Sample records for protein solution drops

  1. Controlling Vapor Pressure In Hanging-Drop Crystallization

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C.; Smith, Robbie

    1988-01-01

    Rate of evaporation adjusted to produce larger crystals. Device helps to control vapor pressure of water and other solvents in vicinity of hanging drop of solution containing dissolved enzyme protein. Well of porous frit (sintered glass) holds solution in proximity to drop of solution containing protein or enzyme. Vapor from solution in frit controls evaporation of solvent from drop to control precipitation of protein or enzyme. With device, rate of nucleation limited to decrease number and increase size (and perhaps quality) of crystals - large crystals of higher quality needed for x-ray diffraction studies of macromolecules.

  2. Device For Controlling Crystallization Of Protein

    NASA Technical Reports Server (NTRS)

    Noever, David A.

    1993-01-01

    Variable sandwich spacer enables optimization of evaporative driving force that governs crystallization of protein from solution. Mechanically more rigid than hanging-drop and sitting-drop devices. Large oscillations and dislodgment of drop of solution in response to vibrations suppressed by glass plates. Other advantages include: suitable for automated delivery, stable handling, and programmable evaporation of protein solution; controlled configuration enables simple and accurate determination of volume of solution without disrupting crystallization; pH and concentration of precipitant controlled dynamically because pH and concentration coupled to rate of evaporation, controllable via adjustment of gap between plates; and enables variation of ratio between surface area and volume of protein solution. Alternative version, plates oriented vertically instead of horizontally.

  3. Convection effects in protein crystal growth

    NASA Technical Reports Server (NTRS)

    Roberts, Glyn O.

    1988-01-01

    Protein crystals for X-ray diffraction study are usually grown resting on the bottom of a hanging drop of a saturated protein solution, with slow evaporation to the air in a small enclosed cell. The evaporation rate is controlled by hanging the drop above a reservoir of water, with its saturation vapor pressure decreased by a low concentration of a passive solute. The drop has a lower solute concentration, and its volume shrinks by evaporation until the molecular concentrations match. Protein crystals can also be grown from a seed crystal suspended or supported in the interior of a supersaturated solution. The main analysis of this report concerns this case because it is less complicated than hanging-drop growth. Convection effects have been suggested as the reason for the apparent cessation of growth at a certain rather small crystal size. It seeems that as the crystal grows, the number of dislocations increases to a point where further growth is hindered. Growth in the microgravity environment of an orbiting space vehicle has been proposed as a method for obtaining larger crystals. Experimental observations of convection effects during the growth of protein crystals have been reported.

  4. Method for controlling protein crystallization

    NASA Technical Reports Server (NTRS)

    Noever, David A. (Inventor)

    1993-01-01

    A method and apparatus for controlling the crystallization of protein by solvent evaporation including placing a drop of protein solution between and in contact with a pair of parallel plates and driving one of the plates toward and away from the other plate in a controlled manner to adjust the spacing between the plates is presented. The drop of solution forms a liquid cylinder having a height dependent upon the plate spacing thereby effecting the surface area available for solvent evaporation. When the spacing is close, evaporation is slow. Evaporation is increased by increasing the spacing between the plates until the breaking point of the liquid cylinder. One plate is mounted upon a fixed post while the other plate is carried by a receptacle movable relative to the post and driven by a belt driven screw drive. The temperature and humidity of the drop of protein solution are controlled by sealing the drop within the receptacle and mounting a heater and dessicant within the receptacle.

  5. Analysis of models for two solution crystal growth problems

    NASA Technical Reports Server (NTRS)

    Fehribach, Joseph D.; Rosenberger, Franz

    1989-01-01

    Two diffusive solution crystal growth models are considered which are characterized by two phases separated by an interface, a lack of convective mixing in either phase, and the presence of diffusion components differing widely in diffusivity. The first model describes precipitant-driven solution crystal growth and the second model describes a hanging drop evaporation problem. It is shown that for certain proteins sharp concentration gradients may develop in the drop during evaporation, while under the same conditions the concentrations of other proteins remain uniform.

  6. Drop deployment system for crystal growth apparatus

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy H. (Inventor); Snyder, Robert S. (Inventor); Pusey, Marc L. (Inventor)

    1992-01-01

    This invention relates to a crystal growth apparatus (10) generally used for growing protein crystals wherein a vapor diffusion method is used for growing the crystals. In this apparatus, a precipitating solution and a solution containing dissolved crystalline material are stored in separate vials (12, 14), each having a resilient diaphragm (28) across one end and an opening (24) with a puncturable septum (26) thereacross at an opposite end. The vials are placed in receptacles (30) having a manifold (41) with a manifold diaphragm (42) in contact with the vial diaphragm at one end of the receptacle and a hollow needle (36) for puncturing the septum at the other end of the manifold. The needles of each vial communicate with a ball mixer (40) that mixes the precipitate and protein solutions and directs the mixed solution to a drop support (64) disposed in a crystal growth chamber (16), the drop support being a tube with an inner bevelled surface (66) that provides more support for the drop (68) than the tubes of the prior art. A sealable storage region (70) intermediate the drop support and mixer provides storage of the drop (68) and the grown crystals.

  7. Imaging transport phenomena during lysozyme protein crystal growth by the hanging drop technique

    NASA Astrophysics Data System (ADS)

    Sethia Gupta, Anamika; Gupta, Rajive; Panigrahi, P. K.; Muralidhar, K.

    2013-06-01

    The present study reports the transport process that occurs during the growth of lysozyme protein crystals by the hanging drop technique. A rainbow schlieren technique has been employed for imaging changes in salt concentration. A one dimensional color filter is used to record the deflection of the light beam. An optical microscope and an X-ray crystallography unit are used to characterize the size, tetragonal shape and Bravais lattice constants of the grown crystals. A parametric study on the effect of drop composition, drop size, reservoir height and number of drops on the crystal size and quality is reported. Changes in refractive index are not large enough to create a meaningful schlieren image in the air gap between the drop and the reservoir. However, condensation of fresh water over the reservoir solution creates large changes in the concentration of NaCl, giving rise to clear color patterns in the schlieren images. These have been analyzed to obtain salt concentration profiles near the free surface of the reservoir solution as a function of time. The diffusion of fresh water into the reservoir solution at the early stages of crystal growth followed by the mass flux of salt from the bulk solution towards the free surface has been recorded. The overall crystal growth process can be classified into two regimes, as demarcated by the changes in slope of salt concentration within the reservoir. The salt concentration in the reservoir equilibrates at long times when the crystallization process is complete. Thus, transport processes in the reservoir emerge as the route to monitor protein crystal growth in the hanging drop configuration. Results show that crystal growth rate is faster for a higher lysozyme concentration, smaller drops, and larger reservoir heights.

  8. Liquid drop stability for protein crystal growth in microgravity

    NASA Technical Reports Server (NTRS)

    Owen, Robert B.; Broom, Beth H.; Snyder, Robert S.; Daniel, Ron

    1987-01-01

    It is possible to grow protein crystals for biomedical research in microgravity by deploying a protein-rich solution from a syringe, forming a drop in which crystallization can occur with the proper degree of supersaturation. Drop stability is critical to the success of this research, due to the large drop sizes which can be achieved in space. In order to determine the type of syringe tips most suitable to support these large drops, tests were performed during brief periods of weightlessness onboard the NASA KC-135 low-gravity simulation aircraft. The drops were analyzed using three simple models in which the samples were approximated by modified pendulum and spring systems. It was concluded that the higher frequency systems were the most stable, indicating that of the syringes utilized, a disk-shaped configuration provided the most stable environment of low-gravity protein crystal growth.

  9. Adhesion of bubbles and drops to solid surfaces, and anisotropic surface tensions studied by capillary meniscus dynamometry.

    PubMed

    Danov, Krassimir D; Stanimirova, Rumyana D; Kralchevsky, Peter A; Marinova, Krastanka G; Stoyanov, Simeon D; Blijdenstein, Theodorus B J; Cox, Andrew R; Pelan, Eddie G

    2016-07-01

    Here, we review the principle and applications of two recently developed methods: the capillary meniscus dynamometry (CMD) for measuring the surface tension of bubbles/drops, and the capillary bridge dynamometry (CBD) for quantifying the bubble/drop adhesion to solid surfaces. Both methods are based on a new data analysis protocol, which allows one to decouple the two components of non-isotropic surface tension. For an axisymmetric non-fluid interface (e.g. bubble or drop covered by a protein adsorption layer with shear elasticity), the CMD determines the two different components of the anisotropic surface tension, σs and σφ, which are acting along the "meridians" and "parallels", and vary throughout the interface. The method uses data for the instantaneous bubble (drop) profile and capillary pressure, but the procedure for data processing is essentially different from that of the conventional drop shape analysis (DSA) method. In the case of bubble or drop pressed against a substrate, which forms a capillary bridge, the CBD method allows one to determine also the capillary-bridge force for both isotropic (fluid) and anisotropic (solidified) adsorption layers. The experiments on bubble (drop) detachment from the substrate show the existence of a maximal pulling force, Fmax, that can be resisted by an adherent fluid particle. Fmax can be used to quantify the strength of adhesion of bubbles and drops to solid surfaces. Its value is determined by a competition of attractive transversal tension and repulsive disjoining pressure forces. The greatest Fmax values have been measured for bubbles adherent to glass substrates in pea-protein solutions. The bubble/wall adhesion is lower in solutions containing the protein HFBII hydrophobin, which could be explained with the effect of sandwiched protein aggregates. The applicability of the CBD method to emulsion systems is illustrated by experiments with soybean-oil drops adherent to hydrophilic and hydrophobic substrates in egg yolk solutions. The results reveal how the interfacial rigidity, as well as the bubble/wall and drop/wall adhesion forces, can be quantified and controlled in relation to optimizing the properties of foams and emulsions. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Automation of Vapor-Diffusion Growth of Protein Crystals

    NASA Technical Reports Server (NTRS)

    Hamrick, David T.; Bray, Terry L.

    2005-01-01

    Some improvements have been made in a system of laboratory equipment developed previously for studying the crystallization of proteins from solution by use of dynamically controlled flows of dry gas. The improvements involve mainly (1) automation of dispensing of liquids for starting experiments, (2) automatic control of drying of protein solutions during the experiments, and (3) provision for automated acquisition of video images for monitoring experiments in progress and for post-experiment analysis. The automation of dispensing of liquids was effected by adding an automated liquid-handling robot that can aspirate source solutions and dispense them in either a hanging-drop or a sitting-drop configuration, whichever is specified, in each of 48 experiment chambers. A video camera of approximately the size and shape of a lipstick dispenser was added to a mobile stage that is part of the robot, in order to enable automated acquisition of images in each experiment chamber. The experiment chambers were redesigned to enable the use of sitting drops, enable backlighting of each specimen, and facilitate automation.

  11. Drop deployment system for crystal growth apparatus

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy (Inventor); Snyder, Robert S. (Inventor); Pusey, Marc L. (Inventor)

    1990-01-01

    A crystal growth apparatus is presented. It utilizes a vapor diffusion method for growing protein crystals, and particularly such an apparatus wherein a ball mixer is used to mix the fluids that form a drop within which crystals are grown. Particular novelty of this invention lies in utilizing a ball mixer to completely mix the precipitate and protein solutions prior to forming the drop. Additional novelty lies in details of construction of the vials, the fluid deployment system, and the fluid storage system of the preferred embodiment.

  12. Compact Apparatus Grows Protein Crystals

    NASA Technical Reports Server (NTRS)

    Bugg, Charles E.; Delucas, Lawrence J.; Suddath, Fred L.; Snyder, Robert S.; Herren, Blair J.; Carter, Daniel C.; Yost, Vaughn H.

    1989-01-01

    Laboratory apparatus provides delicately balanced combination of materials and chemical conditions for growth of protein crystals. Apparatus and technique for growth based on hanging-drop method for crystallization of macromolecules. Includes pair of syringes with ganged plungers. One syringe contains protein solution; other contains precipitating-agent solution. Syringes intrude into cavity lined with porous reservoir material saturated with 1 mL or more of similar precipitating-agent solution. Prior to activation, ends of syringes plugged to prevent transport of water vapor among three solutions.

  13. The role of mass transport in protein crystallization.

    PubMed

    García-Ruiz, Juan Manuel; Otálora, Fermín; García-Caballero, Alfonso

    2016-02-01

    Mass transport takes place within the mesoscopic to macroscopic scale range and plays a key role in crystal growth that may affect the result of the crystallization experiment. The influence of mass transport is different depending on the crystallization technique employed, essentially because each technique reaches supersaturation in its own unique way. In the case of batch experiments, there are some complex phenomena that take place at the interface between solutions upon mixing. These transport instabilities may drastically affect the reproducibility of crystallization experiments, and different outcomes may be obtained depending on whether or not the drop is homogenized. In diffusion experiments with aqueous solutions, evaporation leads to fascinating transport phenomena. When a drop starts to evaporate, there is an increase in concentration near the interface between the drop and the air until a nucleation event eventually takes place. Upon growth, the weight of the floating crystal overcomes the surface tension and the crystal falls to the bottom of the drop. The very growth of the crystal then triggers convective flow and inhomogeneities in supersaturation values in the drop owing to buoyancy of the lighter concentration-depleted solution surrounding the crystal. Finally, the counter-diffusion technique works if, and only if, diffusive mass transport is assured. The technique relies on the propagation of a supersaturation wave that moves across the elongated protein chamber and is the result of the coupling of reaction (crystallization) and diffusion. The goal of this review is to convince protein crystal growers that in spite of the small volume of the typical protein crystallization setup, transport plays a key role in the crystal quality, size and phase in both screening and optimization experiments.

  14. Drop Spreading with Random Viscosity

    NASA Astrophysics Data System (ADS)

    Xu, Feng; Jensen, Oliver

    2016-11-01

    Airway mucus acts as a barrier to protect the lung. However as a biological material, its physical properties are known imperfectly and can be spatially heterogeneous. In this study we assess the impact of these uncertainties on the rate of spreading of a drop (representing an inhaled aerosol) over a mucus film. We model the film as Newtonian, having a viscosity that depends linearly on the concentration of a passive solute (a crude proxy for mucin proteins). Given an initial random solute (and hence viscosity) distribution, described as a Gaussian random field with a given correlation structure, we seek to quantify the uncertainties in outcomes as the drop spreads. Using lubrication theory, we describe the spreading of the drop in terms of a system of coupled nonlinear PDEs governing the evolution of film height and the vertically-averaged solute concentration. We perform Monte Carlo simulations to predict the variability in the drop centre location and width (1D) or area (2D). We show how simulation results are well described (at much lower computational cost) by a low-order model using a weak disorder expansion. Our results show for example how variability in the drop location is a non-monotonic function of the solute correlation length increases. Engineering and Physical Sciences Research Council.

  15. Development of an automated large-scale protein-crystallization and monitoring system for high-throughput protein-structure analyses.

    PubMed

    Hiraki, Masahiko; Kato, Ryuichi; Nagai, Minoru; Satoh, Tadashi; Hirano, Satoshi; Ihara, Kentaro; Kudo, Norio; Nagae, Masamichi; Kobayashi, Masanori; Inoue, Michio; Uejima, Tamami; Oda, Shunichiro; Chavas, Leonard M G; Akutsu, Masato; Yamada, Yusuke; Kawasaki, Masato; Matsugaki, Naohiro; Igarashi, Noriyuki; Suzuki, Mamoru; Wakatsuki, Soichi

    2006-09-01

    Protein crystallization remains one of the bottlenecks in crystallographic analysis of macromolecules. An automated large-scale protein-crystallization system named PXS has been developed consisting of the following subsystems, which proceed in parallel under unified control software: dispensing precipitants and protein solutions, sealing crystallization plates, carrying robot, incubators, observation system and image-storage server. A sitting-drop crystallization plate specialized for PXS has also been designed and developed. PXS can set up 7680 drops for vapour diffusion per hour, which includes time for replenishing supplies such as disposable tips and crystallization plates. Images of the crystallization drops are automatically recorded according to a preprogrammed schedule and can be viewed by users remotely using web-based browser software. A number of protein crystals were successfully produced and several protein structures could be determined directly from crystals grown by PXS. In other cases, X-ray quality crystals were obtained by further optimization by manual screening based on the conditions found by PXS.

  16. Raman Spectroscopy Adds Complementary Detail to the High-Resolution X-Ray Crystal Structure of Photosynthetic PsbP from Spinacia oleracea

    PubMed Central

    Lapkouski, Mikalai; Hofbauerova, Katerina; Sovova, Zofie; Ettrichova, Olga; González-Pérez, Sergio; Dulebo, Alexander; Kaftan, David; Kuta Smatanova, Ivana; Revuelta, Jose L.; Arellano, Juan B.; Carey, Jannette; Ettrich, Rüdiger

    2012-01-01

    Raman microscopy permits structural analysis of protein crystals in situ in hanging drops, allowing for comparison with Raman measurements in solution. Nevertheless, the two methods sometimes reveal subtle differences in structure that are often ascribed to the water layer surrounding the protein. The novel method of drop-coating deposition Raman spectropscopy (DCDR) exploits an intermediate phase that, although nominally “dry,” has been shown to preserve protein structural features present in solution. The potential of this new approach to bridge the structural gap between proteins in solution and in crystals is explored here with extrinsic protein PsbP of photosystem II from Spinacia oleracea. In the high-resolution (1.98 Å) x-ray crystal structure of PsbP reported here, several segments of the protein chain are present but unresolved. Analysis of the three kinds of Raman spectra of PsbP suggests that most of the subtle differences can indeed be attributed to the water envelope, which is shown here to have a similar Raman intensity in glassy and crystal states. Using molecular dynamics simulations cross-validated by Raman solution data, two unresolved segments of the PsbP crystal structure were modeled as loops, and the amino terminus was inferred to contain an additional beta segment. The complete PsbP structure was compared with that of the PsbP-like protein CyanoP, which plays a more peripheral role in photosystem II function. The comparison suggests possible interaction surfaces of PsbP with higher-plant photosystem II. This work provides the first complete structural picture of this key protein, and it represents the first systematic comparison of Raman data from solution, glassy, and crystalline states of a protein. PMID:23071614

  17. High-Pressure-High-Temperature Processing Reduces Maillard Reaction and Viscosity in Whey Protein-Sugar Solutions.

    PubMed

    Avila Ruiz, Geraldine; Xi, Bingyan; Minor, Marcel; Sala, Guido; van Boekel, Martinus; Fogliano, Vincenzo; Stieger, Markus

    2016-09-28

    The aim of the study was to determine the influence of pressure in high-pressure-high-temperature (HPHT) processing on Maillard reactions and protein aggregation of whey protein-sugar solutions. Solutions of whey protein isolate containing either glucose or trehalose at pH 6, 7, and 9 were treated by HPHT processing or conventional high-temperature (HT) treatments. Browning was reduced, and early and advanced Maillard reactions were retarded under HPHT processing at all pH values compared to HT treatment. HPHT induced a larger pH drop than HT treatments, especially at pH 9, which was not associated with Maillard reactions. After HPHT processing at pH 7, protein aggregation and viscosity of whey protein isolate-glucose/trehalose solutions remained unchanged. It was concluded that HPHT processing can potentially improve the quality of protein-sugar-containing foods, for which browning and high viscosities are undesired, such as high-protein beverages.

  18. Control and measurement of the phase behavior of aqueous solutions using microfluidics

    PubMed Central

    Shim, Jung-uk; Cristobal, Galder; Link, Darren R.; Thorsen, Todd; Jia, Yanwei; Piattelli, Katie; Fraden, Seth

    2008-01-01

    A microfluidic device denoted the Phase Chip has been designed to measure and manipulate the phase diagram of multi-component fluid mixtures. The Phase Chip exploits the permeation of water through poly(dimethylsiloxane) (PDMS) in order to controllably vary the concentration of solutes in aqueous nanoliter volume microdrops stored in wells. The permeation of water in the Phase Chip is modeled using the diffusion equation and good agreement between experiment and theory is obtained. The Phase Chip operates by first creating drops of the water/solute mixture whose composition varies sequentially. Next, drops are transported down channels and guided into storage wells using surface tension forces. Finally, the solute concentration of each stored drop is simultaneously varied and measured. Two applications of the Phase Chip are presented. First, the phase diagram of a polymer/salt mixture is measured on-chip and validated off-chip and second, protein crystallization rates are enhanced through the manipulation of the kinetics of nucleation and growth. PMID:17580868

  19. Ring-Sheared Drop (RSD): Microgravity Module for Containerless Flow Studies

    NASA Astrophysics Data System (ADS)

    Gulati, Shreyash; Raghunandan, Aditya; Rasheed, Fayaz; McBride, Samantha A.; Hirsa, Amir H.

    2017-02-01

    Microgravity is potentially a powerful tool for investigating processes that are sensitive to the presence of solid walls, since fluid containment can be achieved by surface tension. One such process is the transformation of protein in solution into amyloid fibrils; these are protein aggregates associated with neurodegenerative diseases such as Alzheimer's and Parkinson's. In addition to solid walls, experiments with gravity are also subject to influences from sedimentation of aggregates and buoyancy-driven convection. The ring-sheared drop (RSD) module is a flow apparatus currently under development to study formation of amyloid fibrils aboard the International Space Station (ISS). A 25 mm diameter drop of protein solution will be contained by surface tension and constrained by a pair of sharp-edged tubes, forming two contact rings. Shear can be imparted by rotating one ring with the other ring kept stationary. Here we report on parabolic flights conducted to test the growth and pinning of 10 mm diameter drops of water in under 10 s of microgravity. Finite element method (FEM) based fluid dynamics computations using a commercial package (COMSOL) assisted in the design of the parabolic flight experiments. Prior to the parabolic flights, the code was validated against experiments in the lab (1 g), on the growth of sessile and pendant droplets. The simulations show good agreement with the experiments. This modeling capability will enable the development of the RSD at the 25 mm scale for the ISS.

  20. Patterns of protein–protein interactions in salt solutions and implications for protein crystallization

    PubMed Central

    Dumetz, André C.; Snellinger-O'Brien, Ann M.; Kaler, Eric W.; Lenhoff, Abraham M.

    2007-01-01

    The second osmotic virial coefficients of seven proteins—ovalbumin, ribonuclease A, bovine serum albumin, α-lactalbumin, myoglobin, cytochrome c, and catalase—were measured in salt solutions. Comparison of the interaction trends in terms of the dimensionless second virial coefficient b2 shows that, at low salt concentrations, protein–protein interactions can be either attractive or repulsive, possibly due to the anisotropy of the protein charge distribution. At high salt concentrations, the behavior depends on the salt: In sodium chloride, protein interactions generally show little salt dependence up to very high salt concentrations, whereas in ammonium sulfate, proteins show a sharp drop in b2 with increasing salt concentration beyond a particular threshold. The experimental phase behavior of the proteins corroborates these observations in that precipitation always follows the drop in b2. When the proteins crystallize, they do so at slightly lower salt concentrations than seen for precipitation. The b2 measurements were extended to other salts for ovalbumin and catalase. The trends follow the Hofmeister series, and the effect of the salt can be interpreted as a water-mediated effect between the protein and salt molecules. The b2 trends quantify protein–protein interactions and provide some understanding of the corresponding phase behavior. The results explain both why ammonium sulfate is among the best crystallization agents, as well as some of the difficulties that can be encountered in protein crystallization. PMID:17766383

  1. Protein Mixture Segregation at Coffee-Ring: Real-Time Imaging of Protein Ring Precipitation by FTIR Spectromicroscopy.

    PubMed

    Choi, Sun; Birarda, Giovanni

    2017-08-03

    During natural drying process, all solutions and suspensions tend to form the so-called "coffee-ring" deposits. This phenomenon, by far, has been interpreted by the hydrodynamics of evaporating fluids. However, in this study, by applying Fourier transform infrared imaging (FTIRI), it is possible to observe the segregation and separation of a protein mixture at the "ring", hence we suggest a new way to interpret "coffee-ring effect" of solutions. The results explore the dynamic process that leads to the ring formation in case of model plasma proteins, such as BGG (bovine γ globulin), BSA (bovine serum albumin), and Hfib (human fibrinogen), and also report fascinating discovery of the segregation at the ring deposits of two model proteins BGG and BSA, which can be explained by an energy kinetic model, only. The investigation suggests that the coffee-ring effect of solute in an evaporating solution drop is driven by an energy gradient created from change of particle-water-air interfacial energy configuration.

  2. Self-Assembled Coacervates of Chitosan and an Insect Cuticle Protein Containing a Rebers-Riddiford Motif.

    PubMed

    Vaclaw, M Coleman; Sprouse, Patricia A; Dittmer, Neal T; Ghazvini, Saba; Middaugh, C Russell; Kanost, Michael R; Gehrke, Stevin H; Dhar, Prajnaparamita

    2018-05-09

    The interactions among biomacromolecules within insect cuticle may offer new motifs for biomimetic material design. CPR27 is an abundant protein in the rigid cuticle of the elytron from Tribolium castaneum. CPR27 contains the Rebers-Riddiford (RR) motif, which is hypothesized to bind chitin. In this study, active magnetic microrheology coupled with microscopy and protein particle analysis techniques were used to correlate alterations in the viscosity of chitosan solutions with changes in solution microstructure. Addition of CPR27 to chitosan solutions led to a 3-fold drop in viscosity. This change was accompanied by the presence of micrometer-sized coacervate particles in solution. Coacervate formation had a strong dependence on chitosan concentration. Analysis showed the existence of a critical CPR27 concentration beyond which a significant increase in particle count was observed. These effects were not observed when a non-RR cuticular protein, CP30, was tested, providing evidence of a structure-function relationship related to the RR motif.

  3. A morphological screening of protein crystals for interferon delivery by metal ion-chelate technology.

    PubMed

    Jiang, Yanbo; Shi, Kai; Wang, Shuo; Li, Xuefeng; Cui, Fude

    2010-12-01

    This study presents a preliminary exploration on extending the half-life of therapeutic proteins by crystallization strategy without new molecular entities generation. Recombinant human interferon (rhIFN) α-2b, a model protein drug in this case, was crystallized using a hanging-drop vapor diffusion method. A novel chelating technique with metal ions was employed to promote crystals formation. The effects of key factors such as seeding protein concentration, pH of the hanging drop, ionic strength of the equilibration solution, and precipitants were investigated. Size-exclusion liquid chromatography, antiviral activity determination, and enzyme-linked immunosorbent assay indicated that both the molecular integrity and biological potency of rhIFN were not significantly affected by crystallization process. In addition, the in vitro release behavior of rhIFN from crystal lattice was characterized by an initial fast release, followed by a sustained release up to 48 hour. The work described here suggested an exciting possibility of therapeutic protein crystals as a long-acting formulation.

  4. Application of hanging drop technique to optimize human IgG formulations.

    PubMed

    Li, Guohua; Kasha, Purna C; Late, Sameer; Banga, Ajay K

    2010-01-01

    The purpose of this work is to assess the hanging drop technique in screening excipients to develop optimal formulations for human immunoglobulin G (IgG). A microdrop of human IgG and test solution hanging from a cover slide and undergoing vapour diffusion was monitored by a stereomicroscope. Aqueous solutions of IgG in the presence of different pH, salt concentrations and excipients were prepared and characterized. Low concentration of either sodium/potassium phosphate or McIlvaine buffer favoured the solubility of IgG. Addition of sucrose favoured the stability of this antibody while addition of NaCl caused more aggregation. Antimicrobial preservatives were also screened and a complex effect at different buffer conditions was observed. Dynamic light scattering, differential scanning calorimetry and size exclusion chromatography studies were performed to further validate the results. In conclusion, hanging drop is a very easy and effective approach to screen protein formulations in the early stage of formulation development.

  5. Nucleation and growth control in protein crystallization

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Nyce, Thomas A.; Meehan, Edward J.; Sowers, Jennifer W.; Monaco, Lisa A.

    1990-01-01

    The five topics summarized in this final report are as follows: (1) a technique for the expedient, semi-automated determination of protein solubilities as a function of temperature and application of this technique to proteins other than lysozyme; (2) a small solution cell with adjustable temperature gradients for the growth of proteins at a predetermined location through temperature programming; (3) a microscopy system with image storage and processing capability for high resolution optical studies of temperature controlled protein growth and etching kinetics; (4) growth experiments with lysozyme in thermosyphon flow ; and (5) a mathematical model for the evolution of evaporation/diffusion induced concentration gradients in the hanging drop protein crystallization technique.

  6. Characterization of the Protein Crystal Growth Apparatus for Microgravity Aboard the Space Station

    NASA Technical Reports Server (NTRS)

    Kundrot, Craig E.; Roeber, D.; Achari, A.; Stinson, Thomas N. (Technical Monitor)

    2002-01-01

    We have conducted experiments to determine the equilibration rates of some major precipitants used in protein crystallography aboard the International Space Station (ISS). The solutions were placed in the Protein Crystallization Apparatus for Microgravity (PCAM) which mimic Cryschem sitting drop trays. The trays were placed in cylinders. These cylinders were placed inside a Single locker Thermal Enclosure System (STES), and were activated for different durations during the flight. Bumpers pressed against elastomers seal drops in a deactivated state during pre-flight and prior to transfer to the ISS. Activation occurs while in flight on the ISS by releasing the bumpers allowing the drops to be exposed to the reservoir. PCAM was flown to the ISS on STS 100, Flight 6A, on April 19, 2001. Six series of equilibration experiments were tested for each precipitant with a small amount of Green Fluorescent Protein (GFP). Cylinder 10 was never activated, 7 was activated for 40 days, 8 was activated for 20 days, 9 was activated for 10 days, 11 was activated for 4 days and 12 was activated for 2 days. Upon the return to Earth by STS 104 on July 24,2001 the samples were transferred to Marshall Space Flight Center. The samples were then brought to the lab and the volumes of each sample were measured.

  7. Experimental and theoretical analysis of the rate of solvent equilibration in the hanging drop method of protein crystal growth

    NASA Technical Reports Server (NTRS)

    Fowlis, William W.; Delucas, Lawrence J.; Twigg, Pamela J.; Howard, Sandra B.; Meehan, Edward J.

    1988-01-01

    The principles of the hanging-drop method of crystal growth are discussed, and the rate of water evaporation in a water droplet (containing protein, buffer, and a precipitating agent) suspended above a well containing a double concentration of precipitating agent is investigated theoretically. It is shown that, on earth, the rate of evaporation may be determined from diffusion theory and the colligative properties of solutions. The parameters affecting the rate of evaporation include the temperature, the vapor pressure of water, the ionization constant of the salt, the volume of the drop, the contact angle between the droplet and the coverslip, the number of moles of salt in the droplet, the number of moles of water and salt in the well, the molar volumes of water and salt, the distance from the droplet to the well, and the coefficient of diffusion of water vapor through air. To test the theoretical equations, hanging-drop experiments were conducted using various reagent concentrations in 25-microliter droplets and measuring the evaporation times at 4 C and 25 C. The results showed good agreement with the theory.

  8. Marangoni Flow Induced Evaporation Enhancement on Binary Sessile Drops.

    PubMed

    Chen, Pin; Harmand, Souad; Ouenzerfi, Safouene; Schiffler, Jesse

    2017-06-15

    The evaporation processes of pure water, pure 1-butanol, and 5% 1-butanol aqueous solution drops on heated hydrophobic substrates are investigated to determine the effect of temperature on the drop evaporation behavior. The evolution of the parameters (contact angle, diameter, and volume) during evaporation measured using a drop shape analyzer and the infrared thermal mapping of the drop surface recorded by an infrared camera were used in investigating the evaporation process. The pure 1-butanol drop does not show any thermal instability at different substrate temperatures, while the convection cells created by the thermal Marangoni effect appear on the surface of the pure water drop from 50 °C. Because 1-butanol and water have different surface tensions, the infrared video of the 5% 1-butanol aqueous solution drop shows that the convection cells are generated by the solutal Marangoni effect at any substrate temperature. Furthermore, when the substrate temperature exceeds 50 °C, coexistence of the thermal and solutal Marangoni flows is observed. By analyzing the relation between the ratio of the evaporation rate of pure water and 1-butanol aqueous solution drops and the Marangoni number, a series of empirical equations for predicting the evaporation rates of pure water and 1-butanol aqueous solution drops at the initial time as well as the equations for the evaporation rate of 1-butanol aqueous solution drop before the depletion of alcohol are derived. The results of these equations correspond fairly well to the experimental data.

  9. Stability and in vitro toxicity of an infliximab eye drop formulation.

    PubMed

    Robert, Marie-Claude; Spurr-Michaud, Sandra; Frenette, Mathieu; Young, David; Gipson, Ilene K; Dohlman, Claes H

    2014-01-01

    The purpose of this study was to develop a novel 10-mg/mL infliximab eye drop, to characterize its physical and biological stability under recommended storage conditions, and to assess the formulation's toxicity to ocular surface epithelium in vitro. Infliximab (10 mg/mL) was reconstituted using equal volumes of sterile water and 1% carboxymethylcellulose artificial tears. Aliquots were stored in either a 4 degrees C refrigerator or -20 degrees C freezer for up to 45 days. Physical stability was assessed through monitoring the solution's appearance, pH, ultraviolet-visible-near infrared absorbance and scattering, as well as protein gel electrophoresis. Biological stability was assayed through binding to tumor necrosis factor-alpha using an enzyme-linked immunosorbent assay. In vitro cytotoxicity to human corneal-limbal epithelial cells was examined following a 4-hour exposure to the study drug. Refrigerated and frozen infliximab eye drops remained clear and colorless for the duration of study. The formulation's pH (7.0) was comparable to that of the artificial tear vehicle alone. Low levels of ultraviolet-visible-near infrared light absorbance and scattering established the lack of protein precipitate after refrigeration or freezing. Protein gel electrophoresis performed under reducing conditions revealed the presence of two main protein bands of approximately 50 kDa and 25 kDa, representing immunoglobulin G heavy and light chains. The migration pattern of the proteins did not change under the different storage conditions and between day 10 and 45 after formulation. Infliximab binding to tumor necrosis factor-alpha remained stable for up to 45 days, with conservation of 101% and 102% of its initial binding activity when refrigerated or frozen, respectively. In vitro human corneal-limbal epithelial cultures showed no increase in cytotoxicity with infliximab treatment when compared to vehicle and culture media controls (P > 0.05). Infliximab can be formulated as an eye drop and remains stable when stored in accordance with current regulations regarding compounded eye drops. The demonstrated physical and biological stability as well as in vitro innocuity of this infliximab eye drop formulation may facilitate future clinical investigation targeting tumor necrosis factor-alpha as a modulator of various ocular surface diseases.

  10. Drop-on-demand drop formation of polyethylene oxide solutions

    NASA Astrophysics Data System (ADS)

    Yan, Xuejia; Carr, Wallace W.; Dong, Hongming

    2011-10-01

    The dynamics of drop-on-demand (DOD) drop formation for solutions containing polyethylene oxide (PEO) have been studied experimentally. Using a piezoelectrical actuated inkjet printhead with the nozzle orifice diameter of 53 μm, experiments were conducted for a series of PEO aqueous solutions with molecular weights ranging from 14 to 1000 kg/mol, polydispersity from 1.02 to 2.5, and concentrations from 0.005 to 10 wt. %. The addition of a small amount of PEO can have a significant effect on the DOD drop formation process, increasing breakup time, decreasing primary drop speed, and decreasing the number of satellite drops in some cases. The effects depend on both molecular weight and concentration. At lower molecular weights (14 and 35 kg/mol), the effect of PEO over the dilute solution regime is insignificant even at concentrations large enough that the solution does not fall in the dilute regime. As PEO molecular weight increased, the effects became significant. For monodispersed PEO solutions, breakup time and primary drop speed closely correlated with effective relaxation time but not for polydispersed PEO. Effective relaxation time depended greatly on molecular weight distribution. Viscosity-average molecular weight, used in calculating effective relaxation time for polydispersed PEO solutions, did not adequately account for high molecular fractions in the molecular weight distribution of the polydispersed PEOs. A mixture rule was developed to calculate the effective relaxation times for aqueous solutions containing mixtures of monodispersed PEO, and breakup times and primary drop speeds correlated well with effective relaxation times. For our experiments, DOD drop formation was limited to Deborah number ≲ 23.

