Sample records for protein sequence features

  1. Extracting features from protein sequences to improve deep extreme learning machine for protein fold recognition.

    PubMed

    Ibrahim, Wisam; Abadeh, Mohammad Saniee

    2017-05-21

    Protein fold recognition is an important problem in bioinformatics to predict three-dimensional structure of a protein. One of the most challenging tasks in protein fold recognition problem is the extraction of efficient features from the amino-acid sequences to obtain better classifiers. In this paper, we have proposed six descriptors to extract features from protein sequences. These descriptors are applied in the first stage of a three-stage framework PCA-DELM-LDA to extract feature vectors from the amino-acid sequences. Principal Component Analysis PCA has been implemented to reduce the number of extracted features. The extracted feature vectors have been used with original features to improve the performance of the Deep Extreme Learning Machine DELM in the second stage. Four new features have been extracted from the second stage and used in the third stage by Linear Discriminant Analysis LDA to classify the instances into 27 folds. The proposed framework is implemented on the independent and combined feature sets in SCOP datasets. The experimental results show that extracted feature vectors in the first stage could improve the performance of DELM in extracting new useful features in second stage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. FALDO: a semantic standard for describing the location of nucleotide and protein feature annotation.

    PubMed

    Bolleman, Jerven T; Mungall, Christopher J; Strozzi, Francesco; Baran, Joachim; Dumontier, Michel; Bonnal, Raoul J P; Buels, Robert; Hoehndorf, Robert; Fujisawa, Takatomo; Katayama, Toshiaki; Cock, Peter J A

    2016-06-13

    Nucleotide and protein sequence feature annotations are essential to understand biology on the genomic, transcriptomic, and proteomic level. Using Semantic Web technologies to query biological annotations, there was no standard that described this potentially complex location information as subject-predicate-object triples. We have developed an ontology, the Feature Annotation Location Description Ontology (FALDO), to describe the positions of annotated features on linear and circular sequences. FALDO can be used to describe nucleotide features in sequence records, protein annotations, and glycan binding sites, among other features in coordinate systems of the aforementioned "omics" areas. Using the same data format to represent sequence positions that are independent of file formats allows us to integrate sequence data from multiple sources and data types. The genome browser JBrowse is used to demonstrate accessing multiple SPARQL endpoints to display genomic feature annotations, as well as protein annotations from UniProt mapped to genomic locations. Our ontology allows users to uniformly describe - and potentially merge - sequence annotations from multiple sources. Data sources using FALDO can prospectively be retrieved using federalised SPARQL queries against public SPARQL endpoints and/or local private triple stores.

  3. FALDO: a semantic standard for describing the location of nucleotide and protein feature annotation

    DOE PAGES

    Bolleman, Jerven T.; Mungall, Christopher J.; Strozzi, Francesco; ...

    2016-06-13

    Nucleotide and protein sequence feature annotations are essential to understand biology on the genomic, transcriptomic, and proteomic level. Using Semantic Web technologies to query biological annotations, there was no standard that described this potentially complex location information as subject-predicate-object triples. In this paper, we have developed an ontology, the Feature Annotation Location Description Ontology (FALDO), to describe the positions of annotated features on linear and circular sequences. FALDO can be used to describe nucleotide features in sequence records, protein annotations, and glycan binding sites, among other features in coordinate systems of the aforementioned “omics” areas. Using the same data formatmore » to represent sequence positions that are independent of file formats allows us to integrate sequence data from multiple sources and data types. The genome browser JBrowse is used to demonstrate accessing multiple SPARQL endpoints to display genomic feature annotations, as well as protein annotations from UniProt mapped to genomic locations. Our ontology allows users to uniformly describe – and potentially merge – sequence annotations from multiple sources. Finally, data sources using FALDO can prospectively be retrieved using federalised SPARQL queries against public SPARQL endpoints and/or local private triple stores.« less

  4. FALDO: a semantic standard for describing the location of nucleotide and protein feature annotation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolleman, Jerven T.; Mungall, Christopher J.; Strozzi, Francesco

    Nucleotide and protein sequence feature annotations are essential to understand biology on the genomic, transcriptomic, and proteomic level. Using Semantic Web technologies to query biological annotations, there was no standard that described this potentially complex location information as subject-predicate-object triples. In this paper, we have developed an ontology, the Feature Annotation Location Description Ontology (FALDO), to describe the positions of annotated features on linear and circular sequences. FALDO can be used to describe nucleotide features in sequence records, protein annotations, and glycan binding sites, among other features in coordinate systems of the aforementioned “omics” areas. Using the same data formatmore » to represent sequence positions that are independent of file formats allows us to integrate sequence data from multiple sources and data types. The genome browser JBrowse is used to demonstrate accessing multiple SPARQL endpoints to display genomic feature annotations, as well as protein annotations from UniProt mapped to genomic locations. Our ontology allows users to uniformly describe – and potentially merge – sequence annotations from multiple sources. Finally, data sources using FALDO can prospectively be retrieved using federalised SPARQL queries against public SPARQL endpoints and/or local private triple stores.« less

  5. Predicting protein-protein interactions by combing various sequence- derived features into the general form of Chou's Pseudo amino acid composition.

    PubMed

    Zhao, Xiao-Wei; Ma, Zhi-Qiang; Yin, Ming-Hao

    2012-05-01

    Knowledge of protein-protein interactions (PPIs) plays an important role in constructing protein interaction networks and understanding the general machineries of biological systems. In this study, a new method is proposed to predict PPIs using a comprehensive set of 930 features based only on sequence information, these features measure the interactions between residues a certain distant apart in the protein sequences from different aspects. To achieve better performance, the principal component analysis (PCA) is first employed to obtain an optimized feature subset. Then, the resulting 67-dimensional feature vectors are fed to Support Vector Machine (SVM). Experimental results on Drosophila melanogaster and Helicobater pylori datasets show that our method is very promising to predict PPIs and may at least be a useful supplement tool to existing methods.

  6. Algorithm, applications and evaluation for protein comparison by Ramanujan Fourier transform.

    PubMed

    Zhao, Jian; Wang, Jiasong; Hua, Wei; Ouyang, Pingkai

    2015-12-01

    The amino acid sequence of a protein determines its chemical properties, chain conformation and biological functions. Protein sequence comparison is of great importance to identify similarities of protein structures and infer their functions. Many properties of a protein correspond to the low-frequency signals within the sequence. Low frequency modes in protein sequences are linked to the secondary structures, membrane protein types, and sub-cellular localizations of the proteins. In this paper, we present Ramanujan Fourier transform (RFT) with a fast algorithm to analyze the low-frequency signals of protein sequences. The RFT method is applied to similarity analysis of protein sequences with the Resonant Recognition Model (RRM). The results show that the proposed fast RFT method on protein comparison is more efficient than commonly used discrete Fourier transform (DFT). RFT can detect common frequencies as significant feature for specific protein families, and the RFT spectrum heat-map of protein sequences demonstrates the information conservation in the sequence comparison. The proposed method offers a new tool for pattern recognition, feature extraction and structural analysis on protein sequences. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. iFeature: a python package and web server for features extraction and selection from protein and peptide sequences.

    PubMed

    Chen, Zhen; Zhao, Pei; Li, Fuyi; Leier, André; Marquez-Lago, Tatiana T; Wang, Yanan; Webb, Geoffrey I; Smith, A Ian; Daly, Roger J; Chou, Kuo-Chen; Song, Jiangning

    2018-03-08

    Structural and physiochemical descriptors extracted from sequence data have been widely used to represent sequences and predict structural, functional, expression and interaction profiles of proteins and peptides as well as DNAs/RNAs. Here, we present iFeature, a versatile Python-based toolkit for generating various numerical feature representation schemes for both protein and peptide sequences. iFeature is capable of calculating and extracting a comprehensive spectrum of 18 major sequence encoding schemes that encompass 53 different types of feature descriptors. It also allows users to extract specific amino acid properties from the AAindex database. Furthermore, iFeature integrates 12 different types of commonly used feature clustering, selection, and dimensionality reduction algorithms, greatly facilitating training, analysis, and benchmarking of machine-learning models. The functionality of iFeature is made freely available via an online web server and a stand-alone toolkit. http://iFeature.erc.monash.edu/; https://github.com/Superzchen/iFeature/. jiangning.song@monash.edu; kcchou@gordonlifescience.org; roger.daly@monash.edu. Supplementary data are available at Bioinformatics online.

  8. Protein location prediction using atomic composition and global features of the amino acid sequence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherian, Betsy Sheena, E-mail: betsy.skb@gmail.com; Nair, Achuthsankar S.

    2010-01-22

    Subcellular location of protein is constructive information in determining its function, screening for drug candidates, vaccine design, annotation of gene products and in selecting relevant proteins for further studies. Computational prediction of subcellular localization deals with predicting the location of a protein from its amino acid sequence. For a computational localization prediction method to be more accurate, it should exploit all possible relevant biological features that contribute to the subcellular localization. In this work, we extracted the biological features from the full length protein sequence to incorporate more biological information. A new biological feature, distribution of atomic composition is effectivelymore » used with, multiple physiochemical properties, amino acid composition, three part amino acid composition, and sequence similarity for predicting the subcellular location of the protein. Support Vector Machines are designed for four modules and prediction is made by a weighted voting system. Our system makes prediction with an accuracy of 100, 82.47, 88.81 for self-consistency test, jackknife test and independent data test respectively. Our results provide evidence that the prediction based on the biological features derived from the full length amino acid sequence gives better accuracy than those derived from N-terminal alone. Considering the features as a distribution within the entire sequence will bring out underlying property distribution to a greater detail to enhance the prediction accuracy.« less

  9. Graph pyramids for protein function prediction

    PubMed Central

    2015-01-01

    Background Uncovering the hidden organizational characteristics and regularities among biological sequences is the key issue for detailed understanding of an underlying biological phenomenon. Thus pattern recognition from nucleic acid sequences is an important affair for protein function prediction. As proteins from the same family exhibit similar characteristics, homology based approaches predict protein functions via protein classification. But conventional classification approaches mostly rely on the global features by considering only strong protein similarity matches. This leads to significant loss of prediction accuracy. Methods Here we construct the Protein-Protein Similarity (PPS) network, which captures the subtle properties of protein families. The proposed method considers the local as well as the global features, by examining the interactions among 'weakly interacting proteins' in the PPS network and by using hierarchical graph analysis via the graph pyramid. Different underlying properties of the protein families are uncovered by operating the proposed graph based features at various pyramid levels. Results Experimental results on benchmark data sets show that the proposed hierarchical voting algorithm using graph pyramid helps to improve computational efficiency as well the protein classification accuracy. Quantitatively, among 14,086 test sequences, on an average the proposed method misclassified only 21.1 sequences whereas baseline BLAST score based global feature matching method misclassified 362.9 sequences. With each correctly classified test sequence, the fast incremental learning ability of the proposed method further enhances the training model. Thus it has achieved more than 96% protein classification accuracy using only 20% per class training data. PMID:26044522

  10. Graph pyramids for protein function prediction.

    PubMed

    Sandhan, Tushar; Yoo, Youngjun; Choi, Jin; Kim, Sun

    2015-01-01

    Uncovering the hidden organizational characteristics and regularities among biological sequences is the key issue for detailed understanding of an underlying biological phenomenon. Thus pattern recognition from nucleic acid sequences is an important affair for protein function prediction. As proteins from the same family exhibit similar characteristics, homology based approaches predict protein functions via protein classification. But conventional classification approaches mostly rely on the global features by considering only strong protein similarity matches. This leads to significant loss of prediction accuracy. Here we construct the Protein-Protein Similarity (PPS) network, which captures the subtle properties of protein families. The proposed method considers the local as well as the global features, by examining the interactions among 'weakly interacting proteins' in the PPS network and by using hierarchical graph analysis via the graph pyramid. Different underlying properties of the protein families are uncovered by operating the proposed graph based features at various pyramid levels. Experimental results on benchmark data sets show that the proposed hierarchical voting algorithm using graph pyramid helps to improve computational efficiency as well the protein classification accuracy. Quantitatively, among 14,086 test sequences, on an average the proposed method misclassified only 21.1 sequences whereas baseline BLAST score based global feature matching method misclassified 362.9 sequences. With each correctly classified test sequence, the fast incremental learning ability of the proposed method further enhances the training model. Thus it has achieved more than 96% protein classification accuracy using only 20% per class training data.

  11. Predicting Protein-Protein Interactions by Combing Various Sequence-Derived.

    PubMed

    Zhao, Xiao-Wei; Ma, Zhi-Qiang; Yin, Ming-Hao

    2011-09-20

    Knowledge of protein-protein interactions (PPIs) plays an important role in constructing protein interaction networks and understanding the general machineries of biological systems. In this study, a new method is proposed to predict PPIs using a comprehensive set of 930 features based only on sequence information, these features measure the interactions between residues a certain distant apart in the protein sequences from different aspects. To achieve better performance, the principal component analysis (PCA) is first employed to obtain an optimized feature subset. Then, the resulting 67-dimensional feature vectors are fed to Support Vector Machine (SVM). Experimental results on Drosophila melanogaster and Helicobater pylori datasets show that our method is very promising to predict PPIs and may at least be a useful supplement tool to existing methods.

  12. Analysis of temporal transcription expression profiles reveal links between protein function and developmental stages of Drosophila melanogaster.

    PubMed

    Wan, Cen; Lees, Jonathan G; Minneci, Federico; Orengo, Christine A; Jones, David T

    2017-10-01

    Accurate gene or protein function prediction is a key challenge in the post-genome era. Most current methods perform well on molecular function prediction, but struggle to provide useful annotations relating to biological process functions due to the limited power of sequence-based features in that functional domain. In this work, we systematically evaluate the predictive power of temporal transcription expression profiles for protein function prediction in Drosophila melanogaster. Our results show significantly better performance on predicting protein function when transcription expression profile-based features are integrated with sequence-derived features, compared with the sequence-derived features alone. We also observe that the combination of expression-based and sequence-based features leads to further improvement of accuracy on predicting all three domains of gene function. Based on the optimal feature combinations, we then propose a novel multi-classifier-based function prediction method for Drosophila melanogaster proteins, FFPred-fly+. Interpreting our machine learning models also allows us to identify some of the underlying links between biological processes and developmental stages of Drosophila melanogaster.

  13. Visualization of protein sequence features using JavaScript and SVG with pViz.js.

    PubMed

    Mukhyala, Kiran; Masselot, Alexandre

    2014-12-01

    pViz.js is a visualization library for displaying protein sequence features in a Web browser. By simply providing a sequence and the locations of its features, this lightweight, yet versatile, JavaScript library renders an interactive view of the protein features. Interactive exploration of protein sequence features over the Web is a common need in Bioinformatics. Although many Web sites have developed viewers to display these features, their implementations are usually focused on data from a specific source or use case. Some of these viewers can be adapted to fit other use cases but are not designed to be reusable. pViz makes it easy to display features as boxes aligned to a protein sequence with zooming functionality but also includes predefined renderings for secondary structure and post-translational modifications. The library is designed to further customize this view. We demonstrate such applications of pViz using two examples: a proteomic data visualization tool with an embedded viewer for displaying features on protein structure, and a tool to visualize the results of the variant_effect_predictor tool from Ensembl. pViz.js is a JavaScript library, available on github at https://github.com/Genentech/pviz. This site includes examples and functional applications, installation instructions and usage documentation. A Readme file, which explains how to use pViz with examples, is available as Supplementary Material A. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Efficient Feature Selection and Classification of Protein Sequence Data in Bioinformatics

    PubMed Central

    Faye, Ibrahima; Samir, Brahim Belhaouari; Md Said, Abas

    2014-01-01

    Bioinformatics has been an emerging area of research for the last three decades. The ultimate aims of bioinformatics were to store and manage the biological data, and develop and analyze computational tools to enhance their understanding. The size of data accumulated under various sequencing projects is increasing exponentially, which presents difficulties for the experimental methods. To reduce the gap between newly sequenced protein and proteins with known functions, many computational techniques involving classification and clustering algorithms were proposed in the past. The classification of protein sequences into existing superfamilies is helpful in predicting the structure and function of large amount of newly discovered proteins. The existing classification results are unsatisfactory due to a huge size of features obtained through various feature encoding methods. In this work, a statistical metric-based feature selection technique has been proposed in order to reduce the size of the extracted feature vector. The proposed method of protein classification shows significant improvement in terms of performance measure metrics: accuracy, sensitivity, specificity, recall, F-measure, and so forth. PMID:25045727

  15. Proteins without unique 3D structures: biotechnological applications of intrinsically unstable/disordered proteins.

    PubMed

    Uversky, Vladimir N

    2015-03-01

    Intrinsically disordered proteins (IDPs) and intrinsically disordered protein regions (IDPRs) are functional proteins or regions that do not have unique 3D structures under functional conditions. Therefore, from the viewpoint of their lack of stable 3D structure, IDPs/IDPRs are inherently unstable. As much as structure and function of normal ordered globular proteins are determined by their amino acid sequences, the lack of unique 3D structure in IDPs/IDPRs and their disorder-based functionality are also encoded in the amino acid sequences. Because of their specific sequence features and distinctive conformational behavior, these intrinsically unstable proteins or regions have several applications in biotechnology. This review introduces some of the most characteristic features of IDPs/IDPRs (such as peculiarities of amino acid sequences of these proteins and regions, their major structural features, and peculiar responses to changes in their environment) and describes how these features can be used in the biotechnology, for example for the proteome-wide analysis of the abundance of extended IDPs, for recombinant protein isolation and purification, as polypeptide nanoparticles for drug delivery, as solubilization tools, and as thermally sensitive carriers of active peptides and proteins. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Predicting membrane protein types by fusing composite protein sequence features into pseudo amino acid composition.

    PubMed

    Hayat, Maqsood; Khan, Asifullah

    2011-02-21

    Membrane proteins are vital type of proteins that serve as channels, receptors, and energy transducers in a cell. Prediction of membrane protein types is an important research area in bioinformatics. Knowledge of membrane protein types provides some valuable information for predicting novel example of the membrane protein types. However, classification of membrane protein types can be both time consuming and susceptible to errors due to the inherent similarity of membrane protein types. In this paper, neural networks based membrane protein type prediction system is proposed. Composite protein sequence representation (CPSR) is used to extract the features of a protein sequence, which includes seven feature sets; amino acid composition, sequence length, 2 gram exchange group frequency, hydrophobic group, electronic group, sum of hydrophobicity, and R-group. Principal component analysis is then employed to reduce the dimensionality of the feature vector. The probabilistic neural network (PNN), generalized regression neural network, and support vector machine (SVM) are used as classifiers. A high success rate of 86.01% is obtained using SVM for the jackknife test. In case of independent dataset test, PNN yields the highest accuracy of 95.73%. These classifiers exhibit improved performance using other performance measures such as sensitivity, specificity, Mathew's correlation coefficient, and F-measure. The experimental results show that the prediction performance of the proposed scheme for classifying membrane protein types is the best reported, so far. This performance improvement may largely be credited to the learning capabilities of neural networks and the composite feature extraction strategy, which exploits seven different properties of protein sequences. The proposed Mem-Predictor can be accessed at http://111.68.99.218/Mem-Predictor. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. SCPRED: accurate prediction of protein structural class for sequences of twilight-zone similarity with predicting sequences.

    PubMed

    Kurgan, Lukasz; Cios, Krzysztof; Chen, Ke

    2008-05-01

    Protein structure prediction methods provide accurate results when a homologous protein is predicted, while poorer predictions are obtained in the absence of homologous templates. However, some protein chains that share twilight-zone pairwise identity can form similar folds and thus determining structural similarity without the sequence similarity would be desirable for the structure prediction. The folding type of a protein or its domain is defined as the structural class. Current structural class prediction methods that predict the four structural classes defined in SCOP provide up to 63% accuracy for the datasets in which sequence identity of any pair of sequences belongs to the twilight-zone. We propose SCPRED method that improves prediction accuracy for sequences that share twilight-zone pairwise similarity with sequences used for the prediction. SCPRED uses a support vector machine classifier that takes several custom-designed features as its input to predict the structural classes. Based on extensive design that considers over 2300 index-, composition- and physicochemical properties-based features along with features based on the predicted secondary structure and content, the classifier's input includes 8 features based on information extracted from the secondary structure predicted with PSI-PRED and one feature computed from the sequence. Tests performed with datasets of 1673 protein chains, in which any pair of sequences shares twilight-zone similarity, show that SCPRED obtains 80.3% accuracy when predicting the four SCOP-defined structural classes, which is superior when compared with over a dozen recent competing methods that are based on support vector machine, logistic regression, and ensemble of classifiers predictors. The SCPRED can accurately find similar structures for sequences that share low identity with sequence used for the prediction. The high predictive accuracy achieved by SCPRED is attributed to the design of the features, which are capable of separating the structural classes in spite of their low dimensionality. We also demonstrate that the SCPRED's predictions can be successfully used as a post-processing filter to improve performance of modern fold classification methods.

  18. SCPRED: Accurate prediction of protein structural class for sequences of twilight-zone similarity with predicting sequences

    PubMed Central

    Kurgan, Lukasz; Cios, Krzysztof; Chen, Ke

    2008-01-01

    Background Protein structure prediction methods provide accurate results when a homologous protein is predicted, while poorer predictions are obtained in the absence of homologous templates. However, some protein chains that share twilight-zone pairwise identity can form similar folds and thus determining structural similarity without the sequence similarity would be desirable for the structure prediction. The folding type of a protein or its domain is defined as the structural class. Current structural class prediction methods that predict the four structural classes defined in SCOP provide up to 63% accuracy for the datasets in which sequence identity of any pair of sequences belongs to the twilight-zone. We propose SCPRED method that improves prediction accuracy for sequences that share twilight-zone pairwise similarity with sequences used for the prediction. Results SCPRED uses a support vector machine classifier that takes several custom-designed features as its input to predict the structural classes. Based on extensive design that considers over 2300 index-, composition- and physicochemical properties-based features along with features based on the predicted secondary structure and content, the classifier's input includes 8 features based on information extracted from the secondary structure predicted with PSI-PRED and one feature computed from the sequence. Tests performed with datasets of 1673 protein chains, in which any pair of sequences shares twilight-zone similarity, show that SCPRED obtains 80.3% accuracy when predicting the four SCOP-defined structural classes, which is superior when compared with over a dozen recent competing methods that are based on support vector machine, logistic regression, and ensemble of classifiers predictors. Conclusion The SCPRED can accurately find similar structures for sequences that share low identity with sequence used for the prediction. The high predictive accuracy achieved by SCPRED is attributed to the design of the features, which are capable of separating the structural classes in spite of their low dimensionality. We also demonstrate that the SCPRED's predictions can be successfully used as a post-processing filter to improve performance of modern fold classification methods. PMID:18452616

  19. PredPPCrys: accurate prediction of sequence cloning, protein production, purification and crystallization propensity from protein sequences using multi-step heterogeneous feature fusion and selection.

    PubMed

    Wang, Huilin; Wang, Mingjun; Tan, Hao; Li, Yuan; Zhang, Ziding; Song, Jiangning

    2014-01-01

    X-ray crystallography is the primary approach to solve the three-dimensional structure of a protein. However, a major bottleneck of this method is the failure of multi-step experimental procedures to yield diffraction-quality crystals, including sequence cloning, protein material production, purification, crystallization and ultimately, structural determination. Accordingly, prediction of the propensity of a protein to successfully undergo these experimental procedures based on the protein sequence may help narrow down laborious experimental efforts and facilitate target selection. A number of bioinformatics methods based on protein sequence information have been developed for this purpose. However, our knowledge on the important determinants of propensity for a protein sequence to produce high diffraction-quality crystals remains largely incomplete. In practice, most of the existing methods display poorer performance when evaluated on larger and updated datasets. To address this problem, we constructed an up-to-date dataset as the benchmark, and subsequently developed a new approach termed 'PredPPCrys' using the support vector machine (SVM). Using a comprehensive set of multifaceted sequence-derived features in combination with a novel multi-step feature selection strategy, we identified and characterized the relative importance and contribution of each feature type to the prediction performance of five individual experimental steps required for successful crystallization. The resulting optimal candidate features were used as inputs to build the first-level SVM predictor (PredPPCrys I). Next, prediction outputs of PredPPCrys I were used as the input to build second-level SVM classifiers (PredPPCrys II), which led to significantly enhanced prediction performance. Benchmarking experiments indicated that our PredPPCrys method outperforms most existing procedures on both up-to-date and previous datasets. In addition, the predicted crystallization targets of currently non-crystallizable proteins were provided as compendium data, which are anticipated to facilitate target selection and design for the worldwide structural genomics consortium. PredPPCrys is freely available at http://www.structbioinfor.org/PredPPCrys.

  20. Analysis and Prediction of Myristoylation Sites Using the mRMR Method, the IFS Method and an Extreme Learning Machine Algorithm.

    PubMed

    Wang, ShaoPeng; Zhang, Yu-Hang; Huang, GuoHua; Chen, Lei; Cai, Yu-Dong

    2017-01-01

    Myristoylation is an important hydrophobic post-translational modification that is covalently bound to the amino group of Gly residues on the N-terminus of proteins. The many diverse functions of myristoylation on proteins, such as membrane targeting, signal pathway regulation and apoptosis, are largely due to the lipid modification, whereas abnormal or irregular myristoylation on proteins can lead to several pathological changes in the cell. To better understand the function of myristoylated sites and to correctly identify them in protein sequences, this study conducted a novel computational investigation on identifying myristoylation sites in protein sequences. A training dataset with 196 positive and 84 negative peptide segments were obtained. Four types of features derived from the peptide segments following the myristoylation sites were used to specify myristoylatedand non-myristoylated sites. Then, feature selection methods including maximum relevance and minimum redundancy (mRMR), incremental feature selection (IFS), and a machine learning algorithm (extreme learning machine method) were adopted to extract optimal features for the algorithm to identify myristoylation sites in protein sequences, thereby building an optimal prediction model. As a result, 41 key features were extracted and used to build an optimal prediction model. The effectiveness of the optimal prediction model was further validated by its performance on a test dataset. Furthermore, detailed analyses were also performed on the extracted 41 features to gain insight into the mechanism of myristoylation modification. This study provided a new computational method for identifying myristoylation sites in protein sequences. We believe that it can be a useful tool to predict myristoylation sites from protein sequences. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Predicting disulfide connectivity from protein sequence using multiple sequence feature vectors and secondary structure.

    PubMed

    Song, Jiangning; Yuan, Zheng; Tan, Hao; Huber, Thomas; Burrage, Kevin

    2007-12-01

    Disulfide bonds are primary covalent crosslinks between two cysteine residues in proteins that play critical roles in stabilizing the protein structures and are commonly found in extracy-toplasmatic or secreted proteins. In protein folding prediction, the localization of disulfide bonds can greatly reduce the search in conformational space. Therefore, there is a great need to develop computational methods capable of accurately predicting disulfide connectivity patterns in proteins that could have potentially important applications. We have developed a novel method to predict disulfide connectivity patterns from protein primary sequence, using a support vector regression (SVR) approach based on multiple sequence feature vectors and predicted secondary structure by the PSIPRED program. The results indicate that our method could achieve a prediction accuracy of 74.4% and 77.9%, respectively, when averaged on proteins with two to five disulfide bridges using 4-fold cross-validation, measured on the protein and cysteine pair on a well-defined non-homologous dataset. We assessed the effects of different sequence encoding schemes on the prediction performance of disulfide connectivity. It has been shown that the sequence encoding scheme based on multiple sequence feature vectors coupled with predicted secondary structure can significantly improve the prediction accuracy, thus enabling our method to outperform most of other currently available predictors. Our work provides a complementary approach to the current algorithms that should be useful in computationally assigning disulfide connectivity patterns and helps in the annotation of protein sequences generated by large-scale whole-genome projects. The prediction web server and Supplementary Material are accessible at http://foo.maths.uq.edu.au/~huber/disulfide

  2. Protein Information Resource: a community resource for expert annotation of protein data

    PubMed Central

    Barker, Winona C.; Garavelli, John S.; Hou, Zhenglin; Huang, Hongzhan; Ledley, Robert S.; McGarvey, Peter B.; Mewes, Hans-Werner; Orcutt, Bruce C.; Pfeiffer, Friedhelm; Tsugita, Akira; Vinayaka, C. R.; Xiao, Chunlin; Yeh, Lai-Su L.; Wu, Cathy

    2001-01-01

    The Protein Information Resource, in collaboration with the Munich Information Center for Protein Sequences (MIPS) and the Japan International Protein Information Database (JIPID), produces the most comprehensive and expertly annotated protein sequence database in the public domain, the PIR-International Protein Sequence Database. To provide timely and high quality annotation and promote database interoperability, the PIR-International employs rule-based and classification-driven procedures based on controlled vocabulary and standard nomenclature and includes status tags to distinguish experimentally determined from predicted protein features. The database contains about 200 000 non-redundant protein sequences, which are classified into families and superfamilies and their domains and motifs identified. Entries are extensively cross-referenced to other sequence, classification, genome, structure and activity databases. The PIR web site features search engines that use sequence similarity and database annotation to facilitate the analysis and functional identification of proteins. The PIR-Inter­national databases and search tools are accessible on the PIR web site at http://pir.georgetown.edu/ and at the MIPS web site at http://www.mips.biochem.mpg.de. The PIR-International Protein Sequence Database and other files are also available by FTP. PMID:11125041

  3. A machine-learning approach for predicting palmitoylation sites from integrated sequence-based features.

    PubMed

    Li, Liqi; Luo, Qifa; Xiao, Weidong; Li, Jinhui; Zhou, Shiwen; Li, Yongsheng; Zheng, Xiaoqi; Yang, Hua

    2017-02-01

    Palmitoylation is the covalent attachment of lipids to amino acid residues in proteins. As an important form of protein posttranslational modification, it increases the hydrophobicity of proteins, which contributes to the protein transportation, organelle localization, and functions, therefore plays an important role in a variety of cell biological processes. Identification of palmitoylation sites is necessary for understanding protein-protein interaction, protein stability, and activity. Since conventional experimental techniques to determine palmitoylation sites in proteins are both labor intensive and costly, a fast and accurate computational approach to predict palmitoylation sites from protein sequences is in urgent need. In this study, a support vector machine (SVM)-based method was proposed through integrating PSI-BLAST profile, physicochemical properties, [Formula: see text]-mer amino acid compositions (AACs), and [Formula: see text]-mer pseudo AACs into the principal feature vector. A recursive feature selection scheme was subsequently implemented to single out the most discriminative features. Finally, an SVM method was implemented to predict palmitoylation sites in proteins based on the optimal features. The proposed method achieved an accuracy of 99.41% and Matthews Correlation Coefficient of 0.9773 for a benchmark dataset. The result indicates the efficiency and accuracy of our method in prediction of palmitoylation sites based on protein sequences.

  4. Sequence-Based Prediction of RNA-Binding Proteins Using Random Forest with Minimum Redundancy Maximum Relevance Feature Selection.

    PubMed

    Ma, Xin; Guo, Jing; Sun, Xiao

    2015-01-01

    The prediction of RNA-binding proteins is one of the most challenging problems in computation biology. Although some studies have investigated this problem, the accuracy of prediction is still not sufficient. In this study, a highly accurate method was developed to predict RNA-binding proteins from amino acid sequences using random forests with the minimum redundancy maximum relevance (mRMR) method, followed by incremental feature selection (IFS). We incorporated features of conjoint triad features and three novel features: binding propensity (BP), nonbinding propensity (NBP), and evolutionary information combined with physicochemical properties (EIPP). The results showed that these novel features have important roles in improving the performance of the predictor. Using the mRMR-IFS method, our predictor achieved the best performance (86.62% accuracy and 0.737 Matthews correlation coefficient). High prediction accuracy and successful prediction performance suggested that our method can be a useful approach to identify RNA-binding proteins from sequence information.

  5. Indel PDB: a database of structural insertions and deletions derived from sequence alignments of closely related proteins.

    PubMed

    Hsing, Michael; Cherkasov, Artem

    2008-06-25

    Insertions and deletions (indels) represent a common type of sequence variations, which are less studied and pose many important biological questions. Recent research has shown that the presence of sizable indels in protein sequences may be indicative of protein essentiality and their role in protein interaction networks. Examples of utilization of indels for structure-based drug design have also been recently demonstrated. Nonetheless many structural and functional characteristics of indels remain less researched or unknown. We have created a web-based resource, Indel PDB, representing a structural database of insertions/deletions identified from the sequence alignments of highly similar proteins found in the Protein Data Bank (PDB). Indel PDB utilized large amounts of available structural information to characterize 1-, 2- and 3-dimensional features of indel sites. Indel PDB contains 117,266 non-redundant indel sites extracted from 11,294 indel-containing proteins. Unlike loop databases, Indel PDB features more indel sequences with secondary structures including alpha-helices and beta-sheets in addition to loops. The insertion fragments have been characterized by their sequences, lengths, locations, secondary structure composition, solvent accessibility, protein domain association and three dimensional structures. By utilizing the data available in Indel PDB, we have studied and presented here several sequence and structural features of indels. We anticipate that Indel PDB will not only enable future functional studies of indels, but will also assist protein modeling efforts and identification of indel-directed drug binding sites.

  6. Structural classification of proteins using texture descriptors extracted from the cellular automata image.

    PubMed

    Kavianpour, Hamidreza; Vasighi, Mahdi

    2017-02-01

    Nowadays, having knowledge about cellular attributes of proteins has an important role in pharmacy, medical science and molecular biology. These attributes are closely correlated with the function and three-dimensional structure of proteins. Knowledge of protein structural class is used by various methods for better understanding the protein functionality and folding patterns. Computational methods and intelligence systems can have an important role in performing structural classification of proteins. Most of protein sequences are saved in databanks as characters and strings and a numerical representation is essential for applying machine learning methods. In this work, a binary representation of protein sequences is introduced based on reduced amino acids alphabets according to surrounding hydrophobicity index. Many important features which are hidden in these long binary sequences can be clearly displayed through their cellular automata images. The extracted features from these images are used to build a classification model by support vector machine. Comparing to previous studies on the several benchmark datasets, the promising classification rates obtained by tenfold cross-validation imply that the current approach can help in revealing some inherent features deeply hidden in protein sequences and improve the quality of predicting protein structural class.

  7. DNABP: Identification of DNA-Binding Proteins Based on Feature Selection Using a Random Forest and Predicting Binding Residues.

    PubMed

    Ma, Xin; Guo, Jing; Sun, Xiao

    2016-01-01

    DNA-binding proteins are fundamentally important in cellular processes. Several computational-based methods have been developed to improve the prediction of DNA-binding proteins in previous years. However, insufficient work has been done on the prediction of DNA-binding proteins from protein sequence information. In this paper, a novel predictor, DNABP (DNA-binding proteins), was designed to predict DNA-binding proteins using the random forest (RF) classifier with a hybrid feature. The hybrid feature contains two types of novel sequence features, which reflect information about the conservation of physicochemical properties of the amino acids, and the binding propensity of DNA-binding residues and non-binding propensities of non-binding residues. The comparisons with each feature demonstrated that these two novel features contributed most to the improvement in predictive ability. Furthermore, to improve the prediction performance of the DNABP model, feature selection using the minimum redundancy maximum relevance (mRMR) method combined with incremental feature selection (IFS) was carried out during the model construction. The results showed that the DNABP model could achieve 86.90% accuracy, 83.76% sensitivity, 90.03% specificity and a Matthews correlation coefficient of 0.727. High prediction accuracy and performance comparisons with previous research suggested that DNABP could be a useful approach to identify DNA-binding proteins from sequence information. The DNABP web server system is freely available at http://www.cbi.seu.edu.cn/DNABP/.

  8. Evaluating, Comparing, and Interpreting Protein Domain Hierarchies

    PubMed Central

    2014-01-01

    Abstract Arranging protein domain sequences hierarchically into evolutionarily divergent subgroups is important for investigating evolutionary history, for speeding up web-based similarity searches, for identifying sequence determinants of protein function, and for genome annotation. However, whether or not a particular hierarchy is optimal is often unclear, and independently constructed hierarchies for the same domain can often differ significantly. This article describes methods for statistically evaluating specific aspects of a hierarchy, for probing the criteria underlying its construction and for direct comparisons between hierarchies. Information theoretical notions are used to quantify the contributions of specific hierarchical features to the underlying statistical model. Such features include subhierarchies, sequence subgroups, individual sequences, and subgroup-associated signature patterns. Underlying properties are graphically displayed in plots of each specific feature's contributions, in heat maps of pattern residue conservation, in “contrast alignments,” and through cross-mapping of subgroups between hierarchies. Together, these approaches provide a deeper understanding of protein domain functional divergence, reveal uncertainties caused by inconsistent patterns of sequence conservation, and help resolve conflicts between competing hierarchies. PMID:24559108

  9. PredPPCrys: Accurate Prediction of Sequence Cloning, Protein Production, Purification and Crystallization Propensity from Protein Sequences Using Multi-Step Heterogeneous Feature Fusion and Selection

    PubMed Central

    Wang, Huilin; Wang, Mingjun; Tan, Hao; Li, Yuan; Zhang, Ziding; Song, Jiangning

    2014-01-01

    X-ray crystallography is the primary approach to solve the three-dimensional structure of a protein. However, a major bottleneck of this method is the failure of multi-step experimental procedures to yield diffraction-quality crystals, including sequence cloning, protein material production, purification, crystallization and ultimately, structural determination. Accordingly, prediction of the propensity of a protein to successfully undergo these experimental procedures based on the protein sequence may help narrow down laborious experimental efforts and facilitate target selection. A number of bioinformatics methods based on protein sequence information have been developed for this purpose. However, our knowledge on the important determinants of propensity for a protein sequence to produce high diffraction-quality crystals remains largely incomplete. In practice, most of the existing methods display poorer performance when evaluated on larger and updated datasets. To address this problem, we constructed an up-to-date dataset as the benchmark, and subsequently developed a new approach termed ‘PredPPCrys’ using the support vector machine (SVM). Using a comprehensive set of multifaceted sequence-derived features in combination with a novel multi-step feature selection strategy, we identified and characterized the relative importance and contribution of each feature type to the prediction performance of five individual experimental steps required for successful crystallization. The resulting optimal candidate features were used as inputs to build the first-level SVM predictor (PredPPCrys I). Next, prediction outputs of PredPPCrys I were used as the input to build second-level SVM classifiers (PredPPCrys II), which led to significantly enhanced prediction performance. Benchmarking experiments indicated that our PredPPCrys method outperforms most existing procedures on both up-to-date and previous datasets. In addition, the predicted crystallization targets of currently non-crystallizable proteins were provided as compendium data, which are anticipated to facilitate target selection and design for the worldwide structural genomics consortium. PredPPCrys is freely available at http://www.structbioinfor.org/PredPPCrys. PMID:25148528

  10. ORFer--retrieval of protein sequences and open reading frames from GenBank and storage into relational databases or text files.

    PubMed

    Büssow, Konrad; Hoffmann, Steve; Sievert, Volker

    2002-12-19

    Functional genomics involves the parallel experimentation with large sets of proteins. This requires management of large sets of open reading frames as a prerequisite of the cloning and recombinant expression of these proteins. A Java program was developed for retrieval of protein and nucleic acid sequences and annotations from NCBI GenBank, using the XML sequence format. Annotations retrieved by ORFer include sequence name, organism and also the completeness of the sequence. The program has a graphical user interface, although it can be used in a non-interactive mode. For protein sequences, the program also extracts the open reading frame sequence, if available, and checks its correct translation. ORFer accepts user input in the form of single or lists of GenBank GI identifiers or accession numbers. It can be used to extract complete sets of open reading frames and protein sequences from any kind of GenBank sequence entry, including complete genomes or chromosomes. Sequences are either stored with their features in a relational database or can be exported as text files in Fasta or tabulator delimited format. The ORFer program is freely available at http://www.proteinstrukturfabrik.de/orfer. The ORFer program allows for fast retrieval of DNA sequences, protein sequences and their open reading frames and sequence annotations from GenBank. Furthermore, storage of sequences and features in a relational database is supported. Such a database can supplement a laboratory information system (LIMS) with appropriate sequence information.

  11. Classification of G-protein coupled receptors based on a rich generation of convolutional neural network, N-gram transformation and multiple sequence alignments.

    PubMed

    Li, Man; Ling, Cheng; Xu, Qi; Gao, Jingyang

    2018-02-01

    Sequence classification is crucial in predicting the function of newly discovered sequences. In recent years, the prediction of the incremental large-scale and diversity of sequences has heavily relied on the involvement of machine-learning algorithms. To improve prediction accuracy, these algorithms must confront the key challenge of extracting valuable features. In this work, we propose a feature-enhanced protein classification approach, considering the rich generation of multiple sequence alignment algorithms, N-gram probabilistic language model and the deep learning technique. The essence behind the proposed method is that if each group of sequences can be represented by one feature sequence, composed of homologous sites, there should be less loss when the sequence is rebuilt, when a more relevant sequence is added to the group. On the basis of this consideration, the prediction becomes whether a query sequence belonging to a group of sequences can be transferred to calculate the probability that the new feature sequence evolves from the original one. The proposed work focuses on the hierarchical classification of G-protein Coupled Receptors (GPCRs), which begins by extracting the feature sequences from the multiple sequence alignment results of the GPCRs sub-subfamilies. The N-gram model is then applied to construct the input vectors. Finally, these vectors are imported into a convolutional neural network to make a prediction. The experimental results elucidate that the proposed method provides significant performance improvements. The classification error rate of the proposed method is reduced by at least 4.67% (family level I) and 5.75% (family Level II), in comparison with the current state-of-the-art methods. The implementation program of the proposed work is freely available at: https://github.com/alanFchina/CNN .

  12. SIMAP--a comprehensive database of pre-calculated protein sequence similarities, domains, annotations and clusters.

    PubMed

    Rattei, Thomas; Tischler, Patrick; Götz, Stefan; Jehl, Marc-André; Hoser, Jonathan; Arnold, Roland; Conesa, Ana; Mewes, Hans-Werner

    2010-01-01

    The prediction of protein function as well as the reconstruction of evolutionary genesis employing sequence comparison at large is still the most powerful tool in sequence analysis. Due to the exponential growth of the number of known protein sequences and the subsequent quadratic growth of the similarity matrix, the computation of the Similarity Matrix of Proteins (SIMAP) becomes a computational intensive task. The SIMAP database provides a comprehensive and up-to-date pre-calculation of the protein sequence similarity matrix, sequence-based features and sequence clusters. As of September 2009, SIMAP covers 48 million proteins and more than 23 million non-redundant sequences. Novel features of SIMAP include the expansion of the sequence space by including databases such as ENSEMBL as well as the integration of metagenomes based on their consistent processing and annotation. Furthermore, protein function predictions by Blast2GO are pre-calculated for all sequences in SIMAP and the data access and query functions have been improved. SIMAP assists biologists to query the up-to-date sequence space systematically and facilitates large-scale downstream projects in computational biology. Access to SIMAP is freely provided through the web portal for individuals (http://mips.gsf.de/simap/) and for programmatic access through DAS (http://webclu.bio.wzw.tum.de/das/) and Web-Service (http://mips.gsf.de/webservices/services/SimapService2.0?wsdl).

  13. RStrucFam: a web server to associate structure and cognate RNA for RNA-binding proteins from sequence information.

    PubMed

    Ghosh, Pritha; Mathew, Oommen K; Sowdhamini, Ramanathan

    2016-10-07

    RNA-binding proteins (RBPs) interact with their cognate RNA(s) to form large biomolecular assemblies. They are versatile in their functionality and are involved in a myriad of processes inside the cell. RBPs with similar structural features and common biological functions are grouped together into families and superfamilies. It will be useful to obtain an early understanding and association of RNA-binding property of sequences of gene products. Here, we report a web server, RStrucFam, to predict the structure, type of cognate RNA(s) and function(s) of proteins, where possible, from mere sequence information. The web server employs Hidden Markov Model scan (hmmscan) to enable association to a back-end database of structural and sequence families. The database (HMMRBP) comprises of 437 HMMs of RBP families of known structure that have been generated using structure-based sequence alignments and 746 sequence-centric RBP family HMMs. The input protein sequence is associated with structural or sequence domain families, if structure or sequence signatures exist. In case of association of the protein with a family of known structures, output features like, multiple structure-based sequence alignment (MSSA) of the query with all others members of that family is provided. Further, cognate RNA partner(s) for that protein, Gene Ontology (GO) annotations, if any and a homology model of the protein can be obtained. The users can also browse through the database for details pertaining to each family, protein or RNA and their related information based on keyword search or RNA motif search. RStrucFam is a web server that exploits structurally conserved features of RBPs, derived from known family members and imprinted in mathematical profiles, to predict putative RBPs from sequence information. Proteins that fail to associate with such structure-centric families are further queried against the sequence-centric RBP family HMMs in the HMMRBP database. Further, all other essential information pertaining to an RBP, like overall function annotations, are provided. The web server can be accessed at the following link: http://caps.ncbs.res.in/rstrucfam .

  14. Predicting DNA binding proteins using support vector machine with hybrid fractal features.

    PubMed

    Niu, Xiao-Hui; Hu, Xue-Hai; Shi, Feng; Xia, Jing-Bo

    2014-02-21

    DNA-binding proteins play a vitally important role in many biological processes. Prediction of DNA-binding proteins from amino acid sequence is a significant but not fairly resolved scientific problem. Chaos game representation (CGR) investigates the patterns hidden in protein sequences, and visually reveals previously unknown structure. Fractal dimensions (FD) are good tools to measure sizes of complex, highly irregular geometric objects. In order to extract the intrinsic correlation with DNA-binding property from protein sequences, CGR algorithm, fractal dimension and amino acid composition are applied to formulate the numerical features of protein samples in this paper. Seven groups of features are extracted, which can be computed directly from the primary sequence, and each group is evaluated by the 10-fold cross-validation test and Jackknife test. Comparing the results of numerical experiments, the group of amino acid composition and fractal dimension (21-dimension vector) gets the best result, the average accuracy is 81.82% and average Matthew's correlation coefficient (MCC) is 0.6017. This resulting predictor is also compared with existing method DNA-Prot and shows better performances. © 2013 The Authors. Published by Elsevier Ltd All rights reserved.

  15. Prediction of phenotypes of missense mutations in human proteins from biological assemblies.

    PubMed

    Wei, Qiong; Xu, Qifang; Dunbrack, Roland L

    2013-02-01

    Single nucleotide polymorphisms (SNPs) are the most frequent variation in the human genome. Nonsynonymous SNPs that lead to missense mutations can be neutral or deleterious, and several computational methods have been presented that predict the phenotype of human missense mutations. These methods use sequence-based and structure-based features in various combinations, relying on different statistical distributions of these features for deleterious and neutral mutations. One structure-based feature that has not been studied significantly is the accessible surface area within biologically relevant oligomeric assemblies. These assemblies are different from the crystallographic asymmetric unit for more than half of X-ray crystal structures. We find that mutations in the core of proteins or in the interfaces in biological assemblies are significantly more likely to be disease-associated than those on the surface of the biological assemblies. For structures with more than one protein in the biological assembly (whether the same sequence or different), we find the accessible surface area from biological assemblies provides a statistically significant improvement in prediction over the accessible surface area of monomers from protein crystal structures (P = 6e-5). When adding this information to sequence-based features such as the difference between wildtype and mutant position-specific profile scores, the improvement from biological assemblies is statistically significant but much smaller (P = 0.018). Combining this information with sequence-based features in a support vector machine leads to 82% accuracy on a balanced dataset of 50% disease-associated mutations from SwissVar and 50% neutral mutations from human/primate sequence differences in orthologous proteins. Copyright © 2012 Wiley Periodicals, Inc.

  16. Modeling repetitive, non‐globular proteins

    PubMed Central

    Basu, Koli; Campbell, Robert L.; Guo, Shuaiqi; Sun, Tianjun

    2016-01-01

    Abstract While ab initio modeling of protein structures is not routine, certain types of proteins are more straightforward to model than others. Proteins with short repetitive sequences typically exhibit repetitive structures. These repetitive sequences can be more amenable to modeling if some information is known about the predominant secondary structure or other key features of the protein sequence. We have successfully built models of a number of repetitive structures with novel folds using knowledge of the consensus sequence within the sequence repeat and an understanding of the likely secondary structures that these may adopt. Our methods for achieving this success are reviewed here. PMID:26914323

  17. Feature selection and classification of protein-protein complexes based on their binding affinities using machine learning approaches.

    PubMed

    Yugandhar, K; Gromiha, M Michael

    2014-09-01

    Protein-protein interactions are intrinsic to virtually every cellular process. Predicting the binding affinity of protein-protein complexes is one of the challenging problems in computational and molecular biology. In this work, we related sequence features of protein-protein complexes with their binding affinities using machine learning approaches. We set up a database of 185 protein-protein complexes for which the interacting pairs are heterodimers and their experimental binding affinities are available. On the other hand, we have developed a set of 610 features from the sequences of protein complexes and utilized Ranker search method, which is the combination of Attribute evaluator and Ranker method for selecting specific features. We have analyzed several machine learning algorithms to discriminate protein-protein complexes into high and low affinity groups based on their Kd values. Our results showed a 10-fold cross-validation accuracy of 76.1% with the combination of nine features using support vector machines. Further, we observed accuracy of 83.3% on an independent test set of 30 complexes. We suggest that our method would serve as an effective tool for identifying the interacting partners in protein-protein interaction networks and human-pathogen interactions based on the strength of interactions. © 2014 Wiley Periodicals, Inc.

  18. Adaptive compressive learning for prediction of protein-protein interactions from primary sequence.

    PubMed

    Zhang, Ya-Nan; Pan, Xiao-Yong; Huang, Yan; Shen, Hong-Bin

    2011-08-21

    Protein-protein interactions (PPIs) play an important role in biological processes. Although much effort has been devoted to the identification of novel PPIs by integrating experimental biological knowledge, there are still many difficulties because of lacking enough protein structural and functional information. It is highly desired to develop methods based only on amino acid sequences for predicting PPIs. However, sequence-based predictors are often struggling with the high-dimensionality causing over-fitting and high computational complexity problems, as well as the redundancy of sequential feature vectors. In this paper, a novel computational approach based on compressed sensing theory is proposed to predict yeast Saccharomyces cerevisiae PPIs from primary sequence and has achieved promising results. The key advantage of the proposed compressed sensing algorithm is that it can compress the original high-dimensional protein sequential feature vector into a much lower but more condensed space taking the sparsity property of the original signal into account. What makes compressed sensing much more attractive in protein sequence analysis is its compressed signal can be reconstructed from far fewer measurements than what is usually considered necessary in traditional Nyquist sampling theory. Experimental results demonstrate that proposed compressed sensing method is powerful for analyzing noisy biological data and reducing redundancy in feature vectors. The proposed method represents a new strategy of dealing with high-dimensional protein discrete model and has great potentiality to be extended to deal with many other complicated biological systems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Protein functional features are reflected in the patterns of mRNA translation speed.

    PubMed

    López, Daniel; Pazos, Florencio

    2015-07-09

    The degeneracy of the genetic code makes it possible for the same amino acid string to be coded by different messenger RNA (mRNA) sequences. These "synonymous mRNAs" may differ largely in a number of aspects related to their overall translational efficiency, such as secondary structure content and availability of the encoded transfer RNAs (tRNAs). Consequently, they may render different yields of the translated polypeptides. These mRNA features related to translation efficiency are also playing a role locally, resulting in a non-uniform translation speed along the mRNA, which has been previously related to some protein structural features and also used to explain some dramatic effects of "silent" single-nucleotide-polymorphisms (SNPs). In this work we perform the first large scale analysis of the relationship between three experimental proxies of mRNA local translation efficiency and the local features of the corresponding encoded proteins. We found that a number of protein functional and structural features are reflected in the patterns of ribosome occupancy, secondary structure and tRNA availability along the mRNA. One or more of these proxies of translation speed have distinctive patterns around the mRNA regions coding for certain protein local features. In some cases the three patterns follow a similar trend. We also show specific examples where these patterns of translation speed point to the protein's important structural and functional features. This support the idea that the genome not only codes the protein functional features as sequences of amino acids, but also as subtle patterns of mRNA properties which, probably through local effects on the translation speed, have some consequence on the final polypeptide. These results open the possibility of predicting a protein's functional regions based on a single genomic sequence, and have implications for heterologous protein expression and fine-tuning protein function.

  20. HMPAS: Human Membrane Protein Analysis System

    PubMed Central

    2013-01-01

    Background Membrane proteins perform essential roles in diverse cellular functions and are regarded as major pharmaceutical targets. The significance of membrane proteins has led to the developing dozens of resources related with membrane proteins. However, most of these resources are built for specific well-known membrane protein groups, making it difficult to find common and specific features of various membrane protein groups. Methods We collected human membrane proteins from the dispersed resources and predicted novel membrane protein candidates by using ortholog information and our membrane protein classifiers. The membrane proteins were classified according to the type of interaction with the membrane, subcellular localization, and molecular function. We also made new feature dataset to characterize the membrane proteins in various aspects including membrane protein topology, domain, biological process, disease, and drug. Moreover, protein structure and ICD-10-CM based integrated disease and drug information was newly included. To analyze the comprehensive information of membrane proteins, we implemented analysis tools to identify novel sequence and functional features of the classified membrane protein groups and to extract features from protein sequences. Results We constructed HMPAS with 28,509 collected known membrane proteins and 8,076 newly predicted candidates. This system provides integrated information of human membrane proteins individually and in groups organized by 45 subcellular locations and 1,401 molecular functions. As a case study, we identified associations between the membrane proteins and diseases and present that membrane proteins are promising targets for diseases related with nervous system and circulatory system. A web-based interface of this system was constructed to facilitate researchers not only to retrieve organized information of individual proteins but also to use the tools to analyze the membrane proteins. Conclusions HMPAS provides comprehensive information about human membrane proteins including specific features of certain membrane protein groups. In this system, user can acquire the information of individual proteins and specified groups focused on their conserved sequence features, involved cellular processes, and diseases. HMPAS may contribute as a valuable resource for the inference of novel cellular mechanisms and pharmaceutical targets associated with the human membrane proteins. HMPAS is freely available at http://fcode.kaist.ac.kr/hmpas. PMID:24564858

  1. Quantiprot - a Python package for quantitative analysis of protein sequences.

    PubMed

    Konopka, Bogumił M; Marciniak, Marta; Dyrka, Witold

    2017-07-17

    The field of protein sequence analysis is dominated by tools rooted in substitution matrices and alignments. A complementary approach is provided by methods of quantitative characterization. A major advantage of the approach is that quantitative properties defines a multidimensional solution space, where sequences can be related to each other and differences can be meaningfully interpreted. Quantiprot is a software package in Python, which provides a simple and consistent interface to multiple methods for quantitative characterization of protein sequences. The package can be used to calculate dozens of characteristics directly from sequences or using physico-chemical properties of amino acids. Besides basic measures, Quantiprot performs quantitative analysis of recurrence and determinism in the sequence, calculates distribution of n-grams and computes the Zipf's law coefficient. We propose three main fields of application of the Quantiprot package. First, quantitative characteristics can be used in alignment-free similarity searches, and in clustering of large and/or divergent sequence sets. Second, a feature space defined by quantitative properties can be used in comparative studies of protein families and organisms. Third, the feature space can be used for evaluating generative models, where large number of sequences generated by the model can be compared to actually observed sequences.

  2. Prediction of Protein Structural Classes for Low-Similarity Sequences Based on Consensus Sequence and Segmented PSSM.

    PubMed

    Liang, Yunyun; Liu, Sanyang; Zhang, Shengli

    2015-01-01

    Prediction of protein structural classes for low-similarity sequences is useful for understanding fold patterns, regulation, functions, and interactions of proteins. It is well known that feature extraction is significant to prediction of protein structural class and it mainly uses protein primary sequence, predicted secondary structure sequence, and position-specific scoring matrix (PSSM). Currently, prediction solely based on the PSSM has played a key role in improving the prediction accuracy. In this paper, we propose a novel method called CSP-SegPseP-SegACP by fusing consensus sequence (CS), segmented PsePSSM, and segmented autocovariance transformation (ACT) based on PSSM. Three widely used low-similarity datasets (1189, 25PDB, and 640) are adopted in this paper. Then a 700-dimensional (700D) feature vector is constructed and the dimension is decreased to 224D by using principal component analysis (PCA). To verify the performance of our method, rigorous jackknife cross-validation tests are performed on 1189, 25PDB, and 640 datasets. Comparison of our results with the existing PSSM-based methods demonstrates that our method achieves the favorable and competitive performance. This will offer an important complementary to other PSSM-based methods for prediction of protein structural classes for low-similarity sequences.

  3. Sirius PSB: a generic system for analysis of biological sequences.

    PubMed

    Koh, Chuan Hock; Lin, Sharene; Jedd, Gregory; Wong, Limsoon

    2009-12-01

    Computational tools are essential components of modern biological research. For example, BLAST searches can be used to identify related proteins based on sequence homology, or when a new genome is sequenced, prediction models can be used to annotate functional sites such as transcription start sites, translation initiation sites and polyadenylation sites and to predict protein localization. Here we present Sirius Prediction Systems Builder (PSB), a new computational tool for sequence analysis, classification and searching. Sirius PSB has four main operations: (1) Building a classifier, (2) Deploying a classifier, (3) Search for proteins similar to query proteins, (4) Preliminary and post-prediction analysis. Sirius PSB supports all these operations via a simple and interactive graphical user interface. Besides being a convenient tool, Sirius PSB has also introduced two novelties in sequence analysis. Firstly, genetic algorithm is used to identify interesting features in the feature space. Secondly, instead of the conventional method of searching for similar proteins via sequence similarity, we introduced searching via features' similarity. To demonstrate the capabilities of Sirius PSB, we have built two prediction models - one for the recognition of Arabidopsis polyadenylation sites and another for the subcellular localization of proteins. Both systems are competitive against current state-of-the-art models based on evaluation of public datasets. More notably, the time and effort required to build each model is greatly reduced with the assistance of Sirius PSB. Furthermore, we show that under certain conditions when BLAST is unable to find related proteins, Sirius PSB can identify functionally related proteins based on their biophysical similarities. Sirius PSB and its related supplements are available at: http://compbio.ddns.comp.nus.edu.sg/~sirius.

  4. The Protein Information Resource: an integrated public resource of functional annotation of proteins

    PubMed Central

    Wu, Cathy H.; Huang, Hongzhan; Arminski, Leslie; Castro-Alvear, Jorge; Chen, Yongxing; Hu, Zhang-Zhi; Ledley, Robert S.; Lewis, Kali C.; Mewes, Hans-Werner; Orcutt, Bruce C.; Suzek, Baris E.; Tsugita, Akira; Vinayaka, C. R.; Yeh, Lai-Su L.; Zhang, Jian; Barker, Winona C.

    2002-01-01

    The Protein Information Resource (PIR) serves as an integrated public resource of functional annotation of protein data to support genomic/proteomic research and scientific discovery. The PIR, in collaboration with the Munich Information Center for Protein Sequences (MIPS) and the Japan International Protein Information Database (JIPID), produces the PIR-International Protein Sequence Database (PSD), the major annotated protein sequence database in the public domain, containing about 250 000 proteins. To improve protein annotation and the coverage of experimentally validated data, a bibliography submission system is developed for scientists to submit, categorize and retrieve literature information. Comprehensive protein information is available from iProClass, which includes family classification at the superfamily, domain and motif levels, structural and functional features of proteins, as well as cross-references to over 40 biological databases. To provide timely and comprehensive protein data with source attribution, we have introduced a non-redundant reference protein database, PIR-NREF. The database consists of about 800 000 proteins collected from PIR-PSD, SWISS-PROT, TrEMBL, GenPept, RefSeq and PDB, with composite protein names and literature data. To promote database interoperability, we provide XML data distribution and open database schema, and adopt common ontologies. The PIR web site (http://pir.georgetown.edu/) features data mining and sequence analysis tools for information retrieval and functional identification of proteins based on both sequence and annotation information. The PIR databases and other files are also available by FTP (ftp://nbrfa.georgetown.edu/pir_databases). PMID:11752247

  5. Accurate Identification of Cancerlectins through Hybrid Machine Learning Technology.

    PubMed

    Zhang, Jieru; Ju, Ying; Lu, Huijuan; Xuan, Ping; Zou, Quan

    2016-01-01

    Cancerlectins are cancer-related proteins that function as lectins. They have been identified through computational identification techniques, but these techniques have sometimes failed to identify proteins because of sequence diversity among the cancerlectins. Advanced machine learning identification methods, such as support vector machine and basic sequence features (n-gram), have also been used to identify cancerlectins. In this study, various protein fingerprint features and advanced classifiers, including ensemble learning techniques, were utilized to identify this group of proteins. We improved the prediction accuracy of the original feature extraction methods and classification algorithms by more than 10% on average. Our work provides a basis for the computational identification of cancerlectins and reveals the power of hybrid machine learning techniques in computational proteomics.

  6. Influenza virus sequence feature variant type analysis: evidence of a role for NS1 in influenza virus host range restriction.

    PubMed

    Noronha, Jyothi M; Liu, Mengya; Squires, R Burke; Pickett, Brett E; Hale, Benjamin G; Air, Gillian M; Galloway, Summer E; Takimoto, Toru; Schmolke, Mirco; Hunt, Victoria; Klem, Edward; García-Sastre, Adolfo; McGee, Monnie; Scheuermann, Richard H

    2012-05-01

    Genetic drift of influenza virus genomic sequences occurs through the combined effects of sequence alterations introduced by a low-fidelity polymerase and the varying selective pressures experienced as the virus migrates through different host environments. While traditional phylogenetic analysis is useful in tracking the evolutionary heritage of these viruses, the specific genetic determinants that dictate important phenotypic characteristics are often difficult to discern within the complex genetic background arising through evolution. Here we describe a novel influenza virus sequence feature variant type (Flu-SFVT) approach, made available through the public Influenza Research Database resource (www.fludb.org), in which variant types (VTs) identified in defined influenza virus protein sequence features (SFs) are used for genotype-phenotype association studies. Since SFs have been defined for all influenza virus proteins based on known structural, functional, and immune epitope recognition properties, the Flu-SFVT approach allows the rapid identification of the molecular genetic determinants of important influenza virus characteristics and their connection to underlying biological functions. We demonstrate the use of the SFVT approach to obtain statistical evidence for effects of NS1 protein sequence variations in dictating influenza virus host range restriction.

  7. Neural network and SVM classifiers accurately predict lipid binding proteins, irrespective of sequence homology.

    PubMed

    Bakhtiarizadeh, Mohammad Reza; Moradi-Shahrbabak, Mohammad; Ebrahimi, Mansour; Ebrahimie, Esmaeil

    2014-09-07

    Due to the central roles of lipid binding proteins (LBPs) in many biological processes, sequence based identification of LBPs is of great interest. The major challenge is that LBPs are diverse in sequence, structure, and function which results in low accuracy of sequence homology based methods. Therefore, there is a need for developing alternative functional prediction methods irrespective of sequence similarity. To identify LBPs from non-LBPs, the performances of support vector machine (SVM) and neural network were compared in this study. Comprehensive protein features and various techniques were employed to create datasets. Five-fold cross-validation (CV) and independent evaluation (IE) tests were used to assess the validity of the two methods. The results indicated that SVM outperforms neural network. SVM achieved 89.28% (CV) and 89.55% (IE) overall accuracy in identification of LBPs from non-LBPs and 92.06% (CV) and 92.90% (IE) (in average) for classification of different LBPs classes. Increasing the number and the range of extracted protein features as well as optimization of the SVM parameters significantly increased the efficiency of LBPs class prediction in comparison to the only previous report in this field. Altogether, the results showed that the SVM algorithm can be run on broad, computationally calculated protein features and offers a promising tool in detection of LBPs classes. The proposed approach has the potential to integrate and improve the common sequence alignment based methods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. A novel method based on new adaptive LVQ neural network for predicting protein-protein interactions from protein sequences.

    PubMed

    Yousef, Abdulaziz; Moghadam Charkari, Nasrollah

    2013-11-07

    Protein-Protein interaction (PPI) is one of the most important data in understanding the cellular processes. Many interesting methods have been proposed in order to predict PPIs. However, the methods which are based on the sequence of proteins as a prior knowledge are more universal. In this paper, a sequence-based, fast, and adaptive PPI prediction method is introduced to assign two proteins to an interaction class (yes, no). First, in order to improve the presentation of the sequences, twelve physicochemical properties of amino acid have been used by different representation methods to transform the sequence of protein pairs into different feature vectors. Then, for speeding up the learning process and reducing the effect of noise PPI data, principal component analysis (PCA) is carried out as a proper feature extraction algorithm. Finally, a new and adaptive Learning Vector Quantization (LVQ) predictor is designed to deal with different models of datasets that are classified into balanced and imbalanced datasets. The accuracy of 93.88%, 90.03%, and 89.72% has been found on S. cerevisiae, H. pylori, and independent datasets, respectively. The results of various experiments indicate the efficiency and validity of the method. © 2013 Published by Elsevier Ltd.

  9. Using distances between Top-n-gram and residue pairs for protein remote homology detection.

    PubMed

    Liu, Bin; Xu, Jinghao; Zou, Quan; Xu, Ruifeng; Wang, Xiaolong; Chen, Qingcai

    2014-01-01

    Protein remote homology detection is one of the central problems in bioinformatics, which is important for both basic research and practical application. Currently, discriminative methods based on Support Vector Machines (SVMs) achieve the state-of-the-art performance. Exploring feature vectors incorporating the position information of amino acids or other protein building blocks is a key step to improve the performance of the SVM-based methods. Two new methods for protein remote homology detection were proposed, called SVM-DR and SVM-DT. SVM-DR is a sequence-based method, in which the feature vector representation for protein is based on the distances between residue pairs. SVM-DT is a profile-based method, which considers the distances between Top-n-gram pairs. Top-n-gram can be viewed as a profile-based building block of proteins, which is calculated from the frequency profiles. These two methods are position dependent approaches incorporating the sequence-order information of protein sequences. Various experiments were conducted on a benchmark dataset containing 54 families and 23 superfamilies. Experimental results showed that these two new methods are very promising. Compared with the position independent methods, the performance improvement is obvious. Furthermore, the proposed methods can also provide useful insights for studying the features of protein families. The better performance of the proposed methods demonstrates that the position dependant approaches are efficient for protein remote homology detection. Another advantage of our methods arises from the explicit feature space representation, which can be used to analyze the characteristic features of protein families. The source code of SVM-DT and SVM-DR is available at http://bioinformatics.hitsz.edu.cn/DistanceSVM/index.jsp.

  10. regSNPs-splicing: a tool for prioritizing synonymous single-nucleotide substitution.

    PubMed

    Zhang, Xinjun; Li, Meng; Lin, Hai; Rao, Xi; Feng, Weixing; Yang, Yuedong; Mort, Matthew; Cooper, David N; Wang, Yue; Wang, Yadong; Wells, Clark; Zhou, Yaoqi; Liu, Yunlong

    2017-09-01

    While synonymous single-nucleotide variants (sSNVs) have largely been unstudied, since they do not alter protein sequence, mounting evidence suggests that they may affect RNA conformation, splicing, and the stability of nascent-mRNAs to promote various diseases. Accurately prioritizing deleterious sSNVs from a pool of neutral ones can significantly improve our ability of selecting functional genetic variants identified from various genome-sequencing projects, and, therefore, advance our understanding of disease etiology. In this study, we develop a computational algorithm to prioritize sSNVs based on their impact on mRNA splicing and protein function. In addition to genomic features that potentially affect splicing regulation, our proposed algorithm also includes dozens structural features that characterize the functions of alternatively spliced exons on protein function. Our systematical evaluation on thousands of sSNVs suggests that several structural features, including intrinsic disorder protein scores, solvent accessible surface areas, protein secondary structures, and known and predicted protein family domains, show significant differences between disease-causing and neutral sSNVs. Our result suggests that the protein structure features offer an added dimension of information while distinguishing disease-causing and neutral synonymous variants. The inclusion of structural features increases the predictive accuracy for functional sSNV prioritization.

  11. Analysis of sequencing data for probing RNA secondary structures and protein-RNA binding in studying posttranscriptional regulations.

    PubMed

    Hu, Xihao; Wu, Yang; Lu, Zhi John; Yip, Kevin Y

    2016-11-01

    High-throughput sequencing has been used to study posttranscriptional regulations, where the identification of protein-RNA binding is a major and fast-developing sub-area, which is in turn benefited by the sequencing methods for whole-transcriptome probing of RNA secondary structures. In the study of RNA secondary structures using high-throughput sequencing, bases are modified or cleaved according to their structural features, which alter the resulting composition of sequencing reads. In the study of protein-RNA binding, methods have been proposed to immuno-precipitate (IP) protein-bound RNA transcripts in vitro or in vivo By sequencing these transcripts, the protein-RNA interactions and the binding locations can be identified. For both types of data, read counts are affected by a combination of confounding factors, including expression levels of transcripts, sequence biases, mapping errors and the probing or IP efficiency of the experimental protocols. Careful processing of the sequencing data and proper extraction of important features are fundamentally important to a successful analysis. Here we review and compare different experimental methods for probing RNA secondary structures and binding sites of RNA-binding proteins (RBPs), and the computational methods proposed for analyzing the corresponding sequencing data. We suggest how these two types of data should be integrated to study the structural properties of RBP binding sites as a systematic way to better understand posttranscriptional regulations. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  12. A discriminative method for protein remote homology detection and fold recognition combining Top-n-grams and latent semantic analysis.

    PubMed

    Liu, Bin; Wang, Xiaolong; Lin, Lei; Dong, Qiwen; Wang, Xuan

    2008-12-01

    Protein remote homology detection and fold recognition are central problems in bioinformatics. Currently, discriminative methods based on support vector machine (SVM) are the most effective and accurate methods for solving these problems. A key step to improve the performance of the SVM-based methods is to find a suitable representation of protein sequences. In this paper, a novel building block of proteins called Top-n-grams is presented, which contains the evolutionary information extracted from the protein sequence frequency profiles. The protein sequence frequency profiles are calculated from the multiple sequence alignments outputted by PSI-BLAST and converted into Top-n-grams. The protein sequences are transformed into fixed-dimension feature vectors by the occurrence times of each Top-n-gram. The training vectors are evaluated by SVM to train classifiers which are then used to classify the test protein sequences. We demonstrate that the prediction performance of remote homology detection and fold recognition can be improved by combining Top-n-grams and latent semantic analysis (LSA), which is an efficient feature extraction technique from natural language processing. When tested on superfamily and fold benchmarks, the method combining Top-n-grams and LSA gives significantly better results compared to related methods. The method based on Top-n-grams significantly outperforms the methods based on many other building blocks including N-grams, patterns, motifs and binary profiles. Therefore, Top-n-gram is a good building block of the protein sequences and can be widely used in many tasks of the computational biology, such as the sequence alignment, the prediction of domain boundary, the designation of knowledge-based potentials and the prediction of protein binding sites.

  13. A novel and efficient technique for identification and classification of GPCRs.

    PubMed

    Gupta, Ravi; Mittal, Ankush; Singh, Kuldip

    2008-07-01

    G-protein coupled receptors (GPCRs) play a vital role in different biological processes, such as regulation of growth, death, and metabolism of cells. GPCRs are the focus of significant amount of current pharmaceutical research since they interact with more than 50% of prescription drugs. The dipeptide-based support vector machine (SVM) approach is the most accurate technique to identify and classify the GPCRs. However, this approach has two major disadvantages. First, the dimension of dipeptide-based feature vector is equal to 400. The large dimension makes the classification task computationally and memory wise inefficient. Second, it does not consider the biological properties of protein sequence for identification and classification of GPCRs. In this paper, we present a novel-feature-based SVM classification technique. The novel features are derived by applying wavelet-based time series analysis approach on protein sequences. The proposed feature space summarizes the variance information of seven important biological properties of amino acids in a protein sequence. In addition, the dimension of the feature vector for proposed technique is equal to 35. Experiments were performed on GPCRs protein sequences available at GPCRs Database. Our approach achieves an accuracy of 99.9%, 98.06%, 97.78%, and 94.08% for GPCR superfamily, families, subfamilies, and subsubfamilies (amine group), respectively, when evaluated using fivefold cross-validation. Further, an accuracy of 99.8%, 97.26%, and 97.84% was obtained when evaluated on unseen or recall datasets of GPCR superfamily, families, and subfamilies, respectively. Comparison with dipeptide-based SVM technique shows the effectiveness of our approach.

  14. A novel fractal approach for predicting G-protein-coupled receptors and their subfamilies with support vector machines.

    PubMed

    Nie, Guoping; Li, Yong; Wang, Feichi; Wang, Siwen; Hu, Xuehai

    2015-01-01

    G-protein-coupled receptors (GPCRs) are seven membrane-spanning proteins and regulate many important physiological processes, such as vision, neurotransmission, immune response and so on. GPCRs-related pathways are the targets of a large number of marketed drugs. Therefore, the design of a reliable computational model for predicting GPCRs from amino acid sequence has long been a significant biomedical problem. Chaos game representation (CGR) reveals the fractal patterns hidden in protein sequences, and then fractal dimension (FD) is an important feature of these highly irregular geometries with concise mathematical expression. Here, in order to extract important features from GPCR protein sequences, CGR algorithm, fractal dimension and amino acid composition (AAC) are employed to formulate the numerical features of protein samples. Four groups of features are considered, and each group is evaluated by support vector machine (SVM) and 10-fold cross-validation test. To test the performance of the present method, a new non-redundant dataset was built based on latest GPCRDB database. Comparing the results of numerical experiments, the group of combined features with AAC and FD gets the best result, the accuracy is 99.22% and Matthew's correlation coefficient (MCC) is 0.9845 for identifying GPCRs from non-GPCRs. Moreover, if it is classified as a GPCR, it will be further put into the second level, which will classify a GPCR into one of the five main subfamilies. At this level, the group of combined features with AAC and FD also gets best accuracy 85.73%. Finally, the proposed predictor is also compared with existing methods and shows better performances.

  15. PredictProtein—an open resource for online prediction of protein structural and functional features

    PubMed Central

    Yachdav, Guy; Kloppmann, Edda; Kajan, Laszlo; Hecht, Maximilian; Goldberg, Tatyana; Hamp, Tobias; Hönigschmid, Peter; Schafferhans, Andrea; Roos, Manfred; Bernhofer, Michael; Richter, Lothar; Ashkenazy, Haim; Punta, Marco; Schlessinger, Avner; Bromberg, Yana; Schneider, Reinhard; Vriend, Gerrit; Sander, Chris; Ben-Tal, Nir; Rost, Burkhard

    2014-01-01

    PredictProtein is a meta-service for sequence analysis that has been predicting structural and functional features of proteins since 1992. Queried with a protein sequence it returns: multiple sequence alignments, predicted aspects of structure (secondary structure, solvent accessibility, transmembrane helices (TMSEG) and strands, coiled-coil regions, disulfide bonds and disordered regions) and function. The service incorporates analysis methods for the identification of functional regions (ConSurf), homology-based inference of Gene Ontology terms (metastudent), comprehensive subcellular localization prediction (LocTree3), protein–protein binding sites (ISIS2), protein–polynucleotide binding sites (SomeNA) and predictions of the effect of point mutations (non-synonymous SNPs) on protein function (SNAP2). Our goal has always been to develop a system optimized to meet the demands of experimentalists not highly experienced in bioinformatics. To this end, the PredictProtein results are presented as both text and a series of intuitive, interactive and visually appealing figures. The web server and sources are available at http://ppopen.rostlab.org. PMID:24799431

  16. Chemical property based sequence characterization of PpcA and its homolog proteins PpcB-E: A mathematical approach

    PubMed Central

    Pal Choudhury, Pabitra

    2017-01-01

    Periplasmic c7 type cytochrome A (PpcA) protein is determined in Geobacter sulfurreducens along with its other four homologs (PpcB-E). From the crystal structure viewpoint the observation emerges that PpcA protein can bind with Deoxycholate (DXCA), while its other homologs do not. But it is yet to be established with certainty the reason behind this from primary protein sequence information. This study is primarily based on primary protein sequence analysis through the chemical basis of embedded amino acids. Firstly, we look for the chemical group specific score of amino acids. Along with this, we have developed a new methodology for the phylogenetic analysis based on chemical group dissimilarities of amino acids. This new methodology is applied to the cytochrome c7 family members and pinpoint how a particular sequence is differing with others. Secondly, we build a graph theoretic model on using amino acid sequences which is also applied to the cytochrome c7 family members and some unique characteristics and their domains are highlighted. Thirdly, we search for unique patterns as subsequences which are common among the group or specific individual member. In all the cases, we are able to show some distinct features of PpcA that emerges PpcA as an outstanding protein compared to its other homologs, resulting towards its binding with deoxycholate. Similarly, some notable features for the structurally dissimilar protein PpcD compared to the other homologs are also brought out. Further, the five members of cytochrome family being homolog proteins, they must have some common significant features which are also enumerated in this study. PMID:28362850

  17. Multi-level machine learning prediction of protein-protein interactions in Saccharomyces cerevisiae.

    PubMed

    Zubek, Julian; Tatjewski, Marcin; Boniecki, Adam; Mnich, Maciej; Basu, Subhadip; Plewczynski, Dariusz

    2015-01-01

    Accurate identification of protein-protein interactions (PPI) is the key step in understanding proteins' biological functions, which are typically context-dependent. Many existing PPI predictors rely on aggregated features from protein sequences, however only a few methods exploit local information about specific residue contacts. In this work we present a two-stage machine learning approach for prediction of protein-protein interactions. We start with the carefully filtered data on protein complexes available for Saccharomyces cerevisiae in the Protein Data Bank (PDB) database. First, we build linear descriptions of interacting and non-interacting sequence segment pairs based on their inter-residue distances. Secondly, we train machine learning classifiers to predict binary segment interactions for any two short sequence fragments. The final prediction of the protein-protein interaction is done using the 2D matrix representation of all-against-all possible interacting sequence segments of both analysed proteins. The level-I predictor achieves 0.88 AUC for micro-scale, i.e., residue-level prediction. The level-II predictor improves the results further by a more complex learning paradigm. We perform 30-fold macro-scale, i.e., protein-level cross-validation experiment. The level-II predictor using PSIPRED-predicted secondary structure reaches 0.70 precision, 0.68 recall, and 0.70 AUC, whereas other popular methods provide results below 0.6 threshold (recall, precision, AUC). Our results demonstrate that multi-scale sequence features aggregation procedure is able to improve the machine learning results by more than 10% as compared to other sequence representations. Prepared datasets and source code for our experimental pipeline are freely available for download from: http://zubekj.github.io/mlppi/ (open source Python implementation, OS independent).

  18. Protein classification using modified n-grams and skip-grams.

    PubMed

    Islam, S M Ashiqul; Heil, Benjamin J; Kearney, Christopher Michel; Baker, Erich J

    2018-05-01

    Classification by supervised machine learning greatly facilitates the annotation of protein characteristics from their primary sequence. However, the feature generation step in this process requires detailed knowledge of attributes used to classify the proteins. Lack of this knowledge risks the selection of irrelevant features, resulting in a faulty model. In this study, we introduce a supervised protein classification method with a novel means of automating the work-intensive feature generation step via a Natural Language Processing (NLP)-dependent model, using a modified combination of n-grams and skip-grams (m-NGSG). A meta-comparison of cross-validation accuracy with twelve training datasets from nine different published studies demonstrates a consistent increase in accuracy of m-NGSG when compared to contemporary classification and feature generation models. We expect this model to accelerate the classification of proteins from primary sequence data and increase the accessibility of protein characteristic prediction to a broader range of scientists. m-NGSG is freely available at Bitbucket: https://bitbucket.org/sm_islam/mngsg/src. A web server is available at watson.ecs.baylor.edu/ngsg. erich_baker@baylor.edu. Supplementary data are available at Bioinformatics online.

  19. Defining and predicting structurally conserved regions in protein superfamilies

    PubMed Central

    Huang, Ivan K.; Grishin, Nick V.

    2013-01-01

    Motivation: The structures of homologous proteins are generally better conserved than their sequences. This phenomenon is demonstrated by the prevalence of structurally conserved regions (SCRs) even in highly divergent protein families. Defining SCRs requires the comparison of two or more homologous structures and is affected by their availability and divergence, and our ability to deduce structurally equivalent positions among them. In the absence of multiple homologous structures, it is necessary to predict SCRs of a protein using information from only a set of homologous sequences and (if available) a single structure. Accurate SCR predictions can benefit homology modelling and sequence alignment. Results: Using pairwise DaliLite alignments among a set of homologous structures, we devised a simple measure of structural conservation, termed structural conservation index (SCI). SCI was used to distinguish SCRs from non-SCRs. A database of SCRs was compiled from 386 SCOP superfamilies containing 6489 protein domains. Artificial neural networks were then trained to predict SCRs with various features deduced from a single structure and homologous sequences. Assessment of the predictions via a 5-fold cross-validation method revealed that predictions based on features derived from a single structure perform similarly to ones based on homologous sequences, while combining sequence and structural features was optimal in terms of accuracy (0.755) and Matthews correlation coefficient (0.476). These results suggest that even without information from multiple structures, it is still possible to effectively predict SCRs for a protein. Finally, inspection of the structures with the worst predictions pinpoints difficulties in SCR definitions. Availability: The SCR database and the prediction server can be found at http://prodata.swmed.edu/SCR. Contact: 91huangi@gmail.com or grishin@chop.swmed.edu Supplementary information: Supplementary data are available at Bioinformatics Online PMID:23193223

  20. TargetCrys: protein crystallization prediction by fusing multi-view features with two-layered SVM.

    PubMed

    Hu, Jun; Han, Ke; Li, Yang; Yang, Jing-Yu; Shen, Hong-Bin; Yu, Dong-Jun

    2016-11-01

    The accurate prediction of whether a protein will crystallize plays a crucial role in improving the success rate of protein crystallization projects. A common critical problem in the development of machine-learning-based protein crystallization predictors is how to effectively utilize protein features extracted from different views. In this study, we aimed to improve the efficiency of fusing multi-view protein features by proposing a new two-layered SVM (2L-SVM) which switches the feature-level fusion problem to a decision-level fusion problem: the SVMs in the 1st layer of the 2L-SVM are trained on each of the multi-view feature sets; then, the outputs of the 1st layer SVMs, which are the "intermediate" decisions made based on the respective feature sets, are further ensembled by a 2nd layer SVM. Based on the proposed 2L-SVM, we implemented a sequence-based protein crystallization predictor called TargetCrys. Experimental results on several benchmark datasets demonstrated the efficacy of the proposed 2L-SVM for fusing multi-view features. We also compared TargetCrys with existing sequence-based protein crystallization predictors and demonstrated that the proposed TargetCrys outperformed most of the existing predictors and is competitive with the state-of-the-art predictors. The TargetCrys webserver and datasets used in this study are freely available for academic use at: http://csbio.njust.edu.cn/bioinf/TargetCrys .

  1. Exploiting Amino Acid Composition for Predicting Protein-Protein Interactions

    PubMed Central

    Roy, Sushmita; Martinez, Diego; Platero, Harriett; Lane, Terran; Werner-Washburne, Margaret

    2009-01-01

    Background Computational prediction of protein interactions typically use protein domains as classifier features because they capture conserved information of interaction surfaces. However, approaches relying on domains as features cannot be applied to proteins without any domain information. In this paper, we explore the contribution of pure amino acid composition (AAC) for protein interaction prediction. This simple feature, which is based on normalized counts of single or pairs of amino acids, is applicable to proteins from any sequenced organism and can be used to compensate for the lack of domain information. Results AAC performed at par with protein interaction prediction based on domains on three yeast protein interaction datasets. Similar behavior was obtained using different classifiers, indicating that our results are a function of features and not of classifiers. In addition to yeast datasets, AAC performed comparably on worm and fly datasets. Prediction of interactions for the entire yeast proteome identified a large number of novel interactions, the majority of which co-localized or participated in the same processes. Our high confidence interaction network included both well-studied and uncharacterized proteins. Proteins with known function were involved in actin assembly and cell budding. Uncharacterized proteins interacted with proteins involved in reproduction and cell budding, thus providing putative biological roles for the uncharacterized proteins. Conclusion AAC is a simple, yet powerful feature for predicting protein interactions, and can be used alone or in conjunction with protein domains to predict new and validate existing interactions. More importantly, AAC alone performs at par with existing, but more complex, features indicating the presence of sequence-level information that is predictive of interaction, but which is not necessarily restricted to domains. PMID:19936254

  2. GuiTope: an application for mapping random-sequence peptides to protein sequences.

    PubMed

    Halperin, Rebecca F; Stafford, Phillip; Emery, Jack S; Navalkar, Krupa Arun; Johnston, Stephen Albert

    2012-01-03

    Random-sequence peptide libraries are a commonly used tool to identify novel ligands for binding antibodies, other proteins, and small molecules. It is often of interest to compare the selected peptide sequences to the natural protein binding partners to infer the exact binding site or the importance of particular residues. The ability to search a set of sequences for similarity to a set of peptides may sometimes enable the prediction of an antibody epitope or a novel binding partner. We have developed a software application designed specifically for this task. GuiTope provides a graphical user interface for aligning peptide sequences to protein sequences. All alignment parameters are accessible to the user including the ability to specify the amino acid frequency in the peptide library; these frequencies often differ significantly from those assumed by popular alignment programs. It also includes a novel feature to align di-peptide inversions, which we have found improves the accuracy of antibody epitope prediction from peptide microarray data and shows utility in analyzing phage display datasets. Finally, GuiTope can randomly select peptides from a given library to estimate a null distribution of scores and calculate statistical significance. GuiTope provides a convenient method for comparing selected peptide sequences to protein sequences, including flexible alignment parameters, novel alignment features, ability to search a database, and statistical significance of results. The software is available as an executable (for PC) at http://www.immunosignature.com/software and ongoing updates and source code will be available at sourceforge.net.

