of membrane proteins that are important in the uptake of endogenous nucleosides required for nucleic acid and nucleoside triphosphate synthesis. Despite their central importance in cellular metabolism and nucleoside analog chemotherapy, no human ENT gene has been described and nothing is known about gene structure and function. To gain insight into the ENT gene family, we used experimental and in silico comparative genomic approaches to identify ENT genes in three evolutionarily diverse organisms with completely (or almost completely) sequenced genomes, Homo sapiens, Caenorhabditis elegans and Drosophila melanogaster. We describe the chromosomal location, the predicted ENT gene structure and putative structural topologies of predicted ENT proteins derived from the open reading frames. Despite variations in genomic layout and limited ortholog protein sequence identity (< or =27.45%), predicted topologies of ENT proteins are strikingly similar, suggesting an evolutionary conservation of a prototypic structure. In addition, a similar distribution of protein domains on exons is apparent in all three taxa. These data demonstrate that comparative sequence analyses should be combined with other approaches (such as genomic and proteomic analyses) to fully understand structure, function and evolution of protein families.

  17. Cloning and sequence analysis of the Chlamydia trachomatis spc ribosomal protein gene cluster.

    PubMed Central

    Kaul, R; Gray, G J; Koehncke, N R; Gu, L J

    1992-01-01

    We identified and sequenced a segment of Chlamydia trachomatis chromosomal DNA that shows homology to the Escherichia coli spc and distal region of the S10 ribosomal protein (r-protein) operons. Its sequence revealed a high degree of nucleotide and operon context conservation with the E. coli r-protein genes. The C. trachomatis spec operon contains the r-protein genes for L14, L24, L5, S8, L6, L18, S5, L15, and Sec Y along with the genes for r-proteins L16, L29, and S17 of the S10 operon. The two operons are separated by a 16-bp intragenic region which contains no transcription signals. However, a putative promoter for the transcription of the spc operon was found 162 nucleotides upstream of the CtrL14e start site; it revealed significant homology to the E. coli consensus promoter sequences. Interestingly, our results indicate the absence of any structure resembling an EcoS8 regulatory target site on C. trachomatis spc mRNA in spite of significant amino acid identity between E. coli and C. trachomatis r-proteins. Also, the intrinsic aminoglycoside resistance in C. trachomatis is unlikely to be mediated by CtrL6e since E. coli expressing CtrL6e remained susceptible to gentamicin (MIC less than 0.5 micrograms/ml). Images PMID:1735714

  18. XSTREAM: A practical algorithm for identification and architecture modeling of tandem repeats in protein sequences

    PubMed Central

    Newman, Aaron M; Cooper, James B

    2007-01-01

    Background Biological sequence repeats arranged in tandem patterns are widespread in DNA and proteins. While many software tools have been designed to detect DNA tandem repeats (TRs), useful algorithms for identifying protein TRs with varied levels of degeneracy are still needed. Results To address limitations of current repeat identification methods, and to provide an efficient and flexible algorithm for the detection and analysis of TRs in protein sequences, we designed and implemented a new computational method called XSTREAM. Running time tests confirm the practicality of XSTREAM for analyses of multi-genome datasets. Each of the key capabilities of XSTREAM (e.g., merging, nesting, long-period detection, and TR architecture modeling) are demonstrated using anecdotal examples, and the utility of XSTREAM for identifying TR proteins was validated using data from a recently published paper. Conclusion We show that XSTREAM is a practical and valuable tool for TR detection in protein and nucleotide sequences at the multi-genome scale, and an effective tool for modeling TR domains with diverse architectures and varied levels of degeneracy. Because of these useful features, XSTREAM has significant potential for the discovery of naturally-evolved modular proteins with applications for engineering novel biostructural and biomimetic materials, and identifying new vaccine and diagnostic targets. PMID:17931424

  19. Structure-templated predictions of novel protein interactions from sequence information.

    PubMed

    Betel, Doron; Breitkreuz, Kevin E; Isserlin, Ruth; Dewar-Darch, Danielle; Tyers, Mike; Hogue, Christopher W V