  11. Room-temperature serial crystallography using a kinetically optimized microfluidic device for protein crystallization and on-chip X-ray diffraction

    PubMed Central

    Heymann, Michael; Opthalage, Achini; Wierman, Jennifer L.; Akella, Sathish; Szebenyi, Doletha M. E.; Gruner, Sol M.; Fraden, Seth

    2014-01-01

    An emulsion-based serial crystallographic technology has been developed, in which nanolitre-sized droplets of protein solution are encapsulated in oil and stabilized by surfactant. Once the first crystal in a drop is nucleated, the small volume generates a negative feedback mechanism that lowers the supersaturation. This mechanism is exploited to produce one crystal per drop. Diffraction data are measured, one crystal at a time, from a series of room-temperature crystals stored on an X-ray semi-transparent microfluidic chip, and a 93% complete data set is obtained by merging single diffraction frames taken from different unoriented crystals. As proof of concept, the structure of glucose isomerase was solved to 2.1 Å, demonstrating the feasibility of high-throughput serial X-ray crystallography using synchrotron radiation. PMID:25295176

  12. Friability Testing as a New Stress-Stability Assay for Biopharmaceuticals.

    PubMed

    Torisu, Tetsuo; Maruno, Takahiro; Yoneda, Saki; Hamaji, Yoshinori; Honda, Shinya; Ohkubo, Tadayasu; Uchiyama, Susumu

    2017-10-01

    A cycle of dropping and shaking a vial containing antibody solution was reported to induce aggregation. In this study, antibody solutions in glass prefillable syringes with or without silicone oil lubrication were subjected to the combined stresses of dropping and shaking, using a friability testing apparatus. Larger numbers of subvisible particles were generated, regardless of silicone oil lubrication, upon combination stress exposure than that with shaking stress alone. Nucleation of antibody molecules upon perturbation by an impact of dropping and adsorption of antibody molecules to the syringe surface followed by film formation and antibody film desorption were considered key steps in the particle formation promoted by combination stress. A larger number of silicone oil droplets was released when silicone oil-lubricated glass syringes containing phosphate buffer saline were exposed to combination stress than that observed with shaking stress alone. Polysorbate 20, a non-ionic surfactant, effectively reduced the number of protein particles, but failed to prevent silicone oil release upon combination stress exposure. This study indicates that stress-stability assays using the friability testing apparatus are effective for assessing the stability of biopharmaceuticals under the combined stresses of dropping and shaking, which have not been tested in conventional stress-stability assays. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  13. Method and apparatus for the production of metal oxide powder

    DOEpatents

    Harris, Michael T.; Scott, Timothy C.; Byers, Charles H.

    1993-01-01

    The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed.

  14. Method and apparatus for the production of metal oxide powder

    DOEpatents

    Harris, Michael T.; Scott, Timothy C.; Byers, Charles H.

    1992-01-01

    The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed.

  15. Method and apparatus for the production of metal oxide powder

    DOEpatents

    Harris, M.T.; Scott, T.C.; Byers, C.H.

    1992-06-16

    The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed. 2 figs.

  16. Tensiometry and dilational rheology of mixed β-lactoglobulin/ionic surfactant adsorption layers at water/air and water/hexane interfaces.

    PubMed

    Dan, Abhijit; Gochev, Georgi; Miller, Reinhard

    2015-07-01

    Oscillating drop tensiometry was applied to study adsorbed interfacial layers at water/air and water/hexane interfaces formed from mixed solutions of β-lactoglobulin (BLG, 1 μM in 10 mM buffer, pH 7 - negative net charge) and the anionic surfactant SDS or the cationic DoTAB. The interfacial pressure Π and the dilational viscoelasticity modulus |E| of the mixed layers were measured for mixtures of varying surfactant concentrations. The double capillary technique was employed which enables exchange of the protein solution in the drop bulk by surfactant solution (sequential adsorption) or by pure buffer (washing out). The first protocol allows probing the influence of the surfactant on a pre-adsorbed protein layer thus studying the protein/surfactant interactions at the interface. The second protocol gives access to the residual values of Π and |E| measured after the washing out procedure thus bringing information about the process of protein desorption. The DoTAB/BLG complexes exhibit higher surface activity and higher resistance to desorption in comparison with those for the SDS/BLG complexes due to hydrophobization via electrostatic binding of surfactant molecules. The neutral DoTAB/BLG complexes achieve maximum elastic response of the mixed layer. Mixed BLG/surfactant layers at the water/oil interface are found to reach higher surface pressure and lower maximum dilational elasticity than those at the water/air surface. The sequential adsorption mode experiments and the desorption study reveal that binding of DoTAB to pre-adsorbed BLG globules is somehow restricted at the water/air surface in comparison with the case of complex formation in the solution bulk and subsequently adsorbed at the water/air surface. Maximum elasticity is achieved with washed out layers obtained after simultaneous adsorption, i.e. isolation of the most surface active DoTAB/BLG complex. These specific effects are much less pronounced at the W/H interface. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Development of ultrasonically levitated drops as microreactors for study of enzyme kinetics and potential as a universal portable analysis system

    NASA Astrophysics Data System (ADS)

    Scheeline, A.; Pierre, Z.; Field, C. R.; Ginsberg, M. D.

    2009-05-01

    Development of microfluidics has focused on carrying out chemical synthesis and analysis in ever-smaller volumes of solution. In most cases, flow systems are made of either quartz, glass, or an easily moldable polymer such as polydimethylsiloxane (Whitesides 2006). As the system shrinks, the ratio of surface area to volume increases. For studies of either free radical chemistry or protein chemistry, this is undesirable. Proteins stick to surfaces, biofilms grow on surfaces, and radicals annihilate on walls (Lewis et al. 2006). Thus, under those circumstances where small amounts of reactants must be employed, typical microfluidic systems are incompatible with the chemistry one wishes to study. We have developed an alternative approach. We use ultrasonically levitated microliter drops as well mixed microreactors. Depending on whether capillaries (to form the drop) and electrochemical sensors are in contact with the drop or whether there are no contacting solids, the ratio of solid surface area to volume is low or zero. The only interface seen by reactants is a liquid/air interface (or, more generally, liquid/gas, as any gas may be used to support the drop). While drop levitation has been reported since at least the 1940's, we are the second group to carry out enzyme reactions in levitated drops, (Weis; Nardozzi 2005) and have fabricated the lowest power levitator in the literature (Field; Scheeline 2007). The low consumption aspects of ordinary microfluidics combine with a contact-free determination cell (the levitated drop) that ensures against cross-contamination, minimizes the likelihood of biofilm formation, and is robust to changes in temperature and humidity (Lide 1992). We report kinetics measurements in levitated drops and explain how outgrowths of these accomplishments will lead to portable chemistry/biology laboratories well suited to detection of a wide range of chemical and biological agents in the asymmetric battlefield environment.

  18. Scanning drop sensor

    DOEpatents

    Jin, Jian; Xiang, Chengxiang; Gregoire, John

    2017-05-09

    Electrochemical experiments are performed on a collection of samples by suspending a drop of electrolyte solution between an electrochemical experiment probe and one of the samples that serves as a test sample. During the electrochemical experiment, the electrolyte solution is added to the drop and an output solution is removed from the drop. The probe and collection of samples can be moved relative to one another so the probe can be scanned across the samples.

  19. Scanning drop sensor

    DOEpatents

    Jin, Jian; Xiang, Chengxiang; Gregoire, John M.; Shinde, Aniketa A.; Guevarra, Dan W.; Jones, Ryan J.; Marcin, Martin R.; Mitrovic, Slobodan

    2017-05-09

    Electrochemical or electrochemical and photochemical experiments are performed on a collection of samples by suspending a drop of electrolyte solution between an electrochemical experiment probe and one of the samples that serves as a test sample. During the electrochemical experiment, the electrolyte solution is added to the drop and an output solution is removed from the drop. The probe and collection of samples can be moved relative to one another so the probe can be scanned across the samples.

  20. Insights from the pollination drop proteome and the ovule transcriptome of Cephalotaxus at the time of pollination drop production

    PubMed Central

    Pirone-Davies, Cary; Prior, Natalie; von Aderkas, Patrick; Smith, Derek; Hardie, Darryl; Friedman, William E.; Mathews, Sarah

    2016-01-01

    Background and Aims Many gymnosperms produce an ovular secretion, the pollination drop, during reproduction. The drops serve as a landing site for pollen, but also contain a suite of ions and organic compounds, including proteins, that suggests diverse roles for the drop during pollination. Proteins in the drops of species of Chamaecyparis, Juniperus, Taxus, Pseudotsuga, Ephedra and Welwitschia are thought to function in the conversion of sugars, defence against pathogens, and pollen growth and development. To better understand gymnosperm pollination biology, the pollination drop proteomes of pollination drops from two species of Cephalotaxus have been characterized and an ovular transcriptome for C. sinensis has been assembled. Methods Mass spectrometry was used to identify proteins in the pollination drops of Cephalotaxus sinensis and C. koreana. RNA-sequencing (RNA-Seq) was employed to assemble a transcriptome and identify transcripts present in the ovules of C. sinensis at the time of pollination drop production. Key Results About 30 proteins were detected in the pollination drops of both species. Many of these have been detected in the drops of other gymnosperms and probably function in defence, polysaccharide metabolism and pollen tube growth. Other proteins appear to be unique to Cephalotaxus, and their putative functions include starch and callose degradation, among others. Together, the proteins appear either to have been secreted into the drop or to occur there due to breakdown of ovular cells during drop production. Ovular transcripts represent a wide range of gene ontology categories, and some may be involved in drop formation, ovule development and pollen–ovule interactions. Conclusions The proteome of Cephalotaxus pollination drops shares a number of components with those of other conifers and gnetophytes, including proteins for defence such as chitinases and for carbohydrate modification such as β-galactosidase. Proteins likely to be of intracellular origin, however, form a larger component of drops from Cephalotaxus than expected from studies of other conifers. This is consistent with the observation of nucellar breakdown during drop formation in Cephalotaxus. The transcriptome data provide a framework for understanding multiple metabolic processes that occur within the ovule and the pollination drop just before fertilization. They reveal the deep conservation of WUSCHEL expression in ovules and raise questions about whether any of the S-locus transcripts in Cephalotaxus ovules might be involved in pollen–ovule recognition. PMID:27045089

  1. A comparison between protein crystals grown with vapor diffusion methods in microgravity and protein crystals using a gel liquid-liquid diffusion ground-based method

    NASA Technical Reports Server (NTRS)

    Miller, Teresa Y.; He, Xiao-Min; Carter, Daniel C.

    1992-01-01

    Crystals of human serum albumin have been successfully grown in a variety of gels using crystallization conditions otherwise equivalent to those utilized in the popular hanging-drop vapor-equilibrium method. Preliminary comparisons of gel grown crystals with crystals grown by the vapor diffusion method via both ground-based and microgravity methods indicate that crystals superior in size and quality may be grown by limiting solutal convection. Preliminary X-ray diffraction statistics are presented.

  2. Is it Possible to have the Similar Unit Cell in Crystals of Different form from the same Macromolecule? (A Case Study of Ribosome Crystals)

    NASA Technical Reports Server (NTRS)

    Karpova, E. A.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Three different types of ribosome crystals were grown by the vapor diffusion technique in hanging drops as described in (1,2). The ribosome is a large asymmetric RNA-protein complex (2.3 million Da), which is protein syntheses machinery of the cell. In this poster we would like to discuss the features of ribosome crystallization. Ribosomes were purified from the thermophilic bacteria Thermus thermophilus by centrifugation (3). Three types of crystals (needle, flat tetragonal and tetragonal-like pyramid) can be grown from the same solution; furthermore, in the same drop using 10-15% 2-methyl-2,4- pentanediol as a precipitant. The crystals appeared in 5-48 hours. The crystals were stable and can co-exist in solution over long period of time. The kinetics of appearance of different crystal forms was different: first the needle crystals were grown, then the tetragonal, and finally the tetragonal pyramids. Later studies of the process of ribosome crystal growth depending on supersaturation showed that low supersaturation results in the appearance of tetragonal plates or tetragonal-like pyramids. An electron microscopy study, together with computer modeling, has shown that crystals of different forms have a high probability of having the same unit cell parameters. According to these experiments the following conclusion can be dranvn: the level of supersaturation of the macromolecule in a crystallizing solution is one of the major factors for forming three-dimensional crystals convenient for X-rays diffraction analysis. From the same macromolecule solution, crystals of different forms can be grown at approximately the same conditions by varying the concentration of macromolecule in the solution. Ion-macromolecule and water-macromolecule interactions, apparently, play the main role in the formation of the unit cell of the crystals.

  3. Protein spheres prepared by drop jet freeze drying.

    PubMed

    Eggerstedt, Sören N; Dietzel, Mathias; Sommerfeld, Martin; Süverkrüp, Richard; Lamprecht, Alf

    2012-11-15

    In spray freeze drying (SFD) solutions are frozen by spraying into a very cold environment and subsequently dried by sublimation. In contrast to conventional freeze drying, spray freeze drying has the possibility to produce flowable lyophilizates which offers a variety of new pharmaceutical applications. Here, a drop jet nozzle is proposed as liquid dispenser that is able to produce droplets with a very narrow size distribution compared to standard methods. The drop jet nozzle is mounted in a spray tower designed to prevent direct contact of the product with the freezing medium. Various formulations have been tested containing lysozyme as model protein and stabilizers such as bovine serum albumin, polyvinylpyrrolidone or dextran in various concentrations and mannitol. Excellent free flowing and nearly monodispersed, porous particles are produced where particle properties can be controlled by formulation and process conditions. The particle diameter varied between 231 ± 3 μm and 310 ± 10 μm depending on the formulation composition. The lysozyme activity was >94 ± 5% for all formulations exhibiting a full preservation of enzyme activity. This new method is very promising for the production of nearly monodisperse particulate lyophilizates in various therapeutic applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Lysozyme pattern formation in evaporating droplets

    NASA Astrophysics Data System (ADS)

    Gorr, Heather Meloy

    Liquid droplets containing suspended particles deposited on a solid, flat surface generally form ring-like structures due to the redistribution of solute during evaporation (the "coffee ring effect"). The forms of the deposited patterns depend on complex interactions between solute(s), solvent, and substrate in a rapidly changing, far from equilibrium system. Solute self-organization during evaporation of colloidal sessile droplets has attracted the attention of researchers over the past few decades due to a variety of technological applications. Recently, pattern formation during evaporation of various biofluids has been studied due to potential applications in medical screening and diagnosis. Due to the complexity of 'real' biological fluids and other multicomponent systems, a comprehensive understanding of pattern formation during droplet evaporation of these fluids is lacking. In this PhD dissertation, the morphology of the patterns remaining after evaporation of droplets of a simplified model biological fluid (aqueous lysozyme solutions + NaCl) are examined by atomic force microscopy (AFM) and optical microscopy. Lysozyme is a globular protein found in high concentration, for example, in human tears and saliva. The drop diameters, D, studied range from the micro- to the macro- scale (1 microm -- 2 mm). In this work, the effect of evaporation conditions, solution chemistry, and heat transfer within the droplet on pattern formation is examined. In micro-scale deposits of aqueous lysozyme solutions (1 microm < D < 50 microm), the protein motion and the resulting dried residue morphology are highly influenced by the decreased evaporation time of the drop. The effect of electrolytes on pattern formation is also investigated by adding varying concentrations NaCl to the lysozyme solutions. Finally, a novel pattern recognition program is described and implemented which classifies deposit images by their solution chemistries. The results presented in this PhD dissertation provide insight into the evaporative behavior and pattern formation in droplets of simplified model biological fluids (aqueous lysozyme + NaCl). The patterns that form depend sensitively on the evaporation conditions, characteristic time and length scales, and the physiochemical properties of the solutions. The patterns are unique, dependent on solution chemistry, and may therefore act as a "fingerprint" in identifying fluid properties.

  5. Insights from the pollination drop proteome and the ovule transcriptome of Cephalotaxus at the time of pollination drop production.

    PubMed

    Pirone-Davies, Cary; Prior, Natalie; von Aderkas, Patrick; Smith, Derek; Hardie, Darryl; Friedman, William E; Mathews, Sarah

    2016-05-01

    Many gymnosperms produce an ovular secretion, the pollination drop, during reproduction. The drops serve as a landing site for pollen, but also contain a suite of ions and organic compounds, including proteins, that suggests diverse roles for the drop during pollination. Proteins in the drops of species of Chamaecyparis, Juniperus, Taxus, Pseudotsuga, Ephedra and Welwitschia are thought to function in the conversion of sugars, defence against pathogens, and pollen growth and development. To better understand gymnosperm pollination biology, the pollination drop proteomes of pollination drops from two species of Cephalotaxus have been characterized and an ovular transcriptome for C. sinensis has been assembled. Mass spectrometry was used to identify proteins in the pollination drops of Cephalotaxus sinensis and C. koreana RNA-sequencing (RNA-Seq) was employed to assemble a transcriptome and identify transcripts present in the ovules of C. sinensis at the time of pollination drop production. About 30 proteins were detected in the pollination drops of both species. Many of these have been detected in the drops of other gymnosperms and probably function in defence, polysaccharide metabolism and pollen tube growth. Other proteins appear to be unique to Cephalotaxus, and their putative functions include starch and callose degradation, among others. Together, the proteins appear either to have been secreted into the drop or to occur there due to breakdown of ovular cells during drop production. Ovular transcripts represent a wide range of gene ontology categories, and some may be involved in drop formation, ovule development and pollen-ovule interactions. The proteome of Cephalotaxus pollination drops shares a number of components with those of other conifers and gnetophytes, including proteins for defence such as chitinases and for carbohydrate modification such as β-galactosidase. Proteins likely to be of intracellular origin, however, form a larger component of drops from Cephalotaxus than expected from studies of other conifers. This is consistent with the observation of nucellar breakdown during drop formation in Cephalotaxus The transcriptome data provide a framework for understanding multiple metabolic processes that occur within the ovule and the pollination drop just before fertilization. They reveal the deep conservation of WUSCHEL expression in ovules and raise questions about whether any of the S-locus transcripts in Cephalotaxus ovules might be involved in pollen-ovule recognition. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Immobilization of acetylcholinesterase in lipid membranes deposited on self-assembled monolayers.

    PubMed

    Milkani, Eftim; Khaing, Aung M; Huang, Fei; Gibson, Daniel G; Gridley, Scott; Garceau, Norman; Lambert, Christopher R; McGimpsey, W Grant

    2010-12-21

    Human red blood cell acetylcholinesterase was incorporated into planar lipid membranes deposited on alkanethiol self-assembled monolayers (SAMs) on gold substrates. Activity of the protein in the membrane was detected with a standard photometric assay and was determined to be similar to the protein in detergent solution or incorporated in lipid vesicles. Monolayer and bilayer lipid membranes were generated by fusing liposomes to hydrophobic and hydrophilic SAMs, respectively. Liposomes were formed by the injection method using the lipid dimyristoylphosphatidylcholine (DMPC). The formation of alkanethiol SAMs and lipid monolayers on SAMs was confirmed by sessile drop goniometry, ellipsometry, and electrochemical impedance spectroscopy. In this work, we report acetylcholinesterase immobilization in lipid membranes deposited on SAMs formed on the gold surface and compare its activity to enzyme in solution.

  7. Supercrystallization of KCl from solution irradiated by soft X-rays

    NASA Astrophysics Data System (ADS)

    Janavičius, A. J.; Rinkūnas, R.; Purlys, R.

    2016-10-01

    The X-rays influence on KCl crystallization in a saturated water solution has been investigated for the aim of comparing it with previously considered NaCl crystallization. The rate of crystallization has been measured in the drying drop in the solution activated by the irradiation. We have measured the influence of the irradiation time of the solution on the rates of KCl crystallization as well as the beginning of the crystallization processes on drying drops. For a longer irradiation time of the solution early crystallization in the drops occurs. A saturated water solution of KCl was irradiated with the diffractometer DRON-3M (Russian device) and this had a great influence on the two-step processes of crystallization. The ionization of the solution by soft X-rays can produce ions, metastable radicals in water, excited crystals' seeds and vacancies in growing crystals by Auger's effect. The X-rays generate a very fast crystallization in the drying drop.

  8. Purification and crystallization of the ABC-type transport substrate-binding protein OppA from Thermoanaerobacter tengcongensis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Jinlan; Li, Xiaolu; Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, People's Republic of China

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer We truncated the signal peptide of OppA{sub TTE0054} to make it express in Escherichia coli as a soluble protein. Black-Right-Pointing-Pointer Crystals of OppA{sub TTE0054} were grown by sitting-drop vapor diffusion method. Black-Right-Pointing-Pointer The crystal of OppA{sub TTE0054} diffracted to 2.25 A. -- Abstract: Di- and oligopeptide- binding protein OppAs play important roles in solute and nutrient uptake, sporulation, biofilm formation, cell wall muropeptides recycling, peptide-dependent quorum-sensing responses, adherence to host cells, and a variety of other biological processes. Soluble OppA from Thermoanaerobacter tengcongensis was expressed in Escherichia coli. The protein was found to be >95% pure with SDS-PAGEmore » after a series of purification steps and the purity was further verified by mass spectrometry. The protein was crystallized using the sitting-drop vapour-diffusion method with PEG 400 as the precipitant. Crystal diffraction extended to 2.25 A. The crystal belonged to space group C222{sub 1}, with unit-cell parameters of a = 69.395, b = 199.572, c = 131.673 A, and {alpha} = {beta} = {gamma} = 90 Degree-Sign .« less

  9. Hanging drop crystal growth apparatus

    NASA Technical Reports Server (NTRS)

    Naumann, Robert J. (Inventor); Witherow, William K. (Inventor); Carter, Daniel C. (Inventor); Bugg, Charles E. (Inventor); Suddath, Fred L. (Inventor)

    1990-01-01

    This invention relates generally to control systems for controlling crystal growth, and more particularly to such a system which uses a beam of light refracted by the fluid in which crystals are growing to detect concentration of solutes in the liquid. In a hanging drop apparatus, a laser beam is directed onto drop which refracts the laser light into primary and secondary bows, respectively, which in turn fall upon linear diode detector arrays. As concentration of solutes in drop increases due to solvent removal, these bows move farther apart on the arrays, with the relative separation being detected by arrays and used by a computer to adjust solvent vapor transport from the drop. A forward scattering detector is used to detect crystal nucleation in drop, and a humidity detector is used, in one embodiment, to detect relative humidity in the enclosure wherein drop is suspended. The novelty of this invention lies in utilizing angular variance of light refracted from drop to infer, by a computer algorithm, concentration of solutes therein. Additional novelty is believed to lie in using a forward scattering detector to detect nucleating crystallites in drop.

  10. Process modelling for space station experiments

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Alexander, J. Iwan D.

    1988-01-01

    The work performed during the first year 1 Oct. 1987 to 30 Sept. 1988 involved analyses of crystal growth from the melt and from solution. The particular melt growth technique under investigation is directional solidification by the Bridgman-Stockbarger method. Two types of solution growth systems are also being studied. One involves growth from solution in a closed container, the other concerns growth of protein crystals by the hanging drop method. Following discussions with Dr. R. J. Naumann of the Low Gravity Science Division at MSFC it was decided to tackle the analysis of crystal growth from the melt earlier than originally proposed. Rapid progress was made in this area. Work is on schedule and full calculations were underway for some time. Progress was also made in the formulation of the two solution growth models.

  11. Wetting-mediated collective tubulation and pearling in confined vesicular drops of DDAB solutions.

    PubMed

    Haidara, Hamidou

    2014-12-21

    Whether driven by external mechanical stresses (shear flow) or induced by membrane-active peptides and/or proteins, the collective growth of tubules in membranous fluids has seldom been reported. The pearling destabilization of these membranous tubules which requires an activation of the shape distortion, often induced by optical tweezers, membrane-active biomolecules or an electrical field, has also rarely been observed under mild experimental conditions. Here we report such events of collective tubulation and pearling destabilization in sessile drops of a didodecyl-dimethylammonium bromide (DDAB) vesicular solution that are confined by a surrounding oil medium. Based on the wetting dynamics and the features of the tubulation process, we show that the growth of the tubules here relies on a mechanism of "pinning-induced pulling" from the retracting drop, rather than the classical hydrodynamic fingering instability. We show that the whole tubulation process is driven by a strong coupling between the bulk properties of the ternary (DAAB/water/oil) system and the dynamics of wetting. Finally, we discuss the pearling destabilization of these tubules under vanishing static interface tension and quite mild tensile force arising from their pulling. We show that under those mild conditions, shape disturbances readily grow, either as pearling waves moving toward the drop-reservoir or as Rayleigh-type peristaltic modulations. Besides revealing singular non-Rayleigh pearling modes, this work also brings new insights into the flow dynamics in membranous tubules anchored to an infinite reservoir.

  12. The possible equilibrium shapes of static pendant drops

    NASA Astrophysics Data System (ADS)

    Sumesh, P. T.; Govindarajan, Rama

    2010-10-01

    Analytical and numerical studies are carried out on the shapes of two-dimensional and axisymmetric pendant drops hanging under gravity from a solid surface. Drop shapes with both pinned and equilibrium contact angles are obtained naturally from a single boundary condition in the analytical energy optimization procedure. The numerical procedure also yields optimum energy shapes, satisfying Young's equation without the explicit imposition of a boundary condition at the plate. It is shown analytically that a static pendant two-dimensional drop can never be longer than 3.42 times the capillary length. A related finding is that a range of existing solutions for long two-dimensional drops correspond to unphysical drop shapes. Therefore, two-dimensional drops of small volume display only one static solution. In contrast, it is known that axisymmetric drops can display multiple solutions for a given volume. We demonstrate numerically that there is no limit to the height of multiple-lobed Kelvin drops, but the total volume is finite, with the volume of successive lobes forming a convergent series. The stability of such drops is in question, though. Drops of small volume can attain large heights. A bifurcation is found within the one-parameter space of Laplacian shapes, with a range of longer drops displaying a minimum in energy in the investigated space. Axisymmetric Kelvin drops exhibit an infinite number of bifurcations.

  13. Solvent exchange method: a novel microencapsulation technique using dual microdispensers.

    PubMed

    Yeo, Yoon; Chen, Alvin U; Basaran, Osman A; Park, Kinam

    2004-08-01

    A new microencapsulation method called the "solvent exchange method" was developed using a dual microdispenser system. The objective of this research is to demonstrate the new method and understand how the microcapsule size is controlled by different instrumental parameters. The solvent exchange method was carried out using a dual microdispenser system consisting of two ink-jet nozzles. Reservoir-type microcapsules were generated by collision of microdrops of an aqueous and a polymer solution and subsequent formation of polymer films at the interface between the two solutions. The prepared microcapsules were characterized by microscopic methods. The ink-jet nozzles produced drops of different sizes with high accuracy according to orifice size of a nozzle, flow rate of the jetted solutions, and forcing frequency of the piezoelectric transducers. In an individual microcapsule, an aqueous core was surrounded by a thin polymer membrane; thus, the size of the collected microcapsules was equivalent to that of single drops. The solvent exchange method based on a dual microdispenser system produces reservoir-type microcapsules in a homogeneous and predictable manner. Given the unique geometry of the microcapsules and mildness of the encapsulation process, this method is expected to provide a useful alternative to existing techniques in protein microencapsulation.

  14. Homogeneous freezing of single sulfuric and nitric acid solution drops levitated in an acoustic trap

    NASA Astrophysics Data System (ADS)

    Diehl, Karoline; Ettner-Mahl, Matthias; Hannemann, Anke; Mitra, Subir K.

    2009-10-01

    The freezing temperatures of single supercooled drops of binary and ternary sulfuric and nitric acid solutions were measured while varying the acid concentration. An acoustic levitator was used which allows to freely suspend single solution drops in air without electrical charges thereby avoiding any electrical influences which may affect the freezing process. The drops of typically 500 µm in radius were monitored by a video camera during cooling cycles down to - 85 °C to simulate the upper tropospheric and stratospheric temperature range. The present data confirm that liquid solution droplets can be supercooled far below the equilibrium melting point by approximately 35 °C. They follow the general trend of the expected freezing temperatures for homogeneous ice nucleation.

  15. A model of the evaporation of binary-fuel clusters of drops

    NASA Technical Reports Server (NTRS)

    Harstad, K.; Bellan, J.

    1991-01-01

    A formulation has been developed to describe the evaporation of dense or dilute clusters of binary-fuel drops. The binary fuel is assumed to be made of a solute and a solvent whose volatility is much lower than that of the solute. Convective flow effects, inducing a circulatory motion inside the drops, are taken into account, as well as turbulence external to the cluster volume. Results obtained with this model show that, similar to the conclusions for single isolated drops, the evaporation of the volatile is controlled by liquid mass diffusion when the cluster is dilute. In contrast, when the cluster is dense, the evaporation of the volatile is controlled by surface layer stripping, that is, by the regression rate of the drop, which is in fact controlled by the evaporation rate of the solvent. These conclusions are in agreement with existing experimental observations. Parametric studies show that these conclusions remain valid with changes in ambient temperature, initial slip velocity between drops and gas, initial drop size, initial cluster size, initial liquid mass fraction of the solute, and various combinations of solvent and solute. The implications of these results for computationally intensive combustor calculations are discussed.

  16. Comparison of drop size data from ground and aerial application nozzles at three testing laboratories

    USDA-ARS?s Scientific Manuscript database

    Spray drop size is a critical factor in the performance of any agrochemical solution and is a function of spray solution, nozzle selection, and nozzle operation. Applicators generally base their selection of a particular nozzle based on the drop size reported by manufacturers and researchers. Like m...

  17. Preparation and evaluation of HPMC-based pirfenidone solution in vivo.

    PubMed

    Yang, Mei; Yang, Yang-Fan; Lei, Ming; Ye, Cheng-Tian; Zhao, Chun-Shun; Xu, Jian-Gang; Wu, Kai-Li; Yu, Min-Bin

    2017-01-01

    Pirfenidone (PFD) has exhibited therapeutic potential in the treatment of cell proliferative disorders. The previously developed 0.5% water-based PFD eye drops by our team exhibited antiscarring effectiveness and ocular safety but with a limit of short half-life and poor bioavailability. To increase bioavailability of the water-based PFD eye drops, we prepared a viscous solution by adding hydroxypropyl methylcellulose (HPMC, F4M), which acted as a viscosity-enhancer. Subsequently, we compared the HPMC-based PFD solution with the water-based PFD eye drops. PFD solution with 1% HPMC (w/v) was prepared, and the viscosities at different shear rates were measured to investigate its rheology. PFD concentrations in the tear, aqueous humor, conjunctiva, cornea, and sclerae of New Zealand rabbits were detected at different time points with high-performance liquid chromatography (HPLC) following single instillation of the 0.5% PFD (w/v) water-based eye drops or HPMC-based solution. Compared with the 0.5% water-based PFD eye drops, the HPMC-based solution increased the PFD levels in tears and prolonged the residence time from 10 to more than 20 min (p < .01). Consequently, the concentrations of PFD in aqueous humor, conjunctiva, cornea, and sclera were elevated to varying degrees until 90 min after topical administration. The developed formulation possesses a same readily administration and simple preparation as the PFD eye drops; however, the HPMC-based solution exhibited the higher bioavailability.

  18. Topical drug delivery to the eye: dorzolamide.

    PubMed

    Loftsson, Thorsteinn; Jansook, Phatsawee; Stefánsson, Einar

    2012-11-01

    Topically applied carbonic anhydrase inhibitors (CAIs) in eye drop solutions are commonly used to treat glaucoma. However, local eye irritation and multiple daily administrations may hamper their clinical usefulness. Aqueous eye drop formulations that improve their topical bioavailability and reduce their eye irritation can improve their clinical efficacy. Earlier studies showed that dorzolamide and closely related CAIs are more effectively delivered into the eye from acidic eye drop solutions than from comparable neutral solutions. Consequently, dorzolamide was marketed as an aqueous pH 5.6 eye drop solution (Trusopt(®) , Merck). Later, it was shown that increasing the pH of the eye drops from pH 5.6 to physiologic pH significantly reduced their local irritation. Earlier attempts to use cyclodextrins (CDs) as ocular penetration enhancers in dorzolamide eye drop solutions failed since; although the CDs were able to enhance the aqueous solubility of dorzolamide, increasing the pH from 5.6 to physiologic pH reduced the ability of the drug to permeate into the eye. Later, it was discovered that formulating the drug as aqueous dorzolamide/γCD eye drop microparticle suspension resulted in significant bioavailability enhancement. The solid dorzolamide/γCD microparticles are mucoadhesive and release dorzolamide into the aqueous tear fluid for extended time period. Consequently, sustained high dorzolamide concentrations in aqueous humour and various eye tissues were observed after single administration of the aqueous dorzolamide/γCD eye drop microsuspension. The microsuspension has a potential of being developed into a once-a-day eye drop product. This article reviews the physicochemical properties of dorzolamide, its permeation characteristics and topical bioavailability. © 2012 The Authors. Acta Ophthalmologica © 2012 Acta Ophthalmologica Scandinavica Foundation.

  19. Performance improvement for solution-processed high-mobility ZnO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Sha Li, Chen; Li, Yu Ning; Wu, Yi Liang; Ong, Beng S.; Loutfy, Rafik O.

    2008-06-01

    The fabrication technology of stable, non-toxic, transparent, high performance zinc oxide (ZnO) thin-film semiconductors via the solution process was investigated. Two methods, which were, respectively, annealing a spin-coated precursor solution and annealing a drop-coated precursor solution, were compared. The prepared ZnO thin-film semiconductor transistors have well-controlled, preferential crystal orientation and exhibit superior field-effect performance characteristics. But the ZnO thin-film transistor (TFT) fabricated by annealing a drop-coated precursor solution has a distinctly elevated linear mobility, which further approaches the saturated mobility, compared with that fabricated by annealing a spin-coated precursor solution. The performance of the solution-processed ZnO TFT was further improved when substituting the spin-coating process by the drop-coating process.

  20. Coarsening of protein clusters on subcellular drops exhibits strong and sudden size selectivity

    NASA Astrophysics Data System (ADS)

    Brown, Aidan; Rutenberg, Andrew

    2015-03-01

    Autophagy is an important process for the degradation of cellular components, with receptor proteins targeting substrates to downstream autophagy machinery. An important question is how receptor protein interactions lead to their selective accumulation on autophagy substrates. Receptor proteins have recently been observed in clusters, raising the possibility that clustering could affect autophagy selectivity. We investigate the clustering dynamics of the autophagy receptor protein NBR1. In addition to standard receptor protein domains, NBR1 has a ``J'' domain that anchors it to membranes, and a coiled-coil domain that enhances self-interaction. We model coarsening clusters of NBR1 on the surfaces of a polydisperse collection of drops, representing organelles. Despite the disconnected nature of the drop surfaces, we recover dynamical scaling of cluster sizes. Significantly, we find that at a well-defined time after coarsening begins, clusters evaporate from smaller drops and grow on larger drops. Thus, coarsening-driven size selection will localize protein clusters to larger substrates, leaving smaller substrates without clusters. This provides a possible physical mechanism for autophagy selectivity, and can explain reports of size selection during peroxisome degradation.

  1. When the tendon autograft is dropped accidently on the floor: A study about bacterial contamination and antiseptic efficacy.