  3. Protein structure based prediction of catalytic residues.

    PubMed

    Fajardo, J Eduardo; Fiser, Andras

    2013-02-22

    Worldwide structural genomics projects continue to release new protein structures at an unprecedented pace, so far nearly 6000, but only about 60% of these proteins have any sort of functional annotation. We explored a range of features that can be used for the prediction of functional residues given a known three-dimensional structure. These features include various centrality measures of nodes in graphs of interacting residues: closeness, betweenness and page-rank centrality. We also analyzed the distance of functional amino acids to the general center of mass (GCM) of the structure, relative solvent accessibility (RSA), and the use of relative entropy as a measure of sequence conservation. From the selected features, neural networks were trained to identify catalytic residues. We found that using distance to the GCM together with amino acid type provide a good discriminant function, when combined independently with sequence conservation. Using an independent test set of 29 annotated protein structures, the method returned 411 of the initial 9262 residues as the most likely to be involved in function. The output 411 residues contain 70 of the annotated 111 catalytic residues. This represents an approximately 14-fold enrichment of catalytic residues on the entire input set (corresponding to a sensitivity of 63% and a precision of 17%), a performance competitive with that of other state-of-the-art methods. We found that several of the graph based measures utilize the same underlying feature of protein structures, which can be simply and more effectively captured with the distance to GCM definition. This also has the added the advantage of simplicity and easy implementation. Meanwhile sequence conservation remains by far the most influential feature in identifying functional residues. We also found that due the rapid changes in size and composition of sequence databases, conservation calculations must be recalibrated for specific reference databases.

  4. Modular prediction of protein structural classes from sequences of twilight-zone identity with predicting sequences.

    PubMed

    Mizianty, Marcin J; Kurgan, Lukasz

    2009-12-13

    Knowledge of structural class is used by numerous methods for identification of structural/functional characteristics of proteins and could be used for the detection of remote homologues, particularly for chains that share twilight-zone similarity. In contrast to existing sequence-based structural class predictors, which target four major classes and which are designed for high identity sequences, we predict seven classes from sequences that share twilight-zone identity with the training sequences. The proposed MODular Approach to Structural class prediction (MODAS) method is unique as it allows for selection of any subset of the classes. MODAS is also the first to utilize a novel, custom-built feature-based sequence representation that combines evolutionary profiles and predicted secondary structure. The features quantify information relevant to the definition of the classes including conservation of residues and arrangement and number of helix/strand segments. Our comprehensive design considers 8 feature selection methods and 4 classifiers to develop Support Vector Machine-based classifiers that are tailored for each of the seven classes. Tests on 5 twilight-zone and 1 high-similarity benchmark datasets and comparison with over two dozens of modern competing predictors show that MODAS provides the best overall accuracy that ranges between 80% and 96.7% (83.5% for the twilight-zone datasets), depending on the dataset. This translates into 19% and 8% error rate reduction when compared against the best performing competing method on two largest datasets. The proposed predictor provides accurate predictions at 58% accuracy for membrane proteins class, which is not considered by majority of existing methods, in spite that this class accounts for only 2% of the data. Our predictive model is analyzed to demonstrate how and why the input features are associated with the corresponding classes. The improved predictions stem from the novel features that express collocation of the secondary structure segments in the protein sequence and that combine evolutionary and secondary structure information. Our work demonstrates that conservation and arrangement of the secondary structure segments predicted along the protein chain can successfully predict structural classes which are defined based on the spatial arrangement of the secondary structures. A web server is available at http://biomine.ece.ualberta.ca/MODAS/.

  5. Modular prediction of protein structural classes from sequences of twilight-zone identity with predicting sequences

    PubMed Central

    2009-01-01

    Background Knowledge of structural class is used by numerous methods for identification of structural/functional characteristics of proteins and could be used for the detection of remote homologues, particularly for chains that share twilight-zone similarity. In contrast to existing sequence-based structural class predictors, which target four major classes and which are designed for high identity sequences, we predict seven classes from sequences that share twilight-zone identity with the training sequences. Results The proposed MODular Approach to Structural class prediction (MODAS) method is unique as it allows for selection of any subset of the classes. MODAS is also the first to utilize a novel, custom-built feature-based sequence representation that combines evolutionary profiles and predicted secondary structure. The features quantify information relevant to the definition of the classes including conservation of residues and arrangement and number of helix/strand segments. Our comprehensive design considers 8 feature selection methods and 4 classifiers to develop Support Vector Machine-based classifiers that are tailored for each of the seven classes. Tests on 5 twilight-zone and 1 high-similarity benchmark datasets and comparison with over two dozens of modern competing predictors show that MODAS provides the best overall accuracy that ranges between 80% and 96.7% (83.5% for the twilight-zone datasets), depending on the dataset. This translates into 19% and 8% error rate reduction when compared against the best performing competing method on two largest datasets. The proposed predictor provides accurate predictions at 58% accuracy for membrane proteins class, which is not considered by majority of existing methods, in spite that this class accounts for only 2% of the data. Our predictive model is analyzed to demonstrate how and why the input features are associated with the corresponding classes. Conclusions The improved predictions stem from the novel features that express collocation of the secondary structure segments in the protein sequence and that combine evolutionary and secondary structure information. Our work demonstrates that conservation and arrangement of the secondary structure segments predicted along the protein chain can successfully predict structural classes which are defined based on the spatial arrangement of the secondary structures. A web server is available at http://biomine.ece.ualberta.ca/MODAS/. PMID:20003388

  6. VarMod: modelling the functional effects of non-synonymous variants.

    PubMed

    Pappalardo, Morena; Wass, Mark N

    2014-07-01

    Unravelling the genotype-phenotype relationship in humans remains a challenging task in genomics studies. Recent advances in sequencing technologies mean there are now thousands of sequenced human genomes, revealing millions of single nucleotide variants (SNVs). For non-synonymous SNVs present in proteins the difficulties of the problem lie in first identifying those nsSNVs that result in a functional change in the protein among the many non-functional variants and in turn linking this functional change to phenotype. Here we present VarMod (Variant Modeller) a method that utilises both protein sequence and structural features to predict nsSNVs that alter protein function. VarMod develops recent observations that functional nsSNVs are enriched at protein-protein interfaces and protein-ligand binding sites and uses these characteristics to make predictions. In benchmarking on a set of nearly 3000 nsSNVs VarMod performance is comparable to an existing state of the art method. The VarMod web server provides extensive resources to investigate the sequence and structural features associated with the predictions including visualisation of protein models and complexes via an interactive JSmol molecular viewer. VarMod is available for use at http://www.wasslab.org/varmod. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. A novel Multi-Agent Ada-Boost algorithm for predicting protein structural class with the information of protein secondary structure.

    PubMed

    Fan, Ming; Zheng, Bin; Li, Lihua

    2015-10-01

    Knowledge of the structural class of a given protein is important for understanding its folding patterns. Although a lot of efforts have been made, it still remains a challenging problem for prediction of protein structural class solely from protein sequences. The feature extraction and classification of proteins are the main problems in prediction. In this research, we extended our earlier work regarding these two aspects. In protein feature extraction, we proposed a scheme by calculating the word frequency and word position from sequences of amino acid, reduced amino acid, and secondary structure. For an accurate classification of the structural class of protein, we developed a novel Multi-Agent Ada-Boost (MA-Ada) method by integrating the features of Multi-Agent system into Ada-Boost algorithm. Extensive experiments were taken to test and compare the proposed method using four benchmark datasets in low homology. The results showed classification accuracies of 88.5%, 96.0%, 88.4%, and 85.5%, respectively, which are much better compared with the existing methods. The source code and dataset are available on request.

  8. VarMod: modelling the functional effects of non-synonymous variants

    PubMed Central

    Pappalardo, Morena; Wass, Mark N.

    2014-01-01

    Unravelling the genotype–phenotype relationship in humans remains a challenging task in genomics studies. Recent advances in sequencing technologies mean there are now thousands of sequenced human genomes, revealing millions of single nucleotide variants (SNVs). For non-synonymous SNVs present in proteins the difficulties of the problem lie in first identifying those nsSNVs that result in a functional change in the protein among the many non-functional variants and in turn linking this functional change to phenotype. Here we present VarMod (Variant Modeller) a method that utilises both protein sequence and structural features to predict nsSNVs that alter protein function. VarMod develops recent observations that functional nsSNVs are enriched at protein–protein interfaces and protein–ligand binding sites and uses these characteristics to make predictions. In benchmarking on a set of nearly 3000 nsSNVs VarMod performance is comparable to an existing state of the art method. The VarMod web server provides extensive resources to investigate the sequence and structural features associated with the predictions including visualisation of protein models and complexes via an interactive JSmol molecular viewer. VarMod is available for use at http://www.wasslab.org/varmod. PMID:24906884

  9. PSSP-RFE: accurate prediction of protein structural class by recursive feature extraction from PSI-BLAST profile, physical-chemical property and functional annotations.

    PubMed

    Li, Liqi; Cui, Xiang; Yu, Sanjiu; Zhang, Yuan; Luo, Zhong; Yang, Hua; Zhou, Yue; Zheng, Xiaoqi

    2014-01-01

    Protein structure prediction is critical to functional annotation of the massively accumulated biological sequences, which prompts an imperative need for the development of high-throughput technologies. As a first and key step in protein structure prediction, protein structural class prediction becomes an increasingly challenging task. Amongst most homological-based approaches, the accuracies of protein structural class prediction are sufficiently high for high similarity datasets, but still far from being satisfactory for low similarity datasets, i.e., below 40% in pairwise sequence similarity. Therefore, we present a novel method for accurate and reliable protein structural class prediction for both high and low similarity datasets. This method is based on Support Vector Machine (SVM) in conjunction with integrated features from position-specific score matrix (PSSM), PROFEAT and Gene Ontology (GO). A feature selection approach, SVM-RFE, is also used to rank the integrated feature vectors through recursively removing the feature with the lowest ranking score. The definitive top features selected by SVM-RFE are input into the SVM engines to predict the structural class of a query protein. To validate our method, jackknife tests were applied to seven widely used benchmark datasets, reaching overall accuracies between 84.61% and 99.79%, which are significantly higher than those achieved by state-of-the-art tools. These results suggest that our method could serve as an accurate and cost-effective alternative to existing methods in protein structural classification, especially for low similarity datasets.

  10. Rigorous assessment and integration of the sequence and structure based features to predict hot spots

    PubMed Central

    2011-01-01

    Background Systematic mutagenesis studies have shown that only a few interface residues termed hot spots contribute significantly to the binding free energy of protein-protein interactions. Therefore, hot spots prediction becomes increasingly important for well understanding the essence of proteins interactions and helping narrow down the search space for drug design. Currently many computational methods have been developed by proposing different features. However comparative assessment of these features and furthermore effective and accurate methods are still in pressing need. Results In this study, we first comprehensively collect the features to discriminate hot spots and non-hot spots and analyze their distributions. We find that hot spots have lower relASA and larger relative change in ASA, suggesting hot spots tend to be protected from bulk solvent. In addition, hot spots have more contacts including hydrogen bonds, salt bridges, and atomic contacts, which favor complexes formation. Interestingly, we find that conservation score and sequence entropy are not significantly different between hot spots and non-hot spots in Ab+ dataset (all complexes). While in Ab- dataset (antigen-antibody complexes are excluded), there are significant differences in two features between hot pots and non-hot spots. Secondly, we explore the predictive ability for each feature and the combinations of features by support vector machines (SVMs). The results indicate that sequence-based feature outperforms other combinations of features with reasonable accuracy, with a precision of 0.69, a recall of 0.68, an F1 score of 0.68, and an AUC of 0.68 on independent test set. Compared with other machine learning methods and two energy-based approaches, our approach achieves the best performance. Moreover, we demonstrate the applicability of our method to predict hot spots of two protein complexes. Conclusion Experimental results show that support vector machine classifiers are quite effective in predicting hot spots based on sequence features. Hot spots cannot be fully predicted through simple analysis based on physicochemical characteristics, but there is reason to believe that integration of features and machine learning methods can remarkably improve the predictive performance for hot spots. PMID:21798070

  11. Automatic annotation of protein motif function with Gene Ontology terms.

    PubMed

    Lu, Xinghua; Zhai, Chengxiang; Gopalakrishnan, Vanathi; Buchanan, Bruce G

    2004-09-02

    Conserved protein sequence motifs are short stretches of amino acid sequence patterns that potentially encode the function of proteins. Several sequence pattern searching algorithms and programs exist foridentifying candidate protein motifs at the whole genome level. However, a much needed and important task is to determine the functions of the newly identified protein motifs. The Gene Ontology (GO) project is an endeavor to annotate the function of genes or protein sequences with terms from a dynamic, controlled vocabulary and these annotations serve well as a knowledge base. This paper presents methods to mine the GO knowledge base and use the association between the GO terms assigned to a sequence and the motifs matched by the same sequence as evidence for predicting the functions of novel protein motifs automatically. The task of assigning GO terms to protein motifs is viewed as both a binary classification and information retrieval problem, where PROSITE motifs are used as samples for mode training and functional prediction. The mutual information of a motif and aGO term association is found to be a very useful feature. We take advantage of the known motifs to train a logistic regression classifier, which allows us to combine mutual information with other frequency-based features and obtain a probability of correct association. The trained logistic regression model has intuitively meaningful and logically plausible parameter values, and performs very well empirically according to our evaluation criteria. In this research, different methods for automatic annotation of protein motifs have been investigated. Empirical result demonstrated that the methods have a great potential for detecting and augmenting information about the functions of newly discovered candidate protein motifs.

  12. Hierarchical learning architecture with automatic feature selection for multiclass protein fold classification.

    PubMed

    Huang, Chuen-Der; Lin, Chin-Teng; Pal, Nikhil Ranjan

    2003-12-01

    The structure classification of proteins plays a very important role in bioinformatics, since the relationships and characteristics among those known proteins can be exploited to predict the structure of new proteins. The success of a classification system depends heavily on two things: the tools being used and the features considered. For the bioinformatics applications, the role of appropriate features has not been paid adequate importance. In this investigation we use three novel ideas for multiclass protein fold classification. First, we use the gating neural network, where each input node is associated with a gate. This network can select important features in an online manner when the learning goes on. At the beginning of the training, all gates are almost closed, i.e., no feature is allowed to enter the network. Through the training, gates corresponding to good features are completely opened while gates corresponding to bad features are closed more tightly, and some gates may be partially open. The second novel idea is to use a hierarchical learning architecture (HLA). The classifier in the first level of HLA classifies the protein features into four major classes: all alpha, all beta, alpha + beta, and alpha/beta. And in the next level we have another set of classifiers, which further classifies the protein features into 27 folds. The third novel idea is to induce the indirect coding features from the amino-acid composition sequence of proteins based on the N-gram concept. This provides us with more representative and discriminative new local features of protein sequences for multiclass protein fold classification. The proposed HLA with new indirect coding features increases the protein fold classification accuracy by about 12%. Moreover, the gating neural network is found to reduce the number of features drastically. Using only half of the original features selected by the gating neural network can reach comparable test accuracy as that using all the original features. The gating mechanism also helps us to get a better insight into the folding process of proteins. For example, tracking the evolution of different gates we can find which characteristics (features) of the data are more important for the folding process. And, of course, it also reduces the computation time.

  13. Characterizing informative sequence descriptors and predicting binding affinities of heterodimeric protein complexes.

    PubMed

    Srinivasulu, Yerukala Sathipati; Wang, Jyun-Rong; Hsu, Kai-Ti; Tsai, Ming-Ju; Charoenkwan, Phasit; Huang, Wen-Lin; Huang, Hui-Ling; Ho, Shinn-Ying

    2015-01-01

    Protein-protein interactions (PPIs) are involved in various biological processes, and underlying mechanism of the interactions plays a crucial role in therapeutics and protein engineering. Most machine learning approaches have been developed for predicting the binding affinity of protein-protein complexes based on structure and functional information. This work aims to predict the binding affinity of heterodimeric protein complexes from sequences only. This work proposes a support vector machine (SVM) based binding affinity classifier, called SVM-BAC, to classify heterodimeric protein complexes based on the prediction of their binding affinity. SVM-BAC identified 14 of 580 sequence descriptors (physicochemical, energetic and conformational properties of the 20 amino acids) to classify 216 heterodimeric protein complexes into low and high binding affinity. SVM-BAC yielded the training accuracy, sensitivity, specificity, AUC and test accuracy of 85.80%, 0.89, 0.83, 0.86 and 83.33%, respectively, better than existing machine learning algorithms. The 14 features and support vector regression were further used to estimate the binding affinities (Pkd) of 200 heterodimeric protein complexes. Prediction performance of a Jackknife test was the correlation coefficient of 0.34 and mean absolute error of 1.4. We further analyze three informative physicochemical properties according to their contribution to prediction performance. Results reveal that the following properties are effective in predicting the binding affinity of heterodimeric protein complexes: apparent partition energy based on buried molar fractions, relations between chemical structure and biological activity in principal component analysis IV, and normalized frequency of beta turn. The proposed sequence-based prediction method SVM-BAC uses an optimal feature selection method to identify 14 informative features to classify and predict binding affinity of heterodimeric protein complexes. The characterization analysis revealed that the average numbers of beta turns and hydrogen bonds at protein-protein interfaces in high binding affinity complexes are more than those in low binding affinity complexes.

  14. Characterizing informative sequence descriptors and predicting binding affinities of heterodimeric protein complexes

    PubMed Central

    2015-01-01

    Background Protein-protein interactions (PPIs) are involved in various biological processes, and underlying mechanism of the interactions plays a crucial role in therapeutics and protein engineering. Most machine learning approaches have been developed for predicting the binding affinity of protein-protein complexes based on structure and functional information. This work aims to predict the binding affinity of heterodimeric protein complexes from sequences only. Results This work proposes a support vector machine (SVM) based binding affinity classifier, called SVM-BAC, to classify heterodimeric protein complexes based on the prediction of their binding affinity. SVM-BAC identified 14 of 580 sequence descriptors (physicochemical, energetic and conformational properties of the 20 amino acids) to classify 216 heterodimeric protein complexes into low and high binding affinity. SVM-BAC yielded the training accuracy, sensitivity, specificity, AUC and test accuracy of 85.80%, 0.89, 0.83, 0.86 and 83.33%, respectively, better than existing machine learning algorithms. The 14 features and support vector regression were further used to estimate the binding affinities (Pkd) of 200 heterodimeric protein complexes. Prediction performance of a Jackknife test was the correlation coefficient of 0.34 and mean absolute error of 1.4. We further analyze three informative physicochemical properties according to their contribution to prediction performance. Results reveal that the following properties are effective in predicting the binding affinity of heterodimeric protein complexes: apparent partition energy based on buried molar fractions, relations between chemical structure and biological activity in principal component analysis IV, and normalized frequency of beta turn. Conclusions The proposed sequence-based prediction method SVM-BAC uses an optimal feature selection method to identify 14 informative features to classify and predict binding affinity of heterodimeric protein complexes. The characterization analysis revealed that the average numbers of beta turns and hydrogen bonds at protein-protein interfaces in high binding affinity complexes are more than those in low binding affinity complexes. PMID:26681483

  15. Exploration of the relationship between topology and designability of conformations

    NASA Astrophysics Data System (ADS)

    Leelananda, Sumudu P.; Towfic, Fadi; Jernigan, Robert L.; Kloczkowski, Andrzej

    2011-06-01

    Protein structures are evolutionarily more conserved than sequences, and sequences with very low sequence identity frequently share the same fold. This leads to the concept of protein designability. Some folds are more designable and lots of sequences can assume that fold. Elucidating the relationship between protein sequence and the three-dimensional (3D) structure that the sequence folds into is an important problem in computational structural biology. Lattice models have been utilized in numerous studies to model protein folds and predict the designability of certain folds. In this study, all possible compact conformations within a set of two-dimensional and 3D lattice spaces are explored. Complementary interaction graphs are then generated for each conformation and are described using a set of graph features. The full HP sequence space for each lattice model is generated and contact energies are calculated by threading each sequence onto all the possible conformations. Unique conformation giving minimum energy is identified for each sequence and the number of sequences folding to each conformation (designability) is obtained. Machine learning algorithms are used to predict the designability of each conformation. We find that the highly designable structures can be distinguished from other non-designable conformations based on certain graphical geometric features of the interactions. This finding confirms the fact that the topology of a conformation is an important determinant of the extent of its designability and suggests that the interactions themselves are important for determining the designability.

  16. Protein contact prediction by integrating deep multiple sequence alignments, coevolution and machine learning.

    PubMed

    Adhikari, Badri; Hou, Jie; Cheng, Jianlin

    2018-03-01

    In this study, we report the evaluation of the residue-residue contacts predicted by our three different methods in the CASP12 experiment, focusing on studying the impact of multiple sequence alignment, residue coevolution, and machine learning on contact prediction. The first method (MULTICOM-NOVEL) uses only traditional features (sequence profile, secondary structure, and solvent accessibility) with deep learning to predict contacts and serves as a baseline. The second method (MULTICOM-CONSTRUCT) uses our new alignment algorithm to generate deep multiple sequence alignment to derive coevolution-based features, which are integrated by a neural network method to predict contacts. The third method (MULTICOM-CLUSTER) is a consensus combination of the predictions of the first two methods. We evaluated our methods on 94 CASP12 domains. On a subset of 38 free-modeling domains, our methods achieved an average precision of up to 41.7% for top L/5 long-range contact predictions. The comparison of the three methods shows that the quality and effective depth of multiple sequence alignments, coevolution-based features, and machine learning integration of coevolution-based features and traditional features drive the quality of predicted protein contacts. On the full CASP12 dataset, the coevolution-based features alone can improve the average precision from 28.4% to 41.6%, and the machine learning integration of all the features further raises the precision to 56.3%, when top L/5 predicted long-range contacts are evaluated. And the correlation between the precision of contact prediction and the logarithm of the number of effective sequences in alignments is 0.66. © 2017 Wiley Periodicals, Inc.

  17. Evolution and function of CAG/polyglutamine repeats in protein–protein interaction networks

    PubMed Central

    Schaefer, Martin H.; Wanker, Erich E.; Andrade-Navarro, Miguel A.

    2012-01-01

    Expanded runs of consecutive trinucleotide CAG repeats encoding polyglutamine (polyQ) stretches are observed in the genes of a large number of patients with different genetic diseases such as Huntington's and several Ataxias. Protein aggregation, which is a key feature of most of these diseases, is thought to be triggered by these expanded polyQ sequences in disease-related proteins. However, polyQ tracts are a normal feature of many human proteins, suggesting that they have an important cellular function. To clarify the potential function of polyQ repeats in biological systems, we systematically analyzed available information stored in sequence and protein interaction databases. By integrating genomic, phylogenetic, protein interaction network and functional information, we obtained evidence that polyQ tracts in proteins stabilize protein interactions. This happens most likely through structural changes whereby the polyQ sequence extends a neighboring coiled-coil region to facilitate its interaction with a coiled-coil region in another protein. Alteration of this important biological function due to polyQ expansion results in gain of abnormal interactions, leading to pathological effects like protein aggregation. Our analyses suggest that research on polyQ proteins should shift focus from expanded polyQ proteins into the characterization of the influence of the wild-type polyQ on protein interactions. PMID:22287626

  18. Isolation and characterization of target sequences of the chicken CdxA homeobox gene.

    PubMed Central

    Margalit, Y; Yarus, S; Shapira, E; Gruenbaum, Y; Fainsod, A

    1993-01-01

    The DNA binding specificity of the chicken homeodomain protein CDXA was studied. Using a CDXA-glutathione-S-transferase fusion protein, DNA fragments containing the binding site for this protein were isolated. The sources of DNA were oligonucleotides with random sequence and chicken genomic DNA. The DNA fragments isolated were sequenced and tested in DNA binding assays. Sequencing revealed that most DNA fragments are AT rich which is a common feature of homeodomain binding sites. By electrophoretic mobility shift assays it was shown that the different target sequences isolated bind to the CDXA protein with different affinities. The specific sequences bound by the CDXA protein in the genomic fragments isolated, were determined by DNase I footprinting. From the footprinted sequences, the CDXA consensus binding site was determined. The CDXA protein binds the consensus sequence A, A/T, T, A/T, A, T, A/G. The CAUDAL binding site in the ftz promoter is also included in this consensus sequence. When tested, some of the genomic target sequences were capable of enhancing the transcriptional activity of reporter plasmids when introduced into CDXA expressing cells. This study determined the DNA sequence specificity of the CDXA protein and it also shows that this protein can further activate transcription in cells in culture. Images PMID:7909943

  19. Hum-mPLoc 3.0: prediction enhancement of human protein subcellular localization through modeling the hidden correlations of gene ontology and functional domain features.

    PubMed

    Zhou, Hang; Yang, Yang; Shen, Hong-Bin

    2017-03-15

    Protein subcellular localization prediction has been an important research topic in computational biology over the last decade. Various automatic methods have been proposed to predict locations for large scale protein datasets, where statistical machine learning algorithms are widely used for model construction. A key step in these predictors is encoding the amino acid sequences into feature vectors. Many studies have shown that features extracted from biological domains, such as gene ontology and functional domains, can be very useful for improving the prediction accuracy. However, domain knowledge usually results in redundant features and high-dimensional feature spaces, which may degenerate the performance of machine learning models. In this paper, we propose a new amino acid sequence-based human protein subcellular location prediction approach Hum-mPLoc 3.0, which covers 12 human subcellular localizations. The sequences are represented by multi-view complementary features, i.e. context vocabulary annotation-based gene ontology (GO) terms, peptide-based functional domains, and residue-based statistical features. To systematically reflect the structural hierarchy of the domain knowledge bases, we propose a novel feature representation protocol denoted as HCM (Hidden Correlation Modeling), which will create more compact and discriminative feature vectors by modeling the hidden correlations between annotation terms. Experimental results on four benchmark datasets show that HCM improves prediction accuracy by 5-11% and F 1 by 8-19% compared with conventional GO-based methods. A large-scale application of Hum-mPLoc 3.0 on the whole human proteome reveals proteins co-localization preferences in the cell. www.csbio.sjtu.edu.cn/bioinf/Hum-mPLoc3/. hbshen@sjtu.edu.cn. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  20. SIMAP—the database of all-against-all protein sequence similarities and annotations with new interfaces and increased coverage

    PubMed Central

    Arnold, Roland; Goldenberg, Florian; Mewes, Hans-Werner; Rattei, Thomas

    2014-01-01

    The Similarity Matrix of Proteins (SIMAP, http://mips.gsf.de/simap/) database has been designed to massively accelerate computationally expensive protein sequence analysis tasks in bioinformatics. It provides pre-calculated sequence similarities interconnecting the entire known protein sequence universe, complemented by pre-calculated protein features and domains, similarity clusters and functional annotations. SIMAP covers all major public protein databases as well as many consistently re-annotated metagenomes from different repositories. As of September 2013, SIMAP contains >163 million proteins corresponding to ∼70 million non-redundant sequences. SIMAP uses the sensitive FASTA search heuristics, the Smith–Waterman alignment algorithm, the InterPro database of protein domain models and the BLAST2GO functional annotation algorithm. SIMAP assists biologists by facilitating the interactive exploration of the protein sequence universe. Web-Service and DAS interfaces allow connecting SIMAP with any other bioinformatic tool and resource. All-against-all protein sequence similarity matrices of project-specific protein collections are generated on request. Recent improvements allow SIMAP to cover the rapidly growing sequenced protein sequence universe. New Web-Service interfaces enhance the connectivity of SIMAP. Novel tools for interactive extraction of protein similarity networks have been added. Open access to SIMAP is provided through the web portal; the portal also contains instructions and links for software access and flat file downloads. PMID:24165881

  1. An ensemble approach for large-scale identification of protein-protein interactions using the alignments of multiple sequences

    PubMed Central

    Wang, Lei; You, Zhu-Hong; Chen, Xing; Li, Jian-Qiang; Yan, Xin; Zhang, Wei; Huang, Yu-An

    2017-01-01

    Protein–Protein Interactions (PPI) is not only the critical component of various biological processes in cells, but also the key to understand the mechanisms leading to healthy and diseased states in organisms. However, it is time-consuming and cost-intensive to identify the interactions among proteins using biological experiments. Hence, how to develop a more efficient computational method rapidly became an attractive topic in the post-genomic era. In this paper, we propose a novel method for inference of protein-protein interactions from protein amino acids sequences only. Specifically, protein amino acids sequence is firstly transformed into Position-Specific Scoring Matrix (PSSM) generated by multiple sequences alignments; then the Pseudo PSSM is used to extract feature descriptors. Finally, ensemble Rotation Forest (RF) learning system is trained to predict and recognize PPIs based solely on protein sequence feature. When performed the proposed method on the three benchmark data sets (Yeast, H. pylori, and independent dataset) for predicting PPIs, our method can achieve good average accuracies of 98.38%, 89.75%, and 96.25%, respectively. In order to further evaluate the prediction performance, we also compare the proposed method with other methods using same benchmark data sets. The experiment results demonstrate that the proposed method consistently outperforms other state-of-the-art method. Therefore, our method is effective and robust and can be taken as a useful tool in exploring and discovering new relationships between proteins. A web server is made publicly available at the URL http://202.119.201.126:8888/PsePSSM/ for academic use. PMID:28029645

  2. Gene Unprediction with Spurio: A tool to identify spurious protein sequences.

    PubMed

    Höps, Wolfram; Jeffryes, Matt; Bateman, Alex

    2018-01-01

    We now have access to the sequences of tens of millions of proteins. These protein sequences are essential for modern molecular biology and computational biology. The vast majority of protein sequences are derived from gene prediction tools and have no experimental supporting evidence for their translation.  Despite the increasing accuracy of gene prediction tools there likely exists a large number of spurious protein predictions in the sequence databases.  We have developed the Spurio tool to help identify spurious protein predictions in prokaryotes.  Spurio searches the query protein sequence against a prokaryotic nucleotide database using tblastn and identifies homologous sequences. The tblastn matches are used to score the query sequence's likelihood of being a spurious protein prediction using a Gaussian process model. The most informative feature is the appearance of stop codons within the presumed translation of homologous DNA sequences. Benchmarking shows that the Spurio tool is able to distinguish spurious from true proteins. However, transposon proteins are prone to be predicted as spurious because of the frequency of degraded homologs found in the DNA sequence databases. Our initial experiments suggest that less than 1% of the proteins in the UniProtKB sequence database are likely to be spurious and that Spurio is able to identify over 60 times more spurious proteins than the AntiFam resource. The Spurio software and source code is available under an MIT license at the following URL: https://bitbucket.org/bateman-group/spurio.

  3. Comprehensive comparative analysis and identification of RNA-binding protein domains: multi-class classification and feature selection.

    PubMed

    Jahandideh, Samad; Srinivasasainagendra, Vinodh; Zhi, Degui

    2012-11-07

    RNA-protein interaction plays an important role in various cellular processes, such as protein synthesis, gene regulation, post-transcriptional gene regulation, alternative splicing, and infections by RNA viruses. In this study, using Gene Ontology Annotated (GOA) and Structural Classification of Proteins (SCOP) databases an automatic procedure was designed to capture structurally solved RNA-binding protein domains in different subclasses. Subsequently, we applied tuned multi-class SVM (TMCSVM), Random Forest (RF), and multi-class ℓ1/ℓq-regularized logistic regression (MCRLR) for analysis and classifying RNA-binding protein domains based on a comprehensive set of sequence and structural features. In this study, we compared prediction accuracy of three different state-of-the-art predictor methods. From our results, TMCSVM outperforms the other methods and suggests the potential of TMCSVM as a useful tool for facilitating the multi-class prediction of RNA-binding protein domains. On the other hand, MCRLR by elucidating importance of features for their contribution in predictive accuracy of RNA-binding protein domains subclasses, helps us to provide some biological insights into the roles of sequences and structures in protein-RNA interactions.

  4. Molecular characterisation of Atlantic salmon paramyxovirus (ASPV): A novel paramyxovirus associated with proliferative gill inflammation

    USGS Publications Warehouse

    Falk, K.; Batts, W.N.; Kvellestad, A.; Kurath, G.; Wiik-Nielsen, J.; Winton, J.R.

    2008-01-01

    Atlantic salmon paramyxovirus (ASPV) was isolated in 1995 from gills of farmed Atlantic salmon suffering from proliferative gill inflammation. The complete genome sequence of ASPV was determined, revealing a genome 16,968 nucleotides in length consisting of six non-overlapping genes coding for the nucleo- (N), phospho- (P), matrix- (M), fusion- (F), haemagglutinin-neuraminidase- (HN) and large polymerase (L) proteins in the order 3???-N-P-M-F-HN-L-5???. The various conserved features related to virus replication found in most paramyxoviruses were also found in ASPV. These include: conserved and complementary leader and trailer sequences, tri-nucleotide intergenic regions and highly conserved transcription start and stop signal sequences. The P gene expression strategy of ASPV was like that of the respiro-, morbilli- and henipaviruses, which express the P and C proteins from the primary transcript and edit a portion of the mRNA to encode V and W proteins. Sequence similarities among various features related to virus replication, pairwise comparisons of all deduced ASPV protein sequences with homologous regions from other members of the family Paramyxoviridae, and phylogenetic analyses of these amino acid sequences suggested that ASPV was a novel member of the sub-family Paramyxovirinae, most closely related to the respiroviruses. ?? 2008 Elsevier B.V. All rights reserved.

  5. Functional Testing of SLC26A4 Variants—Clinical and Molecular Analysis of a Cohort with Enlarged Vestibular Aqueduct from Austria

    PubMed Central

    Bernardinelli, Emanuele; Nofziger, Charity; Patsch, Wolfgang; Rasp, Gerd; Paulmichl, Markus; Dossena, Silvia

    2018-01-01

    The prevalence and spectrum of sequence alterations in the SLC26A4 gene, which codes for the anion exchanger pendrin, are population-specific and account for at least 50% of cases of non-syndromic hearing loss associated with an enlarged vestibular aqueduct. A cohort of nineteen patients from Austria with hearing loss and a radiological alteration of the vestibular aqueduct underwent Sanger sequencing of SLC26A4 and GJB2, coding for connexin 26. The pathogenicity of sequence alterations detected was assessed by determining ion transport and molecular features of the corresponding SLC26A4 protein variants. In this group, four uncharacterized sequence alterations within the SLC26A4 coding region were found. Three of these lead to protein variants with abnormal functional and molecular features, while one should be considered with no pathogenic potential. Pathogenic SLC26A4 sequence alterations were only found in 12% of patients. SLC26A4 sequence alterations commonly found in other Caucasian populations were not detected. This survey represents the first study on the prevalence and spectrum of SLC26A4 sequence alterations in an Austrian cohort and further suggests that genetic testing should always be integrated with functional characterization and determination of the molecular features of protein variants in order to unequivocally identify or exclude a causal link between genotype and phenotype. PMID:29320412

  6. Prediction of protein structural classes by Chou's pseudo amino acid composition: approached using continuous wavelet transform and principal component analysis.

    PubMed

    Li, Zhan-Chao; Zhou, Xi-Bin; Dai, Zong; Zou, Xiao-Yong

    2009-07-01

    A prior knowledge of protein structural classes can provide useful information about its overall structure, so it is very important for quick and accurate determination of protein structural class with computation method in protein science. One of the key for computation method is accurate protein sample representation. Here, based on the concept of Chou's pseudo-amino acid composition (AAC, Chou, Proteins: structure, function, and genetics, 43:246-255, 2001), a novel method of feature extraction that combined continuous wavelet transform (CWT) with principal component analysis (PCA) was introduced for the prediction of protein structural classes. Firstly, the digital signal was obtained by mapping each amino acid according to various physicochemical properties. Secondly, CWT was utilized to extract new feature vector based on wavelet power spectrum (WPS), which contains more abundant information of sequence order in frequency domain and time domain, and PCA was then used to reorganize the feature vector to decrease information redundancy and computational complexity. Finally, a pseudo-amino acid composition feature vector was further formed to represent primary sequence by coupling AAC vector with a set of new feature vector of WPS in an orthogonal space by PCA. As a showcase, the rigorous jackknife cross-validation test was performed on the working datasets. The results indicated that prediction quality has been improved, and the current approach of protein representation may serve as a useful complementary vehicle in classifying other attributes of proteins, such as enzyme family class, subcellular localization, membrane protein types and protein secondary structure, etc.

  7. Structurally detailed coarse-grained model for Sec-facilitated co-translational protein translocation and membrane integration

    PubMed Central

    Miller, Thomas F.

    2017-01-01

    We present a coarse-grained simulation model that is capable of simulating the minute-timescale dynamics of protein translocation and membrane integration via the Sec translocon, while retaining sufficient chemical and structural detail to capture many of the sequence-specific interactions that drive these processes. The model includes accurate geometric representations of the ribosome and Sec translocon, obtained directly from experimental structures, and interactions parameterized from nearly 200 μs of residue-based coarse-grained molecular dynamics simulations. A protocol for mapping amino-acid sequences to coarse-grained beads enables the direct simulation of trajectories for the co-translational insertion of arbitrary polypeptide sequences into the Sec translocon. The model reproduces experimentally observed features of membrane protein integration, including the efficiency with which polypeptide domains integrate into the membrane, the variation in integration efficiency upon single amino-acid mutations, and the orientation of transmembrane domains. The central advantage of the model is that it connects sequence-level protein features to biological observables and timescales, enabling direct simulation for the mechanistic analysis of co-translational integration and for the engineering of membrane proteins with enhanced membrane integration efficiency. PMID:28328943

  8. Atomic interaction networks in the core of protein domains and their native folds.

    PubMed

    Soundararajan, Venkataramanan; Raman, Rahul; Raguram, S; Sasisekharan, V; Sasisekharan, Ram

    2010-02-23

    Vastly divergent sequences populate a majority of protein folds. In the quest to identify features that are conserved within protein domains belonging to the same fold, we set out to examine the entire protein universe on a fold-by-fold basis. We report that the atomic interaction network in the solvent-unexposed core of protein domains are fold-conserved, extraordinary sequence divergence notwithstanding. Further, we find that this feature, termed protein core atomic interaction network (or PCAIN) is significantly distinguishable across different folds, thus appearing to be "signature" of a domain's native fold. As part of this study, we computed the PCAINs for 8698 representative protein domains from families across the 1018 known protein folds to construct our seed database and an automated framework was developed for PCAIN-based characterization of the protein fold universe. A test set of randomly selected domains that are not in the seed database was classified with over 97% accuracy, independent of sequence divergence. As an application of this novel fold signature, a PCAIN-based scoring scheme was developed for comparative (homology-based) structure prediction, with 1-2 angstroms (mean 1.61A) C(alpha) RMSD generally observed between computed structures and reference crystal structures. Our results are consistent across the full spectrum of test domains including those from recent CASP experiments and most notably in the 'twilight' and 'midnight' zones wherein <30% and <10% target-template sequence identity prevails (mean twilight RMSD of 1.69A). We further demonstrate the utility of the PCAIN protocol to derive biological insight into protein structure-function relationships, by modeling the structure of the YopM effector novel E3 ligase (NEL) domain from plague-causative bacterium Yersinia Pestis and discussing its implications for host adaptive and innate immune modulation by the pathogen. Considering the several high-throughput, sequence-identity-independent applications demonstrated in this work, we suggest that the PCAIN is a fundamental fold feature that could be a valuable addition to the arsenal of protein modeling and analysis tools.

  9. Atomic Interaction Networks in the Core of Protein Domains and Their Native Folds

    PubMed Central

    Soundararajan, Venkataramanan; Raman, Rahul; Raguram, S.; Sasisekharan, V.; Sasisekharan, Ram

    2010-01-01

    Vastly divergent sequences populate a majority of protein folds. In the quest to identify features that are conserved within protein domains belonging to the same fold, we set out to examine the entire protein universe on a fold-by-fold basis. We report that the atomic interaction network in the solvent-unexposed core of protein domains are fold-conserved, extraordinary sequence divergence notwithstanding. Further, we find that this feature, termed protein core atomic interaction network (or PCAIN) is significantly distinguishable across different folds, thus appearing to be “signature” of a domain's native fold. As part of this study, we computed the PCAINs for 8698 representative protein domains from families across the 1018 known protein folds to construct our seed database and an automated framework was developed for PCAIN-based characterization of the protein fold universe. A test set of randomly selected domains that are not in the seed database was classified with over 97% accuracy, independent of sequence divergence. As an application of this novel fold signature, a PCAIN-based scoring scheme was developed for comparative (homology-based) structure prediction, with 1–2 angstroms (mean 1.61A) Cα RMSD generally observed between computed structures and reference crystal structures. Our results are consistent across the full spectrum of test domains including those from recent CASP experiments and most notably in the ‘twilight’ and ‘midnight’ zones wherein <30% and <10% target-template sequence identity prevails (mean twilight RMSD of 1.69A). We further demonstrate the utility of the PCAIN protocol to derive biological insight into protein structure-function relationships, by modeling the structure of the YopM effector novel E3 ligase (NEL) domain from plague-causative bacterium Yersinia Pestis and discussing its implications for host adaptive and innate immune modulation by the pathogen. Considering the several high-throughput, sequence-identity-independent applications demonstrated in this work, we suggest that the PCAIN is a fundamental fold feature that could be a valuable addition to the arsenal of protein modeling and analysis tools. PMID:20186337

  10. Nucleotide sequence of the Saccharomyces cerevisiae PUT4 proline-permease-encoding gene: similarities between CAN1, HIP1 and PUT4 permeases.

    PubMed

    Vandenbol, M; Jauniaux, J C; Grenson, M

    1989-11-15

    The complete nucleotide (nt) sequence of the PUT4 gene, whose product is required for high-affinity proline active transport in the yeast Saccharomyces cerevisiae, is presented. The sequence contains a single long open reading frame of 1881 nt, encoding a polypeptide with a calculated Mr of 68,795. The predicted protein is strongly hydrophobic and exhibits six potential glycosylation sites. Its hydropathy profile suggests the presence of twelve membrane-spanning regions flanked by hydrophilic N- and C-terminal domains. The N terminus does not resemble signal sequences found in secreted proteins. These features are characteristic of integral membrane proteins catalyzing translocation of ligands across cellular membranes. Protein sequence comparisons indicate strong resemblance to the arginine and histidine permeases of S. cerevisiae, but no marked sequence similarity to the proline permease of Escherichia coli or to other known prokaryotic or eukaryotic transport proteins. The strong similarity between the three yeast amino acid permeases suggests a common ancestor for the three proteins.

  11. CaMELS: In silico prediction of calmodulin binding proteins and their binding sites.

    PubMed

    Abbasi, Wajid Arshad; Asif, Amina; Andleeb, Saiqa; Minhas, Fayyaz Ul Amir Afsar

    2017-09-01

    Due to Ca 2+ -dependent binding and the sequence diversity of Calmodulin (CaM) binding proteins, identifying CaM interactions and binding sites in the wet-lab is tedious and costly. Therefore, computational methods for this purpose are crucial to the design of such wet-lab experiments. We present an algorithm suite called CaMELS (CalModulin intEraction Learning System) for predicting proteins that interact with CaM as well as their binding sites using sequence information alone. CaMELS offers state of the art accuracy for both CaM interaction and binding site prediction and can aid biologists in studying CaM binding proteins. For CaM interaction prediction, CaMELS uses protein sequence features coupled with a large-margin classifier. CaMELS models the binding site prediction problem using multiple instance machine learning with a custom optimization algorithm which allows more effective learning over imprecisely annotated CaM-binding sites during training. CaMELS has been extensively benchmarked using a variety of data sets, mutagenic studies, proteome-wide Gene Ontology enrichment analyses and protein structures. Our experiments indicate that CaMELS outperforms simple motif-based search and other existing methods for interaction and binding site prediction. We have also found that the whole sequence of a protein, rather than just its binding site, is important for predicting its interaction with CaM. Using the machine learning model in CaMELS, we have identified important features of protein sequences for CaM interaction prediction as well as characteristic amino acid sub-sequences and their relative position for identifying CaM binding sites. Python code for training and evaluating CaMELS together with a webserver implementation is available at the URL: http://faculty.pieas.edu.pk/fayyaz/software.html#camels. © 2017 Wiley Periodicals, Inc.

  12. MatureP: prediction of secreted proteins with exclusive information from their mature regions.

    PubMed

    Orfanoudaki, Georgia; Markaki, Maria; Chatzi, Katerina; Tsamardinos, Ioannis; Economou, Anastassios

    2017-06-12

    More than a third of the cellular proteome is non-cytoplasmic. Most secretory proteins use the Sec system for export and are targeted to membranes using signal peptides and mature domains. To specifically analyze bacterial mature domain features, we developed MatureP, a classifier that predicts secretory sequences through features exclusively computed from their mature domains. MatureP was trained using Just Add Data Bio, an automated machine learning tool. Mature domains are predicted efficiently with ~92% success, as measured by the Area Under the Receiver Operating Characteristic Curve (AUC). Predictions were validated using experimental datasets of mutated secretory proteins. The features selected by MatureP reveal prominent differences in amino acid content between secreted and cytoplasmic proteins. Amino-terminal mature domain sequences have enhanced disorder, more hydroxyl and polar residues and less hydrophobics. Cytoplasmic proteins have prominent amino-terminal hydrophobic stretches and charged regions downstream. Presumably, secretory mature domains comprise a distinct protein class. They balance properties that promote the necessary flexibility required for the maintenance of non-folded states during targeting and secretion with the ability of post-secretion folding. These findings provide novel insight in protein trafficking, sorting and folding mechanisms and may benefit protein secretion biotechnology.

  13. NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins

    PubMed Central

    Pruitt, Kim D.; Tatusova, Tatiana; Maglott, Donna R.

    2005-01-01

    The National Center for Biotechnology Information (NCBI) Reference Sequence (RefSeq) database (http://www.ncbi.nlm.nih.gov/RefSeq/) provides a non-redundant collection of sequences representing genomic data, transcripts and proteins. Although the goal is to provide a comprehensive dataset representing the complete sequence information for any given species, the database pragmatically includes sequence data that are currently publicly available in the archival databases. The database incorporates data from over 2400 organisms and includes over one million proteins representing significant taxonomic diversity spanning prokaryotes, eukaryotes and viruses. Nucleotide and protein sequences are explicitly linked, and the sequences are linked to other resources including the NCBI Map Viewer and Gene. Sequences are annotated to include coding regions, conserved domains, variation, references, names, database cross-references, and other features using a combined approach of collaboration and other input from the scientific community, automated annotation, propagation from GenBank and curation by NCBI staff. PMID:15608248

  14. Unexpected features of the dark proteome.

    PubMed

    Perdigão, Nelson; Heinrich, Julian; Stolte, Christian; Sabir, Kenneth S; Buckley, Michael J; Tabor, Bruce; Signal, Beth; Gloss, Brian S; Hammang, Christopher J; Rost, Burkhard; Schafferhans, Andrea; O'Donoghue, Seán I

    2015-12-29

    We surveyed the "dark" proteome-that is, regions of proteins never observed by experimental structure determination and inaccessible to homology modeling. For 546,000 Swiss-Prot proteins, we found that 44-54% of the proteome in eukaryotes and viruses was dark, compared with only ∼14% in archaea and bacteria. Surprisingly, most of the dark proteome could not be accounted for by conventional explanations, such as intrinsic disorder or transmembrane regions. Nearly half of the dark proteome comprised dark proteins, in which the entire sequence lacked similarity to any known structure. Dark proteins fulfill a wide variety of functions, but a subset showed distinct and largely unexpected features, such as association with secretion, specific tissues, the endoplasmic reticulum, disulfide bonding, and proteolytic cleavage. Dark proteins also had short sequence length, low evolutionary reuse, and few known interactions with other proteins. These results suggest new research directions in structural and computational biology.

  15. Surface Proteins of Gram-Positive Pathogens: Using Crystallography to Uncover Novel Features in Drug and Vaccine Candidates

    NASA Astrophysics Data System (ADS)

    Baker, Edward N.; Proft, Thomas; Kang, Haejoo

    Proteins displayed on the cell surfaces of pathogenic organisms are the front-line troops of bacterial attack, playing critical roles in colonization, infection and virulence. Although such proteins can often be recognized from genome sequence data, through characteristic sequence motifs, their functions are often unknown. One such group of surface proteins is attached to the cell surface of Gram-positive pathogens through the action of sortase enzymes. Some of these proteins are now known to form pili: long filamentous structures that mediate attachment to human cells. Crystallographic analyses of these and other cell surface proteins have uncovered novel features in their structure, assembly and stability, including the presence of inter- and intramolecular isopeptide crosslinks. This improved understanding of structures on the bacterial cell surface offers opportunities for the development of some new drug targets and for novel approaches to vaccine design.

  16. Unexpected features of the dark proteome

    PubMed Central

    Perdigão, Nelson; Heinrich, Julian; Stolte, Christian; Sabir, Kenneth S.; Buckley, Michael J.; Tabor, Bruce; Signal, Beth; Gloss, Brian S.; Hammang, Christopher J.; Rost, Burkhard; Schafferhans, Andrea

    2015-01-01

    We surveyed the “dark” proteome–that is, regions of proteins never observed by experimental structure determination and inaccessible to homology modeling. For 546,000 Swiss-Prot proteins, we found that 44–54% of the proteome in eukaryotes and viruses was dark, compared with only ∼14% in archaea and bacteria. Surprisingly, most of the dark proteome could not be accounted for by conventional explanations, such as intrinsic disorder or transmembrane regions. Nearly half of the dark proteome comprised dark proteins, in which the entire sequence lacked similarity to any known structure. Dark proteins fulfill a wide variety of functions, but a subset showed distinct and largely unexpected features, such as association with secretion, specific tissues, the endoplasmic reticulum, disulfide bonding, and proteolytic cleavage. Dark proteins also had short sequence length, low evolutionary reuse, and few known interactions with other proteins. These results suggest new research directions in structural and computational biology. PMID:26578815

  17. Ensemble Linear Neighborhood Propagation for Predicting Subchloroplast Localization of Multi-Location Proteins.

    PubMed

    Wan, Shibiao; Mak, Man-Wai; Kung, Sun-Yuan

    2016-12-02

    In the postgenomic era, the number of unreviewed protein sequences is remarkably larger and grows tremendously faster than that of reviewed ones. However, existing methods for protein subchloroplast localization often ignore the information from these unlabeled proteins. This paper proposes a multi-label predictor based on ensemble linear neighborhood propagation (LNP), namely, LNP-Chlo, which leverages hybrid sequence-based feature information from both labeled and unlabeled proteins for predicting localization of both single- and multi-label chloroplast proteins. Experimental results on a stringent benchmark dataset and a novel independent dataset suggest that LNP-Chlo performs at least 6% (absolute) better than state-of-the-art predictors. This paper also demonstrates that ensemble LNP significantly outperforms LNP based on individual features. For readers' convenience, the online Web server LNP-Chlo is freely available at http://bioinfo.eie.polyu.edu.hk/LNPChloServer/ .

  18. Prediction of redox-sensitive cysteines using sequential distance and other sequence-based features.

    PubMed

    Sun, Ming-An; Zhang, Qing; Wang, Yejun; Ge, Wei; Guo, Dianjing

    2016-08-24

    Reactive oxygen species can modify the structure and function of proteins and may also act as important signaling molecules in various cellular processes. Cysteine thiol groups of proteins are particularly susceptible to oxidation. Meanwhile, their reversible oxidation is of critical roles for redox regulation and signaling. Recently, several computational tools have been developed for predicting redox-sensitive cysteines; however, those methods either only focus on catalytic redox-sensitive cysteines in thiol oxidoreductases, or heavily depend on protein structural data, thus cannot be widely used. In this study, we analyzed various sequence-based features potentially related to cysteine redox-sensitivity, and identified three types of features for efficient computational prediction of redox-sensitive cysteines. These features are: sequential distance to the nearby cysteines, PSSM profile and predicted secondary structure of flanking residues. After further feature selection using SVM-RFE, we developed Redox-Sensitive Cysteine Predictor (RSCP), a SVM based classifier for redox-sensitive cysteine prediction using primary sequence only. Using 10-fold cross-validation on RSC758 dataset, the accuracy, sensitivity, specificity, MCC and AUC were estimated as 0.679, 0.602, 0.756, 0.362 and 0.727, respectively. When evaluated using 10-fold cross-validation with BALOSCTdb dataset which has structure information, the model achieved performance comparable to current structure-based method. Further validation using an independent dataset indicates it is robust and of relatively better accuracy for predicting redox-sensitive cysteines from non-enzyme proteins. In this study, we developed a sequence-based classifier for predicting redox-sensitive cysteines. The major advantage of this method is that it does not rely on protein structure data, which ensures more extensive application compared to other current implementations. Accurate prediction of redox-sensitive cysteines not only enhances our understanding about the redox sensitivity of cysteine, it may also complement the proteomics approach and facilitate further experimental investigation of important redox-sensitive cysteines.

  19. Protein structure based prediction of catalytic residues

    PubMed Central

    2013-01-01

    Background Worldwide structural genomics projects continue to release new protein structures at an unprecedented pace, so far nearly 6000, but only about 60% of these proteins have any sort of functional annotation. Results We explored a range of features that can be used for the prediction of functional residues given a known three-dimensional structure. These features include various centrality measures of nodes in graphs of interacting residues: closeness, betweenness and page-rank centrality. We also analyzed the distance of functional amino acids to the general center of mass (GCM) of the structure, relative solvent accessibility (RSA), and the use of relative entropy as a measure of sequence conservation. From the selected features, neural networks were trained to identify catalytic residues. We found that using distance to the GCM together with amino acid type provide a good discriminant function, when combined independently with sequence conservation. Using an independent test set of 29 annotated protein structures, the method returned 411 of the initial 9262 residues as the most likely to be involved in function. The output 411 residues contain 70 of the annotated 111 catalytic residues. This represents an approximately 14-fold enrichment of catalytic residues on the entire input set (corresponding to a sensitivity of 63% and a precision of 17%), a performance competitive with that of other state-of-the-art methods. Conclusions We found that several of the graph based measures utilize the same underlying feature of protein structures, which can be simply and more effectively captured with the distance to GCM definition. This also has the added the advantage of simplicity and easy implementation. Meanwhile sequence conservation remains by far the most influential feature in identifying functional residues. We also found that due the rapid changes in size and composition of sequence databases, conservation calculations must be recalibrated for specific reference databases. PMID:23433045

  20. Codon influence on protein expression in E. coli correlates with mRNA levels

    PubMed Central

    Boël, Grégory; Wong, Kam-Ho; Su, Min; Luff, Jon; Valecha, Mayank; Everett, John K.; Acton, Thomas B.; Xiao, Rong; Montelione, Gaetano T.; Aalberts, Daniel P.; Hunt, John F.

    2016-01-01

    Degeneracy in the genetic code, which enables a single protein to be encoded by a multitude of synonymous gene sequences, has an important role in regulating protein expression, but substantial uncertainty exists concerning the details of this phenomenon. Here we analyze the sequence features influencing protein expression levels in 6,348 experiments using bacteriophage T7 polymerase to synthesize messenger RNA in Escherichia coli. Logistic regression yields a new codon-influence metric that correlates only weakly with genomic codon-usage frequency, but strongly with global physiological protein concentrations and also mRNA concentrations and lifetimes in vivo. Overall, the codon content influences protein expression more strongly than mRNA-folding parameters, although the latter dominate in the initial ~16 codons. Genes redesigned based on our analyses are transcribed with unaltered efficiency but translated with higher efficiency in vitro. The less efficiently translated native sequences show greatly reduced mRNA levels in vivo. Our results suggest that codon content modulates a kinetic competition between protein elongation and mRNA degradation that is a central feature of the physiology and also possibly the regulation of translation in E. coli. PMID:26760206

  1. Conserved Features in the Structure, Mechanism, and Biogenesis of the Inverse Autotransporter Protein Family

    PubMed Central

    Heinz, Eva; Stubenrauch, Christopher J.; Grinter, Rhys; Croft, Nathan P.; Purcell, Anthony W.; Strugnell, Richard A.; Dougan, Gordon; Lithgow, Trevor

    2016-01-01

    The bacterial cell surface proteins intimin and invasin are virulence factors that share a common domain structure and bind selectively to host cell receptors in the course of bacterial pathogenesis. The β-barrel domains of intimin and invasin show significant sequence and structural similarities. Conversely, a variety of proteins with sometimes limited sequence similarity have also been annotated as “intimin-like” and “invasin” in genome datasets, while other recent work on apparently unrelated virulence-associated proteins ultimately revealed similarities to intimin and invasin. Here we characterize the sequence and structural relationships across this complex protein family. Surprisingly, intimins and invasins represent a very small minority of the sequence diversity in what has been previously the “intimin/invasin protein family”. Analysis of the assembly pathway for expression of the classic intimin, EaeA, and a characteristic example of the most prevalent members of the group, FdeC, revealed a dependence on the translocation and assembly module as a common feature for both these proteins. While the majority of the sequences in the grouping are most similar to FdeC, a further and widespread group is two-partner secretion systems that use the β-barrel domain as the delivery device for secretion of a variety of virulence factors. This comprehensive analysis supports the adoption of the “inverse autotransporter protein family” as the most accurate nomenclature for the family and, in turn, has important consequences for our overall understanding of the Type V secretion systems of bacterial pathogens. PMID:27190006

  2. HMMBinder: DNA-Binding Protein Prediction Using HMM Profile Based Features.

    PubMed

    Zaman, Rianon; Chowdhury, Shahana Yasmin; Rashid, Mahmood A; Sharma, Alok; Dehzangi, Abdollah; Shatabda, Swakkhar

    2017-01-01

    DNA-binding proteins often play important role in various processes within the cell. Over the last decade, a wide range of classification algorithms and feature extraction techniques have been used to solve this problem. In this paper, we propose a novel DNA-binding protein prediction method called HMMBinder. HMMBinder uses monogram and bigram features extracted from the HMM profiles of the protein sequences. To the best of our knowledge, this is the first application of HMM profile based features for the DNA-binding protein prediction problem. We applied Support Vector Machines (SVM) as a classification technique in HMMBinder. Our method was tested on standard benchmark datasets. We experimentally show that our method outperforms the state-of-the-art methods found in the literature.

  3. Gene discovery in Eimeria tenella by immunoscreening cDNA expression libraries of sporozoites and schizonts with chicken intestinal antibodies.

    PubMed

    Réfega, Susana; Girard-Misguich, Fabienne; Bourdieu, Christiane; Péry, Pierre; Labbé, Marie

    2003-04-02

    Specific antibodies were produced ex vivo from intestinal culture of Eimeria tenella infected chickens. The specificity of these intestinal antibodies was tested against different parasite stages. These antibodies were used to immunoscreen first generation schizont and sporozoite cDNA libraries permitting the identification of new E. tenella antigens. We obtained a total of 119 cDNA clones which were subjected to sequence analysis. The sequences coding for the proteins inducing local immune responses were compared with nucleotide or protein databases and with expressed sequence tags (ESTs) databases. We identified new Eimeria genes coding for heat shock proteins, a ribosomal protein, a pyruvate kinase and a pyridoxine kinase. Specific features of other sequences are discussed.

  4. SVM-dependent pairwise HMM: an application to protein pairwise alignments.

    PubMed

    Orlando, Gabriele; Raimondi, Daniele; Khan, Taushif; Lenaerts, Tom; Vranken, Wim F

    2017-12-15

    Methods able to provide reliable protein alignments are crucial for many bioinformatics applications. In the last years many different algorithms have been developed and various kinds of information, from sequence conservation to secondary structure, have been used to improve the alignment performances. This is especially relevant for proteins with highly divergent sequences. However, recent works suggest that different features may have different importance in diverse protein classes and it would be an advantage to have more customizable approaches, capable to deal with different alignment definitions. Here we present Rigapollo, a highly flexible pairwise alignment method based on a pairwise HMM-SVM that can use any type of information to build alignments. Rigapollo lets the user decide the optimal features to align their protein class of interest. It outperforms current state of the art methods on two well-known benchmark datasets when aligning highly divergent sequences. A Python implementation of the algorithm is available at http://ibsquare.be/rigapollo. wim.vranken@vub.be. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  5. MACSIMS : multiple alignment of complete sequences information management system

    PubMed Central

    Thompson, Julie D; Muller, Arnaud; Waterhouse, Andrew; Procter, Jim; Barton, Geoffrey J; Plewniak, Frédéric; Poch, Olivier

    2006-01-01

    Background In the post-genomic era, systems-level studies are being performed that seek to explain complex biological systems by integrating diverse resources from fields such as genomics, proteomics or transcriptomics. New information management systems are now needed for the collection, validation and analysis of the vast amount of heterogeneous data available. Multiple alignments of complete sequences provide an ideal environment for the integration of this information in the context of the protein family. Results MACSIMS is a multiple alignment-based information management program that combines the advantages of both knowledge-based and ab initio sequence analysis methods. Structural and functional information is retrieved automatically from the public databases. In the multiple alignment, homologous regions are identified and the retrieved data is evaluated and propagated from known to unknown sequences with these reliable regions. In a large-scale evaluation, the specificity of the propagated sequence features is estimated to be >99%, i.e. very few false positive predictions are made. MACSIMS is then used to characterise mutations in a test set of 100 proteins that are known to be involved in human genetic diseases. The number of sequence features associated with these proteins was increased by 60%, compared to the features available in the public databases. An XML format output file allows automatic parsing of the MACSIM results, while a graphical display using the JalView program allows manual analysis. Conclusion MACSIMS is a new information management system that incorporates detailed analyses of protein families at the structural, functional and evolutionary levels. MACSIMS thus provides a unique environment that facilitates knowledge extraction and the presentation of the most pertinent information to the biologist. A web server and the source code are available at . PMID:16792820

  6. PDNAsite: Identification of DNA-binding Site from Protein Sequence by Incorporating Spatial and Sequence Context

    PubMed Central

    Zhou, Jiyun; Xu, Ruifeng; He, Yulan; Lu, Qin; Wang, Hongpeng; Kong, Bing

    2016-01-01

    Protein-DNA interactions are involved in many fundamental biological processes essential for cellular function. Most of the existing computational approaches employed only the sequence context of the target residue for its prediction. In the present study, for each target residue, we applied both the spatial context and the sequence context to construct the feature space. Subsequently, Latent Semantic Analysis (LSA) was applied to remove the redundancies in the feature space. Finally, a predictor (PDNAsite) was developed through the integration of the support vector machines (SVM) classifier and ensemble learning. Results on the PDNA-62 and the PDNA-224 datasets demonstrate that features extracted from spatial context provide more information than those from sequence context and the combination of them gives more performance gain. An analysis of the number of binding sites in the spatial context of the target site indicates that the interactions between binding sites next to each other are important for protein-DNA recognition and their binding ability. The comparison between our proposed PDNAsite method and the existing methods indicate that PDNAsite outperforms most of the existing methods and is a useful tool for DNA-binding site identification. A web-server of our predictor (http://hlt.hitsz.edu.cn:8080/PDNAsite/) is made available for free public accessible to the biological research community. PMID:27282833

  7. The Conformational Stability and Biophysical Properties of the Eukaryotic Thioredoxins of Pisum Sativum Are Not Family-Conserved

    PubMed Central

    Aguado-Llera, David; Martínez-Gómez, Ana Isabel; Prieto, Jesús; Marenchino, Marco; Traverso, José Angel; Gómez, Javier; Chueca, Ana; Neira, José L.

    2011-01-01

    Thioredoxins (TRXs) are ubiquitous proteins involved in redox processes. About forty genes encode TRX or TRX-related proteins in plants, grouped in different families according to their subcellular localization. For instance, the h-type TRXs are located in cytoplasm or mitochondria, whereas f-type TRXs have a plastidial origin, although both types of proteins have an eukaryotic origin as opposed to other TRXs. Herein, we study the conformational and the biophysical features of TRXh1, TRXh2 and TRXf from Pisum sativum. The modelled structures of the three proteins show the well-known TRX fold. While sharing similar pH-denaturations features, the chemical and thermal stabilities are different, being PsTRXh1 (Pisum sativum thioredoxin h1) the most stable isoform; moreover, the three proteins follow a three-state denaturation model, during the chemical-denaturations. These differences in the thermal- and chemical-denaturations result from changes, in a broad sense, of the several ASAs (accessible surface areas) of the proteins. Thus, although a strong relationship can be found between the primary amino acid sequence and the structure among TRXs, that between the residue sequence and the conformational stability and biophysical properties is not. We discuss how these differences in the biophysical properties of TRXs determine their unique functions in pea, and we show how residues involved in the biophysical features described (pH-titrations, dimerizations and chemical-denaturations) belong to regions involved in interaction with other proteins. Our results suggest that the sequence demands of protein-protein function are relatively rigid, with different protein-binding pockets (some in common) for each of the three proteins, but the demands of structure and conformational stability per se (as long as there is a maintained core), are less so. PMID:21364950

  8. Biophysical and structural considerations for protein sequence evolution

    PubMed Central

    2011-01-01

    Background Protein sequence evolution is constrained by the biophysics of folding and function, causing interdependence between interacting sites in the sequence. However, current site-independent models of sequence evolutions do not take this into account. Recent attempts to integrate the influence of structure and biophysics into phylogenetic models via statistical/informational approaches have not resulted in expected improvements in model performance. This suggests that further innovations are needed for progress in this field. Results Here we develop a coarse-grained physics-based model of protein folding and binding function, and compare it to a popular informational model. We find that both models violate the assumption of the native sequence being close to a thermodynamic optimum, causing directional selection away from the native state. Sampling and simulation show that the physics-based model is more specific for fold-defining interactions that vary less among residue type. The informational model diffuses further in sequence space with fewer barriers and tends to provide less support for an invariant sites model, although amino acid substitutions are generally conservative. Both approaches produce sequences with natural features like dN/dS < 1 and gamma-distributed rates across sites. Conclusions Simple coarse-grained models of protein folding can describe some natural features of evolving proteins but are currently not accurate enough to use in evolutionary inference. This is partly due to improper packing of the hydrophobic core. We suggest possible improvements on the representation of structure, folding energy, and binding function, as regards both native and non-native conformations, and describe a large number of possible applications for such a model. PMID:22171550

  9. IDM-PhyChm-Ens: intelligent decision-making ensemble methodology for classification of human breast cancer using physicochemical properties of amino acids.

    PubMed

    Ali, Safdar; Majid, Abdul; Khan, Asifullah

    2014-04-01

    Development of an accurate and reliable intelligent decision-making method for the construction of cancer diagnosis system is one of the fast growing research areas of health sciences. Such decision-making system can provide adequate information for cancer diagnosis and drug discovery. Descriptors derived from physicochemical properties of protein sequences are very useful for classifying cancerous proteins. Recently, several interesting research studies have been reported on breast cancer classification. To this end, we propose the exploitation of the physicochemical properties of amino acids in protein primary sequences such as hydrophobicity (Hd) and hydrophilicity (Hb) for breast cancer classification. Hd and Hb properties of amino acids, in recent literature, are reported to be quite effective in characterizing the constituent amino acids and are used to study protein foldings, interactions, structures, and sequence-order effects. Especially, using these physicochemical properties, we observed that proline, serine, tyrosine, cysteine, arginine, and asparagine amino acids offer high discrimination between cancerous and healthy proteins. In addition, unlike traditional ensemble classification approaches, the proposed 'IDM-PhyChm-Ens' method was developed by combining the decision spaces of a specific classifier trained on different feature spaces. The different feature spaces used were amino acid composition, split amino acid composition, and pseudo amino acid composition. Consequently, we have exploited different feature spaces using Hd and Hb properties of amino acids to develop an accurate method for classification of cancerous protein sequences. We developed ensemble classifiers using diverse learning algorithms such as random forest (RF), support vector machines (SVM), and K-nearest neighbor (KNN) trained on different feature spaces. We observed that ensemble-RF, in case of cancer classification, performed better than ensemble-SVM and ensemble-KNN. Our analysis demonstrates that ensemble-RF, ensemble-SVM and ensemble-KNN are more effective than their individual counterparts. The proposed 'IDM-PhyChm-Ens' method has shown improved performance compared to existing techniques.

  10. TANGLE: Two-Level Support Vector Regression Approach for Protein Backbone Torsion Angle Prediction from Primary Sequences

    PubMed Central

    Song, Jiangning; Tan, Hao; Wang, Mingjun; Webb, Geoffrey I.; Akutsu, Tatsuya

    2012-01-01

    Protein backbone torsion angles (Phi) and (Psi) involve two rotation angles rotating around the Cα-N bond (Phi) and the Cα-C bond (Psi). Due to the planarity of the linked rigid peptide bonds, these two angles can essentially determine the backbone geometry of proteins. Accordingly, the accurate prediction of protein backbone torsion angle from sequence information can assist the prediction of protein structures. In this study, we develop a new approach called TANGLE (Torsion ANGLE predictor) to predict the protein backbone torsion angles from amino acid sequences. TANGLE uses a two-level support vector regression approach to perform real-value torsion angle prediction using a variety of features derived from amino acid sequences, including the evolutionary profiles in the form of position-specific scoring matrices, predicted secondary structure, solvent accessibility and natively disordered region as well as other global sequence features. When evaluated based on a large benchmark dataset of 1,526 non-homologous proteins, the mean absolute errors (MAEs) of the Phi and Psi angle prediction are 27.8° and 44.6°, respectively, which are 1% and 3% respectively lower than that using one of the state-of-the-art prediction tools ANGLOR. Moreover, the prediction of TANGLE is significantly better than a random predictor that was built on the amino acid-specific basis, with the p-value<1.46e-147 and 7.97e-150, respectively by the Wilcoxon signed rank test. As a complementary approach to the current torsion angle prediction algorithms, TANGLE should prove useful in predicting protein structural properties and assisting protein fold recognition by applying the predicted torsion angles as useful restraints. TANGLE is freely accessible at http://sunflower.kuicr.kyoto-u.ac.jp/~sjn/TANGLE/. PMID:22319565

  11. LoopX: A Graphical User Interface-Based Database for Comprehensive Analysis and Comparative Evaluation of Loops from Protein Structures.

    PubMed

    Kadumuri, Rajashekar Varma; Vadrevu, Ramakrishna

    2017-10-01

    Due to their crucial role in function, folding, and stability, protein loops are being targeted for grafting/designing to create novel or alter existing functionality and improve stability and foldability. With a view to facilitate a thorough analysis and effectual search options for extracting and comparing loops for sequence and structural compatibility, we developed, LoopX a comprehensively compiled library of sequence and conformational features of ∼700,000 loops from protein structures. The database equipped with a graphical user interface is empowered with diverse query tools and search algorithms, with various rendering options to visualize the sequence- and structural-level information along with hydrogen bonding patterns, backbone φ, ψ dihedral angles of both the target and candidate loops. Two new features (i) conservation of the polar/nonpolar environment and (ii) conservation of sequence and conformation of specific residues within the loops have also been incorporated in the search and retrieval of compatible loops for a chosen target loop. Thus, the LoopX server not only serves as a database and visualization tool for sequence and structural analysis of protein loops but also aids in extracting and comparing candidate loops for a given target loop based on user-defined search options.

  12. The standard operating procedure of the DOE-JGI Microbial Genome Annotation Pipeline (MGAP v.4).

    PubMed

    Huntemann, Marcel; Ivanova, Natalia N; Mavromatis, Konstantinos; Tripp, H James; Paez-Espino, David; Palaniappan, Krishnaveni; Szeto, Ernest; Pillay, Manoj; Chen, I-Min A; Pati, Amrita; Nielsen, Torben; Markowitz, Victor M; Kyrpides, Nikos C

    2015-01-01

    The DOE-JGI Microbial Genome Annotation Pipeline performs structural and functional annotation of microbial genomes that are further included into the Integrated Microbial Genome comparative analysis system. MGAP is applied to assembled nucleotide sequence datasets that are provided via the IMG submission site. Dataset submission for annotation first requires project and associated metadata description in GOLD. The MGAP sequence data processing consists of feature prediction including identification of protein-coding genes, non-coding RNAs and regulatory RNA features, as well as CRISPR elements. Structural annotation is followed by assignment of protein product names and functions.

  13. Prediction of Protein-Protein Interaction Sites by Random Forest Algorithm with mRMR and IFS

    PubMed Central

    Li, Bi-Qing; Feng, Kai-Yan; Chen, Lei; Huang, Tao; Cai, Yu-Dong

    2012-01-01

    Prediction of protein-protein interaction (PPI) sites is one of the most challenging problems in computational biology. Although great progress has been made by employing various machine learning approaches with numerous characteristic features, the problem is still far from being solved. In this study, we developed a novel predictor based on Random Forest (RF) algorithm with the Minimum Redundancy Maximal Relevance (mRMR) method followed by incremental feature selection (IFS). We incorporated features of physicochemical/biochemical properties, sequence conservation, residual disorder, secondary structure and solvent accessibility. We also included five 3D structural features to predict protein-protein interaction sites and achieved an overall accuracy of 0.672997 and MCC of 0.347977. Feature analysis showed that 3D structural features such as Depth Index (DPX) and surface curvature (SC) contributed most to the prediction of protein-protein interaction sites. It was also shown via site-specific feature analysis that the features of individual residues from PPI sites contribute most to the determination of protein-protein interaction sites. It is anticipated that our prediction method will become a useful tool for identifying PPI sites, and that the feature analysis described in this paper will provide useful insights into the mechanisms of interaction. PMID:22937126

  14. A TALE-inspired computational screen for proteins that contain approximate tandem repeats.

    PubMed

    Perycz, Malgorzata; Krwawicz, Joanna; Bochtler, Matthias

    2017-01-01

    TAL (transcription activator-like) effectors (TALEs) are bacterial proteins that are secreted from bacteria to plant cells to act as transcriptional activators. TALEs and related proteins (RipTALs, BurrH, MOrTL1 and MOrTL2) contain approximate tandem repeats that differ in conserved positions that define specificity. Using PERL, we screened ~47 million protein sequences for TALE-like architecture characterized by approximate tandem repeats (between 30 and 43 amino acids in length) and sequence variability in conserved positions, without requiring sequence similarity to TALEs. Candidate proteins were scored according to their propensity for nuclear localization, secondary structure, repeat sequence complexity, as well as covariation and predicted structural proximity of variable residues. Biological context was tentatively inferred from co-occurrence of other domains and interactome predictions. Approximate repeats with TALE-like features that merit experimental characterization were found in a protein of chestnut blight fungus, a eukaryotic plant pathogen.

  15. A TALE-inspired computational screen for proteins that contain approximate tandem repeats

    PubMed Central

    Krwawicz, Joanna

    2017-01-01

    TAL (transcription activator-like) effectors (TALEs) are bacterial proteins that are secreted from bacteria to plant cells to act as transcriptional activators. TALEs and related proteins (RipTALs, BurrH, MOrTL1 and MOrTL2) contain approximate tandem repeats that differ in conserved positions that define specificity. Using PERL, we screened ~47 million protein sequences for TALE-like architecture characterized by approximate tandem repeats (between 30 and 43 amino acids in length) and sequence variability in conserved positions, without requiring sequence similarity to TALEs. Candidate proteins were scored according to their propensity for nuclear localization, secondary structure, repeat sequence complexity, as well as covariation and predicted structural proximity of variable residues. Biological context was tentatively inferred from co-occurrence of other domains and interactome predictions. Approximate repeats with TALE-like features that merit experimental characterization were found in a protein of chestnut blight fungus, a eukaryotic plant pathogen. PMID:28617832

  16. Single helically folded aromatic oligoamides that mimic the charge surface of double-stranded B-DNA

    NASA Astrophysics Data System (ADS)

    Ziach, Krzysztof; Chollet, Céline; Parissi, Vincent; Prabhakaran, Panchami; Marchivie, Mathieu; Corvaglia, Valentina; Bose, Partha Pratim; Laxmi-Reddy, Katta; Godde, Frédéric; Schmitter, Jean-Marie; Chaignepain, Stéphane; Pourquier, Philippe; Huc, Ivan

    2018-05-01

    Numerous essential biomolecular processes require the recognition of DNA surface features by proteins. Molecules mimicking these features could potentially act as decoys and interfere with pharmacologically or therapeutically relevant protein-DNA interactions. Although naturally occurring DNA-mimicking proteins have been described, synthetic tunable molecules that mimic the charge surface of double-stranded DNA are not known. Here, we report the design, synthesis and structural characterization of aromatic oligoamides that fold into single helical conformations and display a double helical array of negatively charged residues in positions that match the phosphate moieties in B-DNA. These molecules were able to inhibit several enzymes possessing non-sequence-selective DNA-binding properties, including topoisomerase 1 and HIV-1 integrase, presumably through specific foldamer-protein interactions, whereas sequence-selective enzymes were not inhibited. Such modular and synthetically accessible DNA mimics provide a versatile platform to design novel inhibitors of protein-DNA interactions.

  17. Navigating through the Jungle of Allergens: Features and Applications of Allergen Databases.

    PubMed

    Radauer, Christian

    2017-01-01

    The increasing number of available data on allergenic proteins demanded the establishment of structured, freely accessible allergen databases. In this review article, features and applications of 6 of the most widely used allergen databases are discussed. The WHO/IUIS Allergen Nomenclature Database is the official resource of allergen designations. Allergome is the most comprehensive collection of data on allergens and allergen sources. AllergenOnline is aimed at providing a peer-reviewed database of allergen sequences for prediction of allergenicity of proteins, such as those planned to be inserted into genetically modified crops. The Structural Database of Allergenic Proteins (SDAP) provides a database of allergen sequences, structures, and epitopes linked to bioinformatics tools for sequence analysis and comparison. The Immune Epitope Database (IEDB) is the largest repository of T-cell, B-cell, and major histocompatibility complex protein epitopes including epitopes of allergens. AllFam classifies allergens into families of evolutionarily related proteins using definitions from the Pfam protein family database. These databases contain mostly overlapping data, but also show differences in terms of their targeted users, the criteria for including allergens, data shown for each allergen, and the availability of bioinformatics tools. © 2017 S. Karger AG, Basel.

  18. Protein fold recognition using geometric kernel data fusion.

    PubMed

    Zakeri, Pooya; Jeuris, Ben; Vandebril, Raf; Moreau, Yves

    2014-07-01

    Various approaches based on features extracted from protein sequences and often machine learning methods have been used in the prediction of protein folds. Finding an efficient technique for integrating these different protein features has received increasing attention. In particular, kernel methods are an interesting class of techniques for integrating heterogeneous data. Various methods have been proposed to fuse multiple kernels. Most techniques for multiple kernel learning focus on learning a convex linear combination of base kernels. In addition to the limitation of linear combinations, working with such approaches could cause a loss of potentially useful information. We design several techniques to combine kernel matrices by taking more involved, geometry inspired means of these matrices instead of convex linear combinations. We consider various sequence-based protein features including information extracted directly from position-specific scoring matrices and local sequence alignment. We evaluate our methods for classification on the SCOP PDB-40D benchmark dataset for protein fold recognition. The best overall accuracy on the protein fold recognition test set obtained by our methods is ∼ 86.7%. This is an improvement over the results of the best existing approach. Moreover, our computational model has been developed by incorporating the functional domain composition of proteins through a hybridization model. It is observed that by using our proposed hybridization model, the protein fold recognition accuracy is further improved to 89.30%. Furthermore, we investigate the performance of our approach on the protein remote homology detection problem by fusing multiple string kernels. The MATLAB code used for our proposed geometric kernel fusion frameworks are publicly available at http://people.cs.kuleuven.be/∼raf.vandebril/homepage/software/geomean.php?menu=5/. © The Author 2014. Published by Oxford University Press.

  19. Distribution of genotype network sizes in sequence-to-structure genotype-phenotype maps.

    PubMed

    Manrubia, Susanna; Cuesta, José A

    2017-04-01

    An essential quantity to ensure evolvability of populations is the navigability of the genotype space. Navigability, understood as the ease with which alternative phenotypes are reached, relies on the existence of sufficiently large and mutually attainable genotype networks. The size of genotype networks (e.g. the number of RNA sequences folding into a particular secondary structure or the number of DNA sequences coding for the same protein structure) is astronomically large in all functional molecules investigated: an exhaustive experimental or computational study of all RNA folds or all protein structures becomes impossible even for moderately long sequences. Here, we analytically derive the distribution of genotype network sizes for a hierarchy of models which successively incorporate features of increasingly realistic sequence-to-structure genotype-phenotype maps. The main feature of these models relies on the characterization of each phenotype through a prototypical sequence whose sites admit a variable fraction of letters of the alphabet. Our models interpolate between two limit distributions: a power-law distribution, when the ordering of sites in the prototypical sequence is strongly constrained, and a lognormal distribution, as suggested for RNA, when different orderings of the same set of sites yield different phenotypes. Our main result is the qualitative and quantitative identification of those features of sequence-to-structure maps that lead to different distributions of genotype network sizes. © 2017 The Author(s).

  20. NMRDSP: an accurate prediction of protein shape strings from NMR chemical shifts and sequence data.

    PubMed

    Mao, Wusong; Cong, Peisheng; Wang, Zhiheng; Lu, Longjian; Zhu, Zhongliang; Li, Tonghua

    2013-01-01

    Shape string is structural sequence and is an extremely important structure representation of protein backbone conformations. Nuclear magnetic resonance chemical shifts give a strong correlation with the local protein structure, and are exploited to predict protein structures in conjunction with computational approaches. Here we demonstrate a novel approach, NMRDSP, which can accurately predict the protein shape string based on nuclear magnetic resonance chemical shifts and structural profiles obtained from sequence data. The NMRDSP uses six chemical shifts (HA, H, N, CA, CB and C) and eight elements of structure profiles as features, a non-redundant set (1,003 entries) as the training set, and a conditional random field as a classification algorithm. For an independent testing set (203 entries), we achieved an accuracy of 75.8% for S8 (the eight states accuracy) and 87.8% for S3 (the three states accuracy). This is higher than only using chemical shifts or sequence data, and confirms that the chemical shift and the structure profile are significant features for shape string prediction and their combination prominently improves the accuracy of the predictor. We have constructed the NMRDSP web server and believe it could be employed to provide a solid platform to predict other protein structures and functions. The NMRDSP web server is freely available at http://cal.tongji.edu.cn/NMRDSP/index.jsp.

  1. Comparative modeling without implicit sequence alignments.

    PubMed

    Kolinski, Andrzej; Gront, Dominik

    2007-10-01

    The number of known protein sequences is about thousand times larger than the number of experimentally solved 3D structures. For more than half of the protein sequences a close or distant structural analog could be identified. The key starting point in a classical comparative modeling is to generate the best possible sequence alignment with a template or templates. With decreasing sequence similarity, the number of errors in the alignments increases and these errors are the main causes of the decreasing accuracy of the molecular models generated. Here we propose a new approach to comparative modeling, which does not require the implicit alignment - the model building phase explores geometric, evolutionary and physical properties of a template (or templates). The proposed method requires prior identification of a template, although the initial sequence alignment is ignored. The model is built using a very efficient reduced representation search engine CABS to find the best possible superposition of the query protein onto the template represented as a 3D multi-featured scaffold. The criteria used include: sequence similarity, predicted secondary structure consistency, local geometric features and hydrophobicity profile. For more difficult cases, the new method qualitatively outperforms existing schemes of comparative modeling. The algorithm unifies de novo modeling, 3D threading and sequence-based methods. The main idea is general and could be easily combined with other efficient modeling tools as Rosetta, UNRES and others.