    2007-09-01

    The multitude of functions performed in the cell are largely controlled by a set of carefully orchestrated protein interactions often facilitated by specific binding of conserved domains in the interacting proteins. Interacting domains commonly exhibit distinct binding specificity to short and conserved recognition peptides called binding profiles. Although many conserved domains are known in nature, only a few have well-characterized binding profiles. Here, we describe a novel predictive method known as domain-motif interactions from structural topology (D-MIST) for elucidating the binding profiles of interacting domains. A set of domains and their corresponding binding profiles were derived from extant protein structures and protein interaction data and then used to predict novel protein interactions in yeast. A number of the predicted interactions were verified experimentally, including new interactions of the mitotic exit network, RNA polymerases, nucleotide metabolism enzymes, and the chaperone complex. These results demonstrate that new protein interactions can be predicted exclusively from sequence information.

  20. Three-level prediction of protein function by combining profile-sequence search, profile-profile search, and domain co-occurrence networks.

    PubMed

    Wang, Zheng; Cao, Renzhi; Cheng, Jianlin

    2013-01-01

    Predicting protein function from sequence is useful for biochemical experiment design, mutagenesis analysis, protein engineering, protein design, biological pathway analysis, drug design, disease diagnosis, and genome annotation as a vast number of protein sequences with unknown function are routinely being generated by DNA, RNA and protein sequencing in the genomic era. However, despite significant progresses in the last several years, the accuracy of protein function prediction still needs to be improved in order to be used effectively in practice, particularly when little or no homology exists between a target protein and proteins with annotated function. Here, we developed a method that integrated profile-sequence alignment, profile-profile alignment, and Domain Co-Occurrence Networks (DCN) to predict protein function at different levels of complexity, ranging from obvious homology, to remote homology, to no homology. We tested the method blindingly in the 2011 Critical Assessment of Function Annotation (CAFA). Our experiments demonstrated that our three-level prediction method effectively increased the recall of function prediction while maintaining a reasonable precision. Particularly, our method can predict function terms defined by the Gene Ontology more accurately than three standard baseline methods in most situations, handle multi-domain proteins naturally, and make ab initio function prediction when no homology exists. These results show that our approach can combine complementary strengths of most widely used BLAST-based function prediction methods, rarely used in function prediction but more sensitive profile-profile comparison-based homology detection methods, and non-homology-based domain co-occurrence networks, to effectively extend the power of function prediction from high homology, to low homology, to no homology (ab initio cases).

  1. Three-Level Prediction of Protein Function by Combining Profile-Sequence Search, Profile-Profile Search, and Domain Co-Occurrence Networks

    PubMed Central

    2013-01-01

    Predicting protein function from sequence is useful for biochemical experiment design, mutagenesis analysis, protein engineering, protein design, biological pathway analysis, drug design, disease diagnosis, and genome annotation as a vast number of protein sequences with unknown function are routinely being generated by DNA, RNA and protein sequencing in the genomic era. However, despite significant progresses in the last several years, the accuracy of protein function prediction still needs to be improved in order to be used effectively in practice, particularly when little or no homology exists between a target protein and proteins with annotated function. Here, we developed a method that integrated profile-sequence alignment, profile-profile alignment, and Domain Co-Occurrence Networks (DCN) to predict protein function at different levels of complexity, ranging from obvious homology, to remote homology, to no homology. We tested the method blindingly in the 2011 Critical Assessment of Function Annotation (CAFA). Our experiments demonstrated that our three-level prediction method effectively increased the recall of function prediction while maintaining a reasonable precision. Particularly, our method can predict function terms defined by the Gene Ontology more accurately than three standard baseline methods in most situations, handle multi-domain proteins naturally, and make ab initio function prediction when no homology exists. These results show that our approach can combine complementary strengths of most widely used BLAST-based function prediction methods, rarely used in function prediction but more sensitive profile-profile comparison-based homology detection methods, and non-homology-based domain co-occurrence networks, to effectively extend the power of function prediction from high homology, to low homology, to no homology (ab initio cases). PMID:23514381

  2. Implicit Sequence Learning in Dyslexia: A Within-Sequence Comparison of First- and Higher-Order Information

    ERIC Educational Resources Information Center

    Du, Wenchong; Kelly, Steve W.