    PubMed

    Barbier, O; Danis, J; Versier, G; Ollat, D

    2015-10-01

    Inadvertent contamination of the autograft can occur during anterior cruciate ligament (ACL) reconstruction if the autograft is dropped on the floor during surgery. A study was undertaken to determine the incidence of contamination when a graft is dropped on the operating room floor and the efficacy of antimicrobial solutions to decontaminate it. Samples from 25 patients undergoing ACL reconstruction with a hamstring tendon were sectioned and dropped onto the floor. Cultures were taken after immersion in antiseptic solutions (a chlorhexidine gluconate solution (group 1), a povidone-iodine solution (group 2), and a sodium hypochlorite solution (group 3)). A fourth piece (group 0) was cultured without being exposed to any solution. Cultures of a floor swab were taken at the same time. The floor swab cultures were positive in 96% of cases. The rate of contamination was 40% in group 0, 8% in group 1, 4% in group 2, and 16% in group 3. There was a significant difference between groups 1 and 2 and group 0 (p<0.05) but not between groups 3 and 0. Immersing a graft dropped on the floor during surgery in a chlorhexidine gluconate solution or povidone-iodine solution significantly reduces contamination of the graft. Soaking of the hamstring autograft in one of these solutions is recommended in the case of inadvertent contamination. Laboratory investigation (level 2). Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Three-dimensional structure of Erwinia carotovora L-asparaginase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kislitsyn, Yu. A.; Kravchenko, O. V.; Nikonov, S. V.

    2006-10-15

    Three-dimensional structure of Erwinia carotovora L-asparaginase, which has antitumor activity and is used for the treatment of acute lymphoblastic leukemia, was solved at 3 A resolution and refined to R{sub cryst} = 20% and R{sub free} = 28%. Crystals of recombinant Erwinia carotovora L-asparaginase were grown by the hanging-drop vapor-diffusion method from protein solutions in a HEPES buffer (pH 6.5) and PEG MME 5000 solutions in a cacodylate buffer (pH 6.5) as the precipitant. Three-dimensional X-ray diffraction data were collected up to 3 A resolution from one crystal at room temperature. The structure was solved by the molecular replacement methodmore » using the coordinates of Erwinia chrysanthemi L-asparaginase as the starting model. The coordinates refined with the use of the CNS program package were deposited in the Protein Data Bank (PDB code 1ZCF)« less

  3. Large charged drop levitation against gravity

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu; Chung, Sang Kun; Hyson, Michael T.; Trinh, Eugene H.; Elleman, Daniel D.

    1987-01-01

    A hybrid electrostatic-acoustic levitator that can levitate and manipulate a large liquid drop in one gravity is presented. To the authors' knowledge, this is the first time such large drops (up to 4 mm in diameter in the case of water) have been levitated against 1-gravity. This makes possible, for the first time, many new experiments both in space and in ground-based laboratories, such as 1)supercooling and superheating, 2) containerless crystal growth from various salt solutions or melts, 3) drop dynamics of oscillating or rotating liquid drops, 4) drop evaporation and Rayleigh bursting, and 5) containerless material processing in space. The digital control system, liquid drop launch process, principles of electrode design, and design of a multipurpose room temperature levitation chamber are described. Preliminary results that demonstrate drop oscillation and rotation, and crystal growth from supersaturated salt solutions are presented.

  4. Model for determining vapor equilibrium rates in the hanging drop method for protein crystal growth

    NASA Technical Reports Server (NTRS)

    Baird, James K.; Frieden, Richard W.; Meehan, E. J., Jr.; Twigg, Pamela J.; Howard, Sandra B.; Fowlis, William A.

    1987-01-01

    An engineering analysis of the rate of evaporation of solvent in the hanging drop method of protein crystal growth is presented. Results are applied to 18 drop and well arrangements commonly encountered in the laboratory. The chemical nature of the salt, drop size and shape, drop concentration, well size, well concentration, and temperature are taken into account. The rate of evaporation increases with temperature, drop size, and the salt concentration difference between the drop and the well. The evaporation in this model possesses no unique half-life. Once the salt in the drop achieves 80 percent of its final concentration, further evaporation suffers from the law of diminishing returns.

  5. Influence of clay particles on microfluidic-based preparation of hydrogel composite microsphere

    NASA Astrophysics Data System (ADS)

    Hong, Joung Sook

    2016-05-01

    For the successful fabrication of a hydrogel composite microsphere, this study aimed to investigate the influence of clay particles on microsphere formation in a microfluidic device which has flow focusing and a 4.5:1 contraction channel. A poly alginic acid solution (2.0 wt.%) with clay particles was used as the dispersed phase to generate drops in an oil medium, which then merged with drops of a CaCl2 solution for gelation. Drop generations were observed with different flow rates and particles types. When the flow rate increased, drop generation was enhanced and drop size decreased by the build-up of more favorable hydrodynamic flow conditions to detach the droplets. The addition of a small amount of particles insignificantly changed the drop generation behavior even though it reduced interfacial tension and increased the viscosity of the solution. Instead, clays particles significantly affected hydro-gelation depending on the hydrophobicity of particles, which produced further heterogeneity in the shape and size of microsphere.

  6. Diquafosol sodium ophthalmic solution for the treatment of dry eye: clinical evaluation and biochemical analysis of tear composition.

    PubMed

    Shigeyasu, Chika; Yamada, Masakazu; Akune, Yoko; Tsubota, Kazuo

    2015-11-01

    To evaluate the clinical efficacy of 3% diquafosol sodium ophthalmic solution for dry eye, and to analyze the concentration of tear proteins and mucin-like substances after the treatment. Fifty eyes of 25 patients with dry eye syndrome were prospectively enrolled. The patients were treated with diquafosol solution at a dose of 1 drop in each eye 6 times daily for 4 weeks. The parameters of clinical efficacy were tear osmolarity, tear breakup time (BUT), fluorescein staining scores for the cornea and conjunctiva, Schirmer test values, and subjective symptoms evaluated using the ocular surface disease index (OSDI). Tears collected with Schirmer test strips were analyzed by high-performance liquid chromatography, and the concentrations of the total protein and the 4 major tear proteins, namely, secretory IgA, lactoferrin, lipocalin-1, lysozyme, and N-acetyl-neuraminic acid (Neu5Ac), were measured. Neu5Ac is a major sialic acid, a marker of secretory mucins. The BUT, keratoconjunctival staining scores, and Schirmer test values were improved with statistical significance after the treatment with diquafosol solution, while changes in the other parameters, including tear osmolarity, corneal staining scores, and OSDI scores were not significant. The Neu5Ac concentration was significantly increased, which was not accompanied by changes in tear proteins. Topical application of diquafosol significantly improved the clinical parameters of the BUT, keratoconjunctival staining scores, and Schirmer test values and was accompanied by increased sialic acid content in the tears of patients with dry eye.

  7. Phase diagram of a crystalline protein: Determination of the solubility of concanavalin A by a microquantitation assay

    NASA Astrophysics Data System (ADS)

    Mikol, Vincent; Giegé, Richard

    1989-09-01

    A quick and miniature method has been devised for determining protein solubility and used to investigate the equilibrium solubility of concanavalin A from the Jack Bean with its crystals as a function of ammonium sulfate concentration, temperature and pH. The crystals were characterized by X-ray diffraction and their morphologies related to the corresponding solubilities. The protein solution concentration was estimated out of small crystallizing drops using a rapid and sensitive microassay. Measurements of protein quantity were carried out in 96-well microplates in an automatic spectrophotometer. The resulting phase diagram has permitted to analyse the solubility of concanavalin A, to estimate supersaturation and to devise readily new ways of crystal growth of this lectin, namely by pH and temperature variations. Moreover, the approach is proved to be a valuable tool to design crystallization experiments of new molecules and to improve and control protein crystal growth.

  8. An evaporation model of multicomponent solution drops

    NASA Astrophysics Data System (ADS)

    Sartori, Silvana; Liñán, Amable; Lasheras, Juan C.

    2010-11-01

    Solutions of polymers are widely used in the pharmaceutical industry as tablets coatings. These allow controlling the rate at which the drug is delivered, taste or appearance. The coating is performed by spraying and drying the tablets at moderate temperatures. The wetting of the coating solution on the pill's surface depends on the droplet Webber and Re numbers, angle of impact and on the rheological properties of the droplet. We present a model for the evaporation of multicomponent solutions droplets in a hot air environment with temperatures substantially lower than the boiling temperature of the solvent. As the liquid vaporizes from the surface the fluid in the drop increases in concentration, until reaching its saturation point. After saturation, precipitation occurs uniformly within the drop. As the surface regresses, a compacting front formed by the precipitate at its maximum packing density advances into the drop, while the solute continues precipitating uniformly. This porous shell grows fast due to the double effect of surface regression and precipitation. The evaporation rate is determined by the rates at which heat is transported to the droplet surface and at which liquid vapor diffuses away from it. When the drop is fully compacted, the evaporation is drastically reduced.

  9. Evaporation kinetics in the hanging drop method of protein crystal growth

    NASA Technical Reports Server (NTRS)

    Baird, James K.; Frieden, Richard W.; Meehan, E. J., Jr.; Twigg, Pamela J.; Howard, Sandra B.; Fowlis, William A.

    1987-01-01

    An engineering analysis of the rate of evaporation of solvent in the hanging drop method of protein crystal growth is presented; these results are applied to 18 different drop and well arrangements commonly encountered in the laboratory, taking into account the chemical nature of the salt, the drop size and shape, the drop concentration, the well size, the well concentration, and the temperature. It is found that the rate of evaporation increases with temperature, drop size, and with the salt concentration difference between the drop and the well. The evaporation possesses no unique half-life. Once the salt in the drop achieves about 80 percent of its final concentration, further evaporation suffers from the law of diminishing returns.

  10. Motion of a Drop on a Solid Surface Due to a Wettability Gradient

    NASA Technical Reports Server (NTRS)

    Subramanian, R.; Moumen, Nadjoua; McLaughlin, John B.

    2005-01-01

    The hydrodynamic force experienced by a spherical-cap drop moving on a solid surface is obtained from two approximate analytical solutions and used to predict the quasi-steady speed of the drop in a wettability gradient. One solution is based on approximation of the shape of the drop as a collection of wedges, and the other is based on lubrication theory. Also, asymptotic results from both approximations for small contact angles, as well as an asymptotic result from lubrication theory that is good when the length scale of the drop is large compared with the slip length, are given. The results for the hydrodynamic force also can be used to predict the quasi-steady speed of a drop sliding down an incline.

  11. Electrical Field Dependence of Protein Conformation and Channel Function in Lipid Membranes of Different Compositions

    DTIC Science & Technology

    1989-07-01

    surface because of the previous potential sweeps ). c- Cyclic voltamograms after different exposure times of the Hg drop electrode to a solution of lpg/ml...Cd + and 10-M NaCl. b - Cyclic voltamograms under similar conditions. Exposure time indicated, sweep rate O.2V/sec. specific capacitance < 4pf/cm 2...alamethicin. Cyclic voltametry shows (Fig. 3b) that it is the reduction current depending on the transport of TI+ ions across the monolayer to the electrode

  12. Controlling nonspecific protein adsorption in a plug-based microfluidic system by controlling interfacial chemistry using fluorous-phase surfactants.

    PubMed

    Roach, L Spencer; Song, Helen; Ismagilov, Rustem F

    2005-02-01

    Control of surface chemistry and protein adsorption is important for using microfluidic devices for biochemical analysis and high-throughput screening assays. This paper describes the control of protein adsorption at the liquid-liquid interface in a plug-based microfluidic system. The microfluidic system uses multiphase flows of immiscible fluorous and aqueous fluids to form plugs, which are aqueous droplets that are completely surrounded by fluorocarbon oil and do not come into direct contact with the hydrophobic surface of the microchannel. Protein adsorption at the aqueous-fluorous interface was controlled by using surfactants that were soluble in fluorocarbon oil but insoluble in aqueous solutions. Three perfluorinated alkane surfactants capped with different functional groups were used: a carboxylic acid, an alcohol, and a triethylene glycol group that was synthesized from commercially available materials. Using complementary methods of analysis, adsorption was characterized for several proteins (bovine serum albumin (BSA) and fibrinogen), including enzymes (ribonuclease A (RNase A) and alkaline phosphatase). These complementary methods involved characterizing adsorption in microliter-sized droplets by drop tensiometry and in nanoliter plugs by fluorescence microscopy and kinetic measurements of enzyme catalysis. The oligoethylene glycol-capped surfactant prevented protein adsorption in all cases. Adsorption of proteins to the carboxylic acid-capped surfactant in nanoliter plugs could be described by using the Langmuir model and tensiometry results for microliter drops. The microfluidic system was fabricated using rapid prototyping in poly(dimethylsiloxane) (PDMS). Black PDMS microfluidic devices, fabricated by curing a suspension of charcoal in PDMS, were used to measure the changes in fluorescence intensity more sensitively. This system will be useful for microfluidic bioassays, enzymatic kinetics, and protein crystallization, because it does not require surface modification during fabrication to control surface chemistry and protein adsorption.

  13. Evaporation of a sessile water drop and a drop of aqueous salt solution.

    PubMed

    Misyura, S Y

    2017-11-07

    The influence of various factors on the evaporation of drops of water and aqueous salt solution has been experimentally studied. Typically, in the studies of drop evaporation, only the diffusive vapor transfer, radiation and the molecular heat conduction are taken into account. However, vapor-gas convection plays an important role at droplet evaporation. In the absence of droplet boiling, the influence of gas convection turns out to be the prevailing factor. At nucleate boiling, a prevailing role is played by bubbles generation and vapor jet discharge at a bubble collapse. The gas convection behavior for water and aqueous salt solution is substantially different. With a growth of salt concentration over time, the influence of the convective component first increases, reaches an extremum and then significantly decreases. At nucleate boiling in a salt solution it is incorrect to simulate the droplet evaporation and the heat transfer in quasi-stationary approximation. The evaporation at nucleate boiling in a liquid drop is divided into several characteristic time intervals. Each of these intervals is characterized by a noticeable change in both the evaporation rate and the convection role.

  14. Development of a constant surface pressure penetration langmuir balance based on axisymmetric drop shape analysis.

    PubMed

    Wege, H A; Holgado-Terriza, J A; Cabrerizo-Vílchez, M A

    2002-05-15

    A new constant pressure pendant-drop penetration surface balance has been developed combining a pendant-drop surface balance, a rapid-subphase-exchange technique, and a fuzzy logic control algorithm. Beside the determination of insoluble monolayer compression-expansion isotherms, it allows performance of noninvasive kinetic studies of the adsorption of surfactants added to the new subphase onto the free surface and of the adsorption/penetration/reaction of the former onto/into/with surface layers, respectively. The interfacial pressure pi is a fundamental parameter in these studies: by working at constant pi one controls the height of the energy barrier to adsorption/penetration and can select different regimes and steps of the adsorption/penetration process. In our device a solution drop is formed at the tip of a coaxial double capillary, connected to a double microinjector. Drop profiles are extracted from digital drop micrographs and fitted to the equation of capillarity, yielding pi, the drop volume V, and the interfacial area A. pi is varied changing V (and hence A) with the microinjector. Control is based on a case-adaptable modulated fuzzy-logic PID algorithm able to maintain constant pi (or A) under a wide range of experimental conditions. The drop subphase liquid can be exchanged quantitatively by the coaxial capillaries. The adsorption/penetration/reaction kinetics at constant pi are then studied monitoring A(t), i.e., determining the relative area change necessary at each instant to compensate the pressure variation due to the interaction of the surfactant in the subsurface with the surface layer. A fully Windows-integrated program manages the whole setup. Examples of experimental protein adsorption and monolayer penetration kinetics are presented.

  15. Gel compression considerations for chromatography scale-up for protein C purification.

    PubMed

    He, W; Bruley, D F; Drohan, W N

    1998-01-01

    This work is to establish theoretical and experimental relationships for the scale-up of Immobilized Metal Affinity Chromatography (IMAC) and Immuno Affinity Chromatography for the low cost production of large quantities of Protein C. The external customer requirements for this project have been established for Protein C deficient people with the goal of providing prophylactic patient treatment. Deep vein thrombosis is the major symptom for protein C deficiency creating the potential problem of embolism transport to important organs, such as, lung and brain. Gel matrices for protein C separation are being analyzed to determine the relationship between the material properties of the gel and the column collapse characteristics. The fluid flow rate and pressure drop is being examined to see how they influence column stability. Gel packing analysis includes two considerations; one is bulk compression due to flow rate, and the second is gel particle deformation due to fluid flow and pressure drop. Based on the assumption of creeping flow, Darcy's law is being applied to characterize the flow through the gel particles. Biot's mathematical description of three-dimensional consolidation in porous media is being used to develop a set of system equations. Finite difference methods are being utilized to obtain the equation solutions. In addition, special programs such as finite element approaches, ABAQUS, will be studied to determine their application to this particular problem. Experimental studies are being performed to determine flow rate and pressure drop correlation for the chromatographic columns with appropriate gels. Void fraction is being measured using pulse testing to allow Reynolds number calculations. Experimental yield stress is being measured to compare with the theoretical calculations. Total Quality Management (TQM) tools have been utilized to optimize this work. For instance, the "Scatter Diagram" has been used to evaluate and select the appropriate gels and operating conditions via Taguchi techniques. Targeting customer requirements under the structure of TQM represents a novel approach to graduate student research in an academic institution which is designed to simulate an industrial environment.

  16. Drop evaporation in a single-axis acoustic levitator

    NASA Technical Reports Server (NTRS)

    Lierke, E. G.; Croonquist, A. P.

    1990-01-01

    A 20 kHz single-axis acoustic positioner is used to levitate aqueous-solution drops (volumes less than or approximately equal to 100 micro-liters). Drop evaporation rates are measured under ambient, isothermal conditions for different relative humidities. Acoustic convection around the levitated sample enhances the mass loss over that due to natural convection and diffusion. A theoretical treatment of the mass flow is developed in analogy to previous studies of the heat transfer from a sphere in an acoustic field. Predictions of the enhanced mass loss, in the form of Nusselt (Sherwood) numbers, are compared with observed rages of drop shrinking. The work is part of an ESA crystal growth from levitated solution drops.

  17. Non-preserved 1% lidocaine solution has less antibacterial properties than currently available anaesthetic eye-drops.

    PubMed

    Labetoulle, Marc; Frau, Eric; Offret, Hervé; Nordmann, Patrice; Naas, Thierry

    2002-08-01

    Some anaesthetics inhibit bacterial growth, and thus may lead to low rates of positive cultures from bacterial keratitis. Antibacterial properties of lidocaine were compared with those of oxybuprocaine or tetracaine, either in current commercial eye lotions or in extemporaneous solutions. Forty-eight bacterial strains were used to determine the minimum inhibitory and bactericidal concentrations of four commercial eye lotions containing oxybuprocaine or tetracaine, of a non-ophthalmic 1% lidocaine commercial solution and of extemporaneously prepared solutions of oxybuprocaine, tetracaine, lidocaine and benzalkonium. Most strains had their growth inhibited by 0.2% oxybuprocaine or 0.4% tetracaine, which corresponds to a 1/2 dilution of the commercial eye-drops. Bacterial growth was still observed with a 1% lidocaine solution. Currently available anaesthetic eye-drops that are used before corneal specimen collection may lead to false-negative bacterial cultures. Conversely, a non-preserved 1% lidocaine solution might be more appropriate in corneal specimen collection.

  18. Effects of Metal Ions on Viscosity of Aqueous Sodium Carboxylmethylcellulose Solution and Development of Dropping Ball Method on Viscosity

    ERIC Educational Resources Information Center

    Set, Seng; Ford, David; Kita, Masakazu

    2015-01-01

    This research revealed that metal ions with different charges could significantly affect the viscosity of aqueous sodium carboxylmethylcellulose (CMC) solution. On the basis of an Ostwald viscometer, an improvised apparatus using a dropping ball for examining the viscosity of liquids/solutions has been developed. The results indicate that the…

  19. A mix-and-read drop-based in vitro two-hybrid method for screening high-affinity peptide binders

    PubMed Central

    Cui, Naiwen; Zhang, Huidan; Schneider, Nils; Tao, Ye; Asahara, Haruichi; Sun, Zhiyi; Cai, Yamei; Koehler, Stephan A.; de Greef, Tom F. A.; Abbaspourrad, Alireza; Weitz, David A.; Chong, Shaorong

    2016-01-01

    Drop-based microfluidics have recently become a novel tool by providing a stable linkage between phenotype and genotype for high throughput screening. However, use of drop-based microfluidics for screening high-affinity peptide binders has not been demonstrated due to the lack of a sensitive functional assay that can detect single DNA molecules in drops. To address this sensitivity issue, we introduced in vitro two-hybrid system (IVT2H) into microfluidic drops and developed a streamlined mix-and-read drop-IVT2H method to screen a random DNA library. Drop-IVT2H was based on the correlation between the binding affinity of two interacting protein domains and transcriptional activation of a fluorescent reporter. A DNA library encoding potential peptide binders was encapsulated with IVT2H such that single DNA molecules were distributed in individual drops. We validated drop-IVT2H by screening a three-random-residue library derived from a high-affinity MDM2 inhibitor PMI. The current drop-IVT2H platform is ideally suited for affinity screening of small-to-medium-sized libraries (103–106). It can obtain hits within a single day while consuming minimal amounts of reagents. Drop-IVT2H simplifies and accelerates the drop-based microfluidics workflow for screening random DNA libraries, and represents a novel alternative method for protein engineering and in vitro directed protein evolution. PMID:26940078

  20. Crystallization of highly supersaturated solutions - An experimental study

    NASA Technical Reports Server (NTRS)

    Queen, Brian; Hallett, John

    1990-01-01

    The crystallization of ammonium sulfate solutions under very high supersaturation is investigated. The results imply that high saturation ratios can exist at least to 30 +/- 5 and possibly higher in smaller drops. Under certain atmospheric conditions highly supersaturated drops can persist at even lower temperatures and humidities.

  1. Small-amplitude oscillations of electrostatically levitated drops

    NASA Astrophysics Data System (ADS)

    Feng, J. Q.; Beard, K. V.

    1990-07-01

    The nature of axisymmetric oscillations of electrostatically levitated drops is examined using an analytical method of multiple-parameter perturbations. The solution for the quiescent equilibrium shape exhibits both stretching of the drop surface along the direction of the externally applied electric field and asymmetry about the drop's equatorial plane. In the presence of electric and gravitational fields, small-amplitude oscillations of charged drops differ from the linear modes first analyzed by Rayleigh. The oscillatory response at each frequency consists of several Legendre polynomials rather than just one, and the characteristic frequency for each axisymmetric mode decreases from that calculated by Rayleigh as the electric field strength increases. This lowering of the characteristic frequencies is enhanced by the net electric charge required for levitation against gravity. Since the contributions of the various forces appear explicitly in the analytic solutions, physical insight is readily gained into their causative role in drop behavior.

  2. Dehydration induced phase transitions in a microfluidic droplet array for the separation of biomolecules

    NASA Astrophysics Data System (ADS)

    Nelson, Chris; Anna, Shelley

    2013-11-01

    Droplet-based strategies for fluid manipulation have seen significant application in microfluidics due to their ability to compartmentalize solutions and facilitate highly parallelized reactions. Functioning as micro-scale reaction vessels, droplets have been used to study protein crystallization, enzyme kinetics, and to encapsulate whole cells. Recently, the mass transport out of droplets has been used to concentrate solutions and induce phase transitions. Here, we show that droplets trapped in a microfluidic array will spontaneously dehydrate over the course of several hours. By loading these devices with an initially dilute aqueous polymer solution, we use this slow dehydration to observe phase transitions and the evolution of droplet morphology in hundreds of droplets simultaneously. As an example, we trap and dehydrate droplets of a model aqueous two-phase system consisting of polyethylene glycol and dextran. Initially the drops are homogenous, then after some time the polymer concentration reaches a critical point and two phases form. As water continues to leave the system, the drops transition from a microemulsion of DEX in PEG to a core-shell configuration. Eventually, changes in interfacial tension, driven by dehydration, cause the DEX core to completely de-wet from the PEG shell. Since aqueous two phase systems are able to selectively separate a variety of biomolecules, this core shedding behavior has the potential to provide selective, on-chip separation and concentration.

  3. Numerical modeling of the interaction of liquid drops and jets with shock waves and gas jets

    NASA Astrophysics Data System (ADS)

    Surov, V. S.

    1993-02-01

    The motion of a liquid drop (jet) and of the ambient gas is described, in the general case, by Navier-Stokes equations. An approximate solution to the interaction of a plane shock wave with a single liquid drop is presented. Based on the analysis, the general system of Navier-Stokes equations is reduced to two groups of equations, Euler equations for gas and Navier-Stokes equations for liquid; solutions to these equations are presented. The discussion also covers the modeling of the interaction of a shock wave with a drop screen, interaction of a liquid jet with a counterpropagating supersonic gas flow, and modeling of processes in a shock layer during the impact of a drop against an obstacle in gas flow.

  4. Protein crystal growth results from shuttle flight 51-F

    NASA Technical Reports Server (NTRS)

    Bugg, C. E.

    1985-01-01

    The protein crystal growth (PCG) experiments run on 51-F were analyzed. It was found that: (1) sample stability is increased over that observed during the experiments on flight 51-D; (2) the dialysis experiments produced lysozyme crystals that were significantly larger than those obtained in our identical ground-based studies; (3) temperature fluctuations apparently caused problems during the crystallization experiments on 51-F; (4) it is indicated that teflon tape stabilizes droplets on the syringe tips; (5) samples survived during the reentry and landing in glass tips that were not stoppered with plungers; (6) from the ground-based studies, it was expected that equilibration should be complete within 2 to 4 days for all of these vapor-diffusion experiments, thus it appears that the vapor diffusion rates are somewhat slower under microgravity conditions; (7) drop tethering was highly successful, all four of the tethered drops were stable, even though they contained MPD solutions; (8) the PCG experiments on 51-F were done to assess the hardware and experimental procedures that are developed for future flights, when temperature control will be available. Lysozyme crystals obtained by microdialysis are considerably larger than those obtained on the ground, using the identical apparatus and procedures.

  5. Nectar and pollination drops: how different are they?

    PubMed

    Nepi, Massimo; von Aderkas, Patrick; Wagner, Rebecca; Mugnaini, Serena; Coulter, Andrea; Pacini, Ettore

    2009-08-01

    Pollination drops and nectars (floral nectars) are secretions related to plant reproduction. The pollination drop is the landing site for the majority of gymnosperm pollen, whereas nectar of angiosperm flowers represents a common nutritional resource for a large variety of pollinators. Extrafloral nectars also are known from all vascular plants, although among the gymnosperms they are restricted to the Gnetales. Extrafloral nectars are not generally involved in reproduction but serve as 'reward' for ants defending plants against herbivores (indirect defence). Although very different in their task, nectars and pollination drops share some features, e.g. basic chemical composition and eventual consumption by animals. This has led some authors to call these secretions collectively nectar. Modern techniques that permit chemical analysis and protein characterization have very recently added important information about these sugary secretions that appear to be much more than a 'reward' for pollinating (floral nectar) and defending animals (extrafloral nectar) or a landing site for pollen (pollination drop). Nectar and pollination drops contain sugars as the main components, but the total concentration and the relative proportions are different. They also contain amino acids, of which proline is frequently the most abundant. Proteomic studies have revealed the presence of common functional classes of proteins such as invertases and defence-related proteins in nectar (floral and extrafloral) and pollination drops. Invertases allow for dynamic rearrangement of sugar composition following secretion. Defence-related proteins provide protection from invasion by fungi and bacteria. Currently, only few species have been studied in any depth. The chemical composition of the pollination drop must be investigated in a larger number of species if eventual phylogenetic relationships are to be revealed. Much more information can be provided from further proteomic studies of both nectar and pollination drop that will contribute to the study of plant reproduction and evolution.

  6. Optimization of crystals from nanodrops: crystallization and preliminary crystallographic study of a pheromone-binding protein from the honeybee Apis mellifera L.

    PubMed

    Lartigue, Audrey; Gruez, Arnaud; Briand, Loïc; Pernollet, Jean-Claude; Spinelli, Silvia; Tegoni, Mariella; Cambillau, Christian

    2003-05-01

    Pheromone-binding proteins (PBPs) are small helical proteins ( approximately 13-17 kDa) present in various sensory organs from moths and other insect species. They are involved in the transport of pheromones from the sensillar lymph to the olfactory receptors. Here, crystals of a PBP (Amel-ASP1) originating from honeybee (Apis mellifera L.) antennae and expressed as recombinant protein using the yeast Pichia pastoris are reported. Crystals of Amel-ASP1 have been obtained by the sitting-drop vapour-diffusion method using a nanodrop-dispensing robot under the following conditions: 200 nl of 40 mg ml(-1) protein solution in 10 mM Tris, 25 mM NaCl pH 8.0 was mixed with 100 nl of well solution containing 0.15 M sodium citrate, 1.5 M ammonium sulfate pH 5.5. The protein crystallizes in space group C222(1), with unit-cell parameters a = 74.8, b = 85.8, c = 50.2 A. With one molecule in the asymmetric unit, V(M) is 3.05 A(3) Da(-1) and the solvent content is 60%. A complete data set has been collected at 1.6 A resolution on beamline ID14-2 (ESRF, Grenoble). The nanodrop crystallization technique used with a novel optimization procedure made it possible to consume small amounts of protein and to obtain a unique crystal per nanodrop, suitable directly for data collection in-house or at a synchrotron-radiation source.

  7. Reduction of enhanced rabbit intraocular pressure by instillation of pyroglutamic acid eye drops.

    PubMed

    Ito, Yoshimasa; Nagai, Noriaki; Okamoto, Norio; Shimomura, Yoshikazu; Nakanishi, Kunio; Tanaka, Ryuichiro

    2013-01-01

    L-Pyroglutamic acid (PGA) is an endogenous molecule derived from l-glutamate. We demonstrate the effects of PGA on intraocular pressure (IOP) in experimentally induced ocular hypertension in rabbits. In the in vitro and in vivo transcorneal penetration studies, the PGA solution (PGA in saline) did not penetrate the rabbit cornea. On the other hand, the penetration of PGA was improved by the addition of zinc chloride and 2-hydroxypropyl-β-cyclodextrin (HPCD), and PGA penetration was enhanced with increasing HPCD concentration. Therefore, PGA solutions containing 0.5% zinc chloride and 5% or 10% HPCD (PGA/HPCD(5% or 10%) eye drops) were used to investigate the effects for IOP in this study. An elevation in IOP was induced by the rapid infusion of 5% glucose solution (15 mL/kg of body weight) through the marginal ear vein or maintaining under dark phase for 5 h. In the both models, the induced elevation in IOP was prevented by the instillation of PGA/HPCD eye drops, and the IOP-reducing effect enhanced with increasing HPCD concentration in the drops. Nitric oxide (NO) levels elevated in the aqueous humor following the infusion of 5% glucose solution, and this increase was also suppressed by the instillation of PGA/HPCD eye drops. In conclusion, the present study demonstrates that the instillation of PGA/HPCD eye drops has an IOP-reducing effect in rabbits with experimentally induced ocular hypertension, probably as a result of the suppression of NO production.

  8. Formation of Heterogeneous Toroidal-Spiral Particles -- by Drop Sedimentation and Interaction

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Nitsche, Ludwig; Gemeinhart, Richard; Sharma, Vishal; Szymusiak, Magdalena; Shen, Hao

    2013-03-01

    We describe self-assembly of polymeric particles, whereby competitive kinetics of viscous sedimentation, diffusion, and cross-linking yield a controllable toroidal-spiral (TS) structure. Precursor polymeric droplets are splashed through the surface of a less dense, miscible solution, after which viscous forces entrain the surrounding bulk solution into the sedimenting polymer drop to form TS channels. The intricate structure forms because low interfacial tension between the two miscible solutions is dominated by viscous forces. The biocompatible polymer, poly(ethylene glycol) diacrylate (PEG-DA), is used to demonstrate the solidification of the TS shapes at various configurational stages by UV-triggered cross-linking. The dimensions of the channels are controlled by Weber number during impact on the surface, and Reynolds number and viscosity ratio during subsequent sedimentation. Within the critical separation distance, interaction of multiple drops generates similar structure with more flexibility. Furthermore, the understanding of multiple drop interaction is essential for mass production of TS particles by using parallel and sequential arrays of drops. This work was supported by NSF CBET Grant CBET-1039531.

  9. Corner wetting during the vapor-liquid-solid growth of faceted nanowires

    NASA Astrophysics Data System (ADS)

    Spencer, Brian; Davis, Stephen

    2016-11-01

    We consider the corner wetting of liquid drops in the context of vapor-liquid-solid growth of nanowires. Specifically, we construct numerical solutions for the equilibrium shape of a liquid drop on top of a faceted nanowire by solving the Laplace-Young equation with a free boundary determined by mixed boundary conditions. A key result for nanowire growth is that for a range of contact angles there is no equilibrium drop shape that completely wets the corner of the faceted nanowire. Based on our numerical solutions we determine the scaling behavior for the singular surface behavior near corners of the nanowire in terms of the Young contact angle and drop volume.

  10. Hierarchical Biomolecular Emulsions Using 3-D Microfluidics with Uniform Surface Chemistry.

    PubMed

    Toprakcioglu, Zenon; Levin, Aviad; Knowles, Tuomas P J

    2017-11-13

    Microfluidic devices can be used to produce single, double and higher order emulsions, where droplet sizes can be precisely controlled and modulated. Such emulsions have great potential for the storage and study of biomolecules, including peptides and proteins. However, advancement of this technique has remained challenging due to the tendency of various biomolecules to adhere to the surface of the formed channels, resulting in changes in surface wetting and fouling on the micrometer scale. Thus, precise control of surface wettability plays a crucial role in the processes that govern droplet formation. Here, we report an approach for producing both water-oil-water (w/o/w) and oil-water-oil (o/w/o) double emulsions without any need for surface modification, an enabling feature for biomolecular encapsulation. Using this strategy, we show that the number of monodisperse encapsulated internal droplets can be controlled systematically and reproducibly by suitable adjustment of the relevant flow rates, and ranges from 1 to 40 in the case of w/o/w emulsions. We further demonstrate that the number of internal droplets scales linearly with the reciprocal flow rate of the outer continuous phase, when the inner and middle phase flow rates are kept constant. We demonstrate that this approach is suitable for forming double emulsions where the inner phase consists of reconstituted silk protein solution whereby incubation of the internal droplets can be induced to form a gel resulting in silk fibroin microgels surrounded by an external oil shell. Finally, for o/w/o emulsions, we show that single or multiple monodisperse internal droplets can be encapsulated with a size that ranges over 1 order of magnitude, from ca. 10 μm to >100 μm. Moreover, o/w/o emulsions where the middle phase consists of silk fibroin solution were prepared and by allowing the protein to aggregate, a core-shell structure was formed. This microfluidic strategy allows for multiple emulsions to be generated drop by drop for biomolecular solutions with potential applications in the biomedical and pharmaceutical fields.

  11. Ionic solution and nanoparticle assisted MALDI-MS as bacterial biosensors for rapid analysis of yogurt.

    PubMed

    Lee, Chia-Hsun; Gopal, Judy; Wu, Hui-Fen

    2012-01-15

    Bacterial analysis from food samples is a highly challenging task because food samples contain intensive interferences from proteins and carbohydrates. Three different conditions of yogurt were analyzed: (1) the fresh yogurt immediately after purchasing, (2) the yogurt after expiry date stored in the refrigerator and (3) the yogurt left outside, without refrigeration. The shelf lives of both these yogurt was compared in terms of the decrease in bacterial signals. AB which initially contained 10(9) cells/mL drastically reduced to 10(7) cells/mL. However, Lin (Feng-Yin) yogurt which initially (fresh) had 10(8) cells/mL, even after two weeks beyond the expiry period showed no marked drop in bacterial count. Conventional MALDI-MS analysis showed limited sensitivity for analysis of yogurt bacteria amidst the complex milk proteins present in yogurt. A cost effective ionic solution, CrO(4)(2-) solution was used to enable the successful detection of bacterial signals (40-fold increased in sensitivity) selectively without the interference of the milk proteins. 0.035 mg of Ag nanoparticles (NPs) were also found to improve the detection of bacteria 2-6 times in yogurt samples. The current approach can be further applied as a rapid, sensitive and effective platform for bacterial analysis from food. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Containerless protein crystal growth method

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu; Chung, Sang K.