  2. rpiCOOL: A tool for In Silico RNA-protein interaction detection using random forest.

    PubMed

    Akbaripour-Elahabad, Mohammad; Zahiri, Javad; Rafeh, Reza; Eslami, Morteza; Azari, Mahboobeh

    2016-08-07

    Understanding the principle of RNA-protein interactions (RPIs) is of critical importance to provide insights into post-transcriptional gene regulation and is useful to guide studies about many complex diseases. The limitations and difficulties associated with experimental determination of RPIs, call an urgent need to computational methods for RPI prediction. In this paper, we proposed a machine learning method to detect RNA-protein interactions based on sequence information. We used motif information and repetitive patterns, which have been extracted from experimentally validated RNA-protein interactions, in combination with sequence composition as descriptors to build a model to RPI prediction via a random forest classifier. About 20% of the "sequence motifs" and "nucleotide composition" features have been selected as the informative features with the feature selection methods. These results suggest that these two feature types contribute effectively in RPI detection. Results of 10-fold cross-validation experiments on three non-redundant benchmark datasets show a better performance of the proposed method in comparison with the current state-of-the-art methods in terms of various performance measures. In addition, the results revealed that the accuracy of the RPI prediction methods could vary considerably across different organisms. We have implemented the proposed method, namely rpiCOOL, as a stand-alone tool with a user friendly graphical user interface (GUI) that enables the researchers to predict RNA-protein interaction. The rpiCOOL is freely available at http://biocool.ir/rpicool.html for non-commercial uses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. RNABindRPlus: a predictor that combines machine learning and sequence homology-based methods to improve the reliability of predicted RNA-binding residues in proteins.

    PubMed

    Walia, Rasna R; Xue, Li C; Wilkins, Katherine; El-Manzalawy, Yasser; Dobbs, Drena; Honavar, Vasant

    2014-01-01

    Protein-RNA interactions are central to essential cellular processes such as protein synthesis and regulation of gene expression and play roles in human infectious and genetic diseases. Reliable identification of protein-RNA interfaces is critical for understanding the structural bases and functional implications of such interactions and for developing effective approaches to rational drug design. Sequence-based computational methods offer a viable, cost-effective way to identify putative RNA-binding residues in RNA-binding proteins. Here we report two novel approaches: (i) HomPRIP, a sequence homology-based method for predicting RNA-binding sites in proteins; (ii) RNABindRPlus, a new method that combines predictions from HomPRIP with those from an optimized Support Vector Machine (SVM) classifier trained on a benchmark dataset of 198 RNA-binding proteins. Although highly reliable, HomPRIP cannot make predictions for the unaligned parts of query proteins and its coverage is limited by the availability of close sequence homologs of the query protein with experimentally determined RNA-binding sites. RNABindRPlus overcomes these limitations. We compared the performance of HomPRIP and RNABindRPlus with that of several state-of-the-art predictors on two test sets, RB44 and RB111. On a subset of proteins for which homologs with experimentally determined interfaces could be reliably identified, HomPRIP outperformed all other methods achieving an MCC of 0.63 on RB44 and 0.83 on RB111. RNABindRPlus was able to predict RNA-binding residues of all proteins in both test sets, achieving an MCC of 0.55 and 0.37, respectively, and outperforming all other methods, including those that make use of structure-derived features of proteins. More importantly, RNABindRPlus outperforms all other methods for any choice of tradeoff between precision and recall. An important advantage of both HomPRIP and RNABindRPlus is that they rely on readily available sequence and sequence-derived features of RNA-binding proteins. A webserver implementation of both methods is freely available at http://einstein.cs.iastate.edu/RNABindRPlus/.

  4. SVM-PB-Pred: SVM based protein block prediction method using sequence profiles and secondary structures.

    PubMed

    Suresh, V; Parthasarathy, S

    2014-01-01

    We developed a support vector machine based web server called SVM-PB-Pred, to predict the Protein Block for any given amino acid sequence. The input features of SVM-PB-Pred include i) sequence profiles (PSSM) and ii) actual secondary structures (SS) from DSSP method or predicted secondary structures from NPS@ and GOR4 methods. There were three combined input features PSSM+SS(DSSP), PSSM+SS(NPS@) and PSSM+SS(GOR4) used to test and train the SVM models. Similarly, four datasets RS90, DB433, LI1264 and SP1577 were used to develop the SVM models. These four SVM models developed were tested using three different benchmarking tests namely; (i) self consistency, (ii) seven fold cross validation test and (iii) independent case test. The maximum possible prediction accuracy of ~70% was observed in self consistency test for the SVM models of both LI1264 and SP1577 datasets, where PSSM+SS(DSSP) input features was used to test. The prediction accuracies were reduced to ~53% for PSSM+SS(NPS@) and ~43% for PSSM+SS(GOR4) in independent case test, for the SVM models of above two same datasets. Using our method, it is possible to predict the protein block letters for any query protein sequence with ~53% accuracy, when the SP1577 dataset and predicted secondary structure from NPS@ server were used. The SVM-PB-Pred server can be freely accessed through http://bioinfo.bdu.ac.in/~svmpbpred.

  5. Sequence fingerprints distinguish erroneous from correct predictions of intrinsically disordered protein regions.

    PubMed

    Saravanan, Konda Mani; Dunker, A Keith; Krishnaswamy, Sankaran

    2017-12-27

    More than 60 prediction methods for intrinsically disordered proteins (IDPs) have been developed over the years, many of which are accessible on the World Wide Web. Nearly, all of these predictors give balanced accuracies in the ~65%-~80% range. Since predictors are not perfect, further studies are required to uncover the role of amino acid residues in native IDP as compared to predicted IDP regions. In the present work, we make use of sequences of 100% predicted IDP regions, false positive disorder predictions, and experimentally determined IDP regions to distinguish the characteristics of native versus predicted IDP regions. A higher occurrence of asparagine is observed in sequences of native IDP regions but not in sequences of false positive predictions of IDP regions. The occurrences of certain combinations of amino acids at the pentapeptide level provide a distinguishing feature in the IDPs with respect to globular proteins. The distinguishing features presented in this paper provide insights into the sequence fingerprints of amino acid residues in experimentally determined as compared to predicted IDP regions. These observations and additional work along these lines should enable the development of improvements in the accuracy of disorder prediction algorithm.

  6. PVP-SVM: Sequence-Based Prediction of Phage Virion Proteins Using a Support Vector Machine

    PubMed Central

    Manavalan, Balachandran; Shin, Tae H.; Lee, Gwang

    2018-01-01

    Accurately identifying bacteriophage virion proteins from uncharacterized sequences is important to understand interactions between the phage and its host bacteria in order to develop new antibacterial drugs. However, identification of such proteins using experimental techniques is expensive and often time consuming; hence, development of an efficient computational algorithm for the prediction of phage virion proteins (PVPs) prior to in vitro experimentation is needed. Here, we describe a support vector machine (SVM)-based PVP predictor, called PVP-SVM, which was trained with 136 optimal features. A feature selection protocol was employed to identify the optimal features from a large set that included amino acid composition, dipeptide composition, atomic composition, physicochemical properties, and chain-transition-distribution. PVP-SVM achieved an accuracy of 0.870 during leave-one-out cross-validation, which was 6% higher than control SVM predictors trained with all features, indicating the efficiency of the feature selection method. Furthermore, PVP-SVM displayed superior performance compared to the currently available method, PVPred, and two other machine-learning methods developed in this study when objectively evaluated with an independent dataset. For the convenience of the scientific community, a user-friendly and publicly accessible web server has been established at www.thegleelab.org/PVP-SVM/PVP-SVM.html. PMID:29616000

  7. PVP-SVM: Sequence-Based Prediction of Phage Virion Proteins Using a Support Vector Machine.

    PubMed

    Manavalan, Balachandran; Shin, Tae H; Lee, Gwang

    2018-01-01

    Accurately identifying bacteriophage virion proteins from uncharacterized sequences is important to understand interactions between the phage and its host bacteria in order to develop new antibacterial drugs. However, identification of such proteins using experimental techniques is expensive and often time consuming; hence, development of an efficient computational algorithm for the prediction of phage virion proteins (PVPs) prior to in vitro experimentation is needed. Here, we describe a support vector machine (SVM)-based PVP predictor, called PVP-SVM, which was trained with 136 optimal features. A feature selection protocol was employed to identify the optimal features from a large set that included amino acid composition, dipeptide composition, atomic composition, physicochemical properties, and chain-transition-distribution. PVP-SVM achieved an accuracy of 0.870 during leave-one-out cross-validation, which was 6% higher than control SVM predictors trained with all features, indicating the efficiency of the feature selection method. Furthermore, PVP-SVM displayed superior performance compared to the currently available method, PVPred, and two other machine-learning methods developed in this study when objectively evaluated with an independent dataset. For the convenience of the scientific community, a user-friendly and publicly accessible web server has been established at www.thegleelab.org/PVP-SVM/PVP-SVM.html.

  8. Prediction of protein-protein interactions from amino acid sequences with ensemble extreme learning machines and principal component analysis.

    PubMed

    You, Zhu-Hong; Lei, Ying-Ke; Zhu, Lin; Xia, Junfeng; Wang, Bing

    2013-01-01

    Protein-protein interactions (PPIs) play crucial roles in the execution of various cellular processes and form the basis of biological mechanisms. Although large amount of PPIs data for different species has been generated by high-throughput experimental techniques, current PPI pairs obtained with experimental methods cover only a fraction of the complete PPI networks, and further, the experimental methods for identifying PPIs are both time-consuming and expensive. Hence, it is urgent and challenging to develop automated computational methods to efficiently and accurately predict PPIs. We present here a novel hierarchical PCA-EELM (principal component analysis-ensemble extreme learning machine) model to predict protein-protein interactions only using the information of protein sequences. In the proposed method, 11188 protein pairs retrieved from the DIP database were encoded into feature vectors by using four kinds of protein sequences information. Focusing on dimension reduction, an effective feature extraction method PCA was then employed to construct the most discriminative new feature set. Finally, multiple extreme learning machines were trained and then aggregated into a consensus classifier by majority voting. The ensembling of extreme learning machine removes the dependence of results on initial random weights and improves the prediction performance. When performed on the PPI data of Saccharomyces cerevisiae, the proposed method achieved 87.00% prediction accuracy with 86.15% sensitivity at the precision of 87.59%. Extensive experiments are performed to compare our method with state-of-the-art techniques Support Vector Machine (SVM). Experimental results demonstrate that proposed PCA-EELM outperforms the SVM method by 5-fold cross-validation. Besides, PCA-EELM performs faster than PCA-SVM based method. Consequently, the proposed approach can be considered as a new promising and powerful tools for predicting PPI with excellent performance and less time.

  9. Plastid-targeting peptides from the chlorarachniophyte Bigelowiella natans.

    PubMed

    Rogers, Matthew B; Archibald, John M; Field, Matthew A; Li, Catherine; Striepen, Boris; Keeling, Patrick J

    2004-01-01

    Chlorarachniophytes are marine amoeboflagellate protists that have acquired their plastid (chloroplast) through secondary endosymbiosis with a green alga. Like other algae, most of the proteins necessary for plastid function are encoded in the nuclear genome of the secondary host. These proteins are targeted to the organelle using a bipartite leader sequence consisting of a signal peptide (allowing entry in to the endomembrane system) and a chloroplast transit peptide (for transport across the chloroplast envelope membranes). We have examined the leader sequences from 45 full-length predicted plastid-targeted proteins from the chlorarachniophyte Bigelowiella natans with the goal of understanding important features of these sequences and possible conserved motifs. The chemical characteristics of these sequences were compared with a set of 10 B. natans endomembrane-targeted proteins and 38 cytosolic or nuclear proteins, which show that the signal peptides are similar to those of most other eukaryotes, while the transit peptides differ from those of other algae in some characteristics. Consistent with this, the leader sequence from one B. natans protein was tested for function in the apicomplexan parasite, Toxoplasma gondii, and shown to direct the secretion of the protein.

  10. MUFOLD-SS: New deep inception-inside-inception networks for protein secondary structure prediction.

    PubMed

    Fang, Chao; Shang, Yi; Xu, Dong

    2018-05-01

    Protein secondary structure prediction can provide important information for protein 3D structure prediction and protein functions. Deep learning offers a new opportunity to significantly improve prediction accuracy. In this article, a new deep neural network architecture, named the Deep inception-inside-inception (Deep3I) network, is proposed for protein secondary structure prediction and implemented as a software tool MUFOLD-SS. The input to MUFOLD-SS is a carefully designed feature matrix corresponding to the primary amino acid sequence of a protein, which consists of a rich set of information derived from individual amino acid, as well as the context of the protein sequence. Specifically, the feature matrix is a composition of physio-chemical properties of amino acids, PSI-BLAST profile, and HHBlits profile. MUFOLD-SS is composed of a sequence of nested inception modules and maps the input matrix to either eight states or three states of secondary structures. The architecture of MUFOLD-SS enables effective processing of local and global interactions between amino acids in making accurate prediction. In extensive experiments on multiple datasets, MUFOLD-SS outperformed the best existing methods and other deep neural networks significantly. MUFold-SS can be downloaded from http://dslsrv8.cs.missouri.edu/~cf797/MUFoldSS/download.html. © 2018 Wiley Periodicals, Inc.

  11. A reduced amino acid alphabet for understanding and designing protein adaptation to mutation.

    PubMed

    Etchebest, C; Benros, C; Bornot, A; Camproux, A-C; de Brevern, A G

    2007-11-01

    Protein sequence world is considerably larger than structure world. In consequence, numerous non-related sequences may adopt similar 3D folds and different kinds of amino acids may thus be found in similar 3D structures. By grouping together the 20 amino acids into a smaller number of representative residues with similar features, sequence world simplification may be achieved. This clustering hence defines a reduced amino acid alphabet (reduced AAA). Numerous works have shown that protein 3D structures are composed of a limited number of building blocks, defining a structural alphabet. We previously identified such an alphabet composed of 16 representative structural motifs (5-residues length) called Protein Blocks (PBs). This alphabet permits to translate the structure (3D) in sequence of PBs (1D). Based on these two concepts, reduced AAA and PBs, we analyzed the distributions of the different kinds of amino acids and their equivalences in the structural context. Different reduced sets were considered. Recurrent amino acid associations were found in all the local structures while other were specific of some local structures (PBs) (e.g Cysteine, Histidine, Threonine and Serine for the alpha-helix Ncap). Some similar associations are found in other reduced AAAs, e.g Ile with Val, or hydrophobic aromatic residues Trp with Phe and Tyr. We put into evidence interesting alternative associations. This highlights the dependence on the information considered (sequence or structure). This approach, equivalent to a substitution matrix, could be useful for designing protein sequence with different features (for instance adaptation to environment) while preserving mainly the 3D fold.

  12. Insights into the sequence parameters for halophilic adaptation.

    PubMed

    Nath, Abhigyan

    2016-03-01

    The sequence parameters for halophilic adaptation are still not fully understood. To understand the molecular basis of protein hypersaline adaptation, a detailed analysis is carried out, and investigated the likely association of protein sequence attributes to halophilic adaptation. A two-stage strategy is implemented, where in the first stage a supervised machine learning classifier is build, giving an overall accuracy of 86 % on stratified tenfold cross validation and 90 % on blind testing set, which are better than the previously reported results. The second stage consists of statistical analysis of sequence features and possible extraction of halophilic molecular signatures. The results of this study showed that, halophilic proteins are characterized by lower average charge, lower K content, and lower S content. A statistically significant preference/avoidance list of sequence parameters is also reported giving insights into the molecular basis of halophilic adaptation. D, Q, E, H, P, T, V are significantly preferred while N, C, I, K, M, F, S are significantly avoided. Among amino acid physicochemical groups, small, polar, charged, acidic and hydrophilic groups are preferred over other groups. The halophilic proteins also showed a preference for higher average flexibility, higher average polarity and avoidance for higher average positive charge, average bulkiness and average hydrophobicity. Some interesting trends observed in dipeptide counts are also reported. Further a systematic statistical comparison is undertaken for gaining insights into the sequence feature distribution in different residue structural states. The current analysis may facilitate the understanding of the mechanism of halophilic adaptation clearer, which can be further used for rational design of halophilic proteins.

  13. Application of sorting and next generation sequencing to study 5΄-UTR influence on translation efficiency in Escherichia coli

    PubMed Central

    Evfratov, Sergey A.; Osterman, Ilya A.; Komarova, Ekaterina S.; Pogorelskaya, Alexandra M.; Rubtsova, Maria P.; Zatsepin, Timofei S.; Semashko, Tatiana A.; Kostryukova, Elena S.; Mironov, Andrey A.; Burnaev, Evgeny; Krymova, Ekaterina; Gelfand, Mikhail S.; Govorun, Vadim M.; Bogdanov, Alexey A.; Dontsova, Olga A.

    2017-01-01

    Abstract Yield of protein per translated mRNA may vary by four orders of magnitude. Many studies analyzed the influence of mRNA features on the translation yield. However, a detailed understanding of how mRNA sequence determines its propensity to be translated is still missing. Here, we constructed a set of reporter plasmid libraries encoding CER fluorescent protein preceded by randomized 5΄ untranslated regions (5΄-UTR) and Red fluorescent protein (RFP) used as an internal control. Each library was transformed into Escherchia coli cells, separated by efficiency of CER mRNA translation by a cell sorter and subjected to next generation sequencing. We tested efficiency of translation of the CER gene preceded by each of 48 natural 5΄-UTR sequences and introduced random and designed mutations into natural and artificially selected 5΄-UTRs. Several distinct properties could be ascribed to a group of 5΄-UTRs most efficient in translation. In addition to known ones, several previously unrecognized features that contribute to the translation enhancement were found, such as low proportion of cytidine residues, multiple SD sequences and AG repeats. The latter could be identified as translation enhancer, albeit less efficient than SD sequence in several natural 5΄-UTRs. PMID:27899632

  14. High precision in protein contact prediction using fully convolutional neural networks and minimal sequence features.

    PubMed

    Jones, David T; Kandathil, Shaun M

    2018-04-26

    In addition to substitution frequency data from protein sequence alignments, many state-of-the-art methods for contact prediction rely on additional sources of information, or features, of protein sequences in order to predict residue-residue contacts, such as solvent accessibility, predicted secondary structure, and scores from other contact prediction methods. It is unclear how much of this information is needed to achieve state-of-the-art results. Here, we show that using deep neural network models, simple alignment statistics contain sufficient information to achieve state-of-the-art precision. Our prediction method, DeepCov, uses fully convolutional neural networks operating on amino-acid pair frequency or covariance data derived directly from sequence alignments, without using global statistical methods such as sparse inverse covariance or pseudolikelihood estimation. Comparisons against CCMpred and MetaPSICOV2 show that using pairwise covariance data calculated from raw alignments as input allows us to match or exceed the performance of both of these methods. Almost all of the achieved precision is obtained when considering relatively local windows (around 15 residues) around any member of a given residue pairing; larger window sizes have comparable performance. Assessment on a set of shallow sequence alignments (fewer than 160 effective sequences) indicates that the new method is substantially more precise than CCMpred and MetaPSICOV2 in this regime, suggesting that improved precision is attainable on smaller sequence families. Overall, the performance of DeepCov is competitive with the state of the art, and our results demonstrate that global models, which employ features from all parts of the input alignment when predicting individual contacts, are not strictly needed in order to attain precise contact predictions. DeepCov is freely available at https://github.com/psipred/DeepCov. d.t.jones@ucl.ac.uk.

  15. X-Ray Crystal Structure of the passenger domain of Plasmid encoded toxin(Pet), an Autotransporter Enterotoxin from enteroaggregative Escherichia coli (EAEC)

    PubMed Central

    Meza-Aguilar, J. Domingo; Fromme, Petra; Torres-Larios, Alfredo; Mendoza-Hernández, Guillermo; Hernandez-Chiñas, Ulises; Monteros, Roberto A. Arreguin-Espinosa de los; Campos, Carlos A. Eslava; Fromme, Raimund

    2014-01-01

    Autotransporters (ATs) represent a superfamily of proteins produced by a variety of pathogenic bacteria, which include the pathogenic groups of Escherichia coli (E. coli) associated with gastrointestinal and urinary tract infections. We present the first X-ray structure of the passenger domain from the Plasmid-encoded toxin (Pet) a 100 kDa protein at 2.3 Å resolution which is a cause of acute diarrhea in both developing and industrialized countries. Pet is a cytoskeleton-altering toxin that induces loss of actin stress fibers. While Pet (pdb code: 4OM9) shows only a sequence identity of 50 % compared to the closest related protein sequence, extracellular serine protease plasmid (EspP) the structural features of both proteins are conserved. A closer structural look reveals that Pet contains a β-pleaded sheet at the sequence region of residues 181-190, the corresponding structural domain in EspP consists of a coiled loop. Secondary, the Pet passenger domain features a more pronounced beta sheet between residues 135-143 compared to the structure of EspP. PMID:24530907

  16. The standard operating procedure of the DOE-JGI Microbial Genome Annotation Pipeline (MGAP v.4)

    DOE PAGES

    Huntemann, Marcel; Ivanova, Natalia N.; Mavromatis, Konstantinos; ...

    2015-10-26

    The DOE-JGI Microbial Genome Annotation Pipeline performs structural and functional annotation of microbial genomes that are further included into the Integrated Microbial Genome comparative analysis system. MGAP is applied to assembled nucleotide sequence datasets that are provided via the IMG submission site. Dataset submission for annotation first requires project and associated metadata description in GOLD. The MGAP sequence data processing consists of feature prediction including identification of protein-coding genes, non-coding RNAs and regulatory RNA features, as well as CRISPR elements. In conclusion, structural annotation is followed by assignment of protein product names and functions.

  17. The standard operating procedure of the DOE-JGI Microbial Genome Annotation Pipeline (MGAP v.4)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huntemann, Marcel; Ivanova, Natalia N.; Mavromatis, Konstantinos

    The DOE-JGI Microbial Genome Annotation Pipeline performs structural and functional annotation of microbial genomes that are further included into the Integrated Microbial Genome comparative analysis system. MGAP is applied to assembled nucleotide sequence datasets that are provided via the IMG submission site. Dataset submission for annotation first requires project and associated metadata description in GOLD. The MGAP sequence data processing consists of feature prediction including identification of protein-coding genes, non-coding RNAs and regulatory RNA features, as well as CRISPR elements. In conclusion, structural annotation is followed by assignment of protein product names and functions.

  18. PANTHER: a browsable database of gene products organized by biological function, using curated protein family and subfamily classification.

    PubMed

    Thomas, Paul D; Kejariwal, Anish; Campbell, Michael J; Mi, Huaiyu; Diemer, Karen; Guo, Nan; Ladunga, Istvan; Ulitsky-Lazareva, Betty; Muruganujan, Anushya; Rabkin, Steven; Vandergriff, Jody A; Doremieux, Olivier

    2003-01-01

    The PANTHER database was designed for high-throughput analysis of protein sequences. One of the key features is a simplified ontology of protein function, which allows browsing of the database by biological functions. Biologist curators have associated the ontology terms with groups of protein sequences rather than individual sequences. Statistical models (Hidden Markov Models, or HMMs) are built from each of these groups. The advantage of this approach is that new sequences can be automatically classified as they become available. To ensure accurate functional classification, HMMs are constructed not only for families, but also for functionally distinct subfamilies. Multiple sequence alignments and phylogenetic trees, including curator-assigned information, are available for each family. The current version of the PANTHER database includes training sequences from all organisms in the GenBank non-redundant protein database, and the HMMs have been used to classify gene products across the entire genomes of human, and Drosophila melanogaster. The ontology terms and protein families and subfamilies, as well as Drosophila gene c;assifications, can be browsed and searched for free. Due to outstanding contractual obligations, access to human gene classifications and to protein family trees and multiple sequence alignments will temporarily require a nominal registration fee. PANTHER is publicly available on the web at http://panther.celera.com.

  19. Structural and sequence features of two residue turns in beta-hairpins.

    PubMed

    Madan, Bharat; Seo, Sung Yong; Lee, Sun-Gu

    2014-09-01

    Beta-turns in beta-hairpins have been implicated as important sites in protein folding. In particular, two residue β-turns, the most abundant connecting elements in beta-hairpins, have been a major target for engineering protein stability and folding. In this study, we attempted to investigate and update the structural and sequence properties of two residue turns in beta-hairpins with a large data set. For this, 3977 beta-turns were extracted from 2394 nonhomologous protein chains and analyzed. First, the distribution, dihedral angles and twists of two residue turn types were determined, and compared with previous data. The trend of turn type occurrence and most structural features of the turn types were similar to previous results, but for the first time Type II turns in beta-hairpins were identified. Second, sequence motifs for the turn types were devised based on amino acid positional potentials of two-residue turns, and their distributions were examined. From this study, we could identify code-like sequence motifs for the two residue beta-turn types. Finally, structural and sequence properties of beta-strands in the beta-hairpins were analyzed, which revealed that the beta-strands showed no specific sequence and structural patterns for turn types. The analytical results in this study are expected to be a reference in the engineering or design of beta-hairpin turn structures and sequences. © 2014 Wiley Periodicals, Inc.

  20. Sequence signatures of allosteric proteins towards rational design.

    PubMed

    Namboodiri, Saritha; Verma, Chandra; Dhar, Pawan K; Giuliani, Alessandro; Nair, Achuthsankar S

    2010-12-01

    Allostery is the phenomenon of changes in the structure and activity of proteins that appear as a consequence of ligand binding at sites other than the active site. Studying mechanistic basis of allostery leading to protein design with predetermined functional endpoints is an important unmet need of synthetic biology. Here, we screened the amino acid sequence landscape in search of sequence-signatures of allostery using Recurrence Quantitative Analysis (RQA) method. A characteristic vector, comprised of 10 features extracted from RQA was defined for amino acid sequences. Using Principal Component Analysis, four factors were found to be important determinants of allosteric behavior. Our sequence-based predictor method shows 82.6% accuracy, 85.7% sensitivity and 77.9% specificity with the current dataset. Further, we show that Laminarity-Mean-hydrophobicity representing repeated hydrophobic patches is the most crucial indicator of allostery. To our best knowledge this is the first report that describes sequence determinants of allostery based on hydrophobicity. As an outcome of these findings, we plan to explore possibility of inducing allostery in proteins.

  1. Deep learning methods for protein torsion angle prediction.

    PubMed

    Li, Haiou; Hou, Jie; Adhikari, Badri; Lyu, Qiang; Cheng, Jianlin

    2017-09-18

    Deep learning is one of the most powerful machine learning methods that has achieved the state-of-the-art performance in many domains. Since deep learning was introduced to the field of bioinformatics in 2012, it has achieved success in a number of areas such as protein residue-residue contact prediction, secondary structure prediction, and fold recognition. In this work, we developed deep learning methods to improve the prediction of torsion (dihedral) angles of proteins. We design four different deep learning architectures to predict protein torsion angles. The architectures including deep neural network (DNN) and deep restricted Boltzmann machine (DRBN), deep recurrent neural network (DRNN) and deep recurrent restricted Boltzmann machine (DReRBM) since the protein torsion angle prediction is a sequence related problem. In addition to existing protein features, two new features (predicted residue contact number and the error distribution of torsion angles extracted from sequence fragments) are used as input to each of the four deep learning architectures to predict phi and psi angles of protein backbone. The mean absolute error (MAE) of phi and psi angles predicted by DRNN, DReRBM, DRBM and DNN is about 20-21° and 29-30° on an independent dataset. The MAE of phi angle is comparable to the existing methods, but the MAE of psi angle is 29°, 2° lower than the existing methods. On the latest CASP12 targets, our methods also achieved the performance better than or comparable to a state-of-the art method. Our experiment demonstrates that deep learning is a valuable method for predicting protein torsion angles. The deep recurrent network architecture performs slightly better than deep feed-forward architecture, and the predicted residue contact number and the error distribution of torsion angles extracted from sequence fragments are useful features for improving prediction accuracy.

  2. TFBSshape: a motif database for DNA shape features of transcription factor binding sites.

    PubMed

    Yang, Lin; Zhou, Tianyin; Dror, Iris; Mathelier, Anthony; Wasserman, Wyeth W; Gordân, Raluca; Rohs, Remo

    2014-01-01

    Transcription factor binding sites (TFBSs) are most commonly characterized by the nucleotide preferences at each position of the DNA target. Whereas these sequence motifs are quite accurate descriptions of DNA binding specificities of transcription factors (TFs), proteins recognize DNA as a three-dimensional object. DNA structural features refine the description of TF binding specificities and provide mechanistic insights into protein-DNA recognition. Existing motif databases contain extensive nucleotide sequences identified in binding experiments based on their selection by a TF. To utilize DNA shape information when analysing the DNA binding specificities of TFs, we developed a new tool, the TFBSshape database (available at http://rohslab.cmb.usc.edu/TFBSshape/), for calculating DNA structural features from nucleotide sequences provided by motif databases. The TFBSshape database can be used to generate heat maps and quantitative data for DNA structural features (i.e., minor groove width, roll, propeller twist and helix twist) for 739 TF datasets from 23 different species derived from the motif databases JASPAR and UniPROBE. As demonstrated for the basic helix-loop-helix and homeodomain TF families, our TFBSshape database can be used to compare, qualitatively and quantitatively, the DNA binding specificities of closely related TFs and, thus, uncover differential DNA binding specificities that are not apparent from nucleotide sequence alone.

  3. Using cellular automata to generate image representation for biological sequences.

    PubMed

    Xiao, X; Shao, S; Ding, Y; Huang, Z; Chen, X; Chou, K-C

    2005-02-01

    A novel approach to visualize biological sequences is developed based on cellular automata (Wolfram, S. Nature 1984, 311, 419-424), a set of discrete dynamical systems in which space and time are discrete. By transforming the symbolic sequence codes into the digital codes, and using some optimal space-time evolvement rules of cellular automata, a biological sequence can be represented by a unique image, the so-called cellular automata image. Many important features, which are originally hidden in a long and complicated biological sequence, can be clearly revealed thru its cellular automata image. With biological sequences entering into databanks rapidly increasing in the post-genomic era, it is anticipated that the cellular automata image will become a very useful vehicle for investigation into their key features, identification of their function, as well as revelation of their "fingerprint". It is anticipated that by using the concept of the pseudo amino acid composition (Chou, K.C. Proteins: Structure, Function, and Genetics, 2001, 43, 246-255), the cellular automata image approach can also be used to improve the quality of predicting protein attributes, such as structural class and subcellular location.

  4. Deciphering mRNA Sequence Determinants of Protein Production Rate

    NASA Astrophysics Data System (ADS)

    Szavits-Nossan, Juraj; Ciandrini, Luca; Romano, M. Carmen

    2018-03-01

    One of the greatest challenges in biophysical models of translation is to identify coding sequence features that affect the rate of translation and therefore the overall protein production in the cell. We propose an analytic method to solve a translation model based on the inhomogeneous totally asymmetric simple exclusion process, which allows us to unveil simple design principles of nucleotide sequences determining protein production rates. Our solution shows an excellent agreement when compared to numerical genome-wide simulations of S. cerevisiae transcript sequences and predicts that the first 10 codons, which is the ribosome footprint length on the mRNA, together with the value of the initiation rate, are the main determinants of protein production rate under physiological conditions. Finally, we interpret the obtained analytic results based on the evolutionary role of the codons' choice for regulating translation rates and ribosome densities.

  5. Improved detection of DNA-binding proteins via compression technology on PSSM information.

    PubMed

    Wang, Yubo; Ding, Yijie; Guo, Fei; Wei, Leyi; Tang, Jijun

    2017-01-01

    Since the importance of DNA-binding proteins in multiple biomolecular functions has been recognized, an increasing number of researchers are attempting to identify DNA-binding proteins. In recent years, the machine learning methods have become more and more compelling in the case of protein sequence data soaring, because of their favorable speed and accuracy. In this paper, we extract three features from the protein sequence, namely NMBAC (Normalized Moreau-Broto Autocorrelation), PSSM-DWT (Position-specific scoring matrix-Discrete Wavelet Transform), and PSSM-DCT (Position-specific scoring matrix-Discrete Cosine Transform). We also employ feature selection algorithm on these feature vectors. Then, these features are fed into the training SVM (support vector machine) model as classifier to predict DNA-binding proteins. Our method applys three datasets, namely PDB1075, PDB594 and PDB186, to evaluate the performance of our approach. The PDB1075 and PDB594 datasets are employed for Jackknife test and the PDB186 dataset is used for the independent test. Our method achieves the best accuracy in the Jacknife test, from 79.20% to 86.23% and 80.5% to 86.20% on PDB1075 and PDB594 datasets, respectively. In the independent test, the accuracy of our method comes to 76.3%. The performance of independent test also shows that our method has a certain ability to be effectively used for DNA-binding protein prediction. The data and source code are at https://doi.org/10.6084/m9.figshare.5104084.

  6. Sequence, Structure, and Context Preferences of Human RNA Binding Proteins.

    PubMed

    Dominguez, Daniel; Freese, Peter; Alexis, Maria S; Su, Amanda; Hochman, Myles; Palden, Tsultrim; Bazile, Cassandra; Lambert, Nicole J; Van Nostrand, Eric L; Pratt, Gabriel A; Yeo, Gene W; Graveley, Brenton R; Burge, Christopher B

    2018-06-07

    RNA binding proteins (RBPs) orchestrate the production, processing, and function of mRNAs. Here, we present the affinity landscapes of 78 human RBPs using an unbiased assay that determines the sequence, structure, and context preferences of these proteins in vitro by deep sequencing of bound RNAs. These data enable construction of "RNA maps" of RBP activity without requiring crosslinking-based assays. We found an unexpectedly low diversity of RNA motifs, implying frequent convergence of binding specificity toward a relatively small set of RNA motifs, many with low compositional complexity. Offsetting this trend, however, we observed extensive preferences for contextual features distinct from short linear RNA motifs, including spaced "bipartite" motifs, biased flanking nucleotide composition, and bias away from or toward RNA structure. Our results emphasize the importance of contextual features in RNA recognition, which likely enable targeting of distinct subsets of transcripts by different RBPs that recognize the same linear motif. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Identification of DNA-Binding Proteins Using Mixed Feature Representation Methods.

    PubMed

    Qu, Kaiyang; Han, Ke; Wu, Song; Wang, Guohua; Wei, Leyi

    2017-09-22

    DNA-binding proteins play vital roles in cellular processes, such as DNA packaging, replication, transcription, regulation, and other DNA-associated activities. The current main prediction method is based on machine learning, and its accuracy mainly depends on the features extraction method. Therefore, using an efficient feature representation method is important to enhance the classification accuracy. However, existing feature representation methods cannot efficiently distinguish DNA-binding proteins from non-DNA-binding proteins. In this paper, a multi-feature representation method, which combines three feature representation methods, namely, K-Skip-N-Grams, Information theory, and Sequential and structural features (SSF), is used to represent the protein sequences and improve feature representation ability. In addition, the classifier is a support vector machine. The mixed-feature representation method is evaluated using 10-fold cross-validation and a test set. Feature vectors, which are obtained from a combination of three feature extractions, show the best performance in 10-fold cross-validation both under non-dimensional reduction and dimensional reduction by max-relevance-max-distance. Moreover, the reduced mixed feature method performs better than the non-reduced mixed feature technique. The feature vectors, which are a combination of SSF and K-Skip-N-Grams, show the best performance in the test set. Among these methods, mixed features exhibit superiority over the single features.

  8. A novel representation for apoptosis protein subcellular localization prediction using support vector machine.

    PubMed

    Zhang, Li; Liao, Bo; Li, Dachao; Zhu, Wen

    2009-07-21

    Apoptosis, or programmed cell death, plays an important role in development of an organism. Obtaining information on subcellular location of apoptosis proteins is very helpful to understand the apoptosis mechanism. In this paper, based on the concept that the position distribution information of amino acids is closely related with the structure and function of proteins, we introduce the concept of distance frequency [Matsuda, S., Vert, J.P., Ueda, N., Toh, H., Akutsu, T., 2005. A novel representation of protein sequences for prediction of subcellular location using support vector machines. Protein Sci. 14, 2804-2813] and propose a novel way to calculate distance frequencies. In order to calculate the local features, each protein sequence is separated into p parts with the same length in our paper. Then we use the novel representation of protein sequences and adopt support vector machine to predict subcellular location. The overall prediction accuracy is significantly improved by jackknife test.

  9. A novel chlorophyll a/b binding (Cab) protein gene from petunia which encodes the lower molecular weight Cab precursor protein.

    PubMed

    Stayton, M M; Black, M; Bedbrook, J; Dunsmuir, P

    1986-12-22

    The 16 petunia Cab genes which have been characterized are all closely related at the nucleotide sequence level and they encode Cab precursor polypeptides which are similar in sequence and length. Here we describe a novel petunia Cab gene which encodes a unique Cab precursor protein. This protein is a member of the smallest class of Cab precursor proteins for which no gene has previously been assigned in petunia or any other species. The features of this Cab precursor protein are that it is shorter by 2-3 amino acids than the formerly characterized Cab precursors, its transit peptide sequence is unrelated, and the mature polypeptide is significantly diverged at the functionally important N terminus from other petunia Cab proteins. Gene structure also discriminates this gene which is the only intron containing Cab gene in petunia genomic DNA.

  10. Prediction of Protein Modification Sites of Pyrrolidone Carboxylic Acid Using mRMR Feature Selection and Analysis

    PubMed Central

    Zheng, Lu-Lu; Niu, Shen; Hao, Pei; Feng, KaiYan; Cai, Yu-Dong; Li, Yixue

    2011-01-01

    Pyrrolidone carboxylic acid (PCA) is formed during a common post-translational modification (PTM) of extracellular and multi-pass membrane proteins. In this study, we developed a new predictor to predict the modification sites of PCA based on maximum relevance minimum redundancy (mRMR) and incremental feature selection (IFS). We incorporated 727 features that belonged to 7 kinds of protein properties to predict the modification sites, including sequence conservation, residual disorder, amino acid factor, secondary structure and solvent accessibility, gain/loss of amino acid during evolution, propensity of amino acid to be conserved at protein-protein interface and protein surface, and deviation of side chain carbon atom number. Among these 727 features, 244 features were selected by mRMR and IFS as the optimized features for the prediction, with which the prediction model achieved a maximum of MCC of 0.7812. Feature analysis showed that all feature types contributed to the modification process. Further site-specific feature analysis showed that the features derived from PCA's surrounding sites contributed more to the determination of PCA sites than other sites. The detailed feature analysis in this paper might provide important clues for understanding the mechanism of the PCA formation and guide relevant experimental validations. PMID:22174779

  11. The tmRNA website

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hudson, Corey M.; Williams, Kelly P.

    We report that the transfer-messenger RNA (tmRNA) and its partner protein SmpB act together in resolving problems arising when translating bacterial ribosomes reach the end of mRNA with no stop codon. Their genes have been found in nearly all bacterial genomes and in some organelles. The tmRNA Website serves tmRNA sequences, alignments and feature annotations, and has recently moved to http: //bioinformatics.sandia.gov/tmrna/. New features include software used to find the sequences, an update raising the number of unique tmRNA sequences from 492 to 1716, and a database of SmpB sequences which are served along with the tmRNA sequence from themore » same organism.« less

  12. The tmRNA website

    DOE PAGES

    Hudson, Corey M.; Williams, Kelly P.

    2014-11-05

    We report that the transfer-messenger RNA (tmRNA) and its partner protein SmpB act together in resolving problems arising when translating bacterial ribosomes reach the end of mRNA with no stop codon. Their genes have been found in nearly all bacterial genomes and in some organelles. The tmRNA Website serves tmRNA sequences, alignments and feature annotations, and has recently moved to http: //bioinformatics.sandia.gov/tmrna/. New features include software used to find the sequences, an update raising the number of unique tmRNA sequences from 492 to 1716, and a database of SmpB sequences which are served along with the tmRNA sequence from themore » same organism.« less

  13. Prediction and analysis of protein solubility using a novel scoring card method with dipeptide composition

    PubMed Central

    2012-01-01

    Background Existing methods for predicting protein solubility on overexpression in Escherichia coli advance performance by using ensemble classifiers such as two-stage support vector machine (SVM) based classifiers and a number of feature types such as physicochemical properties, amino acid and dipeptide composition, accompanied with feature selection. It is desirable to develop a simple and easily interpretable method for predicting protein solubility, compared to existing complex SVM-based methods. Results This study proposes a novel scoring card method (SCM) by using dipeptide composition only to estimate solubility scores of sequences for predicting protein solubility. SCM calculates the propensities of 400 individual dipeptides to be soluble using statistic discrimination between soluble and insoluble proteins of a training data set. Consequently, the propensity scores of all dipeptides are further optimized using an intelligent genetic algorithm. The solubility score of a sequence is determined by the weighted sum of all propensity scores and dipeptide composition. To evaluate SCM by performance comparisons, four data sets with different sizes and variation degrees of experimental conditions were used. The results show that the simple method SCM with interpretable propensities of dipeptides has promising performance, compared with existing SVM-based ensemble methods with a number of feature types. Furthermore, the propensities of dipeptides and solubility scores of sequences can provide insights to protein solubility. For example, the analysis of dipeptide scores shows high propensity of α-helix structure and thermophilic proteins to be soluble. Conclusions The propensities of individual dipeptides to be soluble are varied for proteins under altered experimental conditions. For accurately predicting protein solubility using SCM, it is better to customize the score card of dipeptide propensities by using a training data set under the same specified experimental conditions. The proposed method SCM with solubility scores and dipeptide propensities can be easily applied to the protein function prediction problems that dipeptide composition features play an important role. Availability The used datasets, source codes of SCM, and supplementary files are available at http://iclab.life.nctu.edu.tw/SCM/. PMID:23282103

  14. ZifBASE: a database of zinc finger proteins and associated resources.

    PubMed

    Jayakanthan, Mannu; Muthukumaran, Jayaraman; Chandrasekar, Sanniyasi; Chawla, Konika; Punetha, Ankita; Sundar, Durai

    2009-09-09

    Information on the occurrence of zinc finger protein motifs in genomes is crucial to the developing field of molecular genome engineering. The knowledge of their target DNA-binding sequences is vital to develop chimeric proteins for targeted genome engineering and site-specific gene correction. There is a need to develop a computational resource of zinc finger proteins (ZFP) to identify the potential binding sites and its location, which reduce the time of in vivo task, and overcome the difficulties in selecting the specific type of zinc finger protein and the target site in the DNA sequence. ZifBASE provides an extensive collection of various natural and engineered ZFP. It uses standard names and a genetic and structural classification scheme to present data retrieved from UniProtKB, GenBank, Protein Data Bank, ModBase, Protein Model Portal and the literature. It also incorporates specialized features of ZFP including finger sequences and positions, number of fingers, physiochemical properties, classes, framework, PubMed citations with links to experimental structures (PDB, if available) and modeled structures of natural zinc finger proteins. ZifBASE provides information on zinc finger proteins (both natural and engineered ones), the number of finger units in each of the zinc finger proteins (with multiple fingers), the synergy between the adjacent fingers and their positions. Additionally, it gives the individual finger sequence and their target DNA site to which it binds for better and clear understanding on the interactions of adjacent fingers. The current version of ZifBASE contains 139 entries of which 89 are engineered ZFPs, containing 3-7F totaling to 296 fingers. There are 50 natural zinc finger protein entries ranging from 2-13F, totaling to 307 fingers. It has sequences and structures from literature, Protein Data Bank, ModBase and Protein Model Portal. The interface is cross linked to other public databases like UniprotKB, PDB, ModBase and Protein Model Portal and PubMed for making it more informative. A database is established to maintain the information of the sequence features, including the class, framework, number of fingers, residues, position, recognition site and physio-chemical properties (molecular weight, isoelectric point) of both natural and engineered zinc finger proteins and dissociation constant of few. ZifBASE can provide more effective and efficient way of accessing the zinc finger protein sequences and their target binding sites with the links to their three-dimensional structures. All the data and functions are available at the advanced web-based search interface http://web.iitd.ac.in/~sundar/zifbase.

  15. Prediction of residue-residue contact matrix for protein-protein interaction with Fisher score features and deep learning.

    PubMed

    Du, Tianchuan; Liao, Li; Wu, Cathy H; Sun, Bilin

    2016-11-01

    Protein-protein interactions play essential roles in many biological processes. Acquiring knowledge of the residue-residue contact information of two interacting proteins is not only helpful in annotating functions for proteins, but also critical for structure-based drug design. The prediction of the protein residue-residue contact matrix of the interfacial regions is challenging. In this work, we introduced deep learning techniques (specifically, stacked autoencoders) to build deep neural network models to tackled the residue-residue contact prediction problem. In tandem with interaction profile Hidden Markov Models, which was used first to extract Fisher score features from protein sequences, stacked autoencoders were deployed to extract and learn hidden abstract features. The deep learning model showed significant improvement over the traditional machine learning model, Support Vector Machines (SVM), with the overall accuracy increased by 15% from 65.40% to 80.82%. We showed that the stacked autoencoders could extract novel features, which can be utilized by deep neural networks and other classifiers to enhance learning, out of the Fisher score features. It is further shown that deep neural networks have significant advantages over SVM in making use of the newly extracted features. Copyright © 2016. Published by Elsevier Inc.

  16. Conservation of hot regions in protein-protein interaction in evolution.

    PubMed

    Hu, Jing; Li, Jiarui; Chen, Nansheng; Zhang, Xiaolong

    2016-11-01

    The hot regions of protein-protein interactions refer to the active area which formed by those most important residues to protein combination process. With the research development on protein interactions, lots of predicted hot regions can be discovered efficiently by intelligent computing methods, while performing biology experiments to verify each every prediction is hardly to be done due to the time-cost and the complexity of the experiment. This study based on the research of hot spot residue conservations, the proposed method is used to verify authenticity of predicted hot regions that using machine learning algorithm combined with protein's biological features and sequence conservation, though multiple sequence alignment, module substitute matrix and sequence similarity to create conservation scoring algorithm, and then using threshold module to verify the conservation tendency of hot regions in evolution. This research work gives an effective method to verify predicted hot regions in protein-protein interactions, which also provides a useful way to deeply investigate the functional activities of protein hot regions. Copyright © 2016. Published by Elsevier Inc.

  17. Candida albicans Agglutinin-Like Sequence (Als) Family Vignettes: A Review of Als Protein Structure and Function

    PubMed Central

    Hoyer, Lois L.; Cota, Ernesto

    2016-01-01

    Approximately two decades have passed since the description of the first gene in the Candida albicans ALS (agglutinin-like sequence) family. Since that time, much has been learned about the composition of the family and the function of its encoded cell-surface glycoproteins. Solution of the structure of the Als adhesive domain provides the opportunity to evaluate the molecular basis for protein function. This review article is formatted as a series of fundamental questions and explores the diversity of the Als proteins, as well as their role in ligand binding, aggregative effects, and attachment to abiotic surfaces. Interaction of Als proteins with each other, their functional equivalence, and the effects of protein abundance on phenotypic conclusions are also examined. Structural features of Als proteins that may facilitate invasive function are considered. Conclusions that are firmly supported by the literature are presented while highlighting areas that require additional investigation to reveal basic features of the Als proteins, their relatedness to each other, and their roles in C. albicans biology. PMID:27014205

  18. CDSbank: taxonomy-aware extraction, selection, renaming and formatting of protein-coding DNA or amino acid sequences.

    PubMed

    Hazes, Bart

    2014-02-28

    Protein-coding DNA sequences and their corresponding amino acid sequences are routinely used to study relationships between sequence, structure, function, and evolution. The rapidly growing size of sequence databases increases the power of such comparative analyses but it makes it more challenging to prepare high quality sequence data sets with control over redundancy, quality, completeness, formatting, and labeling. Software tools for some individual steps in this process exist but manual intervention remains a common and time consuming necessity. CDSbank is a database that stores both the protein-coding DNA sequence (CDS) and amino acid sequence for each protein annotated in Genbank. CDSbank also stores Genbank feature annotation, a flag to indicate incomplete 5' and 3' ends, full taxonomic data, and a heuristic to rank the scientific interest of each species. This rich information allows fully automated data set preparation with a level of sophistication that aims to meet or exceed manual processing. Defaults ensure ease of use for typical scenarios while allowing great flexibility when needed. Access is via a free web server at http://hazeslab.med.ualberta.ca/CDSbank/. CDSbank presents a user-friendly web server to download, filter, format, and name large sequence data sets. Common usage scenarios can be accessed via pre-programmed default choices, while optional sections give full control over the processing pipeline. Particular strengths are: extract protein-coding DNA sequences just as easily as amino acid sequences, full access to taxonomy for labeling and filtering, awareness of incomplete sequences, and the ability to take one protein sequence and extract all synonymous CDS or identical protein sequences in other species. Finally, CDSbank can also create labeled property files to, for instance, annotate or re-label phylogenetic trees.

  19. Prediction of Peptide and Protein Propensity for Amyloid Formation

    PubMed Central

    Família, Carlos; Dennison, Sarah R.; Quintas, Alexandre; Phoenix, David A.

    2015-01-01

    Understanding which peptides and proteins have the potential to undergo amyloid formation and what driving forces are responsible for amyloid-like fiber formation and stabilization remains limited. This is mainly because proteins that can undergo structural changes, which lead to amyloid formation, are quite diverse and share no obvious sequence or structural homology, despite the structural similarity found in the fibrils. To address these issues, a novel approach based on recursive feature selection and feed-forward neural networks was undertaken to identify key features highly correlated with the self-assembly problem. This approach allowed the identification of seven physicochemical and biochemical properties of the amino acids highly associated with the self-assembly of peptides and proteins into amyloid-like fibrils (normalized frequency of β-sheet, normalized frequency of β-sheet from LG, weights for β-sheet at the window position of 1, isoelectric point, atom-based hydrophobic moment, helix termination parameter at position j+1 and ΔG° values for peptides extrapolated in 0 M urea). Moreover, these features enabled the development of a new predictor (available at http://cran.r-project.org/web/packages/appnn/index.html) capable of accurately and reliably predicting the amyloidogenic propensity from the polypeptide sequence alone with a prediction accuracy of 84.9 % against an external validation dataset of sequences with experimental in vitro, evidence of amyloid formation. PMID:26241652

  20. A versatile palindromic amphipathic repeat coding sequence horizontally distributed among diverse bacterial and eucaryotic microbes

    PubMed Central

    2010-01-01

    Background Intragenic tandem repeats occur throughout all domains of life and impart functional and structural variability to diverse translation products. Repeat proteins confer distinctive surface phenotypes to many unicellular organisms, including those with minimal genomes such as the wall-less bacterial monoderms, Mollicutes. One such repeat pattern in this clade is distributed in a manner suggesting its exchange by horizontal gene transfer (HGT). Expanding genome sequence databases reveal the pattern in a widening range of bacteria, and recently among eucaryotic microbes. We examined the genomic flux and consequences of the motif by determining its distribution, predicted structural features and association with membrane-targeted proteins. Results Using a refined hidden Markov model, we document a 25-residue protein sequence motif tandemly arrayed in variable-number repeats in ORFs lacking assigned functions. It appears sporadically in unicellular microbes from disparate bacterial and eucaryotic clades, representing diverse lifestyles and ecological niches that include host parasitic, marine and extreme environments. Tracts of the repeats predict a malleable configuration of recurring domains, with conserved hydrophobic residues forming an amphipathic secondary structure in which hydrophilic residues endow extensive sequence variation. Many ORFs with these domains also have membrane-targeting sequences that predict assorted topologies; others may comprise reservoirs of sequence variants. We demonstrate expressed variants among surface lipoproteins that distinguish closely related animal pathogens belonging to a subgroup of the Mollicutes. DNA sequences encoding the tandem domains display dyad symmetry. Moreover, in some taxa the domains occur in ORFs selectively associated with mobile elements. These features, a punctate phylogenetic distribution, and different patterns of dispersal in genomes of related taxa, suggest that the repeat may be disseminated by HGT and intra-genomic shuffling. Conclusions We describe novel features of PARCELs (Palindromic Amphipathic Repeat Coding ELements), a set of widely distributed repeat protein domains and coding sequences that were likely acquired through HGT by diverse unicellular microbes, further mobilized and diversified within genomes, and co-opted for expression in the membrane proteome of some taxa. Disseminated by multiple gene-centric vehicles, ORFs harboring these elements enhance accessory gene pools as part of the "mobilome" connecting genomes of various clades, in taxa sharing common niches. PMID:20626840

  1. An RNAi-Enhanced Logic Circuit for Cancer Specific Detection and Destruction

    DTIC Science & Technology

    2013-02-01

    monomeric protein secreted by Corynebacterium diphtheriae, and pro-apoptotic members of Bcl-2 family: mBax (Mus musculus), hBax ( Homo sapiens ), and its...Gata3 mStaple. Intron- feature sequences – donor site, branch point, poly- pyrimidine tract, and acceptor site – were selected based on previously...sequences found in literature our intron features were chosen according SplicePort [4], an online analyzer that detects the likelihood of splicing to

  2. Gene calling and bacterial genome annotation with BG7.

    PubMed

    Tobes, Raquel; Pareja-Tobes, Pablo; Manrique, Marina; Pareja-Tobes, Eduardo; Kovach, Evdokim; Alekhin, Alexey; Pareja, Eduardo

    2015-01-01

    New massive sequencing technologies are providing many bacterial genome sequences from diverse taxa but a refined annotation of these genomes is crucial for obtaining scientific findings and new knowledge. Thus, bacterial genome annotation has emerged as a key point to investigate in bacteria. Any efficient tool designed specifically to annotate bacterial genomes sequenced with massively parallel technologies has to consider the specific features of bacterial genomes (absence of introns and scarcity of nonprotein-coding sequence) and of next-generation sequencing (NGS) technologies (presence of errors and not perfectly assembled genomes). These features make it convenient to focus on coding regions and, hence, on protein sequences that are the elements directly related with biological functions. In this chapter we describe how to annotate bacterial genomes with BG7, an open-source tool based on a protein-centered gene calling/annotation paradigm. BG7 is specifically designed for the annotation of bacterial genomes sequenced with NGS. This tool is sequence error tolerant maintaining their capabilities for the annotation of highly fragmented genomes or for annotating mixed sequences coming from several genomes (as those obtained through metagenomics samples). BG7 has been designed with scalability as a requirement, with a computing infrastructure completely based on cloud computing (Amazon Web Services).

  3. Improving protein complex classification accuracy using amino acid composition profile.

    PubMed

    Huang, Chien-Hung; Chou, Szu-Yu; Ng, Ka-Lok

    2013-09-01

    Protein complex prediction approaches are based on the assumptions that complexes have dense protein-protein interactions and high functional similarity between their subunits. We investigated those assumptions by studying the subunits' interaction topology, sequence similarity and molecular function for human and yeast protein complexes. Inclusion of amino acids' physicochemical properties can provide better understanding of protein complex properties. Principal component analysis is carried out to determine the major features. Adopting amino acid composition profile information with the SVM classifier serves as an effective post-processing step for complexes classification. Improvement is based on primary sequence information only, which is easy to obtain. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Cloning of Giardia lamblia heat shock protein HSP70 homologs: implications regarding origin of eukaryotic cells and of endoplasmic reticulum.

    PubMed Central

    Gupta, R S; Aitken, K; Falah, M; Singh, B

    1994-01-01

    The genes for two different 70-kDa heat shock protein (HSP70) homologs have been cloned and sequenced from the protozoan Giardia lamblia. On the basis of their sequence features, one of these genes corresponds to the cytoplasmic form of HSP70. The second gene, on the basis of its characteristic N-terminal hydrophobic signal sequence and C-terminal endoplasmic reticulum (ER) retention sequence (Lys-Asp-Glu-Leu), is the equivalent of ER-resident GRP78 or the Bip family of proteins. Phylogenetic trees based on HSP70 sequences show that G. lamblia homologs show the deepest divergence among eukaryotic species. The identification of a GRP78 or Bip homolog in G. lamblia strongly suggests the existence of ER in this ancient eukaryote. Detailed phylogenetic analyses of HSP70 sequences by boot-strap neighbor-joining and maximum-parsimony methods show that the cytoplasmic and ER homologs form distinct subfamilies that evolved from a common eukaryotic ancestor by gene duplication that occurred very early in the evolution of eukaryotic cells. It is postulated that because of the essential "molecular chaperone" function of these proteins in translocation of other proteins across membranes, duplication of their genes accompanied the evolution of ER or nucleus in the eukaryotic cell ancestor. The presence in all eukaryotic cytoplasmic HSP70 homologs (including the cognate, heat-induced, and ER forms) of a number of autapomorphic sequence signatures that are not present in any prokaryotic or organellar homologs provides strong evidence regarding the monophyletic nature of eukaryotic lineage. Further, all eukaryotic HSP70 homologs share in common with the Gram-negative group of eubacteria a number of sequence features that are not present in any archaebacterium or Gram-positive bacterium, indicating their evolution from this group of organisms. Some implications of these findings regarding the evolution of eukaryotic cells and ER are discussed. Images PMID:8159675

  5. Prediction of protein structural classes by recurrence quantification analysis based on chaos game representation.

    PubMed

    Yang, Jian-Yi; Peng, Zhen-Ling; Yu, Zu-Guo; Zhang, Rui-Jie; Anh, Vo; Wang, Desheng

    2009-04-21

    In this paper, we intend to predict protein structural classes (alpha, beta, alpha+beta, or alpha/beta) for low-homology data sets. Two data sets were used widely, 1189 (containing 1092 proteins) and 25PDB (containing 1673 proteins) with sequence homology being 40% and 25%, respectively. We propose to decompose the chaos game representation of proteins into two kinds of time series. Then, a novel and powerful nonlinear analysis technique, recurrence quantification analysis (RQA), is applied to analyze these time series. For a given protein sequence, a total of 16 characteristic parameters can be calculated with RQA, which are treated as feature representation of protein sequences. Based on such feature representation, the structural class for each protein is predicted with Fisher's linear discriminant algorithm. The jackknife test is used to test and compare our method with other existing methods. The overall accuracies with step-by-step procedure are 65.8% and 64.2% for 1189 and 25PDB data sets, respectively. With one-against-others procedure used widely, we compare our method with five other existing methods. Especially, the overall accuracies of our method are 6.3% and 4.1% higher for the two data sets, respectively. Furthermore, only 16 parameters are used in our method, which is less than that used by other methods. This suggests that the current method may play a complementary role to the existing methods and is promising to perform the prediction of protein structural classes.

  6. Evolutionary and biophysical relationships among the papillomavirus E2 proteins.

    PubMed

    Blakaj, Dukagjin M; Fernandez-Fuentes, Narcis; Chen, Zigui; Hegde, Rashmi; Fiser, Andras; Burk, Robert D; Brenowitz, Michael

    2009-01-01

    Infection by human papillomavirus (HPV) may result in clinical conditions ranging from benign warts to invasive cancer. The HPV E2 protein represses oncoprotein transcription and is required for viral replication. HPV E2 binds to palindromic DNA sequences of highly conserved four base pair sequences flanking an identical length variable 'spacer'. E2 proteins directly contact the conserved but not the spacer DNA. Variation in naturally occurring spacer sequences results in differential protein affinity that is dependent on their sensitivity to the spacer DNA's unique conformational and/or dynamic properties. This article explores the biophysical character of this core viral protein with the goal of identifying characteristics that associated with risk of virally caused malignancy. The amino acid sequence, 3d structure and electrostatic features of the E2 protein DNA binding domain are highly conserved; specific interactions with DNA binding sites have also been conserved. In contrast, the E2 protein's transactivation domain does not have extensive surfaces of highly conserved residues. Rather, regions of high conservation are localized to small surface patches. Implications to cancer biology are discussed.

  7. SNBRFinder: A Sequence-Based Hybrid Algorithm for Enhanced Prediction of Nucleic Acid-Binding Residues.

    PubMed

    Yang, Xiaoxia; Wang, Jia; Sun, Jun; Liu, Rong

    2015-01-01

    Protein-nucleic acid interactions are central to various fundamental biological processes. Automated methods capable of reliably identifying DNA- and RNA-binding residues in protein sequence are assuming ever-increasing importance. The majority of current algorithms rely on feature-based prediction, but their accuracy remains to be further improved. Here we propose a sequence-based hybrid algorithm SNBRFinder (Sequence-based Nucleic acid-Binding Residue Finder) by merging a feature predictor SNBRFinderF and a template predictor SNBRFinderT. SNBRFinderF was established using the support vector machine whose inputs include sequence profile and other complementary sequence descriptors, while SNBRFinderT was implemented with the sequence alignment algorithm based on profile hidden Markov models to capture the weakly homologous template of query sequence. Experimental results show that SNBRFinderF was clearly superior to the commonly used sequence profile-based predictor and SNBRFinderT can achieve comparable performance to the structure-based template methods. Leveraging the complementary relationship between these two predictors, SNBRFinder reasonably improved the performance of both DNA- and RNA-binding residue predictions. More importantly, the sequence-based hybrid prediction reached competitive performance relative to our previous structure-based counterpart. Our extensive and stringent comparisons show that SNBRFinder has obvious advantages over the existing sequence-based prediction algorithms. The value of our algorithm is highlighted by establishing an easy-to-use web server that is freely accessible at http://ibi.hzau.edu.cn/SNBRFinder.

  8. Prediction of type III secretion signals in genomes of gram-negative bacteria.

    PubMed

    Löwer, Martin; Schneider, Gisbert

    2009-06-15

    Pathogenic bacteria infecting both animals as well as plants use various mechanisms to transport virulence factors across their cell membranes and channel these proteins into the infected host cell. The type III secretion system represents such a mechanism. Proteins transported via this pathway ("effector proteins") have to be distinguished from all other proteins that are not exported from the bacterial cell. Although a special targeting signal at the N-terminal end of effector proteins has been proposed in literature its exact characteristics remain unknown. In this study, we demonstrate that the signals encoded in the sequences of type III secretion system effectors can be consistently recognized and predicted by machine learning techniques. Known protein effectors were compiled from the literature and sequence databases, and served as training data for artificial neural networks and support vector machine classifiers. Common sequence features were most pronounced in the first 30 amino acids of the effector sequences. Classification accuracy yielded a cross-validated Matthews correlation of 0.63 and allowed for genome-wide prediction of potential type III secretion system effectors in 705 proteobacterial genomes (12% predicted candidates protein), their chromosomes (11%) and plasmids (13%), as well as 213 Firmicute genomes (7%). We present a signal prediction method together with comprehensive survey of potential type III secretion system effectors extracted from 918 published bacterial genomes. Our study demonstrates that the analyzed signal features are common across a wide range of species, and provides a substantial basis for the identification of exported pathogenic proteins as targets for future therapeutic intervention. The prediction software is publicly accessible from our web server (www.modlab.org).

  9. An Alignment-Free Algorithm in Comparing the Similarity of Protein Sequences Based on Pseudo-Markov Transition Probabilities among Amino Acids

    PubMed Central

    Li, Yushuang; Yang, Jiasheng; Zhang, Yi

    2016-01-01

    In this paper, we have proposed a novel alignment-free method for comparing the similarity of protein sequences. We first encode a protein sequence into a 440 dimensional feature vector consisting of a 400 dimensional Pseudo-Markov transition probability vector among the 20 amino acids, a 20 dimensional content ratio vector, and a 20 dimensional position ratio vector of the amino acids in the sequence. By evaluating the Euclidean distances among the representing vectors, we compare the similarity of protein sequences. We then apply this method into the ND5 dataset consisting of the ND5 protein sequences of 9 species, and the F10 and G11 datasets representing two of the xylanases containing glycoside hydrolase families, i.e., families 10 and 11. As a result, our method achieves a correlation coefficient of 0.962 with the canonical protein sequence aligner ClustalW in the ND5 dataset, much higher than those of other 5 popular alignment-free methods. In addition, we successfully separate the xylanases sequences in the F10 family and the G11 family and illustrate that the F10 family is more heat stable than the G11 family, consistent with a few previous studies. Moreover, we prove mathematically an identity equation involving the Pseudo-Markov transition probability vector and the amino acids content ratio vector. PMID:27918587

  10. GATA: A graphic alignment tool for comparative sequenceanalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nix, David A.; Eisen, Michael B.

    2005-01-01

    Several problems exist with current methods used to align DNA sequences for comparative sequence analysis. Most dynamic programming algorithms assume that conserved sequence elements are collinear. This assumption appears valid when comparing orthologous protein coding sequences. Functional constraints on proteins provide strong selective pressure against sequence inversions, and minimize sequence duplications and feature shuffling. For non-coding sequences this collinearity assumption is often invalid. For example, enhancers contain clusters of transcription factor binding sites that change in number, orientation, and spacing during evolution yet the enhancer retains its activity. Dotplot analysis is often used to estimate non-coding sequence relatedness. Yet dotmore » plots do not actually align sequences and thus cannot account well for base insertions or deletions. Moreover, they lack an adequate statistical framework for comparing sequence relatedness and are limited to pairwise comparisons. Lastly, dot plots and dynamic programming text outputs fail to provide an intuitive means for visualizing DNA alignments.« less

  11. Prediction of apoptosis protein locations with genetic algorithms and support vector machines through a new mode of pseudo amino acid composition.

    PubMed

    Kandaswamy, Krishna Kumar; Pugalenthi, Ganesan; Möller, Steffen; Hartmann, Enno; Kalies, Kai-Uwe; Suganthan, P N; Martinetz, Thomas

    2010-12-01

    Apoptosis is an essential process for controlling tissue homeostasis by regulating a physiological balance between cell proliferation and cell death. The subcellular locations of proteins performing the cell death are determined by mostly independent cellular mechanisms. The regular bioinformatics tools to predict the subcellular locations of such apoptotic proteins do often fail. This work proposes a model for the sorting of proteins that are involved in apoptosis, allowing us to both the prediction of their subcellular locations as well as the molecular properties that contributed to it. We report a novel hybrid Genetic Algorithm (GA)/Support Vector Machine (SVM) approach to predict apoptotic protein sequences using 119 sequence derived properties like frequency of amino acid groups, secondary structure, and physicochemical properties. GA is used for selecting a near-optimal subset of informative features that is most relevant for the classification. Jackknife cross-validation is applied to test the predictive capability of the proposed method on 317 apoptosis proteins. Our method achieved 85.80% accuracy using all 119 features and 89.91% accuracy for 25 features selected by GA. Our models were examined by a test dataset of 98 apoptosis proteins and obtained an overall accuracy of 90.34%. The results show that the proposed approach is promising; it is able to select small subsets of features and still improves the classification accuracy. Our model can contribute to the understanding of programmed cell death and drug discovery. The software and dataset are available at http://www.inb.uni-luebeck.de/tools-demos/apoptosis/GASVM.

  12. SMOQ: a tool for predicting the absolute residue-specific quality of a single protein model with support vector machines

    PubMed Central

    2014-01-01

    Background It is important to predict the quality of a protein structural model before its native structure is known. The method that can predict the absolute local quality of individual residues in a single protein model is rare, yet particularly needed for using, ranking and refining protein models. Results We developed a machine learning tool (SMOQ) that can predict the distance deviation of each residue in a single protein model. SMOQ uses support vector machines (SVM) with protein sequence and structural features (i.e. basic feature set), including amino acid sequence, secondary structures, solvent accessibilities, and residue-residue contacts to make predictions. We also trained a SVM model with two new additional features (profiles and SOV scores) on 20 CASP8 targets and found that including them can only improve the performance when real deviations between native and model are higher than 5Å. The SMOQ tool finally released uses the basic feature set trained on 85 CASP8 targets. Moreover, SMOQ implemented a way to convert predicted local quality scores into a global quality score. SMOQ was tested on the 84 CASP9 single-domain targets. The average difference between the residue-specific distance deviation predicted by our method and the actual distance deviation on the test data is 2.637Å. The global quality prediction accuracy of the tool is comparable to other good tools on the same benchmark. Conclusion SMOQ is a useful tool for protein single model quality assessment. Its source code and executable are available at: http://sysbio.rnet.missouri.edu/multicom_toolbox/. PMID:24776231

  13. SMOQ: a tool for predicting the absolute residue-specific quality of a single protein model with support vector machines.

    PubMed

    Cao, Renzhi; Wang, Zheng; Wang, Yiheng; Cheng, Jianlin

    2014-04-28

    It is important to predict the quality of a protein structural model before its native structure is known. The method that can predict the absolute local quality of individual residues in a single protein model is rare, yet particularly needed for using, ranking and refining protein models. We developed a machine learning tool (SMOQ) that can predict the distance deviation of each residue in a single protein model. SMOQ uses support vector machines (SVM) with protein sequence and structural features (i.e. basic feature set), including amino acid sequence, secondary structures, solvent accessibilities, and residue-residue contacts to make predictions. We also trained a SVM model with two new additional features (profiles and SOV scores) on 20 CASP8 targets and found that including them can only improve the performance when real deviations between native and model are higher than 5Å. The SMOQ tool finally released uses the basic feature set trained on 85 CASP8 targets. Moreover, SMOQ implemented a way to convert predicted local quality scores into a global quality score. SMOQ was tested on the 84 CASP9 single-domain targets. The average difference between the residue-specific distance deviation predicted by our method and the actual distance deviation on the test data is 2.637Å. The global quality prediction accuracy of the tool is comparable to other good tools on the same benchmark. SMOQ is a useful tool for protein single model quality assessment. Its source code and executable are available at: http://sysbio.rnet.missouri.edu/multicom_toolbox/.

  14. Content of intrinsic disorder influences the outcome of cell-free protein synthesis.

    PubMed

    Tokmakov, Alexander A; Kurotani, Atsushi; Ikeda, Mariko; Terazawa, Yumiko; Shirouzu, Mikako; Stefanov, Vasily; Sakurai, Tetsuya; Yokoyama, Shigeyuki

    2015-09-11

    Cell-free protein synthesis is used to produce proteins with various structural traits. Recent bioinformatics analyses indicate that more than half of eukaryotic proteins possess long intrinsically disordered regions. However, no systematic study concerning the connection between intrinsic disorder and expression success of cell-free protein synthesis has been presented until now. To address this issue, we examined correlations of the experimentally observed cell-free protein expression yields with the contents of intrinsic disorder bioinformatically predicted in the expressed sequences. This analysis revealed strong relationships between intrinsic disorder and protein amenability to heterologous cell-free expression. On the one hand, elevated disorder content was associated with the increased ratio of soluble expression. On the other hand, overall propensity for detectable protein expression decreased with disorder content. We further demonstrated that these tendencies are rooted in some distinct features of intrinsically disordered regions, such as low hydrophobicity, elevated surface accessibility and high abundance of sequence motifs for proteolytic degradation, including sites of ubiquitination and PEST sequences. Our findings suggest that identification of intrinsically disordered regions in the expressed amino acid sequences can be of practical use for predicting expression success and optimizing cell-free protein synthesis.

  15. The Universal Protein Resource (UniProt): an expanding universe of protein information.

    PubMed

    Wu, Cathy H; Apweiler, Rolf; Bairoch, Amos; Natale, Darren A; Barker, Winona C; Boeckmann, Brigitte; Ferro, Serenella; Gasteiger, Elisabeth; Huang, Hongzhan; Lopez, Rodrigo; Magrane, Michele; Martin, Maria J; Mazumder, Raja; O'Donovan, Claire; Redaschi, Nicole; Suzek, Baris

    2006-01-01

    The Universal Protein Resource (UniProt) provides a central resource on protein sequences and functional annotation with three database components, each addressing a key need in protein bioinformatics. The UniProt Knowledgebase (UniProtKB), comprising the manually annotated UniProtKB/Swiss-Prot section and the automatically annotated UniProtKB/TrEMBL section, is the preeminent storehouse of protein annotation. The extensive cross-references, functional and feature annotations and literature-based evidence attribution enable scientists to analyse proteins and query across databases. The UniProt Reference Clusters (UniRef) speed similarity searches via sequence space compression by merging sequences that are 100% (UniRef100), 90% (UniRef90) or 50% (UniRef50) identical. Finally, the UniProt Archive (UniParc) stores all publicly available protein sequences, containing the history of sequence data with links to the source databases. UniProt databases continue to grow in size and in availability of information. Recent and upcoming changes to database contents, formats, controlled vocabularies and services are described. New download availability includes all major releases of UniProtKB, sequence collections by taxonomic division and complete proteomes. A bibliography mapping service has been added, and an ID mapping service will be available soon. UniProt databases can be accessed online at http://www.uniprot.org or downloaded at ftp://ftp.uniprot.org/pub/databases/.

  16. A Novel Feature Extraction Method with Feature Selection to Identify Golgi-Resident Protein Types from Imbalanced Data

    PubMed Central

    Yang, Runtao; Zhang, Chengjin; Gao, Rui; Zhang, Lina

    2016-01-01

    The Golgi Apparatus (GA) is a major collection and dispatch station for numerous proteins destined for secretion, plasma membranes and lysosomes. The dysfunction of GA proteins can result in neurodegenerative diseases. Therefore, accurate identification of protein subGolgi localizations may assist in drug development and understanding the mechanisms of the GA involved in various cellular processes. In this paper, a new computational method is proposed for identifying cis-Golgi proteins from trans-Golgi proteins. Based on the concept of Common Spatial Patterns (CSP), a novel feature extraction technique is developed to extract evolutionary information from protein sequences. To deal with the imbalanced benchmark dataset, the Synthetic Minority Over-sampling Technique (SMOTE) is adopted. A feature selection method called Random Forest-Recursive Feature Elimination (RF-RFE) is employed to search the optimal features from the CSP based features and g-gap dipeptide composition. Based on the optimal features, a Random Forest (RF) module is used to distinguish cis-Golgi proteins from trans-Golgi proteins. Through the jackknife cross-validation, the proposed method achieves a promising performance with a sensitivity of 0.889, a specificity of 0.880, an accuracy of 0.885, and a Matthew’s Correlation Coefficient (MCC) of 0.765, which remarkably outperforms previous methods. Moreover, when tested on a common independent dataset, our method also achieves a significantly improved performance. These results highlight the promising performance of the proposed method to identify Golgi-resident protein types. Furthermore, the CSP based feature extraction method may provide guidelines for protein function predictions. PMID:26861308

  17. Automatic classification of protein structures using physicochemical parameters.

    PubMed

    Mohan, Abhilash; Rao, M Divya; Sunderrajan, Shruthi; Pennathur, Gautam

    2014-09-01

    Protein classification is the first step to functional annotation; SCOP and Pfam databases are currently the most relevant protein classification schemes. However, the disproportion in the number of three dimensional (3D) protein structures generated versus their classification into relevant superfamilies/families emphasizes the need for automated classification schemes. Predicting function of novel proteins based on sequence information alone has proven to be a major challenge. The present study focuses on the use of physicochemical parameters in conjunction with machine learning algorithms (Naive Bayes, Decision Trees, Random Forest and Support Vector Machines) to classify proteins into their respective SCOP superfamily/Pfam family, using sequence derived information. Spectrophores™, a 1D descriptor of the 3D molecular field surrounding a structure was used as a benchmark to compare the performance of the physicochemical parameters. The machine learning algorithms were modified to select features based on information gain for each SCOP superfamily/Pfam family. The effect of combining physicochemical parameters and spectrophores on classification accuracy (CA) was studied. Machine learning algorithms trained with the physicochemical parameters consistently classified SCOP superfamilies and Pfam families with a classification accuracy above 90%, while spectrophores performed with a CA of around 85%. Feature selection improved classification accuracy for both physicochemical parameters and spectrophores based machine learning algorithms. Combining both attributes resulted in a marginal loss of performance. Physicochemical parameters were able to classify proteins from both schemes with classification accuracy ranging from 90-96%. These results suggest the usefulness of this method in classifying proteins from amino acid sequences.

  18. BIOPEP database and other programs for processing bioactive peptide sequences.

    PubMed

    Minkiewicz, Piotr; Dziuba, Jerzy; Iwaniak, Anna; Dziuba, Marta; Darewicz, Małgorzata

    2008-01-01

    This review presents the potential for application of computational tools in peptide science based on a sample BIOPEP database and program as well as other programs and databases available via the World Wide Web. The BIOPEP application contains a database of biologically active peptide sequences and a program enabling construction of profiles of the potential biological activity of protein fragments, calculation of quantitative descriptors as measures of the value of proteins as potential precursors of bioactive peptides, and prediction of bonds susceptible to hydrolysis by endopeptidases in a protein chain. Other bioactive and allergenic peptide sequence databases are also presented. Programs enabling the construction of binary and multiple alignments between peptide sequences, the construction of sequence motifs attributed to a given type of bioactivity, searching for potential precursors of bioactive peptides, and the prediction of sites susceptible to proteolytic cleavage in protein chains are available via the Internet as are other approaches concerning secondary structure prediction and calculation of physicochemical features based on amino acid sequence. Programs for prediction of allergenic and toxic properties have also been developed. This review explores the possibilities of cooperation between various programs.

  19. A Multifeatures Fusion and Discrete Firefly Optimization Method for Prediction of Protein Tyrosine Sulfation Residues.

    PubMed

    Guo, Song; Liu, Chunhua; Zhou, Peng; Li, Yanling

    2016-01-01

    Tyrosine sulfation is one of the ubiquitous protein posttranslational modifications, where some sulfate groups are added to the tyrosine residues. It plays significant roles in various physiological processes in eukaryotic cells. To explore the molecular mechanism of tyrosine sulfation, one of the prerequisites is to correctly identify possible protein tyrosine sulfation residues. In this paper, a novel method was presented to predict protein tyrosine sulfation residues from primary sequences. By means of informative feature construction and elaborate feature selection and parameter optimization scheme, the proposed predictor achieved promising results and outperformed many other state-of-the-art predictors. Using the optimal features subset, the proposed method achieved mean MCC of 94.41% on the benchmark dataset, and a MCC of 90.09% on the independent dataset. The experimental performance indicated that our new proposed method could be effective in identifying the important protein posttranslational modifications and the feature selection scheme would be powerful in protein functional residues prediction research fields.

  20. A Multifeatures Fusion and Discrete Firefly Optimization Method for Prediction of Protein Tyrosine Sulfation Residues

    PubMed Central

    Liu, Chunhua; Zhou, Peng; Li, Yanling

    2016-01-01

    Tyrosine sulfation is one of the ubiquitous protein posttranslational modifications, where some sulfate groups are added to the tyrosine residues. It plays significant roles in various physiological processes in eukaryotic cells. To explore the molecular mechanism of tyrosine sulfation, one of the prerequisites is to correctly identify possible protein tyrosine sulfation residues. In this paper, a novel method was presented to predict protein tyrosine sulfation residues from primary sequences. By means of informative feature construction and elaborate feature selection and parameter optimization scheme, the proposed predictor achieved promising results and outperformed many other state-of-the-art predictors. Using the optimal features subset, the proposed method achieved mean MCC of 94.41% on the benchmark dataset, and a MCC of 90.09% on the independent dataset. The experimental performance indicated that our new proposed method could be effective in identifying the important protein posttranslational modifications and the feature selection scheme would be powerful in protein functional residues prediction research fields. PMID:27034949

  1. Prediction of protein-protein interactions from amino acid sequences with ensemble extreme learning machines and principal component analysis

    PubMed Central

    2013-01-01

    Background Protein-protein interactions (PPIs) play crucial roles in the execution of various cellular processes and form the basis of biological mechanisms. Although large amount of PPIs data for different species has been generated by high-throughput experimental techniques, current PPI pairs obtained with experimental methods cover only a fraction of the complete PPI networks, and further, the experimental methods for identifying PPIs are both time-consuming and expensive. Hence, it is urgent and challenging to develop automated computational methods to efficiently and accurately predict PPIs. Results We present here a novel hierarchical PCA-EELM (principal component analysis-ensemble extreme learning machine) model to predict protein-protein interactions only using the information of protein sequences. In the proposed method, 11188 protein pairs retrieved from the DIP database were encoded into feature vectors by using four kinds of protein sequences information. Focusing on dimension reduction, an effective feature extraction method PCA was then employed to construct the most discriminative new feature set. Finally, multiple extreme learning machines were trained and then aggregated into a consensus classifier by majority voting. The ensembling of extreme learning machine removes the dependence of results on initial random weights and improves the prediction performance. Conclusions When performed on the PPI data of Saccharomyces cerevisiae, the proposed method achieved 87.00% prediction accuracy with 86.15% sensitivity at the precision of 87.59%. Extensive experiments are performed to compare our method with state-of-the-art techniques Support Vector Machine (SVM). Experimental results demonstrate that proposed PCA-EELM outperforms the SVM method by 5-fold cross-validation. Besides, PCA-EELM performs faster than PCA-SVM based method. Consequently, the proposed approach can be considered as a new promising and powerful tools for predicting PPI with excellent performance and less time. PMID:23815620

  2. Phylogeny of isolates of Prunus necrotic ringspot virus from the Ilarvirus Ringtest and identification of group-specific features.

    PubMed

    Hammond, R W

    2003-06-01

    Isolates of Prunus necrotic ringspot virus (PNRSV) were examined to establish the level of naturally occurring sequence variation in the coat protein (CP) gene and to identify group-specific genome features that may prove valuable for the generation of diagnostic reagents. Phylogenetic analysis of a 452 bp sequence of 68 virus isolates, 20 obtained from the European Union Ilarvirus Ringtest held in October 1998, confirmed the clustering of the isolates into three distinct groups. Although no correlation was found between the sequence and host or geographic origin, there was a general trend for severe isolates to cluster into one group. Group-specific features have been identified for discrimination between virus strains.

  3. GeneSilico protein structure prediction meta-server.

    PubMed

    Kurowski, Michal A; Bujnicki, Janusz M

    2003-07-01

    Rigorous assessments of protein structure prediction have demonstrated that fold recognition methods can identify remote similarities between proteins when standard sequence search methods fail. It has been shown that the accuracy of predictions is improved when refined multiple sequence alignments are used instead of single sequences and if different methods are combined to generate a consensus model. There are several meta-servers available that integrate protein structure predictions performed by various methods, but they do not allow for submission of user-defined multiple sequence alignments and they seldom offer confidentiality of the results. We developed a novel WWW gateway for protein structure prediction, which combines the useful features of other meta-servers available, but with much greater flexibility of the input. The user may submit an amino acid sequence or a multiple sequence alignment to a set of methods for primary, secondary and tertiary structure prediction. Fold-recognition results (target-template alignments) are converted into full-atom 3D models and the quality of these models is uniformly assessed. A consensus between different FR methods is also inferred. The results are conveniently presented on-line on a single web page over a secure, password-protected connection. The GeneSilico protein structure prediction meta-server is freely available for academic users at http://genesilico.pl/meta.

  4. GeneSilico protein structure prediction meta-server

    PubMed Central

    Kurowski, Michal A.; Bujnicki, Janusz M.

    2003-01-01

    Rigorous assessments of protein structure prediction have demonstrated that fold recognition methods can identify remote similarities between proteins when standard sequence search methods fail. It has been shown that the accuracy of predictions is improved when refined multiple sequence alignments are used instead of single sequences and if different methods are combined to generate a consensus model. There are several meta-servers available that integrate protein structure predictions performed by various methods, but they do not allow for submission of user-defined multiple sequence alignments and they seldom offer confidentiality of the results. We developed a novel WWW gateway for protein structure prediction, which combines the useful features of other meta-servers available, but with much greater flexibility of the input. The user may submit an amino acid sequence or a multiple sequence alignment to a set of methods for primary, secondary and tertiary structure prediction. Fold-recognition results (target-template alignments) are converted into full-atom 3D models and the quality of these models is uniformly assessed. A consensus between different FR methods is also inferred. The results are conveniently presented on-line on a single web page over a secure, password-protected connection. The GeneSilico protein structure prediction meta-server is freely available for academic users at http://genesilico.pl/meta. PMID:12824313

  5. Grading of Gliomas by Using Radiomic Features on Multiple Magnetic Resonance Imaging (MRI) Sequences.

    PubMed

    Qin, Jiang-Bo; Liu, Zhenyu; Zhang, Hui; Shen, Chen; Wang, Xiao-Chun; Tan, Yan; Wang, Shuo; Wu, Xiao-Feng; Tian, Jie

    2017-05-07

    BACKGROUND Gliomas are the most common primary brain neoplasms. Misdiagnosis occurs in glioma grading due to an overlap in conventional MRI manifestations. The aim of the present study was to evaluate the power of radiomic features based on multiple MRI sequences - T2-Weighted-Imaging-FLAIR (FLAIR), T1-Weighted-Imaging-Contrast-Enhanced (T1-CE), and Apparent Diffusion Coefficient (ADC) map - in glioma grading, and to improve the power of glioma grading by combining features. MATERIAL AND METHODS Sixty-six patients with histopathologically proven gliomas underwent T2-FLAIR and T1WI-CE sequence scanning with some patients (n=63) also undergoing DWI scanning. A total of 114 radiomic features were derived with radiomic methods by using in-house software. All radiomic features were compared between high-grade gliomas (HGGs) and low-grade gliomas (LGGs). Features with significant statistical differences were selected for receiver operating characteristic (ROC) curve analysis. The relationships between significantly different radiomic features and glial fibrillary acidic protein (GFAP) expression were evaluated. RESULTS A total of 8 radiomic features from 3 MRI sequences displayed significant differences between LGGs and HGGs. FLAIR GLCM Cluster Shade, T1-CE GLCM Entropy, and ADC GLCM Homogeneity were the best features to use in differentiating LGGs and HGGs in each MRI sequence. The combined feature was best able to differentiate LGGs and HGGs, which improved the accuracy of glioma grading compared to the above features in each MRI sequence. A significant correlation was found between GFAP and T1-CE GLCM Entropy, as well as between GFAP and ADC GLCM Homogeneity. CONCLUSIONS The combined radiomic feature had the highest efficacy in distinguishing LGGs from HGGs.