    2013-01-01

    The present study examines implicit sequence learning in adult dyslexics with a focus on comparing sequence transitions with different statistical complexities. Learning of a 12-item deterministic sequence was assessed in 12 dyslexic and 12 non-dyslexic university students. Both groups showed equivalent standard reaction time increments when the…

  3. DNA sequence-dependent mechanics and protein-assisted bending in repressor-mediated loop formation

    NASA Astrophysics Data System (ADS)

    Boedicker, James Q.; Garcia, Hernan G.; Johnson, Stephanie; Phillips, Rob

    2013-12-01

    As the chief informational molecule of life, DNA is subject to extensive physical manipulations. The energy required to deform double-helical DNA depends on sequence, and this mechanical code of DNA influences gene regulation, such as through nucleosome positioning. Here we examine the sequence-dependent flexibility of DNA in bacterial transcription factor-mediated looping, a context for which the role of sequence remains poorly understood. Using a suite of synthetic constructs repressed by the Lac repressor and two well-known sequences that show large flexibility differences in vitro, we make precise statistical mechanical predictions as to how DNA sequence influences loop formation and test these predictions using in vivo transcription and in vitro single-molecule assays. Surprisingly, sequence-dependent flexibility does not affect in vivo gene regulation. By theoretically and experimentally quantifying the relative contributions of sequence and the DNA-bending protein HU to DNA mechanical properties, we reveal that bending by HU dominates DNA mechanics and masks intrinsic sequence-dependent flexibility. Such a quantitative understanding of how mechanical regulatory information is encoded in the genome will be a key step towards a predictive understanding of gene regulation at single-base pair resolution.

  4. Identification of the NLS sequence in the ERCC5/XP-G protein

    SciTech Connect

    Knauf, J.A.; Park, M.S.; MacInnes, M.A.

    1994-12-31

    The Excision Repair Cross Complementing gene 5 (ERCC5) protein is required for nucleotide excision repair and is involved in the human disease xeroderma pigmentosum complementation group G. Here we show, by immunofluorescence with a rabbit antibody to the C-terminus of the ERCC5 protein, that the ERCC5 protein is located in the nucleus. The ERCC5 protein has a calculated molecular weight of 136.2 kDa, thus requiring a NLS signal to enter the nucleus. Sequence analysis of the ERCC5 protein indicated 4 putative NLS sites. To determine which of the 4 putative NLS sites is involved in nuclear localization of the ERCC5 protein, fragments of the ERCC5 gene were cloned into the vector pCH110 (Pharmacia). The ERCC5 fragments were cloned in frame with and upstream of the beta-galactosidase gene which is under the control of a mammalian promoter. The plasmid was then transfected into HeLa cells and the cellular location of the fusion protein was determined by histochemical staining with X-gal or by immunofluorescence using an antibody to the beta-galactosidase protein. The beta-galactosidase protein alone is predominately located in the cytosol. However, when the last 159 amino acids of the C-terminus are fused to the beta-galactosidase protein the fusion protein is found exclusively in the nucleus.

  5. Effects of different kinds of essentiality on sequence evolution of human testis proteins

    PubMed Central

    Schumacher, Julia; Zischler, Hans; Herlyn, Holger

    2017-01-01

    We asked if essentiality for either fertility or viability differentially affects sequence evolution of human testis proteins. Based on murine knockout data, we classified a set of 965 proteins expressed in human seminiferous tubules into three categories: proteins essential for prepubertal survival (“lethality proteins”), associated with male sub- or infertility (“male sub-/infertility proteins”), and nonessential proteins. In our testis protein dataset, lethality genes evolved significantly slower than nonessential and male sub-/infertility genes, which is in line with other authors’ findings. Using tissue specificity, connectivity in the protein-protein interaction (PPI) network, and multifunctionality as proxies for evolutionary constraints, we found that of the three categories, proteins linked to male sub- or infertility are least constrained. Lethality proteins, on the other hand, are characterized by broad expression, many PPI partners, and high multifunctionality, all of which points to strong evolutionary constraints. We conclude that compared with lethality proteins, those linked to male sub- or infertility are nonetheless indispensable, but evolve under more relaxed constraints. Finally, adaptive evolution in response to postmating sexual selection could further accelerate evolutionary rates of male sub- or infertility proteins expressed in human testis. These findings may become useful for in silico detection of human sub-/infertility genes. PMID:28272493