    1991-01-01

    A method of growing protein crystals from levitated drops is introduced and unique features of containerless approach in 1-g and micro-G laboratories are discussed. Electrostatic multidrop levitation system which is capable of simultaneous four drop levitation is described. A method of controlling protein saturation level in a programmed way is introduced and discussed. Finally, some of the unique features of containerless approach of protein crystal growth in space are discussed and summarized.

  13. The effect of shear and extensional viscosity on atomization in medical inhaler.

    PubMed

    Broniarz-Press, L; Ochowiak, M; Matuszak, M; Włodarczak, S

    2014-07-01

    The paper contains the results of experimental studies of water, aqueous solutions of glycerol and aqueous solutions of glycerol-polyethylene oxide (PEO) atomization process in a medical inhaler obtained by the use of the digital microphotography method. The effect of the shear and extensional viscosity on the drop size, drop size histogram and mean drop diameter has been analyzed. The obtained results have shown that the drop size increases with the increase in shear and extensional viscosity of liquid atomized. Extensional viscosity has a greater impact on the spraying process. It has been shown that the change in liquid viscosity leads to significant changes in drop size distribution. The correlation for Sauter mean diameter as function of the shear and extensional viscosity was proposed. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Expression, purification, crystallization and preliminary X-ray analysis of a C-terminal fragment of the Epstein–Barr virus ZEBRA protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morand, Patrice; Laboratoire de Virologie Moléculaire et Structurale, EA 2939, Université Joseph Fourier, Grenoble; Budayova-Spano, Monika

    A C-terminal fragment of the Epstein–Barr virus lytic switch protein ZEBRA has been crystallized in complex with DNA. A C-terminal fragment of the Epstein–Barr virus immediate-early transcription factor ZEBRA has been expressed as a recombinant protein in Escherichia coli and purified to homogeneity. The fragment behaves as a dimer in solution, consistent with the presence of a basic region leucine-zipper (bZIP) domain. Crystals of the fragment in complex with a DNA duplex were grown by the hanging-drop vapour-diffusion technique using polyethylene glycol 4000 and magnesium acetate as crystallization agents. Crystals diffract to better than 2.5 Å resolution using synchrotron radiationmore » (λ = 0.976 Å). Crystals belong to space group C2, with unit-cell parameters a = 94.2, b = 26.5, c = 98.1 Å, β = 103.9°.« less

  15. Control of stain geometry by drop evaporation of surfactant containing dispersions.

    PubMed

    Erbil, H Yildirim

    2015-08-01

    Control of stain geometry by drop evaporation of surfactant containing dispersions is an important topic of interest because it plays a crucial role in many applications such as forming templates on solid surfaces, in ink-jet printing, spraying of pesticides, micro/nano material fabrication, thin film coatings, biochemical assays, deposition of DNA/RNA micro-arrays, and manufacture of novel optical and electronic materials. This paper presents a review of the published articles on the diffusive drop evaporation of pure liquids (water), the surfactant stains obtained from evaporating drops that do not contain dispersed particles and deposits obtained from drops containing polymer colloids and carbon based particles such as carbon nanotubes, graphite and fullerenes. Experimental results of specific systems and modeling attempts are discussed. This review also has some special subtopics such as suppression of coffee-rings by surfactant addition and "stick-slip" behavior of evaporating nanosuspension drops. In general, the drop evaporation process of a surfactant/particle/substrate system is very complex since dissolved surfactants adsorb on both the insoluble organic/inorganic micro/nanoparticles in the drop, on the air/solution interface and on the substrate surface in different extends. Meanwhile, surfactant adsorbed particles interact with the substrate giving a specific contact angle, and free surfactants create a solutal Marangoni flow in the drop which controls the location of the particle deposition together with the rate of evaporation. In some cases, the presence of a surfactant monolayer at the air/solution interface alters the rate of evaporation. At present, the magnitude of each effect cannot be predicted adequately in advance and consequently they should be carefully studied for any system in order to control the shape and size of the final deposit. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Hanging drop crystal growth apparatus and method

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor); Smith, Robbie E. (Inventor)

    1989-01-01

    An apparatus (10) is constructed having a cylindrical enclosure (16) within which a disc-shaped wicking element (18) is positioned. A well or recess (22) is cut into an upper side (24) of this wicking element, and a glass cover plate or slip (28) having a protein drop disposed thereon is sealably positioned on the wicking element (18), with drop (12) being positioned over well or recess (22). A flow of control fluid is generated by a programmable gradient former (16), with this control fluid having a vapor pressure that is selectively variable. This flow of control fluid is coupled to the wicking element (18) where control fluid vapor diffusing from walls (26) of the recess (22) is exposed to the drop (12), forming a vapor pressure gradient between the drop (12) and the control fluid vapor. Initially, this gradient is adjusted to draw solvent from the drop (12) at a relatively high rate, and as the critical supersaturation point is approached (the point at which crystal nucleation occurs), the gradient is reduced to more slowly draw solvent from the drop (12). This allows discrete protein molecules more time to orient themselves into an ordered crystalline lattice, producing protein crystals which, when processed by X-ray crystallography, possess a high degree of resolution.

  17. An investigation on the motion and deformation of viscoelastic drops descending in another viscoelastic media

    NASA Astrophysics Data System (ADS)

    Davoodi, M.; Norouzi, M.

    2016-10-01

    In the present study, an investigation of the motion and shape deformation of drops is carried out in creeping flow to highlight the effect of viscoelastic properties on the problem. A perturbation method is employed to derive an analytical solution for the general case that both interior and exterior fluids are viscoelastic, both fluids obeying the Giesekus model. An experiment is also performed for the limiting case of an immiscible drop of a 0.03% (w/w) polyacrylamide in an 80:20 glycerol/water solution falling through a viscous Newtonian silicon oil (410 cP polydimethylsiloxane oil) in order to check the accuracy of the analytical solution. It is shown that the addition of elastic properties to the interior fluid may cause a decrease in the terminal velocity of the droplet while an increase in the elastic properties of the exterior fluid results in the opposite behavior and increases the terminal velocity. The well-known spherical shape of creeping drops for Newtonian fluids is modified by elasticity into either prolate or oblate shapes. Using the analytical solution, it is shown that normal stresses play a key role on the final steady-state shape of the drops. To keep the drops spherical in viscoelastic phases, it is shown that the effect of normal stresses on the interior and exterior media can cancel out under certain conditions. The results presented here may be of interest to industries dealing with petroleum and medicine processing, paint and power-plant related fields where knowledge of the shape and terminal velocity of descending droplets is of great importance.

  18. Decrease in corneal damage due to benzalkonium chloride by the addition of sericin into timolol maleate eye drops.

    PubMed

    Nagai, Noriaki; Ito, Yoshimasa; Okamoto, Norio; Shimomura, Yoshikazu

    2013-01-01

    We investigated the protective effects of sericin on corneal damage due to benzalkonium chloride (BAC) used as a preservative in commercially available timolol maleate eye drops using rat debrided corneal epithelium and a human cornea epithelial cell line (HCE-T). Corneal wounds were monitored using a fundus camera TRC-50X equipped with a digital camera; eye drops were instilled into the rat eyes five times a day after corneal epithelial abrasion. The viability of HCE-T cells was calculated by TetraColor One; and Escherichia coli (ATCC 8739) were used to measure antimicrobial activity. The reducing effects on transcorneal penetration and intraocular pressure (IOP) of the eye drops were determined using rabbits. The corneal wound healing rate and rate constants (kH) as well as cell viability were higher following treatment with 0.005% BAC solution containing 0.1% sericin than in the case of treatment with BAC solution alone; the antimicrobial activity was approximately the same for BAC solutions with and without sericin. In addition, the kH for rat eyes instilled with commercially available timolol maleate eye drops containing 0.1% sericin was significantly higher than that of eyes instilled with timolol maleate eye drops without sericin, and the addition of sericin did not affect the corneal penetration or IOP reducing effect of commercially available timolol maleate eye drops. A preservative system comprising BAC and sericin may provide effective therapy for glaucoma patients requiring long-term anti-glaucoma agents.

  19. Electrowetting-on-dielectrics for manipulation of oil drops and gas bubbles in aqueous-shell compound drops.

    PubMed

    Li, Jiang; Wang, Yixuan; Chen, Haosheng; Wan, Jiandi

    2014-11-21

    We present the manipulation of oil, organic and gaseous chemicals by electrowetting-on-dielectric (EWOD) technology using aqueous-shell compound drops. We demonstrate that the transport and coalescence of viscous oil drops, the reaction of bromine with styrene in benzene solution, and the reaction of red blood cells with carbon monoxide bubbles can be accomplished using this method.

  20. On the Relationship of the Fractal Dimension of Structure with the State of Drying Drops of Crystallizing Solutions (Thermodynamic and Experimental Modeling)

    NASA Astrophysics Data System (ADS)

    Golovanova, O. A.; Chikanova, E. S.; Fedoseev, V. B.

    2018-05-01

    The processes occurring in aqueous salt solutions have been investigated based on thermodynamic and experimental modeling. The self-organization in a drying drop of dehydrated liquids is analyzed using the fractal theory, due to which the quantitative characteristics of the crystallization processes in a small volume are obtained.

  1. Nectar and pollination drops: how different are they?

    PubMed Central

    Nepi, Massimo; von Aderkas, Patrick; Wagner, Rebecca; Mugnaini, Serena; Coulter, Andrea; Pacini, Ettore

    2009-01-01

    Background Pollination drops and nectars (floral nectars) are secretions related to plant reproduction. The pollination drop is the landing site for the majority of gymnosperm pollen, whereas nectar of angiosperm flowers represents a common nutritional resource for a large variety of pollinators. Extrafloral nectars also are known from all vascular plants, although among the gymnosperms they are restricted to the Gnetales. Extrafloral nectars are not generally involved in reproduction but serve as ‘reward’ for ants defending plants against herbivores (indirect defence). Scope Although very different in their task, nectars and pollination drops share some features, e.g. basic chemical composition and eventual consumption by animals. This has led some authors to call these secretions collectively nectar. Modern techniques that permit chemical analysis and protein characterization have very recently added important information about these sugary secretions that appear to be much more than a ‘reward’ for pollinating (floral nectar) and defending animals (extrafloral nectar) or a landing site for pollen (pollination drop). Conclusions Nectar and pollination drops contain sugars as the main components, but the total concentration and the relative proportions are different. They also contain amino acids, of which proline is frequently the most abundant. Proteomic studies have revealed the presence of common functional classes of proteins such as invertases and defence-related proteins in nectar (floral and extrafloral) and pollination drops. Invertases allow for dynamic rearrangement of sugar composition following secretion. Defence-related proteins provide protection from invasion by fungi and bacteria. Currently, only few species have been studied in any depth. The chemical composition of the pollination drop must be investigated in a larger number of species if eventual phylogenetic relationships are to be revealed. Much more information can be provided from further proteomic studies of both nectar and pollination drop that will contribute to the study of plant reproduction and evolution. PMID:19477895

  2. Interactions of chitin nanocrystals with β-lactoglobulin at the oil-water interface, studied by drop shape tensiometry.

    PubMed

    Gülseren, Ibrahim; Corredig, Milena

    2013-11-01

    Particle stabilized emulsions have been gaining increasing attention in the past few years, because of their unique interfacial properties. However, interactions between food grade particles and other surfactants at the interface still need to be understood. In this research, the interfacial properties of chitin nanocrystals (ChN) were studied in the presence of a surface active milk protein, β-lactoglobulin (β-lg), often used to stabilize oil-in-water emulsions. ChN were prepared by acid hydrolysis of chitin. At low pH (pH 3), ChN and β-lg do not interact, as demonstrated by light scattering measurements, and both components carry positive charge. The properties of the interface were tested using drop shape tensiometry. Addition of ChN or β-lg to the aqueous phase reduced the interfacial tension, and β-lg adsorption was characterized with an increase in the interfacial elasticity. When β-lg was added to a solution containing 0.1% ChN, the film elasticity increased first and then decreased with increasing β-lg concentration. The mixed film elasticity was the highest at a combination of 0.1% ChN+0.01% β-lg, when both molecules were simultaneously added to the aqueous phase. On the other hand, when β-lg was added after ChN, the protein did not affect the properties of the interface, indicating that the ChN (0.1%) equilibrated film was stable and that protein-protein interactions, normally resulting in an increase in the film elasticity, did not occur. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Piling-to-buckling transition in the drying process of polymer solution drop on substrate having a large contact angle.

    PubMed

    Kajiya, Tadashi; Nishitani, Eisuke; Yamaue, Tatsuya; Doi, Masao

    2006-01-01

    We studied the drying process of polymer solution drops placed on a substrate having a large contact angle with the drop. The drying process takes place in three stages. First, the droplet evaporates keeping the contact line fixed. Second, the droplet shrinks uniformly with receding contact line. Finally the contact line is pinned again, and the droplet starts to be deformed. The shape of the final polymer deposit changes from concave dot, to flat dot, and then to concave dot again with the increase of the initial polymer concentration. This shape change is caused by the gradual transition from the solute piling mechanism proposed by Deegan to the crust buckling mechanism proposed by de Gennes and Pauchard.

  4. Liquid ``Coffee Rings'' and the Spreading of Volatile Liquid Mixtures

    NASA Astrophysics Data System (ADS)

    Wood, Clay; Pye, Justin; Burton, Justin

    When a volatile liquid drop is placed on a wetting surface, it rapidly spreads and evaporates. The spreading dynamics and drop geometry are determined by a balance between thermal and interfacial forces, including Marangoni effects. However, this spreading behavior is drastically altered when drops contain a miniscule amount of a less-volatile miscible liquid (solute) in the bulk (solvent); contact line instabilities in the form of ``fingers'' develop. Characteristic finger size increases with increasing solute concentration and is apparent for concentrations as small as 0.1% by volume. Also, the spreading rate depends sensitively on the solute concentration, especially if the solute preferentially wets the substrate. At higher solute concentrations, the spreading droplet will form ``beads'' at the contact line, rather than fingers, and are deposited as the solvent recedes and evaporates, leaving behind a complex pattern of solute micro-droplets. Liquid ``coffee rings'' are often left behind after evaporation because there is a high evaporation rate of the solvent at the contact line, which increases the concentration of the solute, and the longevity of the rings depends on the solute vapor pressure. These results highlight the unusual sensitivity to contamination of volatile spreading, and the complex patterns of liquid contamination deposited following evaporation from a wetted surface. NSF 1455086.

  5. Computations of Drop Collision and Coalescence

    NASA Technical Reports Server (NTRS)

    Tryggvason, Gretar; Juric, Damir; Nas, Selman; Mortazavi, Saeed

    1996-01-01

    Computations of drops collisions, coalescence, and other problems involving drops are presented. The computations are made possible by a finite difference/front tracking technique that allows direct solutions of the Navier-Stokes equations for a multi-fluid system with complex, unsteady internal boundaries. This method has been used to examine the various collision modes for binary collisions of drops of equal size, mixing of two drops of unequal size, behavior of a suspension of drops in linear and parabolic shear flows, and the thermal migration of several drops. The key results from these simulations are reviewed. Extensions of the method to phase change problems and preliminary results for boiling are also shown.

  6. Process for fabricating PBI hollow fiber asymmetric membranes for gas separation and liquid separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayaweera, Indira; Krishnan, Gopala N.; Sanjurjo, Angel

    2016-04-26

    The invention provides methods for preparing an asymmetric hollow fiber, the asymmetric hollow fibers prepared by such methods, and uses of the asymmetric hollow fibers. One method involves passing a polymeric solution through an outer annular orifice of a tube-in-orifice spinneret, passing a bore fluid though an inner tube of the spinneret, dropping the polymeric solution and bore fluid through an atmosphere over a dropping distance, and quenching the polymeric solution and bore fluid in a bath to form an asymmetric hollow fiber.

  7. Carbon balance and productivity of Lemna gibba, a candidate plant for CELSS.

    PubMed

    Gale, J; Smernoff, D T; Macler, B A; MacElroy, R D

    1989-01-01

    The photosynthesis and productivity of Lemna gibba were studied with a view to its use in Controlled Ecological Life Support Systems (CELSS). Photosynthesis of L. gibba floating on the nutrient solution could be driven by light coming from either above or below. Light from below was about 75% as effective as from above when the stand was sparse, but much less so with dense stands. High rates of photosynthesis (ca. 800 nanomoles CO2 g dry weight (DW)-1 s-1) were measured at 750 micromoles m-2 s-1 PPF and 1500 micromoles mol-1 CO2. This was attained at densities up to 660 g fresh weight (FW) m-2 with young cultures. After a few days growth under these conditions, and at higher densities, the rate of photosynthesis dropped to less than 25% of the initial value. This drop was only partly alleviated by thinning the stand or by introducing a short dark period at high temperature (26 degrees C). Despite the drop in the rate of photosynthesis, maximum yields were obtained in batch cultures grown under continuous light, constant temperature and high [CO2]. Plant protein content was less than reported for field grown Lemna. When the plants were harvested daily, maintaining a stand density of 600 g FW m-2, yields of 18 g DW m-2 d-1 were obtained. The total dry weight of L. gibba included 40% soluble material (sugars and amino acids), 15% protein, 5% starch, 5% ash and 35% cellulose and other polymers. We conclude that a CELSS system could be designed around stacked, alternate layers of transparent Lemna trays and lamps. This would allow for 7 tiers per meter height. Based on present data from single layers, the yield of such a system is calculated to be 135 g DW m-3 d-1 of a 100% edible, protein-rich food.

  8. Novel Dry-Type Glucose Sensor Based on a Metal-Oxide-Semiconductor Capacitor Structure with Horseradish Peroxidase + Glucose Oxidase Catalyzing Layer

    NASA Astrophysics Data System (ADS)

    Lin, Jing-Jenn; Wu, You-Lin; Hsu, Po-Yen

    2007-10-01

    In this paper, we present a novel dry-type glucose sensor based on a metal-oxide-semiconductor capacitor (MOSC) structure using SiO2 as a gate dielectric in conjunction with a horseradish peroxidase (HRP) + glucose oxidase (GOD) catalyzing layer. The tested glucose solution was dropped directly onto the window opened on the SiO2 layer, with a coating of HRP + GOD catalyzing layer on top of the gate dielectric. From the capacitance-voltage (C-V) characteristics of the sensor, we found that the glucose solution can induce an inversion layer on the silicon surface causing a gate leakage current flowing along the SiO2 surface. The gate current changes Δ I before and after the drop of glucose solution exhibits a near-linear relationship with increasing glucose concentration. The Δ I sensitivity is about 1.76 nA cm-2 M-1, and the current is quite stable 20 min after the drop of the glucose solution is tested.

  9. Capillary Thinning and Pinch-off Dynamics and Printability of Polyelectrolyte Solutions

    NASA Astrophysics Data System (ADS)

    Sharma, Vivek; Jimenez, Leidy N.; Dinic, Jelena; Parsi, Nikila

    Biological macromolecules like proteins, DNA and polysaccharides, and many industrial polymers, are classified together as polyelectrolytes for in solution, the repeat units in their backbone are decorated with disassociated, charge-bearing ionic groups, surrounded by counter-ions. In diverse applications like inkjet printing, sprayable cosmetics and insecticides, paints and coatings that involve formation of fluid columns or sheets that undergo progressive thinning and pinch-off into drops, the dominant flow within the necking filament is extensional in nature. The extensional rheology response of the charged macromolecular solutions is not as well understood as that of their uncharged counterparts. Here focus on the characterization of capillary thinning and pinch-off dynamics, extensional rheology and printability of two model systems: sodium (polystyrene sulfonate) and poly(acrylic acid) by using dripping-onto-substrate (DoS) rheometry technique. Both the measured extensional relaxation times and the extensional viscosity values show salt- and polymer concentration-dependent behavior that is not expected or anticipated from the typical shear rheology response.

  10. Drag Reduction Effect of BSA Monodispersed Solution in Microtube Flow

    NASA Astrophysics Data System (ADS)

    Kanda, Kensuke; Yang, Ming

    In recent biological and chemical analyses, microchips have attracted attention because of advantages such as high efficiency, small heat capacity, and high-speed reaction. Biochemical reagents and samples flow into the chips with the wall surface biologically or chemically modified. The mechanisms of the complex flow are not well-known. In this paper, the mechanisms are investigated using pressure drop measurements of the flow of BSA-(bovine serum albumin, protein generally used in analytical fields) dispersed solutions in microtubes with three kinds of surfaces: glass, PEEK (polyetheretherketone) and Hirec-X1 (a highly water-repellent agent, NTT-AT Co.), which have different properties. In the cases in which BSA solution flows on the Hirec-X1 and on the PEEK surface, results show reductions in the friction factor. On the other hand, in the case in which non BSA solution flow on any surface, results agree well with the Hagen-Poiseuille equation. Furthermore, reduction ratio in the friction factor depends on the concentration of BSA. These results imply that the interaction between the wall and the bio-molecules influences the behavior of the flow in microtubes.

  11. Nonlinear oscillations of inviscid free drops

    NASA Technical Reports Server (NTRS)

    Patzek, T. W.; Benner, R. E., Jr.; Basaran, O. A.; Scriven, L. E.

    1991-01-01

    The present analysis of free liquid drops' inviscid oscillations proceeds through solution of Bernoulli's equation to obtain the free surface shape and of Laplace's equation for the velocity potential field. Results thus obtained encompass drop-shape sequences, pressure distributions, particle paths, and the temporal evolution of kinetic and surface energies; accuracy is verified by the near-constant drop volume and total energy, as well as the diminutiveness of mass and momentum fluxes across drop surfaces. Further insight into the nature of oscillations is provided by Fourier power spectrum analyses of mode interactions and frequency shifts.

  12. Method For Screening Microcrystallizations For Crystal Formation

    DOEpatents

    Santarsiero, Bernard D. , Stevens, Raymond C. , Schultz, Peter G. , Jaklevic, Joseph M. , Yegian, Derek T. , Cornell, Earl W. , Nordmeyer, Robert A.

    2003-10-07

    A method is provided for performing array microcrystallizations to determine suitable crystallization conditions for a molecule, the method comprising: forming an array of microcrystallizations, each microcrystallization comprising a drop comprising a mother liquor solution whose composition varies within the array and a molecule to be crystallized, the drop having a volume of less than 1 microliter; storing the array of microcrystallizations under conditions suitable for molecule crystals to form in the drops in the array; and detecting molecule crystal formation in the drops by taking images of the drops.

  13. Enhanced intelligent water drops algorithm for multi-depot vehicle routing problem

    PubMed Central

    Akutsah, Francis; Olusanya, Micheal O.; Adewumi, Aderemi O.

    2018-01-01

    The intelligent water drop algorithm is a swarm-based metaheuristic algorithm, inspired by the characteristics of water drops in the river and the environmental changes resulting from the action of the flowing river. Since its appearance as an alternative stochastic optimization method, the algorithm has found applications in solving a wide range of combinatorial and functional optimization problems. This paper presents an improved intelligent water drop algorithm for solving multi-depot vehicle routing problems. A simulated annealing algorithm was introduced into the proposed algorithm as a local search metaheuristic to prevent the intelligent water drop algorithm from getting trapped into local minima and also improve its solution quality. In addition, some of the potential problematic issues associated with using simulated annealing that include high computational runtime and exponential calculation of the probability of acceptance criteria, are investigated. The exponential calculation of the probability of acceptance criteria for the simulated annealing based techniques is computationally expensive. Therefore, in order to maximize the performance of the intelligent water drop algorithm using simulated annealing, a better way of calculating the probability of acceptance criteria is considered. The performance of the proposed hybrid algorithm is evaluated by using 33 standard test problems, with the results obtained compared with the solutions offered by four well-known techniques from the subject literature. Experimental results and statistical tests show that the new method possesses outstanding performance in terms of solution quality and runtime consumed. In addition, the proposed algorithm is suitable for solving large-scale problems. PMID:29554662

  14. Enhanced intelligent water drops algorithm for multi-depot vehicle routing problem.

    PubMed

    Ezugwu, Absalom E; Akutsah, Francis; Olusanya, Micheal O; Adewumi, Aderemi O

    2018-01-01

    The intelligent water drop algorithm is a swarm-based metaheuristic algorithm, inspired by the characteristics of water drops in the river and the environmental changes resulting from the action of the flowing river. Since its appearance as an alternative stochastic optimization method, the algorithm has found applications in solving a wide range of combinatorial and functional optimization problems. This paper presents an improved intelligent water drop algorithm for solving multi-depot vehicle routing problems. A simulated annealing algorithm was introduced into the proposed algorithm as a local search metaheuristic to prevent the intelligent water drop algorithm from getting trapped into local minima and also improve its solution quality. In addition, some of the potential problematic issues associated with using simulated annealing that include high computational runtime and exponential calculation of the probability of acceptance criteria, are investigated. The exponential calculation of the probability of acceptance criteria for the simulated annealing based techniques is computationally expensive. Therefore, in order to maximize the performance of the intelligent water drop algorithm using simulated annealing, a better way of calculating the probability of acceptance criteria is considered. The performance of the proposed hybrid algorithm is evaluated by using 33 standard test problems, with the results obtained compared with the solutions offered by four well-known techniques from the subject literature. Experimental results and statistical tests show that the new method possesses outstanding performance in terms of solution quality and runtime consumed. In addition, the proposed algorithm is suitable for solving large-scale problems.

  15. 49 CFR 178.965 - Drop test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    .... Water/anti-freeze solutions with a minimum specific gravity of 0.95 for testing at −18 °C (0 °F) or... of 0.45 cubic meters (15.9 cubic feet) or less must be subject to an additional drop test. (e) Drop... having essentially the same physical characteristics. (3) The specific gravity and viscosity of a...

  16. 49 CFR 178.965 - Drop test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... Water/anti-freeze solutions with a minimum specific gravity of 0.95 for testing at −18 °C (0 °F) or... of 0.45 cubic meters (15.9 cubic feet) or less must be subject to an additional drop test. (e) Drop... having essentially the same physical characteristics. (3) The specific gravity and viscosity of a...

  17. 49 CFR 178.965 - Drop test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... Water/anti-freeze solutions with a minimum specific gravity of 0.95 for testing at −18 °C (0 °F) or... of 0.45 cubic meters (15.9 cubic feet) or less must be subject to an additional drop test. (e) Drop... having essentially the same physical characteristics. (3) The specific gravity and viscosity of a...

  18. Regulator for intravenous feeding

    NASA Technical Reports Server (NTRS)

    Dimeff, J.

    1975-01-01

    Float valve maintains constant level of solution, providing constant drop rate as long as solution can flow into patient's vein. Second float valve allows solution to enter vein, but prevents entry of air.

  19. Cationic Thiolated Poly(aspartamide) Polymer as a Potential Excipient for Artificial Tear Formulations.

    PubMed

    Budai-Szűcs, Mária; Horvát, Gabriella; Szilágyi, Barnabás Áron; Gyarmati, Benjámin; Szilágyi, András; Berkó, Szilvia; Szabó-Révész, Piroska; Sandri, Giuseppina; Bonferoni, Maria Cristina; Caramella, Carla; Soós, Judit; Facskó, Andrea; Csányi, Erzsébet

    2016-01-01

    Dry eye disease is a relatively common ocular problem, which causes eye discomfort and visual disorders leading to a decrease in the quality of life. The aim of this study was to find a possible excipient for eye drop formulations, which is able to stabilize the tear film. A cationic thiolated polyaspartamide polymer, poly[(N-mercaptoethylaspartamide)-co-(N-(N',N'-dimethylaminoethyl)aspartamide)] (ThioPASP-DME), was used as a potential vehicle. Besides satisfying the basic requirements, the chemical structure of ThioPASP-DME is similar to those of ocular mucins as it is a protein-like polymer bearing a considerable number of thiol groups. The solution of the polymer is therefore able to mimic the physiological properties of the mucins and it can interact with the mucus layer via disulphide bond formation. The resultant mucoadhesion provides a prolonged residence time and ensures protective effect for the corneal/conjunctival epithelium. ThioPASP-DME also has an antioxidant effect due to the presence of the thiol groups. The applicability of ThioPASP-DME as a potential excipient in eye drops was determined by means of ocular compatibility tests and through examinations of the interactions with the mucosal surface. The results indicate that ThioPASP-DME can serve as a potential eye drop excipient for the therapy of dry eye disease.

  20. Bioavailability and biochemical effects of diclofenac sodium 0.1% ophthalmic solution in the domestic chicken (Gallus gallus domesticus).

    PubMed

    Griggs, Angela N; Yaw, Taylor J; Haynes, Joseph S; Ben-Shlomo, Gil; Tofflemire, Kyle L; Allbaugh, Rachel A

    2017-03-01

    To determine if topical ophthalmic diclofenac sodium 0.1% solution alters renal parameters in the domestic chicken, and to determine if the drug is detectable in plasma after topical ophthalmic administration. Thirty healthy domestic chickens. Over 7 days, six birds were treated unilaterally with one drop of artificial tear solution (group 1), 12 birds were treated unilaterally (group 2) and 12 bilaterally (group 3) with diclofenac sodium 0.1% ophthalmic solution. Treatments were provided every 12 h in all groups. Pre- and post-treatment plasma samples from all birds were evaluated for changes in albumin, total protein, and uric acid. Post-treatment samples of all birds, collected 15 min post-administration, were analyzed by high-performance liquid chromatography with mass spectrometry for diclofenac sodium detection. A randomly selected renal sample from each group was submitted for histopathologic review. Changes in pre- and post-treatment plasma albumin were significant (P < 0.05) in groups 2 and 3, but not for group 1. Pre- and post-treatment changes in total protein and uric acid were not significant for any group. Diclofenac sodium was not detectable (limit of detection = 0.10 ng/mL) in plasma samples from birds in group 1. Post-treatment concentration of diclofenac in group 3 was statistically greater than group 2 (P = 0.0008). Histopathologic changes did not identify diclofenac-induced acute renal tubular necrosis. Ophthalmic diclofenac sodium 0.1% administered topically every 12 h in one or both eyes for 7 days is detectable in systemic circulation in the domestic chicken, but does not cause overt significant changes in plasma uric acid or total protein. © 2016 American College of Veterinary Ophthalmologists.

  1. A Validated All-Pressure Fluid Drop Model and Lewis Number Effects for a Binary Mixture

    NASA Technical Reports Server (NTRS)

    Harstad, K.; Bellan, J.

    1999-01-01

    The differences between subcritical liquid drop and supercritical fluid drop behavior are discussed. Under subcritical, evaporative high emission rate conditions, a film layer is present in the inner part of the drop surface which contributes to the unique determination of the boundary conditions; it is this film layer which contributes to the solution's convective-diffusive character. In contrast, under supercritical condition as the boundary conditions contain a degree of arbitrariness due to the absence of a surface, and the solution has then a purely diffusive character. Results from simulations of a free fluid drop under no-gravity conditions are compared to microgravity experimental data from suspended, large drop experiments at high, low and intermediary temperatures and in a range of pressures encompassing the sub-and supercritical regime. Despite the difference between the conditions of the simulations and experiments (suspension vs. free floating), the time rate of variation of the drop diameter square is remarkably well predicted in the linear curve regime. The drop diameter is determined in the simulations from the location of the maximum density gradient, and agrees well with the data. It is also shown that the classical calculation of the Lewis number gives qualitatively erroneous results at supercritical conditions, but that an effective Lewis number previously defined gives qualitatively correct estimates of the length scales for heat and mass transfer at all pressures.

  2. Breakup of a thin drop under a stagnation point flow

    NASA Astrophysics Data System (ADS)

    Hooshanginejad, Alireza; Lee, Sungyon; Shelley, Michael

    2017-11-01

    Recent studies by Hooshanginejad and Lee (2017) have demonstrated complex depinning behaviors of a partially wetting droplet under wind. Motivated by this study, we examine the coupled evolution of a 2D thin drop and external wind, when it is initially held against a fast stagnation point flow. Our drop lubrication model employs the potential flow and Prandtl boundary layer theory for outer flow to compute the internal drop flow corresponding to drop deformations. Furthermore, both the analytical and numerical steady state solutions provide a partial prediction for the drop's final shape and help identify the range of droplet sizes that undergo a breakup for the given flow condition.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Feng; Jin, Tengchuan; Howard, Andrew

    The crystallization of the brazil nut allergen Ber e 2 is reported. Peanut and tree-nut allergies have attracted considerable attention because of their frequency and their lifelong persistence. Brazil-nut (Bertholletia excelsa) allergies have been well documented and the 11S legumin-like seed storage protein Ber e 2 (excelsin) is one of the two known brazil-nut allergens. In this study, Ber e 2 was extracted from brazil-nut kernels and purified to high purity by crystalline precipitation and gel-filtration chromatography. Well diffracting single crystals were obtained using the hanging-drop vapour-diffusion method. A molecular-replacement structural solution has been obtained. Refinement of the structure ismore » currently under way.« less

  4. Osmotonicity of acetoacetate: possible implications for cerebral edema in diabetic ketoacidosis.

    PubMed

    Puliyel, Jacob M

    2003-04-01

    Rapid drops in blood glucose and sodium levels during treatment of diabetic ketoacidosis (DKA) can cause a drop in the osmotonicity of plasma, resulting in cerebral edema. Ketone bodies are assumed to move freely in and out of cells, so it is assumed that they do not contribute to the tonicity of plasma or influence fluid shifts. The assumption that ketone bodies do not contribute to osmotonicity has not been tested previously. The experiment described here was done to check if acetoacetate has osmotonicity. A modified erythrocyte fragility test was used to check the osmotonic and osmoprotective effects of the ketone body. Red blood cells were suspended in different test tubes containing distilled water, normal saline, glucose, urea and acetoacetic acid (lithium salt C4H5O3Li). All solutions (except the tube with distilled water) were made to match the osmolality of plasma. We hypothesized that solutions in which red cell hemolysis does not take place have greater tonicity than the tonicity of 0.45% saline. Spectrophotometry showed that there was no hemolysis in the solutions of normal saline or solutions containing glucose or acetoacetate. Complete hemolysis was demonstrated in the tube with plain distilled water and also in the solutions containing urea. This study shows that acetoacetate is functionally similar to glucose in that it contributes to increased osmotonicity. The drop in ketone body levels can produce a drop in the osmolar tonicity of plasma and precipitate cerebral edema.

  5. Cold Shock of a Hyperthermophilic Archaeon: Pyrococcus furiosus Exhibits Multiple Responses to a Suboptimal Growth Temperature with a Key Role for Membrane-Bound Glycoproteins

    PubMed Central

    Weinberg, Michael V.; Schut, Gerrit J.; Brehm, Scott; Datta, Susmita; Adams, Michael W. W.

    2005-01-01

    The hyperthermophilic archaeon, Pyrococcus furiosus, was grown on maltose near its optimal growth temperature, 95°C, and at the lower end of the temperature range for significant growth, 72°C. In addition, cultures were shocked by rapidly dropping the temperature from 95 to 72°C. This resulted in a 5-h lag phase, during which time little growth occurred. Transcriptional analyses using whole-genome DNA microarrays representing 2,065 open reading frames (ORFs) in the P. furiosus genome showed that cells undergo three very different responses at 72°C: an early shock (1 to 2 h), a late shock (5 h), and an adapted response (occurring after many generations at 72°C). Each response involved the up-regulation in the expression of more than 30 ORFs unique to that response. These included proteins involved in translation, solute transport, amino acid biosynthesis, and tungsten and intermediary carbon metabolism, as well as numerous conserved-hypothetical and/or membrane-associated proteins. Two major membrane proteins were evident after one-dimensional sodium dodecyl sulfate-gel analysis of cold-adapted cells, and staining revealed them to be glycoproteins. Their cold-induced expression evident from the DNA microarray analysis was confirmed by quantitative PCR. Termed CipA (PF0190) and CipB (PF1408), both appear to be solute-binding proteins. While the archaea do not contain members of the bacterial cold shock protein (Csp) family, they all contain homologs of CipA and CipB. These proteins are also related phylogenetically to some cold-responsive genes recently identified in certain bacteria. The Cip proteins may represent a general prokaryotic-type cold response mechanism that is present even in hyperthermophilic archaea. PMID:15601718

  6. Surface enhanced Raman spectroscopy of fullerene C60 drop-deposited on the silvered porous silicon

    NASA Astrophysics Data System (ADS)

    Khinevich, N.; Girel, K.; Bandarenka, H.; Salo, V.; Mosunov, A.