  6. Prediction of protein secondary structure content for the twilight zone sequences.

    PubMed

    Homaeian, Leila; Kurgan, Lukasz A; Ruan, Jishou; Cios, Krzysztof J; Chen, Ke

    2007-11-15

    Secondary protein structure carries information about local structural arrangements, which include three major conformations: alpha-helices, beta-strands, and coils. Significant majority of successful methods for prediction of the secondary structure is based on multiple sequence alignment. However, multiple alignment fails to provide accurate results when a sequence comes from the twilight zone, that is, it is characterized by low (<30%) homology. To this end, we propose a novel method for prediction of secondary structure content through comprehensive sequence representation, called PSSC-core. The method uses a multiple linear regression model and introduces a comprehensive feature-based sequence representation to predict amount of helices and strands for sequences from the twilight zone. The PSSC-core method was tested and compared with two other state-of-the-art prediction methods on a set of 2187 twilight zone sequences. The results indicate that our method provides better predictions for both helix and strand content. The PSSC-core is shown to provide statistically significantly better results when compared with the competing methods, reducing the prediction error by 5-7% for helix and 7-9% for strand content predictions. The proposed feature-based sequence representation uses a comprehensive set of physicochemical properties that are custom-designed for each of the helix and strand content predictions. It includes composition and composition moment vectors, frequency of tetra-peptides associated with helical and strand conformations, various property-based groups like exchange groups, chemical groups of the side chains and hydrophobic group, auto-correlations based on hydrophobicity, side-chain masses, hydropathy, and conformational patterns for beta-sheets. The PSSC-core method provides an alternative for predicting the secondary structure content that can be used to validate and constrain results of other structure prediction methods. At the same time, it also provides useful insight into design of successful protein sequence representations that can be used in developing new methods related to prediction of different aspects of the secondary protein structure. (c) 2007 Wiley-Liss, Inc.

  7. Programmable DNA-binding proteins from Burkholderia provide a fresh perspective on the TALE-like repeat domain

    PubMed Central

    de Lange, Orlando; Wolf, Christina; Dietze, Jörn; Elsaesser, Janett; Morbitzer, Robert; Lahaye, Thomas

    2014-01-01

    The tandem repeats of transcription activator like effectors (TALEs) mediate sequence-specific DNA binding using a simple code. Naturally, TALEs are injected by Xanthomonas bacteria into plant cells to manipulate the host transcriptome. In the laboratory TALE DNA binding domains are reprogrammed and used to target a fused functional domain to a genomic locus of choice. Research into the natural diversity of TALE-like proteins may provide resources for the further improvement of current TALE technology. Here we describe TALE-like proteins from the endosymbiotic bacterium Burkholderia rhizoxinica, termed Bat proteins. Bat repeat domains mediate sequence-specific DNA binding with the same code as TALEs, despite less than 40% sequence identity. We show that Bat proteins can be adapted for use as transcription factors and nucleases and that sequence preferences can be reprogrammed. Unlike TALEs, the core repeats of each Bat protein are highly polymorphic. This feature allowed us to explore alternative strategies for the design of custom Bat repeat arrays, providing novel insights into the functional relevance of non-RVD residues. The Bat proteins offer fertile grounds for research into the creation of improved programmable DNA-binding proteins and comparative insights into TALE-like evolution. PMID:24792163

  8. Role of indirect readout mechanism in TATA box binding protein-DNA interaction.

    PubMed

    Mondal, Manas; Choudhury, Devapriya; Chakrabarti, Jaydeb; Bhattacharyya, Dhananjay

    2015-03-01

    Gene expression generally initiates from recognition of TATA-box binding protein (TBP) to the minor groove of DNA of TATA box sequence where the DNA structure is significantly different from B-DNA. We have carried out molecular dynamics simulation studies of TBP-DNA system to understand how the DNA structure alters for efficient binding. We observed rigid nature of the protein while the DNA of TATA box sequence has an inherent flexibility in terms of bending and minor groove widening. The bending analysis of the free DNA and the TBP bound DNA systems indicate presence of some similar structures. Principal coordinate ordination analysis also indicates some structural features of the protein bound and free DNA are similar. Thus we suggest that the DNA of TATA box sequence regularly oscillates between several alternate structures and the one suitable for TBP binding is induced further by the protein for proper complex formation.

  9. Computer-based prediction of mitochondria-targeting peptides.

    PubMed

    Martelli, Pier Luigi; Savojardo, Castrense; Fariselli, Piero; Tasco, Gianluca; Casadio, Rita

    2015-01-01

    Computational methods are invaluable when protein sequences, directly derived from genomic data, need functional and structural annotation. Subcellular localization is a feature necessary for understanding the protein role and the compartment where the mature protein is active and very difficult to characterize experimentally. Mitochondrial proteins encoded on the cytosolic ribosomes carry specific patterns in the precursor sequence from where it is possible to recognize a peptide targeting the protein to its final destination. Here we discuss to which extent it is feasible to develop computational methods for detecting mitochondrial targeting peptides in the precursor sequences and benchmark our and other methods on the human mitochondrial proteins endowed with experimentally characterized targeting peptides. Furthermore, we illustrate our newly implemented web server and its usage on the whole human proteome in order to infer mitochondrial targeting peptides, their cleavage sites, and whether the targeting peptide regions contain or not arginine-rich recurrent motifs. By this, we add some other 2,800 human proteins to the 124 ones already experimentally annotated with a mitochondrial targeting peptide.

  10. Prediction of rat protein subcellular localization with pseudo amino acid composition based on multiple sequential features.

    PubMed

    Shi, Ruijia; Xu, Cunshuan

    2011-06-01

    The study of rat proteins is an indispensable task in experimental medicine and drug development. The function of a rat protein is closely related to its subcellular location. Based on the above concept, we construct the benchmark rat proteins dataset and develop a combined approach for predicting the subcellular localization of rat proteins. From protein primary sequence, the multiple sequential features are obtained by using of discrete Fourier analysis, position conservation scoring function and increment of diversity, and these sequential features are selected as input parameters of the support vector machine. By the jackknife test, the overall success rate of prediction is 95.6% on the rat proteins dataset. Our method are performed on the apoptosis proteins dataset and the Gram-negative bacterial proteins dataset with the jackknife test, the overall success rates are 89.9% and 96.4%, respectively. The above results indicate that our proposed method is quite promising and may play a complementary role to the existing predictors in this area.

  11. DNATagger, colors for codons.

    PubMed

    Scherer, N M; Basso, D M

    2008-09-16

    DNATagger is a web-based tool for coloring and editing DNA, RNA and protein sequences and alignments. It is dedicated to the visualization of protein coding sequences and also protein sequence alignments to facilitate the comprehension of evolutionary processes in sequence analysis. The distinctive feature of DNATagger is the use of codons as informative units for coloring DNA and RNA sequences. The codons are colored according to their corresponding amino acids. It is the first program that colors codons in DNA sequences without being affected by "out-of-frame" gaps of alignments. It can handle single gaps and gaps inside the triplets. The program also provides the possibility to edit the alignments and change color patterns and translation tables. DNATagger is a JavaScript application, following the W3C guidelines, designed to work on standards-compliant web browsers. It therefore requires no installation and is platform independent. The web-based DNATagger is available as free and open source software at http://www.inf.ufrgs.br/~dmbasso/dnatagger/.

  12. Statistical theory of combinatorial libraries of folding proteins: energetic discrimination of a target structure.

    PubMed

    Zou, J; Saven, J G

    2000-02-11

    A self-consistent theory is presented that can be used to estimate the number and composition of sequences satisfying a predetermined set of constraints. The theory is formulated so as to examine the features of sequences having a particular value of Delta=E(f)-(u), where E(f) is the energy of sequences when in a target structure and (u) is an average energy of non-target structures. The theory yields the probabilities w(i)(alpha) that each position i in the sequence is occupied by a particular monomer type alpha. The theory is applied to a simple lattice model of proteins. Excellent agreement is observed between the theory and the results of exact enumerations. The theory provides a quantitative framework for the design and interpretation of combinatorial experiments involving proteins, where a library of amino acid sequences is searched for sequences that fold to a desired structure. Copyright 2000 Academic Press.

  13. Power law tails in phylogenetic systems.

    PubMed

    Qin, Chongli; Colwell, Lucy J

    2018-01-23

    Covariance analysis of protein sequence alignments uses coevolving pairs of sequence positions to predict features of protein structure and function. However, current methods ignore the phylogenetic relationships between sequences, potentially corrupting the identification of covarying positions. Here, we use random matrix theory to demonstrate the existence of a power law tail that distinguishes the spectrum of covariance caused by phylogeny from that caused by structural interactions. The power law is essentially independent of the phylogenetic tree topology, depending on just two parameters-the sequence length and the average branch length. We demonstrate that these power law tails are ubiquitous in the large protein sequence alignments used to predict contacts in 3D structure, as predicted by our theory. This suggests that to decouple phylogenetic effects from the interactions between sequence distal sites that control biological function, it is necessary to remove or down-weight the eigenvectors of the covariance matrix with largest eigenvalues. We confirm that truncating these eigenvectors improves contact prediction.

  14. Fold assessment for comparative protein structure modeling.

    PubMed

    Melo, Francisco; Sali, Andrej

    2007-11-01

    Accurate and automated assessment of both geometrical errors and incompleteness of comparative protein structure models is necessary for an adequate use of the models. Here, we describe a composite score for discriminating between models with the correct and incorrect fold. To find an accurate composite score, we designed and applied a genetic algorithm method that searched for a most informative subset of 21 input model features as well as their optimized nonlinear transformation into the composite score. The 21 input features included various statistical potential scores, stereochemistry quality descriptors, sequence alignment scores, geometrical descriptors, and measures of protein packing. The optimized composite score was found to depend on (1) a statistical potential z-score for residue accessibilities and distances, (2) model compactness, and (3) percentage sequence identity of the alignment used to build the model. The accuracy of the composite score was compared with the accuracy of assessment by single and combined features as well as by other commonly used assessment methods. The testing set was representative of models produced by automated comparative modeling on a genomic scale. The composite score performed better than any other tested score in terms of the maximum correct classification rate (i.e., 3.3% false positives and 2.5% false negatives) as well as the sensitivity and specificity across the whole range of thresholds. The composite score was implemented in our program MODELLER-8 and was used to assess models in the MODBASE database that contains comparative models for domains in approximately 1.3 million protein sequences.

  15. Optimal subset selection of primary sequence features using the genetic algorithm for thermophilic proteins identification.

    PubMed

    Wang, LiQiang; Li, CuiFeng

    2014-10-01

    A genetic algorithm (GA) coupled with multiple linear regression (MLR) was used to extract useful features from amino acids and g-gap dipeptides for distinguishing between thermophilic and non-thermophilic proteins. The method was trained by a benchmark dataset of 915 thermophilic and 793 non-thermophilic proteins. The method reached an overall accuracy of 95.4 % in a Jackknife test using nine amino acids, 38 0-gap dipeptides and 29 1-gap dipeptides. The accuracy as a function of protein size ranged between 85.8 and 96.9 %. The overall accuracies of three independent tests were 93, 93.4 and 91.8 %. The observed results of detecting thermophilic proteins suggest that the GA-MLR approach described herein should be a powerful method for selecting features that describe thermostabile machines and be an aid in the design of more stable proteins.

  16. BioSAVE: display of scored annotation within a sequence context.

    PubMed

    Pollock, Richard F; Adryan, Boris

    2008-03-20

    Visualization of sequence annotation is a common feature in many bioinformatics tools. For many applications it is desirable to restrict the display of such annotation according to a score cutoff, as biological interpretation can be difficult in the presence of the entire data. Unfortunately, many visualisation solutions are somewhat static in the way they handle such score cutoffs. We present BioSAVE, a sequence annotation viewer with on-the-fly selection of visualisation thresholds for each feature. BioSAVE is a versatile OS X program for visual display of scored features (annotation) within a sequence context. The program reads sequence and additional supplementary annotation data (e.g., position weight matrix matches, conservation scores, structural domains) from a variety of commonly used file formats and displays them graphically. Onscreen controls then allow for live customisation of these graphics, including on-the-fly selection of visualisation thresholds for each feature. Possible applications of the program include display of transcription factor binding sites in a genomic context or the visualisation of structural domain assignments in protein sequences and many more. The dynamic visualisation of these annotations is useful, e.g., for the determination of cutoff values of predicted features to match experimental data. Program, source code and exemplary files are freely available at the BioSAVE homepage.

  17. BioSAVE: Display of scored annotation within a sequence context

    PubMed Central

    Pollock, Richard F; Adryan, Boris

    2008-01-01

    Background Visualization of sequence annotation is a common feature in many bioinformatics tools. For many applications it is desirable to restrict the display of such annotation according to a score cutoff, as biological interpretation can be difficult in the presence of the entire data. Unfortunately, many visualisation solutions are somewhat static in the way they handle such score cutoffs. Results We present BioSAVE, a sequence annotation viewer with on-the-fly selection of visualisation thresholds for each feature. BioSAVE is a versatile OS X program for visual display of scored features (annotation) within a sequence context. The program reads sequence and additional supplementary annotation data (e.g., position weight matrix matches, conservation scores, structural domains) from a variety of commonly used file formats and displays them graphically. Onscreen controls then allow for live customisation of these graphics, including on-the-fly selection of visualisation thresholds for each feature. Conclusion Possible applications of the program include display of transcription factor binding sites in a genomic context or the visualisation of structural domain assignments in protein sequences and many more. The dynamic visualisation of these annotations is useful, e.g., for the determination of cutoff values of predicted features to match experimental data. Program, source code and exemplary files are freely available at the BioSAVE homepage. PMID:18366701

  18. MitoRes: a resource of nuclear-encoded mitochondrial genes and their products in Metazoa.

    PubMed

    Catalano, Domenico; Licciulli, Flavio; Turi, Antonio; Grillo, Giorgio; Saccone, Cecilia; D'Elia, Domenica

    2006-01-24

    Mitochondria are sub-cellular organelles that have a central role in energy production and in other metabolic pathways of all eukaryotic respiring cells. In the last few years, with more and more genomes being sequenced, a huge amount of data has been generated providing an unprecedented opportunity to use the comparative analysis approach in studies of evolution and functional genomics with the aim of shedding light on molecular mechanisms regulating mitochondrial biogenesis and metabolism. In this context, the problem of the optimal extraction of representative datasets of genomic and proteomic data assumes a crucial importance. Specialised resources for nuclear-encoded mitochondria-related proteins already exist; however, no mitochondrial database is currently available with the same features of MitoRes, which is an update of the MitoNuc database extensively modified in its structure, data sources and graphical interface. It contains data on nuclear-encoded mitochondria-related products for any metazoan species for which this type of data is available and also provides comprehensive sequence datasets (gene, transcript and protein) as well as useful tools for their extraction and export. MitoRes http://www2.ba.itb.cnr.it/MitoRes/ consolidates information from publicly external sources and automatically annotates them into a relational database. Additionally, it also clusters proteins on the basis of their sequence similarity and interconnects them with genomic data. The search engine and sequence management tools allow the query/retrieval of the database content and the extraction and export of sequences (gene, transcript, protein) and related sub-sequences (intron, exon, UTR, CDS, signal peptide and gene flanking regions) ready to be used for in silico analysis. The tool we describe here has been developed to support lab scientists and bioinformaticians alike in the characterization of molecular features and evolution of mitochondrial targeting sequences. The way it provides for the retrieval and extraction of sequences allows the user to overcome the obstacles encountered in the integrative use of different bioinformatic resources and the completeness of the sequence collection allows intra- and interspecies comparison at different biological levels (gene, transcript and protein).

  19. A hybrid model based on neural networks for biomedical relation extraction.

    PubMed

    Zhang, Yijia; Lin, Hongfei; Yang, Zhihao; Wang, Jian; Zhang, Shaowu; Sun, Yuanyuan; Yang, Liang

    2018-05-01

    Biomedical relation extraction can automatically extract high-quality biomedical relations from biomedical texts, which is a vital step for the mining of biomedical knowledge hidden in the literature. Recurrent neural networks (RNNs) and convolutional neural networks (CNNs) are two major neural network models for biomedical relation extraction. Neural network-based methods for biomedical relation extraction typically focus on the sentence sequence and employ RNNs or CNNs to learn the latent features from sentence sequences separately. However, RNNs and CNNs have their own advantages for biomedical relation extraction. Combining RNNs and CNNs may improve biomedical relation extraction. In this paper, we present a hybrid model for the extraction of biomedical relations that combines RNNs and CNNs. First, the shortest dependency path (SDP) is generated based on the dependency graph of the candidate sentence. To make full use of the SDP, we divide the SDP into a dependency word sequence and a relation sequence. Then, RNNs and CNNs are employed to automatically learn the features from the sentence sequence and the dependency sequences, respectively. Finally, the output features of the RNNs and CNNs are combined to detect and extract biomedical relations. We evaluate our hybrid model using five public (protein-protein interaction) PPI corpora and a (drug-drug interaction) DDI corpus. The experimental results suggest that the advantages of RNNs and CNNs in biomedical relation extraction are complementary. Combining RNNs and CNNs can effectively boost biomedical relation extraction performance. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. An RNAi-enhanced Logic Circuit for Cancer Specific Detection and Destruction

    DTIC Science & Technology

    2010-07-01

    Bcl-2 family: mBax (Mus musculus), hBax ( Homo sapiens ), and its mutant hBax-S184A [4]. A plasmid containing the tested gene was transfected into HEK...the far-red fluorescent protein mKate to express the Gata3 mStaple. Intron- feature sequences – donor site, branch point, poly- pyrimidine tract, and...intron-exon junction. Among the donor and acceptor sequences found in literature our intron features were chosen according SplicePort [5], an

  1. DeepGO: predicting protein functions from sequence and interactions using a deep ontology-aware classifier.

    PubMed

    Kulmanov, Maxat; Khan, Mohammed Asif; Hoehndorf, Robert; Wren, Jonathan

    2018-02-15

    A large number of protein sequences are becoming available through the application of novel high-throughput sequencing technologies. Experimental functional characterization of these proteins is time-consuming and expensive, and is often only done rigorously for few selected model organisms. Computational function prediction approaches have been suggested to fill this gap. The functions of proteins are classified using the Gene Ontology (GO), which contains over 40 000 classes. Additionally, proteins have multiple functions, making function prediction a large-scale, multi-class, multi-label problem. We have developed a novel method to predict protein function from sequence. We use deep learning to learn features from protein sequences as well as a cross-species protein-protein interaction network. Our approach specifically outputs information in the structure of the GO and utilizes the dependencies between GO classes as background information to construct a deep learning model. We evaluate our method using the standards established by the Computational Assessment of Function Annotation (CAFA) and demonstrate a significant improvement over baseline methods such as BLAST, in particular for predicting cellular locations. Web server: http://deepgo.bio2vec.net, Source code: https://github.com/bio-ontology-research-group/deepgo. robert.hoehndorf@kaust.edu.sa. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  2. PSOFuzzySVM-TMH: identification of transmembrane helix segments using ensemble feature space by incorporated fuzzy support vector machine.

    PubMed

    Hayat, Maqsood; Tahir, Muhammad

    2015-08-01

    Membrane protein is a central component of the cell that manages intra and extracellular processes. Membrane proteins execute a diversity of functions that are vital for the survival of organisms. The topology of transmembrane proteins describes the number of transmembrane (TM) helix segments and its orientation. However, owing to the lack of its recognized structures, the identification of TM helix and its topology through experimental methods is laborious with low throughput. In order to identify TM helix segments reliably, accurately, and effectively from topogenic sequences, we propose the PSOFuzzySVM-TMH model. In this model, evolutionary based information position specific scoring matrix and discrete based information 6-letter exchange group are used to formulate transmembrane protein sequences. The noisy and extraneous attributes are eradicated using an optimization selection technique, particle swarm optimization, from both feature spaces. Finally, the selected feature spaces are combined in order to form ensemble feature space. Fuzzy-support vector Machine is utilized as a classification algorithm. Two benchmark datasets, including low and high resolution datasets, are used. At various levels, the performance of the PSOFuzzySVM-TMH model is assessed through 10-fold cross validation test. The empirical results reveal that the proposed framework PSOFuzzySVM-TMH outperforms in terms of classification performance in the examined datasets. It is ascertained that the proposed model might be a useful and high throughput tool for academia and research community for further structure and functional studies on transmembrane proteins.

  3. Identification of S-glutathionylation sites in species-specific proteins by incorporating five sequence-derived features into the general pseudo-amino acid composition.

    PubMed

    Zhao, Xiaowei; Ning, Qiao; Ai, Meiyue; Chai, Haiting; Yang, Guifu

    2016-06-07

    As a selective and reversible protein post-translational modification, S-glutathionylation generates mixed disulfides between glutathione (GSH) and cysteine residues, and plays an important role in regulating protein activity, stability, and redox regulation. To fully understand S-glutathionylation mechanisms, identification of substrates and specific S-Glutathionylated sites is crucial. Experimental identification of S-glutathionylated sites is labor-intensive and time consuming, so establishing an effective computational method is much desirable due to their convenient and fast speed. Therefore, in this study, a new bioinformatics tool named SSGlu (Species-Specific identification of Protein S-glutathionylation Sites) was developed to identify species-specific protein S-glutathionylated sites, utilizing support vector machines that combine multiple sequence-derived features with a two-step feature selection. By 5-fold cross validation, the performance of SSGlu was measured with an AUC of 0.8105 and 0.8041 for Homo sapiens and Mus musculus, respectively. Additionally, SSGlu was compared with the existing methods, and the higher MCC and AUC of SSGlu demonstrated that SSGlu was very promising to predict S-glutathionylated sites. Furthermore, a site-specific analysis showed that S-glutathionylation intimately correlated with the features derived from its surrounding sites. The conclusions derived from this study might help to understand more of the S-glutathionylation mechanism and guide the related experimental validation. For public access, SSGlu is freely accessible at http://59.73.198.144:8080/SSGlu/. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. PASS2: an automated database of protein alignments organised as structural superfamilies.

    PubMed

    Bhaduri, Anirban; Pugalenthi, Ganesan; Sowdhamini, Ramanathan

    2004-04-02

    The functional selection and three-dimensional structural constraints of proteins in nature often relates to the retention of significant sequence similarity between proteins of similar fold and function despite poor sequence identity. Organization of structure-based sequence alignments for distantly related proteins, provides a map of the conserved and critical regions of the protein universe that is useful for the analysis of folding principles, for the evolutionary unification of protein families and for maximizing the information return from experimental structure determination. The Protein Alignment organised as Structural Superfamily (PASS2) database represents continuously updated, structural alignments for evolutionary related, sequentially distant proteins. An automated and updated version of PASS2 is, in direct correspondence with SCOP 1.63, consisting of sequences having identity below 40% among themselves. Protein domains have been grouped into 628 multi-member superfamilies and 566 single member superfamilies. Structure-based sequence alignments for the superfamilies have been obtained using COMPARER, while initial equivalencies have been derived from a preliminary superposition using LSQMAN or STAMP 4.0. The final sequence alignments have been annotated for structural features using JOY4.0. The database is supplemented with sequence relatives belonging to different genomes, conserved spatially interacting and structural motifs, probabilistic hidden markov models of superfamilies based on the alignments and useful links to other databases. Probabilistic models and sensitive position specific profiles obtained from reliable superfamily alignments aid annotation of remote homologues and are useful tools in structural and functional genomics. PASS2 presents the phylogeny of its members both based on sequence and structural dissimilarities. Clustering of members allows us to understand diversification of the family members. The search engine has been improved for simpler browsing of the database. The database resolves alignments among the structural domains consisting of evolutionarily diverged set of sequences. Availability of reliable sequence alignments of distantly related proteins despite poor sequence identity and single-member superfamilies permit better sampling of structures in libraries for fold recognition of new sequences and for the understanding of protein structure-function relationships of individual superfamilies. PASS2 is accessible at http://www.ncbs.res.in/~faculty/mini/campass/pass2.html

  5. Evolution of sparsity and modularity in a model of protein allostery

    NASA Astrophysics Data System (ADS)

    Hemery, Mathieu; Rivoire, Olivier

    2015-04-01

    The sequence of a protein is not only constrained by its physical and biochemical properties under current selection, but also by features of its past evolutionary history. Understanding the extent and the form that these evolutionary constraints may take is important to interpret the information in protein sequences. To study this problem, we introduce a simple but physical model of protein evolution where selection targets allostery, the functional coupling of distal sites on protein surfaces. This model shows how the geometrical organization of couplings between amino acids within a protein structure can depend crucially on its evolutionary history. In particular, two scenarios are found to generate a spatial concentration of functional constraints: high mutation rates and fluctuating selective pressures. This second scenario offers a plausible explanation for the high tolerance of natural proteins to mutations and for the spatial organization of their least tolerant amino acids, as revealed by sequence analysis and mutagenesis experiments. It also implies a faculty to adapt to new selective pressures that is consistent with observations. The model illustrates how several independent functional modules may emerge within the same protein structure, depending on the nature of past environmental fluctuations. Our model thus relates the evolutionary history of proteins to the geometry of their functional constraints, with implications for decoding and engineering protein sequences.

  6. The PRC2-binding long non-coding RNAs in human and mouse genomes are associated with predictive sequence features

    NASA Astrophysics Data System (ADS)

    Tu, Shiqi; Yuan, Guo-Cheng; Shao, Zhen

    2017-01-01

    Recently, long non-coding RNAs (lncRNAs) have emerged as an important class of molecules involved in many cellular processes. One of their primary functions is to shape epigenetic landscape through interactions with chromatin modifying proteins. However, mechanisms contributing to the specificity of such interactions remain poorly understood. Here we took the human and mouse lncRNAs that were experimentally determined to have physical interactions with Polycomb repressive complex 2 (PRC2), and systematically investigated the sequence features of these lncRNAs by developing a new computational pipeline for sequences composition analysis, in which each sequence is considered as a series of transitions between adjacent nucleotides. Through that, PRC2-binding lncRNAs were found to be associated with a set of distinctive and evolutionarily conserved sequence features, which can be utilized to distinguish them from the others with considerable accuracy. We further identified fragments of PRC2-binding lncRNAs that are enriched with these sequence features, and found they show strong PRC2-binding signals and are more highly conserved across species than the other parts, implying their functional importance.

  7. Evolution of the arginase fold and functional diversity

    PubMed Central

    Dowling, Daniel P.; Costanzo, Luigi Di; Gennadios, Heather A.; Christianson, David W.

    2009-01-01

    The large number of protein structures deposited in the Protein Data Bank allows for the identification of novel structural superfamilies based on conservation of fold in addition to conservation of amino acid sequence. Since sequence diverges more rapidly than fold in protein evolution, proteins with little or no significant sequence identity are occasionally observed to adopt similar folds, thereby reflecting unanticipated evolutionary relationships. Here, we review the unique α/β fold first observed in the manganese metalloenzyme rat liver arginase, consisting of a parallel 8 stranded β-sheet surrounded by several helices, and its evolutionary relationship with the zinc-requiring and/or iron-requiring histone deacetylases and acetylpolyamine amidohydrolases. Structural comparisons reveal key features of the core α/β fold that contribute to the divergent metal ion specificity and stoichiometry required for the chemical and biological functions of these enzymes. PMID:18360740

  8. Predicting Cell Association of Surface-Modified Nanoparticles Using Protein Corona Structure - Activity Relationships (PCSAR).

    PubMed

    Kamath, Padmaja; Fernandez, Alberto; Giralt, Francesc; Rallo, Robert

    2015-01-01

    Nanoparticles are likely to interact in real-case application scenarios with mixtures of proteins and biomolecules that will absorb onto their surface forming the so-called protein corona. Information related to the composition of the protein corona and net cell association was collected from literature for a library of surface-modified gold and silver nanoparticles. For each protein in the corona, sequence information was extracted and used to calculate physicochemical properties and statistical descriptors. Data cleaning and preprocessing techniques including statistical analysis and feature selection methods were applied to remove highly correlated, redundant and non-significant features. A weighting technique was applied to construct specific signatures that represent the corona composition for each nanoparticle. Using this basic set of protein descriptors, a new Protein Corona Structure-Activity Relationship (PCSAR) that relates net cell association with the physicochemical descriptors of the proteins that form the corona was developed and validated. The features that resulted from the feature selection were in line with already published literature, and the computational model constructed on these features had a good accuracy (R(2)LOO=0.76 and R(2)LMO(25%)=0.72) and stability, with the advantage that the fingerprints based on physicochemical descriptors were independent of the specific proteins that form the corona.

  9. Structural analysis of DNA binding by C.Csp231I, a member of a novel class of R-M controller proteins regulating gene expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shevtsov, M. B.; Streeter, S. D.; Thresh, S.-J.

    2015-02-01

    The structure of the new class of controller proteins (exemplified by C.Csp231I) in complex with its 21 bp DNA-recognition sequence is presented, and the molecular basis of sequence recognition in this class of proteins is discussed. An unusual extended spacer between the dimer binding sites suggests a novel interaction between the two C-protein dimers. In a wide variety of bacterial restriction–modification systems, a regulatory ‘controller’ protein (or C-protein) is required for effective transcription of its own gene and for transcription of the endonuclease gene found on the same operon. We have recently turned our attention to a new class ofmore » controller proteins (exemplified by C.Csp231I) that have quite novel features, including a much larger DNA-binding site with an 18 bp (∼60 Å) spacer between the two palindromic DNA-binding sequences and a very different recognition sequence from the canonical GACT/AGTC. Using X-ray crystallography, the structure of the protein in complex with its 21 bp DNA-recognition sequence was solved to 1.8 Å resolution, and the molecular basis of sequence recognition in this class of proteins was elucidated. An unusual aspect of the promoter sequence is the extended spacer between the dimer binding sites, suggesting a novel interaction between the two C-protein dimers when bound to both recognition sites correctly spaced on the DNA. A U-bend model is proposed for this tetrameric complex, based on the results of gel-mobility assays, hydrodynamic analysis and the observation of key contacts at the interface between dimers in the crystal.« less

  10. De novo design of RNA-binding proteins with a prion-like domain related to ALS/FTD proteinopathies.

    PubMed

    Mitsuhashi, Kana; Ito, Daisuke; Mashima, Kyoko; Oyama, Munenori; Takahashi, Shinichi; Suzuki, Norihiro

    2017-12-04

    Aberrant RNA-binding proteins form the core of the neurodegeneration cascade in spectrums of disease, such as amyotrophic lateral sclerosis (ALS)/frontotemporal dementia (FTD). Six ALS-related molecules, TDP-43, FUS, TAF15, EWSR1, heterogeneous nuclear (hn)RNPA1 and hnRNPA2 are RNA-binding proteins containing candidate mutations identified in ALS patients and those share several common features, including harboring an aggregation-prone prion-like domain (PrLD) containing a glycine/serine-tyrosine-glycine/serine (G/S-Y-G/S)-motif-enriched low-complexity sequence and rich in glutamine and/or asparagine. Additinally, these six molecules are components of RNA granules involved in RNA quality control and become mislocated from the nucleus to form cytoplasmic inclusion bodies (IBs) in the ALS/FTD-affected brain. To reveal the essential mechanisms involved in ALS/FTD-related cytotoxicity associated with RNA-binding proteins containing PrLDs, we designed artificial RNA-binding proteins harboring G/S-Y-G/S-motif repeats with and without enriched glutamine residues and nuclear-import/export-signal sequences and examined their cytotoxicity in vitro. These proteins recapitulated features of ALS-linked molecules, including insoluble aggregation, formation of cytoplasmic IBs and components of RNA granules, and cytotoxicity instigation. These findings indicated that these artificial RNA-binding proteins mimicked features of ALS-linked molecules and allowed the study of mechanisms associated with gain of toxic functions related to ALS/FTD pathogenesis.

  11. EffectorP: predicting fungal effector proteins from secretomes using machine learning.

    PubMed

    Sperschneider, Jana; Gardiner, Donald M; Dodds, Peter N; Tini, Francesco; Covarelli, Lorenzo; Singh, Karam B; Manners, John M; Taylor, Jennifer M

    2016-04-01

    Eukaryotic filamentous plant pathogens secrete effector proteins that modulate the host cell to facilitate infection. Computational effector candidate identification and subsequent functional characterization delivers valuable insights into plant-pathogen interactions. However, effector prediction in fungi has been challenging due to a lack of unifying sequence features such as conserved N-terminal sequence motifs. Fungal effectors are commonly predicted from secretomes based on criteria such as small size and cysteine-rich, which suffers from poor accuracy. We present EffectorP which pioneers the application of machine learning to fungal effector prediction. EffectorP improves fungal effector prediction from secretomes based on a robust signal of sequence-derived properties, achieving sensitivity and specificity of over 80%. Features that discriminate fungal effectors from secreted noneffectors are predominantly sequence length, molecular weight and protein net charge, as well as cysteine, serine and tryptophan content. We demonstrate that EffectorP is powerful when combined with in planta expression data for predicting high-priority effector candidates. EffectorP is the first prediction program for fungal effectors based on machine learning. Our findings will facilitate functional fungal effector studies and improve our understanding of effectors in plant-pathogen interactions. EffectorP is available at http://effectorp.csiro.au. © 2015 CSIRO New Phytologist © 2015 New Phytologist Trust.

  12. Well-characterized sequence features of eukaryote genomes and implications for ab initio gene prediction.

    PubMed

    Huang, Ying; Chen, Shi-Yi; Deng, Feilong

    2016-01-01

    In silico analysis of DNA sequences is an important area of computational biology in the post-genomic era. Over the past two decades, computational approaches for ab initio prediction of gene structure from genome sequence alone have largely facilitated our understanding on a variety of biological questions. Although the computational prediction of protein-coding genes has already been well-established, we are also facing challenges to robustly find the non-coding RNA genes, such as miRNA and lncRNA. Two main aspects of ab initio gene prediction include the computed values for describing sequence features and used algorithm for training the discriminant function, and by which different combinations are employed into various bioinformatic tools. Herein, we briefly review these well-characterized sequence features in eukaryote genomes and applications to ab initio gene prediction. The main purpose of this article is to provide an overview to beginners who aim to develop the related bioinformatic tools.

  13. A Score of the Ability of a Three-Dimensional Protein Model to Retrieve Its Own Sequence as a Quantitative Measure of Its Quality and Appropriateness

    PubMed Central

    Martínez-Castilla, León P.; Rodríguez-Sotres, Rogelio

    2010-01-01

    Background Despite the remarkable progress of bioinformatics, how the primary structure of a protein leads to a three-dimensional fold, and in turn determines its function remains an elusive question. Alignments of sequences with known function can be used to identify proteins with the same or similar function with high success. However, identification of function-related and structure-related amino acid positions is only possible after a detailed study of every protein. Folding pattern diversity seems to be much narrower than sequence diversity, and the amino acid sequences of natural proteins have evolved under a selective pressure comprising structural and functional requirements acting in parallel. Principal Findings The approach described in this work begins by generating a large number of amino acid sequences using ROSETTA [Dantas G et al. (2003) J Mol Biol 332:449–460], a program with notable robustness in the assignment of amino acids to a known three-dimensional structure. The resulting sequence-sets showed no conservation of amino acids at active sites, or protein-protein interfaces. Hidden Markov models built from the resulting sequence sets were used to search sequence databases. Surprisingly, the models retrieved from the database sequences belonged to proteins with the same or a very similar function. Given an appropriate cutoff, the rate of false positives was zero. According to our results, this protocol, here referred to as Rd.HMM, detects fine structural details on the folding patterns, that seem to be tightly linked to the fitness of a structural framework for a specific biological function. Conclusion Because the sequence of the native protein used to create the Rd.HMM model was always amongst the top hits, the procedure is a reliable tool to score, very accurately, the quality and appropriateness of computer-modeled 3D-structures, without the need for spectroscopy data. However, Rd.HMM is very sensitive to the conformational features of the models' backbone. PMID:20830209

  14. SeqRate: sequence-based protein folding type classification and rates prediction

    PubMed Central

    2010-01-01

    Background Protein folding rate is an important property of a protein. Predicting protein folding rate is useful for understanding protein folding process and guiding protein design. Most previous methods of predicting protein folding rate require the tertiary structure of a protein as an input. And most methods do not distinguish the different kinetic nature (two-state folding or multi-state folding) of the proteins. Here we developed a method, SeqRate, to predict both protein folding kinetic type (two-state versus multi-state) and real-value folding rate using sequence length, amino acid composition, contact order, contact number, and secondary structure information predicted from only protein sequence with support vector machines. Results We systematically studied the contributions of individual features to folding rate prediction. On a standard benchmark dataset, the accuracy of folding kinetic type classification is 80%. The Pearson correlation coefficient and the mean absolute difference between predicted and experimental folding rates (sec-1) in the base-10 logarithmic scale are 0.81 and 0.79 for two-state protein folders, and 0.80 and 0.68 for three-state protein folders. SeqRate is the first sequence-based method for protein folding type classification and its accuracy of fold rate prediction is improved over previous sequence-based methods. Its performance can be further enhanced with additional information, such as structure-based geometric contacts, as inputs. Conclusions Both the web server and software of predicting folding rate are publicly available at http://casp.rnet.missouri.edu/fold_rate/index.html. PMID:20438647

  15. STAT1:DNA sequence-dependent binding modulation by phosphorylation, protein:protein interactions and small-molecule inhibition

    PubMed Central

    Bonham, Andrew J.; Wenta, Nikola; Osslund, Leah M.; Prussin, Aaron J.; Vinkemeier, Uwe; Reich, Norbert O.

    2013-01-01

    The DNA-binding specificity and affinity of the dimeric human transcription factor (TF) STAT1, were assessed by total internal reflectance fluorescence protein-binding microarrays (TIRF-PBM) to evaluate the effects of protein phosphorylation, higher-order polymerization and small-molecule inhibition. Active, phosphorylated STAT1 showed binding preferences consistent with prior characterization, whereas unphosphorylated STAT1 showed a weak-binding preference for one-half of the GAS consensus site, consistent with recent models of STAT1 structure and function in response to phosphorylation. This altered-binding preference was further tested by use of the inhibitor LLL3, which we show to disrupt STAT1 binding in a sequence-dependent fashion. To determine if this sequence-dependence is specific to STAT1 and not a general feature of human TF biology, the TF Myc/Max was analysed and tested with the inhibitor Mycro3. Myc/Max inhibition by Mycro3 is sequence independent, suggesting that the sequence-dependent inhibition of STAT1 may be specific to this system and a useful target for future inhibitor design. PMID:23180800

  16. RNA-ID, a Powerful Tool for Identifying and Characterizing Regulatory Sequences.

    PubMed

    Brule, C E; Dean, K M; Grayhack, E J

    2016-01-01

    The identification and analysis of sequences that regulate gene expression is critical because regulated gene expression underlies biology. RNA-ID is an efficient and sensitive method to discover and investigate regulatory sequences in the yeast Saccharomyces cerevisiae, using fluorescence-based assays to detect green fluorescent protein (GFP) relative to a red fluorescent protein (RFP) control in individual cells. Putative regulatory sequences can be inserted either in-frame or upstream of a superfolder GFP fusion protein whose expression, like that of RFP, is driven by the bidirectional GAL1,10 promoter. In this chapter, we describe the methodology to identify and study cis-regulatory sequences in the RNA-ID system, explaining features and variations of the RNA-ID reporter, as well as some applications of this system. We describe in detail the methods to analyze a single regulatory sequence, from construction of a single GFP variant to assay of variants by flow cytometry, as well as modifications required to screen libraries of different strains simultaneously. We also describe subsequent analyses of regulatory sequences. © 2016 Elsevier Inc. All rights reserved.

  17. Stratification of co-evolving genomic groups using ranked phylogenetic profiles

    PubMed Central

    Freilich, Shiri; Goldovsky, Leon; Gottlieb, Assaf; Blanc, Eric; Tsoka, Sophia; Ouzounis, Christos A

    2009-01-01

    Background Previous methods of detecting the taxonomic origins of arbitrary sequence collections, with a significant impact to genome analysis and in particular metagenomics, have primarily focused on compositional features of genomes. The evolutionary patterns of phylogenetic distribution of genes or proteins, represented by phylogenetic profiles, provide an alternative approach for the detection of taxonomic origins, but typically suffer from low accuracy. Herein, we present rank-BLAST, a novel approach for the assignment of protein sequences into genomic groups of the same taxonomic origin, based on the ranking order of phylogenetic profiles of target genes or proteins across the reference database. Results The rank-BLAST approach is validated by computing the phylogenetic profiles of all sequences for five distinct microbial species of varying degrees of phylogenetic proximity, against a reference database of 243 fully sequenced genomes. The approach - a combination of sequence searches, statistical estimation and clustering - analyses the degree of sequence divergence between sets of protein sequences and allows the classification of protein sequences according to the species of origin with high accuracy, allowing taxonomic classification of 64% of the proteins studied. In most cases, a main cluster is detected, representing the corresponding species. Secondary, functionally distinct and species-specific clusters exhibit different patterns of phylogenetic distribution, thus flagging gene groups of interest. Detailed analyses of such cases are provided as examples. Conclusion Our results indicate that the rank-BLAST approach can capture the taxonomic origins of sequence collections in an accurate and efficient manner. The approach can be useful both for the analysis of genome evolution and the detection of species groups in metagenomics samples. PMID:19860884

  18. A review of machine learning methods to predict the solubility of overexpressed recombinant proteins in Escherichia coli.

    PubMed

    Habibi, Narjeskhatoon; Mohd Hashim, Siti Z; Norouzi, Alireza; Samian, Mohammed Razip

    2014-05-08

    Over the last 20 years in biotechnology, the production of recombinant proteins has been a crucial bioprocess in both biopharmaceutical and research arena in terms of human health, scientific impact and economic volume. Although logical strategies of genetic engineering have been established, protein overexpression is still an art. In particular, heterologous expression is often hindered by low level of production and frequent fail due to opaque reasons. The problem is accentuated because there is no generic solution available to enhance heterologous overexpression. For a given protein, the extent of its solubility can indicate the quality of its function. Over 30% of synthesized proteins are not soluble. In certain experimental circumstances, including temperature, expression host, etc., protein solubility is a feature eventually defined by its sequence. Until now, numerous methods based on machine learning are proposed to predict the solubility of protein merely from its amino acid sequence. In spite of the 20 years of research on the matter, no comprehensive review is available on the published methods. This paper presents an extensive review of the existing models to predict protein solubility in Escherichia coli recombinant protein overexpression system. The models are investigated and compared regarding the datasets used, features, feature selection methods, machine learning techniques and accuracy of prediction. A discussion on the models is provided at the end. This study aims to investigate extensively the machine learning based methods to predict recombinant protein solubility, so as to offer a general as well as a detailed understanding for researches in the field. Some of the models present acceptable prediction performances and convenient user interfaces. These models can be considered as valuable tools to predict recombinant protein overexpression results before performing real laboratory experiments, thus saving labour, time and cost.

  19. Sequence Based Prediction of DNA-Binding Proteins Based on Hybrid Feature Selection Using Random Forest and Gaussian Naïve Bayes

    PubMed Central

    Lou, Wangchao; Wang, Xiaoqing; Chen, Fan; Chen, Yixiao; Jiang, Bo; Zhang, Hua

    2014-01-01

    Developing an efficient method for determination of the DNA-binding proteins, due to their vital roles in gene regulation, is becoming highly desired since it would be invaluable to advance our understanding of protein functions. In this study, we proposed a new method for the prediction of the DNA-binding proteins, by performing the feature rank using random forest and the wrapper-based feature selection using forward best-first search strategy. The features comprise information from primary sequence, predicted secondary structure, predicted relative solvent accessibility, and position specific scoring matrix. The proposed method, called DBPPred, used Gaussian naïve Bayes as the underlying classifier since it outperformed five other classifiers, including decision tree, logistic regression, k-nearest neighbor, support vector machine with polynomial kernel, and support vector machine with radial basis function. As a result, the proposed DBPPred yields the highest average accuracy of 0.791 and average MCC of 0.583 according to the five-fold cross validation with ten runs on the training benchmark dataset PDB594. Subsequently, blind tests on the independent dataset PDB186 by the proposed model trained on the entire PDB594 dataset and by other five existing methods (including iDNA-Prot, DNA-Prot, DNAbinder, DNABIND and DBD-Threader) were performed, resulting in that the proposed DBPPred yielded the highest accuracy of 0.769, MCC of 0.538, and AUC of 0.790. The independent tests performed by the proposed DBPPred on completely a large non-DNA binding protein dataset and two RNA binding protein datasets also showed improved or comparable quality when compared with the relevant prediction methods. Moreover, we observed that majority of the selected features by the proposed method are statistically significantly different between the mean feature values of the DNA-binding and the non DNA-binding proteins. All of the experimental results indicate that the proposed DBPPred can be an alternative perspective predictor for large-scale determination of DNA-binding proteins. PMID:24475169

  20. Carbohydrate degrading polypeptide and uses thereof

    DOEpatents

    Sagt, Cornelis Maria Jacobus; Schooneveld-Bergmans, Margot Elisabeth Francoise; Roubos, Johannes Andries; Los, Alrik Pieter

    2015-10-20

    The invention relates to a polypeptide having carbohydrate material degrading activity which comprises the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 4, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 96% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 96% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well as the amino acid sequence of the full-length functional protein and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.

  1. The hypothetical protein Atu4866 from Agrobacterium tumefaciens adopts a streptavidin-like fold

    PubMed Central

    Ai, Xuanjun; Semesi, Anthony; Yee, Adelinda; Arrowsmith, Cheryl H.; Choy, Wing-Yiu; Li, Shawn S.C.

    2008-01-01

    Atu4866 is a 79-residue conserved hypothetical protein of unknown function from Agrobacterium tumefaciens. Protein sequence alignments show that it shares ≥60% sequence identity with 20 other hypothetical proteins of bacterial origin. However, the structures and functions of these proteins remain unknown so far. To gain insight into the function of this family of proteins, we have determined the structure of Atu4866 as a target of a structural genomics project using solution NMR spectroscopy. Our results reveal that Atu4866 adopts a streptavidin-like fold featuring a β-barrel/sandwich formed by eight antiparallel β-strands. Further structural analysis identified a continuous patch of conserved residues on the surface of Atu4866 that may constitute a potential ligand-binding site. PMID:18042676

  2. Integrated databanks access and sequence/structure analysis services at the PBIL.

    PubMed

    Perrière, Guy; Combet, Christophe; Penel, Simon; Blanchet, Christophe; Thioulouse, Jean; Geourjon, Christophe; Grassot, Julien; Charavay, Céline; Gouy, Manolo; Duret, Laurent; Deléage, Gilbert

    2003-07-01

    The World Wide Web server of the PBIL (Pôle Bioinformatique Lyonnais) provides on-line access to sequence databanks and to many tools of nucleic acid and protein sequence analyses. This server allows to query nucleotide sequence banks in the EMBL and GenBank formats and protein sequence banks in the SWISS-PROT and PIR formats. The query engine on which our data bank access is based is the ACNUC system. It allows the possibility to build complex queries to access functional zones of biological interest and to retrieve large sequence sets. Of special interest are the unique features provided by this system to query the data banks of gene families developed at the PBIL. The server also provides access to a wide range of sequence analysis methods: similarity search programs, multiple alignments, protein structure prediction and multivariate statistics. An originality of this server is the integration of these two aspects: sequence retrieval and sequence analysis. Indeed, thanks to the introduction of re-usable lists, it is possible to perform treatments on large sets of data. The PBIL server can be reached at: http://pbil.univ-lyon1.fr.

  3. Properties of genes essential for mouse development

    PubMed Central

    Kabir, Mitra; Barradas, Ana; Tzotzos, George T.; Hentges, Kathryn E.

    2017-01-01

    Essential genes are those that are critical for life. In the specific case of the mouse, they are the set of genes whose deletion means that a mouse is unable to survive after birth. As such, they are the key minimal set of genes needed for all the steps of development to produce an organism capable of life ex utero. We explored a wide range of sequence and functional features to characterise essential (lethal) and non-essential (viable) genes in mice. Experimental data curated manually identified 1301 essential genes and 3451 viable genes. Very many sequence features show highly significant differences between essential and viable mouse genes. Essential genes generally encode complex proteins, with multiple domains and many introns. These genes tend to be: long, highly expressed, old and evolutionarily conserved. These genes tend to encode ligases, transferases, phosphorylated proteins, intracellular proteins, nuclear proteins, and hubs in protein-protein interaction networks. They are involved with regulating protein-protein interactions, gene expression and metabolic processes, cell morphogenesis, cell division, cell proliferation, DNA replication, cell differentiation, DNA repair and transcription, cell differentiation and embryonic development. Viable genes tend to encode: membrane proteins or secreted proteins, and are associated with functions such as cellular communication, apoptosis, behaviour and immune response, as well as housekeeping and tissue specific functions. Viable genes are linked to transport, ion channels, signal transduction, calcium binding and lipid binding, consistent with their location in membranes and involvement with cell-cell communication. From the analysis of the composite features of essential and viable genes, we conclude that essential genes tend to be required for intracellular functions, and viable genes tend to be involved with extracellular functions and cell-cell communication. Knowledge of the features that are over-represented in essential genes allows for a deeper understanding of the functions and processes implemented during mammalian development. PMID:28562614

  4. X-ray crystal structure of the passenger domain of plasmid encoded toxin(Pet), an autotransporter enterotoxin from enteroaggregative Escherichia coli (EAEC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Domingo Meza-Aguilar, J.; Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato Oncología e Investigación, Hospital Infantil de México Federico Gómez 06720, D.F.; Fromme, Petra

    Highlights: • X-ray crystal structure of the passenger domain of Plasmid encoded toxin at 2.3 Å. • Structural differences between Pet passenger domain and EspP protein are described. • High flexibility of the C-terminal beta helix is structurally assigned. - Abstract: Autotransporters (ATs) represent a superfamily of proteins produced by a variety of pathogenic bacteria, which include the pathogenic groups of Escherichia coli (E. coli) associated with gastrointestinal and urinary tract infections. We present the first X-ray structure of the passenger domain from the Plasmid-encoded toxin (Pet) a 100 kDa protein at 2.3 Å resolution which is a cause ofmore » acute diarrhea in both developing and industrialized countries. Pet is a cytoskeleton-altering toxin that induces loss of actin stress fibers. While Pet (pdb code: 4OM9) shows only a sequence identity of 50% compared to the closest related protein sequence, extracellular serine protease plasmid (EspP) the structural features of both proteins are conserved. A closer structural look reveals that Pet contains a β-pleaded sheet at the sequence region of residues 181–190, the corresponding structural domain in EspP consists of a coiled loop. Secondary, the Pet passenger domain features a more pronounced beta sheet between residues 135 and 143 compared to the structure of EspP.« less

  5. Hydropathic self-organized criticality: a magic wand for protein physics.

    PubMed

    Phillips, J C

    2012-10-01

    Self-organized criticality (SOC) is a popular concept that has been the subject of more than 3000 articles in the last 25 years. The characteristic signature of SOC is the appearance of self-similarity (power-law scaling) in observable properties. A characteristic observable protein property that describes protein-water interactions is the water-accessible (hydropathic) interfacial area of compacted globular protein networks. Here we show that hydropathic power-law (size- or length-scale-dependent) exponents derived from SOC enable theory to connect standard Web-based (BLAST) short-range amino acid (aa) sequence similarities to long-range aa sequence hydropathic roughening form factors that hierarchically describe evolutionary trends in water - membrane protein interactions. Our method utilizes hydropathic aa exponents that define a non-Euclidean metric realistically rooted in the atomic coordinates of 5526 protein segments. These hydropathic aa exponents thereby encapsulate universal (but previously only implicit) non-Euclidean long-range differential geometrical features of the Protein Data Bank. These hydropathic aa exponents easily organize small mutated aa sequence differences between human and proximate species proteins. For rhodopsin, the most studied transmembrane signaling protein associated with night vision, analysis shows that this approach separates Euclidean short- and non-Euclidean long-range aa sequence properties, and shows that they correlate with 96% success for humans, monkeys, cats, mice and rabbits. Proper application of SOC using hydropathic aa exponents promises unprecedented simplifications of exponentially complex protein sequence-structure-function problems, both conceptual and practical.

  6. Sequence, structure and function relationships in flaviviruses as assessed by evolutive aspects of its conserved non-structural protein domains.

    PubMed

    da Fonseca, Néli José; Lima Afonso, Marcelo Querino; Pedersolli, Natan Gonçalves; de Oliveira, Lucas Carrijo; Andrade, Dhiego Souto; Bleicher, Lucas

    2017-10-28

    Flaviviruses are responsible for serious diseases such as dengue, yellow fever, and zika fever. Their genomes encode a polyprotein which, after cleavage, results in three structural and seven non-structural proteins. Homologous proteins can be studied by conservation and coevolution analysis as detected in multiple sequence alignments, usually reporting positions which are strictly necessary for the structure and/or function of all members in a protein family or which are involved in a specific sub-class feature requiring the coevolution of residue sets. This study provides a complete conservation and coevolution analysis on all flaviviruses non-structural proteins, with results mapped on all well-annotated available sequences. A literature review on the residues found in the analysis enabled us to compile available information on their roles and distribution among different flaviviruses. Also, we provide the mapping of conserved and coevolved residues for all sequences currently in SwissProt as a supplementary material, so that particularities in different viruses can be easily analyzed. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Bioinformatic prediction and in vivo validation of residue-residue interactions in human proteins

    NASA Astrophysics Data System (ADS)

    Jordan, Daniel; Davis, Erica; Katsanis, Nicholas; Sunyaev, Shamil

    2014-03-01

    Identifying residue-residue interactions in protein molecules is important for understanding both protein structure and function in the context of evolutionary dynamics and medical genetics. Such interactions can be difficult to predict using existing empirical or physical potentials, especially when residues are far from each other in sequence space. Using a multiple sequence alignment of 46 diverse vertebrate species we explore the space of allowed sequences for orthologous protein families. Amino acid changes that are known to damage protein function allow us to identify specific changes that are likely to have interacting partners. We fit the parameters of the continuous-time Markov process used in the alignment to conclude that these interactions are primarily pairwise, rather than higher order. Candidates for sites under pairwise epistasis are predicted, which can then be tested by experiment. We report the results of an initial round of in vivo experiments in a zebrafish model that verify the presence of multiple pairwise interactions predicted by our model. These experimentally validated interactions are novel, distant in sequence, and are not readily explained by known biochemical or biophysical features.

  8. [Prediction of ETA oligopeptides antagonists from Glycine max based on in silico proteolysis].

    PubMed

    Qiao, Lian-Sheng; Jiang, Lu-di; Luo, Gang-Gang; Lu, Fang; Chen, Yan-Kun; Wang, Ling-Zhi; Li, Gong-Yu; Zhang, Yan-Ling

    2017-02-01

    Oligopeptides are one of the the key pharmaceutical effective constituents of traditional Chinese medicine(TCM). Systematic study on composition and efficacy of TCM oligopeptides is essential for the analysis of material basis and mechanism of TCM. In this study, the potential anti-hypertensive oligopeptides from Glycine max and their endothelin receptor A (ETA) antagonistic activity were discovered and predicted based on in silico technologies.Main protein sequences of G. max were collected and oligopeptides were obtained using in silico gastrointestinal tract proteolysis. Then, the pharmacophore of ETA antagonistic peptides was constructed and included one hydrophobic feature, one ionizable negative feature, one ring aromatic feature and five excluded volumes. Meanwhile, three-dimensional structure of ETA was developed by homology modeling methods for further docking studies. According to docking analysis and consensus score, the key amino acid of GLN165 was identified for ETA antagonistic activity. And 27 oligopeptides from G. max were predicted as the potential ETA antagonists by pharmacophore and docking studies.In silico proteolysis could be used to analyze the protein sequences from TCM. According to combination of in silico proteolysis and molecular simulation, the biological activities of oligopeptides could be predicted rapidly based on the known TCM protein sequence. It might provide the methodology basis for rapidly and efficiently implementing the mechanism analysis of TCM oligopeptides. Copyright© by the Chinese Pharmaceutical Association.

  9. Finding functional features in Saccharomyces genomes by phylogenetic footprinting.

    PubMed

    Cliften, Paul; Sudarsanam, Priya; Desikan, Ashwin; Fulton, Lucinda; Fulton, Bob; Majors, John; Waterston, Robert; Cohen, Barak A; Johnston, Mark

    2003-07-04

    The sifting and winnowing of DNA sequence that occur during evolution cause nonfunctional sequences to diverge, leaving phylogenetic footprints of functional sequence elements in comparisons of genome sequences. We searched for such footprints among the genome sequences of six Saccharomyces species and identified potentially functional sequences. Comparison of these sequences allowed us to revise the catalog of yeast genes and identify sequence motifs that may be targets of transcriptional regulatory proteins. Some of these conserved sequence motifs reside upstream of genes with similar functional annotations or similar expression patterns or those bound by the same transcription factor and are thus good candidates for functional regulatory sequences.

  10. Computational intelligence techniques for biological data mining: An overview

    NASA Astrophysics Data System (ADS)

    Faye, Ibrahima; Iqbal, Muhammad Javed; Said, Abas Md; Samir, Brahim Belhaouari

    2014-10-01

    Computational techniques have been successfully utilized for a highly accurate analysis and modeling of multifaceted and raw biological data gathered from various genome sequencing projects. These techniques are proving much more effective to overcome the limitations of the traditional in-vitro experiments on the constantly increasing sequence data. However, most critical problems that caught the attention of the researchers may include, but not limited to these: accurate structure and function prediction of unknown proteins, protein subcellular localization prediction, finding protein-protein interactions, protein fold recognition, analysis of microarray gene expression data, etc. To solve these problems, various classification and clustering techniques using machine learning have been extensively used in the published literature. These techniques include neural network algorithms, genetic algorithms, fuzzy ARTMAP, K-Means, K-NN, SVM, Rough set classifiers, decision tree and HMM based algorithms. Major difficulties in applying the above algorithms include the limitations found in the previous feature encoding and selection methods while extracting the best features, increasing classification accuracy and decreasing the running time overheads of the learning algorithms. The application of this research would be potentially useful in the drug design and in the diagnosis of some diseases. This paper presents a concise overview of the well-known protein classification techniques.

  11. Protein structure and the sequential structure of mRNA: alpha-helix and beta-sheet signals at the nucleotide level.

    PubMed

    Brunak, S; Engelbrecht, J

    1996-06-01

    A direct comparison of experimentally determined protein structures and their corresponding protein coding mRNA sequences has been performed. We examine whether real world data support the hypothesis that clusters of rare codons correlate with the location of structural units in the resulting protein. The degeneracy of the genetic code allows for a biased selection of codons which may control the translational rate of the ribosome, and may thus in vivo have a catalyzing effect on the folding of the polypeptide chain. A complete search for GenBank nucleotide sequences coding for structural entries in the Brookhaven Protein Data Bank produced 719 protein chains with matching mRNA sequence, amino acid sequence, and secondary structure assignment. By neural network analysis, we found strong signals in mRNA sequence regions surrounding helices and sheets. These signals do not originate from the clustering of rare codons, but from the similarity of codons coding for very abundant amino acid residues at the N- and C-termini of helices and sheets. No correlation between the positioning of rare codons and the location of structural units was found. The mRNA signals were also compared with conserved nucleotide features of 16S-like ribosomal RNA sequences and related to mechanisms for maintaining the correct reading frame by the ribosome.

  12. GOLabeler: Improving Sequence-based Large-scale Protein Function Prediction by Learning to Rank.

    PubMed

    You, Ronghui; Zhang, Zihan; Xiong, Yi; Sun, Fengzhu; Mamitsuka, Hiroshi; Zhu, Shanfeng

    2018-03-07

    Gene Ontology (GO) has been widely used to annotate functions of proteins and understand their biological roles. Currently only <1% of more than 70 million proteins in UniProtKB have experimental GO annotations, implying the strong necessity of automated function prediction (AFP) of proteins, where AFP is a hard multilabel classification problem due to one protein with a diverse number of GO terms. Most of these proteins have only sequences as input information, indicating the importance of sequence-based AFP (SAFP: sequences are the only input). Furthermore homology-based SAFP tools are competitive in AFP competitions, while they do not necessarily work well for so-called difficult proteins, which have <60% sequence identity to proteins with annotations already. Thus the vital and challenging problem now is how to develop a method for SAFP, particularly for difficult proteins. The key of this method is to extract not only homology information but also diverse, deep- rooted information/evidence from sequence inputs and integrate them into a predictor in a both effective and efficient manner. We propose GOLabeler, which integrates five component classifiers, trained from different features, including GO term frequency, sequence alignment, amino acid trigram, domains and motifs, and biophysical properties, etc., in the framework of learning to rank (LTR), a paradigm of machine learning, especially powerful for multilabel classification. The empirical results obtained by examining GOLabeler extensively and thoroughly by using large-scale datasets revealed numerous favorable aspects of GOLabeler, including significant performance advantage over state-of-the-art AFP methods. http://datamining-iip.fudan.edu.cn/golabeler. zhusf@fudan.edu.cn. Supplementary data are available at Bioinformatics online.

  13. A Method for WD40 Repeat Detection and Secondary Structure Prediction

    PubMed Central

    Wang, Yang; Jiang, Fan; Zhuo, Zhu; Wu, Xian-Hui; Wu, Yun-Dong

    2013-01-01

    WD40-repeat proteins (WD40s), as one of the largest protein families in eukaryotes, play vital roles in assembling protein-protein/DNA/RNA complexes. WD40s fold into similar β-propeller structures despite diversified sequences. A program WDSP (WD40 repeat protein Structure Predictor) has been developed to accurately identify WD40 repeats and predict their secondary structures. The method is designed specifically for WD40 proteins by incorporating both local residue information and non-local family-specific structural features. It overcomes the problem of highly diversified protein sequences and variable loops. In addition, WDSP achieves a better prediction in identifying multiple WD40-domain proteins by taking the global combination of repeats into consideration. In secondary structure prediction, the average Q3 accuracy of WDSP in jack-knife test reaches 93.7%. A disease related protein LRRK2 was used as a representive example to demonstrate the structure prediction. PMID:23776530

  14. Molecular evolution of miraculin-like proteins in soybean Kunitz super-family.

    PubMed

    Selvakumar, Purushotham; Gahloth, Deepankar; Tomar, Prabhat Pratap Singh; Sharma, Nidhi; Sharma, Ashwani Kumar

    2011-12-01

    Miraculin-like proteins (MLPs) belong to soybean Kunitz super-family and have been characterized from many plant families like Rutaceae, Solanaceae, Rubiaceae, etc. Many of them possess trypsin inhibitory activity and are involved in plant defense. MLPs exhibit significant sequence identity (~30-95%) to native miraculin protein, also belonging to Kunitz super-family compared with a typical Kunitz family member (~30%). The sequence and structure-function comparison of MLPs with that of a classical Kunitz inhibitor have demonstrated that MLPs have evolved to form a distinct group within Kunitz super-family. Sequence analysis of new genes along with available MLP sequences in the literature revealed three major groups for these proteins. A significant feature of Rutaceae MLP type 2 sequences is the presence of phosphorylation motif. Subtle changes are seen in putative reactive loop residues among different MLPs suggesting altered specificities to specific proteases. In phylogenetic analysis, Rutaceae MLP type 1 and type 2 proteins clustered together on separate branches, whereas native miraculin along with other MLPs formed distinct clusters. Site-specific positive Darwinian selection was observed at many sites in both the groups of Rutaceae MLP sequences with most of the residues undergoing positive selection located in loop regions. The results demonstrate the sequence and thereby the structure-function divergence of MLPs as a distinct group within soybean Kunitz super-family due to biotic and abiotic stresses of local environment.

  15. Molecular characterization of calreticulin from Anopheles stephensi midgut cells and functional assay of the recombinant calreticulin with Plasmodium berghei ookinetes.

    PubMed

    Borhani Dizaji, Nahid; Basseri, Hamid Reza; Naddaf, Saied Reza; Heidari, Mansour

    2014-10-25

    Transmission blocking vaccines (TBVs) that target the antigens on the midgut epithelium of Anopheles mosquitoes are among the promising tools for the elimination of the malaria parasite. Characterization and analysis of effective antigens is the first step to design TBVs. Calreticulin (CRT), a lectin-like protein, from Anopheles albimanus midgut, has shown antigenic features, suggesting a promising and novel TBV target. CRT is a highly conserved protein with similar features in vertebrates and invertebrates including anopheline. We cloned the full-length crt gene from malaria vector, Anopheles stephensi (AsCrt) and explored the interaction of recombinant AsCrt protein, expressed in a prokaryotic system (pGEX-6p-1), with surface proteins of Plasmodium berghei ookinetes by immunofluorescence assay. The cellular localization of AsCrt was determined using the baculovirus expression system. Sequence analysis of the whole cDNA of AsCrt revealed that AsCrt contains an ORF of 1221 bp. The amino acid sequence of AsCrt protein obtained in this study showed 64% homology with similar protein in human. The AsCrt shares the most common features of CRTs from other species. This gene encodes a 406 amino-acid protein with a molecular mass of 46 kDa, which contains a predicted 16 amino-acid signal peptides, conserved cysteine residues, a proline-rich region, and highly acidic C-terminal domain with endoplasmic reticulum retrieval sequence HDEL. The production of GST-AsCrt recombinant protein was confirmed by Western blot analysis using an antibody against the GST protein. The FITC-labeled GST-AsCrt exhibited a significant interaction with P. berghei ookinete surface proteins. Purified recombinant GST-AsCrt, labeled with FITC, displayed specific binding to the surface of P. berghei ookinetes in comparison with control. Moreover, the expression of AsCrt in baculovirus expression system indicated that AsCrt was localized on the surface of Sf9 cells. Our results suggest that AsCrt could be utilized as a potential target for future studies in TBV area for malaria control. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Properties of the intracellular transient receptor potential (TRP) channel in yeast, Yvc1.

    PubMed

    Chang, Yiming; Schlenstedt, Gabriel; Flockerzi, Veit; Beck, Andreas

    2010-05-17

    Transient receptor potential (TRP) channels are found among mammals, flies, worms, ciliates, Chlamydomonas, and yeast but are absent in plants. These channels are believed to be tetramers of proteins containing six transmembrane domains (TMs). Their primary structures are diverse with sequence similarities only in some short amino acid sequence motifs mainly within sequences covering TM5, TM6, and adjacent domains. In the yeast genome, there is one gene encoding a TRP-like sequence. This protein forms an ion channel in the vacuolar membrane and is therefore called Yvc1 for yeast vacuolar conductance 1. In the following we summarize its prominent features. Copyright 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  17. Predicting Functions of Proteins in Mouse Based on Weighted Protein-Protein Interaction Network and Protein Hybrid Properties

    PubMed Central

    Shi, Xiaohe; Lu, Wen-Cong; Cai, Yu-Dong; Chou, Kuo-Chen

    2011-01-01

    Background With the huge amount of uncharacterized protein sequences generated in the post-genomic age, it is highly desirable to develop effective computational methods for quickly and accurately predicting their functions. The information thus obtained would be very useful for both basic research and drug development in a timely manner. Methodology/Principal Findings Although many efforts have been made in this regard, most of them were based on either sequence similarity or protein-protein interaction (PPI) information. However, the former often fails to work if a query protein has no or very little sequence similarity to any function-known proteins, while the latter had similar problem if the relevant PPI information is not available. In view of this, a new approach is proposed by hybridizing the PPI information and the biochemical/physicochemical features of protein sequences. The overall first-order success rates by the new predictor for the functions of mouse proteins on training set and test set were 69.1% and 70.2%, respectively, and the success rate covered by the results of the top-4 order from a total of 24 orders was 65.2%. Conclusions/Significance The results indicate that the new approach is quite promising that may open a new avenue or direction for addressing the difficult and complicated problem. PMID:21283518

  18. A Bayesian Sampler for Optimization of Protein Domain Hierarchies

    PubMed Central

    2014-01-01

    Abstract The process of identifying and modeling functionally divergent subgroups for a specific protein domain class and arranging these subgroups hierarchically has, thus far, largely been done via manual curation. How to accomplish this automatically and optimally is an unsolved statistical and algorithmic problem that is addressed here via Markov chain Monte Carlo sampling. Taking as input a (typically very large) multiple-sequence alignment, the sampler creates and optimizes a hierarchy by adding and deleting leaf nodes, by moving nodes and subtrees up and down the hierarchy, by inserting or deleting internal nodes, and by redefining the sequences and conserved patterns associated with each node. All such operations are based on a probability distribution that models the conserved and divergent patterns defining each subgroup. When we view these patterns as sequence determinants of protein function, each node or subtree in such a hierarchy corresponds to a subgroup of sequences with similar biological properties. The sampler can be applied either de novo or to an existing hierarchy. When applied to 60 protein domains from multiple starting points in this way, it converged on similar solutions with nearly identical log-likelihood ratio scores, suggesting that it typically finds the optimal peak in the posterior probability distribution. Similarities and differences between independently generated, nearly optimal hierarchies for a given domain help distinguish robust from statistically uncertain features. Thus, a future application of the sampler is to provide confidence measures for various features of a domain hierarchy. PMID:24494927

  19. The standard operating procedure of the DOE-JGI Metagenome Annotation Pipeline (MAP v.4)

    DOE PAGES

    Huntemann, Marcel; Ivanova, Natalia N.; Mavromatis, Konstantinos; ...

    2016-02-24

    The DOE-JGI Metagenome Annotation Pipeline (MAP v.4) performs structural and functional annotation for metagenomic sequences that are submitted to the Integrated Microbial Genomes with Microbiomes (IMG/M) system for comparative analysis. The pipeline runs on nucleotide sequences provide d via the IMG submission site. Users must first define their analysis projects in GOLD and then submit the associated sequence datasets consisting of scaffolds/contigs with optional coverage information and/or unassembled reads in fasta and fastq file formats. The MAP processing consists of feature prediction including identification of protein-coding genes, non-coding RNAs and regulatory RNAs, as well as CRISPR elements. Structural annotation ismore » followed by functional annotation including assignment of protein product names and connection to various protein family databases.« less

  20. The standard operating procedure of the DOE-JGI Metagenome Annotation Pipeline (MAP v.4)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huntemann, Marcel; Ivanova, Natalia N.; Mavromatis, Konstantinos

    The DOE-JGI Metagenome Annotation Pipeline (MAP v.4) performs structural and functional annotation for metagenomic sequences that are submitted to the Integrated Microbial Genomes with Microbiomes (IMG/M) system for comparative analysis. The pipeline runs on nucleotide sequences provide d via the IMG submission site. Users must first define their analysis projects in GOLD and then submit the associated sequence datasets consisting of scaffolds/contigs with optional coverage information and/or unassembled reads in fasta and fastq file formats. The MAP processing consists of feature prediction including identification of protein-coding genes, non-coding RNAs and regulatory RNAs, as well as CRISPR elements. Structural annotation ismore » followed by functional annotation including assignment of protein product names and connection to various protein family databases.« less

  1. Assessing the Pathogenicity of Insertion and Deletion Variants with the Variant Effect Scoring Tool (VEST-Indel).

    PubMed

    Douville, Christopher; Masica, David L; Stenson, Peter D; Cooper, David N; Gygax, Derek M; Kim, Rick; Ryan, Michael; Karchin, Rachel

    2016-01-01

    Insertion/deletion variants (indels) alter protein sequence and length, yet are highly prevalent in healthy populations, presenting a challenge to bioinformatics classifiers. Commonly used features--DNA and protein sequence conservation, indel length, and occurrence in repeat regions--are useful for inference of protein damage. However, these features can cause false positives when predicting the impact of indels on disease. Existing methods for indel classification suffer from low specificities, severely limiting clinical utility. Here, we further develop our variant effect scoring tool (VEST) to include the classification of in-frame and frameshift indels (VEST-indel) as pathogenic or benign. We apply 24 features, including a new "PubMed" feature, to estimate a gene's importance in human disease. When compared with four existing indel classifiers, our method achieves a drastically reduced false-positive rate, improving specificity by as much as 90%. This approach of estimating gene importance might be generally applicable to missense and other bioinformatics pathogenicity predictors, which often fail to achieve high specificity. Finally, we tested all possible meta-predictors that can be obtained from combining the four different indel classifiers using Boolean conjunctions and disjunctions, and derived a meta-predictor with improved performance over any individual method. © 2015 The Authors. **Human Mutation published by Wiley Periodicals, Inc.

  2. Programmable DNA-binding proteins from Burkholderia provide a fresh perspective on the TALE-like repeat domain.

    PubMed

    de Lange, Orlando; Wolf, Christina; Dietze, Jörn; Elsaesser, Janett; Morbitzer, Robert; Lahaye, Thomas

    2014-06-01

    The tandem repeats of transcription activator like effectors (TALEs) mediate sequence-specific DNA binding using a simple code. Naturally, TALEs are injected by Xanthomonas bacteria into plant cells to manipulate the host transcriptome. In the laboratory TALE DNA binding domains are reprogrammed and used to target a fused functional domain to a genomic locus of choice. Research into the natural diversity of TALE-like proteins may provide resources for the further improvement of current TALE technology. Here we describe TALE-like proteins from the endosymbiotic bacterium Burkholderia rhizoxinica, termed Bat proteins. Bat repeat domains mediate sequence-specific DNA binding with the same code as TALEs, despite less than 40% sequence identity. We show that Bat proteins can be adapted for use as transcription factors and nucleases and that sequence preferences can be reprogrammed. Unlike TALEs, the core repeats of each Bat protein are highly polymorphic. This feature allowed us to explore alternative strategies for the design of custom Bat repeat arrays, providing novel insights into the functional relevance of non-RVD residues. The Bat proteins offer fertile grounds for research into the creation of improved programmable DNA-binding proteins and comparative insights into TALE-like evolution. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Protein sectors: evolutionary units of three-dimensional structure

    PubMed Central

    Halabi, Najeeb; Rivoire, Olivier; Leibler, Stanislas; Ranganathan, Rama

    2011-01-01

    Proteins display a hierarchy of structural features at primary, secondary, tertiary, and higher-order levels, an organization that guides our current understanding of their biological properties and evolutionary origins. Here, we reveal a structural organization distinct from this traditional hierarchy by statistical analysis of correlated evolution between amino acids. Applied to the S1A serine proteases, the analysis indicates a decomposition of the protein into three quasi-independent groups of correlated amino acids that we term “protein sectors”. Each sector is physically connected in the tertiary structure, has a distinct functional role, and constitutes an independent mode of sequence divergence in the protein family. Functionally relevant sectors are evident in other protein families as well, suggesting that they may be general features of proteins. We propose that sectors represent a structural organization of proteins that reflects their evolutionary histories. PMID:19703402

  4. Prospecting Biotechnologically-Relevant Monooxygenases from Cold Sediment Metagenomes: An In Silico Approach

    DOE PAGES

    Musumeci, Matias A.; Lozada, Mariana; Rial, Daniela V.; ...

    2017-04-09

    The goal of this work was to identify sequences encoding monooxygenase biocatalysts with novel features by in silico mining an assembled metagenomic dataset of polar and subpolar marine sediments. The targeted enzyme sequences were Baeyer-Villiger and bacterial cytochrome P450 monooxygenases (CYP153). These enzymes have wide-ranging applications, from the synthesis of steroids, antibiotics, mycotoxins and pheromones to the synthesis of monomers for polymerization and anticancer precursors, due to their extraordinary enantio-, regio-, and chemo- selectivity that are valuable features for organic synthesis. Phylogenetic analyses were used to select the most divergent sequences affiliated to these enzyme families among the 264 putativemore » monooxygenases recovered from the ~14 million protein-coding sequences in the assembled metagenome dataset. Three-dimensional structure modeling and docking analysis suggested features useful in biotechnological applications in five metagenomic sequences, such as wide substrate range, novel substrate specificity or regioselectivity. Further analysis revealed structural features associated with psychrophilic enzymes, such as broader substrate accessibility, larger catalytic pockets or low domain interactions, suggesting that they could be applied in biooxidations at room or low temperatures, saving costs inherent to energy consumption. As a result, this work allowed the identification of putative enzyme candidates with promising features from metagenomes, providing a suitable starting point for further developments.« less

  5. Prospecting Biotechnologically-Relevant Monooxygenases from Cold Sediment Metagenomes: An In Silico Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musumeci, Matias A.; Lozada, Mariana; Rial, Daniela V.

    The goal of this work was to identify sequences encoding monooxygenase biocatalysts with novel features by in silico mining an assembled metagenomic dataset of polar and subpolar marine sediments. The targeted enzyme sequences were Baeyer-Villiger and bacterial cytochrome P450 monooxygenases (CYP153). These enzymes have wide-ranging applications, from the synthesis of steroids, antibiotics, mycotoxins and pheromones to the synthesis of monomers for polymerization and anticancer precursors, due to their extraordinary enantio-, regio-, and chemo- selectivity that are valuable features for organic synthesis. Phylogenetic analyses were used to select the most divergent sequences affiliated to these enzyme families among the 264 putativemore » monooxygenases recovered from the ~14 million protein-coding sequences in the assembled metagenome dataset. Three-dimensional structure modeling and docking analysis suggested features useful in biotechnological applications in five metagenomic sequences, such as wide substrate range, novel substrate specificity or regioselectivity. Further analysis revealed structural features associated with psychrophilic enzymes, such as broader substrate accessibility, larger catalytic pockets or low domain interactions, suggesting that they could be applied in biooxidations at room or low temperatures, saving costs inherent to energy consumption. As a result, this work allowed the identification of putative enzyme candidates with promising features from metagenomes, providing a suitable starting point for further developments.« less

  6. Prospecting Biotechnologically-Relevant Monooxygenases from Cold Sediment Metagenomes: An In Silico Approach.

    PubMed

    Musumeci, Matías A; Lozada, Mariana; Rial, Daniela V; Mac Cormack, Walter P; Jansson, Janet K; Sjöling, Sara; Carroll, JoLynn; Dionisi, Hebe M

    2017-04-09

    The goal of this work was to identify sequences encoding monooxygenase biocatalysts with novel features by in silico mining an assembled metagenomic dataset of polar and subpolar marine sediments. The targeted enzyme sequences were Baeyer-Villiger and bacterial cytochrome P450 monooxygenases (CYP153). These enzymes have wide-ranging applications, from the synthesis of steroids, antibiotics, mycotoxins and pheromones to the synthesis of monomers for polymerization and anticancer precursors, due to their extraordinary enantio-, regio-, and chemo- selectivity that are valuable features for organic synthesis. Phylogenetic analyses were used to select the most divergent sequences affiliated to these enzyme families among the 264 putative monooxygenases recovered from the ~14 million protein-coding sequences in the assembled metagenome dataset. Three-dimensional structure modeling and docking analysis suggested features useful in biotechnological applications in five metagenomic sequences, such as wide substrate range, novel substrate specificity or regioselectivity. Further analysis revealed structural features associated with psychrophilic enzymes, such as broader substrate accessibility, larger catalytic pockets or low domain interactions, suggesting that they could be applied in biooxidations at room or low temperatures, saving costs inherent to energy consumption. This work allowed the identification of putative enzyme candidates with promising features from metagenomes, providing a suitable starting point for further developments.

  7. Prospecting Biotechnologically-Relevant Monooxygenases from Cold Sediment Metagenomes: An In Silico Approach

    PubMed Central

    Musumeci, Matías A.; Lozada, Mariana; Rial, Daniela V.; Mac Cormack, Walter P.; Jansson, Janet K.; Sjöling, Sara; Carroll, JoLynn; Dionisi, Hebe M.

    2017-01-01

    The goal of this work was to identify sequences encoding monooxygenase biocatalysts with novel features by in silico mining an assembled metagenomic dataset of polar and subpolar marine sediments. The targeted enzyme sequences were Baeyer–Villiger and bacterial cytochrome P450 monooxygenases (CYP153). These enzymes have wide-ranging applications, from the synthesis of steroids, antibiotics, mycotoxins and pheromones to the synthesis of monomers for polymerization and anticancer precursors, due to their extraordinary enantio-, regio-, and chemo- selectivity that are valuable features for organic synthesis. Phylogenetic analyses were used to select the most divergent sequences affiliated to these enzyme families among the 264 putative monooxygenases recovered from the ~14 million protein-coding sequences in the assembled metagenome dataset. Three-dimensional structure modeling and docking analysis suggested features useful in biotechnological applications in five metagenomic sequences, such as wide substrate range, novel substrate specificity or regioselectivity. Further analysis revealed structural features associated with psychrophilic enzymes, such as broader substrate accessibility, larger catalytic pockets or low domain interactions, suggesting that they could be applied in biooxidations at room or low temperatures, saving costs inherent to energy consumption. This work allowed the identification of putative enzyme candidates with promising features from metagenomes, providing a suitable starting point for further developments. PMID:28397770

  8. Informational structure of genetic sequences and nature of gene splicing

    NASA Astrophysics Data System (ADS)

    Trifonov, E. N.

    1991-10-01

    Only about 1/20 of DNA of higher organisms codes for proteins, by means of classical triplet code. The rest of DNA sequences is largely silent, with unclear functions, if any. The triplet code is not the only code (message) carried by the sequences. There are three levels of molecular communication, where the same sequence ``talks'' to various bimolecules, while having, respectively, three different appearances: DNA, RNA and protein. Since the molecular structures and, hence, sequence specific preferences of these are substantially different, the original DNA sequence has to carry simultaneously three types of sequence patterns (codes, messages), thus, being a composite structure in which one had the same letter (nucleotide) is frequently involved in several overlapping codes of different nature. This multiplicity and overlapping of the codes is a unique feature of the Gnomic, language of genetic sequences. The coexisting codes have to be degenerate in various degrees to allow an optimal and concerted performance of all the encoded functions. There is an obvious conflict between the best possible performance of a given function and necessity to compromise the quality of a given sequence pattern in favor of other patterns. It appears that the major role of various changes in the sequences on their ``ontogenetic'' way from DNA to RNA to protein, like RNA editing and splicing, or protein post-translational modifications is to resolve such conflicts. New data are presented strongly indicating that the gene splicing is such a device to resolve the conflict between the code of DNA folding in chromatin and the triplet code for protein synthesis.

  9. Efficient use of unlabeled data for protein sequence classification: a comparative study.

    PubMed

    Kuksa, Pavel; Huang, Pai-Hsi; Pavlovic, Vladimir

    2009-04-29

    Recent studies in computational primary protein sequence analysis have leveraged the power of unlabeled data. For example, predictive models based on string kernels trained on sequences known to belong to particular folds or superfamilies, the so-called labeled data set, can attain significantly improved accuracy if this data is supplemented with protein sequences that lack any class tags-the unlabeled data. In this study, we present a principled and biologically motivated computational framework that more effectively exploits the unlabeled data by only using the sequence regions that are more likely to be biologically relevant for better prediction accuracy. As overly-represented sequences in large uncurated databases may bias the estimation of computational models that rely on unlabeled data, we also propose a method to remove this bias and improve performance of the resulting classifiers. Combined with state-of-the-art string kernels, our proposed computational framework achieves very accurate semi-supervised protein remote fold and homology detection on three large unlabeled databases. It outperforms current state-of-the-art methods and exhibits significant reduction in running time. The unlabeled sequences used under the semi-supervised setting resemble the unpolished gemstones; when used as-is, they may carry unnecessary features and hence compromise the classification accuracy but once cut and polished, they improve the accuracy of the classifiers considerably.