  6. Importance of secondary structure in the signal sequence for protein secretion.

    PubMed Central

    Emr, S D; Silhavy, T J

    1983-01-01

    Mutant Escherichia coli strains in which export of the LamB protein (coded for by the lamB gene) to the outer membrane of the cell is prevented have been described previously. One of these mutant strains contains a small (12-base pair) deletion mutation within the region of the lamB gene that codes for the NH2-terminal signal sequence. In this mutant strain, export but not synthesis of the LamB protein is blocked. We have isolated pseudorevertants that restore export of functional LamB protein to the outer membrane. DNA sequence analysis showed that two of the revertants contain a point mutation in addition to the original deletion. These point mutations lead to amino acid substitutions within the signal sequence. Our results indicate that these secondary mutations efficiently suppress the export defect caused by the deletion mutation. Analysis of the secondary structure of the wild-type, mutant, and pseudorevertant LamB signal sequences suggests that the secondary mutations restore export by allowing the formation of a stable alpha-helical conformation in the central, hydrophobic region of the signal sequence. Images PMID:6224220

  7. Remote access to ACNUC nucleotide and protein sequence databases at PBIL.

    PubMed

    Gouy, Manolo; Delmotte, Stéphane

    2008-04-01

    The ACNUC biological sequence database system provides powerful and fast query and extraction capabilities to a variety of nucleotide and protein sequence databases. The collection of ACNUC databases served by the Pôle Bio-Informatique Lyonnais includes the EMBL, GenBank, RefSeq and UniProt nucleotide and protein sequence databases and a series of other sequence databases that support comparative genomics analyses: HOVERGEN and HOGENOM containing families of homologous protein-coding genes from vertebrate and prokaryotic genomes, respectively; Ensembl and Genome Reviews for analyses of prokaryotic and of selected eukaryotic genomes. This report describes the main features of the ACNUC system and the access to ACNUC databases from any internet-connected computer. Such access was made possible by the definition of a remote ACNUC access protocol and the implementation of Application Programming Interfaces between the C, Python and R languages and this communication protocol. Two retrieval programs for ACNUC databases, Query_win, with a graphical user interface and raa_query, with a command line interface, are also described. Altogether, these bioinformatics tools provide users with either ready-to-use means of querying remote sequence databases through a variety of selection criteria, or a simple way to endow application programs with an extensive access to these databases. Remote access to ACNUC databases is open to all and fully documented (http://pbil.univ-lyon1.fr/databases/acnuc/acnuc.html).

  8. Crenomytilus grayanus 40kDa calponin-like protein: cDNA cloning, sequence analysis, tissue expression, and post-translational modifications.

    PubMed

    Matusovsky, Oleg S; Dobrzhanskaya, Anna V; Pankova, Victoria V; Kiselev, Konstantin V; Girich, Ulyana V; Shelud'ko, Nikolay S

    2017-03-02

    Calponin-like protein (CaP-40), a third major protein after actin and tropomyosin, has recently been identified by us in the Ca(2+)-regulated thin filaments of mussel Crenomytilus grayanus. It contains calponin homology domain, five calponin family repeats and possesses similar biochemical properties as vertebrate smooth muscle calponin. In this paper, we report a full-length cDNA sequence of CaP-40, study its expression pattern on mRNA and protein levels, evaluate CaP-40 post-translational modifications and perform protein-protein interaction analysis. The full-length sequence of CaP-40 consists of 398 amino acids and has high similarity to calponins among molluscan species. CaP-40 gene is widely expressed in mussel tissues, with the highest expression in adductor and mantle. Comparison of these data with protein content established by mass-spectrometry analysis revealed that the high mRNA content is mirrored by high protein levels for adductor smooth muscles. To provide unbiased insight into the function of CaP-40 and effect of its over-expression in adductor smooth muscle, we built protein-protein interaction network of identified Crenomytilus grayanus proteome. In addition, we showed that CaP-40 is subjected to post-translational N- and C-terminal acetylation at N127, G229 and G349 sites which potentially regulates its function in vivo.