    2017-11-01

    Surface enhanced Raman spectroscopy (SERS) of fullerene C60 drop-deposited from the 1.4·10-4 M aqueous solutions on the silvered porous silicon (Ag/PS) is reported for the first time. The used concentration is found to be not detected by the ordinary Raman spectroscopy. It is shown that SERS-spectrum of the fullerene deposited from the air-aged solution are characterized by less intensity than that of the fullerene solution kept out of the air. This indicates degradation of the fullerene solution due to oxidation. The results are prospective for the fast qualitative and quantitative analysis of the fullerene-based materials.

  7. The structure of myristoylated Mason-Pfizer monkey virus matrix protein and the role of phosphatidylinositol-(4,5)-bisphosphate in its membrane binding.

    PubMed

    Prchal, Jan; Srb, Pavel; Hunter, Eric; Ruml, Tomáš; Hrabal, Richard

    2012-10-26

    We determined the solution structure of myristoylated Mason-Pfizer monkey virus matrix protein by NMR spectroscopy. The myristoyl group is buried inside the protein and causes a slight reorientation of the helices. This reorientation leads to the creation of a binding site for phosphatidylinositols. The interaction between the matrix protein and phosphatidylinositols carrying C(8) fatty acid chains was monitored by observation of concentration-dependent chemical shift changes of the affected amino acid residues, a saturation transfer difference experiment and changes in (31)P chemical shifts. No differences in the binding mode or affinity were observed with differently phosphorylated phosphatidylinositols. The structure of the matrix protein-phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P(2)] complex was then calculated with HADDOCK software based on the intermolecular nuclear Overhauser enhancement contacts between the ligand and the matrix protein obtained from a (13)C-filtered/(13)C-edited nuclear Overhauser enhancement spectroscopy experiment. PI(4,5)P(2) binding was not strong enough for triggering of the myristoyl-switch. The structural changes of the myristoylated matrix protein were also found to result in a drop in the oligomerization capacity of the protein. Copyright © 2012. Published by Elsevier Ltd.

  8. Systematic Improvement of Protein Crystals by Determining the Supersolubility Curves of Phase Diagrams

    PubMed Central

    Saridakis, Emmanuel; Chayen, Naomi E.

    2003-01-01

    A systematic approach for improving protein crystals by growing them in the metastable zone using the vapor diffusion technique is described. This is a simple technique for optimization of crystallization conditions. Screening around known conditions is performed to establish a working phase diagram for the crystallization of the protein. Dilutions of the crystallization drops across the supersolubility curve into the metastable zone are then carried out as follows: the coverslips holding the hanging drops are transferred, after being incubated for some time at conditions normally giving many small crystals, over reservoirs at concentrations which normally yield clear drops. Fewer, much larger crystals are obtained when the incubation times are optimized, compared with conventional crystallization at similar conditions. This systematic approach has led to the structure determination of the light-harvesting protein C-phycocyanin to the highest-ever resolution of 1.45 Å. PMID:12547801

  9. A simplified counter diffusion method combined with a 1D simulation program for optimizing crystallization conditions.

    PubMed

    Tanaka, Hiroaki; Inaka, Koji; Sugiyama, Shigeru; Takahashi, Sachiko; Sano, Satoshi; Sato, Masaru; Yoshitomi, Susumu

    2004-01-01

    We developed a new protein crystallization method has been developed using a simplified counter-diffusion method for optimizing crystallization condition. It is composed of only a single capillary, the gel in the silicon tube and the screw-top test tube, which are readily available in the laboratory. The one capillary can continuously scan a wide range of crystallization conditions (combination of the concentrations of the precipitant and the protein) unless crystallization occurs, which means that it corresponds to many drops in the vapor-diffusion method. The amount of the precipitant and the protein solutions can be much less than in conventional methods. In this study, lysozyme and alpha-amylase were used as model proteins for demonstrating the efficiency of this method. In addition, one-dimensional (1-D) simulations of the crystal growth were performed based on the 1-D diffusion model. The optimized conditions can be applied to the initial crystallization conditions for both other counter-diffusion methods with the Granada Crystallization Box (GCB) and for the vapor-diffusion method after some modification.

  10. Kinetics of temperature response of PEO-b-PNIPAM-b-PAA triblock terpolymer aggregates and of their complexes with lysozyme

    DOE PAGES

    Papagiannopoulos, Aristeidis; Meristoudi, Anastasia; Hong, Kunlun; ...

    2015-12-18

    We present the kinetics of temperature response of a PEO-b-PNIPAM-b-PAA triblock terpolymer and of its complexes with lysozyme in aqueous solution. It is found that during the coil-to-globule transition of PNIPAM new bonds within the polymer aggregates are created, making the transition of the aggregates partially irreversible. This effect is also found for the protein loaded PEO-b-PNIPAM-b-PAA aggregates whereas in this case protein globules appear to enhance the formation of bonds, making the transition totally irreversible. The internal dynamics of both aggregates and complexes are “frozen” once the temperature is increased upon PINIPAM's LCST in water and remain so evenmore » when the temperature drops below LCST. As a result, we investigate the complexation kinetics of lysozyme and PEO-b-PNIPAM-b-PAA and observe that it occurs in two stages, one where protein globules adsorb on single pre-formed aggregates and one where protein globules cause inter-aggregate clustering.« less

  11. Kinetics of temperature response of PEO-b-PNIPAM-b-PAA triblock terpolymer aggregates and of their complexes with lysozyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papagiannopoulos, Aristeidis; Meristoudi, Anastasia; Hong, Kunlun

    We present the kinetics of temperature response of a PEO-b-PNIPAM-b-PAA triblock terpolymer and of its complexes with lysozyme in aqueous solution. It is found that during the coil-to-globule transition of PNIPAM new bonds within the polymer aggregates are created, making the transition of the aggregates partially irreversible. This effect is also found for the protein loaded PEO-b-PNIPAM-b-PAA aggregates whereas in this case protein globules appear to enhance the formation of bonds, making the transition totally irreversible. The internal dynamics of both aggregates and complexes are “frozen” once the temperature is increased upon PINIPAM's LCST in water and remain so evenmore » when the temperature drops below LCST. As a result, we investigate the complexation kinetics of lysozyme and PEO-b-PNIPAM-b-PAA and observe that it occurs in two stages, one where protein globules adsorb on single pre-formed aggregates and one where protein globules cause inter-aggregate clustering.« less

  12. Dynamics of viscous drops confined in a rough medium

    NASA Astrophysics Data System (ADS)

    Keiser, Ludovic; Gas, Armelle; Jaafar, Khalil; Bico, Jose; Reyssat, Etienne

    2017-11-01

    We focus on the dynamics of viscous and non-wetting ``pancake'' droplets of oil conned in a vertical Hele-Shaw cell filled with a less viscous surfactant solution. These dense drops settle at constant velocity driven by gravity. The surfactant solution completely wets the walls, and a thin lubrication film separates the drops from the walls. With smooth walls, two main dynamical regimes are characterized as the gap between the walls is varied. Viscous dissipation is found to dominate either in the droplet or in the lubrication film, depending on the ratio of viscosities and length scales. A sharp transition between both regimes is observed and successfully captured by asymptotic models. With rough walls, that transition is dramatically altered. Drops are generally much slower in a rough Hele-Shaw cell, in comparison with a similar smooth cell. Building up on the seminal works of Seiwert et al. (J.F.M. 2011) on film deposition by dip coating on a rough surface, we shed light on the non-trivial friction processes resulting from the interplay of viscous dissipation at the front of the drop, in the lubrication film and in the bulk of the drop. We acknowledge funding from Total S.A.

  13. Crystalline desiccation patterns and film break up from evaporating drops on hydrophobic oxide surfaces

    NASA Astrophysics Data System (ADS)

    McBride, Samantha; Dash, Susmita; Khan, Sami; Varanasi, Kripa

    2017-11-01

    Solute-laden sessile drops evaporating on a substrate will often force crystallization of the solute at the triple phase contact line between the drop, substrate, and air in an effect similar to the ``coffee-ring'' deposition of particles from a particle-laden drop. We report new observations of ring-shaped desiccation patterns of gypsum crystals on hydrophobic oxide substrates; ceria, erbia, and silica. These surfaces have similar contact angles ( 105 degrees), and evaporation of sessile drops proceeds at the same rate and without contact angle hysteresis on all three substrates. However, despite the apparent similarity, the patterns of crystal deposits exhibit large differences across the substrates. The supersaturation and elapsed time at the onset of crystallization also varied across substrates, despite overall evaporation rates being identical. The differences in patterns can be explained in light of the position and morphology of the crystals just prior to completion of evaporation when the sessile drop has transitioned to a thin film spread over the deposit area. Break-up of this film occurs very differently on the different surfaces, and is simultaneously influenced by existing crystals while also influencing final crystalline patterns. This work was supported by the NSF GRFP.

  14. A model comparing how rapidly transfusion of solvent detergent plasma restores clotting factors versus infusion of albumin-saline.

    PubMed

    Jilma-Stohlawetz, Petra; Kursten, Friedrich W; Horvath, Michaela; Leitner, Gerda; List, Jana; Marcek, Jana; Quehenberger, Peter; Schwameis, Michael; Bartko, Johann; Jilma, Bernd

    2015-12-01

    A recent randomized controlled trial demonstrated the bioequivalence between universally applicable and AB0 compatible transfusion plasma in healthy volunteers. There was a limited change in coagulation factor levels and inhibitors before and after plasmapheresis and subsequent plasma transfusion. The aim of this extension trial was to investigate the true capacity of these plasma products to restore baseline levels of coagulation factors and inhibitors after plasma depletion in comparison to haemodilution induced by infusion of albumin solution. Fourteen healthy subjects, who completed both plasma transfusion periods, underwent an additional plasmapheresis (600 mL) followed by an infusion of 1200 mL albumin (3.125%) in a third period. The fibrinogen levels, as well as other clotting factors (FII, FV, FVII and FXI), decreased by 10% after plasmapheresis, and subsequent infusion of albumin solution further aggravated this drop in clotting factors to approximately 20-25%. The clotting factors with a long half-life were not even restored 24 hours after infusion of albumin solution, whereas those with a short half-life were replenished by endogenous synthesis within 24 hours. In contrast, transfusion of either plasma product rapidly restored all clotting parameters and inhibitors (protein S and plasmin inhibitor) immediately after transfusion. This study demonstrates that albumin solution induces an enhanced dilution of clotting factors and inhibitors, whereas both plasma products quickly compensated for the experimental loss of these plasma proteins. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Thermocapillary migration of a drop: an exact solution with Newtonian interfacial rheology and stretching/shrinkage of interfacial area elements for small Marangoni numbers

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Subramanian, R. Shankar

    2004-01-01

    In this paper we analyze the effects of the following phenomena associated with the thermocapillary migration of a drop. The first is the influence of Newtonian surface rheology of the interface and the second is that of the energy changes associated with stretching and shrinkage of the interfacial area elements, when the drop is in motion. The former occurs because of dissipative processes in the interfacial region, such as when surfactant molecules are adsorbed at the interface in sufficient concentration. The interface is typically modeled in this instance by ascribing to it a surface viscosity. This is a different effect from that of interfacial tension gradients arising from surfactant concentration gradients. The stretching and shrinkage of interfacial area elements leads to changes in the internal energy of these elements that affects the transport of energy in the fluids adjoining the interface. When an element on the interface is stretched, its internal energy increases because of the increase in its area. This energy is supplied by the neighboring fluids that are cooled as a consequence. Conversely, when an element on the interface shrinks, the adjoining fluids are warmed. In the case of a moving drop, elements of interfacial area are stretched in the forward half of the drop, and are shrunk in the rear half. Consequently, the temperature variation on the surface of the drop and its migration speed are modified. The analysis of the motion of a drop including these effects was first performed by LeVan in 1981, in the limit when convective transport of momentum and energy are negligible. We extend the analysis of LeVan to include the convective transport of momentum by demonstrating that an exact solution of the momentum equation is obtained for an arbitrary value of the Reynolds number. This solution is then used to calculate the slightly deformed shape of the drop from a sphere.

  16. Electrohydrodynamic deformation and interaction of a pair of emulsion drops

    NASA Technical Reports Server (NTRS)

    Baygents, James C.

    1994-01-01

    The response of a pair of emulsion drops to the imposition of a uniform electric field is examined. The case studied is that of equal-sized drops whose line of centers is parallel to the axis of the applied field. A new boundary integral solution to the governing equations of the leaky dielectric model is developed; the formulation accounts for the electrostatic and hydrodynamic interactions between the drops, as well as their deformations. Numerical calculations show that, after an initial transient during which the drops primarily deform, the pair drift slowly together due to their electrostatic interactions.

  17. Acoustic Levitation and its Applications in the Study of Liquid Surface Rheology.

    NASA Astrophysics Data System (ADS)

    Tian, Yuren

    Due to its non-contact manipulation and requirement of small amounts of test sample, acoustical levitation has been used to investigate the interfacial dynamics of liquids. In this current work, the surface rheology of liquid drops levitated in air has been studied. The surrounding of a gaseous medium simplifies the theoretical analysis and the interpretation of experimental results. For a ground-based experiment, the effect of gravity and the levitation sound field can change a levitated drop into a nonspherical shape. A theory which involves the multiple interactions between the drop and the sound field, the acoustic scattering by a nonspherical object and the limitation of droplet volume variation is developed. The droplet aspect ratio is determined as a function of the sound pressure, frequency (or wavelength) and the surface tension of liquid under both zero and nonzero gravity environments. The dynamics of a liquid drop of surfactant solution is also theoretically analyzed by including the different surfactant transfer processes at the droplet surface. The approximate solutions of the resonance frequency and damping constant of droplet free quadrupole shape oscillation are derived analytically and verified with the exact numerical solutions. The phase relationship between the driving force and the droplet response is established for the case of forced droplet shape oscillation. The surface viscoelasticity of liquid has shown a strong effect on the droplet dynamics. An acoustic levitation apparatus is constructed and used to levitate a liquid drop in air. By gauging the static shape of the drop versus its spatial location, the equilibrium surface tension of the liquid can be determined. The surface elasticity and viscosity are evaluated from the measurements of the resonance frequency, damping constant and phase relationship of the droplet quadrupole shape oscillation. Different kind of liquids are tested. For surfactant solutions, the experimental results illustrate the existence of surface viscoelasticities.

  18. Girls' Drop-Out from Primary Schooling in the Middle East and North Africa: Challenges and Alternatives.

    ERIC Educational Resources Information Center

    Mehrah, Golnar

    The present situation in the Middle East and North Africa Region (MENA) regarding primary school drop-out and repetition, with special reference to the situation of the girl child, is examined in this study. The in-school as well as out-of-school causes of primary school drop-out are examined, and solutions that help reduce or eliminate the…

  19. Equilibrium Kinetics Studies and Crystallization Aboard the International Space Station (ISS) Using the Protein Crystallization Apparatus for Microgravity (PCAM)

    NASA Technical Reports Server (NTRS)

    Achari, Aniruddha; Roeber, Dana F.; Barnes, Cindy L.; Kundrot, Craig E.; Stinson, Thomas N. (Technical Monitor)

    2002-01-01

    Protein Crystallization Apparatus in Microgravity (PCAM) trays have been used in Shuttle missions to crystallize proteins in a microgravity environment. The crystallization experiments are 'sitting drops' similar to that in Cryschem trays, but the reservoir solution is soaked in a wick. From early 2001, crystallization experiments are conducted on the International Space Station using mission durations of months rather than two weeks on previous shuttle missions. Experiments were set up in April 2001 on Flight 6A to characterize the time crystallization experiments will take to reach equilibrium in a microgravity environment using salts, polyethylene glycols and an organic solvent as precipitants. The experiments were set up to gather data for a series of days of activation with different droplet volumes and precipitants. The experimental set up on ISS and results of this study will be presented. These results will help future users of PCAM to choose precipitants to optimize crystallization conditions for their target macromolecules for a particular mission with known mission duration. Changes in crystal morphology and size between the ground and space grown crystals of a protein and a protein -DNA complex flown on the same mission will also be presented.

  20. Effects of topical oxiconazole and boric acid in alcohol solutions to rat inner ears.

    PubMed

    Özdemir, Süleyman; Tuncer, Ülkü; Tarkan, Özgür; Akar, Funda; Sürmelioğlu, Özgür

    2013-06-01

    The aim of this study is to evaluate the ototoxicity of topical oxiconazole and boric acid in alcohol solutions. Prospective controlled animal study. Research laboratory. Fifty adult Wistar albino rats were divided into 5 groups consisting of 10 animals each. The right tympanic membranes were perforated, and baseline and posttreatment distortion product otoacoustic emission (DPOAE) measurements were performed. The solutions were applied through the external ear canal to the middle ear twice a day for 14 days. The rats in group I and group II received 0.1 mL of oxiconazole-containing solution drops and 4% boric acid in alcohol solution drops, respectively. Group III received gentamicin solution (40 mg/mL) (ototoxic control), group IV received saline solution, and group V was followed without any medication. The baseline DPOAE results of the right ears of all animals tested were normal. Animals in groups I, II, IV, and V showed no statistically significant change in the DPOAE amplitudes. The rats in the gentamicin group showed a significant decrease. This study demonstrates that topically used oxiconazole and boric acid in alcohol solutions to the middle ear appear to be safe on the inner ear of rats. The safety of these drugs has not yet been confirmed in humans. Caution should be taken when prescribing these drugs, especially to patients who had tympanic membrane perforation. Ear drops should be chosen more carefully in an external ear infection for patients with tympanic membrane perforation to avoid ototoxicity.

  1. First Protein Crystallization Experiments on The International Space Station: Sweet Success in Space With Thaumatin

    NASA Technical Reports Server (NTRS)

    Kundrot, Craig E.; Barnes, Cindy L.; Snell, Eddie H.; Achari, Aniruddha; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    We determined the room temperature 1.2 A structure of thaumatin using a crystal grown in the first protein crystallization experiment conducted aboard the International Space Station (ISS). The crystals were grown in the Enhanced Gaseous Nitrogen Dewar (EGN) developed by Alexander McPherson and co-workers. EGN transports frozen solutions contained in tygon tubing in a liquid nitrogen Dewar to ISS where the tubes then thaw. Batch, free interface diffusion (FID), or vapor diffusion crystallization occurs after thawing. EGN was flown to the ISS on STS-106 on September 8, 2000. This was a "risk mitigation" flight that tested EGN performance and the process of conducting experiments on ISS. We focused on how to map a hanging drop crystallization recipe to the EGN FID method. Thaumatin was chosen as the test system. Three series of crystallization recipes were set-up. Each series tested different volume ratios of protein-rich solution to precipitant-rich solution. The series differed from each other by fixing either the protein concentration or the amount of protein in the solutions. Upon return of the samples to Earth on October 24 by STS-92, bubbles that spanned the diameter of the tubing were observed in all tubes. Such bubbles interrupt liquid-liquid diffusion and force vapor diffusion equilibration to occur instead. Nonetheless, crystals grew in 9 of 30 tubes. Many large crystals were grown, the largest being 2.0 x 1.1 x 1.0 cubic mm. The largest crystal was used to collect data at room temperature on beamline 7-1 of the Stanford Synchrotron Radiation Source to a maximum resolution of 1.2 A. The structure was refined anisotropically using SHELX with a data to parameter ratio of 4.5 to give an R(sub factor) of 15.8% (R(sub free) = 18.2%) for ail reflections without generated hydrogens. This refinement is proceeding. Comparisons of this 1.2 A microgravity structure to previous reports of the thaumatin structure at 1.75 A and to ground control crystals will be presented.

  2. Noninvasive in situ observation of the crystallization kinetics of biological macromolecules by confocal laser scanning microscopy.

    PubMed

    Mühlig, P; Klupsch, Th; Kaulmann, U; Hilgenfeld, R

    2003-04-01

    High-resolution confocal laser scanning microscopy (CLSM) is a powerful tool for in situ observation and analysis of protein crystal growth kinetics. Because the resolution of CLSM is not diffraction-limited by the object, it is possible to visualize, under certain conditions, objects in molecular dimensions. A modified batch technique is applied which allows the growth kinetics of sufficiently small crystallites fixed at the lower side of a cover glass, within a hanging drop, to be studied in reflected light near the total reflection angle. A gap, or cavity, filled with solution is formed between the cover glass and the upper crystal face, which acts to fix small crystallites by hydrodynamic friction forces. The cavity height enables the propagation of molecular steps across the upper crystal face without constraint, so that the propagation velocity and geometrical parameters can be measured by CLSM. The layer growth kinetics of monoclinic crystallites of a long-acting insulin derivative (Insulin Glargine) is investigated. For a twofold supersaturation of the solution, the growth is governed by 2D nucleation at the edges of the crystallites followed by a spreading of molecular steps. The layer growth kinetics are well fitted by the simple cubic kinetic lattice model. We find that only about one of a thousand solute (protein) molecules which push a kink place due to their Brownian motion becomes really incorporated into the growing crystal.

  3. Dispersion in Spherical Water Drops.

    ERIC Educational Resources Information Center

    Eliason, John C., Jr.

    1989-01-01

    Discusses a laboratory exercise simulating the paths of light rays through spherical water drops by applying principles of ray optics and geometry. Describes four parts: determining the output angles, computer simulation, explorations, model testing, and solutions. Provides a computer program and some diagrams. (YP)

  4. Osteoarthritis screening using Raman spectroscopy of dried human synovial fluid drops

    NASA Astrophysics Data System (ADS)

    Esmonde-White, Karen A.; Mandair, Gurjit S.; Esmonde-White, Francis W. L.; Raaii, Farhang; Roessler, Blake J.; Morris, Michael D.

    2009-02-01

    We describe the use of Raman spectroscopy to investigate synovial fluid drops deposited onto fused silica microscope slides. This spectral information can be used to identify chemical changes in synovial fluid associated with osteoarthritis (OA) damage to knee joints. The chemical composition of synovial fluid is predominately proteins (enzymes, cytokines, or collagen fragments), glycosaminoglycans, and a mixture of minor components such as inorganic phosphate crystals. During osteoarthritis, the chemical, viscoelastic and biological properties of synovial fluid are altered. A pilot study was conducted to determine if Raman spectra of synovial fluid correlated with radiological scoring of knee joint damage. After informed consent, synovial fluid was drawn and x-rays were collected from the knee joints of 40 patients. Raman spectra and microscope images were obtained from the dried synovial fluid drops using a Raman microprobe and indicate a coarse separation of synovial fluid components. Individual protein signatures could not be identified; Raman spectra were useful as a general marker of overall protein content and secondary structure. Band intensity ratios used to describe protein and glycosaminoglycan structure were used in synovial fluid spectra. Band intensity ratios of Raman spectra indicate that there is less ordered protein secondary structure in synovial fluid from the damage group. Combination of drop deposition with Raman spectroscopy is a powerful approach to examining synovial fluid for the purposes of assessing osteoarthritis damage.

  5. The stopped-drop method: a novel setup for containment-free and time-resolved measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiener, Andreas; Seifert, Soenke; Magerl, Andreas

    2016-03-01

    A novel setup for containment-free time-resolved experiments at a free-hanging drop is reported. Within a dead-time of 100 ms a drop of mixed reactant solutions is formed and the time evolution of a reaction can be followed from thereon by various techniques. As an example, a small-angle X-ray scattering study on the formation mechanism of EDTA-stabilized CdS both at a synchrotron and a laboratory X-ray source is presented here. While the evolution can be followed with one drop only at a synchrotron source, a stroboscopic mode with many drops is preferable for the laboratory source.

  6. Technology in rural transportation. Simple solution #7, lane drop driver awareness

    DOT National Transportation Integrated Search

    1997-01-01

    This application was identified as a promising rural Intelligent Transportation Systems (ITS) solution under a project sponsored by the Federal Highway Administration (FHWA) and the ENTERPRISE program. This summary describes the solution as well as o...

  7. Ultrasonic Substrate Vibration-Assisted Drop Casting (SVADC) for the Fabrication of Photovoltaic Solar Cell Arrays and Thin-Film Devices.

    PubMed

    Eslamian, Morteza; Zabihi, Fatemeh

    2015-12-01

    A simple, low-cost, versatile, and potentially scalable casting method is proposed for the fabrication of micro- and nano-thin films, herein termed as ultrasonic "substrate vibration-assisted drop casting" (SVADC). The impingement of a solution drop onto a substrate in a simple process called drop casting, usually results in spreading of the liquid solution and the formation of a non-uniform thin solid film after solvent evaporation. Our previous and current supporting results, as well as few similar reports by others, confirm that imposing ultrasonic vibration on the substrate can simply convert the uncontrollable drop casting method into a controllable coating technique. Therefore, the SVADC may be used to fabricate an array of emerging thin-film solar cells, such as polymer, perovskite, and quantum-dot solar cells, as well as other small thin-film devices, in a roll-to-roll and automated fabrication process. The preliminary results demonstrate a ten-fold increase in electrical conductivity of PSS made by SVADC compared with the film made by conventional drop casting. Also, simple planar perovskite solar cells made here using SVADC show promising performance with an efficiency of over 3 % for a simple structure without performing process optimization or using expensive materials and treatments.

  8. A PIV Study of Drop-interface Coalescence with Surfactants

    NASA Astrophysics Data System (ADS)

    Weheliye, Weheliye Hashi; Dong, Teng; Angeli, Panagiota

    2017-11-01

    In this work, the coalescence of a drop with an aqueous-organic interface was studied by Particle Image Velocimetry (PIV). The effect of surfactants on the drop surface evolution, the vorticity field and the kinetic energy distribution in the drop during coalescence were investigated. The coalescence took place in an acrylic rectangular box with 79% glycerol solution at the bottom and Exxsol D80 oil above. The glycerol solution drop was generated through a nozzle fixed at 2cm above the aqueous/oil interface and was seeded with Rhodamine particles. The whole process was captured by a high-speed camera. Different mass ratios of non-ionic surfactant Span80 to oil were studied. The increase of surfactant concentration promoted deformation of the interface before the rupture of the trapped oil film. At the early stages after film rupture, two counter-rotating vortices appeared at the bottom of the drop which then travelled to the upper part. The propagation rates, as well as the intensities of the vortices decreased at high surfactant concentrations. At early stages, the kinetic energy was mainly distributed near the bottom part of the droplet, while at later stages it was distributed near the upper part of the droplet. Programme Grant MEMPHIS, Chinese Scholarship Council (CSC).

  9. Laser scattering in a hanging drop vapor diffusion apparatus for protein crystal growth in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Casay, G. A.; Wilson, W. W.

    1992-01-01

    One type of hardware used to grow protein crystals in the microgravity environment aboard the U.S. Space Shuttle is a hanging drop vapor diffusion apparatus (HDVDA). In order to optimize crystal growth conditions, dynamic control of the HDVDA is desirable. A critical component in the dynamically controlled system is a detector for protein nucleation. We have constructed a laser scattering detector for the HDVDA capable of detecting the nucleation stage. The detector was successfully tested for several scatterers differing in size using dynamic light scattering techniques. In addition, the ability to detect protein nucleation using the HDVDA was demonstrated for lysozyme.

  10. Optical monitoring of proteins at solid interfaces

    NASA Astrophysics Data System (ADS)

    Dunne, G.; McDonnell, L.; Miller, R.; McMillan, N. D.; O'Rourke, B.; Mitchell, C. I.

    2005-06-01

    The adsorption properties of polymers are of great importance for implant studies. A better understanding of these properties can lead to improved implant materials. In this study the surface energy of different polymers was derived from contact angle measurements taken using profile analysis tensiometry (PAT) of sessile drops of water. The contact angles were measured for advancing and receding water drops on polished polymer surfaces and also on polymer surfaces modified by adsorbing protein to the surface prior to analysis of the sessile drop. The protein used was bovine serum albumin (BSA) and the surfaces were poly-methylmethacrylate (PMMA), poly-ether-ether-ketone (PEEK) and stainless steel. The polymer surfaces were also studied using atomic force microscopy (AFM). Images of the surfaces were taken in different states: rough, smooth and with albumin adsorbed. As a method to identify the proteins on the surface easier, anti-albumin antibodies with 30nm nano gold particles attached were adsorbed to the albumin on the surfaces. Using nano gold particles made the imaging more straightforward and thus made identification of the protein on the surface easier. The results from this work show the differing hydrophobicities of polymer surfaces under different conditions and a new nanotechnological method of protein identification.

  11. Cationic Thiolated Poly(aspartamide) Polymer as a Potential Excipient for Artificial Tear Formulations

    PubMed Central

    Budai-Szűcs, Mária; Horvát, Gabriella; Szilágyi, Barnabás Áron; Gyarmati, Benjámin; Szilágyi, András; Berkó, Szilvia; Szabó-Révész, Piroska; Sandri, Giuseppina; Bonferoni, Maria Cristina; Caramella, Carla; Soós, Judit; Facskó, Andrea; Csányi, Erzsébet

    2016-01-01

    Dry eye disease is a relatively common ocular problem, which causes eye discomfort and visual disorders leading to a decrease in the quality of life. The aim of this study was to find a possible excipient for eye drop formulations, which is able to stabilize the tear film. A cationic thiolated polyaspartamide polymer, poly[(N-mercaptoethylaspartamide)-co-(N-(N′,N′-dimethylaminoethyl)aspartamide)] (ThioPASP-DME), was used as a potential vehicle. Besides satisfying the basic requirements, the chemical structure of ThioPASP-DME is similar to those of ocular mucins as it is a protein-like polymer bearing a considerable number of thiol groups. The solution of the polymer is therefore able to mimic the physiological properties of the mucins and it can interact with the mucus layer via disulphide bond formation. The resultant mucoadhesion provides a prolonged residence time and ensures protective effect for the corneal/conjunctival epithelium. ThioPASP-DME also has an antioxidant effect due to the presence of the thiol groups. The applicability of ThioPASP-DME as a potential excipient in eye drops was determined by means of ocular compatibility tests and through examinations of the interactions with the mucosal surface. The results indicate that ThioPASP-DME can serve as a potential eye drop excipient for the therapy of dry eye disease. PMID:27313866

  12. Protein-based flexible whispering gallery mode resonators

    NASA Astrophysics Data System (ADS)

    Yilmaz, Huzeyfe; Pena-Francesch, Abdon; Xu, Linhua; Shreiner, Robert; Jung, Huihun; Huang, Steven H.; Özdemir, Sahin K.; Demirel, Melik C.; Yang, Lan

    2016-02-01

    The idea of creating photonics tools for sensing, imaging and material characterization has long been pursued and many achievements have been made. Approaching the level of solutions provided by nature however is hindered by routine choice of materials. To this end recent years have witnessed a great effort to engineer mechanically flexible photonic devices using polymer substrates. On the other hand, biodegradability and biocompatibility still remains to be incorporated. Hence biomimetics holds the key to overcome the limitations of traditional materials in photonics design. Natural proteins such as sucker ring teeth (SRT) and silk for instance have remarkable mechanical and optical properties that exceed the endeavors of most synthetic and natural polymers. Here we demonstrate for the first time, toroidal whispering gallery mode resonators (WGMR) fabricated entirely from protein structures such as SRT of Loligo vulgaris (European squid) and silk from Bombyx mori. We provide here complete optical and material characterization of proteinaceous WGMRs, revealing high quality factors in microscale and enhancement of Raman signatures by a microcavity. We also present a most simple application of a WGMR as a natural protein add-drop filter, made of SRT protein. Our work shows that with protein-based materials, optical, mechanical and thermal properties can be devised at the molecular level and it lays the groundwork for future eco-friendly, flexible photonics device design.

  13. The physical properties of generic latanoprost ophthalmic solutions are not identical.

    PubMed

    Kolko, Miriam; Koch Jensen, Peter

    2017-06-01

    To compare various characteristics of Xalatan ® and five generic latanoprost ophthalmic solutions. Drop size, volume, pH values, buffer capacity, viscosity, hardness of bottles and costs were determined. Drop sizes were measured in triplicates by micropipettes, and the number of drops counted in three separate bottles of each generic product was determined. pH values were measured in triplicates by a calibrated pH meter. Buffer capacity was exploited by titrating known quantities of strong base into 2.5 ml of each brand and interpolated to neutral pH. Kinematic viscosity was determined by linear regression of timed gravity flow from a vertical syringe through a 21-G cannula. The hardness of the bottles was evaluated by gradually increasing tension on a hook placed around each bottle until a drop was expelled reading the tension on an attached spring scale. Drop sizes and the number of drops in the bottles varied significantly between the generic drugs. The control value of pH in the brand version (Xalatan ® ) was markedly lower compared to the generic latanoprost products. Titration of Xalatan ® to neutrality required substantially more NaOH compared to the generic latanoprost products. Finally, the viscosity revealed a significant variability between brands. Remarkable differences were found in bottle shapes, bottle hardness and costs of the latanoprost generics. Generic latanoprost eye drops should not be considered identical to the original brand version as regards to drop size, volumes, pH values, buffer capacity, viscosity, hardness of bottles and costs. It is likely that these issues affect compliance and intraocular pressure (IOP)-lowering effect. Therefore, re-evaluation of the requirements for introducing generic eye drops seems reasonable. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  14. Inkjet Printing of Proteins: an Experimental Approach.

    PubMed

    Montenegro-Nicolini, Miguel; Miranda, Víctor; Morales, Javier O

    2017-01-01

    Peptides and proteins represent a promissory group of molecules used by the pharmaceutical industry for drug therapy with great potential for development. However, the administration of these molecules presents a series of difficulties, making necessary the exploration of new alternatives like the buccal route of administration to improve drug therapy compliance. Although drop-on demand printers have been explored for small molecule drugs with promising results, the development of delivery systems for peptides and proteins through inkjet printing has seen little development. Therefore, the aim of this study was to assess the feasibility of using a thermal inkjet printing system for dispensing lysozyme and ribonuclease-A as model proteins. To address the absorption limitations of a potential buccal use, a permeation enhancer (sodium deoxycholate) was also studied in formulations. We found that a conventional printer successfully printed both proteins, exhibiting very high printing efficiency. Furthermore, the protein structure was not affected and minor effects were observed in the enzymatic activity after the printing process. In conclusion, we provide evidence for the usage of an inexpensive, easy to use, reliable, and reproducible thermal inkjet printing system to dispense proteins solutions for potential buccal application. Our research significantly contributes to present an alternative for manufacturing biologics delivery systems, with emphasis in buccal applications. Next steps of developments will be aimed at the use of new materials for printing, controlled release, and protection strategies for proteins and peptides.

  15. O the Electrohydrodynamics of Drop Extraction from a Conductive Liquid Meniscus

    NASA Astrophysics Data System (ADS)

    Wright, Graham Scott

    This thesis is concerned with the use of an electric field in the extraction of liquid drops from a capillary orifice or nozzle. The motivating application is ink jet printing. Current drop-on-demand ink jets use pressure pulses to eject drops. Literature on electrostatic spraying suggests that by using an electric field, drops could be produced with a wider range of sizes and speeds than is possible with pressure ejection. Previous efforts to apply electric spraying to printing or similar selective coating tasks have taken an experimental approach based on steady or periodic spraying phenomena, without attempting cycle -by-cycle drop control. The centerpiece of this thesis is a simulation tool developed to explore such possibilities. A simplified analytic model is developed as a preliminary step, yielding formulas for force and time scales that provide an appropriate basis for nondimensionalization of the governing differential equations; important dimensionless parameters are identified. The complete self-consistent model permits simulation of meniscus behavior under time -varying applied voltage or pressure, with the electric field solution continually updated as the surface changes shape. The model uses a quasi-one-dimensional hydrodynamic formulation and a two-dimensional axisymmetric boundary element solution for the electric field. The simulation is checked against experimental results for meniscus stability, resonant modes, and drop emission under electric field. The simulation faithfully captures important qualitative aspects of meniscus behavior and gives reasonable quantitative agreement within the limitations of the model. Insights gained in simulation point the way to a successful laboratory demonstration of drop extraction using a shaped voltage pulse. Drop size control is pursued in simulation using pressure and voltage pulses both alone and in combination, for both light and viscous liquids. Combining pressure and field pulses is shown to be synergistic; drop volumes over a range of 175 to 1 were obtained, while maintaining good drop velocity. The differing strategies for obtaining large and small drops are described. Drop extraction using only the electric field is more difficult, but promising approaches remain open.