  10. Transcription factor IID in the Archaea: sequences in the Thermococcus celer genome would encode a product closely related to the TATA-binding protein of eukaryotes

    NASA Technical Reports Server (NTRS)

    Marsh, T. L.; Reich, C. I.; Whitelock, R. B.; Olsen, G. J.; Woese, C. R. (Principal Investigator)

    1994-01-01

    The first step in transcription initiation in eukaryotes is mediated by the TATA-binding protein, a subunit of the transcription factor IID complex. We have cloned and sequenced the gene for a presumptive homolog of this eukaryotic protein from Thermococcus celer, a member of the Archaea (formerly archaebacteria). The protein encoded by the archaeal gene is a tandem repeat of a conserved domain, corresponding to the repeated domain in its eukaryotic counterparts. Molecular phylogenetic analyses of the two halves of the repeat are consistent with the duplication occurring before the divergence of the archael and eukaryotic domains. In conjunction with previous observations of similarity in RNA polymerase subunit composition and sequences and the finding of a transcription factor IIB-like sequence in Pyrococcus woesei (a relative of T. celer) it appears that major features of the eukaryotic transcription apparatus were well-established before the origin of eukaryotic cellular organization. The divergence between the two halves of the archael protein is less than that between the halves of the individual eukaryotic sequences, indicating that the average rate of sequence change in the archael protein has been less than in its eukaryotic counterparts. To the extent that this lower rate applies to the genome as a whole, a clearer picture of the early genes (and gene families) that gave rise to present-day genomes is more apt to emerge from the study of sequences from the Archaea than from the corresponding sequences from eukaryotes.

  11. Protein-RNA interface residue prediction using machine learning: an assessment of the state of the art.

    PubMed

    Walia, Rasna R; Caragea, Cornelia; Lewis, Benjamin A; Towfic, Fadi; Terribilini, Michael; El-Manzalawy, Yasser; Dobbs, Drena; Honavar, Vasant

    2012-05-10

    RNA molecules play diverse functional and structural roles in cells. They function as messengers for transferring genetic information from DNA to proteins, as the primary genetic material in many viruses, as catalysts (ribozymes) important for protein synthesis and RNA processing, and as essential and ubiquitous regulators of gene expression in living organisms. Many of these functions depend on precisely orchestrated interactions between RNA molecules and specific proteins in cells. Understanding the molecular mechanisms by which proteins recognize and bind RNA is essential for comprehending the functional implications of these interactions, but the recognition 'code' that mediates interactions between proteins and RNA is not yet understood. Success in deciphering this code would dramatically impact the development of new therapeutic strategies for intervening in devastating diseases such as AIDS and cancer. Because of the high cost of experimental determination of protein-RNA interfaces, there is an increasing reliance on statistical machine learning methods for training predictors of RNA-binding residues in proteins. However, because of differences in the choice of datasets, performance measures, and data representations used, it has been difficult to obtain an accurate assessment of the current state of the art in protein-RNA interface prediction. We provide a review of published approaches for predicting RNA-binding residues in proteins and a systematic comparison and critical assessment of protein-RNA interface residue predictors trained using these approaches on three carefully curated non-redundant datasets. We directly compare two widely used machine learning algorithms (Naïve Bayes (NB) and Support Vector Machine (SVM)) using three different data representations in which features are encoded using either sequence- or structure-based windows. Our results show that (i) Sequence-based classifiers that use a position-specific scoring matrix (PSSM)-based representation (PSSMSeq) outperform those that use an amino acid identity based representation (IDSeq) or a smoothed PSSM (SmoPSSMSeq); (ii) Structure-based classifiers that use smoothed PSSM representation (SmoPSSMStr) outperform those that use PSSM (PSSMStr) as well as sequence identity based representation (IDStr). PSSMSeq classifiers, when tested on an independent test set of 44 proteins, achieve performance that is comparable to that of three state-of-the-art structure-based predictors (including those that exploit geometric features) in terms of Matthews Correlation Coefficient (MCC), although the structure-based methods achieve substantially higher Specificity (albeit at the expense of Sensitivity) compared to sequence-based methods. We also find that the expected performance of the classifiers on a residue level can be markedly different from that on a protein level. Our experiments show that the classifiers trained on three different non-redundant protein-RNA interface datasets achieve comparable cross-validation performance. However, we find that the results are significantly affected by differences in the distance threshold used to define interface residues. Our results demonstrate that protein-RNA interface residue predictors that use a PSSM-based encoding of sequence windows outperform classifiers that use other encodings of sequence windows. While structure-based methods that exploit geometric features can yield significant increases in the Specificity of protein-RNA interface residue predictions, such increases are offset by decreases in Sensitivity. These results underscore the importance of comparing alternative methods using rigorous statistical procedures, multiple performance measures, and datasets that are constructed based on several alternative definitions of interface residues and redundancy cutoffs as well as including evaluations on independent test sets into the comparisons.

  12. Specific binding of a HeLa cell nuclear protein to RNA sequences in the human immunodeficiency virus transactivating region.

    PubMed Central

    Gaynor, R; Soultanakis, E; Kuwabara, M; Garcia, J; Sigman, D S

    1989-01-01

    The transactivator protein, tat, encoded by the human immunodeficiency virus is a key regulator of viral transcription. Activation by the tat protein requires sequences downstream of the transcription initiation site called the transactivating region (TAR). RNA derived from the TAR is capable of forming a stable stem-loop structure and the maintenance of both the stem structure and the loop sequences located between +19 and +44 is required for complete in vivo activation by tat. Gel retardation assays with RNA from both wild-type and mutant TAR constructs generated in vitro with SP6 polymerase indicated specific binding of HeLa nuclear proteins to the TAR. To characterize this RNA-protein interaction, a method of chemical "imprinting" has been developed using photoactivated uranyl acetate as the nucleolytic agent. This reagent nicks RNA under physiological conditions at all four nucleotides in a reaction that is independent of sequence and secondary structure. Specific interaction of cellular proteins with TAR RNA could be detected by enhanced cleavages or imprints surrounding the loop region. Mutations that either disrupted stem base-pairing or extensively changed the primary sequence resulted in alterations in the cleavage pattern of the TAR RNA. Structural features of the TAR RNA stem-loop essential for tat activation are also required for specific binding of the HeLa cell nuclear protein. Images PMID:2544877

  13. Predicting and analyzing DNA-binding domains using a systematic approach to identifying a set of informative physicochemical and biochemical properties

    PubMed Central

    2011-01-01

    Background Existing methods of predicting DNA-binding proteins used valuable features of physicochemical properties to design support vector machine (SVM) based classifiers. Generally, selection of physicochemical properties and determination of their corresponding feature vectors rely mainly on known properties of binding mechanism and experience of designers. However, there exists a troublesome problem for designers that some different physicochemical properties have similar vectors of representing 20 amino acids and some closely related physicochemical properties have dissimilar vectors. Results This study proposes a systematic approach (named Auto-IDPCPs) to automatically identify a set of physicochemical and biochemical properties in the AAindex database to design SVM-based classifiers for predicting and analyzing DNA-binding domains/proteins. Auto-IDPCPs consists of 1) clustering 531 amino acid indices in AAindex into 20 clusters using a fuzzy c-means algorithm, 2) utilizing an efficient genetic algorithm based optimization method IBCGA to select an informative feature set of size m to represent sequences, and 3) analyzing the selected features to identify related physicochemical properties which may affect the binding mechanism of DNA-binding domains/proteins. The proposed Auto-IDPCPs identified m=22 features of properties belonging to five clusters for predicting DNA-binding domains with a five-fold cross-validation accuracy of 87.12%, which is promising compared with the accuracy of 86.62% of the existing method PSSM-400. For predicting DNA-binding sequences, the accuracy of 75.50% was obtained using m=28 features, where PSSM-400 has an accuracy of 74.22%. Auto-IDPCPs and PSSM-400 have accuracies of 80.73% and 82.81%, respectively, applied to an independent test data set of DNA-binding domains. Some typical physicochemical properties discovered are hydrophobicity, secondary structure, charge, solvent accessibility, polarity, flexibility, normalized Van Der Waals volume, pK (pK-C, pK-N, pK-COOH and pK-a(RCOOH)), etc. Conclusions The proposed approach Auto-IDPCPs would help designers to investigate informative physicochemical and biochemical properties by considering both prediction accuracy and analysis of binding mechanism simultaneously. The approach Auto-IDPCPs can be also applicable to predict and analyze other protein functions from sequences. PMID:21342579

  14. Purification, developmental expression, and in silico characterization of α-amylase inhibitor from Echinochloa frumentacea.

    PubMed

    Panwar, Priyankar; Verma, A K; Dubey, Ashutosh

    2018-05-01

    Barnyard ( Echinochloa frumentacea ) and finger ( Eleusine coracana ) millet growing at northwestern Himalaya were explored for the α-amylase inhibitor (α-AI). The mature seeds of barnyard millet variety PRJ1 had maximum α-AI activity which increases in different developmental stage. α-AI was purified up to 22.25-fold from barnyard millet variety PRJ1. Semi-quantitative PCR of different developmental stages of barnyard millet seeds showed increased levels of the transcript from 7 to 28 days. Sequence analysis revealed that it contained 315 bp nucleotide which encodes 104 amino acid sequence with molecular weight 10.72 kDa. The predicted 3D structure of α-AI was 86.73% similar to a bifunctional inhibitor of ragi. In silico analysis of 71 α-AI protein sequences were carried out for biochemical features, homology search, multiple sequence alignment, phylogenetic tree construction, motif, and superfamily distribution of protein sequences. Analysis of multiple sequence alignment revealed the existence of conserved regions NPLP[S/G]CRWYVV[S/Q][Q/R]TCG[V/I] throughout sequences. Superfam analysis revealed that α-AI protein sequences were distributed among seven different superfamilies.

  15. Structural analyses of the CRISPR protein Csc2 reveal the RNA-binding interface of the type I-D Cas7 family.

    PubMed

    Hrle, Ajla; Maier, Lisa-Katharina; Sharma, Kundan; Ebert, Judith; Basquin, Claire; Urlaub, Henning; Marchfelder, Anita; Conti, Elena

    2014-01-01

    Upon pathogen invasion, bacteria and archaea activate an RNA-interference-like mechanism termed CRISPR (clustered regularly interspaced short palindromic repeats). A large family of Cas (CRISPR-associated) proteins mediates the different stages of this sophisticated immune response. Bioinformatic studies have classified the Cas proteins into families, according to their sequences and respective functions. These range from the insertion of the foreign genetic elements into the host genome to the activation of the interference machinery as well as target degradation upon attack. Cas7 family proteins are central to the type I and type III interference machineries as they constitute the backbone of the large interference complexes. Here we report the crystal structure of Thermofilum pendens Csc2, a Cas7 family protein of type I-D. We found that Csc2 forms a core RRM-like domain, flanked by three peripheral insertion domains: a lid domain, a Zinc-binding domain and a helical domain. Comparison with other Cas7 family proteins reveals a set of similar structural features both in the core and in the peripheral domains, despite the absence of significant sequence similarity. T. pendens Csc2 binds single-stranded RNA in vitro in a sequence-independent manner. Using a crosslinking - mass-spectrometry approach, we mapped the RNA-binding surface to a positively charged surface patch on T. pendens Csc2. Thus our analysis of the key structural and functional features of T. pendens Csc2 highlights recurring themes and evolutionary relationships in type I and type III Cas proteins.

  16. Diverse RNA-binding proteins interact with functionally related sets of RNAs, suggesting an extensive regulatory system.

    PubMed

    Hogan, Daniel J; Riordan, Daniel P; Gerber, André P; Herschlag, Daniel; Brown, Patrick O

    2008-10-28

    RNA-binding proteins (RBPs) have roles in the regulation of many post-transcriptional steps in gene expression, but relatively few RBPs have been systematically studied. We searched for the RNA targets of 40 proteins in the yeast Saccharomyces cerevisiae: a selective sample of the approximately 600 annotated and predicted RBPs, as well as several proteins not annotated as RBPs. At least 33 of these 40 proteins, including three of the four proteins that were not previously known or predicted to be RBPs, were reproducibly associated with specific sets of a few to several hundred RNAs. Remarkably, many of the RBPs we studied bound mRNAs whose protein products share identifiable functional or cytotopic features. We identified specific sequences or predicted structures significantly enriched in target mRNAs of 16 RBPs. These potential RNA-recognition elements were diverse in sequence, structure, and location: some were found predominantly in 3'-untranslated regions, others in 5'-untranslated regions, some in coding sequences, and many in two or more of these features. Although this study only examined a small fraction of the universe of yeast RBPs, 70% of the mRNA transcriptome had significant associations with at least one of these RBPs, and on average, each distinct yeast mRNA interacted with three of the RBPs, suggesting the potential for a rich, multidimensional network of regulation. These results strongly suggest that combinatorial binding of RBPs to specific recognition elements in mRNAs is a pervasive mechanism for multi-dimensional regulation of their post-transcriptional fate.

  17. Enhancing membrane protein subcellular localization prediction by parallel fusion of multi-view features.

    PubMed

    Yu, Dongjun; Wu, Xiaowei; Shen, Hongbin; Yang, Jian; Tang, Zhenmin; Qi, Yong; Yang, Jingyu

    2012-12-01

    Membrane proteins are encoded by ~ 30% in the genome and function importantly in the living organisms. Previous studies have revealed that membrane proteins' structures and functions show obvious cell organelle-specific properties. Hence, it is highly desired to predict membrane protein's subcellular location from the primary sequence considering the extreme difficulties of membrane protein wet-lab studies. Although many models have been developed for predicting protein subcellular locations, only a few are specific to membrane proteins. Existing prediction approaches were constructed based on statistical machine learning algorithms with serial combination of multi-view features, i.e., different feature vectors are simply serially combined to form a super feature vector. However, such simple combination of features will simultaneously increase the information redundancy that could, in turn, deteriorate the final prediction accuracy. That's why it was often found that prediction success rates in the serial super space were even lower than those in a single-view space. The purpose of this paper is investigation of a proper method for fusing multiple multi-view protein sequential features for subcellular location predictions. Instead of serial strategy, we propose a novel parallel framework for fusing multiple membrane protein multi-view attributes that will represent protein samples in complex spaces. We also proposed generalized principle component analysis (GPCA) for feature reduction purpose in the complex geometry. All the experimental results through different machine learning algorithms on benchmark membrane protein subcellular localization datasets demonstrate that the newly proposed parallel strategy outperforms the traditional serial approach. We also demonstrate the efficacy of the parallel strategy on a soluble protein subcellular localization dataset indicating the parallel technique is flexible to suite for other computational biology problems. The software and datasets are available at: http://www.csbio.sjtu.edu.cn/bioinf/mpsp.

  18. Sequence-structural features and evolutionary relationships of family GH57 α-amylases and their putative α-amylase-like homologues.

    PubMed

    Janeček, Stefan; Blesák, Karol

    2011-08-01

    The glycoside hydrolase family 57 (GH57) contains α-amylase and a few other amylolytic specificities. It counts ~400 members from Archaea (1/4) and Bacteria (3/4), mostly of extremophilic prokaryotes. Only 17 GH57 enzymes have been biochemically characterized. The main goal of the present bioinformatics study was to analyze sequences having the clear GH57 α-amylase features. Of the 107 GH57 sequences, 59 were evaluated as α-amylases (containing both GH57 catalytic residues), whereas 48 were assigned as GH57 α-amylase-like proteins (having a substitution in one or both catalytic residues). Forty-eight of 59 α-amylases were from Archaea, but 42 of 48 α-amylase-like proteins were of bacterial origin. The catalytic residues were substituted in most cases in Bacteroides and Prevotella by serine (instead of catalytic nucleophile glutamate) and glutamate (instead of proton donor aspartate). The GH57 α-amylase specificity has thus been evolved and kept enzymatically active mainly in Archaea.

  19. PREvaIL, an integrative approach for inferring catalytic residues using sequence, structural, and network features in a machine-learning framework.

    PubMed

    Song, Jiangning; Li, Fuyi; Takemoto, Kazuhiro; Haffari, Gholamreza; Akutsu, Tatsuya; Chou, Kuo-Chen; Webb, Geoffrey I

    2018-04-14

    Determining the catalytic residues in an enzyme is critical to our understanding the relationship between protein sequence, structure, function, and enhancing our ability to design novel enzymes and their inhibitors. Although many enzymes have been sequenced, and their primary and tertiary structures determined, experimental methods for enzyme functional characterization lag behind. Because experimental methods used for identifying catalytic residues are resource- and labor-intensive, computational approaches have considerable value and are highly desirable for their ability to complement experimental studies in identifying catalytic residues and helping to bridge the sequence-structure-function gap. In this study, we describe a new computational method called PREvaIL for predicting enzyme catalytic residues. This method was developed by leveraging a comprehensive set of informative features extracted from multiple levels, including sequence, structure, and residue-contact network, in a random forest machine-learning framework. Extensive benchmarking experiments on eight different datasets based on 10-fold cross-validation and independent tests, as well as side-by-side performance comparisons with seven modern sequence- and structure-based methods, showed that PREvaIL achieved competitive predictive performance, with an area under the receiver operating characteristic curve and area under the precision-recall curve ranging from 0.896 to 0.973 and from 0.294 to 0.523, respectively. We demonstrated that this method was able to capture useful signals arising from different levels, leveraging such differential but useful types of features and allowing us to significantly improve the performance of catalytic residue prediction. We believe that this new method can be utilized as a valuable tool for both understanding the complex sequence-structure-function relationships of proteins and facilitating the characterization of novel enzymes lacking functional annotations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Comprehensive definition of genome features in Spirodela polyrhiza by high-depth physical mapping and short-read DNA sequencing strategies.

    PubMed

    Michael, Todd P; Bryant, Douglas; Gutierrez, Ryan; Borisjuk, Nikolai; Chu, Philomena; Zhang, Hanzhong; Xia, Jing; Zhou, Junfei; Peng, Hai; El Baidouri, Moaine; Ten Hallers, Boudewijn; Hastie, Alex R; Liang, Tiffany; Acosta, Kenneth; Gilbert, Sarah; McEntee, Connor; Jackson, Scott A; Mockler, Todd C; Zhang, Weixiong; Lam, Eric

    2017-02-01

    Spirodela polyrhiza is a fast-growing aquatic monocot with highly reduced morphology, genome size and number of protein-coding genes. Considering these biological features of Spirodela and its basal position in the monocot lineage, understanding its genome architecture could shed light on plant adaptation and genome evolution. Like many draft genomes, however, the 158-Mb Spirodela genome sequence has not been resolved to chromosomes, and important genome characteristics have not been defined. Here we deployed rapid genome-wide physical maps combined with high-coverage short-read sequencing to resolve the 20 chromosomes of Spirodela and to empirically delineate its genome features. Our data revealed a dramatic reduction in the number of the rDNA repeat units in Spirodela to fewer than 100, which is even fewer than that reported for yeast. Consistent with its unique phylogenetic position, small RNA sequencing revealed 29 Spirodela-specific microRNA, with only two being shared with Elaeis guineensis (oil palm) and Musa balbisiana (banana). Combining DNA methylation data and small RNA sequencing enabled the accurate prediction of 20.5% long terminal repeats (LTRs) that doubled the previous estimate, and revealed a high Solo:Intact LTR ratio of 8.2. Interestingly, we found that Spirodela has the lowest global DNA methylation levels (9%) of any plant species tested. Taken together our results reveal a genome that has undergone reduction, likely through eliminating non-essential protein coding genes, rDNA and LTRs. In addition to delineating the genome features of this unique plant, the methodologies described and large-scale genome resources from this work will enable future evolutionary and functional studies of this basal monocot family. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  1. Protein Aggregation/Folding: The Role of Deterministic Singularities of Sequence Hydrophobicity as Determined by Nonlinear Signal Analysis of Acylphosphatase and Aβ(1–40)

    PubMed Central

    Zbilut, Joseph P.; Colosimo, Alfredo; Conti, Filippo; Colafranceschi, Mauro; Manetti, Cesare; Valerio, MariaCristina; Webber, Charles L.; Giuliani, Alessandro

    2003-01-01

    The problem of protein folding vs. aggregation was investigated in acylphosphatase and the amyloid protein Aβ(1–40) by means of nonlinear signal analysis of their chain hydrophobicity. Numerical descriptors of recurrence patterns provided the basis for statistical evaluation of folding/aggregation distinctive features. Static and dynamic approaches were used to elucidate conditions coincident with folding vs. aggregation using comparisons with known protein secondary structure classifications, site-directed mutagenesis studies of acylphosphatase, and molecular dynamics simulations of amyloid protein, Aβ(1–40). The results suggest that a feature derived from principal component space characterized by the smoothness of singular, deterministic hydrophobicity patches plays a significant role in the conditions governing protein aggregation. PMID:14645049

  2. BayesMotif: de novo protein sorting motif discovery from impure datasets.

    PubMed

    Hu, Jianjun; Zhang, Fan

    2010-01-18

    Protein sorting is the process that newly synthesized proteins are transported to their target locations within or outside of the cell. This process is precisely regulated by protein sorting signals in different forms. A major category of sorting signals are amino acid sub-sequences usually located at the N-terminals or C-terminals of protein sequences. Genome-wide experimental identification of protein sorting signals is extremely time-consuming and costly. Effective computational algorithms for de novo discovery of protein sorting signals is needed to improve the understanding of protein sorting mechanisms. We formulated the protein sorting motif discovery problem as a classification problem and proposed a Bayesian classifier based algorithm (BayesMotif) for de novo identification of a common type of protein sorting motifs in which a highly conserved anchor is present along with a less conserved motif regions. A false positive removal procedure is developed to iteratively remove sequences that are unlikely to contain true motifs so that the algorithm can identify motifs from impure input sequences. Experiments on both implanted motif datasets and real-world datasets showed that the enhanced BayesMotif algorithm can identify anchored sorting motifs from pure or impure protein sequence dataset. It also shows that the false positive removal procedure can help to identify true motifs even when there is only 20% of the input sequences containing true motif instances. We proposed BayesMotif, a novel Bayesian classification based algorithm for de novo discovery of a special category of anchored protein sorting motifs from impure datasets. Compared to conventional motif discovery algorithms such as MEME, our algorithm can find less-conserved motifs with short highly conserved anchors. Our algorithm also has the advantage of easy incorporation of additional meta-sequence features such as hydrophobicity or charge of the motifs which may help to overcome the limitations of PWM (position weight matrix) motif model.

  3. Representation of DNA sequences in genetic codon context with applications in exon and intron prediction.

    PubMed

    Yin, Changchuan

    2015-04-01

    To apply digital signal processing (DSP) methods to analyze DNA sequences, the sequences first must be specially mapped into numerical sequences. Thus, effective numerical mappings of DNA sequences play key roles in the effectiveness of DSP-based methods such as exon prediction. Despite numerous mappings of symbolic DNA sequences to numerical series, the existing mapping methods do not include the genetic coding features of DNA sequences. We present a novel numerical representation of DNA sequences using genetic codon context (GCC) in which the numerical values are optimized by simulation annealing to maximize the 3-periodicity signal to noise ratio (SNR). The optimized GCC representation is then applied in exon and intron prediction by Short-Time Fourier Transform (STFT) approach. The results show the GCC method enhances the SNR values of exon sequences and thus increases the accuracy of predicting protein coding regions in genomes compared with the commonly used 4D binary representation. In addition, this study offers a novel way to reveal specific features of DNA sequences by optimizing numerical mappings of symbolic DNA sequences.

  4. Spectroscopic studies on peptides and proteins with cysteine-containing heme regulatory motifs (HRM).

    PubMed

    Schubert, Erik; Florin, Nicole; Duthie, Fraser; Henning Brewitz, H; Kühl, Toni; Imhof, Diana; Hagelueken, Gregor; Schiemann, Olav

    2015-07-01

    The role of heme as a cofactor in enzymatic reactions has been studied for a long time and in great detail. Recently it was discovered that heme can also serve as a signalling molecule in cells but so far only few examples of this regulation have been studied. In order to discover new potentially heme-regulated proteins, we screened protein sequence databases for bacterial proteins that contain sequence features like a Cysteine-Proline (CP) motif, which is known for its heme-binding propensity. Based on this search we synthesized a series of these potential heme regulatory motifs (HRMs). We used cw EPR spectroscopy to investigate whether these sequences do indeed bind to heme and if the spin state of heme is changed upon interaction with the peptides. The corresponding proteins of two potential HRMs, FeoB and GlpF, were expressed and purified and their interaction with heme was studied by cw EPR and UV-Visible (UV-Vis) spectroscopy. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. The nop gene from Phanerochaete chrysosporium encodes a peroxidase with novel structural features

    Treesearch

    Luis F. Larrondo; Angel Gonzalez; Tomas Perez-Acle; Dan Cullen; Rafael Vicuna

    2005-01-01

    Inspection of the genome of the ligninolytic basidiomycete Phanerochaete chrysosporium revealed an unusual peroxidase-like sequence. The corresponding full length cDNA was sequenced and an archetypal secretion signal predicted. The deduced mature protein (NoP, novel peroxidase) contains 295 aa residues and is therefore considerably shorter than other Class II (fungal)...

  6. Sequence identity and antigenic cross-reactivity of white face hornet venom allergen, also a hyaluronidase, with other proteins.

    PubMed

    Lu, G; Kochoumian, L; King, T P

    1995-03-03

    White face hornet (Dolichovespula maculata) venom has three known protein allergens which induce IgE response in susceptible people. They are antigen 5, phospholipase A1, and hyaluronidase, also known as Dol m 5, 1, and 2, respectively. We have cloned Dol m 2, a protein of 331 residues. When expressed in bacteria, a mixture of recombinant Dol m 2 and its fragments was obtained. The fragments were apparently generated by proteolysis of a Met-Met bond at residue 122, as they were not observed for a Dol m 2 mutant with a Leu-Met bond. Dol m 2 has 56% sequence identity with the honey bee venom allergen hyaluronidase and 27% identity with PH-20, a human sperm protein with hyaluronidase activity. A common feature of hornet venom allergens is their sequence identity with other proteins in our environment. We showed previously the sequence identity of Dol m 5 with a plant protein and a mammalian testis protein and of Dol m 1 with mammalian lipases. In BALB/c mice, Dol m 2 and bee hyaluronidase showed cross-reactivity at both antibody and T cell levels. These findings are relevant to some patients' multiple sensitivity to hornet and bee stings.

  7. Bacterial-like PPP protein phosphatases: novel sequence alterations in pathogenic eukaryotes and peculiar features of bacterial sequence similarity.

    PubMed

    Kerk, David; Uhrig, R Glen; Moorhead, Greg B

    2013-01-01

    Reversible phosphorylation is a widespread modification affecting the great majority of eukaryotic cellular proteins, and whose effects influence nearly every cellular function. Protein phosphatases are increasingly recognized as exquisitely regulated contributors to these changes. The PPP (phosphoprotein phosphatase) family comprises enzymes, which catalyze dephosphorylation at serine and threonine residues. Nearly a decade ago, "bacterial-like" enzymes were recognized with similarity to proteins from various bacterial sources: SLPs (Shewanella-like phosphatases), RLPHs (Rhizobiales-like phosphatases), and ALPHs (ApaH-like phosphatases). A recent article from our laboratory appearing in Plant Physiology characterizes their extensive organismal distribution, abundance in plant species, predicted subcellular localization, motif organization, and sequence evolution. One salient observation is the distinct evolutionary trajectory followed by SLP genes and proteins in photosynthetic eukaryotes vs. animal and plant pathogens derived from photosynthetic ancestors. We present here a closer look at sequence data that emphasizes the distinctiveness of pathogen SLP proteins and that suggests that they might represent novel drug targets. A second observation in our original report was the high degree of similarity between the bacterial-like PPPs of eukaryotes and closely related proteins of the "eukaryotic-like" phyla Myxococcales and Planctomycetes. We here reflect on the possible implications of these observations and their importance for future research.

  8. A 3D sequence-independent representation of the protein data bank.

    PubMed

    Fischer, D; Tsai, C J; Nussinov, R; Wolfson, H

    1995-10-01

    Here we address the following questions. How many structurally different entries are there in the Protein Data Bank (PDB)? How do the proteins populate the structural universe? To investigate these questions a structurally non-redundant set of representative entries was selected from the PDB. Construction of such a dataset is not trivial: (i) the considerable size of the PDB requires a large number of comparisons (there were more than 3250 structures of protein chains available in May 1994); (ii) the PDB is highly redundant, containing many structurally similar entries, not necessarily with significant sequence homology, and (iii) there is no clear-cut definition of structural similarity. The latter depend on the criteria and methods used. Here, we analyze structural similarity ignoring protein topology. To date, representative sets have been selected either by hand, by sequence comparison techniques which ignore the three-dimensional (3D) structures of the proteins or by using sequence comparisons followed by linear structural comparison (i.e. the topology, or the sequential order of the chains, is enforced in the structural comparison). Here we describe a 3D sequence-independent automated and efficient method to obtain a representative set of protein molecules from the PDB which contains all unique structures and which is structurally non-redundant. The method has two novel features. The first is the use of strictly structural criteria in the selection process without taking into account the sequence information. To this end we employ a fast structural comparison algorithm which requires on average approximately 2 s per pairwise comparison on a workstation. The second novel feature is the iterative application of a heuristic clustering algorithm that greatly reduces the number of comparisons required. We obtain a representative set of 220 chains with resolution better than 3.0 A, or 268 chains including lower resolution entries, NMR entries and models. The resulting set can serve as a basis for extensive structural classification and studies of 3D recurring motifs and of sequence-structure relationships. The clustering algorithm succeeds in classifying into the same structural family chains with no significant sequence homology, e.g. all the globins in one single group, all the trypsin-like serine proteases in another or all the immunoglobulin-like folds into a third. In addition, unexpected structural similarities of interest have been automatically detected between pairs of chains. A cluster analysis of the representative structures demonstrates the way the "structural universe' is populated.

  9. What are the structural features that drive partitioning of proteins in aqueous two-phase systems?

    PubMed

    Wu, Zhonghua; Hu, Gang; Wang, Kui; Zaslavsky, Boris Yu; Kurgan, Lukasz; Uversky, Vladimir N

    2017-01-01

    Protein partitioning in aqueous two-phase systems (ATPSs) represents a convenient, inexpensive, and easy to scale-up protein separation technique. Since partition behavior of a protein dramatically depends on an ATPS composition, it would be highly beneficial to have reliable means for (even qualitative) prediction of partitioning of a target protein under different conditions. Our aim was to understand which structural features of proteins contribute to partitioning of a query protein in a given ATPS. We undertook a systematic empirical analysis of relations between 57 numerical structural descriptors derived from the corresponding amino acid sequences and crystal structures of 10 well-characterized proteins and the partition behavior of these proteins in 29 different ATPSs. This analysis revealed that just a few structural characteristics of proteins can accurately determine behavior of these proteins in a given ATPS. However, partition behavior of proteins in different ATPSs relies on different structural features. In other words, we could not find a unique set of protein structural features derived from their crystal structures that could be used for the description of the protein partition behavior of all proteins in all ATPSs analyzed in this study. We likely need to gain better insight into relationships between protein-solvent interactions and protein structure peculiarities, in particular given limitations of the used here crystal structures, to be able to construct a model that accurately predicts protein partition behavior across all ATPSs. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Effective Feature Selection for Classification of Promoter Sequences.

    PubMed

    K, Kouser; P G, Lavanya; Rangarajan, Lalitha; K, Acharya Kshitish

    2016-01-01

    Exploring novel computational methods in making sense of biological data has not only been a necessity, but also productive. A part of this trend is the search for more efficient in silico methods/tools for analysis of promoters, which are parts of DNA sequences that are involved in regulation of expression of genes into other functional molecules. Promoter regions vary greatly in their function based on the sequence of nucleotides and the arrangement of protein-binding short-regions called motifs. In fact, the regulatory nature of the promoters seems to be largely driven by the selective presence and/or the arrangement of these motifs. Here, we explore computational classification of promoter sequences based on the pattern of motif distributions, as such classification can pave a new way of functional analysis of promoters and to discover the functionally crucial motifs. We make use of Position Specific Motif Matrix (PSMM) features for exploring the possibility of accurately classifying promoter sequences using some of the popular classification techniques. The classification results on the complete feature set are low, perhaps due to the huge number of features. We propose two ways of reducing features. Our test results show improvement in the classification output after the reduction of features. The results also show that decision trees outperform SVM (Support Vector Machine), KNN (K Nearest Neighbor) and ensemble classifier LibD3C, particularly with reduced features. The proposed feature selection methods outperform some of the popular feature transformation methods such as PCA and SVD. Also, the methods proposed are as accurate as MRMR (feature selection method) but much faster than MRMR. Such methods could be useful to categorize new promoters and explore regulatory mechanisms of gene expressions in complex eukaryotic species.

  11. ΔN-P63α and TA-P63α exhibit intrinsic differences in transactivation specificities that depend on distinct features of DNA target sites

    PubMed Central

    Foggetti, Giorgia; Raimondi, Ivan; Campomenosi, Paola; Menichini, Paola

    2014-01-01

    TP63 is a member of the TP53 gene family that encodes for up to ten different TA and ΔN isoforms through alternative promoter usage and alternative splicing. Besides being a master regulator of gene expression for squamous epithelial proliferation, differentiation and maintenance, P63, through differential expression of its isoforms, plays important roles in tumorigenesis. All P63 isoforms share an immunoglobulin-like folded DNA binding domain responsible for binding to sequence-specific response elements (REs), whose overall consensus sequence is similar to that of the canonical p53 RE. Using a defined assay in yeast, where P63 isoforms and RE sequences are the only variables, and gene expression assays in human cell lines, we demonstrated that human TA- and ΔN-P63α proteins exhibited differences in transactivation specificity not observed with the corresponding P73 or P53 protein isoforms. These differences 1) were dependent on specific features of the RE sequence, 2) could be related to intrinsic differences in their oligomeric state and cooperative DNA binding, and 3) appeared to be conserved in evolution. Since genotoxic stress can change relative ratio of TA- and ΔN-P63α protein levels, the different transactivation specificity of each P63 isoform could potentially influence cellular responses to specific stresses. PMID:24926492

  12. SubCellProt: predicting protein subcellular localization using machine learning approaches.

    PubMed

    Garg, Prabha; Sharma, Virag; Chaudhari, Pradeep; Roy, Nilanjan

    2009-01-01

    High-throughput genome sequencing projects continue to churn out enormous amounts of raw sequence data. However, most of this raw sequence data is unannotated and, hence, not very useful. Among the various approaches to decipher the function of a protein, one is to determine its localization. Experimental approaches for proteome annotation including determination of a protein's subcellular localizations are very costly and labor intensive. Besides the available experimental methods, in silico methods present alternative approaches to accomplish this task. Here, we present two machine learning approaches for prediction of the subcellular localization of a protein from the primary sequence information. Two machine learning algorithms, k Nearest Neighbor (k-NN) and Probabilistic Neural Network (PNN) were used to classify an unknown protein into one of the 11 subcellular localizations. The final prediction is made on the basis of a consensus of the predictions made by two algorithms and a probability is assigned to it. The results indicate that the primary sequence derived features like amino acid composition, sequence order and physicochemical properties can be used to assign subcellular localization with a fair degree of accuracy. Moreover, with the enhanced accuracy of our approach and the definition of a prediction domain, this method can be used for proteome annotation in a high throughput manner. SubCellProt is available at www.databases.niper.ac.in/SubCellProt.

  13. Predicting turns in proteins with a unified model.

    PubMed

    Song, Qi; Li, Tonghua; Cong, Peisheng; Sun, Jiangming; Li, Dapeng; Tang, Shengnan

    2012-01-01

    Turns are a critical element of the structure of a protein; turns play a crucial role in loops, folds, and interactions. Current prediction methods are well developed for the prediction of individual turn types, including α-turn, β-turn, and γ-turn, etc. However, for further protein structure and function prediction it is necessary to develop a uniform model that can accurately predict all types of turns simultaneously. In this study, we present a novel approach, TurnP, which offers the ability to investigate all the turns in a protein based on a unified model. The main characteristics of TurnP are: (i) using newly exploited features of structural evolution information (secondary structure and shape string of protein) based on structure homologies, (ii) considering all types of turns in a unified model, and (iii) practical capability of accurate prediction of all turns simultaneously for a query. TurnP utilizes predicted secondary structures and predicted shape strings, both of which have greater accuracy, based on innovative technologies which were both developed by our group. Then, sequence and structural evolution features, which are profile of sequence, profile of secondary structures and profile of shape strings are generated by sequence and structure alignment. When TurnP was validated on a non-redundant dataset (4,107 entries) by five-fold cross-validation, we achieved an accuracy of 88.8% and a sensitivity of 71.8%, which exceeded the most state-of-the-art predictors of certain type of turn. Newly determined sequences, the EVA and CASP9 datasets were used as independent tests and the results we achieved were outstanding for turn predictions and confirmed the good performance of TurnP for practical applications.

  14. Predicting Turns in Proteins with a Unified Model

    PubMed Central

    Song, Qi; Li, Tonghua; Cong, Peisheng; Sun, Jiangming; Li, Dapeng; Tang, Shengnan

    2012-01-01

    Motivation Turns are a critical element of the structure of a protein; turns play a crucial role in loops, folds, and interactions. Current prediction methods are well developed for the prediction of individual turn types, including α-turn, β-turn, and γ-turn, etc. However, for further protein structure and function prediction it is necessary to develop a uniform model that can accurately predict all types of turns simultaneously. Results In this study, we present a novel approach, TurnP, which offers the ability to investigate all the turns in a protein based on a unified model. The main characteristics of TurnP are: (i) using newly exploited features of structural evolution information (secondary structure and shape string of protein) based on structure homologies, (ii) considering all types of turns in a unified model, and (iii) practical capability of accurate prediction of all turns simultaneously for a query. TurnP utilizes predicted secondary structures and predicted shape strings, both of which have greater accuracy, based on innovative technologies which were both developed by our group. Then, sequence and structural evolution features, which are profile of sequence, profile of secondary structures and profile of shape strings are generated by sequence and structure alignment. When TurnP was validated on a non-redundant dataset (4,107 entries) by five-fold cross-validation, we achieved an accuracy of 88.8% and a sensitivity of 71.8%, which exceeded the most state-of-the-art predictors of certain type of turn. Newly determined sequences, the EVA and CASP9 datasets were used as independent tests and the results we achieved were outstanding for turn predictions and confirmed the good performance of TurnP for practical applications. PMID:23144872

  15. Generating intrinsically disordered protein conformational ensembles from a Markov chain

    NASA Astrophysics Data System (ADS)

    Cukier, Robert I.

    2018-03-01

    Intrinsically disordered proteins (IDPs) sample a diverse conformational space. They are important to signaling and regulatory pathways in cells. An entropy penalty must be payed when an IDP becomes ordered upon interaction with another protein or a ligand. Thus, the degree of conformational disorder of an IDP is of interest. We create a dichotomic Markov model that can explore entropic features of an IDP. The Markov condition introduces local (neighbor residues in a protein sequence) rotamer dependences that arise from van der Waals and other chemical constraints. A protein sequence of length N is characterized by its (information) entropy and mutual information, MIMC, the latter providing a measure of the dependence among the random variables describing the rotamer probabilities of the residues that comprise the sequence. For a Markov chain, the MIMC is proportional to the pair mutual information MI which depends on the singlet and pair probabilities of neighbor residue rotamer sampling. All 2N sequence states are generated, along with their probabilities, and contrasted with the probabilities under the assumption of independent residues. An efficient method to generate realizations of the chain is also provided. The chain entropy, MIMC, and state probabilities provide the ingredients to distinguish different scenarios using the terminologies: MoRF (molecular recognition feature), not-MoRF, and not-IDP. A MoRF corresponds to large entropy and large MIMC (strong dependence among the residues' rotamer sampling), a not-MoRF corresponds to large entropy but small MIMC, and not-IDP corresponds to low entropy irrespective of the MIMC. We show that MorFs are most appropriate as descriptors of IDPs. They provide a reasonable number of high-population states that reflect the dependences between neighbor residues, thus classifying them as IDPs, yet without very large entropy that might lead to a too high entropy penalty.

  16. Apple Macintosh programs for nucleic and protein sequence analyses.

    PubMed Central

    Bellon, B

    1988-01-01

    This paper describes a package of programs for handling and analyzing nucleic acid and protein sequences using the Apple Macintosh microcomputer. There are three important features of these programs: first, because of the now classical Macintosh interface the programs can be easily used by persons with little or no computer experience. Second, it is possible to save all the data, written in an editable scrolling text window or drawn in a graphic window, as files that can be directly used either as word processing documents or as picture documents. Third, sequences can be easily exchanged with any other computer. The package is composed of thirteen programs, written in Pascal programming language. PMID:2832832

  17. Templated sequence insertion polymorphisms in the human genome

    NASA Astrophysics Data System (ADS)

    Onozawa, Masahiro; Aplan, Peter

    2016-11-01

    Templated Sequence Insertion Polymorphism (TSIP) is a recently described form of polymorphism recognized in the human genome, in which a sequence that is templated from a distant genomic region is inserted into the genome, seemingly at random. TSIPs can be grouped into two classes based on nucleotide sequence features at the insertion junctions; Class 1 TSIPs show features of insertions that are mediated via the LINE-1 ORF2 protein, including 1) target-site duplication (TSD), 2) polyadenylation 10-30 nucleotides downstream of a “cryptic” polyadenylation signal, and 3) preference for insertion at a 5’-TTTT/A-3’ sequence. In contrast, class 2 TSIPs show features consistent with repair of a DNA double-strand break via insertion of a DNA “patch” that is derived from a distant genomic region. Survey of a large number of normal human volunteers demonstrates that most individuals have 25-30 TSIPs, and that these TSIPs track with specific geographic regions. Similar to other forms of human polymorphism, we suspect that these TSIPs may be important for the generation of human diversity and genetic diseases.

  18. The Genome of the Obligately Intracellular Bacterium Ehrlichia canis Reveals Themes of Complex Membrane Structure and Immune Evasion Strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mavromatis, K; Doyle, C Kuyler; Lykidis, A

    2006-01-01

    Ehrlichia canis, a small obligately intracellular, tick-transmitted, gram-negative, {alpha}-proteobacterium, is the primary etiologic agent of globally distributed canine monocytic ehrlichiosis. Complete genome sequencing revealed that the E. canis genome consists of a single circular chromosome of 1,315,030 bp predicted to encode 925 proteins, 40 stable RNA species, 17 putative pseudogenes, and a substantial proportion of noncoding sequence (27%). Interesting genome features include a large set of proteins with transmembrane helices and/or signal sequences and a unique serine-threonine bias associated with the potential for O glycosylation that was prominent in proteins associated with pathogen-host interactions. Furthermore, two paralogous protein families associatedmore » with immune evasion were identified, one of which contains poly(G-C) tracts, suggesting that they may play a role in phase variation and facilitation of persistent infections. Genes associated with pathogen-host interactions were identified, including a small group encoding proteins (n = 12) with tandem repeats and another group encoding proteins with eukaryote-like ankyrin domains (n = 7).« less

  19. The genome of obligately intracellular Ehrlichia canis revealsthemes of complex membrane structure and immune evasion strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mavromatis, K.; Kuyler Doyle, C.; Lykidis, A.

    2005-09-01

    Ehrlichia canis, a small obligately intracellular, tick-transmitted, gram-negative, a-proteobacterium is the primary etiologic agent of globally distributed canine monocytic ehrlichiosis. Complete genome sequencing revealed that the E. canis genome consists of a single circular chromosome of 1,315,030 bp predicted to encode 925 proteins, 40 stable RNA species, and 17 putative pseudogenes, and a substantial proportion of non-coding sequence (27 percent). Interesting genome features include a large set of proteins with transmembrane helices and/or signal sequences, and a unique serine-threonine bias associated with the potential for O-glycosylation that was prominent in proteins associated with pathogen-host interactions. Furthermore, two paralogous protein familiesmore » associated with immune evasion were identified, one of which contains poly G:C tracts, suggesting that they may play a role in phase variation and facilitation of persistent infections. Proteins associated with pathogen-host interactions were identified including a small group of proteins (12) with tandem repeats and another with eukaryotic-like ankyrin domains (7).« less

  20. Co-Conserved MAPK Features Couple D-Domain Docking Groove to Distal Allosteric Sites via the C-Terminal Flanking Tail

    PubMed Central

    Nguyen, Tuan; Ruan, Zheng; Oruganty, Krishnadev; Kannan, Natarajan

    2015-01-01

    Mitogen activated protein kinases (MAPKs) form a closely related family of kinases that control critical pathways associated with cell growth and survival. Although MAPKs have been extensively characterized at the biochemical, cellular, and structural level, an integrated evolutionary understanding of how MAPKs differ from other closely related protein kinases is currently lacking. Here, we perform statistical sequence comparisons of MAPKs and related protein kinases to identify sequence and structural features associated with MAPK functional divergence. We show, for the first time, that virtually all MAPK-distinguishing sequence features, including an unappreciated short insert segment in the β4-β5 loop, physically couple distal functional sites in the kinase domain to the D-domain peptide docking groove via the C-terminal flanking tail (C-tail). The coupling mediated by MAPK-specific residues confers an allosteric regulatory mechanism unique to MAPKs. In particular, the regulatory αC-helix conformation is controlled by a MAPK-conserved salt bridge interaction between an arginine in the αC-helix and an acidic residue in the C-tail. The salt-bridge interaction is modulated in unique ways in individual sub-families to achieve regulatory specificity. Our study is consistent with a model in which the C-tail co-evolved with the D-domain docking site to allosterically control MAPK activity. Our study provides testable mechanistic hypotheses for biochemical characterization of MAPK-conserved residues and new avenues for the design of allosteric MAPK inhibitors. PMID:25799139

  1. Sequence and conformational preferences at termini of α-helices in membrane proteins: role of the helix environment.

    PubMed

    Shelar, Ashish; Bansal, Manju

    2014-12-01

    α-Helices are amongst the most common secondary structural elements seen in membrane proteins and are packed in the form of helix bundles. These α-helices encounter varying external environments (hydrophobic, hydrophilic) that may influence the sequence preferences at their N and C-termini. The role of the external environment in stabilization of the helix termini in membrane proteins is still unknown. Here we analyze α-helices in a high-resolution dataset of integral α-helical membrane proteins and establish that their sequence and conformational preferences differ from those in globular proteins. We specifically examine these preferences at the N and C-termini in helices initiating/terminating inside the membrane core as well as in linkers connecting these transmembrane helices. We find that the sequence preferences and structural motifs at capping (Ncap and Ccap) and near-helical (N' and C') positions are influenced by a combination of features including the membrane environment and the innate helix initiation and termination property of residues forming structural motifs. We also find that a large number of helix termini which do not form any particular capping motif are stabilized by formation of hydrogen bonds and hydrophobic interactions contributed from the neighboring helices in the membrane protein. We further validate the sequence preferences obtained from our analysis with data from an ultradeep sequencing study that identifies evolutionarily conserved amino acids in the rat neurotensin receptor. The results from our analysis provide insights for the secondary structure prediction, modeling and design of membrane proteins. © 2014 Wiley Periodicals, Inc.

  2. Effect of the sequence data deluge on the performance of methods for detecting protein functional residues.

    PubMed

    Garrido-Martín, Diego; Pazos, Florencio

    2018-02-27

    The exponential accumulation of new sequences in public databases is expected to improve the performance of all the approaches for predicting protein structural and functional features. Nevertheless, this was never assessed or quantified for some widely used methodologies, such as those aimed at detecting functional sites and functional subfamilies in protein multiple sequence alignments. Using raw protein sequences as only input, these approaches can detect fully conserved positions, as well as those with a family-dependent conservation pattern. Both types of residues are routinely used as predictors of functional sites and, consequently, understanding how the sequence content of the databases affects them is relevant and timely. In this work we evaluate how the growth and change with time in the content of sequence databases affect five sequence-based approaches for detecting functional sites and subfamilies. We do that by recreating historical versions of the multiple sequence alignments that would have been obtained in the past based on the database contents at different time points, covering a period of 20 years. Applying the methods to these historical alignments allows quantifying the temporal variation in their performance. Our results show that the number of families to which these methods can be applied sharply increases with time, while their ability to detect potentially functional residues remains almost constant. These results are informative for the methods' developers and final users, and may have implications in the design of new sequencing initiatives.

  3. Recurrence time statistics: versatile tools for genomic DNA sequence analysis.

    PubMed

    Cao, Yinhe; Tung, Wen-Wen; Gao, J B

    2004-01-01

    With the completion of the human and a few model organisms' genomes, and the genomes of many other organisms waiting to be sequenced, it has become increasingly important to develop faster computational tools which are capable of easily identifying the structures and extracting features from DNA sequences. One of the more important structures in a DNA sequence is repeat-related. Often they have to be masked before protein coding regions along a DNA sequence are to be identified or redundant expressed sequence tags (ESTs) are to be sequenced. Here we report a novel recurrence time based method for sequence analysis. The method can conveniently study all kinds of periodicity and exhaustively find all repeat-related features from a genomic DNA sequence. An efficient codon index is also derived from the recurrence time statistics, which has the salient features of being largely species-independent and working well on very short sequences. Efficient codon indices are key elements of successful gene finding algorithms, and are particularly useful for determining whether a suspected EST belongs to a coding or non-coding region. We illustrate the power of the method by studying the genomes of E. coli, the yeast S. cervisivae, the nematode worm C. elegans, and the human, Homo sapiens. Computationally, our method is very efficient. It allows us to carry out analysis of genomes on the whole genomic scale by a PC.

  4. Protein-Protein Interactions Prediction Using a Novel Local Conjoint Triad Descriptor of Amino Acid Sequences

    PubMed Central

    Zhang, Long; Jia, Lianyin; Ren, Yazhou

    2017-01-01

    Protein-protein interactions (PPIs) play crucial roles in almost all cellular processes. Although a large amount of PPIs have been verified by high-throughput techniques in the past decades, currently known PPIs pairs are still far from complete. Furthermore, the wet-lab experiments based techniques for detecting PPIs are time-consuming and expensive. Hence, it is urgent and essential to develop automatic computational methods to efficiently and accurately predict PPIs. In this paper, a sequence-based approach called DNN-LCTD is developed by combining deep neural networks (DNNs) and a novel local conjoint triad description (LCTD) feature representation. LCTD incorporates the advantage of local description and conjoint triad, thus, it is capable to account for the interactions between residues in both continuous and discontinuous regions of amino acid sequences. DNNs can not only learn suitable features from the data by themselves, but also learn and discover hierarchical representations of data. When performing on the PPIs data of Saccharomyces cerevisiae, DNN-LCTD achieves superior performance with accuracy as 93.12%, precision as 93.75%, sensitivity as 93.83%, area under the receiver operating characteristic curve (AUC) as 97.92%, and it only needs 718 s. These results indicate DNN-LCTD is very promising for predicting PPIs. DNN-LCTD can be a useful supplementary tool for future proteomics study. PMID:29117139

  5. Sequencing of the Litchi Downy Blight Pathogen Reveals It Is a Phytophthora Species With Downy Mildew-Like Characteristics.

    PubMed

    Ye, Wenwu; Wang, Yang; Shen, Danyu; Li, Delong; Pu, Tianhuizi; Jiang, Zide; Zhang, Zhengguang; Zheng, Xiaobo; Tyler, Brett M; Wang, Yuanchao

    2016-07-01

    On the basis of its downy mildew-like morphology, the litchi downy blight pathogen was previously named Peronophythora litchii. Recently, however, it was proposed to transfer this pathogen to Phytophthora clade 4. To better characterize this unusual oomycete species and important fruit pathogen, we obtained the genome sequence of Phytophthora litchii and compared it to those from other oomycete species. P. litchii has a small genome with tightly spaced genes. On the basis of a multilocus phylogenetic analysis, the placement of P. litchii in the genus Phytophthora is strongly supported. Effector proteins predicted included 245 RxLR, 30 necrosis-and-ethylene-inducing protein-like, and 14 crinkler proteins. The typical motifs, phylogenies, and activities of these effectors were typical for a Phytophthora species. However, like the genome features of the analyzed downy mildews, P. litchii exhibited a streamlined genome with a relatively small number of genes in both core and species-specific protein families. The low GC content and slight codon preferences of P. litchii sequences were similar to those of the analyzed downy mildews and a subset of Phytophthora species. Taken together, these observations suggest that P. litchii is a Phytophthora pathogen that is in the process of acquiring downy mildew-like genomic and morphological features. Thus P. litchii may provide a novel model for investigating morphological development and genomic adaptation in oomycete pathogens.

  6. Protein-Protein Interactions Prediction Using a Novel Local Conjoint Triad Descriptor of Amino Acid Sequences.

    PubMed

    Wang, Jun; Zhang, Long; Jia, Lianyin; Ren, Yazhou; Yu, Guoxian

    2017-11-08

    Protein-protein interactions (PPIs) play crucial roles in almost all cellular processes. Although a large amount of PPIs have been verified by high-throughput techniques in the past decades, currently known PPIs pairs are still far from complete. Furthermore, the wet-lab experiments based techniques for detecting PPIs are time-consuming and expensive. Hence, it is urgent and essential to develop automatic computational methods to efficiently and accurately predict PPIs. In this paper, a sequence-based approach called DNN-LCTD is developed by combining deep neural networks (DNNs) and a novel local conjoint triad description (LCTD) feature representation. LCTD incorporates the advantage of local description and conjoint triad, thus, it is capable to account for the interactions between residues in both continuous and discontinuous regions of amino acid sequences. DNNs can not only learn suitable features from the data by themselves, but also learn and discover hierarchical representations of data. When performing on the PPIs data of Saccharomyces cerevisiae , DNN-LCTD achieves superior performance with accuracy as 93.12%, precision as 93.75%, sensitivity as 93.83%, area under the receiver operating characteristic curve (AUC) as 97.92%, and it only needs 718 s. These results indicate DNN-LCTD is very promising for predicting PPIs. DNN-LCTD can be a useful supplementary tool for future proteomics study.

  7. How the Sequence of a Gene Specifies Structural Symmetry in Proteins

    PubMed Central

    Shen, Xiaojuan; Huang, Tongcheng; Wang, Guanyu; Li, Guanglin

    2015-01-01

    Internal symmetry is commonly observed in the majority of fundamental protein folds. Meanwhile, sufficient evidence suggests that nascent polypeptide chains of proteins have the potential to start the co-translational folding process and this process allows mRNA to contain additional information on protein structure. In this paper, we study the relationship between gene sequences and protein structures from the viewpoint of symmetry to explore how gene sequences code for structural symmetry in proteins. We found that, for a set of two-fold symmetric proteins from left-handed beta-helix fold, intragenic symmetry always exists in their corresponding gene sequences. Meanwhile, codon usage bias and local mRNA structure might be involved in modulating translation speed for the formation of structural symmetry: a major decrease of local codon usage bias in the middle of the codon sequence can be identified as a common feature; and major or consecutive decreases in local mRNA folding energy near the boundaries of the symmetric substructures can also be observed. The results suggest that gene duplication and fusion may be an evolutionarily conserved process for this protein fold. In addition, the usage of rare codons and the formation of higher order of secondary structure near the boundaries of symmetric substructures might have coevolved as conserved mechanisms to slow down translation elongation and to facilitate effective folding of symmetric substructures. These findings provide valuable insights into our understanding of the mechanisms of translation and its evolution, as well as the design of proteins via symmetric modules. PMID:26641668

  8. Diatom centromeres suggest a mechanism for nuclear DNA acquisition

    DOE PAGES

    Diner, Rachel E.; Noddings, Chari M.; Lian, Nathan C.; ...

    2017-07-18

    Centromeres are essential for cell division and growth in all eukaryotes, and knowledge of their sequence and structure guides the development of artificial chromosomes for functional cellular biology studies. Centromeric proteins are conserved among eukaryotes; however, centromeric DNA sequences are highly variable. We combined forward and reverse genetic approaches with chromatin immunoprecipitation to identify centromeres of the model diatom Phaeodactylum tricornutum. We observed 25 unique centromere sequences typically occurring once per chromosome, a finding that helps to resolve nuclear genome organization and indicates monocentric regional centromeres. Diatom centromere sequences contain low-GC content regions but lack repeats or other conserved sequencemore » features. Native and foreign sequences with similar GC content to P. tricornutum centromeres can maintain episomes and recruit the diatom centromeric histone protein CENH3, suggesting nonnative sequences can also function as diatom centromeres. Thus, simple sequence requirements may enable DNA from foreign sources to persist in the nucleus as extrachromosomal episomes, revealing a potential mechanism for organellar and foreign DNA acquisition.« less

  9. Diatom centromeres suggest a mechanism for nuclear DNA acquisition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diner, Rachel E.; Noddings, Chari M.; Lian, Nathan C.

    Centromeres are essential for cell division and growth in all eukaryotes, and knowledge of their sequence and structure guides the development of artificial chromosomes for functional cellular biology studies. Centromeric proteins are conserved among eukaryotes; however, centromeric DNA sequences are highly variable. We combined forward and reverse genetic approaches with chromatin immunoprecipitation to identify centromeres of the model diatom Phaeodactylum tricornutum. We observed 25 unique centromere sequences typically occurring once per chromosome, a finding that helps to resolve nuclear genome organization and indicates monocentric regional centromeres. Diatom centromere sequences contain low-GC content regions but lack repeats or other conserved sequencemore » features. Native and foreign sequences with similar GC content to P. tricornutum centromeres can maintain episomes and recruit the diatom centromeric histone protein CENH3, suggesting nonnative sequences can also function as diatom centromeres. Thus, simple sequence requirements may enable DNA from foreign sources to persist in the nucleus as extrachromosomal episomes, revealing a potential mechanism for organellar and foreign DNA acquisition.« less

  10. Predicting residue-wise contact orders in proteins by support vector regression.

    PubMed

    Song, Jiangning; Burrage, Kevin

    2006-10-03

    The residue-wise contact order (RWCO) describes the sequence separations between the residues of interest and its contacting residues in a protein sequence. It is a new kind of one-dimensional protein structure that represents the extent of long-range contacts and is considered as a generalization of contact order. Together with secondary structure, accessible surface area, the B factor, and contact number, RWCO provides comprehensive and indispensable important information to reconstructing the protein three-dimensional structure from a set of one-dimensional structural properties. Accurately predicting RWCO values could have many important applications in protein three-dimensional structure prediction and protein folding rate prediction, and give deep insights into protein sequence-structure relationships. We developed a novel approach to predict residue-wise contact order values in proteins based on support vector regression (SVR), starting from primary amino acid sequences. We explored seven different sequence encoding schemes to examine their effects on the prediction performance, including local sequence in the form of PSI-BLAST profiles, local sequence plus amino acid composition, local sequence plus molecular weight, local sequence plus secondary structure predicted by PSIPRED, local sequence plus molecular weight and amino acid composition, local sequence plus molecular weight and predicted secondary structure, and local sequence plus molecular weight, amino acid composition and predicted secondary structure. When using local sequences with multiple sequence alignments in the form of PSI-BLAST profiles, we could predict the RWCO distribution with a Pearson correlation coefficient (CC) between the predicted and observed RWCO values of 0.55, and root mean square error (RMSE) of 0.82, based on a well-defined dataset with 680 protein sequences. Moreover, by incorporating global features such as molecular weight and amino acid composition we could further improve the prediction performance with the CC to 0.57 and an RMSE of 0.79. In addition, combining the predicted secondary structure by PSIPRED was found to significantly improve the prediction performance and could yield the best prediction accuracy with a CC of 0.60 and RMSE of 0.78, which provided at least comparable performance compared with the other existing methods. The SVR method shows a prediction performance competitive with or at least comparable to the previously developed linear regression-based methods for predicting RWCO values. In contrast to support vector classification (SVC), SVR is very good at estimating the raw value profiles of the samples. The successful application of the SVR approach in this study reinforces the fact that support vector regression is a powerful tool in extracting the protein sequence-structure relationship and in estimating the protein structural profiles from amino acid sequences.

  11. Tardigrade workbench: comparing stress-related proteins, sequence-similar and functional protein clusters as well as RNA elements in tardigrades

    PubMed Central

    2009-01-01

    Background Tardigrades represent an animal phylum with extraordinary resistance to environmental stress. Results To gain insights into their stress-specific adaptation potential, major clusters of related and similar proteins are identified, as well as specific functional clusters delineated comparing all tardigrades and individual species (Milnesium tardigradum, Hypsibius dujardini, Echiniscus testudo, Tulinus stephaniae, Richtersius coronifer) and functional elements in tardigrade mRNAs are analysed. We find that 39.3% of the total sequences clustered in 58 clusters of more than 20 proteins. Among these are ten tardigrade specific as well as a number of stress-specific protein clusters. Tardigrade-specific functional adaptations include strong protein, DNA- and redox protection, maintenance and protein recycling. Specific regulatory elements regulate tardigrade mRNA stability such as lox P DICE elements whereas 14 other RNA elements of higher eukaryotes are not found. Further features of tardigrade specific adaption are rapidly identified by sequence and/or pattern search on the web-tool tardigrade analyzer http://waterbear.bioapps.biozentrum.uni-wuerzburg.de. The work-bench offers nucleotide pattern analysis for promotor and regulatory element detection (tardigrade specific; nrdb) as well as rapid COG search for function assignments including species-specific repositories of all analysed data. Conclusion Different protein clusters and regulatory elements implicated in tardigrade stress adaptations are analysed including unpublished tardigrade sequences. PMID:19821996

  12. Tardigrade workbench: comparing stress-related proteins, sequence-similar and functional protein clusters as well as RNA elements in tardigrades.

    PubMed

    Förster, Frank; Liang, Chunguang; Shkumatov, Alexander; Beisser, Daniela; Engelmann, Julia C; Schnölzer, Martina; Frohme, Marcus; Müller, Tobias; Schill, Ralph O; Dandekar, Thomas

    2009-10-12

    Tardigrades represent an animal phylum with extraordinary resistance to environmental stress. To gain insights into their stress-specific adaptation potential, major clusters of related and similar proteins are identified, as well as specific functional clusters delineated comparing all tardigrades and individual species (Milnesium tardigradum, Hypsibius dujardini, Echiniscus testudo, Tulinus stephaniae, Richtersius coronifer) and functional elements in tardigrade mRNAs are analysed. We find that 39.3% of the total sequences clustered in 58 clusters of more than 20 proteins. Among these are ten tardigrade specific as well as a number of stress-specific protein clusters. Tardigrade-specific functional adaptations include strong protein, DNA- and redox protection, maintenance and protein recycling. Specific regulatory elements regulate tardigrade mRNA stability such as lox P DICE elements whereas 14 other RNA elements of higher eukaryotes are not found. Further features of tardigrade specific adaption are rapidly identified by sequence and/or pattern search on the web-tool tardigrade analyzer http://waterbear.bioapps.biozentrum.uni-wuerzburg.de. The work-bench offers nucleotide pattern analysis for promotor and regulatory element detection (tardigrade specific; nrdb) as well as rapid COG search for function assignments including species-specific repositories of all analysed data. Different protein clusters and regulatory elements implicated in tardigrade stress adaptations are analysed including unpublished tardigrade sequences.

  13. Protein remote homology detection based on bidirectional long short-term memory.

    PubMed

    Li, Shumin; Chen, Junjie; Liu, Bin

    2017-10-10

    Protein remote homology detection plays a vital role in studies of protein structures and functions. Almost all of the traditional machine leaning methods require fixed length features to represent the protein sequences. However, it is never an easy task to extract the discriminative features with limited knowledge of proteins. On the other hand, deep learning technique has demonstrated its advantage in automatically learning representations. It is worthwhile to explore the applications of deep learning techniques to the protein remote homology detection. In this study, we employ the Bidirectional Long Short-Term Memory (BLSTM) to learn effective features from pseudo proteins, also propose a predictor called ProDec-BLSTM: it includes input layer, bidirectional LSTM, time distributed dense layer and output layer. This neural network can automatically extract the discriminative features by using bidirectional LSTM and the time distributed dense layer. Experimental results on a widely-used benchmark dataset show that ProDec-BLSTM outperforms other related methods in terms of both the mean ROC and mean ROC50 scores. This promising result shows that ProDec-BLSTM is a useful tool for protein remote homology detection. Furthermore, the hidden patterns learnt by ProDec-BLSTM can be interpreted and visualized, and therefore, additional useful information can be obtained.

  14. Recent developments in the theory of protein folding: searching for the global energy minimum.

    PubMed

    Scheraga, H A

    1996-04-16

    Statistical mechanical theories and computer simulation are being used to gain an understanding of the fundamental features of protein folding. A major obstacle in the computation of protein structures is the multiple-minima problem arising from the existence of many local minima in the multidimensional energy landscape of the protein. This problem has been surmounted for small open-chain and cyclic peptides, and for regular-repeating sequences of models of fibrous proteins. Progress is being made in resolving this problem for globular proteins.

  15. A searchable, whole genome resource designed for protein variant analysis in diverse lineages of U.S. beef cattle

    USDA-ARS?s Scientific Manuscript database

    A key feature of a gene's function is the variety of protein isoforms it encodes in a population. However, the genetic diversity in bovine whole genome databases tends to be underrepresented because these databases contain an abundance of sequence from the most influential sires. Our first aim was ...

  16. WRF-TMH: predicting transmembrane helix by fusing composition index and physicochemical properties of amino acids.

    PubMed

    Hayat, Maqsood; Khan, Asifullah

    2013-05-01

    Membrane protein is the prime constituent of a cell, which performs a role of mediator between intra and extracellular processes. The prediction of transmembrane (TM) helix and its topology provides essential information regarding the function and structure of membrane proteins. However, prediction of TM helix and its topology is a challenging issue in bioinformatics and computational biology due to experimental complexities and lack of its established structures. Therefore, the location and orientation of TM helix segments are predicted from topogenic sequences. In this regard, we propose WRF-TMH model for effectively predicting TM helix segments. In this model, information is extracted from membrane protein sequences using compositional index and physicochemical properties. The redundant and irrelevant features are eliminated through singular value decomposition. The selected features provided by these feature extraction strategies are then fused to develop a hybrid model. Weighted random forest is adopted as a classification approach. We have used two benchmark datasets including low and high-resolution datasets. tenfold cross validation is employed to assess the performance of WRF-TMH model at different levels including per protein, per segment, and per residue. The success rates of WRF-TMH model are quite promising and are the best reported so far on the same datasets. It is observed that WRF-TMH model might play a substantial role, and will provide essential information for further structural and functional studies on membrane proteins. The accompanied web predictor is accessible at http://111.68.99.218/WRF-TMH/ .

  17. Molecular characterization and intermolecular interaction of coat protein of Prunus necrotic ringspot virus: implications for virus assembly.

    PubMed

    Kulshrestha, Saurabh; Hallan, Vipin; Sharma, Anshul; Seth, Chandrika Attri; Chauhan, Anjali; Zaidi, Aijaz Asghar

    2013-09-01

    Coat protein (CP) and RNA3 from Prunus necrotic ringspot virus (PNRSV-rose), the most prevalent virus infecting rose in India, were characterized and regions in the coat protein important for self-interaction, during dimer formation were identified. The sequence analysis of CP and partial RNA 3 revealed that the rose isolate of PNRSV in India belongs to PV-32 group of PNRSV isolates. Apart from the already established group specific features of PV-32 group member's additional group-specific and host specific features were also identified. Presence of methionine at position 90 in the amino acid sequence alignment of PNRSV CP gene (belonging to PV-32 group) was identified as the specific conserved feature for the rose isolates of PNRSV. As protein-protein interaction plays a vital role in the infection process, an attempt was made to identify the portions of PNRSV CP responsible for self-interaction using yeast two-hybrid system. It was found (after analysis of the deletion clones) that the C-terminal region of PNRSV CP (amino acids 153-226) plays a vital role in this interaction during dimer formation. N-terminal of PNRSV CP is previously known to be involved in CP-RNA interactions, but our results also suggested that N-terminal of PNRSV CP represented by amino acids 1-77 also interacts with C-terminal (amino acids 153-226) in yeast two-hybrid system, suggesting its probable involvement in the CP-CP interaction.

  18. The membrane skeleton in Paramecium: Molecular characterization of a novel epiplasmin family and preliminary GFP expression results.

    PubMed

    Pomel, Sébastien; Diogon, Marie; Bouchard, Philippe; Pradel, Lydie; Ravet, Viviane; Coffe, Gérard; Viguès, Bernard

    2006-02-01

    Previous attempts to identify the membrane skeleton of Paramecium cells have revealed a protein pattern that is both complex and specific. The most prominent structural elements, epiplasmic scales, are centered around ciliary units and are closely apposed to the cytoplasmic side of the inner alveolar membrane. We sought to characterize epiplasmic scale proteins (epiplasmins) at the molecular level. PCR approaches enabled the cloning and sequencing of two closely related genes by amplifications of sequences from a macronuclear genomic library. Using these two genes (EPI-1 and EPI-2), we have contributed to the annotation of the Paramecium tetraurelia macronuclear genome and identified 39 additional (paralogous) sequences. Two orthologous sequences were found in the Tetrahymena thermophila genome. Structural analysis of the 43 sequences indicates that the hallmark of this new multigenic family is a 79 aa domain flanked by two Q-, P- and V-rich stretches of sequence that are much more variable in amino-acid composition. Such features clearly distinguish members of the multigenic family from epiplasmic proteins previously sequenced in other ciliates. The expression of Green Fluorescent Protein (GFP)-tagged epiplasmin showed significant labeling of epiplasmic scales as well as oral structures. We expect that the GFP construct described herein will prove to be a useful tool for comparative subcellular localization of different putative epiplasmins in Paramecium.

  19. Efficient use of unlabeled data for protein sequence classification: a comparative study

    PubMed Central

    Kuksa, Pavel; Huang, Pai-Hsi; Pavlovic, Vladimir

    2009-01-01

    Background Recent studies in computational primary protein sequence analysis have leveraged the power of unlabeled data. For example, predictive models based on string kernels trained on sequences known to belong to particular folds or superfamilies, the so-called labeled data set, can attain significantly improved accuracy if this data is supplemented with protein sequences that lack any class tags–the unlabeled data. In this study, we present a principled and biologically motivated computational framework that more effectively exploits the unlabeled data by only using the sequence regions that are more likely to be biologically relevant for better prediction accuracy. As overly-represented sequences in large uncurated databases may bias the estimation of computational models that rely on unlabeled data, we also propose a method to remove this bias and improve performance of the resulting classifiers. Results Combined with state-of-the-art string kernels, our proposed computational framework achieves very accurate semi-supervised protein remote fold and homology detection on three large unlabeled databases. It outperforms current state-of-the-art methods and exhibits significant reduction in running time. Conclusion The unlabeled sequences used under the semi-supervised setting resemble the unpolished gemstones; when used as-is, they may carry unnecessary features and hence compromise the classification accuracy but once cut and polished, they improve the accuracy of the classifiers considerably. PMID:19426450

  20. MoRFpred, a computational tool for sequence-based prediction and characterization of short disorder-to-order transitioning binding regions in proteins

    PubMed Central

    Disfani, Fatemeh Miri; Hsu, Wei-Lun; Mizianty, Marcin J.; Oldfield, Christopher J.; Xue, Bin; Dunker, A. Keith; Uversky, Vladimir N.; Kurgan, Lukasz

    2012-01-01

    Motivation: Molecular recognition features (MoRFs) are short binding regions located within longer intrinsically disordered regions that bind to protein partners via disorder-to-order transitions. MoRFs are implicated in important processes including signaling and regulation. However, only a limited number of experimentally validated MoRFs is known, which motivates development of computational methods that predict MoRFs from protein chains. Results: We introduce a new MoRF predictor, MoRFpred, which identifies all MoRF types (α, β, coil and complex). We develop a comprehensive dataset of annotated MoRFs to build and empirically compare our method. MoRFpred utilizes a novel design in which annotations generated by sequence alignment are fused with predictions generated by a Support Vector Machine (SVM), which uses a custom designed set of sequence-derived features. The features provide information about evolutionary profiles, selected physiochemical properties of amino acids, and predicted disorder, solvent accessibility and B-factors. Empirical evaluation on several datasets shows that MoRFpred outperforms related methods: α-MoRF-Pred that predicts α-MoRFs and ANCHOR which finds disordered regions that become ordered when bound to a globular partner. We show that our predicted (new) MoRF regions have non-random sequence similarity with native MoRFs. We use this observation along with the fact that predictions with higher probability are more accurate to identify putative MoRF regions. We also identify a few sequence-derived hallmarks of MoRFs. They are characterized by dips in the disorder predictions and higher hydrophobicity and stability when compared to adjacent (in the chain) residues. Availability: http://biomine.ece.ualberta.ca/MoRFpred/; http://biomine.ece.ualberta.ca/MoRFpred/Supplement.pdf Contact: lkurgan@ece.ualberta.ca Supplementary information: Supplementary data are available at Bioinformatics online. PMID:22689782

  1. The 3of5 web application for complex and comprehensive pattern matching in protein sequences.

    PubMed

    Seiler, Markus; Mehrle, Alexander; Poustka, Annemarie; Wiemann, Stefan

    2006-03-16

    The identification of patterns in biological sequences is a key challenge in genome analysis and in proteomics. Frequently such patterns are complex and highly variable, especially in protein sequences. They are frequently described using terms of regular expressions (RegEx) because of the user-friendly terminology. Limitations arise for queries with the increasing complexity of patterns and are accompanied by requirements for enhanced capabilities. This is especially true for patterns containing ambiguous characters and positions and/or length ambiguities. We have implemented the 3of5 web application in order to enable complex pattern matching in protein sequences. 3of5 is named after a special use of its main feature, the novel n-of-m pattern type. This feature allows for an extensive specification of variable patterns where the individual elements may vary in their position, order, and content within a defined stretch of sequence. The number of distinct elements can be constrained by operators, and individual characters may be excluded. The n-of-m pattern type can be combined with common regular expression terms and thus also allows for a comprehensive description of complex patterns. 3of5 increases the fidelity of pattern matching and finds ALL possible solutions in protein sequences in cases of length-ambiguous patterns instead of simply reporting the longest or shortest hits. Grouping and combined search for patterns provides a hierarchical arrangement of larger patterns sets. The algorithm is implemented as internet application and freely accessible. The application is available at http://dkfz.de/mga2/3of5/3of5.html. The 3of5 application offers an extended vocabulary for the definition of search patterns and thus allows the user to comprehensively specify and identify peptide patterns with variable elements. The n-of-m pattern type offers an improved accuracy for pattern matching in combination with the ability to find all solutions, without compromising the user friendliness of regular expression terms.

  2. A feature-based approach to modeling protein-protein interaction hot spots.

    PubMed

    Cho, Kyu-il; Kim, Dongsup; Lee, Doheon

    2009-05-01

    Identifying features that effectively represent the energetic contribution of an individual interface residue to the interactions between proteins remains problematic. Here, we present several new features and show that they are more effective than conventional features. By combining the proposed features with conventional features, we develop a predictive model for interaction hot spots. Initially, 54 multifaceted features, composed of different levels of information including structure, sequence and molecular interaction information, are quantified. Then, to identify the best subset of features for predicting hot spots, feature selection is performed using a decision tree. Based on the selected features, a predictive model for hot spots is created using support vector machine (SVM) and tested on an independent test set. Our model shows better overall predictive accuracy than previous methods such as the alanine scanning methods Robetta and FOLDEF, and the knowledge-based method KFC. Subsequent analysis yields several findings about hot spots. As expected, hot spots have a larger relative surface area burial and are more hydrophobic than other residues. Unexpectedly, however, residue conservation displays a rather complicated tendency depending on the types of protein complexes, indicating that this feature is not good for identifying hot spots. Of the selected features, the weighted atomic packing density, relative surface area burial and weighted hydrophobicity are the top 3, with the weighted atomic packing density proving to be the most effective feature for predicting hot spots. Notably, we find that hot spots are closely related to pi-related interactions, especially pi . . . pi interactions.

  3. The nagA gene of Penicillium chrysogenum encoding beta-N-acetylglucosaminidase.

    PubMed

    Díez, Bruno; Rodríguez-Sáiz, Marta; de la Fuente, Juan Luis; Moreno, Miguel Angel; Barredo, José Luis

    2005-01-15

    We purified the beta-N-acetylglucosaminidase from the filamentous fungus Penicillium chrysogenum and its N-terminal sequence was determined, showing the presence of a mixture of two proteins (P1 and P2). A genomic DNA fragment was cloned by using degenerated oligonucleotides from the Nt sequences. The nucleotide sequence showed the presence of an ORF (nagA gene) lacking introns, with a length of 1791 bp, and coding for a protein of 66.5 kDa showing similarity to acetylglucosaminidases. The NagA deduced protein includes P1 and P2 as incomplete forms of the mature protein, and contains putative features for protein maturation: an 18-amino acid signal peptide, a KEX2 processing site, and four glycosylation motifs. The sequence just after the signal peptide corresponds to P2 and that after the KEX2 site to P1. The nagA transcript has a size of about 2.1 kb and is present until the end of the fermentation process for penicillin production. NagA is one of the most largely represented proteins in P. chrysogenum, increasing along the fermentation process. The suitability of the nagA promoter (PnagA) for gene expression in fungi was demonstrated by expressing the bleomycin resistance gene (ble(R)) from Streptoalloteichus hindustanus in P. chrysogenum.

  4. Hidden Markov model-derived structural alphabet for proteins: the learning of protein local shapes captures sequence specificity.

    PubMed

    Camproux, A C; Tufféry, P

    2005-08-05

    Understanding and predicting protein structures depend on the complexity and the accuracy of the models used to represent them. We have recently set up a Hidden Markov Model to optimally compress protein three-dimensional conformations into a one-dimensional series of letters of a structural alphabet. Such a model learns simultaneously the shape of representative structural letters describing the local conformation and the logic of their connections, i.e. the transition matrix between the letters. Here, we move one step further and report some evidence that such a model of protein local architecture also captures some accurate amino acid features. All the letters have specific and distinct amino acid distributions. Moreover, we show that words of amino acids can have significant propensities for some letters. Perspectives point towards the prediction of the series of letters describing the structure of a protein from its amino acid sequence.

  5. Molecular mechanisms for protein-encoded inheritance

    PubMed Central

    Wiltzius, Jed J. W.; Landau, Meytal; Nelson, Rebecca; Sawaya, Michael R.; Apostol, Marcin I.; Goldschmidt, Lukasz; Soriaga, Angela B.; Cascio, Duilio; Rajashankar, Kanagalaghatta; Eisenberg, David

    2013-01-01

    Strains are phenotypic variants, encoded by nucleic acid sequences in chromosomal inheritance and by protein “conformations” in prion inheritance and transmission. But how is a protein “conformation” stable enough to endure transmission between cells or organisms? Here new polymorphic crystal structures of segments of prion and other amyloid proteins offer structural mechanisms for prion strains. In packing polymorphism, prion strains are encoded by alternative packings (polymorphs) of β-sheets formed by the same segment of a protein; in a second mechanism, segmental polymorphism, prion strains are encoded by distinct β-sheets built from different segments of a protein. Both forms of polymorphism can produce enduring “conformations,” capable of encoding strains. These molecular mechanisms for transfer of information into prion strains share features with the familiar mechanism for transfer of information by nucleic acid inheritance, including sequence specificity and recognition by non-covalent bonds. PMID:19684598

  6. Whole Wiskott‑Aldrich syndrome protein gene deletion identified by high throughput sequencing.

    PubMed

    He, Xiangling; Zou, Runying; Zhang, Bing; You, Yalan; Yang, Yang; Tian, Xin

    2017-11-01

    Wiskott‑Aldrich syndrome (WAS) is a rare X‑linked recessive immunodeficiency disorder, characterized by thrombocytopenia, small platelets, eczema and recurrent infections associated with increased risk of autoimmunity and malignancy disorders. Mutations in the WAS protein (WASP) gene are responsible for WAS. To date, WASP mutations, including missense/nonsense, splicing, small deletions, small insertions, gross deletions, and gross insertions have been identified in patients with WAS. In addition, WASP‑interacting proteins are suspected in patients with clinical features of WAS, in whom the WASP gene sequence and mRNA levels are normal. The present study aimed to investigate the application of next generation sequencing in definitive diagnosis and clinical therapy for WAS. A 5 month‑old child with WAS who displayed symptoms of thrombocytopenia was examined. Whole exome sequence analysis of genomic DNA showed that the coverage and depth of WASP were extremely low. Quantitative polymerase chain reaction indicated total WASP gene deletion in the proband. In conclusion, high throughput sequencing is useful for the verification of WAS on the genetic profile, and has implications for family planning guidance and establishment of clinical programs.

  7. The kinetoplast DNA of the Australian trypanosome, Trypanosoma copemani, shares features with Trypanosoma cruzi and Trypanosoma lewisi.

    PubMed

    Botero, Adriana; Kapeller, Irit; Cooper, Crystal; Clode, Peta L; Shlomai, Joseph; Thompson, R C Andrew

    2018-05-17

    Kinetoplast DNA (kDNA) is the mitochondrial genome of trypanosomatids. It consists of a few dozen maxicircles and several thousand minicircles, all catenated topologically to form a two-dimensional DNA network. Minicircles are heterogeneous in size and sequence among species. They present one or several conserved regions that contain three highly conserved sequence blocks. CSB-1 (10 bp sequence) and CSB-2 (8 bp sequence) present lower interspecies homology, while CSB-3 (12 bp sequence) or the Universal Minicircle Sequence is conserved within most trypanosomatids. The Universal Minicircle Sequence is located at the replication origin of the minicircles, and is the binding site for the UMS binding protein, a protein involved in trypanosomatid survival and virulence. Here, we describe the structure and organisation of the kDNA of Trypanosoma copemani, a parasite that has been shown to infect mammalian cells and has been associated with the drastic decline of the endangered Australian marsupial, the woylie (Bettongia penicillata). Deep genomic sequencing showed that T. copemani presents two classes of minicircles that share sequence identity and organisation in the conserved sequence blocks with those of Trypanosoma cruzi and Trypanosoma lewisi. A 19,257 bp partial region of the maxicircle of T. copemani that contained the entire coding region was obtained. Comparative analysis of the T. copemani entire maxicircle coding region with the coding regions of T. cruzi and T. lewisi showed they share 71.05% and 71.28% identity, respectively. The shared features in the maxicircle/minicircle organisation and sequence between T. copemani and T. cruzi/T. lewisi suggest similarities in their process of kDNA replication, and are of significance in understanding the evolution of Australian trypanosomes. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Complete mitochondrial genome sequence of the lined seahorse Hippocampus erectus Perry, 1810 (Gasterosteiformes: Syngnathidae).

    PubMed

    Zhang, Yanhong; Zhang, Huixian; Lin, Qiang; Huang, Liangmin

    2015-01-01

    The complete mitochondrial genome sequence of the lined seahorse Hippocampus erectus was first determined in this article. The total length of H. erectus mitogenome is 16,529 bp, which consists of 13 protein-coding genes, 22 tRNA and 2 rRNA genes and 1 control region. The features of the H. erectus mitochondrial genome were similar to the typical vertebrates. The overall base composition of H. erectus is 31.8% A, 28.6% T, 24.3% C and 15.3% G, with a slight A + T rich feature (60.4%).

  9. Archaebacterial rhodopsin sequences: Implications for evolution

    NASA Technical Reports Server (NTRS)

    Lanyi, J. K.

    1991-01-01

    It was proposed over 10 years ago that the archaebacteria represent a separate kingdom which diverged very early from the eubacteria and eukaryotes. It follows that investigations of archaebacterial characteristics might reveal features of early evolution. So far, two genes, one for bacteriorhodopsin and another for halorhodopsin, both from Halobacterium halobium, have been sequenced. We cloned and sequenced the gene coding for the polypeptide of another one of these rhodopsins, a halorhodopsin in Natronobacterium pharaonis. Peptide sequencing of cyanogen bromide fragments, and immuno-reactions of the protein and synthetic peptides derived from the C-terminal gene sequence, confirmed that the open reading frame was the structural gene for the pharaonis halorhodopsin polypeptide. The flanking DNA sequences of this gene, as well as those of other bacterial rhodopsins, were compared to previously proposed archaebacterial consensus sequences. In pairwise comparisons of the open reading frame with DNA sequences for bacterio-opsin and halo-opsin from Halobacterium halobium, silent divergences were calculated. These indicate very considerable evolutionary distance between each pair of genes, even in the dame organism. In spite of this, three protein sequences show extensive similarities, indicating strong selective pressures.

  10. WImpiBLAST: web interface for mpiBLAST to help biologists perform large-scale annotation using high performance computing.

    PubMed

    Sharma, Parichit; Mantri, Shrikant S

    2014-01-01

    The function of a newly sequenced gene can be discovered by determining its sequence homology with known proteins. BLAST is the most extensively used sequence analysis program for sequence similarity search in large databases of sequences. With the advent of next generation sequencing technologies it has now become possible to study genes and their expression at a genome-wide scale through RNA-seq and metagenome sequencing experiments. Functional annotation of all the genes is done by sequence similarity search against multiple protein databases. This annotation task is computationally very intensive and can take days to obtain complete results. The program mpiBLAST, an open-source parallelization of BLAST that achieves superlinear speedup, can be used to accelerate large-scale annotation by using supercomputers and high performance computing (HPC) clusters. Although many parallel bioinformatics applications using the Message Passing Interface (MPI) are available in the public domain, researchers are reluctant to use them due to lack of expertise in the Linux command line and relevant programming experience. With these limitations, it becomes difficult for biologists to use mpiBLAST for accelerating annotation. No web interface is available in the open-source domain for mpiBLAST. We have developed WImpiBLAST, a user-friendly open-source web interface for parallel BLAST searches. It is implemented in Struts 1.3 using a Java backbone and runs atop the open-source Apache Tomcat Server. WImpiBLAST supports script creation and job submission features and also provides a robust job management interface for system administrators. It combines script creation and modification features with job monitoring and management through the Torque resource manager on a Linux-based HPC cluster. Use case information highlights the acceleration of annotation analysis achieved by using WImpiBLAST. Here, we describe the WImpiBLAST web interface features and architecture, explain design decisions, describe workflows and provide a detailed analysis.

  11. WImpiBLAST: Web Interface for mpiBLAST to Help Biologists Perform Large-Scale Annotation Using High Performance Computing

    PubMed Central

    Sharma, Parichit; Mantri, Shrikant S.

    2014-01-01

    The function of a newly sequenced gene can be discovered by determining its sequence homology with known proteins. BLAST is the most extensively used sequence analysis program for sequence similarity search in large databases of sequences. With the advent of next generation sequencing technologies it has now become possible to study genes and their expression at a genome-wide scale through RNA-seq and metagenome sequencing experiments. Functional annotation of all the genes is done by sequence similarity search against multiple protein databases. This annotation task is computationally very intensive and can take days to obtain complete results. The program mpiBLAST, an open-source parallelization of BLAST that achieves superlinear speedup, can be used to accelerate large-scale annotation by using supercomputers and high performance computing (HPC) clusters. Although many parallel bioinformatics applications using the Message Passing Interface (MPI) are available in the public domain, researchers are reluctant to use them due to lack of expertise in the Linux command line and relevant programming experience. With these limitations, it becomes difficult for biologists to use mpiBLAST for accelerating annotation. No web interface is available in the open-source domain for mpiBLAST. We have developed WImpiBLAST, a user-friendly open-source web interface for parallel BLAST searches. It is implemented in Struts 1.3 using a Java backbone and runs atop the open-source Apache Tomcat Server. WImpiBLAST supports script creation and job submission features and also provides a robust job management interface for system administrators. It combines script creation and modification features with job monitoring and management through the Torque resource manager on a Linux-based HPC cluster. Use case information highlights the acceleration of annotation analysis achieved by using WImpiBLAST. Here, we describe the WImpiBLAST web interface features and architecture, explain design decisions, describe workflows and provide a detailed analysis. PMID:24979410

  12. FASMA: a service to format and analyze sequences in multiple alignments.

    PubMed

    Costantini, Susan; Colonna, Giovanni; Facchiano, Angelo M

    2007-12-01

    Multiple sequence alignments are successfully applied in many studies for under- standing the structural and functional relations among single nucleic acids and protein sequences as well as whole families. Because of the rapid growth of sequence databases, multiple sequence alignments can often be very large and difficult to visualize and analyze. We offer a new service aimed to visualize and analyze the multiple alignments obtained with different external algorithms, with new features useful for the comparison of the aligned sequences as well as for the creation of a final image of the alignment. The service is named FASMA and is available at http://bioinformatica.isa.cnr.it/FASMA/.

  13. Protein 8-class secondary structure prediction using conditional neural fields.

    PubMed

    Wang, Zhiyong; Zhao, Feng; Peng, Jian; Xu, Jinbo

    2011-10-01

    Compared with the protein 3-class secondary structure (SS) prediction, the 8-class prediction gains less attention and is also much more challenging, especially for proteins with few sequence homologs. This paper presents a new probabilistic method for 8-class SS prediction using conditional neural fields (CNFs), a recently invented probabilistic graphical model. This CNF method not only models the complex relationship between sequence features and SS, but also exploits the interdependency among SS types of adjacent residues. In addition to sequence profiles, our method also makes use of non-evolutionary information for SS prediction. Tested on the CB513 and RS126 data sets, our method achieves Q8 accuracy of 64.9 and 64.7%, respectively, which are much better than the SSpro8 web server (51.0 and 48.0%, respectively). Our method can also be used to predict other structure properties (e.g. solvent accessibility) of a protein or the SS of RNA. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Exploring the Sequence-based Prediction of Folding Initiation Sites in Proteins.

    PubMed

    Raimondi, Daniele; Orlando, Gabriele; Pancsa, Rita; Khan, Taushif; Vranken, Wim F

    2017-08-18

    Protein folding is a complex process that can lead to disease when it fails. Especially poorly understood are the very early stages of protein folding, which are likely defined by intrinsic local interactions between amino acids close to each other in the protein sequence. We here present EFoldMine, a method that predicts, from the primary amino acid sequence of a protein, which amino acids are likely involved in early folding events. The method is based on early folding data from hydrogen deuterium exchange (HDX) data from NMR pulsed labelling experiments, and uses backbone and sidechain dynamics as well as secondary structure propensities as features. The EFoldMine predictions give insights into the folding process, as illustrated by a qualitative comparison with independent experimental observations. Furthermore, on a quantitative proteome scale, the predicted early folding residues tend to become the residues that interact the most in the folded structure, and they are often residues that display evolutionary covariation. The connection of the EFoldMine predictions with both folding pathway data and the folded protein structure suggests that the initial statistical behavior of the protein chain with respect to local structure formation has a lasting effect on its subsequent states.

  15. Computational prediction of human salivary proteins from blood circulation and application to diagnostic biomarker identification.

    PubMed

    Wang, Jiaxin; Liang, Yanchun; Wang, Yan; Cui, Juan; Liu, Ming; Du, Wei; Xu, Ying

    2013-01-01

    Proteins can move from blood circulation into salivary glands through active transportation, passive diffusion or ultrafiltration, some of which are then released into saliva and hence can potentially serve as biomarkers for diseases if accurately identified. We present a novel computational method for predicting salivary proteins that come from circulation. The basis for the prediction is a set of physiochemical and sequence features we found to be discerning between human proteins known to be movable from circulation to saliva and proteins deemed to be not in saliva. A classifier was trained based on these features using a support-vector machine to predict protein secretion into saliva. The classifier achieved 88.56% average recall and 90.76% average precision in 10-fold cross-validation on the training data, indicating that the selected features are informative. Considering the possibility that our negative training data may not be highly reliable (i.e., proteins predicted to be not in saliva), we have also trained a ranking method, aiming to rank the known salivary proteins from circulation as the highest among the proteins in the general background, based on the same features. This prediction capability can be used to predict potential biomarker proteins for specific human diseases when coupled with the information of differentially expressed proteins in diseased versus healthy control tissues and a prediction capability for blood-secretory proteins. Using such integrated information, we predicted 31 candidate biomarker proteins in saliva for breast cancer.

  16. Computational Prediction of Human Salivary Proteins from Blood Circulation and Application to Diagnostic Biomarker Identification

    PubMed Central

    Wang, Jiaxin; Liang, Yanchun; Wang, Yan; Cui, Juan; Liu, Ming; Du, Wei; Xu, Ying

    2013-01-01

    Proteins can move from blood circulation into salivary glands through active transportation, passive diffusion or ultrafiltration, some of which are then released into saliva and hence can potentially serve as biomarkers for diseases if accurately identified. We present a novel computational method for predicting salivary proteins that come from circulation. The basis for the prediction is a set of physiochemical and sequence features we found to be discerning between human proteins known to be movable from circulation to saliva and proteins deemed to be not in saliva. A classifier was trained based on these features using a support-vector machine to predict protein secretion into saliva. The classifier achieved 88.56% average recall and 90.76% average precision in 10-fold cross-validation on the training data, indicating that the selected features are informative. Considering the possibility that our negative training data may not be highly reliable (i.e., proteins predicted to be not in saliva), we have also trained a ranking method, aiming to rank the known salivary proteins from circulation as the highest among the proteins in the general background, based on the same features. This prediction capability can be used to predict potential biomarker proteins for specific human diseases when coupled with the information of differentially expressed proteins in diseased versus healthy control tissues and a prediction capability for blood-secretory proteins. Using such integrated information, we predicted 31 candidate biomarker proteins in saliva for breast cancer. PMID:24324552

  17. Nucleotide sequences of Dictyostelium discoideum developmentally regulated cDNAs rich in (AAC) imply proteins that contain clusters of asparagine, glutamine, or threonine.

    PubMed

    Shaw, D R; Richter, H; Giorda, R; Ohmachi, T; Ennis, H L

    1989-09-01

    A Dictyostelium discoideum repetitive element composed of long repeats of the codon (AAC) is found in developmentally regulated transcripts. The concentration of (AAC) sequences is low in mRNA from dormant spores and growing cells and increases markedly during spore germination and multicellular development. The sequence hybridizes to many different sized Dictyostelium DNA restriction fragments indicating that it is scattered throughout the genome. Four cDNA clones isolated contain (AAC) sequences in the deduced coding region. Interestingly, the (AAC)-rich sequences are present in all three reading frames in the deduced proteins, i.e., AAC (asparagine), ACA (threonine) and CAA (glutamine). Three of the clones contain only one of these in-frame so that the individual proteins carry either asparagine, threonine, or glutamine clusters, not mixtures. However, one clone is both glutamine- and asparagine-rich. The (AAC) portion of the transcripts are reiterated 300 times in the haploid genome while the other portions of the cDNAs represent single copy genes, whose sequences show no similarity other than the (AAC) repeats. The repeated sequence is similar to the opa or M sequence found in Drosophila melanogaster notch and homeo box genes and in fly developmentally regulated transcripts. The transcripts are present on polysomes suggesting that they are translated. Although the function of these repeats is unknown, long amino acid repeats are a characteristic feature of extracellular proteins of lower eukaryotes.

  18. SeqFIRE: a web application for automated extraction of indel regions and conserved blocks from protein multiple sequence alignments.

    PubMed

    Ajawatanawong, Pravech; Atkinson, Gemma C; Watson-Haigh, Nathan S; Mackenzie, Bryony; Baldauf, Sandra L

    2012-07-01

    Analyses of multiple sequence alignments generally focus on well-defined conserved sequence blocks, while the rest of the alignment is largely ignored or discarded. This is especially true in phylogenomics, where large multigene datasets are produced through automated pipelines. However, some of the most powerful phylogenetic markers have been found in the variable length regions of multiple alignments, particularly insertions/deletions (indels) in protein sequences. We have developed Sequence Feature and Indel Region Extractor (SeqFIRE) to enable the automated identification and extraction of indels from protein sequence alignments. The program can also extract conserved blocks and identify fast evolving sites using a combination of conservation and entropy. All major variables can be adjusted by the user, allowing them to identify the sets of variables most suited to a particular analysis or dataset. Thus, all major tasks in preparing an alignment for further analysis are combined in a single flexible and user-friendly program. The output includes a numbered list of indels, alignments in NEXUS format with indels annotated or removed and indel-only matrices. SeqFIRE is a user-friendly web application, freely available online at www.seqfire.org/.

  19. TIP: protein backtranslation aided by genetic algorithms.

    PubMed

    Moreira, Andrés; Maass, Alejandro

    2004-09-01

    Several applications require the backtranslation of a protein sequence into a nucleic acid sequence. The degeneracy of the genetic code makes this process ambiguous; moreover, not every translation is equally viable. The usual answer is to mimic the codon usage of the target species; however, this does not capture all the relevant features of the 'genomic styles' from different taxa. The program TIP ' Traducción Inversa de Proteínas') applies genetic algorithms to improve the backtranslation, by minimizing the difference of some coding statistics with respect to their average value in the target. http://www.cmm.uchile.cl/genoma/tip/

  20. Insights into Hox protein function from a large scale combinatorial analysis of protein domains.

    PubMed

    Merabet, Samir; Litim-Mecheri, Isma; Karlsson, Daniel; Dixit, Richa; Saadaoui, Mehdi; Monier, Bruno; Brun, Christine; Thor, Stefan; Vijayraghavan, K; Perrin, Laurent; Pradel, Jacques; Graba, Yacine

    2011-10-01

    Protein function is encoded within protein sequence and protein domains. However, how protein domains cooperate within a protein to modulate overall activity and how this impacts functional diversification at the molecular and organism levels remains largely unaddressed. Focusing on three domains of the central class Drosophila Hox transcription factor AbdominalA (AbdA), we used combinatorial domain mutations and most known AbdA developmental functions as biological readouts to investigate how protein domains collectively shape protein activity. The results uncover redundancy, interactivity, and multifunctionality of protein domains as salient features underlying overall AbdA protein activity, providing means to apprehend functional diversity and accounting for the robustness of Hox-controlled developmental programs. Importantly, the results highlight context-dependency in protein domain usage and interaction, allowing major modifications in domains to be tolerated without general functional loss. The non-pleoitropic effect of domain mutation suggests that protein modification may contribute more broadly to molecular changes underlying morphological diversification during evolution, so far thought to rely largely on modification in gene cis-regulatory sequences.

  1. Insights into Hox Protein Function from a Large Scale Combinatorial Analysis of Protein Domains

    PubMed Central

    Karlsson, Daniel; Dixit, Richa; Saadaoui, Mehdi; Monier, Bruno; Brun, Christine; Thor, Stefan; Vijayraghavan, K.; Perrin, Laurent; Pradel, Jacques; Graba, Yacine

    2011-01-01

    Protein function is encoded within protein sequence and protein domains. However, how protein domains cooperate within a protein to modulate overall activity and how this impacts functional diversification at the molecular and organism levels remains largely unaddressed. Focusing on three domains of the central class Drosophila Hox transcription factor AbdominalA (AbdA), we used combinatorial domain mutations and most known AbdA developmental functions as biological readouts to investigate how protein domains collectively shape protein activity. The results uncover redundancy, interactivity, and multifunctionality of protein domains as salient features underlying overall AbdA protein activity, providing means to apprehend functional diversity and accounting for the robustness of Hox-controlled developmental programs. Importantly, the results highlight context-dependency in protein domain usage and interaction, allowing major modifications in domains to be tolerated without general functional loss. The non-pleoitropic effect of domain mutation suggests that protein modification may contribute more broadly to molecular changes underlying morphological diversification during evolution, so far thought to rely largely on modification in gene cis-regulatory sequences. PMID:22046139

  2. GCPred: a web tool for guanylyl cyclase functional centre prediction from amino acid sequence.

    PubMed

    Xu, Nuo; Fu, Dongfang; Li, Shiang; Wang, Yuxuan; Wong, Aloysius

    2018-06-15

    GCPred is a webserver for the prediction of guanylyl cyclase (GC) functional centres from amino acid sequence. GCs are enzymes that generate the signalling molecule cyclic guanosine 3', 5'-monophosphate from guanosine-5'-triphosphate. A novel class of GC centres (GCCs) has been identified in complex plant proteins. Using currently available experimental data, GCPred is created to automate and facilitate the identification of similar GCCs. The server features GCC values that consider in its calculation, the physicochemical properties of amino acids constituting the GCC and the conserved amino acids within the centre. From user input amino acid sequence, the server returns a table of GCC values and graphs depicting deviations from mean values. The utility of this server is demonstrated using plant proteins and the human interleukin-1 receptor-associated kinase family of proteins as example. The GCPred server is available at http://gcpred.com. Supplementary data are available at Bioinformatics online.

  3. Sequence-based protein superfamily classification using computational intelligence techniques: a review.

    PubMed

    Vipsita, Swati; Rath, Santanu Kumar

    2015-01-01

    Protein superfamily classification deals with the problem of predicting the family membership of newly discovered amino acid sequence. Although many trivial alignment methods are already developed by previous researchers, but the present trend demands the application of computational intelligent techniques. As there is an exponential growth in size of biological database, retrieval and inference of essential knowledge in the biological domain become a very cumbersome task. This problem can be easily handled using intelligent techniques due to their ability of tolerance for imprecision, uncertainty, approximate reasoning, and partial truth. This paper discusses the various global and local features extracted from full length protein sequence which are used for the approximation and generalisation of the classifier. The various parameters used for evaluating the performance of the classifiers are also discussed. Therefore, this review article can show right directions to the present researchers to make an improvement over the existing methods.

  4. PlantCAZyme: a database for plant carbohydrate-active enzymes

    PubMed Central

    Ekstrom, Alexander; Taujale, Rahil; McGinn, Nathan; Yin, Yanbin

    2014-01-01

    PlantCAZyme is a database built upon dbCAN (database for automated carbohydrate active enzyme annotation), aiming to provide pre-computed sequence and annotation data of carbohydrate active enzymes (CAZymes) to plant carbohydrate and bioenergy research communities. The current version contains data of 43 790 CAZymes of 159 protein families from 35 plants (including angiosperms, gymnosperms, lycophyte and bryophyte mosses) and chlorophyte algae with fully sequenced genomes. Useful features of the database include: (i) a BLAST server and a HMMER server that allow users to search against our pre-computed sequence data for annotation purpose, (ii) a download page to allow batch downloading data of a specific CAZyme family or species and (iii) protein browse pages to provide an easy access to the most comprehensive sequence and annotation data. Database URL: http://cys.bios.niu.edu/plantcazyme/ PMID:25125445

  5. Predicting protein-binding RNA nucleotides with consideration of binding partners.

    PubMed

    Tuvshinjargal, Narankhuu; Lee, Wook; Park, Byungkyu; Han, Kyungsook

    2015-06-01

    In recent years several computational methods have been developed to predict RNA-binding sites in protein. Most of these methods do not consider interacting partners of a protein, so they predict the same RNA-binding sites for a given protein sequence even if the protein binds to different RNAs. Unlike the problem of predicting RNA-binding sites in protein, the problem of predicting protein-binding sites in RNA has received little attention mainly because it is much more difficult and shows a lower accuracy on average. In our previous study, we developed a method that predicts protein-binding nucleotides from an RNA sequence. In an effort to improve the prediction accuracy and usefulness of the previous method, we developed a new method that uses both RNA and protein sequence data. In this study, we identified effective features of RNA and protein molecules and developed a new support vector machine (SVM) model to predict protein-binding nucleotides from RNA and protein sequence data. The new model that used both protein and RNA sequence data achieved a sensitivity of 86.5%, a specificity of 86.2%, a positive predictive value (PPV) of 72.6%, a negative predictive value (NPV) of 93.8% and Matthews correlation coefficient (MCC) of 0.69 in a 10-fold cross validation; it achieved a sensitivity of 58.8%, a specificity of 87.4%, a PPV of 65.1%, a NPV of 84.2% and MCC of 0.48 in independent testing. For comparative purpose, we built another prediction model that used RNA sequence data alone and ran it on the same dataset. In a 10 fold-cross validation it achieved a sensitivity of 85.7%, a specificity of 80.5%, a PPV of 67.7%, a NPV of 92.2% and MCC of 0.63; in independent testing it achieved a sensitivity of 67.7%, a specificity of 78.8%, a PPV of 57.6%, a NPV of 85.2% and MCC of 0.45. In both cross-validations and independent testing, the new model that used both RNA and protein sequences showed a better performance than the model that used RNA sequence data alone in most performance measures. To the best of our knowledge, this is the first sequence-based prediction of protein-binding nucleotides in RNA which considers the binding partner of RNA. The new model will provide valuable information for designing biochemical experiments to find putative protein-binding sites in RNA with unknown structure. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. A carrot leucine-rich-repeat protein that inhibits ice recrystallization.

    PubMed

    Worrall, D; Elias, L; Ashford, D; Smallwood, M; Sidebottom, C; Lillford, P; Telford, J; Holt, C; Bowles, D

    1998-10-02

    Many organisms adapted to live at subzero temperatures express antifreeze proteins that improve their tolerance to freezing. Although structurally diverse, all antifreeze proteins interact with ice surfaces, depress the freezing temperature of aqueous solutions, and inhibit ice crystal growth. A protein purified from carrot shares these functional features with antifreeze proteins of fish. Expression of the carrot complementary DNA in tobacco resulted in the accumulation of antifreeze activity in the apoplast of plants grown at greenhouse temperatures. The sequence of carrot antifreeze protein is similar to that of polygalacturonase inhibitor proteins and contains leucine-rich repeats.

  7. Accurate prediction of RNA-binding protein residues with two discriminative structural descriptors.

    PubMed

    Sun, Meijian; Wang, Xia; Zou, Chuanxin; He, Zenghui; Liu, Wei; Li, Honglin

    2016-06-07

    RNA-binding proteins participate in many important biological processes concerning RNA-mediated gene regulation, and several computational methods have been recently developed to predict the protein-RNA interactions of RNA-binding proteins. Newly developed discriminative descriptors will help to improve the prediction accuracy of these prediction methods and provide further meaningful information for researchers. In this work, we designed two structural features (residue electrostatic surface potential and triplet interface propensity) and according to the statistical and structural analysis of protein-RNA complexes, the two features were powerful for identifying RNA-binding protein residues. Using these two features and other excellent structure- and sequence-based features, a random forest classifier was constructed to predict RNA-binding residues. The area under the receiver operating characteristic curve (AUC) of five-fold cross-validation for our method on training set RBP195 was 0.900, and when applied to the test set RBP68, the prediction accuracy (ACC) was 0.868, and the F-score was 0.631. The good prediction performance of our method revealed that the two newly designed descriptors could be discriminative for inferring protein residues interacting with RNAs. To facilitate the use of our method, a web-server called RNAProSite, which implements the proposed method, was constructed and is freely available at http://lilab.ecust.edu.cn/NABind .

  8. Putative Monofunctional Type I Polyketide Synthase Units: A Dinoflagellate-Specific Feature?

    PubMed Central

    Eichholz, Karsten; Beszteri, Bánk; John, Uwe

    2012-01-01

    Marine dinoflagellates (alveolata) are microalgae of which some cause harmful algal blooms and produce a broad variety of most likely polyketide synthesis derived phycotoxins. Recently, novel polyketide synthesase (PKS) transcripts have been described from the Florida red tide dinoflagellate Karenia brevis (gymnodiniales) which are evolutionarily related to Type I PKS but were apparently expressed as monofunctional proteins, a feature typical of Type II PKS. Here, we investigated expression units of PKS I-like sequences in Alexandrium ostenfeldii (gonyaulacales) and Heterocapsa triquetra (peridiniales) at the transcript and protein level. The five full length transcripts we obtained were all characterized by polyadenylation, a 3′ UTR and the dinoflagellate specific spliced leader sequence at the 5′end. Each of the five transcripts encoded a single ketoacylsynthase (KS) domain showing high similarity to K. brevis KS sequences. The monofunctional structure was also confirmed using dinoflagellate specific KS antibodies in Western Blots. In a maximum likelihood phylogenetic analysis of KS domains from diverse PKSs, dinoflagellate KSs formed a clade placed well within the protist Type I PKS clade between apicomplexa, haptophytes and chlorophytes. These findings indicate that the atypical PKS I structure, i.e., expression as putative monofunctional units, might be a dinoflagellate specific feature. In addition, the sequenced transcripts harbored a previously unknown, apparently dinoflagellate specific conserved N-terminal domain. We discuss the implications of this novel region with regard to the putative monofunctional organization of Type I PKS in dinoflagellates. PMID:23139807

  9. Predicting domain-domain interaction based on domain profiles with feature selection and support vector machines

    PubMed Central

    2010-01-01

    Background Protein-protein interaction (PPI) plays essential roles in cellular functions. The cost, time and other limitations associated with the current experimental methods have motivated the development of computational methods for predicting PPIs. As protein interactions generally occur via domains instead of the whole molecules, predicting domain-domain interaction (DDI) is an important step toward PPI prediction. Computational methods developed so far have utilized information from various sources at different levels, from primary sequences, to molecular structures, to evolutionary profiles. Results In this paper, we propose a computational method to predict DDI using support vector machines (SVMs), based on domains represented as interaction profile hidden Markov models (ipHMM) where interacting residues in domains are explicitly modeled according to the three dimensional structural information available at the Protein Data Bank (PDB). Features about the domains are extracted first as the Fisher scores derived from the ipHMM and then selected using singular value decomposition (SVD). Domain pairs are represented by concatenating their selected feature vectors, and classified by a support vector machine trained on these feature vectors. The method is tested by leave-one-out cross validation experiments with a set of interacting protein pairs adopted from the 3DID database. The prediction accuracy has shown significant improvement as compared to InterPreTS (Interaction Prediction through Tertiary Structure), an existing method for PPI prediction that also uses the sequences and complexes of known 3D structure. Conclusions We show that domain-domain interaction prediction can be significantly enhanced by exploiting information inherent in the domain profiles via feature selection based on Fisher scores, singular value decomposition and supervised learning based on support vector machines. Datasets and source code are freely available on the web at http://liao.cis.udel.edu/pub/svdsvm. Implemented in Matlab and supported on Linux and MS Windows. PMID:21034480

  10. Using the Relevance Vector Machine Model Combined with Local Phase Quantization to Predict Protein-Protein Interactions from Protein Sequences.

    PubMed

    An, Ji-Yong; Meng, Fan-Rong; You, Zhu-Hong; Fang, Yu-Hong; Zhao, Yu-Jun; Zhang, Ming

    2016-01-01

    We propose a novel computational method known as RVM-LPQ that combines the Relevance Vector Machine (RVM) model and Local Phase Quantization (LPQ) to predict PPIs from protein sequences. The main improvements are the results of representing protein sequences using the LPQ feature representation on a Position Specific Scoring Matrix (PSSM), reducing the influence of noise using a Principal Component Analysis (PCA), and using a Relevance Vector Machine (RVM) based classifier. We perform 5-fold cross-validation experiments on Yeast and Human datasets, and we achieve very high accuracies of 92.65% and 97.62%, respectively, which is significantly better than previous works. To further evaluate the proposed method, we compare it with the state-of-the-art support vector machine (SVM) classifier on the Yeast dataset. The experimental results demonstrate that our RVM-LPQ method is obviously better than the SVM-based method. The promising experimental results show the efficiency and simplicity of the proposed method, which can be an automatic decision support tool for future proteomics research.

  11. The Complete Sequence of a Human Parainfluenzavirus 4 Genome

    PubMed Central

    Yea, Carmen; Cheung, Rose; Collins, Carol; Adachi, Dena; Nishikawa, John; Tellier, Raymond

    2009-01-01

    Although the human parainfluenza virus 4 (HPIV4) has been known for a long time, its genome, alone among the human paramyxoviruses, has not been completely sequenced to date. In this study we obtained the first complete genomic sequence of HPIV4 from a clinical isolate named SKPIV4 obtained at the Hospital for Sick Children in Toronto (Ontario, Canada). The coding regions for the N, P/V, M, F and HN proteins show very high identities (95% to 97%) with previously available partial sequences for HPIV4B. The sequence for the L protein and the non-coding regions represent new information. A surprising feature of the genome is its length, more than 17 kb, making it the longest genome within the genus Rubulavirus, although the length is well within the known range of 15 kb to 19 kb for the subfamily Paramyxovirinae. The availability of a complete genomic sequence will facilitate investigations on a respiratory virus that is still not completely characterized. PMID:21994536

  12. Genome Sequence, Structural Proteins, and Capsid Organization of the Cyanophage Syn5: A “Horned” Bacteriophage of Marine Synechococcus

    PubMed Central

    Pope, Welkin H.; Weigele, Peter R.; Chang, Juan; Pedulla, Marisa L.; Ford, Michael E.; Houtz, Jennifer M.; Jiang, Wen; Chiu, Wah; Hatfull, Graham F.; Hendrix, Roger W.; King, Jonathan

    2010-01-01

    Marine Synechococcus spp and marine Prochlorococcus spp are numerically dominant photoautotrophs in the open oceans and contributors to the global carbon cycle. Syn5 is a short-tailed cyanophage isolated from the Sargasso Sea on Synechococcus strain WH8109. Syn5 has been grown in WH8109 to high titer in the laboratory and purified and concentrated retaining infectivity. Genome sequencing and annotation of Syn5 revealed that the linear genome is 46,214bp with a 237bp terminal direct repeat. Sixty-one open reading frames (ORFs) were identified. Based on genomic organization and sequence similarity to known protein sequences within GenBank, Syn5 shares features with T7-like phages. The presence of a putative integrase suggests access to a temperate life-cycle. Assignment of eleven ORFs to structural proteins found within the phage virion was confirmed by mass-spectrometry and N-terminal sequencing. Eight of these identified structural proteins exhibited amino acid sequence similarity to enteric phage proteins. The remaining three virion proteins did not resemble any known phage sequences in GenBank as of August 2006. Cryoelectron micrographs of purified Syn5 virions revealed that the capsid has a single “horn”, a novel fibrous structure protruding from the opposing end of the capsid from the tail of the virion. The tail appendage displayed an apparent three-fold rather than six-fold symmetry. An 18Å-resolution icosahedral reconstruction of the capsid revealed a T=7 lattice, but with an unusual pattern of surface knobs. This phage/host system should allow detailed investigation of the physiology and biochemistry of phage propagation in marine photosynthetic bacteria. PMID:17383677

  13. Accurate prediction of subcellular location of apoptosis proteins combining Chou's PseAAC and PsePSSM based on wavelet denoising.

    PubMed

    Yu, Bin; Li, Shan; Qiu, Wen-Ying; Chen, Cheng; Chen, Rui-Xin; Wang, Lei; Wang, Ming-Hui; Zhang, Yan

    2017-12-08

    Apoptosis proteins subcellular localization information are very important for understanding the mechanism of programmed cell death and the development of drugs. The prediction of subcellular localization of an apoptosis protein is still a challenging task because the prediction of apoptosis proteins subcellular localization can help to understand their function and the role of metabolic processes. In this paper, we propose a novel method for protein subcellular localization prediction. Firstly, the features of the protein sequence are extracted by combining Chou's pseudo amino acid composition (PseAAC) and pseudo-position specific scoring matrix (PsePSSM), then the feature information of the extracted is denoised by two-dimensional (2-D) wavelet denoising. Finally, the optimal feature vectors are input to the SVM classifier to predict subcellular location of apoptosis proteins. Quite promising predictions are obtained using the jackknife test on three widely used datasets and compared with other state-of-the-art methods. The results indicate that the method proposed in this paper can remarkably improve the prediction accuracy of apoptosis protein subcellular localization, which will be a supplementary tool for future proteomics research.

  14. Accurate prediction of subcellular location of apoptosis proteins combining Chou’s PseAAC and PsePSSM based on wavelet denoising

    PubMed Central

    Chen, Cheng; Chen, Rui-Xin; Wang, Lei; Wang, Ming-Hui; Zhang, Yan

    2017-01-01

    Apoptosis proteins subcellular localization information are very important for understanding the mechanism of programmed cell death and the development of drugs. The prediction of subcellular localization of an apoptosis protein is still a challenging task because the prediction of apoptosis proteins subcellular localization can help to understand their function and the role of metabolic processes. In this paper, we propose a novel method for protein subcellular localization prediction. Firstly, the features of the protein sequence are extracted by combining Chou's pseudo amino acid composition (PseAAC) and pseudo-position specific scoring matrix (PsePSSM), then the feature information of the extracted is denoised by two-dimensional (2-D) wavelet denoising. Finally, the optimal feature vectors are input to the SVM classifier to predict subcellular location of apoptosis proteins. Quite promising predictions are obtained using the jackknife test on three widely used datasets and compared with other state-of-the-art methods. The results indicate that the method proposed in this paper can remarkably improve the prediction accuracy of apoptosis protein subcellular localization, which will be a supplementary tool for future proteomics research. PMID:29296195

  15. P2RP: a Web-based framework for the identification and analysis of regulatory proteins in prokaryotic genomes.

    PubMed

    Barakat, Mohamed; Ortet, Philippe; Whitworth, David E

    2013-04-20

    Regulatory proteins (RPs) such as transcription factors (TFs) and two-component system (TCS) proteins control how prokaryotic cells respond to changes in their external and/or internal state. Identification and annotation of TFs and TCSs is non-trivial, and between-genome comparisons are often confounded by different standards in annotation. There is a need for user-friendly, fast and convenient tools to allow researchers to overcome the inherent variability in annotation between genome sequences. We have developed the web-server P2RP (Predicted Prokaryotic Regulatory Proteins), which enables users to identify and annotate TFs and TCS proteins within their sequences of interest. Users can input amino acid or genomic DNA sequences, and predicted proteins therein are scanned for the possession of DNA-binding domains and/or TCS domains. RPs identified in this manner are categorised into families, unambiguously annotated, and a detailed description of their features generated, using an integrated software pipeline. P2RP results can then be outputted in user-specified formats. Biologists have an increasing need for fast and intuitively usable tools, which is why P2RP has been developed as an interactive system. As well as assisting experimental biologists to interrogate novel sequence data, it is hoped that P2RP will be built into genome annotation pipelines and re-annotation processes, to increase the consistency of RP annotation in public genomic sequences. P2RP is the first publicly available tool for predicting and analysing RP proteins in users' sequences. The server is freely available and can be accessed along with documentation at http://www.p2rp.org.

  16. Assessing the Pathogenicity of Insertion and Deletion Variants with the Variant Effect Scoring Tool (VEST‐Indel)

    PubMed Central

    Douville, Christopher; Masica, David L.; Stenson, Peter D.; Cooper, David N.; Gygax, Derek M.; Kim, Rick; Ryan, Michael

    2015-01-01

    ABSTRACT Insertion/deletion variants (indels) alter protein sequence and length, yet are highly prevalent in healthy populations, presenting a challenge to bioinformatics classifiers. Commonly used features—DNA and protein sequence conservation, indel length, and occurrence in repeat regions—are useful for inference of protein damage. However, these features can cause false positives when predicting the impact of indels on disease. Existing methods for indel classification suffer from low specificities, severely limiting clinical utility. Here, we further develop our variant effect scoring tool (VEST) to include the classification of in‐frame and frameshift indels (VEST‐indel) as pathogenic or benign. We apply 24 features, including a new “PubMed” feature, to estimate a gene's importance in human disease. When compared with four existing indel classifiers, our method achieves a drastically reduced false‐positive rate, improving specificity by as much as 90%. This approach of estimating gene importance might be generally applicable to missense and other bioinformatics pathogenicity predictors, which often fail to achieve high specificity. Finally, we tested all possible meta‐predictors that can be obtained from combining the four different indel classifiers using Boolean conjunctions and disjunctions, and derived a meta‐predictor with improved performance over any individual method. PMID:26442818

  17. Exploring the dark foldable proteome by considering hydrophobic amino acids topology

    PubMed Central

    Bitard-Feildel, Tristan; Callebaut, Isabelle

    2017-01-01

    The protein universe corresponds to the set of all proteins found in all organisms. A way to explore it is by taking into account the domain content of the proteins. However, some part of sequences and many entire sequences remain un-annotated despite a converging number of domain families. The un-annotated part of the protein universe is referred to as the dark proteome and remains poorly characterized. In this study, we quantify the amount of foldable domains within the dark proteome by using the hydrophobic cluster analysis methodology. These un-annotated foldable domains were grouped using a combination of remote homology searches and domain annotations, leading to define different levels of darkness. The dark foldable domains were analyzed to understand what make them different from domains stored in databases and thus difficult to annotate. The un-annotated domains of the dark proteome universe display specific features relative to database domains: shorter length, non-canonical content and particular topology in hydrophobic residues, higher propensity for disorder, and a higher energy. These features make them hard to relate to known families. Based on these observations, we emphasize that domain annotation methodologies can still be improved to fully apprehend and decipher the molecular evolution of the protein universe. PMID:28134276

  18. Comparative analyses of putative toxin gene homologs from an Old World viper, Daboia russelii

    PubMed Central

    Krishnan, Neeraja M.

    2017-01-01

    Availability of snake genome sequences has opened up exciting areas of research on comparative genomics and gene diversity. One of the challenges in studying snake genomes is the acquisition of biological material from live animals, especially from the venomous ones, making the process cumbersome and time-consuming. Here, we report comparative sequence analyses of putative toxin gene homologs from Russell’s viper (Daboia russelii) using whole-genome sequencing data obtained from shed skin. When compared with the major venom proteins in Russell’s viper studied previously, we found 45–100% sequence similarity between the venom proteins and their putative homologs in the skin. Additionally, comparative analyses of 20 putative toxin gene family homologs provided evidence of unique sequence motifs in nerve growth factor (NGF), platelet derived growth factor (PDGF), Kunitz/Bovine pancreatic trypsin inhibitor (Kunitz BPTI), cysteine-rich secretory proteins, antigen 5, andpathogenesis-related1 proteins (CAP) and cysteine-rich secretory protein (CRISP). In those derived proteins, we identified V11 and T35 in the NGF domain; F23 and A29 in the PDGF domain; N69, K2 and A5 in the CAP domain; and Q17 in the CRISP domain to be responsible for differences in the largest pockets across the protein domain structures in crotalines, viperines and elapids from the in silico structure-based analysis. Similarly, residues F10, Y11 and E20 appear to play an important role in the protein structures across the kunitz protein domain of viperids and elapids. Our study highlights the usefulness of shed skin in obtaining good quality high-molecular weight DNA for comparative genomic studies, and provides evidence towards the unique features and evolution of putative venom gene homologs in vipers. PMID:29230357

  19. Sequence-dependent DNA deformability studied using molecular dynamics simulations.

    PubMed

    Fujii, Satoshi; Kono, Hidetoshi; Takenaka, Shigeori; Go, Nobuhiro; Sarai, Akinori

    2007-01-01

    Proteins recognize specific DNA sequences not only through direct contact between amino acids and bases, but also indirectly based on the sequence-dependent conformation and deformability of the DNA (indirect readout). We used molecular dynamics simulations to analyze the sequence-dependent DNA conformations of all 136 possible tetrameric sequences sandwiched between CGCG sequences. The deformability of dimeric steps obtained by the simulations is consistent with that by the crystal structures. The simulation results further showed that the conformation and deformability of the tetramers can highly depend on the flanking base pairs. The conformations of xATx tetramers show the most rigidity and are not affected by the flanking base pairs and the xYRx show by contrast the greatest flexibility and change their conformations depending on the base pairs at both ends, suggesting tetramers with the same central dimer can show different deformabilities. These results suggest that analysis of dimeric steps alone may overlook some conformational features of DNA and provide insight into the mechanism of indirect readout during protein-DNA recognition. Moreover, the sequence dependence of DNA conformation and deformability may be used to estimate the contribution of indirect readout to the specificity of protein-DNA recognition as well as nucleosome positioning and large-scale behavior of nucleic acids.

  20. 'DNA Strider': a 'C' program for the fast analysis of DNA and protein sequences on the Apple Macintosh family of computers.

    PubMed Central

    Marck, C

    1988-01-01

    DNA Strider is a new integrated DNA and Protein sequence analysis program written with the C language for the Macintosh Plus, SE and II computers. It has been designed as an easy to learn and use program as well as a fast and efficient tool for the day-to-day sequence analysis work. The program consists of a multi-window sequence editor and of various DNA and Protein analysis functions. The editor may use 4 different types of sequences (DNA, degenerate DNA, RNA and one-letter coded protein) and can handle simultaneously 6 sequences of any type up to 32.5 kB each. Negative numbering of the bases is allowed for DNA sequences. All classical restriction and translation analysis functions are present and can be performed in any order on any open sequence or part of a sequence. The main feature of the program is that the same analysis function can be repeated several times on different sequences, thus generating multiple windows on the screen. Many graphic capabilities have been incorporated such as graphic restriction map, hydrophobicity profile and the CAI plot- codon adaptation index according to Sharp and Li. The restriction sites search uses a newly designed fast hexamer look-ahead algorithm. Typical runtime for the search of all sites with a library of 130 restriction endonucleases is 1 second per 10,000 bases. The circular graphic restriction map of the pBR322 plasmid can be therefore computed from its sequence and displayed on the Macintosh Plus screen within 2 seconds and its multiline restriction map obtained in a scrolling window within 5 seconds. PMID:2832831

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waltman, Peter H.; Guo, Jian; Reistetter, Emily Nahas

    Micromonas is a unicellular green alga that belongs to the prasinophytes, a sister lineage to land plants. This picoeukaryotic (<2 μm diameter) alga is widespread in the marine environment but still not understood at the cellular level. Here, we examine the mRNA and protein level changes that take place over the course of the day-night cycle using mid-exponential nutrient replete cultures of Micromonas pusilla CCMP1545 grown and analyzed in biological triplicate. During the experiment, samples were collected at key transition points during the diel for evaluation using high-throughput LC-MS proteomics. We also sequenced matched mRNA samples from the same timemore » points, using pair-ended directional Illumina RNA-Seq to investigate the dynamics and relationship between the mRNA and protein expression programs of M. pusilla. Similar to a prior study of the marine cyanobacterium Prochlorococcus, we found significant divergence in the mRNA and proteomics expression dynamics in response to the light:dark cycle. Additionally, expressional responses of genes and the proteins they encoded could also be variable within the same metabolic pathway, such as the oxygenic photosynthesis pathway. A regression framework was used to predict protein levels using both mRNA expression and gene-specific sequence-based features. Several features in the genome sequence were found to influence protein abundance including the codon usage and the length of the 3’ UTR. Collectively, our studies provide insights into the regulation of the proteome over a diel as relationships between the transcriptional and translational programs in the widespread marine green alga Micromonas.« less

  2. Amyloid fibril formation from sequences of a natural beta-structured fibrous protein, the adenovirus fiber.

    PubMed

    Papanikolopoulou, Katerina; Schoehn, Guy; Forge, Vincent; Forsyth, V Trevor; Riekel, Christian; Hernandez, Jean-François; Ruigrok, Rob W H; Mitraki, Anna

    2005-01-28

    Amyloid fibrils are fibrous beta-structures that derive from abnormal folding and assembly of peptides and proteins. Despite a wealth of structural studies on amyloids, the nature of the amyloid structure remains elusive; possible connections to natural, beta-structured fibrous motifs have been suggested. In this work we focus on understanding amyloid structure and formation from sequences of a natural, beta-structured fibrous protein. We show that short peptides (25 to 6 amino acids) corresponding to repetitive sequences from the adenovirus fiber shaft have an intrinsic capacity to form amyloid fibrils as judged by electron microscopy, Congo Red binding, infrared spectroscopy, and x-ray fiber diffraction. In the presence of the globular C-terminal domain of the protein that acts as a trimerization motif, the shaft sequences adopt a triple-stranded, beta-fibrous motif. We discuss the possible structure and arrangement of these sequences within the amyloid fibril, as compared with the one adopted within the native structure. A 6-amino acid peptide, corresponding to the last beta-strand of the shaft, was found to be sufficient to form amyloid fibrils. Structural analysis of these amyloid fibrils suggests that perpendicular stacking of beta-strand repeat units is an underlying common feature of amyloid formation.

  3. RNA regulators responding to ribosomal protein S15 are frequent in sequence space

    PubMed Central

    Slinger, Betty L.; Meyer, Michelle M.

    2016-01-01

    There are several natural examples of distinct RNA structures that interact with the same ligand to regulate the expression of homologous genes in different organisms. One essential question regarding this phenomenon is whether such RNA regulators are the result of convergent or divergent evolution. Are the RNAs derived from some common ancestor and diverged to the point where we cannot identify the similarity, or have multiple solutions to the same biological problem arisen independently? A key variable in assessing these alternatives is how frequently such regulators arise within sequence space. Ribosomal protein S15 is autogenously regulated via an RNA regulator in many bacterial species; four apparently distinct regulators have been functionally validated in different bacterial phyla. Here, we explore how frequently such regulators arise within a partially randomized sequence population. We find many RNAs that interact specifically with ribosomal protein S15 from Geobacillus kaustophilus with biologically relevant dissociation constants. Furthermore, of the six sequences we characterize, four show regulatory activity in an Escherichia coli reporter assay. Subsequent footprinting and mutagenesis analysis indicates that protein binding proximal to regulatory features such as the Shine–Dalgarno sequence is sufficient to enable regulation, suggesting that regulation in response to S15 is relatively easily acquired. PMID:27580716

  4. Completion of full length genome sequence of novel avian paramyxovirus strain APMV/Shimane67 isolated from migratory wild geese in Japan.

    PubMed

    Yamamoto, Eiji; Ito, Toshihiro; Ito, Hiroshi

    2016-11-01

    The nucleotide sequences of nucleocapsid protein (N); phosphoprotein (P); matrix protein (M); hemagglutinin-neuraminidase (HN); and large polymerase protein (L) genes, 3'-end leader, 5'-end trailer and intergenic regions of the avian paramyxovirus (APMV) strain goose/Shimane/67/2000 (APMV/Shimane67) were determined. Together with previously reported data on fusion protein (F) gene sequence [46], the determination of the genome sequence of APMV/Shimane67 has been completed in this study. The genome of APMV/Shimane67 comprised 16,146 nucleotides in length and contains six genes in the order of 3'-N-P-M-F-HN-L-5'. The features of the APMV/Shimane67 genome (e.g., nucleotide length of whole genome and each of the six genes, and predicted amino acid length of each of the six genes) were distinct from those of other APMV serotypes. Phylogenetic analysis indicated that although APMV/Shimane67 was grouped with APMV-1, -9 and -12, the evolutionary distance between APMV/Shimane67 and these viruses was longer than that observed between intra-serotype viruses. These results show that the genome sequence of APMV/Shimane67 contains specific characteristics and is distinguishable from other types of APMV.

  5. The Widespread Prevalence and Functional Significance of Silk-Like Structural Proteins in Metazoan Biological Materials

    PubMed Central

    McDougall, Carmel; Woodcroft, Ben J.

    2016-01-01

    In nature, numerous mechanisms have evolved by which organisms fabricate biological structures with an impressive array of physical characteristics. Some examples of metazoan biological materials include the highly elastic byssal threads by which bivalves attach themselves to rocks, biomineralized structures that form the skeletons of various animals, and spider silks that are renowned for their exceptional strength and elasticity. The remarkable properties of silks, which are perhaps the best studied biological materials, are the result of the highly repetitive, modular, and biased amino acid composition of the proteins that compose them. Interestingly, similar levels of modularity/repetitiveness and similar bias in amino acid compositions have been reported in proteins that are components of structural materials in other organisms, however the exact nature and extent of this similarity, and its functional and evolutionary relevance, is unknown. Here, we investigate this similarity and use sequence features common to silks and other known structural proteins to develop a bioinformatics-based method to identify similar proteins from large-scale transcriptome and whole-genome datasets. We show that a large number of proteins identified using this method have roles in biological material formation throughout the animal kingdom. Despite the similarity in sequence characteristics, most of the silk-like structural proteins (SLSPs) identified in this study appear to have evolved independently and are restricted to a particular animal lineage. Although the exact function of many of these SLSPs is unknown, the apparent independent evolution of proteins with similar sequence characteristics in divergent lineages suggests that these features are important for the assembly of biological materials. The identification of these characteristics enable the generation of testable hypotheses regarding the mechanisms by which these proteins assemble and direct the construction of biological materials with diverse morphologies. The SilkSlider predictor software developed here is available at https://github.com/wwood/SilkSlider. PMID:27415783

  6. Formin homology 2 domains occur in multiple contexts in angiosperms

    PubMed Central

    Cvrčková, Fatima; Novotný, Marian; Pícková, Denisa; Žárský, Viktor

    2004-01-01

    Background Involvement of conservative molecular modules and cellular mechanisms in the widely diversified processes of eukaryotic cell morphogenesis leads to the intriguing question: how do similar proteins contribute to dissimilar morphogenetic outputs. Formins (FH2 proteins) play a central part in the control of actin organization and dynamics, providing a good example of evolutionarily versatile use of a conserved protein domain in the context of a variety of lineage-specific structural and signalling interactions. Results In order to identify possible plant-specific sequence features within the FH2 protein family, we performed a detailed analysis of angiosperm formin-related sequences available in public databases, with particular focus on the complete Arabidopsis genome and the nearly finished rice genome sequence. This has led to revision of the current annotation of half of the 22 Arabidopsis formin-related genes. Comparative analysis of the two plant genomes revealed a good conservation of the previously described two subfamilies of plant formins (Class I and Class II), as well as several subfamilies within them that appear to predate the separation of monocot and dicot plants. Moreover, a number of plant Class II formins share an additional conserved domain, related to the protein phosphatase/tensin/auxilin fold. However, considerable inter-species variability sets limits to generalization of any functional conclusions reached on a single species such as Arabidopsis. Conclusions The plant-specific domain context of the conserved FH2 domain, as well as plant-specific features of the domain itself, may reflect distinct functional requirements in plant cells. The variability of formin structures found in plants far exceeds that known from both fungi and metazoans, suggesting a possible contribution of FH2 proteins in the evolution of the plant type of multicellularity. PMID:15256004

  7. A Systematic Prediction of Drug-Target Interactions Using Molecular Fingerprints and Protein Sequences.

    PubMed

    Huang, Yu-An; You, Zhu-Hong; Chen, Xing

    2018-01-01

    Drug-Target Interactions (DTI) play a crucial role in discovering new drug candidates and finding new proteins to target for drug development. Although the number of detected DTI obtained by high-throughput techniques has been increasing, the number of known DTI is still limited. On the other hand, the experimental methods for detecting the interactions among drugs and proteins are costly and inefficient. Therefore, computational approaches for predicting DTI are drawing increasing attention in recent years. In this paper, we report a novel computational model for predicting the DTI using extremely randomized trees model and protein amino acids information. More specifically, the protein sequence is represented as a Pseudo Substitution Matrix Representation (Pseudo-SMR) descriptor in which the influence of biological evolutionary information is retained. For the representation of drug molecules, a novel fingerprint feature vector is utilized to describe its substructure information. Then the DTI pair is characterized by concatenating the two vector spaces of protein sequence and drug substructure. Finally, the proposed method is explored for predicting the DTI on four benchmark datasets: Enzyme, Ion Channel, GPCRs and Nuclear Receptor. The experimental results demonstrate that this method achieves promising prediction accuracies of 89.85%, 87.87%, 82.99% and 81.67%, respectively. For further evaluation, we compared the performance of Extremely Randomized Trees model with that of the state-of-the-art Support Vector Machine classifier. And we also compared the proposed model with existing computational models, and confirmed 15 potential drug-target interactions by looking for existing databases. The experiment results show that the proposed method is feasible and promising for predicting drug-target interactions for new drug candidate screening based on sizeable features. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Structural characterization of the N-terminal mineral modification domains from the molluscan crystal-modulating biomineralization proteins, AP7 and AP24.

    PubMed

    Wustman, Brandon A; Morse, Daniel E; Evans, John Spencer

    2004-08-05

    The AP7 and AP24 proteins represent a class of mineral-interaction polypeptides that are found in the aragonite-containing nacre layer of mollusk shell (H. rufescens). These proteins have been shown to preferentially interfere with calcium carbonate mineral growth in vitro. It is believed that both proteins play an important role in aragonite polymorph selection in the mollusk shell. Previously, we demonstrated the 1-30 amino acid (AA) N-terminal sequences of AP7 and AP24 represent mineral interaction/modification domains in both proteins, as evidenced by their ability to frustrate calcium carbonate crystal growth at step edge regions. In this present report, using free N-terminal, C(alpha)-amide "capped" synthetic polypeptides representing the 1-30 AA regions of AP7 (AP7-1 polypeptide) and AP24 (AP24-1 polypeptide) and NMR spectroscopy, we confirm that both N-terminal sequences possess putative Ca (II) interaction polyanionic sequence regions (2 x -DD- in AP7-1, -DDDED- in AP24-1) that are random coil-like in structure. However, with regard to the remaining sequences regions, each polypeptide features unique structural differences. AP7-1 possesses an extended beta-strand or polyproline type II-like structure within the A11-M10, S12-V13, and S28-I27 sequence regions, with the remaining sequence regions adopting a random-coil-like structure, a trait common to other polyelectrolyte mineral-associated polypeptide sequences. Conversely, AP24-1 possesses random coil-like structure within A1-S9 and Q14-N16 sequence regions, and evidence for turn-like, bend, or loop conformation within the G10-N13, Q17-N24, and M29-F30 sequence regions, similar to the structures identified within the putative elastomeric proteins Lustrin A and sea urchin spicule matrix proteins. The similarities and differences in AP7 and AP24 N-terminal domain structure are discussed with regard to joint AP7-AP24 protein modification of calcium carbonate growth. Copyright 2004 Wiley Periodicals, Inc.

  9. Tandem Repeats in Proteins: Prediction Algorithms and Biological Role.

    PubMed

    Pellegrini, Marco

    2015-01-01

    Tandem repetitions in protein sequence and structure is a fascinating subject of research which has been a focus of study since the late 1990s. In this survey, we give an overview on the multi-faceted aspects of research on protein tandem repeats (PTR for short), including prediction algorithms, databases, early classification efforts, mechanisms of PTR formation and evolution, and synthetic PTR design. We also touch on the rather open issue of the relationship between PTR and flexibility (or disorder) in proteins. Detection of PTR either from protein sequence or structure data is challenging due to inherent high (biological) signal-to-noise ratio that is a key feature of this problem. As early in silico analytic tools have been key enablers for starting this field of study, we expect that current and future algorithmic and statistical breakthroughs will have a high impact on the investigations of the biological role of PTR.

  10. MannDB: A microbial annotation database for protein characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, C; Lam, M; Smith, J

    2006-05-19

    MannDB was created to meet a need for rapid, comprehensive automated protein sequence analyses to support selection of proteins suitable as targets for driving the development of reagents for pathogen or protein toxin detection. Because a large number of open-source tools were needed, it was necessary to produce a software system to scale the computations for whole-proteome analysis. Thus, we built a fully automated system for executing software tools and for storage, integration, and display of automated protein sequence analysis and annotation data. MannDB is a relational database that organizes data resulting from fully automated, high-throughput protein-sequence analyses using open-sourcemore » tools. Types of analyses provided include predictions of cleavage, chemical properties, classification, features, functional assignment, post-translational modifications, motifs, antigenicity, and secondary structure. Proteomes (lists of hypothetical and known proteins) are downloaded and parsed from Genbank and then inserted into MannDB, and annotations from SwissProt are downloaded when identifiers are found in the Genbank entry or when identical sequences are identified. Currently 36 open-source tools are run against MannDB protein sequences either on local systems or by means of batch submission to external servers. In addition, BLAST against protein entries in MvirDB, our database of microbial virulence factors, is performed. A web client browser enables viewing of computational results and downloaded annotations, and a query tool enables structured and free-text search capabilities. When available, links to external databases, including MvirDB, are provided. MannDB contains whole-proteome analyses for at least one representative organism from each category of biological threat organism listed by APHIS, CDC, HHS, NIAID, USDA, USFDA, and WHO. MannDB comprises a large number of genomes and comprehensive protein sequence analyses representing organisms listed as high-priority agents on the websites of several governmental organizations concerned with bio-terrorism. MannDB provides the user with a BLAST interface for comparison of native and non-native sequences and a query tool for conveniently selecting proteins of interest. In addition, the user has access to a web-based browser that compiles comprehensive and extensive reports.« less

  11. Improving pairwise comparison of protein sequences with domain co-occurrence

    PubMed Central

    Gascuel, Olivier

    2018-01-01

    Comparing and aligning protein sequences is an essential task in bioinformatics. More specifically, local alignment tools like BLAST are widely used for identifying conserved protein sub-sequences, which likely correspond to protein domains or functional motifs. However, to limit the number of false positives, these tools are used with stringent sequence-similarity thresholds and hence can miss several hits, especially for species that are phylogenetically distant from reference organisms. A solution to this problem is then to integrate additional contextual information to the procedure. Here, we propose to use domain co-occurrence to increase the sensitivity of pairwise sequence comparisons. Domain co-occurrence is a strong feature of proteins, since most protein domains tend to appear with a limited number of other domains on the same protein. We propose a method to take this information into account in a typical BLAST analysis and to construct new domain families on the basis of these results. We used Plasmodium falciparum as a case study to evaluate our method. The experimental findings showed an increase of 14% of the number of significant BLAST hits and an increase of 25% of the proteome area that can be covered with a domain. Our method identified 2240 new domains for which, in most cases, no model of the Pfam database could be linked. Moreover, our study of the quality of the new domains in terms of alignment and physicochemical properties show that they are close to that of standard Pfam domains. Source code of the proposed approach and supplementary data are available at: https://gite.lirmm.fr/menichelli/pairwise-comparison-with-cooccurrence PMID:29293498

  12. Subcellular localization for Gram positive and Gram negative bacterial proteins using linear interpolation smoothing model.

    PubMed

    Saini, Harsh; Raicar, Gaurav; Dehzangi, Abdollah; Lal, Sunil; Sharma, Alok

    2015-12-07

    Protein subcellular localization is an important topic in proteomics since it is related to a protein׳s overall function, helps in the understanding of metabolic pathways, and in drug design and discovery. In this paper, a basic approximation technique from natural language processing called the linear interpolation smoothing model is applied for predicting protein subcellular localizations. The proposed approach extracts features from syntactical information in protein sequences to build probabilistic profiles using dependency models, which are used in linear interpolation to determine how likely is a sequence to belong to a particular subcellular location. This technique builds a statistical model based on maximum likelihood. It is able to deal effectively with high dimensionality that hinders other traditional classifiers such as Support Vector Machines or k-Nearest Neighbours without sacrificing performance. This approach has been evaluated by predicting subcellular localizations of Gram positive and Gram negative bacterial proteins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Reorganization of low-molecular-weight fraction of plasma proteins in the annual cycle of cyprinidae.

    PubMed

    Andreeva, A M; Lamas, N E; Serebryakova, M V; Ryabtseva, I P; Bolshakov, V V

    2015-02-01

    Reorganization of the low-molecular-weight fraction of cyprinid plasma was analyzed using various electrophoretic techniques (disc electrophoresis, electrophoresis in polyacrylamide concentration gradient, in polyacrylamide with urea, and in SDS-polyacrylamide). The study revealed coordinated changes in the low-molecular-weight protein fractions with seasonal dynamics and related reproductive rhythms of fishes. We used cultured species of the Cyprinidae family with sequenced genomes for the detection of these interrelations in fresh-water and anadromous cyprinid species. The common features of organization of fish low-molecular-weight plasma protein fractions made it possible to make reliable identification of their proteins. MALDI mass-spectrometry analysis revealed the presence of the same proteins (hemopexin, apolipoproteins, and serpins) in the low-molecular-weight plasma fraction in wild species and cultured species with sequenced genomes (carp, zebrafish). It is found that the proteins of the first two classes are organized as complexes made of protein oligomers. Stoichiometry of these complexes changes in concordance with the seasonal and reproductive rhythms.

  14. Preservation of protein clefts in comparative models.

    PubMed

    Piedra, David; Lois, Sergi; de la Cruz, Xavier

    2008-01-16

    Comparative, or homology, modelling of protein structures is the most widely used prediction method when the target protein has homologues of known structure. Given that the quality of a model may vary greatly, several studies have been devoted to identifying the factors that influence modelling results. These studies usually consider the protein as a whole, and only a few provide a separate discussion of the behaviour of biologically relevant features of the protein. Given the value of the latter for many applications, here we extended previous work by analysing the preservation of native protein clefts in homology models. We chose to examine clefts because of their role in protein function/structure, as they are usually the locus of protein-protein interactions, host the enzymes' active site, or, in the case of protein domains, can also be the locus of domain-domain interactions that lead to the structure of the whole protein. We studied how the largest cleft of a protein varies in comparative models. To this end, we analysed a set of 53507 homology models that cover the whole sequence identity range, with a special emphasis on medium and low similarities. More precisely we examined how cleft quality - measured using six complementary parameters related to both global shape and local atomic environment, depends on the sequence identity between target and template proteins. In addition to this general analysis, we also explored the impact of a number of factors on cleft quality, and found that the relationship between quality and sequence identity varies depending on cleft rank amongst the set of protein clefts (when ordered according to size), and number of aligned residues. We have examined cleft quality in homology models at a range of seq.id. levels. Our results provide a detailed view of how quality is affected by distinct parameters and thus may help the user of comparative modelling to determine the final quality and applicability of his/her cleft models. In addition, the large variability in model quality that we observed within each sequence bin, with good models present even at low sequence identities (between 20% and 30%), indicates that properly developed identification methods could be used to recover good cleft models in this sequence range.

  15. Prediction of protein long-range contacts using an ensemble of genetic algorithm classifiers with sequence profile centers.

    PubMed

    Chen, Peng; Li, Jinyan

    2010-05-17

    Prediction of long-range inter-residue contacts is an important topic in bioinformatics research. It is helpful for determining protein structures, understanding protein foldings, and therefore advancing the annotation of protein functions. In this paper, we propose a novel ensemble of genetic algorithm classifiers (GaCs) to address the long-range contact prediction problem. Our method is based on the key idea called sequence profile centers (SPCs). Each SPC is the average sequence profiles of residue pairs belonging to the same contact class or non-contact class. GaCs train on multiple but different pairs of long-range contact data (positive data) and long-range non-contact data (negative data). The negative data sets, having roughly the same sizes as the positive ones, are constructed by random sampling over the original imbalanced negative data. As a result, about 21.5% long-range contacts are correctly predicted. We also found that the ensemble of GaCs indeed makes an accuracy improvement by around 5.6% over the single GaC. Classifiers with the use of sequence profile centers may advance the long-range contact prediction. In line with this approach, key structural features in proteins would be determined with high efficiency and accuracy.

  16. ANCAC: amino acid, nucleotide, and codon analysis of COGs--a tool for sequence bias analysis in microbial orthologs.

    PubMed

    Meiler, Arno; Klinger, Claudia; Kaufmann, Michael

    2012-09-08

    The COG database is the most popular collection of orthologous proteins from many different completely sequenced microbial genomes. Per definition, a cluster of orthologous groups (COG) within this database exclusively contains proteins that most likely achieve the same cellular function. Recently, the COG database was extended by assigning to every protein both the corresponding amino acid and its encoding nucleotide sequence resulting in the NUCOCOG database. This extended version of the COG database is a valuable resource connecting sequence features with the functionality of the respective proteins. Here we present ANCAC, a web tool and MySQL database for the analysis of amino acid, nucleotide, and codon frequencies in COGs on the basis of freely definable phylogenetic patterns. We demonstrate the usefulness of ANCAC by analyzing amino acid frequencies, codon usage, and GC-content in a species- or function-specific context. With respect to amino acids we, at least in part, confirm the cognate bias hypothesis by using ANCAC's NUCOCOG dataset as the largest one available for that purpose thus far. Using the NUCOCOG datasets, ANCAC connects taxonomic, amino acid, and nucleotide sequence information with the functional classification via COGs and provides a GUI for flexible mining for sequence-bias. Thereby, to our knowledge, it is the only tool for the analysis of sequence composition in the light of physiological roles and phylogenetic context without requirement of substantial programming-skills.

  17. ANCAC: amino acid, nucleotide, and codon analysis of COGs – a tool for sequence bias analysis in microbial orthologs

    PubMed Central

    2012-01-01

    Background The COG database is the most popular collection of orthologous proteins from many different completely sequenced microbial genomes. Per definition, a cluster of orthologous groups (COG) within this database exclusively contains proteins that most likely achieve the same cellular function. Recently, the COG database was extended by assigning to every protein both the corresponding amino acid and its encoding nucleotide sequence resulting in the NUCOCOG database. This extended version of the COG database is a valuable resource connecting sequence features with the functionality of the respective proteins. Results Here we present ANCAC, a web tool and MySQL database for the analysis of amino acid, nucleotide, and codon frequencies in COGs on the basis of freely definable phylogenetic patterns. We demonstrate the usefulness of ANCAC by analyzing amino acid frequencies, codon usage, and GC-content in a species- or function-specific context. With respect to amino acids we, at least in part, confirm the cognate bias hypothesis by using ANCAC’s NUCOCOG dataset as the largest one available for that purpose thus far. Conclusions Using the NUCOCOG datasets, ANCAC connects taxonomic, amino acid, and nucleotide sequence information with the functional classification via COGs and provides a GUI for flexible mining for sequence-bias. Thereby, to our knowledge, it is the only tool for the analysis of sequence composition in the light of physiological roles and phylogenetic context without requirement of substantial programming-skills. PMID:22958836

  18. Thermodynamic database for proteins: features and applications.

    PubMed

    Gromiha, M Michael; Sarai, Akinori

    2010-01-01

    We have developed a thermodynamic database for proteins and mutants, ProTherm, which is a collection of a large number of thermodynamic data on protein stability along with the sequence and structure information, experimental methods and conditions, and literature information. This is a valuable resource for understanding/predicting the stability of proteins, and it can be accessible at http://www.gibk26.bse.kyutech.ac.jp/jouhou/Protherm/protherm.html . ProTherm has several features including various search, display, and sorting options and visualization tools. We have analyzed the data in ProTherm to examine the relationship among thermodynamics, structure, and function of proteins. We describe the progress on the development of methods for understanding/predicting protein stability, such as (i) relationship between the stability of protein mutants and amino acid properties, (ii) average assignment method, (iii) empirical energy functions, (iv) torsion, distance, and contact potentials, and (v) machine learning techniques. The list of online resources for predicting protein stability has also been provided.

  19. Structure based re-design of the binding specificity of anti-apoptotic Bcl-xL

    PubMed Central

    Chen, T. Scott; Palacios, Hector; Keating, Amy E.

    2012-01-01

    Many native proteins are multi-specific and interact with numerous partners, which can confound analysis of their functions. Protein design provides a potential route to generating synthetic variants of native proteins with more selective binding profiles. Re-designed proteins could be used as research tools, diagnostics or therapeutics. In this work, we used a library screening approach to re-engineer the multi-specific anti-apoptotic protein Bcl-xL to remove its interactions with many of its binding partners, making it a high affinity and selective binder of the BH3 region of pro-apoptotic protein Bad. To overcome the enormity of the potential Bcl-xL sequence space, we developed and applied a computational/experimental framework that used protein structure information to generate focused combinatorial libraries. Sequence features were identified using structure-based modeling, and an optimization algorithm based on integer programming was used to select degenerate codons that maximally covered these features. A constraint on library size was used to ensure thorough sampling. Using yeast surface display to screen a designed library of Bcl-xL variants, we successfully identified a protein with ~1,000-fold improvement in binding specificity for the BH3 region of Bad over the BH3 region of Bim. Although negative design was targeted only against the BH3 region of Bim, the best re-designed protein was globally specific against binding to 10 other peptides corresponding to native BH3 motifs. Our design framework demonstrates an efficient route to highly specific protein binders and may readily be adapted for application to other design problems. PMID:23154169

  20. Complete genome sequence of Staphylothermus hellenicus P8T

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Iain; Wirth, Reinhard; Lucas, Susan

    2011-01-01

    Staphylothermus hellenicus belongs to the order Desulfurococcales within the archaeal phy- lum Crenarchaeota. Strain P8T is the type strain of the species and was isolated from a shal- low hydrothermal vent system at Palaeochori Bay, Milos, Greece. It is a hyperthermophilic, anaerobic heterotroph. Here we describe the features of this organism together with the com- plete genome sequence and annotation. The 1,580,347 bp genome with its 1,668 protein- coding and 48 RNA genes was sequenced as part of a DOE Joint Genome Institute (JGI) La- boratory Sequencing Program (LSP) project.

  1. Prediction of lysine ubiquitylation with ensemble classifier and feature selection.

    PubMed

    Zhao, Xiaowei; Li, Xiangtao; Ma, Zhiqiang; Yin, Minghao

    2011-01-01

    Ubiquitylation is an important process of post-translational modification. Correct identification of protein lysine ubiquitylation sites is of fundamental importance to understand the molecular mechanism of lysine ubiquitylation in biological systems. This paper develops a novel computational method to effectively identify the lysine ubiquitylation sites based on the ensemble approach. In the proposed method, 468 ubiquitylation sites from 323 proteins retrieved from the Swiss-Prot database were encoded into feature vectors by using four kinds of protein sequences information. An effective feature selection method was then applied to extract informative feature subsets. After different feature subsets were obtained by setting different starting points in the search procedure, they were used to train multiple random forests classifiers and then aggregated into a consensus classifier by majority voting. Evaluated by jackknife tests and independent tests respectively, the accuracy of the proposed predictor reached 76.82% for the training dataset and 79.16% for the test dataset, indicating that this predictor is a useful tool to predict lysine ubiquitylation sites. Furthermore, site-specific feature analysis was performed and it was shown that ubiquitylation is intimately correlated with the features of its surrounding sites in addition to features derived from the lysine site itself. The feature selection method is available upon request.

  2. Cascade detection for the extraction of localized sequence features; specificity results for HIV-1 protease and structure-function results for the Schellman loop.

    PubMed

    Newell, Nicholas E

    2011-12-15

    The extraction of the set of features most relevant to function from classified biological sequence sets is still a challenging problem. A central issue is the determination of expected counts for higher order features so that artifact features may be screened. Cascade detection (CD), a new algorithm for the extraction of localized features from sequence sets, is introduced. CD is a natural extension of the proportional modeling techniques used in contingency table analysis into the domain of feature detection. The algorithm is successfully tested on synthetic data and then applied to feature detection problems from two different domains to demonstrate its broad utility. An analysis of HIV-1 protease specificity reveals patterns of strong first-order features that group hydrophobic residues by side chain geometry and exhibit substantial symmetry about the cleavage site. Higher order results suggest that favorable cooperativity is weak by comparison and broadly distributed, but indicate possible synergies between negative charge and hydrophobicity in the substrate. Structure-function results for the Schellman loop, a helix-capping motif in proteins, contain strong first-order features and also show statistically significant cooperativities that provide new insights into the design of the motif. These include a new 'hydrophobic staple' and multiple amphipathic and electrostatic pair features. CD should prove useful not only for sequence analysis, but also for the detection of multifactor synergies in cross-classified data from clinical studies or other sources. Windows XP/7 application and data files available at: https://sites.google.com/site/cascadedetect/home. nacnewell@comcast.net Supplementary information is available at Bioinformatics online.

  3. A discriminative method for family-based protein remote homology detection that combines inductive logic programming and propositional models

    PubMed Central

    2011-01-01

    Background Remote homology detection is a hard computational problem. Most approaches have trained computational models by using either full protein sequences or multiple sequence alignments (MSA), including all positions. However, when we deal with proteins in the "twilight zone" we can observe that only some segments of sequences (motifs) are conserved. We introduce a novel logical representation that allows us to represent physico-chemical properties of sequences, conserved amino acid positions and conserved physico-chemical positions in the MSA. From this, Inductive Logic Programming (ILP) finds the most frequent patterns (motifs) and uses them to train propositional models, such as decision trees and support vector machines (SVM). Results We use the SCOP database to perform our experiments by evaluating protein recognition within the same superfamily. Our results show that our methodology when using SVM performs significantly better than some of the state of the art methods, and comparable to other. However, our method provides a comprehensible set of logical rules that can help to understand what determines a protein function. Conclusions The strategy of selecting only the most frequent patterns is effective for the remote homology detection. This is possible through a suitable first-order logical representation of homologous properties, and through a set of frequent patterns, found by an ILP system, that summarizes essential features of protein functions. PMID:21429187

  4. A discriminative method for family-based protein remote homology detection that combines inductive logic programming and propositional models.

    PubMed

    Bernardes, Juliana S; Carbone, Alessandra; Zaverucha, Gerson

    2011-03-23

    Remote homology detection is a hard computational problem. Most approaches have trained computational models by using either full protein sequences or multiple sequence alignments (MSA), including all positions. However, when we deal with proteins in the "twilight zone" we can observe that only some segments of sequences (motifs) are conserved. We introduce a novel logical representation that allows us to represent physico-chemical properties of sequences, conserved amino acid positions and conserved physico-chemical positions in the MSA. From this, Inductive Logic Programming (ILP) finds the most frequent patterns (motifs) and uses them to train propositional models, such as decision trees and support vector machines (SVM). We use the SCOP database to perform our experiments by evaluating protein recognition within the same superfamily. Our results show that our methodology when using SVM performs significantly better than some of the state of the art methods, and comparable to other. However, our method provides a comprehensible set of logical rules that can help to understand what determines a protein function. The strategy of selecting only the most frequent patterns is effective for the remote homology detection. This is possible through a suitable first-order logical representation of homologous properties, and through a set of frequent patterns, found by an ILP system, that summarizes essential features of protein functions.

  5. mpMoRFsDB: a database of molecular recognition features in membrane proteins.

    PubMed

    Gypas, Foivos; Tsaousis, Georgios N; Hamodrakas, Stavros J

    2013-10-01

    Molecular recognition features (MoRFs) are small, intrinsically disordered regions in proteins that undergo a disorder-to-order transition on binding to their partners. MoRFs are involved in protein-protein interactions and may function as the initial step in molecular recognition. The aim of this work was to collect, organize and store all membrane proteins that contain MoRFs. Membrane proteins constitute ∼30% of fully sequenced proteomes and are responsible for a wide variety of cellular functions. MoRFs were classified according to their secondary structure, after interacting with their partners. We identified MoRFs in transmembrane and peripheral membrane proteins. The position of transmembrane protein MoRFs was determined in relation to a protein's topology. All information was stored in a publicly available mySQL database with a user-friendly web interface. A Jmol applet is integrated for visualization of the structures. mpMoRFsDB provides valuable information related to disorder-based protein-protein interactions in membrane proteins. http://bioinformatics.biol.uoa.gr/mpMoRFsDB

  6. CoSMoS: Conserved Sequence Motif Search in the proteome

    PubMed Central

    Liu, Xiao I; Korde, Neeraj; Jakob, Ursula; Leichert, Lars I

    2006-01-01

    Background With the ever-increasing number of gene sequences in the public databases, generating and analyzing multiple sequence alignments becomes increasingly time consuming. Nevertheless it is a task performed on a regular basis by researchers in many labs. Results We have now created a database called CoSMoS to find the occurrences and at the same time evaluate the significance of sequence motifs and amino acids encoded in the whole genome of the model organism Escherichia coli K12. We provide a precomputed set of multiple sequence alignments for each individual E. coli protein with all of its homologues in the RefSeq database. The alignments themselves, information about the occurrence of sequence motifs together with information on the conservation of each of the more than 1.3 million amino acids encoded in the E. coli genome can be accessed via the web interface of CoSMoS. Conclusion CoSMoS is a valuable tool to identify highly conserved sequence motifs, to find regions suitable for mutational studies in functional analyses and to predict important structural features in E. coli proteins. PMID:16433915

  7. Cloning and sequence analysis of a full-length cDNA of SmPP1cb encoding turbot protein phosphatase 1 beta catalytic subunit

    NASA Astrophysics Data System (ADS)

    Qi, Fei; Guo, Huarong; Wang, Jian

    2008-02-01

    Reversible protein phosphorylation, catalyzed by protein kinases and phosphatases, is an important and versatile mechanism by which eukaryotic cells regulate almost all the signaling processes. Protein phosphatase 1 (PP1) is the first and well-characterized member of the protein serine/threonine phosphatase family. In the present study, a full-length cDNA encoding the beta isoform of the catalytic subunit of protein phosphatase 1(PP1cb), was for the first time isolated and sequenced from the skin tissue of flatfish turbot Scophthalmus maximus, designated SmPP1cb, by the rapid amplification of cDNA ends (RACE) technique. The cDNA sequence of SmPP1cb we obtained contains a 984 bp open reading frame (ORF), flanked by a complete 39 bp 5' untranslated region and 462 bp 3' untranslated region. The ORF encodes a putative 327 amino acid protein, and the N-terminal section of this protein is highly acidic, Met-Ala-Glu-Gly-Glu-Leu-Asp-Val-Asp, a common feature for PP1 catalytic subunit but absent in protein phosphatase 2B (PP2B). And its calculated molecular mass is 37 193 Da and pI 5.8. Sequence analysis indicated that, SmPP1cb is extremely conserved in both amino acid and nucleotide acid levels compared with the PP1cb of other vertebrates and invertebrates, and its Kozak motif contained in the 5'UTR around ATG start codon is GXXAXXGXX ATGG, which is different from mammalian in two positions A-6 and G-3, indicating the possibility of different initiation of translation in turbot, and also the 3'UTR of SmPP1cb is highly diverse in the sequence similarity and length compared with other animals, especially zebrafish. The cloning and sequencing of SmPP1cb gene lays a good foundation for the future work on the biological functions of PP1 in the flatfish turbot.

  8. [Advance on genome research of Yersinia pestis bacteriophage].

    PubMed

    Tan, H L; Wang, P; Li, W

    2017-04-10

    Completion of the genome sequences on Yersinia pestis bacteriophage offered unprecedented opportunity for researchers to carry out related genomic studies. This review was based on the genomic sequences and provided a genomic perspective in describing the essential features of genome on Yersinia pestis bacteriophage. Based on the comparative genomics, genetic evolutionary relationship was discussed. Description of functions from the gene prediction and protein annotation provided evidence for further related studies.

  9. A Bioinformatic Strategy for the Detection, Classification and Analysis of Bacterial Autotransporters

    PubMed Central

    Celik, Nermin; Webb, Chaille T.; Leyton, Denisse L.; Holt, Kathryn E.; Heinz, Eva; Gorrell, Rebecca; Kwok, Terry; Naderer, Thomas; Strugnell, Richard A.; Speed, Terence P.; Teasdale, Rohan D.; Likić, Vladimir A.; Lithgow, Trevor

    2012-01-01

    Autotransporters are secreted proteins that are assembled into the outer membrane of bacterial cells. The passenger domains of autotransporters are crucial for bacterial pathogenesis, with some remaining attached to the bacterial surface while others are released by proteolysis. An enigma remains as to whether autotransporters should be considered a class of secretion system, or simply a class of substrate with peculiar requirements for their secretion. We sought to establish a sensitive search protocol that could identify and characterize diverse autotransporters from bacterial genome sequence data. The new sequence analysis pipeline identified more than 1500 autotransporter sequences from diverse bacteria, including numerous species of Chlamydiales and Fusobacteria as well as all classes of Proteobacteria. Interrogation of the proteins revealed that there are numerous classes of passenger domains beyond the known proteases, adhesins and esterases. In addition the barrel-domain-a characteristic feature of autotransporters-was found to be composed from seven conserved sequence segments that can be arranged in multiple ways in the tertiary structure of the assembled autotransporter. One of these conserved motifs overlays the targeting information required for autotransporters to reach the outer membrane. Another conserved and diagnostic motif maps to the linker region between the passenger domain and barrel-domain, indicating it as an important feature in the assembly of autotransporters. PMID:22905239

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osipiuk, J.; Gornicki, P.; Maj, L.

    The structure of the YlxR protein of unknown function from Streptococcus pneumonia was determined to 1.35 Angstroms. YlxR is expressed from the nusA/infB operon in bacteria and belongs to a small protein family (COG2740) that shares a conserved sequence motif GRGA(Y/W). The family shows no significant amino-acid sequence similarity with other proteins. Three-wavelength diffraction MAD data were collected to 1.7 Angstroms from orthorhombic crystals using synchrotron radiation and the structure was determined using a semi-automated approach. The YlxR structure resembles a two-layer {alpha}/{beta} sandwich with the overall shape of a cylinder and shows no structural homology to proteins of knownmore » structure. Structural analysis revealed that the YlxR structure represents a new protein fold that belongs to the {alpha}-{beta} plait superfamily. The distribution of the electrostatic surface potential shows a large positively charged patch on one side of the protein, a feature often found in nucleic acid-binding proteins. Three sulfate ions bind to this positively charged surface. Analysis of potential binding sites uncovered several substantial clefts, with the largest spanning 3/4 of the protein. A similar distribution of binding sites and a large sharply bent cleft are observed in RNA-binding proteins that are unrelated in sequence and structure. It is proposed that YlxR is an RNA-binding protein.« less

  11. Streptococcus pneumonia YlxR at 1.35 A shows a putative new fold.

    PubMed

    Osipiuk, J; Górnicki, P; Maj, L; Dementieva, I; Laskowski, R; Joachimiak, A

    2001-11-01

    The structure of the YlxR protein of unknown function from Streptococcus pneumonia was determined to 1.35 A. YlxR is expressed from the nusA/infB operon in bacteria and belongs to a small protein family (COG2740) that shares a conserved sequence motif GRGA(Y/W). The family shows no significant amino-acid sequence similarity with other proteins. Three-wavelength diffraction MAD data were collected to 1.7 A from orthorhombic crystals using synchrotron radiation and the structure was determined using a semi-automated approach. The YlxR structure resembles a two-layer alpha/beta sandwich with the overall shape of a cylinder and shows no structural homology to proteins of known structure. Structural analysis revealed that the YlxR structure represents a new protein fold that belongs to the alpha-beta plait superfamily. The distribution of the electrostatic surface potential shows a large positively charged patch on one side of the protein, a feature often found in nucleic acid-binding proteins. Three sulfate ions bind to this positively charged surface. Analysis of potential binding sites uncovered several substantial clefts, with the largest spanning 3/4 of the protein. A similar distribution of binding sites and a large sharply bent cleft are observed in RNA-binding proteins that are unrelated in sequence and structure. It is proposed that YlxR is an RNA-binding protein.

  12. Predicting protein-binding regions in RNA using nucleotide profiles and compositions.

    PubMed

    Choi, Daesik; Park, Byungkyu; Chae, Hanju; Lee, Wook; Han, Kyungsook

    2017-03-14

    Motivated by the increased amount of data on protein-RNA interactions and the availability of complete genome sequences of several organisms, many computational methods have been proposed to predict binding sites in protein-RNA interactions. However, most computational methods are limited to finding RNA-binding sites in proteins instead of protein-binding sites in RNAs. Predicting protein-binding sites in RNA is more challenging than predicting RNA-binding sites in proteins. Recent computational methods for finding protein-binding sites in RNAs have several drawbacks for practical use. We developed a new support vector machine (SVM) model for predicting protein-binding regions in mRNA sequences. The model uses sequence profiles constructed from log-odds scores of mono- and di-nucleotides and nucleotide compositions. The model was evaluated by standard 10-fold cross validation, leave-one-protein-out (LOPO) cross validation and independent testing. Since actual mRNA sequences have more non-binding regions than protein-binding regions, we tested the model on several datasets with different ratios of protein-binding regions to non-binding regions. The best performance of the model was obtained in a balanced dataset of positive and negative instances. 10-fold cross validation with a balanced dataset achieved a sensitivity of 91.6%, a specificity of 92.4%, an accuracy of 92.0%, a positive predictive value (PPV) of 91.7%, a negative predictive value (NPV) of 92.3% and a Matthews correlation coefficient (MCC) of 0.840. LOPO cross validation showed a lower performance than the 10-fold cross validation, but the performance remains high (87.6% accuracy and 0.752 MCC). In testing the model on independent datasets, it achieved an accuracy of 82.2% and an MCC of 0.656. Testing of our model and other state-of-the-art methods on a same dataset showed that our model is better than the others. Sequence profiles of log-odds scores of mono- and di-nucleotides were much more powerful features than nucleotide compositions in finding protein-binding regions in RNA sequences. But, a slight performance gain was obtained when using the sequence profiles along with nucleotide compositions. These are preliminary results of ongoing research, but demonstrate the potential of our approach as a powerful predictor of protein-binding regions in RNA. The program and supporting data are available at http://bclab.inha.ac.kr/RBPbinding .

  13. Dehydration-induced tps gene transcripts from an anhydrobiotic nematode contain novel spliced leaders and encode atypical GT-20 family proteins.

    PubMed

    Goyal, K; Browne, J A; Burnell, A M; Tunnacliffe, A

    2005-06-01

    Accumulation of the non-reducing disaccharide trehalose is associated with desiccation tolerance during anhydrobiosis in a number of invertebrates, but there is little information on trehalose biosynthetic genes in these organisms. We have identified two trehalose-6-phosphate synthase (tps) genes in the anhydrobiotic nematode Aphelenchus avenae and determined full length cDNA sequences for both; for comparison, full length tps cDNAs from the model nematode, Caenorhabditis elegans, have also been obtained. The A. avenae genes encode very similar proteins containing the catalytic domain characteristic of the GT-20 family of glycosyltransferases and are most similar to tps-2 of C. elegans; no evidence was found for a gene in A. avenae corresponding to Ce-tps-1. Analysis of A. avenae tps cDNAs revealed several features of interest, including alternative trans-splicing of spliced leader sequences in Aav-tps-1, and four different, novel SL1-related trans-spliced leaders, which were different to the canonical SL1 sequence found in all other nematodes studied. The latter observation suggests that A. avenae does not comply with the strict evolutionary conservation of SL1 sequences observed in other species. Unusual features were also noted in predicted nematode TPS proteins, which distinguish them from homologues in other higher eukaryotes (plants and insects) and in micro-organisms. Phylogenetic analysis confirmed their membership of the GT-20 glycosyltransferase family, but indicated an accelerated rate of molecular evolution. Furthermore, nematode TPS proteins possess N- and C-terminal domains, which are unrelated to those of other eukaryotes: nematode C-terminal domains, for example, do not contain trehalose-6-phosphate phosphatase-like sequences, as seen in plant and insect homologues. During onset of anhydrobiosis, both tps genes in A. avenae are upregulated, but exposure to cold or increased osmolarity also results in gene induction, although to a lesser extent. Trehalose seems likely therefore to play a role in a number of stress responses in nematodes.