  16. Symmetric and asymmetric capillary bridges between a rough surface and a parallel surface.

    PubMed

    Wang, Yongxin; Michielsen, Stephen; Lee, Hoon Joo

    2013-09-03

    Although the formation of a capillary bridge between two parallel surfaces has been extensively studied, the majority of research has described only symmetric capillary bridges between two smooth surfaces. In this work, an instrument was built to form a capillary bridge by squeezing a liquid drop on one surface with another surface. An analytical solution that describes the shape of symmetric capillary bridges joining two smooth surfaces has been extended to bridges that are asymmetric about the midplane and to rough surfaces. The solution, given by elliptical integrals of the first and second kind, is consistent with a constant Laplace pressure over the entire surface and has been verified for water, Kaydol, and dodecane drops forming symmetric and asymmetric bridges between parallel smooth surfaces. This solution has been applied to asymmetric capillary bridges between a smooth surface and a rough fabric surface as well as symmetric bridges between two rough surfaces. These solutions have been experimentally verified, and good agreement has been found between predicted and experimental profiles for small drops where the effect of gravity is negligible. Finally, a protocol for determining the profile from the volume and height of the capillary bridge has been developed and experimentally verified.

  17. Solar energy storage using surfactant micelles

    NASA Astrophysics Data System (ADS)

    Srivastava, R. C.; Marwadi, P. R.; Latha, P. K.; Bhise, S. B.

    1982-09-01

    The results of experiments designed to test the soluble reduced form of thionine dye as a suitable solar energy storage agent inside the hydrophobic core of surfactant micelles are discussed. Aqueous solutions of thionine, methylene blue, cetyl pyridinium bromide, sodium lauryl sulphate, iron salts, and iron were employed as samples of anionic, cationic, and nonionic surfactants. The solutions were exposed to light until the dye disappeared, and then added drop-by-drop to surfactant solutions. The resultant solutions were placed in one cell compartment while an aqueous solution with Fe(2+) and Fe(3+) ions were placed in another, with the compartments being furnished with platinum electrodes connected using a saturated KCl-agar bridge. Data was gathered on the short circuit current, maximum power, and internal resistance encountered. Results indicate that dye-surfactant systems are viable candidates for solar energy storage for later conversion to electrical power.

  18. The wrinkle-like slip pulse is not important in earthquake dynamics

    USGS Publications Warehouse

    Andrews, D.J.; Harris, R.A.

    2005-01-01

    A particular solution for slip on an interface between different elastic materials, the wrinkle-like slip pulse, propagates in only one direction with reduced normal compressive stress. More general solutions, and natural earthquakes, need not share those properties. In a 3D dynamic model with a drop in friction and heterogeneous initial stress, the wrinkle-like slip pulse is only a small part of the solution. Rupture propagation is determined primarily by the potential stress drop, not by the wrinkle-like slip pulse. A 2D calculation with much finer resolution shows that energy loss to friction might not be significantly reduced in the wrinkle-like slip pulse. Copyright 2005 by the American Geophysical Union.

  19. Solving Solutions: Exploring Unknowns through Chemistry.

    ERIC Educational Resources Information Center

    Burns, John; Yoshina, Granville; Goodding, Debbie; Streitberger, Eric

    2000-01-01

    Presents a chemistry activity that introduces students to one type of chemical bond by developing the integer operation concept of zero pairs. Leads to an activity of combining drops of 0.3 molar solutions to form six different colored precipitates from five solutions. (ASK)

  20. Thermal Transitions and Reaction Kinetics of Polyhederal Silsesquioxane Containing Phenylethynylphthalimides (Preprint)

    DTIC Science & Technology

    2010-03-18

    Grignard reagent was added drop-wise to a well-stirred THF solution (10 mL) of trichloromethylsilane (5.431 g, 36.3 mmol) in a 250 mL flask. After...chloromethylsilane) The Grignard reagent , (Me3Si)2NC6H4MgBr was prepared exactly as previously described from 37.6 mmol of magnesium and 30 mmol of (N...trimethylsilyl)2-4-bromoaniline in THF (25 mL). This Grignard reagent was added drop-wise to a well-stirred THF solution (10 mL) of trichloromethylsilane

  1. The scaling of relativistic double-year widths - Poisson-Vlasov solutions and particle-in-cell simulations

    NASA Technical Reports Server (NTRS)

    Sulkanen, Martin E.; Borovsky, Joseph E.

    1992-01-01

    The study of relativistic plasma double layers is described through the solution of the one-dimensional, unmagnetized, steady-state Poisson-Vlasov equations and by means of one-dimensional, unmagnetized, particle-in-cell simulations. The thickness vs potential-drop scaling law is extended to relativistic potential drops and relativistic plasma temperatures. The transition in the scaling law for 'strong' double layers suggested by analytical two-beam models by Carlqvist (1982) is confirmed, and causality problems of standard double-layer simulation techniques applied to relativistic plasma systems are discussed.

  2. Cloning, purification, crystallization and preliminary structural studies of penicillin V acylase from Bacillus subtilis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rathinaswamy, Priya; Pundle, Archana V.; Prabhune, Asmita A.

    An unannotated protein reported from B. subtilis has been expressed in E. coli and identified as possessing penicillin V acylase activity. The crystallization and preliminary crystallographic analysis of this penicillin V acylase is presented. Penicillin acylase proteins are amidohydrolase enzymes that cleave penicillins at the amide bond connecting the side chain to their β-lactam nucleus. An unannotated protein from Bacillus subtilis has been expressed in Escherichia coli, purified and confirmed to possess penicillin V acylase activity. The protein was crystallized using the hanging-drop vapour-diffusion method from a solution containing 4 M sodium formate in 100 mM Tris–HCl buffer pH 8.2.more » Diffraction data were collected under cryogenic conditions to a spacing of 2.5 Å. The crystals belonged to the orthorhombic space group C222{sub 1}, with unit-cell parameters a = 111.0, b = 308.0, c = 56.0 Å. The estimated Matthews coefficient was 3.23 Å{sup 3} Da{sup −1}, corresponding to 62% solvent content. The structure has been solved using molecular-replacement methods with B. sphaericus penicillin V acylase (PDB code 2pva) as the search model.« less

  3. Effects of heat-treatment on plasma rich in growth factors-derived autologous eye drop.

    PubMed

    Anitua, E; Muruzabal, F; De la Fuente, M; Merayo-Lloves, J; Orive, G

    2014-02-01

    We have developed and characterized a new type of plasma rich in growth factors (PRGF) derived eye-drop therapy for patients suffering from autoimmune diseases. To determine the concentration of several growth factors, proteins, immunoglobulins and complement activity of the heat-inactivated eye-drop and to study its biological effects on cell proliferation and migration of different ocular surface cells, blood from healthy donors was collected, centrifuged and PRGF was prepared avoiding the buffy coat. The half volume of the obtained plasma supernatant from each donor was heat-inactivated at 56 °C for 1 h (heat-inactivated PRGF). The concentration of several proteins involved on corneal wound healing, immunoglubolins G, M and E and functional integrity of the complement system assayed by CH50 test were determined. The proliferative and migratory potential of inactivated and non-inactivated PRGF eye drops were assayed on corneal epithelial cells (HCE), keratocytes (HK) and conjunctival fibroblasts (HConF). Heat-inactivated PRGF preserves the content of most of the proteins and morphogens involved in its wound healing effects while reduces drastically the content of IgE and complement activity. Heat-inactivated PRGF eye drops increased proliferation and migration potential of ocular surface cells with regard to PRGF showing significant differences on proliferation and migration rate of HCE and HConF respectively. In summary, heat-inactivation of PRGF eye drops completely reduced complement activity and deceased significantly the presence of IgE, maintaining the biological activity of PRGF on ocular surface cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Influence of interfacial viscosity on the dielectrophoresis of drops

    NASA Astrophysics Data System (ADS)

    Mandal, Shubhadeep; Chakraborty, Suman

    2017-05-01

    The dielectrophoresis of a Newtonian uncharged drop in the presence of an axisymmetric nonuniform DC electric field is studied analytically. The present study is focused on the effects of interfacial viscosities on the dielectrophoretic motion and shape deformation of an isolated suspended drop. The interfacial viscosities generate surface-excess viscous stress which is modeled as a two-dimensional Newtonian fluid which obeys the Boussinesq-Scriven constitutive law with constant values of interfacial tension, interfacial shear, and dilatational viscosities. In the regime of small drop deformation, we have obtained analytical solution for the drop velocity and deformed shape by neglecting surface charge convection and fluid inertia. Our study demonstrates that the drop velocity is independent of the interfacial shear viscosity, while the interfacial dilatational viscosity strongly affects the drop velocity. The interfacial viscous effects always retard the dielectrophoretic motion of a perfectly conducting/dielectric drop. Notably, the interfacial viscous effects can retard or augment the dielectrophoretic motion of a leaky dielectric drop depending on the electrohydrodynamic properties. The shape deformation of a leaky dielectric drop is found to decrease (or increase) due to interfacial shear (or dilatational) viscosity.

  5. Physical Watermarking for Securing Cyber-Physical Systems via Packet Drop Injections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozel, Omur; Weekrakkody, Sean; Sinopoli, Bruno

    Physical watermarking is a well known solution for detecting integrity attacks on Cyber-Physical Systems (CPSs) such as the smart grid. Here, a random control input is injected into the system in order to authenticate physical dynamics and sensors which may have been corrupted by adversaries. Packet drops may naturally occur in a CPS due to network imperfections. To our knowledge, previous work has not considered the role of packet drops in detecting integrity attacks. In this paper, we investigate the merit of injecting Bernoulli packet drops into the control inputs sent to actuators as a new physical watermarking scheme. Withmore » the classical linear quadratic objective function and an independent and identically distributed packet drop injection sequence, we study the effect of packet drops on meeting security and control objectives. Our results indicate that the packet drops could act as a potential physical watermark for attack detection in CPSs.« less

  6. 21 CFR 524.960 - Flumethasone, neomycin, and polymyxin B ophthalmic solution.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... use—(1) Amount—(i) Preparation containing hydroxypropyl methylcellulose. Dogs: 1 to 2 drops per eye, every 6 hours. (ii) Preparation without hydroxyproply methylcellulose. Dogs and cats: 2 to 3 drops per eye, every 4 hours. (2) Indications for use. Treatment of the inflammation, edema, and secondary...

  7. The effect of protein–precipitant interfaces and applied shear on the nucleation and growth of lysozyme crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reis, Nuno M.; Chirgadze, Dimitri Y.; Blundell, Tom L.

    The nucleation of lysozyme in microbatch experiments was linked to the formation of protein–precipitant interfaces. The use of oscillatory shear allowed decreasing the nucleation rate and extending the growth period for lysozyme crystals, presumably through the control of the number of interfaces and removal of impurities or defects. This paper is concerned with the effect of protein–precipitant interfaces and externally applied shear on the nucleation and growth kinetics of hen egg-white lysozyme crystals. The early stages of microbatch crystallization of lysozyme were explored using both optical and confocal fluorescence microscopy imaging. Initially, an antisolvent (precipitant) was added to a proteinmore » drop and the optical development of the protein–precipitant interface was followed with time. In the presence of the water-soluble polymer poly(ethylene glycol) (PEG) a sharp interface was observed to form immediately within the drop, giving an initial clear separation between the lighter protein solution and the heavier precipitant. This interface subsequently became unstable and quickly developed within a few seconds into several unstable ‘fingers’ that represented regions of high concentration-gradient interfaces. Confocal microscopy demonstrated that the subsequent nucleation of protein crystals occurred preferentially in the region of these interfaces. Additional experiments using an optical shearing system demonstrated that oscillatory shear significantly decreased nucleation rates whilst extending the growth period of the lysozyme crystals. The experimental observations relating to both nucleation and growth have relevance in developing efficient and reliable protocols for general crystallization procedures and the controlled crystallization of single large high-quality protein crystals for use in X-ray crystallography.« less

  8. The fuzzy oil drop model, based on hydrophobicity density distribution, generalizes the influence of water environment on protein structure and function.

    PubMed

    Banach, Mateusz; Konieczny, Leszek; Roterman, Irena

    2014-10-21

    In this paper we show that the fuzzy oil drop model represents a general framework for describing the generation of hydrophobic cores in proteins and thus provides insight into the influence of the water environment upon protein structure and stability. The model has been successfully applied in the study of a wide range of proteins, however this paper focuses specifically on domains representing immunoglobulin-like folds. Here we provide evidence that immunoglobulin-like domains, despite being structurally similar, differ with respect to their participation in the generation of hydrophobic core. It is shown that β-structural fragments in β-barrels participate in hydrophobic core formation in a highly differentiated manner. Quantitatively measured participation in core formation helps explain the variable stability of proteins and is shown to be related to their biological properties. This also includes the known tendency of immunoglobulin domains to form amyloids, as shown using transthyretin to reveal the clear relation between amyloidogenic properties and structural characteristics based on the fuzzy oil drop model. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Sizing of colloidal particle and protein molecules in a hanging fluid drop

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Suh, Kwang I.

    1995-01-01

    We report non-invasive particle size measurements of polystyrene latex colloidal particles and bovine serum albumin (BSA) protein molecules suspended in tiny hanging fluid drops of 30 micro-Liter volume using a newly designed fiber optic probe. The probe is based upon the principles of the technique of dynamic light scattering (DLS). The motivation for this work comes from growing protein crystals in outer space. Protein crystals have been grown previously in hanging drops in microgravity experiments on-board the space shuttle orbiter. However, obtaining quantitative information on nucleation and growth of the protein crystals in real time has always been a desired goal, but hitherto not achieved. Several protein researchers have shown interest in using DLS to monitor crystal growth process in a droplet, but elaborate instrumentation and optical alignment problems have made in-situ applications difficult. We demonstrate that such an experiment is now possible. Our system offers fast (5 seconds) determination of particle size, utilize safe levels of very low laser power (less than or equal to 0.2 mW), a small scattering volume (approximately 2 x 10(exp -5) cu mm) and high spatial coherence (Beta) values. This is a major step forward when compared to currently available DLS systems.

  10. Targeted delivery of hyaluronic acid to the ocular surface by a polymer-peptide conjugate system for dry eye disease.

    PubMed

    Lee, David; Lu, Qiaozhi; Sommerfeld, Sven D; Chan, Amanda; Menon, Nikhil G; Schmidt, Tannin A; Elisseeff, Jennifer H; Singh, Anirudha

    2017-06-01

    Hyaluronic acid (HA) solutions effectively lubricate the ocular surface and are used for the relief of dry eye related symptoms. However, HA undergoes rapid clearance due to limited adhesion, which necessitates frequent instillation. Conversely, highly viscous artificial tear formulations with HA blur vision and interfere with blinking. Here, we developed an HA-eye drop formulation that selectively binds and retains HA for extended periods of time on the ocular surface. We synthesized a heterobifunctional polymer-peptide system with one end binding HA while the other end binding either sialic acid-containing glycosylated transmembrane molecules on the ocular surface epithelium, or type I collagen molecule within the tissue matrix. HA solution was mixed with the polymer-peptide system and tested on both ex vivo and in vivo models to determine its ability to prolong HA retention. Furthermore, rabbit ocular surface tissues treated with binding peptides and HA solutions demonstrated superior lubrication with reduced kinetic friction coefficients compared to tissues treated with conventional HA solution. The results suggest that binding peptide-based solution can keep the ocular surface enriched with HA for prolonged times as well as keep it lubricated. Therefore, this system can be further developed into a more effective treatment for dry eye patients than a standard HA eye drop. Eye drop formulations containing HA are widely used to lubricate the ocular surface and relieve dry eye related symptoms, however its low residence time remains a challenge. We designed a polymer-peptide system for the targeted delivery of HA to the ocular surface using sialic acid or type I collagen as anchors for HA immobilization. The addition of the polymer-peptide system to HA eye drop exhibited a reduced friction coefficient, and it can keep the ocular surface enriched with HA for prolonged time. This system can be further developed into a more effective treatment for dry eye than a standard HA eye drop. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Spreading of Electrolyte Drops on Charged Surfaces: Electric Double Layer Effects on Drop Dynamics

    NASA Astrophysics Data System (ADS)

    Bae, Kyeong; Sinha, Shayandev; Chen, Guang; Das, Siddhartha

    2015-11-01

    Drop spreading is one of the most fundamental topics of wetting. Here we study the spreading of electrolyte drops on charged surfaces. The electrolyte solution in contact with the charged solid triggers the formation of an electric double layer (EDL). We develop a theory to analyze how the EDL affects the drop spreading. The drop dynamics is studied by probing the EDL effects on the temporal evolution of the contact angle and the base radius (r). The EDL effects are found to hasten the spreading behaviour - this is commensurate to the EDL effects causing a ``philic'' tendency in the drops (i.e., drops attaining a contact angle smaller than its equilibrium value), as revealed by some of our recent papers. We also develop scaling laws to illustrate the manner in which the EDL effects make the r versus time (t) variation deviate from the well known r ~tn variation, thereby pinpointing the attainment of different EDL-mediated spreading regimes.

  12. Poly(N-isopropylacrylamide)-chitosan as thermosensitive in situ gel-forming system for ocular drug delivery.

    PubMed

    Cao, Yanxia; Zhang, Can; Shen, Wenbin; Cheng, Zhihong; Yu, Liangli Lucy; Ping, Qineng

    2007-07-31

    A novel copolymer, poly(N-isopropylacrylamide)-chitosan (PNIPAAm-CS), was investigated for its thermosensitive in situ gel-forming properties and potential utilization for ocular drug delivery. The thermal sensitivity and low critical solution temperature (LCST) were determined by the cloud point method. PNIPAAm-CS had a LCST of 32 degrees C, which is close to the surface temperature of the eye. The in vivo ocular pharmacokinetics of timolol maleate in PNIPAAm-CS solution were evaluated and compared to that in conventional eye drop solution by using rabbits according to the microdialysis method. The C(max) of timolol maleate in aqueous fluid for the PNIPAAm-CS solution was 11.2 microg/ml, which is two-fold higher than that of the conventional eye drop, along with greater AUC. Furthermore, the PNIPAAm-CS gel-forming solution of timolol maleate had a stronger capacity to reduce the intra-ocular pressure (IOP) than that of the conventional eye drop of same concentration over a period of 12 h. In addition, the MTT assay showed that there is little cytotoxicity of PNIPAAm-CS at concentration range of 0.5-400 microg/ml. These results suggest that PNIPAAm-CS is a potential thermosensitive in situ gel-forming material for ocular drug delivery, and it may improve the bio-availability, efficacy, and compliance of some eye drugs.

  13. Delay in the Freezing of Supercooled Water Drops on Superhydrophobic Surfaces of Silicone Rubber at Negative Temperatures

    NASA Astrophysics Data System (ADS)

    Bezdomnikov, A. A.; Emel'yanenko, A. M.; Emel'yanenko, K. A.; Boinovich, L. B.

    2018-01-01

    A method is proposed for fabricating textured superhydrophobic surfaces of silicone rubber with mechanical resistance toward liquid or freezing aqueous solutions. The anti-icing characteristics of silicone rubber samples that differ in the wetting characteristics and mechanical stability of their micro- and nanotextures are derived by analyzing the delays in the freezing of supercooled sessile water drops deposited on the sample surface. The longest delay in freezings are observed for sessile water drops on superhydrophobic surfaces prepared by laser texturing with subsequent application of a layer of a hydrophobic agent to consolidate the textural elements. Delay in freezings can be as long as tens of hours on such surfaces at T = -18°C. The prepared superhydrophobic surfaces exhibit greater anti-icing ability with respect to aqueous salt solutions than to deionized water.

  14. Solidification Dynamics of Spherical Drops in a Free Fall Environment

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Brush, Lucien N.

    2006-01-01

    Silver drops (99.9%, 4, 5, 7, and 9 mm diameter) were levitated, melted, and released to fall through Marshall Space Flight Center's 105 meter drop tube in helium - 6% hydrogen and pure argon atmospheres. By varying a drop s initial superheat the extent of solidification prior to impact ranged from complete to none during the approx. 4.6s of free fall time. Comparison of the experimental observations is made with numerical solutions to a model of the heat transfer and solidification kinetics associated with cooling of the drop during free fall, particularly with regard to the fraction of liquid transformed. Analysis reveals the relative importance ,of the initial parameters affecting the cooling and solidification rates within the drop. A discussion of the conditions under which the actual observations deviate from the assumptions used in the model is presented.

  15. Solidification Dynamics of Metal Drops in a Free Fall Environment

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.; Brush, L. N.; Curreri, Peter A. (Technical Monitor)

    2001-01-01

    Comparison of experimental observations were made with numerical solutions to a model of the heat transfer and solidification kinetics associated with the cooling of a molten drop during free fall, particularly with regard to the fraction of liquid transformed. Experimentally, silver drops (99.9%, 4-9 mm diameter) were levitated, melted, and released to fall through Marshall Space Flight Center's 105m drop tube in helium - 6% hydrogen and argon atmospheres. By systematically varying the drops initial superheat the extent of solidification prior to impact ranged from complete to none during the approximately 4.6s of free fall time. Analysis reveals the relative importance of the initial parameters affecting the cooling and solidification rates within the drop. A discussion of the conditions under which the actual observations deviate from the assumptions used in the model is presented.

  16. Estimation of methacrylate monolith binding capacity from pressure drop data.

    PubMed

    Podgornik, Aleš; Smrekar, Vida; Krajnc, Peter; Strancar, Aleš

    2013-01-11

    Convective chromatographic media comprising of membranes and monoliths represent an important group of chromatographic supports due to their flow-unaffected chromatographic properties and consequently fast separation and purification even of large biological macromolecules. Consisting of a single piece of material, common characterization procedures based on analysis of a small sample assuming to be representative for the entire batch, cannot be applied. Because of that, non-invasive characterization methods are preferred. In this work pressure drop was investigated for an estimation of dynamic binding capacity (DBC) of proteins and plasmid DNA for monoliths with different pore sizes. It was demonstrated that methacrylate monolith surface area is reciprocally proportional to pore diameter and that pressure drop on monolith is reciprocally proportional to square pore size demonstrating that methacrylate monolith microstructure is preserved by changing pore size. Based on these facts mathematical formalism has been derived predicting that DBC is in linear correlation with the square root of pressure drop. This was experimentally confirmed for ion-exchange and hydrophobic interactions for proteins and plasmid DNA. Furthermore, pressure drop was also applied for an estimation of DBC in grafted layers of different thicknesses as estimated from the pressure drop data. It was demonstrated that the capacity is proportional to the estimated grafted layer thickness. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Purification of Restriction Endonuclease EcoRII and its Co-Crystallization

    NASA Technical Reports Server (NTRS)

    Karpova, E. A.; Chen, L.; Meehan, E.; Pusey, M.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Restriction endonuclease EcoRII (EcoRII) is a homodimeric DNA-binding protein. It belongs to the type II family of restriction-modification enzymes (subclass IIe). EcoRII recognizes the nucleotide sequence 5'-CCWGG (W=A or T) and cleaves the phosphodiester bond preceding the first cytosine. Methylation at C5 of the second cytosine inhibits cleavage. The enzyme has a unique ability to search for the presence of two substrate sites before cleavage. To the best of our knowledge no other subclass IIe restriction endonuclease has been crystallized yet, without or with a DNA-substrate. We have recently grown and characterized the crystals of this enzyme (1) Here we report on the result of co-crystallization experiments of EcoRII with an 11 b.p. oligonucleotide substrate. The dissociation constant (Kd) EcoRII: 11 b.p. was determined earlier (unpublished results). The needle-like crystals of oligonucleotide-EcoRII protein complex were obtained with this substrate by the technique of vapor diffusion hanging drops. The crystals obtained were washed and dissolved in an aliquot of 10 mM Tris-HCl buffer, pH=7.5. Running a portion of this solution on the SDS-get indicated the presence of endonuclease in the solution. A UV-spectrophotometric test of a second portion confirmed the presence of DNA. We are now working on improvement of the DNA-EcoRII protein crystals. Results obtained from these and ongoing efforts will be reported.

  18. 21 CFR 172.133 - Dimethyl dicarbonate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... titration Reference electrode Glass electrode reagents Acetone, analytical-grade Solution of 1 N... sample (W) and dissolve in 100 mL acetone. Add accurately 25 mL of the 1 N diisobutylamine solution by... the diisobutylamine solution, always use the same pipette and wait for a further three drops to fall...

  19. 21 CFR 524.960 - Flumethasone, neomycin sulfate, and polymyxin B sulfate ophthalmic solutions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... Dogs: 1 to 2 drops per eye, every 6 hours. (ii) Preparation without hydroxyproply methylcellulose. Dogs and cats: 2 to 3 drops per eye, every 4 hours. (2) Indications for use. Treatment of the inflammation, edema, and secondary bacterial infections associated with topical ophthalmological conditions of the eye...

  20. 21 CFR 524.960 - Flumethasone, neomycin sulfate, and polymyxin B sulfate ophthalmic solutions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... Dogs: 1 to 2 drops per eye, every 6 hours. (ii) Preparation without hydroxyproply methylcellulose. Dogs and cats: 2 to 3 drops per eye, every 4 hours. (2) Indications for use. Treatment of the inflammation, edema, and secondary bacterial infections associated with topical ophthalmological conditions of the eye...

  1. Paramagnetism Paradoxes: Projectable Demonstrations

    ERIC Educational Resources Information Center

    Sauls, Frederick C.; Vitz, Ed

    2008-01-01

    Drops of oil in Mn(SO[subscript 4])(aq) and drops of the solution in oil show opposite effects when brought near a rare earth magnet. Oxygen, nitrogen, and air bubbles atop water show expected attraction, repulsion, and null behavior, respectively. Air bubbles atop aqueous Mn(SO[subscript 4]) show paradoxical behavior because the magnet's…

  2. Be a Food Scientist

    ERIC Educational Resources Information Center

    Phillips, Sharon K.; Duffrin, Melani W.; Geist, Eugene A.

    2004-01-01

    Think about making something as basic as hard candy. The ingredients are simple--sugar, water, and flavoring--yet the changes that occur are chemically amazing. Drop by drop, small portions of the syrup placed in ice water indicate how saturated the solution is becoming, until a "crack" sound occurs when the candy is at hard-crack stage, its most…

  3. Method and apparatus for determining minority carrier diffusion length in semiconductors

    DOEpatents

    Moore, Arnold R.

    1984-01-01

    Method and apparatus are provided for determining the diffusion length of minority carriers in semiconductor material, particularly amorphous silicon which has a significantly small minority carrier diffusion length using the constant magnitude surface-photovoltage (SPV) method. Steady or modulated illumination at several wavelengths provides the light excitation on the surface of the material to generate the SPV. A manually controlled or automatic servo system maintains a constant predetermined value of the SPV for each wavelength. A drop of a transparent electrolyte solution containing redox couples (preferably quinhydrone) having an oxidation-reduction potential (E) in the order of +0.6 to -1.65 volts couples the SPV to a measurement system. The drop of redox couple solution functions to create a liquid Schottky barrier at the surface of the material. Illumination light is passed through a transparent rod supported over the surface and through the drop of transparent electrolyte. The drop is held in the gap between the rod and the surface. Steady red light is also used as an optical bias to reduce deleterious space-charge effects that occur in amorphous silicon.

  4. Sodium chloride crystallization from thin liquid sheets, thick layers, and sessile drops in microgravity

    NASA Astrophysics Data System (ADS)

    Fontana, Pietro; Pettit, Donald; Cristoforetti, Samantha

    2015-10-01

    Crystallization from aqueous sodium chloride solutions as thin liquid sheets, 0.2-0.7 mm thick, with two free surfaces supported by a wire frame, thick liquid layers, 4-6 mm thick, with two free surfaces supported by metal frame, and hemispherical sessile drops, 20-32 mm diameter, supported by a flat polycarbonate surface or an initially flat gelatin film, were carried out under microgravity on the International Space Station (ISS). Different crystal morphologies resulted based on the fluid geometry: tabular hoppers, hopper cubes, circular [111]-oriented crystals, and dendrites. The addition of polyethylene glycol (PEG-3350) inhibited the hopper growth resulting in flat-faced surfaces. In sessile drops, 1-4 mm tabular hopper crystals formed on the free surface and moved to the fixed contact line at the support (polycarbonate or gelatin) self-assembling into a shell. Ring formation created by sessile drop evaporation to dryness was observed but with crystals 100 times larger than particles in terrestrially formed coffee rings. No hopper pyramids formed. By choosing solution geometries offered by microgravity, we found it was possible to selectively grow crystals of preferred morphologies.

  5. Point force singularities outside a drop covered with an incompressible surfactant: Image systems and their applications

    NASA Astrophysics Data System (ADS)

    Shaik, Vaseem A.; Ardekani, Arezoo M.

    2017-11-01

    In this work we derive the image flow fields for point force singularities placed outside a stationary drop covered with an insoluble, nondiffusing, and incompressible surfactant. We assume the interface to be Newtonian and use the Boussinesq-Scriven constitutive law for the interfacial stress tensor. We use this analytical solution to investigate two different problems. First, we derive the mobility matrix for two drops of arbitrary sizes covered with an incompressible surfactant. In the second example, we calculate the velocity of a swimming microorganism (modeled as a Stokes dipole) outside a drop covered with an incompressible surfactant.

  6. Effect of capillary forces on the nonstationary fall of a drop in an infinite fluid

    NASA Astrophysics Data System (ADS)

    Antanovskii, L. K.

    1991-12-01

    An explicit solution is presented for the linear problem concerning the motion of a drop in an infinite fluid in the presence of any number of surfactants (chemical reactions are not considered in the first approximation). It is shown that the behavior of the system considered is consistent with the Le Chatelier principle. The reactivity of the capillary forces is directly related to the fundamental principles of thermodynamics, which makes it possible to write equations of surfactant thermodiffusion in symmetric form and obtain a relatively simple solution to the linearized problem.

  7. Pharmacological activities of an eye drop containing Matricaria chamomilla and Euphrasia officinalis extracts in UVB-induced oxidative stress and inflammation of human corneal cells.

    PubMed

    Bigagli, Elisabetta; Cinci, Lorenzo; D'Ambrosio, Mario; Luceri, Cristina

    2017-08-01

    Ultraviolet B (UVB) exposure is a risk factor for corneal damage resulting in oxidative stress, inflammation and cell death. The aim of this study was to investigate the potential protective effects of a commercial eye drop (Dacriovis™) containing Matricaria chamomilla and Euphrasia officinalis extracts on human corneal epithelial cells (HCEC-12) against UVB radiation-induced oxidative stress and inflammation as well as the underlying mechanisms. The antioxidant potential of the eye drops was evaluated by measuring the ferric reducing antioxidant power and the total phenolic content by Folin-Ciocalteu reagent. HCEC-12 cells were exposed to UVB radiation and treated with the eye drops at various concentrations. Cell viability, wound healing assay, reactive oxygen species (ROS) levels, protein and lipid oxidative damage and COX-2, IL-1β, iNOS, SOD-2, HO-1 and GSS gene expression, were assessed. Eye drops were able to protect corneal epithelial cells from UVB-induced cell death and ameliorated the wound healing; the eye drops exhibited a strong antioxidant activity, decreasing ROS levels and protein and lipid oxidative damage. Eye drops also exerted anti-inflammatory activities by decreasing COX-2, IL-1β, iNOS expression, counteracted UVB-induced GSS and SOD-2 expression and restored HO-1 expression to control levels. These findings suggest that an eye drop containing Matricaria chamomilla and Euphrasia officinalis extracts exerts positive effects against UVB induced oxidative stress and inflammation and may be useful in protecting corneal epithelial cells from UVB exposure. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Impact of a heterogeneous liquid droplet on a dry surface: application to the pharmaceutical industry.

    PubMed

    Bolleddula, D A; Berchielli, A; Aliseda, A

    2010-09-15

    Droplet impact has been studied for over a hundred years dating back to the pioneering work of Worthington. In fact, much of his ingenuity contributed to modern day high speed photography. Over the past 40 years significant contributions in theoretical, numerical, and experimental work have been made. Droplet impact is a problem of fundamental importance due to the wealth of applications involved, namely, spray coating, spray painting, delivery of agricultural chemicals, spray cooling, inkjet printing, soil erosion due to rain drop impact, and turbine wear. Here we highlight one specific application, spray coating. Although most studies have focused their efforts on low viscosity Newtonian fluids, many industrial applications such as spray coating utilize more viscous and complex rheology liquids. Determining dominant effects and quantifying their behavior for colloidal suspensions and polymer solutions remains a challenge and thus has eluded much effort. In the last decade, it has been shown that introducing polymers to Newtonian solutions inhibits the rebounding of a drop upon impact, Bergeron et al. Furthermore Bartolo et al. concluded that the normal stress component of the elongational viscosity was responsible for the rebounding inhibition of polymer based non-Newtonian solutions. We aim to uncover the drop impact dynamics of highly viscous Newtonian and complex rheology liquids used in pharmaceutical coating processes. The generation and impact of drops of mm and microm size drops of coating liquids and glycerol/water mixtures on tablet surfaces are systematically studied over a range of We approximately O(1-300), Oh approximately O(10(-2)-1), and Re approximately O(1-700). We extend the range of Oh to values above 1, which are not available to previous studies of droplet impacts. Outcomes reveal that splashing and rebounding are completely inhibited and the role of wettability is negligible in the early stages of impact. The maximum spreading diameter of the drop is compared with three models demonstrating reasonable agreement. Copyright 2010 Elsevier B.V. All rights reserved.

  9. Photogenerated Lectin Sensors Produced by Thiol-Ene/Yne Photo-Click Chemistry in Aqueous Solution

    PubMed Central

    Norberg, Oscar; Lee, Irene H.; Aastrup, Teodor; Yan, Mingdi; Ramström, Olof

    2012-01-01

    The photoinitiated radical reactions between thiols and alkenes/alkynes (thiol-ene and thiol-yne chemistry) have been applied to a functionalization methodology to produce carbohydrate-presenting surfaces for analyses of biomolecular interactions. Polymer-coated quartz surfaces were functionalized with alkenes or alkynes in a straightforward photochemical procedure utilizing perfluorophenylazide (PFPA) chemistry. The alkene/alkyne surfaces were subsequently allowed to react with carbohydrate thiols in water under UV-irradiation. The reaction can be carried out in a drop of water directly on the surface without photoinitiator and any disulfide side products were easily washed away after the functionalization process. The resulting carbohydrate-presenting surfaces were evaluated in real-time studies of protein-carbohydrate interactions using a quartz crystal microbalance flow-through system with recurring injections of selected lectins with intermediate regeneration steps using low pH buffer. The resulting methodology proved fast, efficient and scalable to high-throughput analysis formats, and the produced surfaces showed significant protein binding with expected selectivities of the lectins used in the study. PMID:22341757

  10. Protein Crystallization Using Room Temperature Ionic Fluids

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Paley, Mark Steve; Turner, Megan B.; Rogers, Robin D.