  14. An Atlas of Peroxiredoxins Created Using an Active Site Profile-Based Approach to Functionally Relevant Clustering of Proteins.

    PubMed

    Harper, Angela F; Leuthaeuser, Janelle B; Babbitt, Patricia C; Morris, John H; Ferrin, Thomas E; Poole, Leslie B; Fetrow, Jacquelyn S

    2017-02-01

    Peroxiredoxins (Prxs or Prdxs) are a large protein superfamily of antioxidant enzymes that rapidly detoxify damaging peroxides and/or affect signal transduction and, thus, have roles in proliferation, differentiation, and apoptosis. Prx superfamily members are widespread across phylogeny and multiple methods have been developed to classify them. Here we present an updated atlas of the Prx superfamily identified using a novel method called MISST (Multi-level Iterative Sequence Searching Technique). MISST is an iterative search process developed to be both agglomerative, to add sequences containing similar functional site features, and divisive, to split groups when functional site features suggest distinct functionally-relevant clusters. Superfamily members need not be identified initially-MISST begins with a minimal representative set of known structures and searches GenBank iteratively. Further, the method's novelty lies in the manner in which isofunctional groups are selected; rather than use a single or shifting threshold to identify clusters, the groups are deemed isofunctional when they pass a self-identification criterion, such that the group identifies itself and nothing else in a search of GenBank. The method was preliminarily validated on the Prxs, as the Prxs presented challenges of both agglomeration and division. For example, previous sequence analysis clustered the Prx functional families Prx1 and Prx6 into one group. Subsequent expert analysis clearly identified Prx6 as a distinct functionally relevant group. The MISST process distinguishes these two closely related, though functionally distinct, families. Through MISST search iterations, over 38,000 Prx sequences were identified, which the method divided into six isofunctional clusters, consistent with previous expert analysis. The results represent the most complete computational functional analysis of proteins comprising the Prx superfamily. The feasibility of this novel method is demonstrated by the Prx superfamily results, laying the foundation for potential functionally relevant clustering of the universe of protein sequences.

  15. An Atlas of Peroxiredoxins Created Using an Active Site Profile-Based Approach to Functionally Relevant Clustering of Proteins

    PubMed Central

    Babbitt, Patricia C.; Ferrin, Thomas E.

    2017-01-01

    Peroxiredoxins (Prxs or Prdxs) are a large protein superfamily of antioxidant enzymes that rapidly detoxify damaging peroxides and/or affect signal transduction and, thus, have roles in proliferation, differentiation, and apoptosis. Prx superfamily members are widespread across phylogeny and multiple methods have been developed to classify them. Here we present an updated atlas of the Prx superfamily identified using a novel method called MISST (Multi-level Iterative Sequence Searching Technique). MISST is an iterative search process developed to be both agglomerative, to add sequences containing similar functional site features, and divisive, to split groups when functional site features suggest distinct functionally-relevant clusters. Superfamily members need not be identified initially—MISST begins with a minimal representative set of known structures and searches GenBank iteratively. Further, the method’s novelty lies in the manner in which isofunctional groups are selected; rather than use a single or shifting threshold to identify clusters, the groups are deemed isofunctional when they pass a self-identification criterion, such that the group identifies itself and nothing else in a search of GenBank. The method was preliminarily validated on the Prxs, as the Prxs presented challenges of both agglomeration and division. For example, previous sequence analysis clustered the Prx functional families Prx1 and Prx6 into one group. Subsequent expert analysis clearly identified Prx6 as a distinct functionally relevant group. The MISST process distinguishes these two closely related, though functionally distinct, families. Through MISST search iterations, over 38,000 Prx sequences were identified, which the method divided into six isofunctional clusters, consistent with previous expert analysis. The results represent the most complete computational functional analysis of proteins comprising the Prx superfamily. The feasibility of this novel method is demonstrated by the Prx superfamily results, laying the foundation for potential functionally relevant clustering of the universe of protein sequences. PMID:28187133

  16. Protein binding hot spots prediction from sequence only by a new ensemble learning method.

    PubMed

    Hu, Shan-Shan; Chen, Peng; Wang, Bing; Li, Jinyan

    2017-10-01

    Hot spots are interfacial core areas of binding proteins, which have been applied as targets in drug design. Experimental methods are costly in both time and expense to locate hot spot areas. Recently, in-silicon computational methods have been widely used for hot spot prediction through sequence or structure characterization. As the structural information of proteins is not always solved, and thus hot spot identification from amino acid sequences only is more useful for real-life applications. This work proposes a new sequence-based model that combines physicochemical features with the relative accessible surface area of amino acid sequences for hot spot prediction. The model consists of 83 classifiers involving the IBk (Instance-based k means) algorithm, where instances are encoded by important properties extracted from a total of 544 properties in the AAindex1 (Amino Acid Index) database. Then top-performance classifiers are selected to form an ensemble by a majority voting technique. The ensemble classifier outperforms the state-of-the-art computational methods, yielding an F1 score of 0.80 on the benchmark binding interface database (BID) test set. http://www2.ahu.edu.cn/pchen/web/HotspotEC.htm .

  17. Isolation and characterization of a cDNA clone for the complete protein coding region of the delta subunit of the mouse acetylcholine receptor.

    PubMed Central

    LaPolla, R J; Mayne, K M; Davidson, N

    1984-01-01

    A mouse cDNA clone has been isolated that contains the complete coding region of a protein highly homologous to the delta subunit of the Torpedo acetylcholine receptor (AcChoR). The cDNA library was constructed in the vector lambda 10 from membrane-associated poly(A)+ RNA from BC3H-1 mouse cells. Surprisingly, the delta clone was selected by hybridization with cDNA encoding the gamma subunit of the Torpedo AcChoR. The nucleotide sequence of the mouse cDNA clone contains an open reading frame of 520 amino acids. This amino acid sequence exhibits 59% and 50% sequence homology to the Torpedo AcChoR delta and gamma subunits, respectively. However, the mouse nucleotide sequence has several stretches of high homology with the Torpedo gamma subunit cDNA, but not with delta. The mouse protein has the same general structural features as do the Torpedo subunits. It is encoded by a 3.3-kilobase mRNA. There is probably only one, but at most two, chromosomal genes coding for this or closely related sequences. Images PMID:6096870

  18. Predicting Essential Genes and Proteins Based on Machine Learning and Network Topological Features: A Comprehensive Review

    PubMed Central

    Zhang, Xue; Acencio, Marcio Luis; Lemke, Ney

    2016-01-01

    Essential proteins/genes are indispensable to the survival or reproduction of an organism, and the deletion of such essential proteins will result in lethality or infertility. The identification of essential genes is very important not only for understanding the minimal requirements for survival of an organism, but also for finding human disease genes and new drug targets. Experimental methods for identifying essential genes are costly, time-consuming, and laborious. With the accumulation of sequenced genomes data and high-throughput experimental data, many computational methods for identifying essential proteins are proposed, which are useful complements to experimental methods. In this review, we show the state-of-the-art methods for identifying essential genes and proteins based on machine learning and network topological features, point out the progress and limitations of current methods, and discuss the challenges and directions for further research. PMID:27014079

  19. Enabling systematic interrogation of protein-protein interactions in live cells with a versatile ultra-high-throughput biosensor platform | Office of Cancer Genomics

    Cancer.gov

    The vast datasets generated by next generation gene sequencing and expression profiling have transformed biological and translational research. However, technologies to produce large-scale functional genomics datasets, such as high-throughput detection of protein-protein interactions (PPIs), are still in early development. While a number of powerful technologies have been employed to detect PPIs, a singular PPI biosensor platform featured with both high sensitivity and robustness in a mammalian cell environment remains to be established.

  20. HSP70 from the Antarctic sea urchin Sterechinus neumayeri: molecular characterization and expression in response to heat stress.

    PubMed

    González-Aravena, Marcelo; Calfio, Camila; Mercado, Luis; Morales-Lange, Byron; Bethke, Jorn; De Lorgeril, Julien; Cárdenas, César A

    2018-03-27

    Heat stress proteins are implicated in stabilizing and refolding denatured proteins in vertebrates and invertebrates. Members of the Hsp70 gene family comprise the cognate heat shock protein (Hsc70) and inducible heat shock protein (Hsp70). However, the cDNA sequence and the expression of Hsp70 in the Antarctic sea urchin are unknown. We amplified and cloned a transcript sequence of 1991 bp from the Antarctic sea urchin Sterechinus neumayeri, experimentally exposed to heat stress (5  and 10 °C for 1, 24 and 48 h). RACE-PCR and qPCR were employed to determine Hsp70 gene expression, while western blot and ELISA methods were used to determine protein expression. The sequence obtained from S. neumayeri showed high identity with Hsp70 members. Several Hsp70 family features were identified in the deduced amino acid sequence and they indicate that the isolated Hsp70 is related to the cognate heat shock protein type. The corresponding 70 kDa protein, called Sn-Hsp70, was immune detected in the coelomocytes and the digestive tract of S. neumayeri using a monospecific polyclonal antibody. We showed that S. neumayeri do not respond to acute heat stress by up-regulation of Sn-Hsp70 at transcript and protein level. Furthermore, the Sn-Hsp70 protein expression was not induced in the digestive tract. Our results provide the first molecular evidence that Sn-Hsp70 is expressed constitutively and is non-induced by heat stress in S. neumayeri.

  1. A de novo redesign of the WW domain

    PubMed Central

    Kraemer-Pecore, Christina M.; Lecomte, Juliette T.J.; Desjarlais, John R.

    2003-01-01

    We have used a sequence prediction algorithm and a novel sampling method to design protein sequences for the WW domain, a small β-sheet motif. The procedure, referred to as SPANS, designs sequences to be compatible with an ensemble of closely related polypeptide backbones, mimicking the inherent flexibility of proteins. Two designed sequences (termed SPANS-WW1 and SPANS-WW2), using only naturally occurring l-amino acids, were selected for study and the corresponding polypeptides were prepared in Escherichia coli. Circular dichroism data suggested that both purified polypeptides adopted secondary structure features related to those of the target without the aid of disulfide bridges or bound cofactors. The structure exhibited by SPANS-WW2 melted cooperatively by raising the temperature of the solution. Further analysis of this polypeptide by proton nuclear magnetic resonance spectroscopy demonstrated that at 5°C, it folds into a structure closely resembling a natural WW domain. This achievement constitutes one of a small number of successful de novo protein designs through fully automated computational methods and highlights the feasibility of including backbone flexibility in the design strategy. PMID:14500877

  2. A de novo redesign of the WW domain.

    PubMed

    Kraemer-Pecore, Christina M; Lecomte, Juliette T J; Desjarlais, John R

    2003-10-01

    We have used a sequence prediction algorithm and a novel sampling method to design protein sequences for the WW domain, a small beta-sheet motif. The procedure, referred to as SPANS, designs sequences to be compatible with an ensemble of closely related polypeptide backbones, mimicking the inherent flexibility of proteins. Two designed sequences (termed SPANS-WW1 and SPANS-WW2), using only naturally occurring L-amino acids, were selected for study and the corresponding polypeptides were prepared in Escherichia coli. Circular dichroism data suggested that both purified polypeptides adopted secondary structure features related to those of the target without the aid of disulfide bridges or bound cofactors. The structure exhibited by SPANS-WW2 melted cooperatively by raising the temperature of the solution. Further analysis of this polypeptide by proton nuclear magnetic resonance spectroscopy demonstrated that at 5 degrees C, it folds into a structure closely resembling a natural WW domain. This achievement constitutes one of a small number of successful de novo protein designs through fully automated computational methods and highlights the feasibility of including backbone flexibility in the design strategy.

  3. Sequence-Specific Recognition of DNA by Proteins: Binding Motifs Discovered Using a Novel Statistical/Computational Analysis

    PubMed Central

    Jakubec, David; Laskowski, Roman A.; Vondrasek, Jiri

    2016-01-01

    Decades of intensive experimental studies of the recognition of DNA sequences by proteins have provided us with a view of a diverse and complicated world in which few to no features are shared between individual DNA-binding protein families. The originally conceived direct readout of DNA residue sequences by amino acid side chains offers very limited capacity for sequence recognition, while the effects of the dynamic properties of the interacting partners remain difficult to quantify and almost impossible to generalise. In this work we investigated the energetic characteristics of all DNA residue—amino acid side chain combinations in the conformations found at the interaction interface in a very large set of protein—DNA complexes by the means of empirical potential-based calculations. General specificity-defining criteria were derived and utilised to look beyond the binding motifs considered in previous studies. Linking energetic favourability to the observed geometrical preferences, our approach reveals several additional amino acid motifs which can distinguish between individual DNA bases. Our results remained valid in environments with various dielectric properties. PMID:27384774

  4. Protein denaturation in vacuo: intrinsic unfolding pathways associated with the native tertiary structure of lysozyme

    NASA Astrophysics Data System (ADS)

    Arteca, Gustavo A.; Tapia, O.

    Using computer-simulated molecular dynamics, we study the effect of sequence mutation on the unfolding mechanism of a native fold. The system considered is the native fold of hen egg-white lysozyme, exposed to centrifugal unfolding in vacuo. This unfolding bias elicits configurational transitions that imitate the behaviour of anhydrous proteins diffusing after electrospraying from neutral-pH solutions. By changing the sequences threaded onto the native fold of lysozyme, we probe the role of disulfide bridges and the effect of a global mutation. We find that the initial denaturing steps share common characteristics for the tested sequences. Recurrent features are: (i) the presence of dumbbell conformers with significant residual secondary structure, (ii) the ubiquitous formation of hairpins and two-stranded β-sheets regardless of disulfide bridges, and (iii) an unfolding pattern where the reduction in folding complexity is highly correlated with the decrease in chain compactness. These findings appear to be intrinsic to the shape of the native fold, suggesting that similar unfolding pathways may be accessible to many protein sequences.

  5. Predicting the binding preference of transcription factors to individual DNA k-mers.

    PubMed

    Alleyne, Trevis M; Peña-Castillo, Lourdes; Badis, Gwenael; Talukder, Shaheynoor; Berger, Michael F; Gehrke, Andrew R; Philippakis, Anthony A; Bulyk, Martha L; Morris, Quaid D; Hughes, Timothy R

    2009-04-15

    Recognition of specific DNA sequences is a central mechanism by which transcription factors (TFs) control gene expression. Many TF-binding preferences, however, are unknown or poorly characterized, in part due to the difficulty associated with determining their specificity experimentally, and an incomplete understanding of the mechanisms governing sequence specificity. New techniques that estimate the affinity of TFs to all possible k-mers provide a new opportunity to study DNA-protein interaction mechanisms, and may facilitate inference of binding preferences for members of a given TF family when such information is available for other family members. We employed a new dataset consisting of the relative preferences of mouse homeodomains for all eight-base DNA sequences in order to ask how well we can predict the binding profiles of homeodomains when only their protein sequences are given. We evaluated a panel of standard statistical inference techniques, as well as variations of the protein features considered. Nearest neighbour among functionally important residues emerged among the most effective methods. Our results underscore the complexity of TF-DNA recognition, and suggest a rational approach for future analyses of TF families.

  6. Kinact: a computational approach for predicting activating missense mutations in protein kinases.

    PubMed

    Rodrigues, Carlos H M; Ascher, David B; Pires, Douglas E V

    2018-05-21

    Protein phosphorylation is tightly regulated due to its vital role in many cellular processes. While gain of function mutations leading to constitutive activation of protein kinases are known to be driver events of many cancers, the identification of these mutations has proven challenging. Here we present Kinact, a novel machine learning approach for predicting kinase activating missense mutations using information from sequence and structure. By adapting our graph-based signatures, Kinact represents both structural and sequence information, which are used as evidence to train predictive models. We show the combination of structural and sequence features significantly improved the overall accuracy compared to considering either primary or tertiary structure alone, highlighting their complementarity. Kinact achieved a precision of 87% and 94% and Area Under ROC Curve of 0.89 and 0.92 on 10-fold cross-validation, and on blind tests, respectively, outperforming well established tools (P < 0.01). We further show that Kinact performs equally well on homology models built using templates with sequence identity as low as 33%. Kinact is freely available as a user-friendly web server at http://biosig.unimelb.edu.au/kinact/.

  7. New molecular features of cowpea bean (Vigna unguiculata, l. Walp) β-vignin.

    PubMed

    de Souza Ferreira, Ederlan; Capraro, Jessica; Sessa, Fabio; Magni, Chiara; Demonte, Aureluce; Consonni, Alessandro; Augusto Neves, Valdir; Maffud Cilli, Eduardo; Duranti, Marcello; Scarafoni, Alessio

    2018-02-01

    Cowpea seed β-vignin, a vicilin-like globulin, proved to exert various health favourable effects, including blood cholesterol reduction in animal models. The need of a simple scalable enrichment procedure for further studies for tailored applications of this seed protein is crucial. A chromatography-independent fractionation method allowing to obtain a protein preparation with a high degree of homogeneity was used. Further purification was pursued to deep the molecular characterisation of β-vignin. The results showed: (i) differing glycosylation patterns of the two constituent polypeptides, in agreement with amino acid sequence features; (ii) the seed accumulation of a gene product never identified before; (iii) metal binding capacity of native protein, a property observed only in few other legume seed vicilins.

  8. Centromere-Like Regions in the Budding Yeast Genome

    PubMed Central

    Lefrançois, Philippe; Auerbach, Raymond K.; Yellman, Christopher M.; Roeder, G. Shirleen; Snyder, Michael

    2013-01-01

    Accurate chromosome segregation requires centromeres (CENs), the DNA sequences where kinetochores form, to attach chromosomes to microtubules. In contrast to most eukaryotes, which have broad centromeres, Saccharomyces cerevisiae possesses sequence-defined point CENs. Chromatin immunoprecipitation followed by sequencing (ChIP–Seq) reveals colocalization of four kinetochore proteins at novel, discrete, non-centromeric regions, especially when levels of the centromeric histone H3 variant, Cse4 (a.k.a. CENP-A or CenH3), are elevated. These regions of overlapping protein binding enhance the segregation of plasmids and chromosomes and have thus been termed Centromere-Like Regions (CLRs). CLRs form in close proximity to S. cerevisiae CENs and share characteristics typical of both point and regional CENs. CLR sequences are conserved among related budding yeasts. Many genomic features characteristic of CLRs are also associated with these conserved homologous sequences from closely related budding yeasts. These studies provide general and important insights into the origin and evolution of centromeres. PMID:23349633

  9. A comparative study of family-specific protein-ligand complex affinity prediction based on random forest approach

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Guo, Yanzhi; Kuang, Qifan; Pu, Xuemei; Ji, Yue; Zhang, Zhihang; Li, Menglong

    2015-04-01

    The assessment of binding affinity between ligands and the target proteins plays an essential role in drug discovery and design process. As an alternative to widely used scoring approaches, machine learning methods have also been proposed for fast prediction of the binding affinity with promising results, but most of them were developed as all-purpose models despite of the specific functions of different protein families, since proteins from different function families always have different structures and physicochemical features. In this study, we proposed a random forest method to predict the protein-ligand binding affinity based on a comprehensive feature set covering protein sequence, binding pocket, ligand structure and intermolecular interaction. Feature processing and compression was respectively implemented for different protein family datasets, which indicates that different features contribute to different models, so individual representation for each protein family is necessary. Three family-specific models were constructed for three important protein target families of HIV-1 protease, trypsin and carbonic anhydrase respectively. As a comparison, two generic models including diverse protein families were also built. The evaluation results show that models on family-specific datasets have the superior performance to those on the generic datasets and the Pearson and Spearman correlation coefficients ( R p and Rs) on the test sets are 0.740, 0.874, 0.735 and 0.697, 0.853, 0.723 for HIV-1 protease, trypsin and carbonic anhydrase respectively. Comparisons with the other methods further demonstrate that individual representation and model construction for each protein family is a more reasonable way in predicting the affinity of one particular protein family.

  10. ORION: a web server for protein fold recognition and structure prediction using evolutionary hybrid profiles

    PubMed Central

    Ghouzam, Yassine; Postic, Guillaume; Guerin, Pierre-Edouard; de Brevern, Alexandre G.; Gelly, Jean-Christophe

    2016-01-01

    Protein structure prediction based on comparative modeling is the most efficient way to produce structural models when it can be performed. ORION is a dedicated webserver based on a new strategy that performs this task. The identification by ORION of suitable templates is performed using an original profile-profile approach that combines sequence and structure evolution information. Structure evolution information is encoded into profiles using structural features, such as solvent accessibility and local conformation —with Protein Blocks—, which give an accurate description of the local protein structure. ORION has recently been improved, increasing by 5% the quality of its results. The ORION web server accepts a single protein sequence as input and searches homologous protein structures within minutes. Various databases such as PDB, SCOP and HOMSTRAD can be mined to find an appropriate structural template. For the modeling step, a protein 3D structure can be directly obtained from the selected template by MODELLER and displayed with global and local quality model estimation measures. The sequence and the predicted structure of 4 examples from the CAMEO server and a recent CASP11 target from the ‘Hard’ category (T0818-D1) are shown as pertinent examples. Our web server is accessible at http://www.dsimb.inserm.fr/ORION/. PMID:27319297

  11. ORION: a web server for protein fold recognition and structure prediction using evolutionary hybrid profiles.

    PubMed

    Ghouzam, Yassine; Postic, Guillaume; Guerin, Pierre-Edouard; de Brevern, Alexandre G; Gelly, Jean-Christophe

    2016-06-20

    Protein structure prediction based on comparative modeling is the most efficient way to produce structural models when it can be performed. ORION is a dedicated webserver based on a new strategy that performs this task. The identification by ORION of suitable templates is performed using an original profile-profile approach that combines sequence and structure evolution information. Structure evolution information is encoded into profiles using structural features, such as solvent accessibility and local conformation -with Protein Blocks-, which give an accurate description of the local protein structure. ORION has recently been improved, increasing by 5% the quality of its results. The ORION web server accepts a single protein sequence as input and searches homologous protein structures within minutes. Various databases such as PDB, SCOP and HOMSTRAD can be mined to find an appropriate structural template. For the modeling step, a protein 3D structure can be directly obtained from the selected template by MODELLER and displayed with global and local quality model estimation measures. The sequence and the predicted structure of 4 examples from the CAMEO server and a recent CASP11 target from the 'Hard' category (T0818-D1) are shown as pertinent examples. Our web server is accessible at http://www.dsimb.inserm.fr/ORION/.

  12. Enhanced Regulatory Sequence Prediction Using Gapped k-mer Features

    PubMed Central

    Mohammad-Noori, Morteza; Beer, Michael A.

    2014-01-01

    Abstract Oligomers of length k, or k-mers, are convenient and widely used features for modeling the properties and functions of DNA and protein sequences. However, k-mers suffer from the inherent limitation that if the parameter k is increased to resolve longer features, the probability of observing any specific k-mer becomes very small, and k-mer counts approach a binary variable, with most k-mers absent and a few present once. Thus, any statistical learning approach using k-mers as features becomes susceptible to noisy training set k-mer frequencies once k becomes large. To address this problem, we introduce alternative feature sets using gapped k-mers, a new classifier, gkm-SVM, and a general method for robust estimation of k-mer frequencies. To make the method applicable to large-scale genome wide applications, we develop an efficient tree data structure for computing the kernel matrix. We show that compared to our original kmer-SVM and alternative approaches, our gkm-SVM predicts functional genomic regulatory elements and tissue specific enhancers with significantly improved accuracy, increasing the precision by up to a factor of two. We then show that gkm-SVM consistently outperforms kmer-SVM on human ENCODE ChIP-seq datasets, and further demonstrate the general utility of our method using a Naïve-Bayes classifier. Although developed for regulatory sequence analysis, these methods can be applied to any sequence classification problem. PMID:25033408

  13. Enhanced regulatory sequence prediction using gapped k-mer features.

    PubMed

    Ghandi, Mahmoud; Lee, Dongwon; Mohammad-Noori, Morteza; Beer, Michael A

    2014-07-01

    Oligomers of length k, or k-mers, are convenient and widely used features for modeling the properties and functions of DNA and protein sequences. However, k-mers suffer from the inherent limitation that if the parameter k is increased to resolve longer features, the probability of observing any specific k-mer becomes very small, and k-mer counts approach a binary variable, with most k-mers absent and a few present once. Thus, any statistical learning approach using k-mers as features becomes susceptible to noisy training set k-mer frequencies once k becomes large. To address this problem, we introduce alternative feature sets using gapped k-mers, a new classifier, gkm-SVM, and a general method for robust estimation of k-mer frequencies. To make the method applicable to large-scale genome wide applications, we develop an efficient tree data structure for computing the kernel matrix. We show that compared to our original kmer-SVM and alternative approaches, our gkm-SVM predicts functional genomic regulatory elements and tissue specific enhancers with significantly improved accuracy, increasing the precision by up to a factor of two. We then show that gkm-SVM consistently outperforms kmer-SVM on human ENCODE ChIP-seq datasets, and further demonstrate the general utility of our method using a Naïve-Bayes classifier. Although developed for regulatory sequence analysis, these methods can be applied to any sequence classification problem.

  14. Evolution of bacterial-like phosphoprotein phosphatases in photosynthetic eukaryotes features ancestral mitochondrial or archaeal origin and possible lateral gene transfer.

    PubMed

    Uhrig, R Glen; Kerk, David; Moorhead, Greg B

    2013-12-01

    Protein phosphorylation is a reversible regulatory process catalyzed by the opposing reactions of protein kinases and phosphatases, which are central to the proper functioning of the cell. Dysfunction of members in either the protein kinase or phosphatase family can have wide-ranging deleterious effects in both metazoans and plants alike. Previously, three bacterial-like phosphoprotein phosphatase classes were uncovered in eukaryotes and named according to the bacterial sequences with which they have the greatest similarity: Shewanella-like (SLP), Rhizobiales-like (RLPH), and ApaH-like (ALPH) phosphatases. Utilizing the wealth of data resulting from recently sequenced complete eukaryotic genomes, we conducted database searching by hidden Markov models, multiple sequence alignment, and phylogenetic tree inference with Bayesian and maximum likelihood methods to elucidate the pattern of evolution of eukaryotic bacterial-like phosphoprotein phosphatase sequences, which are predominantly distributed in photosynthetic eukaryotes. We uncovered a pattern of ancestral mitochondrial (SLP and RLPH) or archaeal (ALPH) gene entry into eukaryotes, supplemented by possible instances of lateral gene transfer between bacteria and eukaryotes. In addition to the previously known green algal and plant SLP1 and SLP2 protein forms, a more ancestral third form (SLP3) was found in green algae. Data from in silico subcellular localization predictions revealed class-specific differences in plants likely to result in distinct functions, and for SLP sequences, distinctive and possibly functionally significant differences between plants and nonphotosynthetic eukaryotes. Conserved carboxyl-terminal sequence motifs with class-specific patterns of residue substitutions, most prominent in photosynthetic organisms, raise the possibility of complex interactions with regulatory proteins.

  15. Amyloid β-sheet mimics that antagonize protein aggregation and reduce amyloid toxicity

    NASA Astrophysics Data System (ADS)

    Cheng, Pin-Nan; Liu, Cong; Zhao, Minglei; Eisenberg, David; Nowick, James S.

    2012-11-01

    The amyloid protein aggregation associated with diseases such as Alzheimer's, Parkinson's and type II diabetes (among many others) features a bewildering variety of β-sheet-rich structures in transition from native proteins to ordered oligomers and fibres. The variation in the amino-acid sequences of the β-structures presents a challenge to developing a model system of β-sheets for the study of various amyloid aggregates. Here, we introduce a family of robust β-sheet macrocycles that can serve as a platform to display a variety of heptapeptide sequences from different amyloid proteins. We have tailored these amyloid β-sheet mimics (ABSMs) to antagonize the aggregation of various amyloid proteins, thereby reducing the toxicity of amyloid aggregates. We describe the structures and inhibitory properties of ABSMs containing amyloidogenic peptides from the amyloid-β peptide associated with Alzheimer's disease, β2-microglobulin associated with dialysis-related amyloidosis, α-synuclein associated with Parkinson's disease, islet amyloid polypeptide associated with type II diabetes, human and yeast prion proteins, and Tau, which forms neurofibrillary tangles.

  16. Protein Secondary Structure Prediction Using Deep Convolutional Neural Fields.

    PubMed

    Wang, Sheng; Peng, Jian; Ma, Jianzhu; Xu, Jinbo

    2016-01-11

    Protein secondary structure (SS) prediction is important for studying protein structure and function. When only the sequence (profile) information is used as input feature, currently the best predictors can obtain ~80% Q3 accuracy, which has not been improved in the past decade. Here we present DeepCNF (Deep Convolutional Neural Fields) for protein SS prediction. DeepCNF is a Deep Learning extension of Conditional Neural Fields (CNF), which is an integration of Conditional Random Fields (CRF) and shallow neural networks. DeepCNF can model not only complex sequence-structure relationship by a deep hierarchical architecture, but also interdependency between adjacent SS labels, so it is much more powerful than CNF. Experimental results show that DeepCNF can obtain ~84% Q3 accuracy, ~85% SOV score, and ~72% Q8 accuracy, respectively, on the CASP and CAMEO test proteins, greatly outperforming currently popular predictors. As a general framework, DeepCNF can be used to predict other protein structure properties such as contact number, disorder regions, and solvent accessibility.

  17. Quantitative theory of hydrophobic effect as a driving force of protein structure

    PubMed Central

    Perunov, Nikolay; England, Jeremy L

    2014-01-01

    Various studies suggest that the hydrophobic effect plays a major role in driving the folding of proteins. In the past, however, it has been challenging to translate this understanding into a predictive, quantitative theory of how the full pattern of sequence hydrophobicity in a protein shapes functionally important features of its tertiary structure. Here, we extend and apply such a phenomenological theory of the sequence-structure relationship in globular protein domains, which had previously been applied to the study of allosteric motion. In an effort to optimize parameters for the model, we first analyze the patterns of backbone burial found in single-domain crystal structures, and discover that classic hydrophobicity scales derived from bulk physicochemical properties of amino acids are already nearly optimal for prediction of burial using the model. Subsequently, we apply the model to studying structural fluctuations in proteins and establish a means of identifying ligand-binding and protein–protein interaction sites using this approach. PMID:24408023

  18. POOL server: machine learning application for functional site prediction in proteins.

    PubMed

    Somarowthu, Srinivas; Ondrechen, Mary Jo

    2012-08-01

    We present an automated web server for partial order optimum likelihood (POOL), a machine learning application that combines computed electrostatic and geometric information for high-performance prediction of catalytic residues from 3D structures. Input features consist of THEMATICS electrostatics data and pocket information from ConCavity. THEMATICS measures deviation from typical, sigmoidal titration behavior to identify functionally important residues and ConCavity identifies binding pockets by analyzing the surface geometry of protein structures. Both THEMATICS and ConCavity (structure only) do not require the query protein to have any sequence or structure similarity to other proteins. Hence, POOL is applicable to proteins with novel folds and engineered proteins. As an additional option for cases where sequence homologues are available, users can include evolutionary information from INTREPID for enhanced accuracy in site prediction. The web site is free and open to all users with no login requirements at http://www.pool.neu.edu. m.ondrechen@neu.edu Supplementary data are available at Bioinformatics online.

  19. Protein Secondary Structure Prediction Using Deep Convolutional Neural Fields

    NASA Astrophysics Data System (ADS)

    Wang, Sheng; Peng, Jian; Ma, Jianzhu; Xu, Jinbo

    2016-01-01

    Protein secondary structure (SS) prediction is important for studying protein structure and function. When only the sequence (profile) information is used as input feature, currently the best predictors can obtain ~80% Q3 accuracy, which has not been improved in the past decade. Here we present DeepCNF (Deep Convolutional Neural Fields) for protein SS prediction. DeepCNF is a Deep Learning extension of Conditional Neural Fields (CNF), which is an integration of Conditional Random Fields (CRF) and shallow neural networks. DeepCNF can model not only complex sequence-structure relationship by a deep hierarchical architecture, but also interdependency between adjacent SS labels, so it is much more powerful than CNF. Experimental results show that DeepCNF can obtain ~84% Q3 accuracy, ~85% SOV score, and ~72% Q8 accuracy, respectively, on the CASP and CAMEO test proteins, greatly outperforming currently popular predictors. As a general framework, DeepCNF can be used to predict other protein structure properties such as contact number, disorder regions, and solvent accessibility.

  20. Predicting hot spots in protein interfaces based on protrusion index, pseudo hydrophobicity and electron-ion interaction pseudopotential features

    PubMed Central

    Xia, Junfeng; Yue, Zhenyu; Di, Yunqiang; Zhu, Xiaolei; Zheng, Chun-Hou

    2016-01-01

    The identification of hot spots, a small subset of protein interfaces that accounts for the majority of binding free energy, is becoming more important for the research of drug design and cancer development. Based on our previous methods (APIS and KFC2), here we proposed a novel hot spot prediction method. For each hot spot residue, we firstly constructed a wide variety of 108 sequence, structural, and neighborhood features to characterize potential hot spot residues, including conventional ones and new one (pseudo hydrophobicity) exploited in this study. We then selected 3 top-ranking features that contribute the most in the classification by a two-step feature selection process consisting of minimal-redundancy-maximal-relevance algorithm and an exhaustive search method. We used support vector machines to build our final prediction model. When testing our model on an independent test set, our method showed the highest F1-score of 0.70 and MCC of 0.46 comparing with the existing state-of-the-art hot spot prediction methods. Our results indicate that these features are more effective than the conventional features considered previously, and that the combination of our and traditional features may support the creation of a discriminative feature set for efficient prediction of hot spots in protein interfaces. PMID:26934646

  1. Permanent draft genome sequence of Comamonas testosteroni KF-1

    PubMed Central

    Weiss, Michael; Kesberg, Anna I.; LaButti, Kurt M.; Pitluck, Sam; Bruce, David; Hauser, Loren; Copeland, Alex; Woyke, Tanja; Lowry, Stephen; Lucas, Susan; Land, Miriam; Goodwin, Lynne; Kjelleberg, Staffan; Cook, Alasdair M.; Buhmann, Matthias; Thomas, Torsten; Schleheck, David

    2013-01-01

    Comamonas testosteroni KF-1 is a model organism for the elucidation of the novel biochemical degradation pathways for xenobiotic 4-sulfophenylcarboxylates (SPC) formed during biodegradation of synthetic 4-sulfophenylalkane surfactants (linear alkylbenzenesulfonates, LAS) by bacterial communities. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 6,026,527 bp long chromosome (one sequencing gap) exhibits an average G+C content of 61.79% and is predicted to encode 5,492 protein-coding genes and 114 RNA genes. PMID:23991256

  2. The First Complete Mitochondrial Genome Sequences for Stomatopod Crustaceans: Implications for Phylogeny

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swinstrom, Kirsten; Caldwell, Roy; Fourcade, H. Matthew

    2005-09-07

    We report the first complete mitochondrial genome sequences of stomatopods and compare their features to each other and to those of other crustaceans. Phylogenetic analyses of the concatenated mitochondrial protein-coding sequences were used to explore relationships within the Stomatopoda, within the malacostracan crustaceans, and among crustaceans and insects. Although these analyses support the monophyly of both Malacostraca and, within it, Stomatopoda, it also confirms the view of a paraphyletic Crustacea, with Malacostraca being more closely related to insects than to the branchiopod crustaceans.

  3. Gene Composer: database software for protein construct design, codon engineering, and gene synthesis

    PubMed Central

    Lorimer, Don; Raymond, Amy; Walchli, John; Mixon, Mark; Barrow, Adrienne; Wallace, Ellen; Grice, Rena; Burgin, Alex; Stewart, Lance

    2009-01-01

    Background To improve efficiency in high throughput protein structure determination, we have developed a database software package, Gene Composer, which facilitates the information-rich design of protein constructs and their codon engineered synthetic gene sequences. With its modular workflow design and numerous graphical user interfaces, Gene Composer enables researchers to perform all common bio-informatics steps used in modern structure guided protein engineering and synthetic gene engineering. Results An interactive Alignment Viewer allows the researcher to simultaneously visualize sequence conservation in the context of known protein secondary structure, ligand contacts, water contacts, crystal contacts, B-factors, solvent accessible area, residue property type and several other useful property views. The Construct Design Module enables the facile design of novel protein constructs with altered N- and C-termini, internal insertions or deletions, point mutations, and desired affinity tags. The modifications can be combined and permuted into multiple protein constructs, and then virtually cloned in silico into defined expression vectors. The Gene Design Module uses a protein-to-gene algorithm that automates the back-translation of a protein amino acid sequence into a codon engineered nucleic acid gene sequence according to a selected codon usage table with minimal codon usage threshold, defined G:C% content, and desired sequence features achieved through synonymous codon selection that is optimized for the intended expression system. The gene-to-oligo algorithm of the Gene Design Module plans out all of the required overlapping oligonucleotides and mutagenic primers needed to synthesize the desired gene constructs by PCR, and for physically cloning them into selected vectors by the most popular subcloning strategies. Conclusion We present a complete description of Gene Composer functionality, and an efficient PCR-based synthetic gene assembly procedure with mis-match specific endonuclease error correction in combination with PIPE cloning. In a sister manuscript we present data on how Gene Composer designed genes and protein constructs can result in improved protein production for structural studies. PMID:19383142

  4. Gene composer: database software for protein construct design, codon engineering, and gene synthesis.

    PubMed

    Lorimer, Don; Raymond, Amy; Walchli, John; Mixon, Mark; Barrow, Adrienne; Wallace, Ellen; Grice, Rena; Burgin, Alex; Stewart, Lance

    2009-04-21

    To improve efficiency in high throughput protein structure determination, we have developed a database software package, Gene Composer, which facilitates the information-rich design of protein constructs and their codon engineered synthetic gene sequences. With its modular workflow design and numerous graphical user interfaces, Gene Composer enables researchers to perform all common bio-informatics steps used in modern structure guided protein engineering and synthetic gene engineering. An interactive Alignment Viewer allows the researcher to simultaneously visualize sequence conservation in the context of known protein secondary structure, ligand contacts, water contacts, crystal contacts, B-factors, solvent accessible area, residue property type and several other useful property views. The Construct Design Module enables the facile design of novel protein constructs with altered N- and C-termini, internal insertions or deletions, point mutations, and desired affinity tags. The modifications can be combined and permuted into multiple protein constructs, and then virtually cloned in silico into defined expression vectors. The Gene Design Module uses a protein-to-gene algorithm that automates the back-translation of a protein amino acid sequence into a codon engineered nucleic acid gene sequence according to a selected codon usage table with minimal codon usage threshold, defined G:C% content, and desired sequence features achieved through synonymous codon selection that is optimized for the intended expression system. The gene-to-oligo algorithm of the Gene Design Module plans out all of the required overlapping oligonucleotides and mutagenic primers needed to synthesize the desired gene constructs by PCR, and for physically cloning them into selected vectors by the most popular subcloning strategies. We present a complete description of Gene Composer functionality, and an efficient PCR-based synthetic gene assembly procedure with mis-match specific endonuclease error correction in combination with PIPE cloning. In a sister manuscript we present data on how Gene Composer designed genes and protein constructs can result in improved protein production for structural studies.

  5. Burkholderia Mallei tssM Encodes a Secreted Deubiquitinase that is Expressed Inside Infected RAW 264.7 Murine Macrophages

    DTIC Science & Technology

    2008-10-13

    Furthermore, the encoded protein of this gene is only 30 kDa. A potential GTG start codon at position 625 also encodes a protein that is too small...horizontal bar and putative alternate translation initiation sites (ATG, GTG , and TTG) are indicated. The sizes and locations of the proteins encoded... gray line with rounded rectangles showing sequence features and motifs, including the Ala- and Pro-rich N-terminal region and the C-terminal Cys and

  6. NetTurnP – Neural Network Prediction of Beta-turns by Use of Evolutionary Information and Predicted Protein Sequence Features

    PubMed Central

    Petersen, Bent; Lundegaard, Claus; Petersen, Thomas Nordahl

    2010-01-01

    β-turns are the most common type of non-repetitive structures, and constitute on average 25% of the amino acids in proteins. The formation of β-turns plays an important role in protein folding, protein stability and molecular recognition processes. In this work we present the neural network method NetTurnP, for prediction of two-class β-turns and prediction of the individual β-turn types, by use of evolutionary information and predicted protein sequence features. It has been evaluated against a commonly used dataset BT426, and achieves a Matthews correlation coefficient of 0.50, which is the highest reported performance on a two-class prediction of β-turn and not-β-turn. Furthermore NetTurnP shows improved performance on some of the specific β-turn types. In the present work, neural network methods have been trained to predict β-turn or not and individual β-turn types from the primary amino acid sequence. The individual β-turn types I, I', II, II', VIII, VIa1, VIa2, VIba and IV have been predicted based on classifications by PROMOTIF, and the two-class prediction of β-turn or not is a superset comprised of all β-turn types. The performance is evaluated using a golden set of non-homologous sequences known as BT426. Our two-class prediction method achieves a performance of: MCC  = 0.50, Qtotal = 82.1%, sensitivity  = 75.6%, PPV  = 68.8% and AUC  = 0.864. We have compared our performance to eleven other prediction methods that obtain Matthews correlation coefficients in the range of 0.17 – 0.47. For the type specific β-turn predictions, only type I and II can be predicted with reasonable Matthews correlation coefficients, where we obtain performance values of 0.36 and 0.31, respectively. Conclusion The NetTurnP method has been implemented as a webserver, which is freely available at http://www.cbs.dtu.dk/services/NetTurnP/. NetTurnP is the only available webserver that allows submission of multiple sequences. PMID:21152409

  7. NetTurnP--neural network prediction of beta-turns by use of evolutionary information and predicted protein sequence features.

    PubMed

    Petersen, Bent; Lundegaard, Claus; Petersen, Thomas Nordahl

    2010-11-30

    β-turns are the most common type of non-repetitive structures, and constitute on average 25% of the amino acids in proteins. The formation of β-turns plays an important role in protein folding, protein stability and molecular recognition processes. In this work we present the neural network method NetTurnP, for prediction of two-class β-turns and prediction of the individual β-turn types, by use of evolutionary information and predicted protein sequence features. It has been evaluated against a commonly used dataset BT426, and achieves a Matthews correlation coefficient of 0.50, which is the highest reported performance on a two-class prediction of β-turn and not-β-turn. Furthermore NetTurnP shows improved performance on some of the specific β-turn types. In the present work, neural network methods have been trained to predict β-turn or not and individual β-turn types from the primary amino acid sequence. The individual β-turn types I, I', II, II', VIII, VIa1, VIa2, VIba and IV have been predicted based on classifications by PROMOTIF, and the two-class prediction of β-turn or not is a superset comprised of all β-turn types. The performance is evaluated using a golden set of non-homologous sequences known as BT426. Our two-class prediction method achieves a performance of: MCC=0.50, Qtotal=82.1%, sensitivity=75.6%, PPV=68.8% and AUC=0.864. We have compared our performance to eleven other prediction methods that obtain Matthews correlation coefficients in the range of 0.17-0.47. For the type specific β-turn predictions, only type I and II can be predicted with reasonable Matthews correlation coefficients, where we obtain performance values of 0.36 and 0.31, respectively. The NetTurnP method has been implemented as a webserver, which is freely available at http://www.cbs.dtu.dk/services/NetTurnP/. NetTurnP is the only available webserver that allows submission of multiple sequences.

  8. Accuracy Estimation and Parameter Advising for Protein Multiple Sequence Alignment

    PubMed Central

    DeBlasio, Dan

    2013-01-01

    Abstract We develop a novel and general approach to estimating the accuracy of multiple sequence alignments without knowledge of a reference alignment, and use our approach to address a new task that we call parameter advising: the problem of choosing values for alignment scoring function parameters from a given set of choices to maximize the accuracy of a computed alignment. For protein alignments, we consider twelve independent features that contribute to a quality alignment. An accuracy estimator is learned that is a polynomial function of these features; its coefficients are determined by minimizing its error with respect to true accuracy using mathematical optimization. Compared to prior approaches for estimating accuracy, our new approach (a) introduces novel feature functions that measure nonlocal properties of an alignment yet are fast to evaluate, (b) considers more general classes of estimators beyond linear combinations of features, and (c) develops new regression formulations for learning an estimator from examples; in addition, for parameter advising, we (d) determine the optimal parameter set of a given cardinality, which specifies the best parameter values from which to choose. Our estimator, which we call Facet (for “feature-based accuracy estimator”), yields a parameter advisor that on the hardest benchmarks provides more than a 27% improvement in accuracy over the best default parameter choice, and for parameter advising significantly outperforms the best prior approaches to assessing alignment quality. PMID:23489379

  9. OPAL: prediction of MoRF regions in intrinsically disordered protein sequences.

    PubMed

    Sharma, Ronesh; Raicar, Gaurav; Tsunoda, Tatsuhiko; Patil, Ashwini; Sharma, Alok

    2018-06-01

    Intrinsically disordered proteins lack stable 3-dimensional structure and play a crucial role in performing various biological functions. Key to their biological function are the molecular recognition features (MoRFs) located within long disordered regions. Computationally identifying these MoRFs from disordered protein sequences is a challenging task. In this study, we present a new MoRF predictor, OPAL, to identify MoRFs in disordered protein sequences. OPAL utilizes two independent sources of information computed using different component predictors. The scores are processed and combined using common averaging method. The first score is computed using a component MoRF predictor which utilizes composition and sequence similarity of MoRF and non-MoRF regions to detect MoRFs. The second score is calculated using half-sphere exposure (HSE), solvent accessible surface area (ASA) and backbone angle information of the disordered protein sequence, using information from the amino acid properties of flanks surrounding the MoRFs to distinguish MoRF and non-MoRF residues. OPAL is evaluated using test sets that were previously used to evaluate MoRF predictors, MoRFpred, MoRFchibi and MoRFchibi-web. The results demonstrate that OPAL outperforms all the available MoRF predictors and is the most accurate predictor available for MoRF prediction. It is available at http://www.alok-ai-lab.com/tools/opal/. ashwini@hgc.jp or alok.sharma@griffith.edu.au. Supplementary data are available at Bioinformatics online.

  10. APRICOT: an integrated computational pipeline for the sequence-based identification and characterization of RNA-binding proteins.

    PubMed

    Sharan, Malvika; Förstner, Konrad U; Eulalio, Ana; Vogel, Jörg

    2017-06-20

    RNA-binding proteins (RBPs) have been established as core components of several post-transcriptional gene regulation mechanisms. Experimental techniques such as cross-linking and co-immunoprecipitation have enabled the identification of RBPs, RNA-binding domains (RBDs) and their regulatory roles in the eukaryotic species such as human and yeast in large-scale. In contrast, our knowledge of the number and potential diversity of RBPs in bacteria is poorer due to the technical challenges associated with the existing global screening approaches. We introduce APRICOT, a computational pipeline for the sequence-based identification and characterization of proteins using RBDs known from experimental studies. The pipeline identifies functional motifs in protein sequences using position-specific scoring matrices and Hidden Markov Models of the functional domains and statistically scores them based on a series of sequence-based features. Subsequently, APRICOT identifies putative RBPs and characterizes them by several biological properties. Here we demonstrate the application and adaptability of the pipeline on large-scale protein sets, including the bacterial proteome of Escherichia coli. APRICOT showed better performance on various datasets compared to other existing tools for the sequence-based prediction of RBPs by achieving an average sensitivity and specificity of 0.90 and 0.91 respectively. The command-line tool and its documentation are available at https://pypi.python.org/pypi/bio-apricot. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Protein phylogenies and signature sequences: A reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes.

    PubMed

    Gupta, R S

    1998-12-01

    The presence of shared conserved insertion or deletions (indels) in protein sequences is a special type of signature sequence that shows considerable promise for phylogenetic inference. An alternative model of microbial evolution based on the use of indels of conserved proteins and the morphological features of prokaryotic organisms is proposed. In this model, extant archaebacteria and gram-positive bacteria, which have a simple, single-layered cell wall structure, are termed monoderm prokaryotes. They are believed to be descended from the most primitive organisms. Evidence from indels supports the view that the archaebacteria probably evolved from gram-positive bacteria, and I suggest that this evolution occurred in response to antibiotic selection pressures. Evidence is presented that diderm prokaryotes (i.e., gram-negative bacteria), which have a bilayered cell wall, are derived from monoderm prokaryotes. Signature sequences in different proteins provide a means to define a number of different taxa within prokaryotes (namely, low G+C and high G+C gram-positive, Deinococcus-Thermus, cyanobacteria, chlamydia-cytophaga related, and two different groups of Proteobacteria) and to indicate how they evolved from a common ancestor. Based on phylogenetic information from indels in different protein sequences, it is hypothesized that all eukaryotes, including amitochondriate and aplastidic organisms, received major gene contributions from both an archaebacterium and a gram-negative eubacterium. In this model, the ancestral eukaryotic cell is a chimera that resulted from a unique fusion event between the two separate groups of prokaryotes followed by integration of their genomes.

  12. Protein Phylogenies and Signature Sequences: A Reappraisal of Evolutionary Relationships among Archaebacteria, Eubacteria, and Eukaryotes

    PubMed Central

    Gupta, Radhey S.

    1998-01-01

    The presence of shared conserved insertion or deletions (indels) in protein sequences is a special type of signature sequence that shows considerable promise for phylogenetic inference. An alternative model of microbial evolution based on the use of indels of conserved proteins and the morphological features of prokaryotic organisms is proposed. In this model, extant archaebacteria and gram-positive bacteria, which have a simple, single-layered cell wall structure, are termed monoderm prokaryotes. They are believed to be descended from the most primitive organisms. Evidence from indels supports the view that the archaebacteria probably evolved from gram-positive bacteria, and I suggest that this evolution occurred in response to antibiotic selection pressures. Evidence is presented that diderm prokaryotes (i.e., gram-negative bacteria), which have a bilayered cell wall, are derived from monoderm prokaryotes. Signature sequences in different proteins provide a means to define a number of different taxa within prokaryotes (namely, low G+C and high G+C gram-positive, Deinococcus-Thermus, cyanobacteria, chlamydia-cytophaga related, and two different groups of Proteobacteria) and to indicate how they evolved from a common ancestor. Based on phylogenetic information from indels in different protein sequences, it is hypothesized that all eukaryotes, including amitochondriate and aplastidic organisms, received major gene contributions from both an archaebacterium and a gram-negative eubacterium. In this model, the ancestral eukaryotic cell is a chimera that resulted from a unique fusion event between the two separate groups of prokaryotes followed by integration of their genomes. PMID:9841678

  13. TFBSshape: a motif database for DNA shape features of transcription factor binding sites

    PubMed Central

    Yang, Lin; Zhou, Tianyin; Dror, Iris; Mathelier, Anthony; Wasserman, Wyeth W.; Gordân, Raluca; Rohs, Remo

    2014-01-01

    Transcription factor binding sites (TFBSs) are most commonly characterized by the nucleotide preferences at each position of the DNA target. Whereas these sequence motifs are quite accurate descriptions of DNA binding specificities of transcription factors (TFs), proteins recognize DNA as a three-dimensional object. DNA structural features refine the description of TF binding specificities and provide mechanistic insights into protein–DNA recognition. Existing motif databases contain extensive nucleotide sequences identified in binding experiments based on their selection by a TF. To utilize DNA shape information when analysing the DNA binding specificities of TFs, we developed a new tool, the TFBSshape database (available at http://rohslab.cmb.usc.edu/TFBSshape/), for calculating DNA structural features from nucleotide sequences provided by motif databases. The TFBSshape database can be used to generate heat maps and quantitative data for DNA structural features (i.e., minor groove width, roll, propeller twist and helix twist) for 739 TF datasets from 23 different species derived from the motif databases JASPAR and UniPROBE. As demonstrated for the basic helix-loop-helix and homeodomain TF families, our TFBSshape database can be used to compare, qualitatively and quantitatively, the DNA binding specificities of closely related TFs and, thus, uncover differential DNA binding specificities that are not apparent from nucleotide sequence alone. PMID:24214955

  14. Signal peptide discrimination and cleavage site identification using SVM and NN.

    PubMed

    Kazemian, H B; Yusuf, S A; White, K

    2014-02-01

    About 15% of all proteins in a genome contain a signal peptide (SP) sequence, at the N-terminus, that targets the protein to intracellular secretory pathways. Once the protein is targeted correctly in the cell, the SP is cleaved, releasing the mature protein. Accurate prediction of the presence of these short amino-acid SP chains is crucial for modelling the topology of membrane proteins, since SP sequences can be confused with transmembrane domains due to similar composition of hydrophobic amino acids. This paper presents a cascaded Support Vector Machine (SVM)-Neural Network (NN) classification methodology for SP discrimination and cleavage site identification. The proposed method utilises a dual phase classification approach using SVM as a primary classifier to discriminate SP sequences from Non-SP. The methodology further employs NNs to predict the most suitable cleavage site candidates. In phase one, a SVM classification utilises hydrophobic propensities as a primary feature vector extraction using symmetric sliding window amino-acid sequence analysis for discrimination of SP and Non-SP. In phase two, a NN classification uses asymmetric sliding window sequence analysis for prediction of cleavage site identification. The proposed SVM-NN method was tested using Uni-Prot non-redundant datasets of eukaryotic and prokaryotic proteins with SP and Non-SP N-termini. Computer simulation results demonstrate an overall accuracy of 0.90 for SP and Non-SP discrimination based on Matthews Correlation Coefficient (MCC) tests using SVM. For SP cleavage site prediction, the overall accuracy is 91.5% based on cross-validation tests using the novel SVM-NN model. © 2013 Published by Elsevier Ltd.

  15. The nucleotide sequence of RNA1 of Lettuce big-vein virus, genus Varicosavirus, reveals its relation to nonsegmented negative-strand RNA viruses.

    PubMed

    Sasaya, Takahide; Ishikawa, Koichi; Koganezawa, Hiroki

    2002-06-05

    The complete nucleotide sequence of RNA1 from Lettuce big-vein virus (LBVV), the type member of the genus Varicosavirus, was determined. LBVV RNA1 consists of 6797 nucleotides and contains one large ORF that encodes a large (L) protein of 2040 amino acids with a predicted M(r) of 232,092. Northern blot hybridization analysis indicated that the LBVV RNA1 is a negative-sense RNA. Database searches showed that the amino acid sequence of L protein is homologous to those of L polymerases of nonsegmented negative-strand RNA viruses. A cluster dendrogram derived from alignments of the LBVV L protein and the L polymerases indicated that the L protein is most closely related to the L polymerases of plant rhabdoviruses. Transcription termination/polyadenylation signal-like poly(U) tracts that resemble those in rhabdovirus and paramyxovirus RNAs were present upstream and downstream of the coding region. Although LBVV is related to rhabdoviruses, a key distinguishing feature is that the genome of LBVV is segmented. The results reemphasize the need to reconsider the taxonomic position of varicosaviruses.

  16. Automated hierarchical classification of protein domain subfamilies based on functionally-divergent residue signatures

    PubMed Central

    2012-01-01

    Background The NCBI Conserved Domain Database (CDD) consists of a collection of multiple sequence alignments of protein domains that are at various stages of being manually curated into evolutionary hierarchies based on conserved and divergent sequence and structural features. These domain models are annotated to provide insights into the relationships between sequence, structure and function via web-based BLAST searches. Results Here we automate the generation of conserved domain (CD) hierarchies using a combination of heuristic and Markov chain Monte Carlo (MCMC) sampling procedures and starting from a (typically very large) multiple sequence alignment. This procedure relies on statistical criteria to define each hierarchy based on the conserved and divergent sequence patterns associated with protein functional-specialization. At the same time this facilitates the sequence and structural annotation of residues that are functionally important. These statistical criteria also provide a means to objectively assess the quality of CD hierarchies, a non-trivial task considering that the protein subgroups are often very distantly related—a situation in which standard phylogenetic methods can be unreliable. Our aim here is to automatically generate (typically sub-optimal) hierarchies that, based on statistical criteria and visual comparisons, are comparable to manually curated hierarchies; this serves as the first step toward the ultimate goal of obtaining optimal hierarchical classifications. A plot of runtimes for the most time-intensive (non-parallelizable) part of the algorithm indicates a nearly linear time complexity so that, even for the extremely large Rossmann fold protein class, results were obtained in about a day. Conclusions This approach automates the rapid creation of protein domain hierarchies and thus will eliminate one of the most time consuming aspects of conserved domain database curation. At the same time, it also facilitates protein domain annotation by identifying those pattern residues that most distinguish each protein domain subgroup from other related subgroups. PMID:22726767

  17. Developmental Regulation of Genes Encoding Universal Stress Proteins in Schistosoma mansoni

    PubMed Central

    Isokpehi, Raphael D.; Mahmud, Ousman; Mbah, Andreas N.; Simmons, Shaneka S.; Avelar, Lívia; Rajnarayanan, Rajendram V.; Udensi, Udensi K.; Ayensu, Wellington K.; Cohly, Hari H.; Brown, Shyretha D.; Dates, Centdrika R.; Hentz, Sonya D.; Hughes, Shawntae J.; Smith-McInnis, Dominique R.; Patterson, Carvey O.; Sims, Jennifer N.; Turner, Kelisha T.; Williams, Baraka S.; Johnson, Matilda O.; Adubi, Taiwo; Mbuh, Judith V.; Anumudu, Chiaka I.; Adeoye, Grace O.; Thomas, Bolaji N.; Nashiru, Oyekanmi; Oliveira, Guilherme

    2011-01-01

    The draft nuclear genome sequence of the snail-transmitted, dimorphic, parasitic, platyhelminth Schistosoma mansoni revealed eight genes encoding proteins that contain the Universal Stress Protein (USP) domain. Schistosoma mansoni is a causative agent of human schistosomiasis, a severe and debilitating Neglected Tropical Disease (NTD) of poverty, which is endemic in at least 76 countries. The availability of the genome sequences of Schistosoma species presents opportunities for bioinformatics and genomics analyses of associated gene families that could be targets for understanding schistosomiasis ecology, intervention, prevention and control. Proteins with the USP domain are known to provide bacteria, archaea, fungi, protists and plants with the ability to respond to diverse environmental stresses. In this research investigation, the functional annotations of the USP genes and predicted nucleotide and protein sequences were initially verified. Subsequently, sequence clusters and distinctive features of the sequences were determined. A total of twelve ligand binding sites were predicted based on alignment to the ATP-binding universal stress protein from Methanocaldococcus jannaschii. In addition, six USP sequences showed the presence of ATP-binding motif residues indicating that they may be regulated by ATP. Public domain gene expression data and RT-PCR assays confirmed that all the S. mansoni USP genes were transcribed in at least one of the developmental life cycle stages of the helminth. Six of these genes were up-regulated in the miracidium, a free-swimming stage that is critical for transmission to the snail intermediate host. It is possible that during the intra-snail stages, S. mansoni gene transcripts for universal stress proteins are low abundant and are induced to perform specialized functions triggered by environmental stressors such as oxidative stress due to hydrogen peroxide that is present in the snail hemocytes. This report serves to catalyze the formation of a network of researchers to understand the function and regulation of the universal stress proteins encoded in genomes of schistosomes and their snail intermediate hosts. PMID:22084571

  18. RF-Phos: A Novel General Phosphorylation Site Prediction Tool Based on Random Forest.

    PubMed

    Ismail, Hamid D; Jones, Ahoi; Kim, Jung H; Newman, Robert H; Kc, Dukka B

    2016-01-01

    Protein phosphorylation is one of the most widespread regulatory mechanisms in eukaryotes. Over the past decade, phosphorylation site prediction has emerged as an important problem in the field of bioinformatics. Here, we report a new method, termed Random Forest-based Phosphosite predictor 2.0 (RF-Phos 2.0), to predict phosphorylation sites given only the primary amino acid sequence of a protein as input. RF-Phos 2.0, which uses random forest with sequence and structural features, is able to identify putative sites of phosphorylation across many protein families. In side-by-side comparisons based on 10-fold cross validation and an independent dataset, RF-Phos 2.0 compares favorably to other popular mammalian phosphosite prediction methods, such as PhosphoSVM, GPS2.1, and Musite.

  19. Predicting bacteriophage proteins located in host cell with feature selection technique.

    PubMed

    Ding, Hui; Liang, Zhi-Yong; Guo, Feng-Biao; Huang, Jian; Chen, Wei; Lin, Hao

    2016-04-01

    A bacteriophage is a virus that can infect a bacterium. The fate of an infected bacterium is determined by the bacteriophage proteins located in the host cell. Thus, reliably identifying bacteriophage proteins located in the host cell is extremely important to understand their functions and discover potential anti-bacterial drugs. Thus, in this paper, a computational method was developed to recognize bacteriophage proteins located in host cells based only on their amino acid sequences. The analysis of variance (ANOVA) combined with incremental feature selection (IFS) was proposed to optimize the feature set. Using a jackknife cross-validation, our method can discriminate between bacteriophage proteins located in a host cell and the bacteriophage proteins not located in a host cell with a maximum overall accuracy of 84.2%, and can further classify bacteriophage proteins located in host cell cytoplasm and in host cell membranes with a maximum overall accuracy of 92.4%. To enhance the value of the practical applications of the method, we built a web server called PHPred (〈http://lin.uestc.edu.cn/server/PHPred〉). We believe that the PHPred will become a powerful tool to study bacteriophage proteins located in host cells and to guide related drug discovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. UniPROBE, update 2015: new tools and content for the online database of protein-binding microarray data on protein-DNA interactions.

    PubMed

    Hume, Maxwell A; Barrera, Luis A; Gisselbrecht, Stephen S; Bulyk, Martha L

    2015-01-01

    The Universal PBM Resource for Oligonucleotide Binding Evaluation (UniPROBE) serves as a convenient source of information on published data generated using universal protein-binding microarray (PBM) technology, which provides in vitro data about the relative DNA-binding preferences of transcription factors for all possible sequence variants of a length k ('k-mers'). The database displays important information about the proteins and displays their DNA-binding specificity data in terms of k-mers, position weight matrices and graphical sequence logos. This update to the database documents the growth of UniPROBE since the last update 4 years ago, and introduces a variety of new features and tools, including a new streamlined pipeline that facilitates data deposition by universal PBM data generators in the research community, a tool that generates putative nonbinding (i.e. negative control) DNA sequences for one or more proteins and novel motifs obtained by analyzing the PBM data using the BEEML-PBM algorithm for motif inference. The UniPROBE database is available at http://uniprobe.org. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Transterm: a database to aid the analysis of regulatory sequences in mRNAs

    PubMed Central

    Jacobs, Grant H.; Chen, Augustine; Stevens, Stewart G.; Stockwell, Peter A.; Black, Michael A.; Tate, Warren P.; Brown, Chris M.

    2009-01-01

    Messenger RNAs, in addition to coding for proteins, may contain regulatory elements that affect how the protein is translated. These include protein and microRNA-binding sites. Transterm (http://mRNA.otago.ac.nz/Transterm.html) is a database of regions and elements that affect translation with two major unique components. The first is integrated results of analysis of general features that affect translation (initiation, elongation, termination) for species or strains in Genbank, processed through a standard pipeline. The second is curated descriptions of experimentally determined regulatory elements that function as translational control elements in mRNAs. Transterm focuses on protein binding sites, particularly those in 3′-untranslated regions (3′-UTR). For this release the interface has been extensively updated based on user feedback. The data is now accessible by strain rather than species, for example there are 10 Escherichia coli strains (genomes) analysed separately. In addition to providing a repository of data, the database also provides tools for users to query their own mRNA sequences. Users can search sequences for Transterm or user defined regulatory elements, including protein or miRNA targets. Transterm also provides a central core of links to related resources for complementary analyses. PMID:18984623

  2. The Protein Structure Initiative Structural Biology Knowledgebase Technology Portal: a structural biology web resource.

    PubMed

    Gifford, Lida K; Carter, Lester G; Gabanyi, Margaret J; Berman, Helen M; Adams, Paul D

    2012-06-01

    The Technology Portal of the Protein Structure Initiative Structural Biology Knowledgebase (PSI SBKB; http://technology.sbkb.org/portal/ ) is a web resource providing information about methods and tools that can be used to relieve bottlenecks in many areas of protein production and structural biology research. Several useful features are available on the web site, including multiple ways to search the database of over 250 technological advances, a link to videos of methods on YouTube, and access to a technology forum where scientists can connect, ask questions, get news, and develop collaborations. The Technology Portal is a component of the PSI SBKB ( http://sbkb.org ), which presents integrated genomic, structural, and functional information for all protein sequence targets selected by the Protein Structure Initiative. Created in collaboration with the Nature Publishing Group, the SBKB offers an array of resources for structural biologists, such as a research library, editorials about new research advances, a featured biological system each month, and a functional sleuth for searching protein structures of unknown function. An overview of the various features and examples of user searches highlight the information, tools, and avenues for scientific interaction available through the Technology Portal.

  3. Whole-Genome Sequence of Corynebacterium auriscanis Strain CIP 106629 Isolated from a Dog with Bilateral Otitis from the United Kingdom.

    PubMed

    Tiwari, Sandeep; Jamal, Syed Babar; Oliveira, Leticia Castro; Clermont, Dominique; Bizet, Chantal; Mariano, Diego; de Carvalho, Paulo Vinicius Sanches Daltro; Souza, Flavia; Pereira, Felipe Luiz; de Castro Soares, Siomar; Guimarães, Luis C; Dorella, Fernanda; Carvalho, Alex; Leal, Carlos; Barh, Debmalya; Figueiredo, Henrique; Hassan, Syed Shah; Azevedo, Vasco; Silva, Artur

    2016-08-11

    In this work, we describe a set of features of Corynebacterium auriscanis CIP 106629 and details of the draft genome sequence and annotation. The genome comprises a 2.5-Mbp-long single circular genome with 1,797 protein-coding genes, 5 rRNA, 50 tRNA, and 403 pseudogenes, with a G+C content of 58.50%. Copyright © 2016 Tiwari et al.

  4. Classifying Noisy Protein Sequence Data: A Case Study of Immunoglobulin Light Chains

    DTIC Science & Technology

    2005-01-01

    collected from patients with and without amyloidosis , and indicates that the proposed modified classifi- ers are more robust to sequence variability than...piled from patients with and without amyloidosis provides unique features to serve as a model system, not only for conformational disease studies but...produced by patients with amyloidosis . SVMs have been used recently in a wide variety of applica- tions in computational biology (Noble, 2004). Most

  5. Organization, chromosomal localization and promoter analysis of the gene encoding human acidic fibroblast growth factor intracellular binding protein.

    PubMed Central

    Kolpakova, E; Frengen, E; Stokke, T; Olsnes, S

    2000-01-01

    Acidic fibroblast growth factor (aFGF) intracellular binding protein (FIBP) is a protein found mainly in the nucleus that might be involved in the intracellular function of aFGF. Here we present a comparative analysis of the deduced amino acid sequences of human, murine and Drosophila FIBP analogues and demonstrate that FIBP is an evolutionarily conserved protein. The human gene spans more than 5 kb, comprising ten exons and nine introns, and maps to chromosome 11q13.1. Two slightly different splice variants found in different tissues were isolated and characterized. Sequence analysis of the region surrounding the translation start revealed a CpG island, a classical feature of widely expressed genes. Functional studies of the promoter region with a luciferase reporter system suggested a strong transcriptional activity residing within 600 bp of the 5' flanking region. PMID:11104667

  6. From Sequence and Forces to Structure, Function and Evolution of Intrinsically Disordered Proteins

    PubMed Central

    Forman-Kay, Julie D.; Mittag, Tanja

    2015-01-01

    Intrinsically disordered proteins (IDPs), which lack persistent structure, are a challenge to structural biology due to the inapplicability of standard methods for characterization of folded proteins as well as their deviation from the dominant structure/function paradigm. Their widespread presence and involvement in biological function, however, has spurred the growing acceptance of the importance of IDPs and the development of new tools for studying their structure, dynamics and function. The interplay of folded and disordered domains or regions for function and the existence of a continuum of protein states with respect to conformational energetics, motional timescales and compactness is shaping a unified understanding of structure-dynamics-disorder/function relationships. On the 20th anniversary of this journal, Structure, we provide a historical perspective on the investigation of IDPs and summarize the sequence features and physical forces that underlie their unique structural, functional and evolutionary properties. PMID:24010708

  7. From sequence and forces to structure, function, and evolution of intrinsically disordered proteins.

    PubMed

    Forman-Kay, Julie D; Mittag, Tanja

    2013-09-03

    Intrinsically disordered proteins (IDPs), which lack persistent structure, are a challenge to structural biology due to the inapplicability of standard methods for characterization of folded proteins as well as their deviation from the dominant structure/function paradigm. Their widespread presence and involvement in biological function, however, has spurred the growing acceptance of the importance of IDPs and the development of new tools for studying their structure, dynamics, and function. The interplay of folded and disordered domains or regions for function and the existence of a continuum of protein states with respect to conformational energetics, motional timescales, and compactness are shaping a unified understanding of structure-dynamics-disorder/function relationships. In the 20(th) anniversary of Structure, we provide a historical perspective on the investigation of IDPs and summarize the sequence features and physical forces that underlie their unique structural, functional, and evolutionary properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Genome analysis of the platypus reveals unique signatures of evolution.

    PubMed

    Warren, Wesley C; Hillier, LaDeana W; Marshall Graves, Jennifer A; Birney, Ewan; Ponting, Chris P; Grützner, Frank; Belov, Katherine; Miller, Webb; Clarke, Laura; Chinwalla, Asif T; Yang, Shiaw-Pyng; Heger, Andreas; Locke, Devin P; Miethke, Pat; Waters, Paul D; Veyrunes, Frédéric; Fulton, Lucinda; Fulton, Bob; Graves, Tina; Wallis, John; Puente, Xose S; López-Otín, Carlos; Ordóñez, Gonzalo R; Eichler, Evan E; Chen, Lin; Cheng, Ze; Deakin, Janine E; Alsop, Amber; Thompson, Katherine; Kirby, Patrick; Papenfuss, Anthony T; Wakefield, Matthew J; Olender, Tsviya; Lancet, Doron; Huttley, Gavin A; Smit, Arian F A; Pask, Andrew; Temple-Smith, Peter; Batzer, Mark A; Walker, Jerilyn A; Konkel, Miriam K; Harris, Robert S; Whittington, Camilla M; Wong, Emily S W; Gemmell, Neil J; Buschiazzo, Emmanuel; Vargas Jentzsch, Iris M; Merkel, Angelika; Schmitz, Juergen; Zemann, Anja; Churakov, Gennady; Kriegs, Jan Ole; Brosius, Juergen; Murchison, Elizabeth P; Sachidanandam, Ravi; Smith, Carly; Hannon, Gregory J; Tsend-Ayush, Enkhjargal; McMillan, Daniel; Attenborough, Rosalind; Rens, Willem; Ferguson-Smith, Malcolm; Lefèvre, Christophe M; Sharp, Julie A; Nicholas, Kevin R; Ray, David A; Kube, Michael; Reinhardt, Richard; Pringle, Thomas H; Taylor, James; Jones, Russell C; Nixon, Brett; Dacheux, Jean-Louis; Niwa, Hitoshi; Sekita, Yoko; Huang, Xiaoqiu; Stark, Alexander; Kheradpour, Pouya; Kellis, Manolis; Flicek, Paul; Chen, Yuan; Webber, Caleb; Hardison, Ross; Nelson, Joanne; Hallsworth-Pepin, Kym; Delehaunty, Kim; Markovic, Chris; Minx, Pat; Feng, Yucheng; Kremitzki, Colin; Mitreva, Makedonka; Glasscock, Jarret; Wylie, Todd; Wohldmann, Patricia; Thiru, Prathapan; Nhan, Michael N; Pohl, Craig S; Smith, Scott M; Hou, Shunfeng; Nefedov, Mikhail; de Jong, Pieter J; Renfree, Marilyn B; Mardis, Elaine R; Wilson, Richard K

    2008-05-08

    We present a draft genome sequence of the platypus, Ornithorhynchus anatinus. This monotreme exhibits a fascinating combination of reptilian and mammalian characters. For example, platypuses have a coat of fur adapted to an aquatic lifestyle; platypus females lactate, yet lay eggs; and males are equipped with venom similar to that of reptiles. Analysis of the first monotreme genome aligned these features with genetic innovations. We find that reptile and platypus venom proteins have been co-opted independently from the same gene families; milk protein genes are conserved despite platypuses laying eggs; and immune gene family expansions are directly related to platypus biology. Expansions of protein, non-protein-coding RNA and microRNA families, as well as repeat elements, are identified. Sequencing of this genome now provides a valuable resource for deep mammalian comparative analyses, as well as for monotreme biology and conservation.

  9. Genome analysis of the platypus reveals unique signatures of evolution

    PubMed Central

    Warren, Wesley C.; Hillier, LaDeana W.; Marshall Graves, Jennifer A.; Birney, Ewan; Ponting, Chris P.; Grützner, Frank; Belov, Katherine; Miller, Webb; Clarke, Laura; Chinwalla, Asif T.; Yang, Shiaw-Pyng; Heger, Andreas; Locke, Devin P.; Miethke, Pat; Waters, Paul D.; Veyrunes, Frédéric; Fulton, Lucinda; Fulton, Bob; Graves, Tina; Wallis, John; Puente, Xose S.; López-Otín, Carlos; Ordóñez, Gonzalo R.; Eichler, Evan E.; Chen, Lin; Cheng, Ze; Deakin, Janine E.; Alsop, Amber; Thompson, Katherine; Kirby, Patrick; Papenfuss, Anthony T.; Wakefield, Matthew J.; Olender, Tsviya; Lancet, Doron; Huttley, Gavin A.; Smit, Arian F. A.; Pask, Andrew; Temple-Smith, Peter; Batzer, Mark A.; Walker, Jerilyn A.; Konkel, Miriam K.; Harris, Robert S.; Whittington, Camilla M.; Wong, Emily S. W.; Gemmell, Neil J.; Buschiazzo, Emmanuel; Vargas Jentzsch, Iris M.; Merkel, Angelika; Schmitz, Juergen; Zemann, Anja; Churakov, Gennady; Kriegs, Jan Ole; Brosius, Juergen; Murchison, Elizabeth P.; Sachidanandam, Ravi; Smith, Carly; Hannon, Gregory J.; Tsend-Ayush, Enkhjargal; McMillan, Daniel; Attenborough, Rosalind; Rens, Willem; Ferguson-Smith, Malcolm; Lefèvre, Christophe M.; Sharp, Julie A.; Nicholas, Kevin R.; Ray, David A.; Kube, Michael; Reinhardt, Richard; Pringle, Thomas H.; Taylor, James; Jones, Russell C.; Nixon, Brett; Dacheux, Jean-Louis; Niwa, Hitoshi; Sekita, Yoko; Huang, Xiaoqiu; Stark, Alexander; Kheradpour, Pouya; Kellis, Manolis; Flicek, Paul; Chen, Yuan; Webber, Caleb; Hardison, Ross; Nelson, Joanne; Hallsworth-Pepin, Kym; Delehaunty, Kim; Markovic, Chris; Minx, Pat; Feng, Yucheng; Kremitzki, Colin; Mitreva, Makedonka; Glasscock, Jarret; Wylie, Todd; Wohldmann, Patricia; Thiru, Prathapan; Nhan, Michael N.; Pohl, Craig S.; Smith, Scott M.; Hou, Shunfeng; Renfree, Marilyn B.; Mardis, Elaine R.; Wilson, Richard K.

    2009-01-01

    We present a draft genome sequence of the platypus, Ornithorhynchus anatinus. This monotreme exhibits a fascinating combination of reptilian and mammalian characters. For example, platypuses have a coat of fur adapted to an aquatic lifestyle; platypus females lactate, yet lay eggs; and males are equipped with venom similar to that of reptiles. Analysis of the first monotreme genome aligned these features with genetic innovations. We find that reptile and platypus venom proteins have been co-opted independently from the same gene families; milk protein genes are conserved despite platypuses laying eggs; and immune gene family expansions are directly related to platypus biology. Expansions of protein, non-protein-coding RNA and microRNA families, as well as repeat elements, are identified. Sequencing of this genome now provides a valuable resource for deep mammalian comparative analyses, as well as for monotreme biology and conservation. PMID:18464734

  10. A septal chromosome segregator protein evolved into a conjugative DNA-translocator protein

    PubMed Central

    Sepulveda, Edgardo; Vogelmann, Jutta

    2011-01-01

    Streptomycetes, Gram-positive soil bacteria well known for the production of antibiotics feature a unique conjugative DNA transfer system. In contrast to classical conjugation which is characterized by the secretion of a pilot protein covalently linked to a single-stranded DNA molecule, in Streptomyces a double-stranded DNA molecule is translocated during conjugative transfer. This transfer involves a single plasmid encoded protein, TraB. A detailed biochemical and biophysical characterization of TraB, revealed a close relationship to FtsK, mediating chromosome segregation during bacterial cell division. TraB translocates plasmid DNA by recognizing 8-bp direct repeats located in a specific plasmid region clt. Similar sequences accidentally also occur on chromosomes and have been shown to be bound by TraB. We suggest that TraB mobilizes chromosomal genes by the interaction with these chromosomal clt-like sequences not relying on the integration of the conjugative plasmid into the chromosome. PMID:22479692

  11. The genomic sequence of ectromelia virus, the causative agent of mousepox.

    PubMed

    Chen, Nanhai; Danila, Maria I; Feng, Zehua; Buller, R Mark L; Wang, Chunlin; Han, Xiaosi; Lefkowitz, Elliot J; Upton, Chris

    2003-12-05

    Ectromelia virus is the causative agent of mousepox, an acute exanthematous disease of mouse colonies in Europe, Japan, China, and the U.S. The Moscow, Hampstead, and NIH79 strains are the most thoroughly studied with the Moscow strain being the most infectious and virulent for the mouse. In the late 1940s mousepox was proposed as a model for the study of the pathogenesis of smallpox and generalized vaccinia in humans. Studies in the last five decades from a succession of investigators have resulted in a detailed description of the virologic and pathologic disease course in genetically susceptible and resistant inbred and out-bred mice. We report the DNA sequence of the left-hand end, the predicted right-hand terminal repeat, and central regions of the genome of the Moscow strain of ectromelia virus (approximately 177,500 bp), which together with the previously sequenced right-hand end, yields a genome of 209,771 bp. We identified 175 potential genes specifying proteins of between 53 and 1924 amino acids, and 29 regions containing sequences related to genes predicted in other poxviruses, but unlikely to encode for functional proteins in ectromelia virus. The translated protein sequences were compared with the protein database for structure/function relationships, and these analyses were used to investigate poxvirus evolution and to attempt to explain at the cellular and molecular level the well-characterized features of the ectromelia virus natural life cycle.

  12. Comparative analysis of Leishmania exoproteomes: implication for host-pathogen interactions.

    PubMed

    Peysselon, Franck; Launay, Guillaume; Lisacek, Frédérique; Duclos, Bertrand; Ricard-Blum, Sylvie

    2013-12-01

    Leishmaniasis is a vector-borne disease caused by the protozoa Leishmania. We have analyzed and compared the sequences of three experimental exoproteomes of Leishmania promastigotes from different species to determine their specific features and to identify new candidate proteins involved in interactions of Leishmania with the host. The exoproteomes differ from the proteomes by a decrease in the average molecular weight per protein, in disordered amino acid residues and in basic proteins. The exoproteome of the visceral species is significantly enriched in sites predicted to be phosphorylated as well as in features frequently associated with molecular interactions (intrinsic disorder, number of disordered binding regions per protein, interaction and/or trafficking motifs) compared to the other species. The visceral species might thus have a larger interaction repertoire with the host than the other species. Less than 10% of the exoproteomes contain heparin-binding and RGD sequences, and ~30% the host targeting signal RXLXE/D/Q. These latter proteins might thus be exported inside the host cell during the intracellular stage of the infection. Furthermore we have identified nine protein families conserved in the three exoproteomes with specific combinations of Pfam domains and selected eleven proteins containing at least three interaction and/or trafficking motifs including two splicing factors, phosphomannomutase, 2,3-bisphosphoglycerate-independent phosphoglycerate mutase, the paraflagellar rod protein-1D and a putative helicase. Their role in host-Leishmania interactions warrants further investigation but the putative ATP-dependent DEAD/H RNA helicase, which contains numerous interaction motifs, a host targeting signal and two disordered regions, is a very promising candidate. © 2013.

  13. Support vector machine prediction of enzyme function with conjoint triad feature and hierarchical context.

    PubMed

    Wang, Yong-Cui; Wang, Yong; Yang, Zhi-Xia; Deng, Nai-Yang

    2011-06-20

    Enzymes are known as the largest class of proteins and their functions are usually annotated by the Enzyme Commission (EC), which uses a hierarchy structure, i.e., four numbers separated by periods, to classify the function of enzymes. Automatically categorizing enzyme into the EC hierarchy is crucial to understand its specific molecular mechanism. In this paper, we introduce two key improvements in predicting enzyme function within the machine learning framework. One is to introduce the efficient sequence encoding methods for representing given proteins. The second one is to develop a structure-based prediction method with low computational complexity. In particular, we propose to use the conjoint triad feature (CTF) to represent the given protein sequences by considering not only the composition of amino acids but also the neighbor relationships in the sequence. Then we develop a support vector machine (SVM)-based method, named as SVMHL (SVM for hierarchy labels), to output enzyme function by fully considering the hierarchical structure of EC. The experimental results show that our SVMHL with the CTF outperforms SVMHL with the amino acid composition (AAC) feature both in predictive accuracy and Matthew's correlation coefficient (MCC). In addition, SVMHL with the CTF obtains the accuracy and MCC ranging from 81% to 98% and 0.82 to 0.98 when predicting the first three EC digits on a low-homologous enzyme dataset. We further demonstrate that our method outperforms the methods which do not take account of hierarchical relationship among enzyme categories and alternative methods which incorporate prior knowledge about inter-class relationships. Our structure-based prediction model, SVMHL with the CTF, reduces the computational complexity and outperforms the alternative approaches in enzyme function prediction. Therefore our new method will be a useful tool for enzyme function prediction community.

  14. The genome sequence of Leishmania (Leishmania) amazonensis: functional annotation and extended analysis of gene models.

    PubMed

    Real, Fernando; Vidal, Ramon Oliveira; Carazzolle, Marcelo Falsarella; Mondego, Jorge Maurício Costa; Costa, Gustavo Gilson Lacerda; Herai, Roberto Hirochi; Würtele, Martin; de Carvalho, Lucas Miguel; Carmona e Ferreira, Renata; Mortara, Renato Arruda; Barbiéri, Clara Lucia; Mieczkowski, Piotr; da Silveira, José Franco; Briones, Marcelo Ribeiro da Silva; Pereira, Gonçalo Amarante Guimarães; Bahia, Diana

    2013-12-01

    We present the sequencing and annotation of the Leishmania (Leishmania) amazonensis genome, an etiological agent of human cutaneous leishmaniasis in the Amazon region of Brazil. L. (L.) amazonensis shares features with Leishmania (L.) mexicana but also exhibits unique characteristics regarding geographical distribution and clinical manifestations of cutaneous lesions (e.g. borderline disseminated cutaneous leishmaniasis). Predicted genes were scored for orthologous gene families and conserved domains in comparison with other human pathogenic Leishmania spp. Carboxypeptidase, aminotransferase, and 3'-nucleotidase genes and ATPase, thioredoxin, and chaperone-related domains were represented more abundantly in L. (L.) amazonensis and L. (L.) mexicana species. Phylogenetic analysis revealed that these two species share groups of amastin surface proteins unique to the genus that could be related to specific features of disease outcomes and host cell interactions. Additionally, we describe a hypothetical hybrid interactome of potentially secreted L. (L.) amazonensis proteins and host proteins under the assumption that parasite factors mimic their mammalian counterparts. The model predicts an interaction between an L. (L.) amazonensis heat-shock protein and mammalian Toll-like receptor 9, which is implicated in important immune responses such as cytokine and nitric oxide production. The analysis presented here represents valuable information for future studies of leishmaniasis pathogenicity and treatment.