    2006-01-01

    The ionic liquids (ILs) 1-butyl-3-methylimidizolium chloride (C4mim-C1), 1-butyl-3- methylimidizolium diethyleneglycol monomethylethersulfate ([C4mim]DEMGS), and 1-butyl-1 -methylpyrollidinium dihydrogenphosphate ([p1,4]dhp) were tested for their effects on the crystallization of the proteins canavalin, beta-lactoglobulin B, xylanase, and glucose isomerase, using a standard high throughput screen. The crystallization experiments were set up with the ILs added to the protein solutions at 0.2 and 0.4 M final concentrations. Crystallization droplets were set up at three proteixprecipitant ratios (1:1, 2:1, and 4:l), which served to progressively dilute the effects of the screen components while increasing the equilibrium protein and IL concentrations. Crystals were obtained for all four proteins at a number of conditions where they were not obtained from the IL-free control experiment. Over half of the protein-IL combinations tested had more successful outcomes than negative, where the IL-free crystallization was better than the corresponding IL-containing outcome, relative to the control. One of the most common causes of a negative outcome was solubilization of the protein by the IL, resulting in a clear drop. In one instance, we were able to use the IL-induced solubilizing to obtain beta-lactoglobulin B crystals from conditions that gave precipitated protein in the absence of IL. The results suggest that it may be feasible to develop ILs specifically for the task of macromolecule crystallization.

  11. Cloning, expression, purification, crystallization and X-ray crystallographic analysis of recombinant human C1ORF123 protein.

    PubMed

    Rahaman, Siti Nurulnabila A; Mat Yusop, Jastina; Mohamed-Hussein, Zeti-Azura; Ho, Kok Lian; Teh, Aik-Hong; Waterman, Jitka; Ng, Chyan Leong

    2016-03-01

    C1ORF123 is a human hypothetical protein found in open reading frame 123 of chromosome 1. The protein belongs to the DUF866 protein family comprising eukaryote-conserved proteins with unknown function. Recent proteomic and bioinformatic analyses identified the presence of C1ORF123 in brain, frontal cortex and synapses, as well as its involvement in endocrine function and polycystic ovary syndrome (PCOS), indicating the importance of its biological role. In order to provide a better understanding of the biological function of the human C1ORF123 protein, the characterization and analysis of recombinant C1ORF123 (rC1ORF123), including overexpression and purification, verification by mass spectrometry and a Western blot using anti-C1ORF123 antibodies, crystallization and X-ray diffraction analysis of the protein crystals, are reported here. The rC1ORF123 protein was crystallized by the hanging-drop vapor-diffusion method with a reservoir solution comprised of 20% PEG 3350, 0.2 M magnesium chloride hexahydrate, 0.1 M sodium citrate pH 6.5. The crystals diffracted to 1.9 Å resolution and belonged to an orthorhombic space group with unit-cell parameters a = 59.32, b = 65.35, c = 95.05 Å. The calculated Matthews coefficient (VM) value of 2.27 Å(3) Da(-1) suggests that there are two molecules per asymmetric unit, with an estimated solvent content of 45.7%.

  12. Purification, identification and preliminary crystallographic studies of an allergenic protein from Lathyrus sativus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qureshi, Insaf A.; Sethi, Dhruv K.; Salunke, Dinakar M., E-mail: dinakar@nii.res.in

    2006-09-01

    A 24 kDa protein was purified from the seeds of L. sativus by ammonium sulfate fractionation and ion-exchange chromatography. Crystals were obtained by the hanging-drop vapour-diffusion method. A 24 kDa protein was purified from the seeds of Lathyrus sativus by ammonium sulfate fractionation and ion-exchange chromatography. The N-terminal amino-acid sequence showed significant homology with the 2S albumin class of seed storage proteins. The protein showed 85% sequence homology with the seed albumin of Pisum sativum within the 40 N-terminal residues. Crystals were obtained by the hanging-drop vapour-diffusion method. The crystals belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cellmore » parameters a = 43.5, b = 82.7, c = 153.4 Å.« less

  13. Drop Migration and Demixing of Biphasic Aqueous Systems in an Applied Electric Field

    NASA Astrophysics Data System (ADS)

    Todd, Paul; Raghavarao, Karumanchi S. M. S.

    1999-11-01

    Applying an electric field to a demixing emulsion of poly(ethylene glycol)(PEG) and dextran (or maltodextrin) in phosphate-buffered aqueous solution shortens the demixing time up to 6 fold. Phosphate ions partition into the dextran-rich phase imparting a small electrical potential between the phases. PEG-rich drops migrate cathodally, and their electrophoretic mobility is directly proportional to their radius and increases with increased ionization of phosphate. An electric field, either parallel or antiparallel to the gravity vector, can enhance demixing. A theory consistent with these observations states that drops move due to external and internal electroosmotic flow (tractor treading). Enhanced demixing in an electric field whose polarity opposes buoyancy is thought to be caused by initial increased drop growth during retardation by the electric field so that the drop becomes more buoyant. However, at infinite internal drop viscosity the theory does not extrapolate to the result for solid colloid particles.

  14. Solidification Dynamics of Silver Drops in a Free Fall Environment

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Brush, Lucien N.

    1999-01-01

    Silver drops (99.9%, 4, 5, 7, and 9 mm diameter) were levitated, melted, and released to fall through Marshall Space Flight Center's 105m drop tube in helium - 6% hydrogen and pure argon atmospheres. By systematically varying the initial superheat condition of the drop the extent of solidification prior to impact ranged from complete to none during the approximately 4.6s of free fall time. Comparison of the experimental observations is made with numerical solutions to a model of the heat transfer and solidification kinetics associated with cooling of the drop during free fall, particularly with regard to the fraction of liquid transformed. Analysis reveals the relative importance of the initial parameters affecting the cooling and solidification rates within the drop. A discussion of the conditions under which the actual observations deviate from the assumptions used in the model is presented.

  15. Electro-Microfluidic Packaging

    NASA Astrophysics Data System (ADS)

    Benavides, G. L.; Galambos, P. C.

    2002-06-01

    There are many examples of electro-microfluidic products that require cost effective packaging solutions. Industry has responded to a demand for products such as drop ejectors, chemical sensors, and biological sensors. Drop ejectors have consumer applications such as ink jet printing and scientific applications such as patterning self-assembled monolayers or ejecting picoliters of expensive analytes/reagents for chemical analysis. Drop ejectors can be used to perform chemical analysis, combinatorial chemistry, drug manufacture, drug discovery, drug delivery, and DNA sequencing. Chemical and biological micro-sensors can sniff the ambient environment for traces of dangerous materials such as explosives, toxins, or pathogens. Other biological sensors can be used to improve world health by providing timely diagnostics and applying corrective measures to the human body. Electro-microfluidic packaging can easily represent over fifty percent of the product cost and, as with Integrated Circuits (IC), the industry should evolve to standard packaging solutions. Standard packaging schemes will minimize cost and bring products to market sooner.

  16. Two Phase Flow Modeling: Summary of Flow Regimes and Pressure Drop Correlations in Reduced and Partial Gravity

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Rame, E.; Kizito, J.; Kassemi, M.

    2006-01-01

    The purpose of this report is to provide a summary of state-of-the-art predictions for two-phase flows relevant to Advanced Life Support. We strive to pick out the most used and accepted models for pressure drop and flow regime predictions. The main focus is to identify gaps in predictive capabilities in partial gravity for Lunar and Martian applications. Following a summary of flow regimes and pressure drop correlations for terrestrial and zero gravity, we analyze the fully developed annular gas-liquid flow in a straight cylindrical tube. This flow is amenable to analytical closed form solutions for the flow field and heat transfer. These solutions, valid for partial gravity as well, may be used as baselines and guides to compare experimental measurements. The flow regimes likely to be encountered in the water recovery equipment currently under consideration for space applications are provided in an appendix.

  17. Utilization of Low Gravity Environment for Measuring Liquid Viscosity

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.; Ethridge, Edwin

    1998-01-01

    The method of drop coalescence is used for determining the viscosity of highly viscous undercooled liquids. Low gravity environment is necessary in order to allow for examining large volumes affording much higher accuracy for the viscosity calculations than possible for smaller volumes available under 1 - g conditions. The drop coalescence method is preferred over the drop oscillation technique since the latter method can only be applied for liquids with vanishingly small viscosities. The technique developed relies on both the highly accurate solution of the Navier-Stokes equations as well as on data from experiments conducted in near zero gravity environment. Results are presented for method validation experiments recently performed on board the NASA/KC-135 aircraft. While the numerical solution was produced using the Boundary Element Method. In these tests the viscosity of a highly viscous liquid, glycerine at room temperature, was determined using the liquid coalescence method. The results from these experiments will be discussed.

  18. Effects of pressure drop and superficial velocity on the bubbling fluidized bed incinerator.

    PubMed

    Wang, Feng-Jehng; Chen, Suming; Lei, Perng-Kwei; Wu, Chung-Hsing

    2007-12-01

    Since performance and operational conditions, such as superficial velocity, pressure drop, particles viodage, and terminal velocity, are difficult to measure on an incinerator, this study used computational fluid dynamics (CFD) to determine numerical solutions. The effects of pressure drop and superficial velocity on a bubbling fluidized bed incinerator (BFBI) were evaluated. Analytical results indicated that simulation models were able to effectively predict the relationship between superficial velocity and pressure drop over bed height in the BFBI. Second, the models in BFBI were simplified to simulate scale-up beds without excessive computation time. Moreover, simulation and experimental results showed that minimum fluidization velocity of the BFBI must be controlled in at 0.188-3.684 m/s and pressure drop was mainly caused by bed particles.

  19. Starbursts and Wispy Drops : Surfactants Spreading on Gel Substrates

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Shomeek; Daniels, Karen; Behringer, Robert

    2005-11-01

    We report a phase diagram for a novel instability seen in drops of nonionic surfactant solution (Triton X-305) spreading on viscoelastic agar gel substrate . This system allows us to examine the effect of varying the effective fluidity/stiffness of aqueous substrates. The morphology is strongly affected by the substrate fluidity, ranging from spreading starbursts of arms on weak gels, to wispy drops on intermediate strength gels, to circular drops on stiff gels. We analyze the dynamics of spreading in the starburst phase, where the arm length grows as t ^3/4 at early times, independent of the gel strength and surfactant concentration. The number of arms is proportional to the surfactant concentration and inversely proportional to the gel strength. Ongoing work is exploring the effects of changing the drop volume.

  20. Characterization and reproducibility of HepG2 hanging drop spheroids toxicology in vitro.

    PubMed

    Hurrell, Tracey; Ellero, Andrea Antonio; Masso, Zelie Flavienne; Cromarty, Allan Duncan

    2018-02-21

    Hepatotoxicity remains a major challenge in drug development despite preclinical toxicity screening using hepatocytes of human origin. To overcome some limitations of reproducing the hepatic phenotype, more structurally and functionally authentic cultures in vitro can be introduced by growing cells in 3D spheroid cultures. Characterisation and reproducibility of HepG2 spheroid cultures using a high-throughput hanging drop technique was performed and features contributing to potential phenotypic variation highlighted. Cultured HepG2 cells were seeded into Perfecta 3D® 96-well hanging drop plates and assessed over time for morphology, viability, cell cycle distribution, protein content and protein-mass profiles. Divergent aspects which were assessed included cell stocks, seeding density, volume of culture medium and use of extracellular matrix additives. Hanging drops are advantageous due to no complex culture matrix being present, enabling background free extractions for downstream experimentation. Varying characteristics were observed across cell stocks and batches, seeding density, culture medium volume and extracellular matrix when using immortalized HepG2 cells. These factors contribute to wide-ranging cellular responses and highlights concerns with respect to generating a reproducible phenotype in HepG2 hanging drop spheroids. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Immediate drop on demand technology (I-DOT) coupled with mass spectrometry via an open port sampling interface.

    PubMed

    Van Berkel, Gary J; Kertesz, Vilmos; Boeltz, Harry

    2017-11-01

    The aim of this work was to demonstrate and evaluate the analytical performance of coupling the immediate drop on demand technology to a mass spectrometer via the recently introduced open port sampling interface and ESI. Methodology & results: A maximum sample analysis throughput of 5 s per sample was demonstrated. Signal reproducibility was 10% or better as demonstrated by the quantitative analysis of propranolol and its stable isotope-labeled internal standard propranolol-d7. The ability of the system to multiply charge and analyze macromolecules was demonstrated using the protein cytochrome c. This immediate drop on demand technology/open port sampling interface/ESI-MS combination allowed for the quantitative analysis of relatively small mass analytes and was used for the identification of macromolecules like proteins.

  2. Enhanced Quality Factor Label-free Biosensing with Micro-Cantilevers Integrated into Microfluidic Systems.

    PubMed

    Kartanas, Tadas; Ostanin, Victor; Challa, Pavan Kumar; Daly, Ronan; Charmet, Jerome; Knowles, Tuomas P J

    2017-11-21

    Microelectromechanical systems (MEMS) have enabled the development of a new generation of sensor platforms. Acoustic sensor operation in liquid, the native environment of biomolecules, causes, however, significant degradation of sensing performance due to viscous drag and relies on the availability of capture molecules to bind analytes of interest to the sensor surface. Here, we describe a strategy to interface MEMS sensors with microfluidic platforms through an aerosol spray. Our sensing platform comprises a microfluidic spray nozzle and a microcantilever array operated in dynamic mode within a closed loop oscillator. A solution containing the analyte is sprayed uniformly through picoliter droplets onto the microcantilever surface; the micrometer-scale drops evaporate rapidly and leave the solutes behind, adding to the mass of the cantilever. This sensing scheme results in a 50-fold increase in the quality factor compared to operation in liquid, yet allows the analytes to be introduced into the sensing system from a solution phase. It achieves a 370 femtogram limit of detection, and we demonstrate quantitative label-free analysis of inorganic salts and model proteins. These results demonstrate that the standard resolution limits of cantilever sensing in dynamic mode can be overcome with the integration of spray microfluidics with MEMS.

  3. Assessment of the leaching of metallic elements in the technology of solidification in aqueous solution.

    PubMed

    Rossetti, V Alunno; Di Palma, L; Medici, F

    2002-01-01

    Results are presented of experiments performed to optimize the solidification/stabilization system for metallic elements in aqueous solution. This system involves mixing cement and a solution of metallic elements in a conventional mixer: the paste thus obtained is transferred drop by drop into a recipient filled with an aqueous solution of NaOH at 20% by weight, in which it solidifies immediately. The separate use of chloride solutions of Li+, Cr3+, Pb2+ and Zn2+ makes it possible to obtain granules displaying various levels of compressive strength. Three different inertization matrices were used in the experiments, the first consisting solely of Portland cement, the second of Portland cement and a superplasticizer additive, and the third of Portland cement partially replaced with silica-fume and superplasticizer. The results of the tests performed showed a very low level of leaching into the alkaline solidification solution for Cr3+, the quantity leached being under 2% as against higher levels for the other metallic elements. For all the considered elements, the best results were obtained by using silica-fume in the inertization matrix.

  4. 49 CFR 178.810 - Drop test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... solutions with a minimum specific gravity of 0.95 for testing at −18 °C (0 °F) or lower are considered... with a capacity of 0.45 cubic meters (15.9 cubic feet) or less must be subject to an additional drop... material having essentially the same physical characteristics. (3) The specific gravity and viscosity of a...

  5. 49 CFR 178.810 - Drop test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... solutions with a minimum specific gravity of 0.95 for testing at −18 °C (0 °F) or lower are considered... with a capacity of 0.45 cubic meters (15.9 cubic feet) or less must be subject to an additional drop... material having essentially the same physical characteristics. (3) The specific gravity and viscosity of a...

  6. 49 CFR 178.810 - Drop test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... solutions with a minimum specific gravity of 0.95 for testing at −18 °C (0 °F) or lower are considered... with a capacity of 0.45 cubic meters (15.9 cubic feet) or less must be subject to an additional drop... material having essentially the same physical characteristics. (3) The specific gravity and viscosity of a...

  7. Langmuir-Blodgett nanotemplates for protein crystallography.

    PubMed

    Pechkova, Eugenia; Nicolini, Claudio

    2017-12-01

    The new generation of synchrotrons and microfocused beamlines has enabled great progress in X-ray protein crystallography, resulting in new 3D atomic structures for proteins of high interest to the pharmaceutical industry and life sciences. It is, however, often still challenging to produce protein crystals of sufficient size and quality (order, intensity of diffraction, radiation stability). In this protocol, we provide instructions for performing the Langmuir-Blodgett (LB) nanotemplate method, a crystallization approach that can be used for any protein (including membrane proteins). We describe how to produce highly ordered 2D LB protein monolayers at the air-water interface and deposit them on glass slides. LB-film formation can be observed by surface-pressure measurements and Brewster angle microscopy (BAM), although its quality can be characterized by atomic force microscopy (AFM) and nanogravimetry. Such films are then used as a 2D template for triggering 3D protein crystal formation by hanging-drop vapor diffusion. The procedure for forming the 2D template takes a few minutes. Structural information about the protein reorganization in the LB film during the crystallization process on the nano level can be obtained using an in situ submicron GISAXS (grazing-incidence small-angle X-ray scattering) method. MicroGISAXS spectra, measured directly at the interface of the LB films and protein solution in real time, as described in this protocol, can be interpreted in terms of the buildup of layers, islands, or holes. In our experience, the obtained LB crystals take 1-10 d to prepare and they are more ordered and radiation stable as compared with those produced using other crystallization methods.

  8. Liquid-liquid phase separation causes high turbidity and pressure during low pH elution process in Protein A chromatography.

    PubMed

    Luo, Haibin; Lee, Nacole; Wang, Xiangyang; Li, Yuling; Schmelzer, Albert; Hunter, Alan K; Pabst, Timothy; Wang, William K

    2017-03-10

    Turbid elution pools and high column back pressure are common during elution of monoclonal antibodies (mAbs) by acidic pH in Protein A chromatography. This phenomenon has been historically attributed to acid-induced precipitation of incorrectly folded or pH-sensitive mAbs and host cell proteins (HCPs). In this work, we propose a new mechanism that may account for some observations of elution turbidity in Protein A chromatography. We report several examples of turbidity and high column back pressure occurring transiently under a short course of neutral conditions during Protein A elution. A systematic study of three mAbs displaying this behavior revealed phase separation characterized by liquid drops under certain conditions including neutral pH, low ionic strength, and high protein concentration. These liquid droplets caused solution turbidity and exhibited extremely high viscosity, resulting in high column back pressure. We found out that the droplets were formed through liquid-liquid phase separation (LLPS) as a result of protein self-association. We also found multiple factors, including pH, temperature, ionic strength, and protein concentration can affect LLPS behaviors. Careful selection of process parameters during protein A elution, including temperature, flow rate, buffer, and salt can inhibit formation of a dense liquid phase, reducing both turbidity (by 90%) and column back pressure (below 20 pounds per square inch). These findings provide both mechanistic insight and practical mitigation strategies for Protein A chromatography induced LLPS. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  9. Fast H-DROP: A thirty times accelerated version of H-DROP for interactive SVM-based prediction of helical domain linkers

    NASA Astrophysics Data System (ADS)

    Richa, Tambi; Ide, Soichiro; Suzuki, Ryosuke; Ebina, Teppei; Kuroda, Yutaka

    2017-02-01

    Efficient and rapid prediction of domain regions from amino acid sequence information alone is often required for swift structural and functional characterization of large multi-domain proteins. Here we introduce Fast H-DROP, a thirty times accelerated version of our previously reported H-DROP (Helical Domain linker pRediction using OPtimal features), which is unique in specifically predicting helical domain linkers (boundaries). Fast H-DROP, analogously to H-DROP, uses optimum features selected from a set of 3000 ones by combining a random forest and a stepwise feature selection protocol. We reduced the computational time from 8.5 min per sequence in H-DROP to 14 s per sequence in Fast H-DROP on an 8 Xeon processor Linux server by using SWISS-PROT instead of Genbank non-redundant (nr) database for generating the PSSMs. The sensitivity and precision of Fast H-DROP assessed by cross-validation were 33.7 and 36.2%, which were merely 2% lower than that of H-DROP. The reduced computational time of Fast H-DROP, without affecting prediction performances, makes it more interactive and user-friendly. Fast H-DROP and H-DROP are freely available from http://domserv.lab.tuat.ac.jp/.

  10. Expression, purification and crystallization of a human protein SH3BGRL at atomic resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Lei; Zhu, De-Yu; Yang, Na

    2005-04-01

    The protein SH3BGRL, containing both SH3-binding and Homer EVH1-binding motifs, has been crystallized using the hanging-drop vapour-diffusion method. The protein SH3BGRL, containing both SH3-binding and Homer EVH1-binding motifs, has been crystallized using the hanging-drop vapour-diffusion method. The crystals diffract to 0.88 Å resolution and belong to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 28.8886, b = 34.9676, c = 98.0016 Å. Preliminary analysis indicates that the asymmetric unit contains one molecule and has a solvent content of about 34%.

  11. Determination of gas phase protein ion densities via ion mobility analysis with charge reduction.

    PubMed

    Maisser, Anne; Premnath, Vinay; Ghosh, Abhimanyu; Nguyen, Tuan Anh; Attoui, Michel; Hogan, Christopher J

    2011-12-28

    We use a charge reduction electrospray (ESI) source and subsequent ion mobility analysis with a differential mobility analyzer (DMA, with detection via both a Faraday cage electrometer and a condensation particle counter) to infer the densities of single and multiprotein ions of cytochrome C, lysozyme, myoglobin, ovalbumin, and bovine serum albumin produced from non-denaturing (20 mM aqueous ammonium acetate) and denaturing (1 : 49.5 : 49.5, formic acid : methanol : water) ESI. Charge reduction is achieved through use of a Po-210 radioactive source, which generates roughly equal concentrations of positive and negative ions. Ions produced by the source collide with and reduce the charge on ESI generated drops, preventing Coulombic fissions, and unlike typical protein ESI, leading to gas-phase protein ions with +1 to +3 excess charges. Therefore, charge reduction serves to effectively mitigate any role that Coulombic stretching may play on the structure of the gas phase ions. Density inference is made via determination of the mobility diameter, and correspondingly the spherical equivalent protein volume. Through this approach it is found that for both non-denaturing and denaturing ESI-generated ions, gas-phase protein ions are relatively compact, with average densities of 0.97 g cm(-3) and 0.86 g cm(-3), respectively. Ions from non-denaturing ESI are found to be slightly more compact than predicted from the protein crystal structures, suggesting that low charge state protein ions in the gas phase are slightly denser than their solution conformations. While a slight difference is detected between the ions produced with non-denaturing and denaturing ESI, the denatured ions are found to be much more dense than those examined previously by drift tube mobility analysis, in which charge reduction was not employed. This indicates that Coulombic stretching is typically what leads to non-compact ions in the gas-phase, and suggests that for gas phase measurements to be correlated to biomolecular structures in solution, low charge state ions should be analyzed. Further, to determine if different solution conditions give rise to ions of different structure, ions of similar charge state should be compared. Non-denatured protein ion densities are found to be in excellent agreement with non-denatured protein ion densities inferred from prior DMA and drift tube measurements made without charge reduction (all ions with densities in the 0.85-1.10 g cm(-3) range), showing that these ions are not strongly influenced by Coulombic stretching nor by analysis method.

  12. Hamstring graft bacterial contamination during anterior cruciate ligament reconstruction: clinical and microbiological study.

    PubMed

    Badran, Mohamad Aboelnour; Moemen, Dalia Mohamed

    2016-09-01

    Autograft preparation for anterior cruciate ligament (ACL) reconstruction has a potential for graft contamination. The purpose of this study was to evaluate the possibility of bacterial contamination of hamstring autograft during preparation and when dropped onto the operating room floor and methods of graft decontamination. Sixty hamstring tendon autograft specimens were used as the test group. Excess tendon not used in the ACL procedure was divided into five segments. One segment, at the completion of preparation, was sent for culture as a control; the remaining four segments were dropped onto the floor adjacent to the surgical field for 15 seconds. One segment was cultured without undergoing any further treatment. Cultures were taken from each segment after immersion in 10 % povidone-iodine solution, 4 % chlorhexidine and bacitracin, respectively, for three minutes. Cultures of a skin swab and floor swab were taken at the same time and place that the ACL was dropped. Cultures of control graft tissue from ten patients (16.7 %) were positive for bacteria. No patient developed post-operative infection. Ninety organisms were identified, with Staphylococcus epidermidis being the most common isolate. Grafts rinsed in either bacitracin or 4 % chlorhexidine solutions were less likely to be culture positive. A high rate of contamination can be expected during autograft preparation for ACL reconstruction. Soaking the hamstring autograft in either bacitracin or 4 % chlorhexidine solution is effective for decontamination, particulary if graft is dropped on the floor.

  13. Microvolume protein concentration determination using the NanoDrop 2000c spectrophotometer.

    PubMed

    Desjardins, Philippe; Hansen, Joel B; Allen, Michael

    2009-11-04

    Traditional spectrophotometry requires placing samples into cuvettes or capillaries. This is often impractical due to the limited sample volumes often used for protein analysis. The Thermo Scientific NanoDrop 2000c Spectrophotometer solves this issue with an innovative sample retention system that holds microvolume samples between two measurement surfaces using the surface tension properties of liquids, enabling the quantification of samples in volumes as low as 0.5-2 microL. The elimination of cuvettes or capillaries allows real time changes in path length, which reduces the measurement time while greatly increasing the dynamic range of protein concentrations that can be measured. The need for dilutions is also eliminated, and preparations for sample quantification are relatively easy as the measurement surfaces can be simply wiped with laboratory wipe. This video article presents modifications to traditional protein concentration determination methods for quantification of microvolume amounts of protein using A280 absorbance readings or the BCA colorimetric assay.

  14. Liquid electrode

    DOEpatents

    Ekechukwu, Amy A.

    1994-01-01

    A dropping electrolyte electrode for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions.

  15. [Bioavailability of antiglaucoma drugs].

    PubMed

    Demailly, P

    2000-05-01

    The biodisponibility of antiglaucoma drugs, generally delivered in an aqueous eye-drop solution depends on their capacity to cross the cornea. The structure of the cornea forms a barrier to strongly lipophilic substances and the continuous renewal of the lacrimal film creates a major obstacle, preventing active substances from penetrating the eye. Active substances must thus be delivered in highly concentrated solutions. The systemic bioavailability of antiglaucoma drugs taken orally, for example beta-blockers, is well known, their behavior after eye-drop administration remains poorly elucidated and highly dependent on individual susceptibility. We reviewed the literature on pilocarpine, beta-blockers, adrenergic drugs (dipivalyl-epinephrine, apraclonidine, brimonidine), carbon anhydrase inhibitors (acetazolamide, dorzolamide).

  16. Micro-structural characterization of precipitation-synthesized fluorapatite nano-material by transmission electron microscopy using different sample preparation techniques.

    PubMed

    Chinthaka Silva, G W; Ma, Longzhou; Hemmers, Oliver; Lindle, Dennis

    2008-01-01

    Fluorapatite is a naturally occurring mineral of the apatite group and it is well known for its high physical and chemical stability. There is a recent interest in this ceramic to be used as a radioactive waste form material due to its intriguing chemical and physical properties. In this study, the nano-sized fluorapatite particles were synthesized using a precipitation method and the material was characterized using X-ray diffraction (XRD) and transmission electron microscopy (TEM). Two well-known methods, called solution-drop and the microtome cutting, were used to prepare the sample for TEM analysis. It was found that the microtome cutting technique is advantageous for examining the particle shape and cross-sectional morphology as well as for obtaining ultra-thin samples. However, this method introduces artifacts and strong background contrast for high-resolution transmission electron microscopy (HRTEM) observation. On the other hand, phase image simulations showed that the solution-drop method is reliable and stable for HRTEM analysis. Therefore, in order to comprehensively analyze the microstructure and morphology of the nano-material, it is necessary to combine both solution-drop and microtome cutting techniques for TEM sample preparation.

  17. A variational approach to the study of capillary phenomena

    NASA Technical Reports Server (NTRS)

    Emmer, M.; Gonzalez, E.; Tamanini, I.

    1982-01-01

    The problem of determining the free surface of a liquid in a capillary tube, and of a liquid drop, sitting first on a horizontal plane and then on more general surfaces is considered. With some modifications, the method applies to the study of pendent drops and of rotating drops as well. The standard capillary problem, i.e. the determination of the free surface of a liquid in a thin tube of general cross section, which resuls from the simultaneous action of surface tension, boundary adhesion and gravity is discussed. It turns out that in this case the existence of the solution surface depends heavily on the validity of a simple geometric condition about the mean curvature of the boundary curve of the cross section of the capillary tube. Some particular examples of physical interest are also be discussed. Liquid drops sitting on or hanging from a fixed horizontal plane are discussed. The symmetry of the solutions (which can actually be proved, as consequence of a general symmetrization argument) now plays the chief role in deriving both the existence and the regularity of energy-minimizing configurations. When symmetry fails (this is the case, for example, when the contact angle between the drop and the plate is not constant, or when the supporting surface is not itself symmetric), then more sophisticated methods must be used. Extensions in this direction are outlined.

  18. The lift force on a drop in unbounded plane Poiseuille flow

    NASA Technical Reports Server (NTRS)

    Wohl, P. R.

    1976-01-01

    The lift force on a deformable liquid sphere moving in steady, plane Poiseuille-Stokes flow and subjected to an external body force is calculated. The results are obtained by seeking a solution to Stokes' equations for the motion of the liquids inside and outside the slightly perturbed sphere surface, as expansions valid for small values of the ratio of the Weber number to the Reynolds number. When the ratio of the drop and external fluid viscosities is small, the lift exerted on a neutrally buoyant drop is found to be approximately one-tenth of the magnitude of the force reported by Wohl and Rubinow acting on the same drop in unbounded Poiseuille flow in a tube. The resultant trajectory of the drop is calculated and displayed as a function of the external body force.

  19. Laser capillary spectrophotometric acquisition of bivariate drop size and concentration data for liquid-liquid dispersion

    DOEpatents

    Tavlarides, Lawrence L.; Bae, Jae-Heum

    1991-01-01

    A laser capillary spectrophotometric technique measures real time or near real time bivariate drop size and concentration distribution for a reactive liquid-liquid dispersion system. The dispersion is drawn into a precision-bore glass capillary and an appropriate light source is used to distinguish the aqueous phase from slugs of the organic phase at two points along the capillary whose separation is precisely known. The suction velocity is measured, as is the length of each slug from which the drop free diameter is calculated. For each drop, the absorptivity at a given wavelength is related to the molar concentration of a solute of interest, and the concentration of given drops of the organic phase is derived from pulse heights of the detected light. This technique permits on-line monitoring and control of liquid-liquid dispersion processes.

  20. Drop drying on surfaces determines chemical reactivity - the specific case of immobilization of oligonucleotides on microarrays

    PubMed Central

    2013-01-01

    Background Drop drying is a key factor in a wide range of technical applications, including spotted microarrays. The applied nL liquid volume provides specific reaction conditions for the immobilization of probe molecules to a chemically modified surface. Results We investigated the influence of nL and μL liquid drop volumes on the process of probe immobilization and compare the results obtained to the situation in liquid solution. In our data, we observe a strong relationship between drop drying effects on immobilization and surface chemistry. In this work, we present results on the immobilization of dye labeled 20mer oligonucleotides with and without an activating 5′-aminoheptyl linker onto a 2D epoxysilane and a 3D NHS activated hydrogel surface. Conclusions Our experiments identified two basic processes determining immobilization. First, the rate of drop drying that depends on the drop volume and the ambient relative humidity. Oligonucleotides in a dried spot react unspecifically with the surface and long reaction times are needed. 3D hydrogel surfaces allow for immobilization in a liquid environment under diffusive conditions. Here, oligonucleotide immobilization is much faster and a specific reaction with the reactive linker group is observed. Second, the effect of increasing probe concentration as a result of drop drying. On a 3D hydrogel, the increasing concentration of probe molecules in nL spotting volumes accelerates immobilization dramatically. In case of μL volumes, immobilization depends on whether the drop is allowed to dry completely. At non-drying conditions, very limited immobilization is observed due to the low oligonucleotide concentration used in microarray spotting solutions. The results of our study provide a general guideline for microarray assay development. They allow for the initial definition and further optimization of reaction conditions for the immobilization of oligonucleotides and other probe molecule classes to different surfaces in dependence of the applied spotting and reaction volume. PMID:23758982

  1. Cost and Performance Report: Low-Hazardous Air Pollutant (HAP)/Volatile Organic Compound (VOC)-Compliant Resins for Military Applications

    DTIC Science & Technology

    2012-03-01

    properties of such resins are poor. Various solutions have been proposed over the years, but most suffer from a number of drawbacks that have...as a pendulum into a rigid wall. The flatwise drop involved dropping the container flatwise onto the feet from 15 and 30 cm. The stacking test

  2. Experimental measure of retinal impact force resulting from intraocular foreign body dropped onto retina through media of differing viscosity.

    PubMed

    Ernst, Benjamin J; Velez-Montoya, Raul; Kujundzic, Damir; Kujundzic, Elmira; Olson, Jeffrey L

    2013-07-01

    To evaluate and compare the perfluorocarbon liquid, silicone oil, and viscoelastic against standard saline, in their ability to dampen the impact force of a foreign body, dropped within the eye. In an experimental surgical model in where cohesive and adhesive forces of the substances are not enough to float heavy-than-water foreign bodies. A model of ophthalmic surgery was constructed. A BB pellet was dropped from 24 mm onto a force transducer through four different fluids: balanced salt solution, perfluoro-n-octane, viscoelastic, and silicone oil. The impact energy (force) for each case was measured and recorded by the force transducer. The mean force of impact for each fluid was compared using the Student t-test. Silicone oil resulted in the lowest force of impact. Both silicone oil and viscoelastic dampened the impact an order of magnitude more than perfluoro-n-octane and balanced salt solution. Silicone oil and viscoelastic cushioned the force from a dropped BB. They may be useful adjuncts to prevent iatrogenic retinal injury during vitrectomy for intraocular foreign body removal. © 2012 The Authors. Clinical and Experimental Ophthalmology © 2012 Royal Australian and New Zealand College of Ophthalmologists.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Dongwen; Sun, Jianping; Zhao, Wei

    The CRD domain of GRP from H. sapiens has been expressed, purified and crystallized and X-ray diffraction data have been collected to a resolution of 2.0 Å. Galectins are a family of animal lectins which share similar carbohydrate-recognition domains (CRDs) and an affinity for β-galactosides. A novel human galectin-related protein named GRP (galectin-related protein; previously known as HSPC159) comprises only one conserved CRD with 38 additional N-terminal residues. The C-terminal fragment of human GRP (GRP-C; residues 38–172) containing the CRD has been expressed and purified. The protein was crystallized using the hanging-drop vapour-diffusion method from a solution containing 2% PEGmore » 400 and 2M ammonium sulfate in 100 mM Tris–HCl buffer pH 7.5. Diffraction data were collected to a resolution limit of 2.0 Å at beamline 3W1A of Beijing Synchrotron Radiation Facility at 100 K. The crystals belong to the monoclinic space group C2, with unit-cell parameters a = 123.07, b = 96.67, c = 61.56 Å, β = 118.72°. The estimated Matthews coefficient was 2.6 Å{sup 3} Da{sup −1}, corresponding to 51.8% solvent content.« less

  4. Multistep building of a soft plant protein film at the air-water interface.

    PubMed

    Poirier, Alexandre; Banc, Amélie; Stocco, Antonio; In, Martin; Ramos, Laurence

    2018-09-15

    Gliadins are edible wheat storage proteins well known for their surface active properties. In this paper, we present experimental results on the interfacial properties of acidic solutions of gliadin studied over 5 decades of concentrations, from 0.001 to 110 g/L. Dynamic pendant drop tensiometry reveals that the surface pressure Π of gliadin solutions builds up in a multistep process. The series of curves of the time evolution of Π collected at different bulk protein concentrations C can be merged onto a single master curve when Π is plotted as a function of αt where t is the time elapsed since the formation of the air/water interface and α is a shift parameter that varies with C as a power law with an exponent 2. The existence of such time-concentration superposition, which we evidence for the first time, indicates that the same mechanisms govern the surface tension evolution at all concentrations and are accelerated by an increase of the bulk concentration. The scaling of α with C is consistent with a kinetic of adsorption controlled by the diffusion of the proteins in the bulk. Moreover, we show that the proteins adsorption at the air/water interface is kinetically irreversible. Correlated evolutions of the optical and elastic properties of the interfaces, as probed by ellipsometry and surface dilatational rheology respectively, provide a consistent physical picture of the building up of the protein interfacial layer. A progressive coverage of the interface by the proteins occurs at low Π. This stage is followed, at higher Π, by conformational rearrangements of the protein film, which are identified by a strong increase of the dissipative viscoelastic properties of the film concomitantly with a peculiar evolution of its optical profile that we have rationalized. In the last stage, at even higher surface pressure, the adsorption is arrested; the optical profile is not modified while the elasticity of the interfacial layer dramatically increases with the surface pressure, presumably due to the film ageing. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. The Ruler Protein EscP of the Enteropathogenic Escherichia coli Type III Secretion System Is Involved in Calcium Sensing and Secretion Hierarchy Regulation by Interacting with the Gatekeeper Protein SepL

    PubMed Central

    Shaulov, Lihi; Gershberg, Jenia; Deng, Wanyin; Finlay, B. Brett

    2017-01-01

    ABSTRACT The type III secretion system (T3SS) is a multiprotein complex that plays a central role in the virulence of many Gram-negative bacterial pathogens. To ensure that effector proteins are efficiently translocated into the host cell, bacteria must be able to sense their contact with the host cell. In this study, we found that EscP, which was previously shown to function as the ruler protein of the enteropathogenic Escherichia coli T3SS, is also involved in the switch from the secretion of translocator proteins to the secretion of effector proteins. In addition, we demonstrated that EscP can interact with the gatekeeper protein SepL and that the EscP-SepL complex dissociates upon a calcium concentration drop. We suggest a model in which bacterial contact with the host cell is accompanied by a drop in the calcium concentration that causes SepL-EscP complex dissociation and triggers the secretion of effector proteins. PMID:28049143

  6. A mini-type hydrogen generator from aluminum for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Er-Dong; Shi, Peng-Fei; Du, Chun-Yu; Wang, Xiao-Rui

    A safe and simple hydrogen generator, which produced hydrogen by chemical reaction of aluminum and sodium hydroxide solution, was proposed for proton exchange membrane fuel cells. The effects of concentration, dropping rate and initial temperature of sodium hydroxide solution on hydrogen generation rate were investigated. The results showed that about 38 ml min -1 of hydrogen generation rate was obtained with 25 wt.% concentration and 0.01 ml s -1 dropping rate of sodium hydroxide solution. The cell fueled by hydrogen from the generator exhibited performance improvement at low current densities, which was mainly due to the humidified hydrogen reduced the protonic resistivity of the proton exchange membrane. The hydrogen generator could stably operate a single cell under 500 mA for nearly 5 h with about 77% hydrogen utilization ratio.