  15. The Genome Sequence of Leishmania (Leishmania) amazonensis: Functional Annotation and Extended Analysis of Gene Models

    PubMed Central

    Real, Fernando; Vidal, Ramon Oliveira; Carazzolle, Marcelo Falsarella; Mondego, Jorge Maurício Costa; Costa, Gustavo Gilson Lacerda; Herai, Roberto Hirochi; Würtele, Martin; de Carvalho, Lucas Miguel; e Ferreira, Renata Carmona; Mortara, Renato Arruda; Barbiéri, Clara Lucia; Mieczkowski, Piotr; da Silveira, José Franco; Briones, Marcelo Ribeiro da Silva; Pereira, Gonçalo Amarante Guimarães; Bahia, Diana

    2013-01-01

    We present the sequencing and annotation of the Leishmania (Leishmania) amazonensis genome, an etiological agent of human cutaneous leishmaniasis in the Amazon region of Brazil. L. (L.) amazonensis shares features with Leishmania (L.) mexicana but also exhibits unique characteristics regarding geographical distribution and clinical manifestations of cutaneous lesions (e.g. borderline disseminated cutaneous leishmaniasis). Predicted genes were scored for orthologous gene families and conserved domains in comparison with other human pathogenic Leishmania spp. Carboxypeptidase, aminotransferase, and 3′-nucleotidase genes and ATPase, thioredoxin, and chaperone-related domains were represented more abundantly in L. (L.) amazonensis and L. (L.) mexicana species. Phylogenetic analysis revealed that these two species share groups of amastin surface proteins unique to the genus that could be related to specific features of disease outcomes and host cell interactions. Additionally, we describe a hypothetical hybrid interactome of potentially secreted L. (L.) amazonensis proteins and host proteins under the assumption that parasite factors mimic their mammalian counterparts. The model predicts an interaction between an L. (L.) amazonensis heat-shock protein and mammalian Toll-like receptor 9, which is implicated in important immune responses such as cytokine and nitric oxide production. The analysis presented here represents valuable information for future studies of leishmaniasis pathogenicity and treatment. PMID:23857904

  16. Identification of DEP domain-containing proteins by a machine learning method and experimental analysis of their expression in human HCC tissues

    NASA Astrophysics Data System (ADS)

    Liao, Zhijun; Wang, Xinrui; Zeng, Yeting; Zou, Quan

    2016-12-01

    The Dishevelled/EGL-10/Pleckstrin (DEP) domain-containing (DEPDC) proteins have seven members. However, whether this superfamily can be distinguished from other proteins based only on the amino acid sequences, remains unknown. Here, we describe a computational method to segregate DEPDCs and non-DEPDCs. First, we examined the Pfam numbers of the known DEPDCs and used the longest sequences for each Pfam to construct a phylogenetic tree. Subsequently, we extracted 188-dimensional (188D) and 20D features of DEPDCs and non-DEPDCs and classified them with random forest classifier. We also mined the motifs of human DEPDCs to find the related domains. Finally, we designed experimental verification methods of human DEPDC expression at the mRNA level in hepatocellular carcinoma (HCC) and adjacent normal tissues. The phylogenetic analysis showed that the DEPDCs superfamily can be divided into three clusters. Moreover, the 188D and 20D features can both be used to effectively distinguish the two protein types. Motif analysis revealed that the DEP and RhoGAP domain was common in human DEPDCs, human HCC and the adjacent tissues that widely expressed DEPDCs. However, their regulation was not identical. In conclusion, we successfully constructed a binary classifier for DEPDCs and experimentally verified their expression in human HCC tissues.

  17. Identification of DNA-binding proteins using multi-features fusion and binary firefly optimization algorithm.

    PubMed

    Zhang, Jian; Gao, Bo; Chai, Haiting; Ma, Zhiqiang; Yang, Guifu

    2016-08-26

    DNA-binding proteins (DBPs) play fundamental roles in many biological processes. Therefore, the developing of effective computational tools for identifying DBPs is becoming highly desirable. In this study, we proposed an accurate method for the prediction of DBPs. Firstly, we focused on the challenge of improving DBP prediction accuracy with information solely from the sequence. Secondly, we used multiple informative features to encode the protein. These features included evolutionary conservation profile, secondary structure motifs, and physicochemical properties. Thirdly, we introduced a novel improved Binary Firefly Algorithm (BFA) to remove redundant or noisy features as well as select optimal parameters for the classifier. The experimental results of our predictor on two benchmark datasets outperformed many state-of-the-art predictors, which revealed the effectiveness of our method. The promising prediction performance on a new-compiled independent testing dataset from PDB and a large-scale dataset from UniProt proved the good generalization ability of our method. In addition, the BFA forged in this research would be of great potential in practical applications in optimization fields, especially in feature selection problems. A highly accurate method was proposed for the identification of DBPs. A user-friendly web-server named iDbP (identification of DNA-binding Proteins) was constructed and provided for academic use.

  18. Mining protein database using machine learning techniques.

    PubMed

    Camargo, Renata da Silva; Niranjan, Mahesan

    2008-08-25

    With a large amount of information relating to proteins accumulating in databases widely available online, it is of interest to apply machine learning techniques that, by extracting underlying statistical regularities in the data, make predictions about the functional and evolutionary characteristics of unseen proteins. Such predictions can help in achieving a reduction in the space over which experiment designers need to search in order to improve our understanding of the biochemical properties. Previously it has been suggested that an integration of features computable by comparing a pair of proteins can be achieved by an artificial neural network, hence predicting the degree to which they may be evolutionary related and homologous.
    We compiled two datasets of pairs of proteins, each pair being characterised by seven distinct features. We performed an exhaustive search through all possible combinations of features, for the problem of separating remote homologous from analogous pairs, we note that significant performance gain was obtained by the inclusion of sequence and structure information. We find that the use of a linear classifier was enough to discriminate a protein pair at the family level. However, at the superfamily level, to detect remote homologous pairs was a relatively harder problem. We find that the use of nonlinear classifiers achieve significantly higher accuracies.
    In this paper, we compare three different pattern classification methods on two problems formulated as detecting evolutionary and functional relationships between pairs of proteins, and from extensive cross validation and feature selection based studies quantify the average limits and uncertainties with which such predictions may be made. Feature selection points to a \\"knowledge gap\\" in currently available functional annotations. We demonstrate how the scheme may be employed in a framework to associate an individual protein with an existing family of evolutionarily related proteins.

  19. Physics behind the mechanical nucleosome positioning code

    NASA Astrophysics Data System (ADS)

    Zuiddam, Martijn; Everaers, Ralf; Schiessel, Helmut

    2017-11-01

    The positions along DNA molecules of nucleosomes, the most abundant DNA-protein complexes in cells, are influenced by the sequence-dependent DNA mechanics and geometry. This leads to the "nucleosome positioning code", a preference of nucleosomes for certain sequence motives. Here we introduce a simplified model of the nucleosome where a coarse-grained DNA molecule is frozen into an idealized superhelical shape. We calculate the exact sequence preferences of our nucleosome model and find it to reproduce qualitatively all the main features known to influence nucleosome positions. Moreover, using well-controlled approximations to this model allows us to come to a detailed understanding of the physics behind the sequence preferences of nucleosomes.

  20. Topology of membrane proteins-predictions, limitations and variations.

    PubMed

    Tsirigos, Konstantinos D; Govindarajan, Sudha; Bassot, Claudio; Västermark, Åke; Lamb, John; Shu, Nanjiang; Elofsson, Arne

    2017-10-26

    Transmembrane proteins perform a variety of important biological functions necessary for the survival and growth of the cells. Membrane proteins are built up by transmembrane segments that span the lipid bilayer. The segments can either be in the form of hydrophobic alpha-helices or beta-sheets which create a barrel. A fundamental aspect of the structure of transmembrane proteins is the membrane topology, that is, the number of transmembrane segments, their position in the protein sequence and their orientation in the membrane. Along these lines, many predictive algorithms for the prediction of the topology of alpha-helical and beta-barrel transmembrane proteins exist. The newest algorithms obtain an accuracy close to 80% both for alpha-helical and beta-barrel transmembrane proteins. However, lately it has been shown that the simplified picture presented when describing a protein family by its topology is limited. To demonstrate this, we highlight examples where the topology is either not conserved in a protein superfamily or where the structure cannot be described solely by the topology of a protein. The prediction of these non-standard features from sequence alone was not successful until the recent revolutionary progress in 3D-structure prediction of proteins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Ancestral and derived protein import pathways in the mitochondrion of Reclinomonas americana.

    PubMed

    Tong, Janette; Dolezal, Pavel; Selkrig, Joel; Crawford, Simon; Simpson, Alastair G B; Noinaj, Nicholas; Buchanan, Susan K; Gabriel, Kipros; Lithgow, Trevor

    2011-05-01

    The evolution of mitochondria from ancestral bacteria required that new protein transport machinery be established. Recent controversy over the evolution of these new molecular machines hinges on the degree to which ancestral bacterial transporters contributed during the establishment of the new protein import pathway. Reclinomonas americana is a unicellular eukaryote with the most gene-rich mitochondrial genome known, and the large collection of membrane proteins encoded on the mitochondrial genome of R. americana includes a bacterial-type SecY protein transporter. Analysis of expressed sequence tags shows R. americana also has components of a mitochondrial protein translocase or "translocase in the inner mitochondrial membrane complex." Along with several other membrane proteins encoded on the mitochondrial genome Cox11, an assembly factor for cytochrome c oxidase retains sequence features suggesting that it is assembled by the SecY complex in R. americana. Despite this, protein import studies show that the RaCox11 protein is suited for import into mitochondria and functional complementation if the gene is transferred into the nucleus of yeast. Reclinomonas americana provides direct evidence that bacterial protein transport pathways were retained, alongside the evolving mitochondrial protein import machinery, shedding new light on the process of mitochondrial evolution.

  2. Degenerative minimalism in the genome of a psyllid endosymbiont.

    PubMed

    Clark, M A; Baumann, L; Thao, M L; Moran, N A; Baumann, P

    2001-03-01

    Psyllids, like aphids, feed on plant phloem sap and are obligately associated with prokaryotic endosymbionts acquired through vertical transmission from an ancestral infection. We have sequenced 37 kb of DNA of the genome of Carsonella ruddii, the endosymbiont of psyllids, and found that it has a number of unusual properties revealing a more extreme case of degeneration than was previously reported from studies of eubacterial genomes, including that of the aphid endosymbiont Buchnera aphidicola. Among the unusual properties are an exceptionally low guanine-plus-cytosine content (19.9%), almost complete absence of intergenic spaces, operon fusion, and lack of the usual promoter sequences upstream of 16S rDNA. These features suggest the synthesis of long mRNAs and translational coupling. The most extreme instances of base compositional bias occur in the genes encoding proteins that have less highly conserved amino acid sequences; the guanine-plus-cytosine content of some protein-coding sequences is as low as 10%. The shift in base composition has a large effect on proteins: in polypeptides of C. ruddii, half of the residues consist of five amino acids with codons low in guanine plus cytosine. Furthermore, the proteins of C. ruddii are reduced in size, with an average of about 9% fewer amino acids than in homologous proteins of related bacteria. These observations suggest that the C. ruddii genome is not subject to constraints that limit the evolution of other known eubacteria.

  3. Conformational diversity analysis reveals three functional mechanisms in proteins

    PubMed Central

    Fornasari, María Silvina

    2017-01-01

    Protein motions are a key feature to understand biological function. Recently, a large-scale analysis of protein conformational diversity showed a positively skewed distribution with a peak at 0.5 Å C-alpha root-mean-square-deviation (RMSD). To understand this distribution in terms of structure-function relationships, we studied a well curated and large dataset of ~5,000 proteins with experimentally determined conformational diversity. We searched for global behaviour patterns studying how structure-based features change among the available conformer population for each protein. This procedure allowed us to describe the RMSD distribution in terms of three main protein classes sharing given properties. The largest of these protein subsets (~60%), which we call “rigid” (average RMSD = 0.83 Å), has no disordered regions, shows low conformational diversity, the largest tunnels and smaller and buried cavities. The two additional subsets contain disordered regions, but with differential sequence composition and behaviour. Partially disordered proteins have on average 67% of their conformers with disordered regions, average RMSD = 1.1 Å, the highest number of hinges and the longest disordered regions. In contrast, malleable proteins have on average only 25% of disordered conformers and average RMSD = 1.3 Å, flexible cavities affected in size by the presence of disordered regions and show the highest diversity of cognate ligands. Proteins in each set are mostly non-homologous to each other, share no given fold class, nor functional similarity but do share features derived from their conformer population. These shared features could represent conformational mechanisms related with biological functions. PMID:28192432

  4. TRX-LOGOS - a graphical tool to demonstrate DNA information content dependent upon backbone dynamics in addition to base sequence.

    PubMed

    Fortin, Connor H; Schulze, Katharina V; Babbitt, Gregory A

    2015-01-01

    It is now widely-accepted that DNA sequences defining DNA-protein interactions functionally depend upon local biophysical features of DNA backbone that are important in defining sites of binding interaction in the genome (e.g. DNA shape, charge and intrinsic dynamics). However, these physical features of DNA polymer are not directly apparent when analyzing and viewing Shannon information content calculated at single nucleobases in a traditional sequence logo plot. Thus, sequence logos plots are severely limited in that they convey no explicit information regarding the structural dynamics of DNA backbone, a feature often critical to binding specificity. We present TRX-LOGOS, an R software package and Perl wrapper code that interfaces the JASPAR database for computational regulatory genomics. TRX-LOGOS extends the traditional sequence logo plot to include Shannon information content calculated with regard to the dinucleotide-based BI-BII conformation shifts in phosphate linkages on the DNA backbone, thereby adding a visual measure of intrinsic DNA flexibility that can be critical for many DNA-protein interactions. TRX-LOGOS is available as an R graphics module offered at both SourceForge and as a download supplement at this journal. To demonstrate the general utility of TRX logo plots, we first calculated the information content for 416 Saccharomyces cerevisiae transcription factor binding sites functionally confirmed in the Yeastract database and matched to previously published yeast genomic alignments. We discovered that flanking regions contain significantly elevated information content at phosphate linkages than can be observed at nucleobases. We also examined broader transcription factor classifications defined by the JASPAR database, and discovered that many general signatures of transcription factor binding are locally more information rich at the level of DNA backbone dynamics than nucleobase sequence. We used TRX-logos in combination with MEGA 6.0 software for molecular evolutionary genetics analysis to visually compare the human Forkhead box/FOX protein evolution to its binding site evolution. We also compared the DNA binding signatures of human TP53 tumor suppressor determined by two different laboratory methods (SELEX and ChIP-seq). Further analysis of the entire yeast genome, center aligned at the start codon, also revealed a distinct sequence-independent 3 bp periodic pattern in information content, present only in coding region, and perhaps indicative of the non-random organization of the genetic code. TRX-LOGOS is useful in any situation in which important information content in DNA can be better visualized at the positions of phosphate linkages (i.e. dinucleotides) where the dynamic properties of the DNA backbone functions to facilitate DNA-protein interaction.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoekstra, M.F.; Ou, A.C.; DeMaggio, A.J.

    In simple eukaryotes, protein kinases regulate mitotic and meiotic cell cycles, the response to polypeptide pheromones, and the initiation of nuclear DNA synthesis. The protein HRR25 from the budding yeast Saccharomyces cerevisiae was defined by the mutation hrr25-1. This mutation resulted in sensitivity to continuous expression of the HO double-strand endonuclease, to methyl methanesulfonate, and to x-irradiation. Homozygotes of hrr25-1 were unable to sporulate and disruption and deletion of HRR25 interfered with mitotic and meiotic cell division. Sequence analysis revealed two distinctive regions in the protein. The NH{sub 2}-terminus of HRR25 contains the hallmark features of protein kinases, whereas themore » COOH-terminus is rich in proline and glutamine. Mutations in HRR25 at conserved residues found in all protein kinases inactivated the gene, and these mutants exhibited the hrr25 null phenotypes. Taken together, the hrr25 mutant phenotypes and the features of the gene product indicate that HRR25 is a distinctive member of the protein kinase superfamily.« less

  6. Structural Determination of Functional Domains in Early B-cell Factor (EBF) Family of Transcription Factors Reveals Similarities to Rel DNA-binding Proteins and a Novel Dimerization Motif*

    PubMed Central

    Siponen, Marina I.; Wisniewska, Magdalena; Lehtiö, Lari; Johansson, Ida; Svensson, Linda; Raszewski, Grzegorz; Nilsson, Lennart; Sigvardsson, Mikael; Berglund, Helena

    2010-01-01

    The early B-cell factor (EBF) transcription factors are central regulators of development in several organs and tissues. This protein family shows low sequence similarity to other protein families, which is why structural information for the functional domains of these proteins is crucial to understand their biochemical features. We have used a modular approach to determine the crystal structures of the structured domains in the EBF family. The DNA binding domain reveals a striking resemblance to the DNA binding domains of the Rel homology superfamily of transcription factors but contains a unique zinc binding structure, termed zinc knuckle. Further the EBF proteins contain an IPT/TIG domain and an atypical helix-loop-helix domain with a novel type of dimerization motif. The data presented here provide insights into unique structural features of the EBF proteins and open possibilities for detailed molecular investigations of this important transcription factor family. PMID:20592035

  7. Identification and characterization of plastid-type proteins from sequence-attributed features using machine learning

    PubMed Central

    2013-01-01

    Background Plastids are an important component of plant cells, being the site of manufacture and storage of chemical compounds used by the cell, and contain pigments such as those used in photosynthesis, starch synthesis/storage, cell color etc. They are essential organelles of the plant cell, also present in algae. Recent advances in genomic technology and sequencing efforts is generating a huge amount of DNA sequence data every day. The predicted proteome of these genomes needs annotation at a faster pace. In view of this, one such annotation need is to develop an automated system that can distinguish between plastid and non-plastid proteins accurately, and further classify plastid-types based on their functionality. We compared the amino acid compositions of plastid proteins with those of non-plastid ones and found significant differences, which were used as a basis to develop various feature-based prediction models using similarity-search and machine learning. Results In this study, we developed separate Support Vector Machine (SVM) trained classifiers for characterizing the plastids in two steps: first distinguishing the plastid vs. non-plastid proteins, and then classifying the identified plastids into their various types based on their function (chloroplast, chromoplast, etioplast, and amyloplast). Five diverse protein features: amino acid composition, dipeptide composition, the pseudo amino acid composition, Nterminal-Center-Cterminal composition and the protein physicochemical properties are used to develop SVM models. Overall, the dipeptide composition-based module shows the best performance with an accuracy of 86.80% and Matthews Correlation Coefficient (MCC) of 0.74 in phase-I and 78.60% with a MCC of 0.44 in phase-II. On independent test data, this model also performs better with an overall accuracy of 76.58% and 74.97% in phase-I and phase-II, respectively. The similarity-based PSI-BLAST module shows very low performance with about 50% prediction accuracy for distinguishing plastid vs. non-plastids and only 20% in classifying various plastid-types, indicating the need and importance of machine learning algorithms. Conclusion The current work is a first attempt to develop a methodology for classifying various plastid-type proteins. The prediction modules have also been made available as a web tool, PLpred available at http://bioinfo.okstate.edu/PLpred/ for real time identification/characterization. We believe this tool will be very useful in the functional annotation of various genomes. PMID:24266945

  8. The complete general secretory pathway in gram-negative bacteria.

    PubMed Central

    Pugsley, A P

    1993-01-01

    The unifying feature of all proteins that are transported out of the cytoplasm of gram-negative bacteria by the general secretory pathway (GSP) is the presence of a long stretch of predominantly hydrophobic amino acids, the signal sequence. The interaction between signal sequence-bearing proteins and the cytoplasmic membrane may be a spontaneous event driven by the electrochemical energy potential across the cytoplasmic membrane, leading to membrane integration. The translocation of large, hydrophilic polypeptide segments to the periplasmic side of this membrane almost always requires at least six different proteins encoded by the sec genes and is dependent on both ATP hydrolysis and the electrochemical energy potential. Signal peptidases process precursors with a single, amino-terminal signal sequence, allowing them to be released into the periplasm, where they may remain or whence they may be inserted into the outer membrane. Selected proteins may also be transported across this membrane for assembly into cell surface appendages or for release into the extracellular medium. Many bacteria secrete a variety of structurally different proteins by a common pathway, referred to here as the main terminal branch of the GSP. This recently discovered branch pathway comprises at least 14 gene products. Other, simpler terminal branches of the GSP are also used by gram-negative bacteria to secrete a more limited range of extracellular proteins. PMID:8096622

  9. Molecular machinery of signal transduction and cell cycle regulation in Plasmodium.

    PubMed

    Koyama, Fernanda C; Chakrabarti, Debopam; Garcia, Célia R S

    2009-05-01

    The regulation of the Plasmodium cell cycle is not understood. Although the Plasmodium falciparum genome is completely sequenced, about 60% of the predicted proteins share little or no sequence similarity with other eukaryotes. This feature impairs the identification of important proteins participating in the regulation of the cell cycle. There are several open questions that concern cell cycle progression in malaria parasites, including the mechanism by which multiple nuclear divisions is controlled and how the cell cycle is managed in all phases of their complex life cycle. Cell cycle synchrony of the parasite population within the host, as well as the circadian rhythm of proliferation, are striking features of some Plasmodium species, the molecular basis of which remains to be elucidated. In this review we discuss the role of indole-related molecules as signals that modulate the cell cycle in Plasmodium and other eukaryotes, and we also consider the possible role of kinases in the signal transduction and in the responses it triggers.

  10. Discrete Ramanujan transform for distinguishing the protein coding regions from other regions.

    PubMed

    Hua, Wei; Wang, Jiasong; Zhao, Jian

    2014-01-01

    Based on the study of Ramanujan sum and Ramanujan coefficient, this paper suggests the concepts of discrete Ramanujan transform and spectrum. Using Voss numerical representation, one maps a symbolic DNA strand as a numerical DNA sequence, and deduces the discrete Ramanujan spectrum of the numerical DNA sequence. It is well known that of discrete Fourier power spectrum of protein coding sequence has an important feature of 3-base periodicity, which is widely used for DNA sequence analysis by the technique of discrete Fourier transform. It is performed by testing the signal-to-noise ratio at frequency N/3 as a criterion for the analysis, where N is the length of the sequence. The results presented in this paper show that the property of 3-base periodicity can be only identified as a prominent spike of the discrete Ramanujan spectrum at period 3 for the protein coding regions. The signal-to-noise ratio for discrete Ramanujan spectrum is defined for numerical measurement. Therefore, the discrete Ramanujan spectrum and the signal-to-noise ratio of a DNA sequence can be used for distinguishing the protein coding regions from the noncoding regions. All the exon and intron sequences in whole chromosomes 1, 2, 3 and 4 of Caenorhabditis elegans have been tested and the histograms and tables from the computational results illustrate the reliability of our method. In addition, we have analyzed theoretically and gotten the conclusion that the algorithm for calculating discrete Ramanujan spectrum owns the lower computational complexity and higher computational accuracy. The computational experiments show that the technique by using discrete Ramanujan spectrum for classifying different DNA sequences is a fast and effective method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. A new family of β-helix proteins with similarities to the polysaccharide lyases

    DOE PAGES

    Close, Devin W.; D'Angelo, Sara; Bradbury, Andrew R. M.

    2014-09-27

    Microorganisms that degrade biomass produce diverse assortments of carbohydrate-active enzymes and binding modules. Despite tremendous advances in the genomic sequencing of these organisms, many genes do not have an ascribed function owing to low sequence identity to genes that have been annotated. Consequently, biochemical and structural characterization of genes with unknown function is required to complement the rapidly growing pool of genomic sequencing data. A protein with previously unknown function (Cthe_2159) was recently isolated in a genome-wide screen using phage display to identify cellulose-binding protein domains from the biomass-degrading bacterium Clostridium thermocellum. Here, the crystal structure of Cthe_2159 is presentedmore » and it is shown that it is a unique right-handed parallel β-helix protein. Despite very low sequence identity to known β-helix or carbohydrate-active proteins, Cthe_2159 displays structural features that are very similar to those of polysaccharide lyase (PL) families 1, 3, 6 and 9. Cthe_2159 is conserved across bacteria and some archaea and is a member of the domain of unknown function family DUF4353. This suggests that Cthe_2159 is the first representative of a previously unknown family of cellulose and/or acid-sugar binding β-helix proteins that share structural similarities with PLs. More importantly, these results demonstrate how functional annotation by biochemical and structural analysis remains a critical tool in the characterization of new gene products.« less

  12. A new family of β-helix proteins with similarities to the polysaccharide lyases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Close, Devin W.; D'Angelo, Sara; Bradbury, Andrew R. M.

    Microorganisms that degrade biomass produce diverse assortments of carbohydrate-active enzymes and binding modules. Despite tremendous advances in the genomic sequencing of these organisms, many genes do not have an ascribed function owing to low sequence identity to genes that have been annotated. Consequently, biochemical and structural characterization of genes with unknown function is required to complement the rapidly growing pool of genomic sequencing data. A protein with previously unknown function (Cthe_2159) was recently isolated in a genome-wide screen using phage display to identify cellulose-binding protein domains from the biomass-degrading bacterium Clostridium thermocellum. Here, the crystal structure of Cthe_2159 is presentedmore » and it is shown that it is a unique right-handed parallel β-helix protein. Despite very low sequence identity to known β-helix or carbohydrate-active proteins, Cthe_2159 displays structural features that are very similar to those of polysaccharide lyase (PL) families 1, 3, 6 and 9. Cthe_2159 is conserved across bacteria and some archaea and is a member of the domain of unknown function family DUF4353. This suggests that Cthe_2159 is the first representative of a previously unknown family of cellulose and/or acid-sugar binding β-helix proteins that share structural similarities with PLs. More importantly, these results demonstrate how functional annotation by biochemical and structural analysis remains a critical tool in the characterization of new gene products.« less

  13. JDet: interactive calculation and visualization of function-related conservation patterns in multiple sequence alignments and structures.

    PubMed

    Muth, Thilo; García-Martín, Juan A; Rausell, Antonio; Juan, David; Valencia, Alfonso; Pazos, Florencio

    2012-02-15

    We have implemented in a single package all the features required for extracting, visualizing and manipulating fully conserved positions as well as those with a family-dependent conservation pattern in multiple sequence alignments. The program allows, among other things, to run different methods for extracting these positions, combine the results and visualize them in protein 3D structures and sequence spaces. JDet is a multiplatform application written in Java. It is freely available, including the source code, at http://csbg.cnb.csic.es/JDet. The package includes two of our recently developed programs for detecting functional positions in protein alignments (Xdet and S3Det), and support for other methods can be added as plug-ins. A help file and a guided tutorial for JDet are also available.

  14. GBshape: a genome browser database for DNA shape annotations

    PubMed Central

    Chiu, Tsu-Pei; Yang, Lin; Zhou, Tianyin; Main, Bradley J.; Parker, Stephen C.J.; Nuzhdin, Sergey V.; Tullius, Thomas D.; Rohs, Remo

    2015-01-01

    Many regulatory mechanisms require a high degree of specificity in protein-DNA binding. Nucleotide sequence does not provide an answer to the question of why a protein binds only to a small subset of the many putative binding sites in the genome that share the same core motif. Whereas higher-order effects, such as chromatin accessibility, cooperativity and cofactors, have been described, DNA shape recently gained attention as another feature that fine-tunes the DNA binding specificities of some transcription factor families. Our Genome Browser for DNA shape annotations (GBshape; freely available at http://rohslab.cmb.usc.edu/GBshape/) provides minor groove width, propeller twist, roll, helix twist and hydroxyl radical cleavage predictions for the entire genomes of 94 organisms. Additional genomes can easily be added using the GBshape framework. GBshape can be used to visualize DNA shape annotations qualitatively in a genome browser track format, and to download quantitative values of DNA shape features as a function of genomic position at nucleotide resolution. As biological applications, we illustrate the periodicity of DNA shape features that are present in nucleosome-occupied sequences from human, fly and worm, and we demonstrate structural similarities between transcription start sites in the genomes of four Drosophila species. PMID:25326329

  15. Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently

    PubMed Central

    Currin, Andrew; Swainston, Neil; Day, Philip J.

    2015-01-01

    The amino acid sequence of a protein affects both its structure and its function. Thus, the ability to modify the sequence, and hence the structure and activity, of individual proteins in a systematic way, opens up many opportunities, both scientifically and (as we focus on here) for exploitation in biocatalysis. Modern methods of synthetic biology, whereby increasingly large sequences of DNA can be synthesised de novo, allow an unprecedented ability to engineer proteins with novel functions. However, the number of possible proteins is far too large to test individually, so we need means for navigating the ‘search space’ of possible protein sequences efficiently and reliably in order to find desirable activities and other properties. Enzymologists distinguish binding (K d) and catalytic (k cat) steps. In a similar way, judicious strategies have blended design (for binding, specificity and active site modelling) with the more empirical methods of classical directed evolution (DE) for improving k cat (where natural evolution rarely seeks the highest values), especially with regard to residues distant from the active site and where the functional linkages underpinning enzyme dynamics are both unknown and hard to predict. Epistasis (where the ‘best’ amino acid at one site depends on that or those at others) is a notable feature of directed evolution. The aim of this review is to highlight some of the approaches that are being developed to allow us to use directed evolution to improve enzyme properties, often dramatically. We note that directed evolution differs in a number of ways from natural evolution, including in particular the available mechanisms and the likely selection pressures. Thus, we stress the opportunities afforded by techniques that enable one to map sequence to (structure and) activity in silico, as an effective means of modelling and exploring protein landscapes. Because known landscapes may be assessed and reasoned about as a whole, simultaneously, this offers opportunities for protein improvement not readily available to natural evolution on rapid timescales. Intelligent landscape navigation, informed by sequence-activity relationships and coupled to the emerging methods of synthetic biology, offers scope for the development of novel biocatalysts that are both highly active and robust. PMID:25503938

  16. Annotation of Alternatively Spliced Proteins and Transcripts with Protein-Folding Algorithms and Isoform-Level Functional Networks.

    PubMed

    Li, Hongdong; Zhang, Yang; Guan, Yuanfang; Menon, Rajasree; Omenn, Gilbert S

    2017-01-01

    Tens of thousands of splice isoforms of proteins have been catalogued as predicted sequences from transcripts in humans and other species. Relatively few have been characterized biochemically or structurally. With the extensive development of protein bioinformatics, the characterization and modeling of isoform features, isoform functions, and isoform-level networks have advanced notably. Here we present applications of the I-TASSER family of algorithms for folding and functional predictions and the IsoFunc, MIsoMine, and Hisonet data resources for isoform-level analyses of network and pathway-based functional predictions and protein-protein interactions. Hopefully, predictions and insights from protein bioinformatics will stimulate many experimental validation studies.

  17. Sequence determinants of improved CRISPR sgRNA design.

    PubMed

    Xu, Han; Xiao, Tengfei; Chen, Chen-Hao; Li, Wei; Meyer, Clifford A; Wu, Qiu; Wu, Di; Cong, Le; Zhang, Feng; Liu, Jun S; Brown, Myles; Liu, X Shirley

    2015-08-01

    The CRISPR/Cas9 system has revolutionized mammalian somatic cell genetics. Genome-wide functional screens using CRISPR/Cas9-mediated knockout or dCas9 fusion-mediated inhibition/activation (CRISPRi/a) are powerful techniques for discovering phenotype-associated gene function. We systematically assessed the DNA sequence features that contribute to single guide RNA (sgRNA) efficiency in CRISPR-based screens. Leveraging the information from multiple designs, we derived a new sequence model for predicting sgRNA efficiency in CRISPR/Cas9 knockout experiments. Our model confirmed known features and suggested new features including a preference for cytosine at the cleavage site. The model was experimentally validated for sgRNA-mediated mutation rate and protein knockout efficiency. Tested on independent data sets, the model achieved significant results in both positive and negative selection conditions and outperformed existing models. We also found that the sequence preference for CRISPRi/a is substantially different from that for CRISPR/Cas9 knockout and propose a new model for predicting sgRNA efficiency in CRISPRi/a experiments. These results facilitate the genome-wide design of improved sgRNA for both knockout and CRISPRi/a studies. © 2015 Xu et al.; Published by Cold Spring Harbor Laboratory Press.

  18. Predicting protein amidation sites by orchestrating amino acid sequence features

    NASA Astrophysics Data System (ADS)

    Zhao, Shuqiu; Yu, Hua; Gong, Xiujun

    2017-08-01

    Amidation is the fourth major category of post-translational modifications, which plays an important role in physiological and pathological processes. Identifying amidation sites can help us understanding the amidation and recognizing the original reason of many kinds of diseases. But the traditional experimental methods for predicting amidation sites are often time-consuming and expensive. In this study, we propose a computational method for predicting amidation sites by orchestrating amino acid sequence features. Three kinds of feature extraction methods are used to build a feature vector enabling to capture not only the physicochemical properties but also position related information of the amino acids. An extremely randomized trees algorithm is applied to choose the optimal features to remove redundancy and dependence among components of the feature vector by a supervised fashion. Finally the support vector machine classifier is used to label the amidation sites. When tested on an independent data set, it shows that the proposed method performs better than all the previous ones with the prediction accuracy of 0.962 at the Matthew's correlation coefficient of 0.89 and area under curve of 0.964.

  19. @TOME-2: a new pipeline for comparative modeling of protein-ligand complexes.

    PubMed

    Pons, Jean-Luc; Labesse, Gilles

    2009-07-01

    @TOME 2.0 is new web pipeline dedicated to protein structure modeling and small ligand docking based on comparative analyses. @TOME 2.0 allows fold recognition, template selection, structural alignment editing, structure comparisons, 3D-model building and evaluation. These tasks are routinely used in sequence analyses for structure prediction. In our pipeline the necessary software is efficiently interconnected in an original manner to accelerate all the processes. Furthermore, we have also connected comparative docking of small ligands that is performed using protein-protein superposition. The input is a simple protein sequence in one-letter code with no comment. The resulting 3D model, protein-ligand complexes and structural alignments can be visualized through dedicated Web interfaces or can be downloaded for further studies. These original features will aid in the functional annotation of proteins and the selection of templates for molecular modeling and virtual screening. Several examples are described to highlight some of the new functionalities provided by this pipeline. The server and its documentation are freely available at http://abcis.cbs.cnrs.fr/AT2/

  20. Simultaneous optimization of biomolecular energy function on features from small molecules and macromolecules

    PubMed Central

    Park, Hahnbeom; Bradley, Philip; Greisen, Per; Liu, Yuan; Mulligan, Vikram Khipple; Kim, David E.; Baker, David; DiMaio, Frank

    2017-01-01

    Most biomolecular modeling energy functions for structure prediction, sequence design, and molecular docking, have been parameterized using existing macromolecular structural data; this contrasts molecular mechanics force fields which are largely optimized using small-molecule data. In this study, we describe an integrated method that enables optimization of a biomolecular modeling energy function simultaneously against small-molecule thermodynamic data and high-resolution macromolecular structural data. We use this approach to develop a next-generation Rosetta energy function that utilizes a new anisotropic implicit solvation model, and an improved electrostatics and Lennard-Jones model, illustrating how energy functions can be considerably improved in their ability to describe large-scale energy landscapes by incorporating both small-molecule and macromolecule data. The energy function improves performance in a wide range of protein structure prediction challenges, including monomeric structure prediction, protein-protein and protein-ligand docking, protein sequence design, and prediction of the free energy changes by mutation, while reasonably recapitulating small-molecule thermodynamic properties. PMID:27766851

  1. Kernel based machine learning algorithm for the efficient prediction of type III polyketide synthase family of proteins.

    PubMed

    Mallika, V; Sivakumar, K C; Jaichand, S; Soniya, E V

    2010-07-13

    Type III Polyketide synthases (PKS) are family of proteins considered to have significant roles in the biosynthesis of various polyketides in plants, fungi and bacteria. As these proteins shows positive effects to human health, more researches are going on regarding this particular protein. Developing a tool to identify the probability of sequence being a type III polyketide synthase will minimize the time consumption and manpower efforts. In this approach, we have designed and implemented PKSIIIpred, a high performance prediction server for type III PKS where the classifier is Support Vector Machines (SVMs). Based on the limited training dataset, the tool efficiently predicts the type III PKS superfamily of proteins with high sensitivity and specificity. The PKSIIIpred is available at http://type3pks.in/prediction/. We expect that this tool may serve as a useful resource for type III PKS researchers. Currently work is being progressed for further betterment of prediction accuracy by including more sequence features in the training dataset.

  2. 3DNALandscapes: a database for exploring the conformational features of DNA.

    PubMed

    Zheng, Guohui; Colasanti, Andrew V; Lu, Xiang-Jun; Olson, Wilma K

    2010-01-01

    3DNALandscapes, located at: http://3DNAscapes.rutgers.edu, is a new database for exploring the conformational features of DNA. In contrast to most structural databases, which archive the Cartesian coordinates and/or derived parameters and images for individual structures, 3DNALandscapes enables searches of conformational information across multiple structures. The database contains a wide variety of structural parameters and molecular images, computed with the 3DNA software package and known to be useful for characterizing and understanding the sequence-dependent spatial arrangements of the DNA sugar-phosphate backbone, sugar-base side groups, base pairs, base-pair steps, groove structure, etc. The data comprise all DNA-containing structures--both free and bound to proteins, drugs and other ligands--currently available in the Protein Data Bank. The web interface allows the user to link, report, plot and analyze this information from numerous perspectives and thereby gain insight into DNA conformation, deformability and interactions in different sequence and structural contexts. The data accumulated from known, well-resolved DNA structures can serve as useful benchmarks for the analysis and simulation of new structures. The collective data can also help to understand how DNA deforms in response to proteins and other molecules and undergoes conformational rearrangements.

  3. Improve the prediction of RNA-binding residues using structural neighbours.

    PubMed

    Li, Quan; Cao, Zanxia; Liu, Haiyan

    2010-03-01

    The interactions between RNA-binding proteins (RBPs) with RNA play key roles in managing some of the cell's basic functions. The identification and prediction of RNA binding sites is important for understanding the RNA-binding mechanism. Computational approaches are being developed to predict RNA-binding residues based on the sequence- or structure-derived features. To achieve higher prediction accuracy, improvements on current prediction methods are necessary. We identified that the structural neighbors of RNA-binding and non-RNA-binding residues have different amino acid compositions. Combining this structure-derived feature with evolutionary (PSSM) and other structural information (secondary structure and solvent accessibility) significantly improves the predictions over existing methods. Using a multiple linear regression approach and 6-fold cross validation, our best model can achieve an overall correct rate of 87.8% and MCC of 0.47, with a specificity of 93.4%, correctly predict 52.4% of the RNA-binding residues for a dataset containing 107 non-homologous RNA-binding proteins. Compared with existing methods, including the amino acid compositions of structure neighbors lead to clearly improvement. A web server was developed for predicting RNA binding residues in a protein sequence (or structure),which is available at http://mcgill.3322.org/RNA/.

  4. Polypeptide having or assisting in carbohydrate material degrading activity and uses thereof

    DOEpatents

    Schooneveld-Bergmans, Margot Elisabeth Francoise; Heijne, Wilbert Herman Marie; Los, Alrik Pieter

    2016-02-16

    The invention relates to a polypeptide which comprises the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 76% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 76% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well as the amino acid sequence of the full-length functional polypeptide and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.

  5. Polypeptide having beta-glucosidase activity and uses thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoonneveld-Bergmans, Margot Elisabeth Francoise; Heijne, Wilbert Herman Marie; De Jong, Rene Marcel

    The invention relates to a polypeptide comprising the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 96% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 96% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well asmore » the amino acid sequence of the full-length functional polypeptide and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.« less

  6. Polypeptide having swollenin activity and uses thereof

    DOEpatents

    Schoonneveld-Bergmans, Margot Elizabeth Francoise; Heijne, Wilbert Herman Marie; Vlasie, Monica D; Damveld, Robbertus Antonius

    2015-11-04

    The invention relates to a polypeptide comprising the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 73% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 73% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well as the amino acid sequence of the full-length functional polypeptide and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.

  7. Polypeptide having beta-glucosidase activity and uses thereof

    DOEpatents

    Schooneveld-Bergmans, Margot Elisabeth Francoise; Heijne, Wilbert Herman Marie; De Jong, Rene Marcel; Damveld, Robbertus Antonius

    2015-09-01

    The invention relates to a polypeptide comprising the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 70% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 70% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well as the amino acid sequence of the full-length functional polypeptide and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.

  8. Polypeptide having cellobiohydrolase activity and uses thereof

    DOEpatents

    Sagt, Cornelis Maria Jacobus; Schooneveld-Bergmans, Margot Elisabeth Francoise; Roubos, Johannes Andries; Los, Alrik Pieter

    2015-09-15

    The invention relates to a polypeptide comprising the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 93% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 93% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well as the amino acid sequence of the full-length functional polypeptide and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.

  9. Polypeptide having acetyl xylan esterase activity and uses thereof

    DOEpatents

    Schoonneveld-Bergmans, Margot Elisabeth Francoise; Heijne, Wilbert Herman Marie; Los, Alrik Pieter

    2015-10-20

    The invention relates to a polypeptide comprising the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 82% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 82% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well as the amino acid sequence of the full-length functional polypeptide and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.

  10. Polypeptide having carbohydrate degrading activity and uses thereof

    DOEpatents

    Schooneveld-Bergmans, Margot Elisabeth Francoise; Heijne, Wilbert Herman Marie; Vlasie, Monica Diana; Damveld, Robbertus Antonius

    2015-08-18

    The invention relates to a polypeptide comprising the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 73% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 73% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well as the amino acid sequence of the full-length functional polypeptide and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.

  11. High Precision Prediction of Functional Sites in Protein Structures

    PubMed Central

    Buturovic, Ljubomir; Wong, Mike; Tang, Grace W.; Altman, Russ B.; Petkovic, Dragutin

    2014-01-01

    We address the problem of assigning biological function to solved protein structures. Computational tools play a critical role in identifying potential active sites and informing screening decisions for further lab analysis. A critical parameter in the practical application of computational methods is the precision, or positive predictive value. Precision measures the level of confidence the user should have in a particular computed functional assignment. Low precision annotations lead to futile laboratory investigations and waste scarce research resources. In this paper we describe an advanced version of the protein function annotation system FEATURE, which achieved 99% precision and average recall of 95% across 20 representative functional sites. The system uses a Support Vector Machine classifier operating on the microenvironment of physicochemical features around an amino acid. We also compared performance of our method with state-of-the-art sequence-level annotator Pfam in terms of precision, recall and localization. To our knowledge, no other functional site annotator has been rigorously evaluated against these key criteria. The software and predictive models are incorporated into the WebFEATURE service at http://feature.stanford.edu/wf4.0-beta. PMID:24632601

  12. Systematic discovery of novel eukaryotic transcriptional regulators using sequence homology independent prediction.

    PubMed

    Bossi, Flavia; Fan, Jue; Xiao, Jun; Chandra, Lilyana; Shen, Max; Dorone, Yanniv; Wagner, Doris; Rhee, Seung Y

    2017-06-26

    The molecular function of a gene is most commonly inferred by sequence similarity. Therefore, genes that lack sufficient sequence similarity to characterized genes (such as certain classes of transcriptional regulators) are difficult to classify using most function prediction algorithms and have remained uncharacterized. To identify novel transcriptional regulators systematically, we used a feature-based pipeline to screen protein families of unknown function. This method predicted 43 transcriptional regulator families in Arabidopsis thaliana, 7 families in Drosophila melanogaster, and 9 families in Homo sapiens. Literature curation validated 12 of the predicted families to be involved in transcriptional regulation. We tested 33 out of the 195 Arabidopsis putative transcriptional regulators for their ability to activate transcription of a reporter gene in planta and found twelve coactivators, five of which had no prior literature support. To investigate mechanisms of action in which the predicted regulators might work, we looked for interactors of an Arabidopsis candidate that did not show transactivation activity in planta and found that it might work with other members of its own family and a subunit of the Polycomb Repressive Complex 2 to regulate transcription. Our results demonstrate the feasibility of assigning molecular function to proteins of unknown function without depending on sequence similarity. In particular, we identified novel transcriptional regulators using biological features enriched in transcription factors. The predictions reported here should accelerate the characterization of novel regulators.

  13. KEGG orthology-based annotation of the predicted proteome of Acropora digitifera: ZoophyteBase - an open access and searchable database of a coral genome

    PubMed Central

    2013-01-01

    Background Contemporary coral reef research has firmly established that a genomic approach is urgently needed to better understand the effects of anthropogenic environmental stress and global climate change on coral holobiont interactions. Here we present KEGG orthology-based annotation of the complete genome sequence of the scleractinian coral Acropora digitifera and provide the first comprehensive view of the genome of a reef-building coral by applying advanced bioinformatics. Description Sequences from the KEGG database of protein function were used to construct hidden Markov models. These models were used to search the predicted proteome of A. digitifera to establish complete genomic annotation. The annotated dataset is published in ZoophyteBase, an open access format with different options for searching the data. A particularly useful feature is the ability to use a Google-like search engine that links query words to protein attributes. We present features of the annotation that underpin the molecular structure of key processes of coral physiology that include (1) regulatory proteins of symbiosis, (2) planula and early developmental proteins, (3) neural messengers, receptors and sensory proteins, (4) calcification and Ca2+-signalling proteins, (5) plant-derived proteins, (6) proteins of nitrogen metabolism, (7) DNA repair proteins, (8) stress response proteins, (9) antioxidant and redox-protective proteins, (10) proteins of cellular apoptosis, (11) microbial symbioses and pathogenicity proteins, (12) proteins of viral pathogenicity, (13) toxins and venom, (14) proteins of the chemical defensome and (15) coral epigenetics. Conclusions We advocate that providing annotation in an open-access searchable database available to the public domain will give an unprecedented foundation to interrogate the fundamental molecular structure and interactions of coral symbiosis and allow critical questions to be addressed at the genomic level based on combined aspects of evolutionary, developmental, metabolic, and environmental perspectives. PMID:23889801

  14. Annotating Mutational Effects on Proteins and Protein Interactions: Designing Novel and Revisiting Existing Protocols.

    PubMed

    Li, Minghui; Goncearenco, Alexander; Panchenko, Anna R

    2017-01-01

    In this review we describe a protocol to annotate the effects of missense mutations on proteins, their functions, stability, and binding. For this purpose we present a collection of the most comprehensive databases which store different types of sequencing data on missense mutations, we discuss their relationships, possible intersections, and unique features. Next, we suggest an annotation workflow using the state-of-the art methods and highlight their usability, advantages, and limitations for different cases. Finally, we address a particularly difficult problem of deciphering the molecular mechanisms of mutations on proteins and protein complexes to understand the origins and mechanisms of diseases.

  15. A Molecular Genetics Laboratory Course Applying Bioinformatics and Cell Biology in the Context of Original Research

    PubMed Central

    Pruitt, Wendy M.; Robinson, Lucy C.

    2008-01-01

    Research based laboratory courses have been shown to stimulate student interest in science and to improve scientific skills. We describe here a project developed for a semester-long research-based laboratory course that accompanies a genetics lecture course. The project was designed to allow students to become familiar with the use of bioinformatics tools and molecular biology and genetic approaches while carrying out original research. Students were required to present their hypotheses, experiments, and results in a comprehensive lab report. The lab project concerned the yeast casein kinase 1 (CK1) protein kinase Yck2. CK1 protein kinases are present in all organisms and are well conserved in primary structure. These enzymes display sequence features that differ from other protein kinase subfamilies. Students identified such sequences within the CK1 subfamily, chose a sequence to analyze, used available structural data to determine possible functions for their sequences, and designed mutations within the sequences. After generating the mutant alleles, these were expressed in yeast and tested for function by using two growth assays. The student response to the project was positive, both in terms of knowledge and skills increases and interest in research, and several students are continuing the analysis of mutant alleles as summer projects. PMID:19047427

  16. Novel proteases from the genome of the carnivorous plant Drosera capensis: structural prediction and comparative analysis

    PubMed Central

    Butts, Carter T.; Bierma, Jan C.; Martin, Rachel W.

    2016-01-01

    In his 1875 monograph on insectivorous plants, Darwin described the feeding reactions of Drosera flypaper traps and predicted that their secretions contained a “ferment” similar to mammalian pepsin, an aspartic protease. Here we report a high-quality draft genome sequence for the cape sundew, Drosera capensis, the first genome of a carnivorous plant from order Caryophyllales, which also includes the Venus flytrap (Dionaea) and the tropical pitcher plants (Nepenthes). This species was selected in part for its hardiness and ease of cultivation, making it an excellent model organism for further investigations of plant carnivory. Analysis of predicted protein sequences yields genes encoding proteases homologous to those found in other plants, some of which display sequence and structural features that suggest novel functionalities. Because the sequence similarity to proteins of known structure is in most cases too low for traditional homology modeling, 3D structures of representative proteases are predicted using comparative modeling with all-atom refinement. Although the overall folds and active residues for these proteins are conserved, we find structural and sequence differences consistent with a diversity of substrate recognition patterns. Finally, we predict differences in substrate specificities using in silico experiments, providing targets for structure/function studies of novel enzymes with biological and technological significance. PMID:27353064

  17. Degradation signals for ubiquitin system proteolysis in Saccharomyces cerevisiae.

    PubMed Central

    Gilon, T; Chomsky, O; Kulka, R G

    1998-01-01

    Combinations of different ubiquitin-conjugating (Ubc) enzymes and other factors constitute subsidiary pathways of the ubiquitin system, each of which ubiquitinates a specific subset of proteins. There is evidence that certain sequence elements or structural motifs of target proteins are degradation signals which mark them for ubiquitination by a particular branch of the ubiquitin system and for subsequent degradation. Our aim was to devise a way of searching systematically for degradation signals and to determine to which ubiquitin system subpathways they direct the proteins. We have constructed two reporter gene libraries based on the lacZ or URA3 genes which, in Saccharomyces cerevisiae, express fusion proteins with a wide variety of C-terminal extensions. From these, we have isolated clones producing unstable fusion proteins which are stabilized in various ubc mutants. Among these are 10 clones whose products are stabilized in ubc6, ubc7 or ubc6ubc7 double mutants. The C-terminal extensions of these clones, which vary in length from 16 to 50 amino acid residues, are presumed to contain degradation signals channeling proteins for degradation via the UBC6 and/or UBC7 subpathways of the ubiquitin system. Some of these C-terminal tails share similar sequence motifs, and a feature common to almost all of these sequences is a highly hydrophobic region such as is usually located inside globular proteins or inserted into membranes. PMID:9582269

  18. Evolution of plant virus movement proteins from the 30K superfamily and of their homologs integrated in plant genomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mushegian, Arcady R., E-mail: mushegian2@gmail.com; Elena, Santiago F., E-mail: sfelena@ibmcp.upv.es; The Santa Fe Institute, Santa Fe, NM 87501

    Homologs of Tobacco mosaic virus 30K cell-to-cell movement protein are encoded by diverse plant viruses. Mechanisms of action and evolutionary origins of these proteins remain obscure. We expand the picture of conservation and evolution of the 30K proteins, producing sequence alignment of the 30K superfamily with the broadest phylogenetic coverage thus far and illuminating structural features of the core all-beta fold of these proteins. Integrated copies of pararetrovirus 30K movement genes are prevalent in euphyllophytes, with at least one copy intact in nearly every examined species, and mRNAs detected for most of them. Sequence analysis suggests repeated integrations, pseudogenizations, andmore » positive selection in those provirus genes. An unannotated 30K-superfamily gene in Arabidopsis thaliana genome is likely expressed as a fusion with the At1g37113 transcript. This molecular background of endopararetrovirus gene products in plants may change our view of virus infection and pathogenesis, and perhaps of cellular homeostasis in the hosts. - Highlights: • Sequence region shared by plant virus “30K” movement proteins has an all-beta fold. • Most euphyllophyte genomes contain integrated copies of pararetroviruses. • These integrated virus genomes often include intact movement protein genes. • Molecular evidence suggests that these “30K” genes may be selected for function.« less

  19. Evolutionary Descent of Prion Genes from the ZIP Family of Metal Ion Transporters

    PubMed Central

    Schmitt-Ulms, Gerold; Ehsani, Sepehr; Watts, Joel C.; Westaway, David; Wille, Holger

    2009-01-01

    In the more than twenty years since its discovery, both the phylogenetic origin and cellular function of the prion protein (PrP) have remained enigmatic. Insights into a possible function of PrP may be obtained through the characterization of its molecular neighborhood in cells. Quantitative interactome data demonstrated the spatial proximity of two metal ion transporters of the ZIP family, ZIP6 and ZIP10, to mammalian prion proteins in vivo. A subsequent bioinformatic analysis revealed the unexpected presence of a PrP-like amino acid sequence within the N-terminal, extracellular domain of a distinct sub-branch of the ZIP protein family that includes ZIP5, ZIP6 and ZIP10. Additional structural threading and orthologous sequence alignment analyses argued that the prion gene family is phylogenetically derived from a ZIP-like ancestral molecule. The level of sequence homology and the presence of prion protein genes in most chordate species place the split from the ZIP-like ancestor gene at the base of the chordate lineage. This relationship explains structural and functional features found within mammalian prion proteins as elements of an ancient involvement in the transmembrane transport of divalent cations. The phylogenetic and spatial connection to ZIP proteins is expected to open new avenues of research to elucidate the biology of the prion protein in health and disease. PMID:19784368

  20. GenoMycDB: a database for comparative analysis of mycobacterial genes and genomes.

    PubMed

    Catanho, Marcos; Mascarenhas, Daniel; Degrave, Wim; Miranda, Antonio Basílio de

    2006-03-31

    Several databases and computational tools have been created with the aim of organizing, integrating and analyzing the wealth of information generated by large-scale sequencing projects of mycobacterial genomes and those of other organisms. However, with very few exceptions, these databases and tools do not allow for massive and/or dynamic comparison of these data. GenoMycDB (http://www.dbbm.fiocruz.br/GenoMycDB) is a relational database built for large-scale comparative analyses of completely sequenced mycobacterial genomes, based on their predicted protein content. Its central structure is composed of the results obtained after pair-wise sequence alignments among all the predicted proteins coded by the genomes of six mycobacteria: Mycobacterium tuberculosis (strains H37Rv and CDC1551), M. bovis AF2122/97, M. avium subsp. paratuberculosis K10, M. leprae TN, and M. smegmatis MC2 155. The database stores the computed similarity parameters of every aligned pair, providing for each protein sequence the predicted subcellular localization, the assigned cluster of orthologous groups, the features of the corresponding gene, and links to several important databases. Tables containing pairs or groups of potential homologs between selected species/strains can be produced dynamically by user-defined criteria, based on one or multiple sequence similarity parameters. In addition, searches can be restricted according to the predicted subcellular localization of the protein, the DNA strand of the corresponding gene and/or the description of the protein. Massive data search and/or retrieval are available, and different ways of exporting the result are offered. GenoMycDB provides an on-line resource for the functional classification of mycobacterial proteins as well as for the analysis of genome structure, organization, and evolution.

  1. Mining for class-specific motifs in protein sequence classification

    PubMed Central

    2013-01-01

    Background In protein sequence classification, identification of the sequence motifs or n-grams that can precisely discriminate between classes is a more interesting scientific question than the classification itself. A number of classification methods aim at accurate classification but fail to explain which sequence features indeed contribute to the accuracy. We hypothesize that sequences in lower denominations (n-grams) can be used to explore the sequence landscape and to identify class-specific motifs that discriminate between classes during classification. Discriminative n-grams are short peptide sequences that are highly frequent in one class but are either minimally present or absent in other classes. In this study, we present a new substitution-based scoring function for identifying discriminative n-grams that are highly specific to a class. Results We present a scoring function based on discriminative n-grams that can effectively discriminate between classes. The scoring function, initially, harvests the entire set of 4- to 8-grams from the protein sequences of different classes in the dataset. Similar n-grams of the same size are combined to form new n-grams, where the similarity is defined by positive amino acid substitution scores in the BLOSUM62 matrix. Substitution has resulted in a large increase in the number of discriminatory n-grams harvested. Due to the unbalanced nature of the dataset, the frequencies of the n-grams are normalized using a dampening factor, which gives more weightage to the n-grams that appear in fewer classes and vice-versa. After the n-grams are normalized, the scoring function identifies discriminative 4- to 8-grams for each class that are frequent enough to be above a selection threshold. By mapping these discriminative n-grams back to the protein sequences, we obtained contiguous n-grams that represent short class-specific motifs in protein sequences. Our method fared well compared to an existing motif finding method known as Wordspy. We have validated our enriched set of class-specific motifs against the functionally important motifs obtained from the NLSdb, Prosite and ELM databases. We demonstrate that this method is very generic; thus can be widely applied to detect class-specific motifs in many protein sequence classification tasks. Conclusion The proposed scoring function and methodology is able to identify class-specific motifs using discriminative n-grams derived from the protein sequences. The implementation of amino acid substitution scores for similarity detection, and the dampening factor to normalize the unbalanced datasets have significant effect on the performance of the scoring function. Our multipronged validation tests demonstrate that this method can detect class-specific motifs from a wide variety of protein sequence classes with a potential application to detecting proteome-specific motifs of different organisms. PMID:23496846

  2. BCM Search Launcher--an integrated interface to molecular biology data base search and analysis services available on the World Wide Web.

    PubMed

    Smith, R F; Wiese, B A; Wojzynski, M K; Davison, D B; Worley, K C

    1996-05-01

    The BCM Search Launcher is an integrated set of World Wide Web (WWW) pages that organize molecular biology-related search and analysis services available on the WWW by function, and provide a single point of entry for related searches. The Protein Sequence Search Page, for example, provides a single sequence entry form for submitting sequences to WWW servers that offer remote access to a variety of different protein sequence search tools, including BLAST, FASTA, Smith-Waterman, BEAUTY, PROSITE, and BLOCKS searches. Other Launch pages provide access to (1) nucleic acid sequence searches, (2) multiple and pair-wise sequence alignments, (3) gene feature searches, (4) protein secondary structure prediction, and (5) miscellaneous sequence utilities (e.g., six-frame translation). The BCM Search Launcher also provides a mechanism to extend the utility of other WWW services by adding supplementary hypertext links to results returned by remote servers. For example, links to the NCBI's Entrez data base and to the Sequence Retrieval System (SRS) are added to search results returned by the NCBI's WWW BLAST server. These links provide easy access to auxiliary information, such as Medline abstracts, that can be extremely helpful when analyzing BLAST data base hits. For new or infrequent users of sequence data base search tools, we have preset the default search parameters to provide the most informative first-pass sequence analysis possible. We have also developed a batch client interface for Unix and Macintosh computers that allows multiple input sequences to be searched automatically as a background task, with the results returned as individual HTML documents directly to the user's system. The BCM Search Launcher and batch client are available on the WWW at URL http:@gc.bcm.tmc.edu:8088/search-launcher.html.

  3. Ostertagia circumcincta: isolation of a partial cDNA encoding an unusual member of the mitochondrial processing peptidase subfamily of M16 metallopeptidases.

    PubMed

    Walker, J; Tait, A

    1997-11-01

    A reverse-transcriptase polymerase chain reaction (PCR) procedure was used to isolate an Ostertagia circumcincta partial cDNA encoding a protein with general primary sequence features characteristic of members of the mitochondrial processing peptidase (MPP) subfamily of M16 metallopeptidases. The structural relationships of the predicted protein (Oc MPPX) with MPP subfamily proteins from other species (including the model free-living nematode Caenorhabditis elegans) were examined, and Northern analysis confirmed the expression of the Oc mppx gene in adult nematodes.

  4. Template-based modeling and ab initio refinement of protein oligomer structures using GALAXY in CAPRI round 30.

    PubMed

    Lee, Hasup; Baek, Minkyung; Lee, Gyu Rie; Park, Sangwoo; Seok, Chaok

    2017-03-01

    Many proteins function as homo- or hetero-oligomers; therefore, attempts to understand and regulate protein functions require knowledge of protein oligomer structures. The number of available experimental protein structures is increasing, and oligomer structures can be predicted using the experimental structures of related proteins as templates. However, template-based models may have errors due to sequence differences between the target and template proteins, which can lead to functional differences. Such structural differences may be predicted by loop modeling of local regions or refinement of the overall structure. In CAPRI (Critical Assessment of PRotein Interactions) round 30, we used recently developed features of the GALAXY protein modeling package, including template-based structure prediction, loop modeling, model refinement, and protein-protein docking to predict protein complex structures from amino acid sequences. Out of the 25 CAPRI targets, medium and acceptable quality models were obtained for 14 and 1 target(s), respectively, for which proper oligomer or monomer templates could be detected. Symmetric interface loop modeling on oligomer model structures successfully improved model quality, while loop modeling on monomer model structures failed. Overall refinement of the predicted oligomer structures consistently improved the model quality, in particular in interface contacts. Proteins 2017; 85:399-407. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Electrophoretic mobility shift scanning using an automated infrared DNA sequencer.

    PubMed

    Sano, M; Ohyama, A; Takase, K; Yamamoto, M; Machida, M

    2001-11-01

    Electrophoretic mobility shift assay (EMSA) is widely used in the study of sequence-specific DNA-binding proteins, including transcription factors and mismatch binding proteins. We have established a non-radioisotope-based protocol for EMSA that features an automated DNA sequencer with an infrared fluorescent dye (IRDye) detection unit. Our modification of the elec- trophoresis unit, which includes cooling the gel plates with a reduced well-to-read length, has made it possible to detect shifted bands within 1 h. Further, we have developed a rapid ligation-based method for generating IRDye-labeled probes with an approximately 60% cost reduction. This method has the advantages of real-time scanning, stability of labeled probes, and better safety associated with nonradioactive methods of detection. Analysis of a promoter from an industrially important filamentous fungus, Aspergillus oryzae, in a prototype experiment revealed that the method we describe has potential for use in systematic scanning and identification of the functionally important elements to which cellular factors bind in a sequence-specific manner.

  6. Amelogenin Evolution and Tetrapod Enamel Structure

    PubMed Central

    Diekwisch, Thomas G.H.; Jin, Tianquan; Wang, Xinping; Ito, Yoshihiro; Schmidt, Marcella; Druzinsky, Robert; Yamane, Akira; Luan, Xianghong

    2009-01-01

    Amelogenins are the major proteins involved in tooth enamel formation. In the present study we have cloned and sequenced four novel amelogenins from three amphibian species in order to analyze similarities and differences between mammalian and non-mammalian amelogenins. The newly sequenced amphibian amelogenin sequences were from a Red-eyed tree frog (Litoria chloris) and a Mexican axolotl (Ambystoma mexicanum). We identified two amelogenin isoforms in the Eastern Red-backed Salamander (Plethodon cinereus). Sequence comparisons confirmed that non-mammalian amelogenins are overall shorter than their mammalian counterparts, contain less proline and less glutamine, and feature shorter polyproline tripeptide repeat stretches than mammalian amelogenins. We propose that unique sequence parameters of mammalian amelogenins might be a pre-requisite for complex mammalian enamel prism architecture. PMID:19828974

  7. Complete genome sequence of the sulfate-reducing firmicute Desulfotomaculum ruminis type strain (DLT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spring, Stefan; Visser, Michael; Lu, Megan

    2012-12-11

    Desulfotomaculum ruminis Campbell and Postgate 1965 is a member of the large genus Desulfotomaculum which contains 30 species and is contained in the family Peptococcaceae. This species is of interest because it represents one of the few sulfate- reducing bacteria that have been isolated from the rumen. Here we describe the features of D. ruminis together with the complete genome sequence and annotation. The 3,969,014 bp long chromosome with a total of 3,901 protein-coding and 85 RNA genes is the second completed genome sequence of a type strain of the genus Desulfotomaculum to be pub- lished, and was sequenced asmore » part of the DOE Joint Genome Institute Community Sequencing Program 2009.« less

  8. Unique features of a global human ectoparasite identified through sequencing of the bed bug genome.

    PubMed

    Benoit, Joshua B; Adelman, Zach N; Reinhardt, Klaus; Dolan, Amanda; Poelchau, Monica; Jennings, Emily C; Szuter, Elise M; Hagan, Richard W; Gujar, Hemant; Shukla, Jayendra Nath; Zhu, Fang; Mohan, M; Nelson, David R; Rosendale, Andrew J; Derst, Christian; Resnik, Valentina; Wernig, Sebastian; Menegazzi, Pamela; Wegener, Christian; Peschel, Nicolai; Hendershot, Jacob M; Blenau, Wolfgang; Predel, Reinhard; Johnston, Paul R; Ioannidis, Panagiotis; Waterhouse, Robert M; Nauen, Ralf; Schorn, Corinna; Ott, Mark-Christoph; Maiwald, Frank; Johnston, J Spencer; Gondhalekar, Ameya D; Scharf, Michael E; Peterson, Brittany F; Raje, Kapil R; Hottel, Benjamin A; Armisén, David; Crumière, Antonin Jean Johan; Refki, Peter Nagui; Santos, Maria Emilia; Sghaier, Essia; Viala, Sèverine; Khila, Abderrahman; Ahn, Seung-Joon; Childers, Christopher; Lee, Chien-Yueh; Lin, Han; Hughes, Daniel S T; Duncan, Elizabeth J; Murali, Shwetha C; Qu, Jiaxin; Dugan, Shannon; Lee, Sandra L; Chao, Hsu; Dinh, Huyen; Han, Yi; Doddapaneni, Harshavardhan; Worley, Kim C; Muzny, Donna M; Wheeler, David; Panfilio, Kristen A; Vargas Jentzsch, Iris M; Vargo, Edward L; Booth, Warren; Friedrich, Markus; Weirauch, Matthew T; Anderson, Michelle A E; Jones, Jeffery W; Mittapalli, Omprakash; Zhao, Chaoyang; Zhou, Jing-Jiang; Evans, Jay D; Attardo, Geoffrey M; Robertson, Hugh M; Zdobnov, Evgeny M; Ribeiro, Jose M C; Gibbs, Richard A; Werren, John H; Palli, Subba R; Schal, Coby; Richards, Stephen

    2016-02-02

    The bed bug, Cimex lectularius, has re-established itself as a ubiquitous human ectoparasite throughout much of the world during the past two decades. This global resurgence is likely linked to increased international travel and commerce in addition to widespread insecticide resistance. Analyses of the C. lectularius sequenced genome (650 Mb) and 14,220 predicted protein-coding genes provide a comprehensive representation of genes that are linked to traumatic insemination, a reduced chemosensory repertoire of genes related to obligate hematophagy, host-symbiont interactions, and several mechanisms of insecticide resistance. In addition, we document the presence of multiple putative lateral gene transfer events. Genome sequencing and annotation establish a solid foundation for future research on mechanisms of insecticide resistance, human-bed bug and symbiont-bed bug associations, and unique features of bed bug biology that contribute to the unprecedented success of C. lectularius as a human ectoparasite.

  9. Unique features of a global human ectoparasite identified through sequencing of the bed bug genome

    PubMed Central

    Benoit, Joshua B.; Adelman, Zach N.; Reinhardt, Klaus; Dolan, Amanda; Poelchau, Monica; Jennings, Emily C.; Szuter, Elise M.; Hagan, Richard W.; Gujar, Hemant; Shukla, Jayendra Nath; Zhu, Fang; Mohan, M.; Nelson, David R.; Rosendale, Andrew J.; Derst, Christian; Resnik, Valentina; Wernig, Sebastian; Menegazzi, Pamela; Wegener, Christian; Peschel, Nicolai; Hendershot, Jacob M.; Blenau, Wolfgang; Predel, Reinhard; Johnston, Paul R.; Ioannidis, Panagiotis; Waterhouse, Robert M.; Nauen, Ralf; Schorn, Corinna; Ott, Mark-Christoph; Maiwald, Frank; Johnston, J. Spencer; Gondhalekar, Ameya D.; Scharf, Michael E.; Peterson, Brittany F.; Raje, Kapil R.; Hottel, Benjamin A.; Armisén, David; Crumière, Antonin Jean Johan; Refki, Peter Nagui; Santos, Maria Emilia; Sghaier, Essia; Viala, Sèverine; Khila, Abderrahman; Ahn, Seung-Joon; Childers, Christopher; Lee, Chien-Yueh; Lin, Han; Hughes, Daniel S. T.; Duncan, Elizabeth J.; Murali, Shwetha C.; Qu, Jiaxin; Dugan, Shannon; Lee, Sandra L.; Chao, Hsu; Dinh, Huyen; Han, Yi; Doddapaneni, Harshavardhan; Worley, Kim C.; Muzny, Donna M.; Wheeler, David; Panfilio, Kristen A.; Vargas Jentzsch, Iris M.; Vargo, Edward L.; Booth, Warren; Friedrich, Markus; Weirauch, Matthew T.; Anderson, Michelle A. E.; Jones, Jeffery W.; Mittapalli, Omprakash; Zhao, Chaoyang; Zhou, Jing-Jiang; Evans, Jay D.; Attardo, Geoffrey M.; Robertson, Hugh M.; Zdobnov, Evgeny M.; Ribeiro, Jose M. C.; Gibbs, Richard A.; Werren, John H.; Palli, Subba R.; Schal, Coby; Richards, Stephen

    2016-01-01

    The bed bug, Cimex lectularius, has re-established itself as a ubiquitous human ectoparasite throughout much of the world during the past two decades. This global resurgence is likely linked to increased international travel and commerce in addition to widespread insecticide resistance. Analyses of the C. lectularius sequenced genome (650 Mb) and 14,220 predicted protein-coding genes provide a comprehensive representation of genes that are linked to traumatic insemination, a reduced chemosensory repertoire of genes related to obligate hematophagy, host–symbiont interactions, and several mechanisms of insecticide resistance. In addition, we document the presence of multiple putative lateral gene transfer events. Genome sequencing and annotation establish a solid foundation for future research on mechanisms of insecticide resistance, human–bed bug and symbiont–bed bug associations, and unique features of bed bug biology that contribute to the unprecedented success of C. lectularius as a human ectoparasite. PMID:26836814

  10. Predicting protein subnuclear location with optimized evidence-theoretic K-nearest classifier and pseudo amino acid composition.

    PubMed

    Shen, Hong-Bin; Chou, Kuo-Chen

    2005-11-25

    The nucleus is the brain of eukaryotic cells that guides the life processes of the cell by issuing key instructions. For in-depth understanding of the biochemical process of the nucleus, the knowledge of localization of nuclear proteins is very important. With the avalanche of protein sequences generated in the post-genomic era, it is highly desired to develop an automated method for fast annotating the subnuclear locations for numerous newly found nuclear protein sequences so as to be able to timely utilize them for basic research and drug discovery. In view of this, a novel approach is developed for predicting the protein subnuclear location. It is featured by introducing a powerful classifier, the optimized evidence-theoretic K-nearest classifier, and using the pseudo amino acid composition [K.C. Chou, PROTEINS: Structure, Function, and Genetics, 43 (2001) 246], which can incorporate a considerable amount of sequence-order effects, to represent protein samples. As a demonstration, identifications were performed for 370 nuclear proteins among the following 9 subnuclear locations: (1) Cajal body, (2) chromatin, (3) heterochromatin, (4) nuclear diffuse, (5) nuclear pore, (6) nuclear speckle, (7) nucleolus, (8) PcG body, and (9) PML body. The overall success rates thus obtained by both the re-substitution test and jackknife cross-validation test are significantly higher than those by existing classifiers on the same working dataset. It is anticipated that the powerful approach may also become a useful high throughput vehicle to bridge the huge gap occurring in the post-genomic era between the number of gene sequences in databases and the number of gene products that have been functionally characterized. The OET-KNN classifier will be available at www.pami.sjtu.edu.cn/people/hbshen.

  11. Detection and sequence/structure mapping of biophysical constraints to protein variation in saturated mutational libraries and protein sequence alignments with a dedicated server.

    PubMed

    Abriata, Luciano A; Bovigny, Christophe; Dal Peraro, Matteo

    2016-06-17

    Protein variability can now be studied by measuring high-resolution tolerance-to-substitution maps and fitness landscapes in saturated mutational libraries. But these rich and expensive datasets are typically interpreted coarsely, restricting detailed analyses to positions of extremely high or low variability or dubbed important beforehand based on existing knowledge about active sites, interaction surfaces, (de)stabilizing mutations, etc. Our new webserver PsychoProt (freely available without registration at http://psychoprot.epfl.ch or at http://lucianoabriata.altervista.org/psychoprot/index.html ) helps to detect, quantify, and sequence/structure map the biophysical and biochemical traits that shape amino acid preferences throughout a protein as determined by deep-sequencing of saturated mutational libraries or from large alignments of naturally occurring variants. We exemplify how PsychoProt helps to (i) unveil protein structure-function relationships from experiments and from alignments that are consistent with structures according to coevolution analysis, (ii) recall global information about structural and functional features and identify hitherto unknown constraints to variation in alignments, and (iii) point at different sources of variation among related experimental datasets or between experimental and alignment-based data. Remarkably, metabolic costs of the amino acids pose strong constraints to variability at protein surfaces in nature but not in the laboratory. This and other differences call for caution when extrapolating results from in vitro experiments to natural scenarios in, for example, studies of protein evolution. We show through examples how PsychoProt can be a useful tool for the broad communities of structural biology and molecular evolution, particularly for studies about protein modeling, evolution and design.

  12. A feature-based approach to modeling protein–protein interaction hot spots

    PubMed Central

    Cho, Kyu-il; Kim, Dongsup; Lee, Doheon

    2009-01-01

    Identifying features that effectively represent the energetic contribution of an individual interface residue to the interactions between proteins remains problematic. Here, we present several new features and show that they are more effective than conventional features. By combining the proposed features with conventional features, we develop a predictive model for interaction hot spots. Initially, 54 multifaceted features, composed of different levels of information including structure, sequence and molecular interaction information, are quantified. Then, to identify the best subset of features for predicting hot spots, feature selection is performed using a decision tree. Based on the selected features, a predictive model for hot spots is created using support vector machine (SVM) and tested on an independent test set. Our model shows better overall predictive accuracy than previous methods such as the alanine scanning methods Robetta and FOLDEF, and the knowledge-based method KFC. Subsequent analysis yields several findings about hot spots. As expected, hot spots have a larger relative surface area burial and are more hydrophobic than other residues. Unexpectedly, however, residue conservation displays a rather complicated tendency depending on the types of protein complexes, indicating that this feature is not good for identifying hot spots. Of the selected features, the weighted atomic packing density, relative surface area burial and weighted hydrophobicity are the top 3, with the weighted atomic packing density proving to be the most effective feature for predicting hot spots. Notably, we find that hot spots are closely related to π–related interactions, especially π · · · π interactions. PMID:19273533

  13. Computational Tools and Algorithms for Designing Customized Synthetic Genes

    PubMed Central

    Gould, Nathan; Hendy, Oliver; Papamichail, Dimitris

    2014-01-01

    Advances in DNA synthesis have enabled the construction of artificial genes, gene circuits, and genomes of bacterial scale. Freedom in de novo design of synthetic constructs provides significant power in studying the impact of mutations in sequence features, and verifying hypotheses on the functional information that is encoded in nucleic and amino acids. To aid this goal, a large number of software tools of variable sophistication have been implemented, enabling the design of synthetic genes for sequence optimization based on rationally defined properties. The first generation of tools dealt predominantly with singular objectives such as codon usage optimization and unique restriction site incorporation. Recent years have seen the emergence of sequence design tools that aim to evolve sequences toward combinations of objectives. The design of optimal protein-coding sequences adhering to multiple objectives is computationally hard, and most tools rely on heuristics to sample the vast sequence design space. In this review, we study some of the algorithmic issues behind gene optimization and the approaches that different tools have adopted to redesign genes and optimize desired coding features. We utilize test cases to demonstrate the efficiency of each approach, as well as identify their strengths and limitations. PMID:25340050

  14. FOXI2: a possible gene contributing to ectodermal dysplasia.

    PubMed

    Kurban, Mazen; Zeineddine, Savo Bou; Hamie, Lamiaa; Safi, Remi; Abbas, Ossama; Kibbi, Abdul Ghani; Bitar, Fadi; Nemer, Georges

    2017-12-01

    Cardio-facio-cutaneous syndrome (CFC), Noonan syndrome (NS), and Costello syndrome are a group of diseases that belong to the RASopathies. The syndromes share clinical features making diagnosis a challenge. To investigate the phenotype and genotype of a 10-year-old Iraqi girl with overlapping features of CFC, NS, and Costello syndromes, with additional features of ectodermal dysplasia. DNA was examined by exome sequencing and protein expression by immunohistochemistry. Exome sequencing identified a mutation in the SOS1 gene and a de novo deletion in the FOXI2 gene which was neither present in the international databases, nor in 400 chromosomes from the same population. Based on immunohistochemical staining, FOXI2 was identified in the basal cell layer of the skin and overlapped with the expression of P63, a major player in ectodermal dysplasia. We therefore suggest screening for FOXI2 mutation in the setting of ectodermal features that are not associated with genes known to contribute to ectodermal dysplasia.

  15. Conserved Sequences at the Origin of Adenovirus DNA Replication

    PubMed Central

    Stillman, Bruce W.; Topp, William C.; Engler, Jeffrey A.

    1982-01-01

    The origin of adenovirus DNA replication lies within an inverted sequence repetition at either end of the linear, double-stranded viral DNA. Initiation of DNA replication is primed by a deoxynucleoside that is covalently linked to a protein, which remains bound to the newly synthesized DNA. We demonstrate that virion-derived DNA-protein complexes from five human adenovirus serological subgroups (A to E) can act as a template for both the initiation and the elongation of DNA replication in vitro, using nuclear extracts from adenovirus type 2 (Ad2)-infected HeLa cells. The heterologous template DNA-protein complexes were not as active as the homologous Ad2 DNA, most probably due to inefficient initiation by Ad2 replication factors. In an attempt to identify common features which may permit this replication, we have also sequenced the inverted terminal repeated DNA from human adenovirus serotypes Ad4 (group E), Ad9 and Ad10 (group D), and Ad31 (group A), and we have compared these to previously determined sequences from Ad2 and Ad5 (group C), Ad7 (group B), and Ad12 and Ad18 (group A) DNA. In all cases, the sequence around the origin of DNA replication can be divided into two structural domains: a proximal A · T-rich region which is partially conserved among these serotypes, and a distal G · C-rich region which is less well conserved. The G · C-rich region contains sequences similar to sequences present in papovavirus replication origins. The two domains may reflect a dual mechanism for initiation of DNA replication: adenovirus-specific protein priming of replication, and subsequent utilization of this primer by host replication factors for completion of DNA synthesis. Images PMID:7143575

  16. PUF Proteins: Cellular Functions and Potential Applications.

    PubMed

    Kiani, Seyed Jalal; Taheri, Tahereh; Rafati, Sima; Samimi-Rad, Katayoun

    2017-01-01

    RNA-binding proteins play critical roles in the regulation of gene expression. Among several families of RNA-binding proteins, PUF (Pumilio and FBF) proteins have been the subject of extensive investigations, as they can bind RNA in a sequence-specific manner and they are evolutionarily conserved among a wide range of organisms. The outstanding feature of these proteins is a highly conserved RNA-binding domain, which is known as the Pumilio-homology domain (PUM-HD) that mostly consists of eight tandem repeats. Each repeat recognizes an RNA base with a simple three-letter code that can be programmed in order to change the sequence-specificity of the protein. Using this tailored architecture, researchers have been able to change the specificity of the PUM-HD and target desired transcripts in the cell, even in subcellular compartments. The potential applications of this versatile tool in molecular cell biology seem unbounded and the use of these factors in pharmaceutics might be an interesting field of study in near future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. T4-Like Genome Organization of the Escherichia coli O157:H7 Lytic Phage AR1▿†

    PubMed Central

    Liao, Wei-Chao; Ng, Wailap Victor; Lin, I-Hsuan; Syu, Wan-Jr; Liu, Tze-Tze; Chang, Chuan-Hsiung

    2011-01-01

    We report the genome organization and analysis of the first completely sequenced T4-like phage, AR1, of Escherichia coli O157:H7. Unlike most of the other sequenced phages of O157:H7, which belong to the temperate Podoviridae and Siphoviridae families, AR1 is a T4-like phage known to efficiently infect this pathogenic bacterial strain. The 167,435-bp AR1 genome is currently the largest among all the sequenced E. coli O157:H7 phages. It carries a total of 281 potential open reading frames (ORFs) and 10 putative tRNA genes. Of these, 126 predicted proteins could be classified into six viral orthologous group categories, with at least 18 proteins of the structural protein category having been detected by tandem mass spectrometry. Comparative genomic analysis of AR1 and four other completely sequenced T4-like genomes (RB32, RB69, T4, and JS98) indicated that they share a well-organized and highly conserved core genome, particularly in the regions encoding DNA replication and virion structural proteins. The major diverse features between these phages include the modules of distal tail fibers and the types and numbers of internal proteins, tRNA genes, and mobile elements. Codon usage analysis suggested that the presence of AR1-encoded tRNAs may be relevant to the codon usage of structural proteins. Furthermore, protein sequence analysis of AR1 gp37, a potential receptor binding protein, indicated that eight residues in the C terminus are unique to O157:H7 T4-like phages AR1 and PP01. These residues are known to be located in the T4 receptor recognition domain, and they may contribute to specificity for adsorption to the O157:H7 strain. PMID:21507986

  18. LIFEdb: a database for functional genomics experiments integrating information from external sources, and serving as a sample tracking system

    PubMed Central

    Bannasch, Detlev; Mehrle, Alexander; Glatting, Karl-Heinz; Pepperkok, Rainer; Poustka, Annemarie; Wiemann, Stefan

    2004-01-01

    We have implemented LIFEdb (http://www.dkfz.de/LIFEdb) to link information regarding novel human full-length cDNAs generated and sequenced by the German cDNA Consortium with functional information on the encoded proteins produced in functional genomics and proteomics approaches. The database also serves as a sample-tracking system to manage the process from cDNA to experimental read-out and data interpretation. A web interface enables the scientific community to explore and visualize features of the annotated cDNAs and ORFs combined with experimental results, and thus helps to unravel new features of proteins with as yet unknown functions. PMID:14681468

  19. Accurate prediction of hot spot residues through physicochemical characteristics of amino acid sequences.

    PubMed

    Chen, Peng; Li, Jinyan; Wong, Limsoon; Kuwahara, Hiroyuki; Huang, Jianhua Z; Gao, Xin

    2013-08-01

    Hot spot residues of proteins are fundamental interface residues that help proteins perform their functions. Detecting hot spots by experimental methods is costly and time-consuming. Sequential and structural information has been widely used in the computational prediction of hot spots. However, structural information is not always available. In this article, we investigated the problem of identifying hot spots using only physicochemical characteristics extracted from amino acid sequences. We first extracted 132 relatively independent physicochemical features from a set of the 544 properties in AAindex1, an amino acid index database. Each feature was utilized to train a classification model with a novel encoding schema for hot spot prediction by the IBk algorithm, an extension of the K-nearest neighbor algorithm. The combinations of the individual classifiers were explored and the classifiers that appeared frequently in the top performing combinations were selected. The hot spot predictor was built based on an ensemble of these classifiers and to work in a voting manner. Experimental results demonstrated that our method effectively exploited the feature space and allowed flexible weights of features for different queries. On the commonly used hot spot benchmark sets, our method significantly outperformed other machine learning algorithms and state-of-the-art hot spot predictors. The program is available at http://sfb.kaust.edu.sa/pages/software.aspx. Copyright © 2013 Wiley Periodicals, Inc.

  20. Protein Solubility and Protein Homeostasis: A Generic View of Protein Misfolding Disorders

    PubMed Central

    Vendruscolo, Michele; Knowles, Tuomas P.J.; Dobson, Christopher M.

    2011-01-01

    According to the “generic view” of protein aggregation, the ability to self-assemble into stable and highly organized structures such as amyloid fibrils is not an unusual feature exhibited by a small group of peptides and proteins with special sequence or structural properties, but rather a property shared by most proteins. At the same time, through a wide variety of techniques, many of which were originally devised for applications in other disciplines, it has also been established that the maintenance of proteins in a soluble state is a fundamental aspect of protein homeostasis. Taken together, these advances offer a unified framework for understanding the molecular basis of protein aggregation and for the rational development of therapeutic strategies based on the biological and chemical regulation of protein solubility. PMID:21825020

Top