  7. A Multipurpose Apparatus to Measure Viscosity and Surface Tension of Solutions: The Measurement of the Molecular Cross-Sectional Area of N-Proposal

    ERIC Educational Resources Information Center

    Xin Zhang; Shouxin Liu; Booxin Li; Na An; Fan Zhang

    2004-01-01

    A multipurpose apparatus that can be used to measure the viscosity of solution by the Ostwald method and the surface tension of solution by the drop-weight method or by the capillary-rise method is developed. The apparatus is convenient for in-situ preparation of solutions of different concentrations and avoids the error that frothing of the…

  8. Liquid electrode

    DOEpatents

    Ekechukwu, A.A.

    1994-07-05

    A dropping electrolyte electrode is described for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions. 2 figures.

  9. Drop-out phagemid vector for switching from phage displayed affinity reagents to expression formats.

    PubMed

    Pershad, Kritika; Sullivan, Mark A; Kay, Brian K

    2011-05-15

    Affinity reagents that are generated by phage display are typically subcloned into an expression vector for further biochemical characterization. This insert transfer process is time consuming and laborious especially if many inserts are to be subcloned. To simplify the transfer process, we have constructed a "drop-out" phagemid vector that can be rapidly converted to an expression vector by a simple restriction enzyme digestion with MfeI (to "drop-out" the gene III coding sequence), which generates alkaline phosphatase (AP) fusions of the affinity reagents on religation. Subsequently, restriction digestion with AscI drops out the AP coding region and religation generates affinity reagents with a C-terminal six-histidine tag. To validate the usefulness of this vector, four different human single chain Fragments of variable regions (scFv) were tested, three of which show specific binding to three zebrafish (Danio rerio) proteins, namely suppression of tumorigenicity 13, recoverin, and Ppib and the fourth binds to human Lactoferrin protein. For each of the constructs tested, the gene III and AP drop-out efficiency was between 90% and 100%. This vector is especially useful in speeding up the downstream screening of affinity reagents and bypassing the time-consuming subcloning experiments. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Distinguishing between microscale gaseous bubbles and liquid drops

    NASA Astrophysics Data System (ADS)

    Tan, Beng Hau; An, Hongjie; Chan, Chon U.; Ohl, Claus-Dieter

    2015-11-01

    In recent years, there has been strong research interest in decorating surfaces with tiny bubbles and drops due to their potential applications in reducing slippage in micro and nanofluidic devices. Both nanobubbles and nanodrops are typically nucleated by exchanging fluids over a suitable substrate. However, the nucleation experiments present many challenges, such as reproducibility and the possibility of contamination. The use of one-use plastic syringes and needle cannulas in nucleation experiments can introduce polymeric contamination. A contaminated experiment may nucleate bubbles, drops or both. Moreover, it is surprisingly difficult to distinguish between bubbles and drops under the usual atomic force microscopy or optical techniques. Here we present an experimental study comparing bubbles and oil (PDMS) drops on an atomically smooth surface (HOPG). Instead of nucleating the objects via solvent exchange, we directly introduced bubbles via electrolysis, and oil drops by injecting a dilute solution. Contrary to previous reports, we find that under careful AFM characterisation, liquid drops and gaseous bubbles respond differently to a change in imaging force, and moreover present different characteristic force curves.

  11. Meso-scale controlled motion for a microfluidic drop ejector.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galambos, Paul C.; Givler, Richard C.; Pohl, Kenneth Roy

    2004-12-01

    The objective of this LDRD was to develop a uniquely capable, novel droplet solution based manufacturing system built around a new MEMS drop ejector. The development all the working subsystems required was completed, leaving the integration of these subsystems into a working prototype still left to accomplish. This LDRD report will focus on the three main subsystems: (1) MEMS drop ejector--the MEMS ''sideshooter'' effectively ejected 0.25 pl drops at 10 m/s, (2) packaging--a compact ejector package based on a modified EMDIP (Electro-Microfluidic Dual In-line Package--SAND2002-1941) was fabricated, and (3) a vision/stage system allowing precise ejector package positioning in 3 dimensionsmore » above a target was developed.« less

  12. Pharmacodynamic effects of pilocarpine eye drop enhanced by decreasing its volume of instillation.

    PubMed

    Lal, A; Kataria, V; Rajpal, A; Khanna, N

    1995-07-01

    Previous studies have proved that as the volume of the drug solution instilled into the eye is decreased, the fraction of the dose absorbed into the ocular tissue is increased and the adverse drug reactions lowered. The present study investigated the acute effects of different drop volumes (10 microliters, 20 microliters, 40 microliters, and 80 microliters) of pilocarpine nitrate (2%) on pupil diameter, heart rate, and adverse reaction profile, in 12 healthy human volunteers. The drop volumes of 10 microliters and 20 microliters produced more miosis and less side effects than 40 microliters and 80 microliters drop volumes. This may be due to more penetration of the drug into the ocular tissue and less drainage into the nasolacrimal system.

  13. Effects of Congo red on the drag reduction properties of poly(ethylene oxide) in aqueous solution based on drop impact images.

    PubMed

    Alkschbirs, Melissa I; Bizotto, Vanessa C; de Oliveira, Marcelo G; Sabadini, Edvaldo

    2004-12-21

    The presence of very small amounts (ppm) of high-MW polymers in solution produces high levels of drag reduction in a turbulent flow. This phenomenon, often termed as the Toms effect, is highly dependent not only on MW, but also on the flexibility of the macromolecular chain. The Toms effect can be studied through the images of the structures produced after the drop impact against shallow solution surfaces. The splash structures composed of crown, cavity, and Rayleigh jet are highly dependent on the elongational properties of the solution. This work presents the effects of Congo red on the drag reduction properties of poly(ethylene oxide) in aqueous solutions through the analysis of splash structures. Results obtained in this analysis indicate that Congo red molecules act as physical cross-linking agents, decreasing the polymer elasticity and its drag reduction capacity. It was observed that the maximum height of the Rayleigh jet can be used as a sensitive parameter to the complexation between the dye and the polymer molecules.

  14. Effect of Marangoni Convection on Surfactant Transfer Between the Drop Connected to the Reservoir and Surrounding Liquid

    NASA Astrophysics Data System (ADS)

    Kostarev, K.; Denisova, M.; Shmyrov, A.

    2018-03-01

    The paper presents the results of comparative investigation of the interaction between the capillary and buoyant mechanisms of motion in a problem of surfactant mass transfer between an insoluble drop and surrounding fluid under different gravity conditions. The research was performed for the drop that is coupled with the reservoir filled with a source mixture through a long thin tube (needle). Visualization of the flow patterns and concentration fields has shown that surfactant diffusion from the needle at normal gravity leads to the onset of the oscillatory mode of the capillary convection in the drop. It has been found that the frequency of the Marangoni convection outbursts, the lifetime of the oscillatory flow modes and the amount of the source mixture involved in the process of mass transfer depend on the drop size and initial concentration of the surfactant. The obtained results are compared with the cases of surfactant diffusion from the isolated drop under terrestrial conditions and from the drop coupled with reservoir in microgravity. Additionally, a series of experiments were performed to investigate diffusion of a surfactant from the surrounding solution into a drop.

  15. Cloning, expression, purification, crystallization and X-ray crystallographic analysis of recombinant human C1ORF123 protein

    PubMed Central

    Rahaman, Siti Nurulnabila A.; Mat Yusop, Jastina; Mohamed-Hussein, Zeti-Azura; Ho, Kok Lian; Teh, Aik-Hong; Waterman, Jitka; Ng, Chyan Leong

    2016-01-01

    C1ORF123 is a human hypothetical protein found in open reading frame 123 of chromosome 1. The protein belongs to the DUF866 protein family comprising eukaryote-conserved proteins with unknown function. Recent proteomic and bioinformatic analyses identified the presence of C1ORF123 in brain, frontal cortex and synapses, as well as its involvement in endocrine function and polycystic ovary syndrome (PCOS), indicating the importance of its biological role. In order to provide a better understanding of the biological function of the human C1ORF123 protein, the characterization and analysis of recombinant C1ORF123 (rC1ORF123), including overexpression and purification, verification by mass spectrometry and a Western blot using anti-C1ORF123 antibodies, crystallization and X-ray diffraction analysis of the protein crystals, are reported here. The rC1ORF123 protein was crystallized by the hanging-drop vapor-diffusion method with a reservoir solution comprised of 20% PEG 3350, 0.2 M magnesium chloride hexahydrate, 0.1 M sodium citrate pH 6.5. The crystals diffracted to 1.9 Å resolution and belonged to an orthorhombic space group with unit-cell parameters a = 59.32, b = 65.35, c = 95.05 Å. The calculated Matthews coefficient (V M) value of 2.27 Å3 Da−1 suggests that there are two molecules per asymmetric unit, with an estimated solvent content of 45.7%. PMID:26919524

  16. Quadratic formula for determining the drop size in pressure-atomized sprays with and without swirl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, T.-W, E-mail: attwl@asu.edu; An, Keju

    2016-06-15

    We use a theoretical framework based on the integral form of the conservation equations, along with a heuristic model of the viscous dissipation, to find a closed-form solution to the liquid atomization problem. The energy balance for the spray renders to a quadratic formula for the drop size as a function, primarily of the liquid velocity. The Sauter mean diameter found using the quadratic formula shows good agreements and physical trends, when compared with experimental observations. This approach is shown to be applicable toward specifying initial drop size in computational fluid dynamics of spray flows.

  17. Controlled Release of Multiple Therapeutics from Silicone Hydrogel Contact Lenses.

    PubMed

    White, Charles James; DiPasquale, Stephen Anthony; Byrne, Mark Edward

    2016-04-01

    The majority of contact lens wearers experience a significant level of ocular discomfort associated with lens wear, often within hours of wear, related to dry lenses, inflammation, protein adhesion to the lens surface, etc. Application of controlled drug release techniques has focused on the incorporation and/or release of a single comfort molecule from a lens including high molecular weight comfort agents or pharmaceutical agents. Previous studies have sought to mitigate the occurrence of only single propagators of discomfort. Clinical studies with eye drop solutions have shown that a mixture of diverse comfort agents selected to address multiple propagators of discomfort provide the greatest and longest lasting sensations of comfort for the patient. In this paper, multiple propagators of discomfort are addressed through the simultaneous release of four molecules from a novel contact lens to ensure high level of lens wear comfort. Silicone hydrogel contact lenses were engineered via molecular imprinting strategies to simultaneously release up to four template molecules including hydropropyl methylcellulose (HPMC), trehalose, ibuprofen, and prednisolone. By adjusting the ratio of functional monomer to comfort molecule, a high level of control was demonstrated over the release rate. HPMC, trehalose, ibuprofen, and prednisolone were released at therapeutically relevant concentrations with varying rates from a single lens. The results indicate use as daily disposable lenses for single day release or extended-wear lenses with multiple day release. Imprinted lenses are expected to lead to higher efficacy for patients compared to topical eye drops by improving compliance and mitigating concentration peaks and valleys associated with multiple drops.

  18. Controlled Release of Multiple Therapeutics from Silicone Hydrogel Contact Lenses

    PubMed Central

    White, Charles J.; DiPasquale, Stephen A.; Byrne, Mark E.

    2016-01-01

    Purpose The majority of contact lens wearers experience a significant level of ocular discomfort associated with lens wear, often within hours of wear, related to dry lenses, inflammation, protein adhesion to the lens surface, etc. Application of controlled drug release techniques has focused on the incorporation and/or release of a single comfort molecule from a lens including high molecular weight comfort agents or pharmaceutical agents. Previous studies have sought to mitigate the occurrence of only single propagators of discomfort. Clinical studies with eye drop solutions have shown that a mixture of diverse comfort agents selected to address multiple propagators of discomfort provide the greatest and longest lasting sensations of comfort for the patient. In this paper, multiple propagators of discomfort are addressed through the simultaneous release of four molecules from a novel contact lens to ensure high level of lens wear comfort. Methods Silicone hydrogel contact lenses were engineered via molecular imprinting strategies to simultaneously release up to four template molecules including hydropropyl methylcellulose (HPMC), trehalose, ibuprofen, and prednisolone. Results By adjusting the ratio of functional monomer to comfort molecule, a high level of control was demonstrated over the release rate. HPMC, trehalose, ibuprofen, and prednisolone were released at therapeutically relevant concentrations with varying rates from a single lens. Conclusions The results indicate use as daily disposable lenses for single day release or extended-wear lenses with multiple day release. Imprinted lenses are expected to lead to higher efficacy for patients compared to topical eye drops by improving compliance and mitigating concentration peaks and valleys associated with multiple drops. PMID:26945177

  19. A Novel Virus Causes Scale Drop Disease in Lates calcarifer

    PubMed Central

    de Groof, Ad; Guelen, Lars; Deijs, Martin; van der Wal, Yorick; Miyata, Masato; Ng, Kah Sing; van Grinsven, Lotte; Simmelink, Bartjan; Biermann, Yvonne; Grisez, Luc; van Lent, Jan; de Ronde, Anthony; Chang, Siow Foong; Schrier, Carla; van der Hoek, Lia

    2015-01-01

    From 1992 onwards, outbreaks of a previously unknown illness have been reported in Asian seabass (Lates calcarifer) kept in maricultures in Southeast Asia. The most striking symptom of this emerging disease is the loss of scales. It was referred to as scale drop syndrome, but the etiology remained enigmatic. By using a next-generation virus discovery technique, VIDISCA-454, sequences of an unknown virus were detected in serum of diseased fish. The near complete genome sequence of the virus was determined, which shows a unique genome organization, and low levels of identity to known members of the Iridoviridae. Based on homology of a series of putatively encoded proteins, the virus is a novel member of the Megalocytivirus genus of the Iridoviridae family. The virus was isolated and propagated in cell culture, where it caused a cytopathogenic effect in infected Asian seabass kidney and brain cells. Electron microscopy revealed icosahedral virions of about 140 nm, characteristic for the Iridoviridae. In vitro cultured virus induced scale drop syndrome in Asian seabass in vivo and the virus could be reisolated from these infected fish. These findings show that the virus is the causative agent for the scale drop syndrome, as each of Koch’s postulates is fulfilled. We have named the virus Scale Drop Disease Virus. Vaccines prepared from BEI- and formalin inactivated virus, as well as from E. coli produced major capsid protein provide efficacious protection against scale drop disease. PMID:26252390

  20. Prediction of pressure drop in fluid tuned mounts using analytical and computational techniques

    NASA Technical Reports Server (NTRS)

    Lasher, William C.; Khalilollahi, Amir; Mischler, John; Uhric, Tom

    1993-01-01

    A simplified model for predicting pressure drop in fluid tuned isolator mounts was developed. The model is based on an exact solution to the Navier-Stokes equations and was made more general through the use of empirical coefficients. The values of these coefficients were determined by numerical simulation of the flow using the commercial computational fluid dynamics (CFD) package FIDAP.

  1. Acoustic measurement of the surface tension of levitated drops

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Marston, P. L.; Robey, J. L.

    1988-01-01

    The measurement of the frequency of the fundamental mode of shape oscillation of acoustically levitated drops has been carried out to determine the surface tension of the drop material. Sound fields of about 20 kHz in frequency allow the suspension of drops a few millimeters in size, as well as the necessary drive for oscillations. The surface tension of water, hexadecane, silicone oil, and aqueous solutions of glycerin levitated in air has been measured, and the results have been compared with those obtained with standard ring tensiometry. The two sets of data are in good agreement, the largest discrepancy being about 10 percent. Uncertainties in the effects of the nonspherical static shape of drops levitated in the earth's gravitational field and the rotation state of the sample are the major contributors to the experimental error. A decrease of the resonance frequency of the fundamental mode indicates a soft nonlinearity as the oscillation amplitude increases.

  2. Laser capillary spectrophotometric acquisition of bivariate drop size and concentration data for liquid-liquid dispersion

    DOEpatents

    Tavlarides, L.L.; Bae, J.H.

    1991-12-24

    A laser capillary spectrophotometric technique measures real time or near real time bivariate drop size and concentration distribution for a reactive liquid-liquid dispersion system. The dispersion is drawn into a precision-bore glass capillary and an appropriate light source is used to distinguish the aqueous phase from slugs of the organic phase at two points along the capillary whose separation is precisely known. The suction velocity is measured, as is the length of each slug from which the drop free diameter is calculated. For each drop, the absorptivity at a given wavelength is related to the molar concentration of a solute of interest, and the concentration of given drops of the organic phase is derived from pulse heights of the detected light. This technique permits on-line monitoring and control of liquid-liquid dispersion processes. 17 figures.

  3. Crystallization and preliminary X-ray crystallographic analysis of a carbonyl reductase from Candida parapsilosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Rongzhen; Xu, Yan, E-mail: biosean@yahoo.com.cn; Sun, Ying

    2008-04-01

    A novel short-chain NADPH-dependent (S)-1-phenyl-1,2-ethanediol dehydrogenase (SCR) has been crystallized. A novel short-chain NADPH-dependent (S)-1-phenyl-1,2-ethanediol dehydrogenase (SCR) has been crystallized. Two distinct but related crystal forms of SCR were obtained using the hanging-drop vapour-diffusion method and a reservoir solution consisting of 18%(w/v) polyethylene glycol 2000 monomethyl ether and 8%(v/v) 2-propanol as the precipitant. The crystals were rhomboid in shape with average dimensions of 0.3 × 0.3 × 0.4 mm and diffracted to a resolution of 2.7–3.0 Å. The crystal forms both belong to space group P2{sub 1}2{sub 1}2{sub 1} and have unit-cell parameters a = 104.7, b = 142.8, cmore » = 151.8 Å and a = 101.1, b = 146.0, c = 159.8 Å. The calculated values of V{sub M}, rotation-function and translation-function solutions and consideration of potential crystal packing suggest that there are eight protein subunits per asymmetric unit.« less

  4. Thermodynamics, interfacial pressure isotherms and dilational rheology of mixed protein-surfactant adsorption layers.

    PubMed

    Fainerman, V B; Aksenenko, E V; Krägel, J; Miller, R

    2016-07-01

    Proteins and their mixtures with surfactants are widely used in many applications. The knowledge of their solution bulk behavior and its impact on the properties of interfacial layers made great progress in the recent years. Different mechanisms apply to the formation process of protein/surfactant complexes for ionic and non-ionic surfactants, which are governed mainly by electrostatic and hydrophobic interactions. The surface activity of these complexes is often remarkably different from that of the individual protein and has to be considered in respective theoretical models. At very low protein concentration, small amounts of added surfactants can change the surface activity of proteins remarkably, even though no strongly interfacial active complexes are observed. Also small added amounts of non-ionic surfactants change the surface activity of proteins in the range of small bulk concentrations or surface coverages. The modeling of the equilibrium adsorption behavior of proteins and their mixtures with surfactants has reached a rather high level. These models are suitable also to describe the high frequency limits of the dilational viscoelasticity of the interfacial layers. Depending on the nature of the protein/surfactant interactions and the changes in the interfacial layer composition rather complex dilational viscoelasticities can be observed and described by the available models. The differences in the interfacial behavior, often observed in literature for studies using different experimental methods, are at least partially explained by a depletion of proteins, surfactants and their complexes in the range of low concentrations. A correction of these depletion effects typically provides good agreement between the data obtained with different methods, such as drop and bubble profile tensiometry. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. A subunit vaccine against the adenovirus egg-drop syndrome using part of its fiber protein.

    PubMed

    Fingerut, E; Gutter, B; Gallili, G; Michael, A; Pitcovski, J

    2003-06-20

    In this study, the effectiveness of antibodies against the hexon, fiber or a fiber fragment of an avian adenovirus egg-drop syndrome (EDS), in neutralizing the virus was tested. The fiber protein is responsible for binding the virus to the target cell. The fiber fragment knob-s comprises the carboxy-terminal knob domain and 34 amino acids of the immediately adjacent shaft domain of the adenovirus fiber protein. The hexon, fiber capsid protein and knob-s were produced in E. coli and injected into chickens. Antibodies that were produced against the whole fiber protein showed some hemagglutination inhibition (HI) activity. Antibodies produced against the knob-s protein showed HI activity and serum neutralization (SN) activity similar to the positive control-whole virus vaccine. We assume that production of only part of the fiber enables the protein produced in E. coli to fold correctly. Antibodies produced against the hexon protein showed no SN activity. In summary, knob-s induced SN and HI antibodies against EDS virus at a rate similar to the whole virus and were significantly more efficient than the full-length fiber. The recombinant knob-s protein may be used as a vaccine against pathogenic adenovirus infections.

  6. Influence of alkane and perfluorocarbon vapors on adsorbed surface layers and spread insoluble monolayers of surfactants, proteins and lipids.

    PubMed

    Fainerman, V B; Aksenenko, E V; Miller, R

    2017-06-01

    The influence of hexane vapor in the air atmosphere on the surface tension of water and solutions of C 10 EO 8 , C n TAB and proteins are presented. For dry air, a fast and strong decrease of surface tension of water was observed. In humid air, the process is slower and the surface tension higher. There are differences between the results obtained by the maximum bubble pressure, pendant drop and emerging bubble methods, which are discussed in terms of depletion and initial surface load. The surface tension of aqueous solutions of β-сasein (BCS), β-lactoglobulin (BLG) and human serum albumin (HSA) at the interfaces with air and air-saturated hexane vapor were measured. The results indicate that the equilibrium surface tension in the hexane vapor atmosphere is considerably lower (at 13-20mN/m) as compared to the values at the interface with pure air. A reorientation model is proposed assuming several states of adsorbed molecules with different molar area values. The newly developed theoretical model is used to describe the effect of alkane vapor in the gas phase on the surface tension. This model assumes that the first layer is composed of surfactant (or protein) molecules mixed with alkane, and the second layer is formed by alkane molecules only. The processing of the experimental data for the equilibrium surface tension for the C 10 EO 8 and BCS solutions results in a perfect agreement between the observed and calculated values. The co-adsorption mechanism of dipalmitoyl phosphatidyl choline (DPPC) and the fluorocarbon molecules leads to remarkable differences in the surface pressure term of cohesion Π coh . This in turn leads to a very efficient fluidization of the monolayer. It was found that the adsorption equilibrium constant for dioctanoyl phosphatidyl choline is increased in the presence of perfluorohexane, and the intermolecular interaction of the components is strong. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Multidose Preservative Free Eyedrops by Selective Removal of Benzalkonium Chloride from Ocular Formulations.

    PubMed

    Hsu, Kuan-Hui; Gupta, Karishma; Nayaka, Harish; Donthi, Aashrit; Kaul, Siddarth; Chauhan, Anuj

    2017-12-01

    About 70% of eye drops contain benzalkonium chloride (BAK) to maintain sterility. BAK is an effective preservative but it can cause irritation and toxicity. We propose to mitigate ocular toxicity without compromising sterility by incorporating a filter into an eye drop bottle to selectively remove BAK during the process of drop instillation. The filter is a packed bed of particles made from poly(2-hydroxyethyl methacrylate) (pHEMA), which is a common ophthalmic material. We showed that pHEMA particle prepared by using ethoxylated trimethylolpropane triacrylate as crosslinker can be incorporated into a modified eyedrop bottle tip to selectively remove the preservative as the formulation is squeezed out of the bottle. Hydraulic permeability of the plug is measured to determine the resistance to eye drop squeezing, and % removal of BAK and drugs are determined. The modified tip has a hydraulic permeability of about 2 Darcy, which allows eyedrops formulations to flow through without excessive resistance. The tip is designed such that the patients can create an eyedrop of solution of 1-10 cP viscosity in 4 s with a nominal pressure. During this short contact time, the packed particles removed nearly 100% of benzalkonium chloride (BAK) from a 15 mL, 0.012% BAK solution but have only minimal impact on the concentration of contained active components. Our novel design can eliminate the preservative induced toxicity from eye drops thereby impacting hundreds of millions of patients with chronic ophthalmic diseases like glaucoma and dry eyes.

  8. Crystallization and preliminary crystallographic analysis of recombinant immunoglobulin G-binding protein from Streptococcus suis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Abdul Hamid; Chu, Fuliang; Feng, Youjun

    2008-08-01

    Crystallization of recombinant IgG-binding protein expressed in Escherichia coli using the hanging-drop vapour-diffusion method is described. The crystals belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 38.98, b = 43.94, c = 78.17 Å. Streptococcus suis, an important zoonotic pathogen, expresses immunoglobulin G-binding protein, which is thought to be helpful to the organism in eluding the host defence system. Recombinant IgG-binding protein expressed in Escherichia coli has been crystallized using the hanging-drop vapour-diffusion method. The crystals belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 38.98, b = 43.94, c =more » 78.17 Å and one molecule in the asymmetric unit. Diffraction data were collected to 2.60 Å resolution.« less

  9. Cell-micropatterning by micromolding in capillary technique based on UV polymerization

    NASA Astrophysics Data System (ADS)

    Park, Min J.; Choi, Won M.; Park, O. O.

    2006-01-01

    Although optical lithography or photolithography is one of the most well-established techniques for micro, nano-fabrication, its usage with proteins and cells is restricted by steps that must be carried out in harsh organic solvents. Here, we present simple methods for cell-micropatterning using poly(dimethylsiloxane) (PDMS) as a mold. Cell non-adhesive surface or nonfouling surface providing a physico-chemical barrier to cell attachment was introduced for biomaterial pattering, where cells fail to interact with the surface over desired periods of time determined by each application. Poly(ethylene glycol) (PEG) was selected as nonfouling material to inhibit protein adsorption from biological media. The fouling resistance of PEG polymer is often explained by a steric repulsion interaction, resulting from the compression of PEG chains as proteins approach the surface. We also chose fibronectin to direct cell attachment because it is an extracellular matrix protein that is involved in the adhesion and spreading of anchorage-dependent cells. In our experiment, we propose two methods by application of micromolding in capillary (MIMIC) method based on UV polymerization to obtain a surface of alternating PEG and fibronectin. First to fabricate PEG microstructure via MIMIC method, a pre-patterned PDMS mold is placed on a desired substrate, and then the relief structure in the mold forms a network of empty channels. A drop of ethylene glycol monomer solution containing initiator for UV polymerization is placed at the open ends of the network of channels, which is then polymerized by exposure to UV light at room temperature. Once PEG microstructure is fabricated, incubation of the patterned surface in a fibronectin-containing solution allows back-filling of only the bare regions with fibronectin via adsorption. In the alternative method, a substrate is first incubated in a fibronectin-containing solution, leading to the adsorption of fibronectin over the entire surface, and the fibronectin-adsorbed substrate is then micropatterned with the PEG by MIMIC based on UV polymerization. Both methods create reproducible alternating PEG and fibronectin patterns applicable to cell-surface interactions on the microscale.

  10. Different cellular effects of four anti-inflammatory eye drops on human corneal epithelial cells: independent in active components.

    PubMed

    Qu, Mingli; Wang, Yao; Yang, Lingling; Zhou, Qingjun

    2011-01-01

    To evaluate and compare the cellular effects of four commercially available anti-inflammatory eye drops and their active components on human corneal epithelial cells (HCECs) in vitro. The cellular effects of four eye drops (Bromfenac Sodium Hydrate Eye Drops, Pranoprofen Eye Drops, Diclofenac Sodium Eye Drops, and Tobramycin & Dex Eye Drops) and their corresponding active components were evaluated in an HCEC line with five in vitro assays. Cell proliferation and migration were measured using 3-(4,5)-dimethylthiahiazo (-z-y1)-3 5-di-phenytetrazoliumromide (MTT) assay and transwell migration assay. Cell damage was determined with the lactate dehydrogenase (LDH) assay. Cell viability and median lethal time (LT₅₀) were measured by 7-amino-actinomycin D (7-AAD) staining and flow cytometry analysis. Cellular effects after exposure of HCECs to the four anti-inflammatory eye drops were concentration dependent. The differences of cellular toxicity on cell proliferation became significant at lower concentrations (<0.002%). Diclofenac Sodium Eye Drops showed significant increasing effects on cell damage and viability when compared with the other three solutions. Tobramycin & Dex Eye Drops inhibited the migration of HCECs significantly. Tobramycin & Dex Eye Drops showed the quickest effect on cell viability: the LT₅₀ was 3.28, 9.23, 10.38, and 23.80 min for Tobramycin & Dex Eye Drops, Diclofenac Sodium Eye Drops, Pranoprofen Eye Drops, and Bromfenac Sodium Hydrate Eye Drops, respectively. However, the comparisons of cellular toxicity revealed significant differences between the eye drops and their active components under the same concentration. The corneal epithelial toxicity differences among the active components of the four eye drops became significant as higher concentration (>0.020%). The four anti-inflammatory eye drops showed different cellular effects on HCECs, and the toxicity was not related with their active components, which provides new reference for the clinical application and drug research and development.

  11. A microcontroller platform for the rapid prototyping of functional electrical stimulation-based gait neuroprostheses.

    PubMed

    Luzio de Melo, Paulo; da Silva, Miguel Tavares; Martins, Jorge; Newman, Dava

    2015-05-01

    Functional electrical stimulation (FES) has been used over the last decades as a method to rehabilitate lost motor functions of individuals with spinal cord injury, multiple sclerosis, and post-stroke hemiparesis. Within this field, researchers in need of developing FES-based control solutions for specific disabilities often have to choose between either the acquisition and integration of high-performance industry-level systems, which are rather expensive and hardly portable, or develop custom-made portable solutions, which despite their lower cost, usually require expert-level electronic skills. Here, a flexible low-cost microcontroller-based platform for rapid prototyping of FES neuroprostheses is presented, designed for reduced execution complexity, development time, and production cost. For this reason, the Arduino open-source microcontroller platform was used, together with off-the-shelf components whenever possible. The developed system enables the rapid deployment of portable FES-based gait neuroprostheses, being flexible enough to allow simple open-loop strategies but also more complex closed-loop solutions. The system is based on a modular architecture that allows the development of optimized solutions depending on the desired FES applications, even though the design and testing of the platform were focused toward drop foot correction. The flexibility of the system was demonstrated using two algorithms targeting drop foot condition within different experimental setups. Successful bench testing of the device in healthy subjects demonstrated these neuroprosthesis platform capabilities to correct drop foot. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  12. Thermostatic tissue platform for intravital microscopy: 'the hanging drop' model.

    PubMed

    Pavlovic, Dragan; Frieling, Helge; Lauer, Kai-Stephan; Bac, Vo Hoai; Richter, Joern; Wendt, Michael; Lehmann, Christian; Usichenko, Taras; Meissner, Konrad; Gruendling, Matthias

    2006-11-01

    Intravital microscopy imposes the particular problem of the combined control of the body temperature of the animal and the local temperature of the observed organ or tissues. We constructed and tested, in the rat ileum microcirculation preparation, a new organ-support platform. The platform consisted of an organ bath filled with physiological solution, and contained a suction tube, a superfusion tube, an intestine-support hand that was attached to a micromanipulator and a thermometer probe. To cover the intestine we used a cover glass plate with a plastic ring glued on its upper surface. After a routine procedure (anaesthesia, monitoring and surgery), the intestine segment (2-3 cm long) was gently exteriorized and placed on the 'hand' of the organ support. A small part of the intestine formed a small 'island' in the bath that was filled with physiological salt solution. The cover glass was secured in place. The physiological salt solution from the superfusion tube, which was pointed to the lower surface of the cover glass, formed a 'hanging drop'. The objective of the microscope was then immersed into distilled water that was formed by the cover glass plastic ring. The 'hanging drop' technique prevented any tissue quenching, ensured undisturbed microcirculation, provided for stable temperature and humidity, and permitted a clear visual field.

  13. Double layers without current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perkins, F.W.; Sun, Y.C.

    1980-11-01

    The steady-state solution of the nonlinear Vlasov-Poisson equations is reduced to a nonlinear eigenvalue problem for the case of double-layer (potential drop) boundary conditions. Solutions with no relative electron-ion drifts are found. The kinetic stability is discussed. Suggestions for creating these states in experiments and computer simulations are offered.

  14. Microvolume Protein Concentration Determination using the NanoDrop 2000c Spectrophotometer

    PubMed Central

    Desjardins, Philippe; Hansen, Joel B.; Allen, Michael

    2009-01-01

    Traditional spectrophotometry requires placing samples into cuvettes or capillaries. This is often impractical due to the limited sample volumes often used for protein analysis. The Thermo Scientific NanoDrop 2000c Spectrophotometer solves this issue with an innovative sample retention system that holds microvolume samples between two measurement surfaces using the surface tension properties of liquids, enabling the quantification of samples in volumes as low as 0.5-2 μL. The elimination of cuvettes or capillaries allows real time changes in path length, which reduces the measurement time while greatly increasing the dynamic range of protein concentrations that can be measured. The need for dilutions is also eliminated, and preparations for sample quantification are relatively easy as the measurement surfaces can be simply wiped with laboratory wipe. This video article presents modifications to traditional protein concentration determination methods for quantification of microvolume amounts of protein using A280 absorbance readings or the BCA colorimetric assay. PMID:19890248

  15. DRoP: a water analysis program identifies Ras-GTP-specific pathway of communication between membrane-interacting regions and the active site.

    PubMed

    Kearney, Bradley M; Johnson, Christian W; Roberts, Daniel M; Swartz, Paul; Mattos, Carla

    2014-02-06

    Ras GTPase mediates several cellular signal transduction pathways and is found mutated in a large number of cancers. It is active in the GTP-bound state, where it interacts with effector proteins, and at rest in the GDP-bound state. The catalytic domain is tethered to the membrane, with which it interacts in a nucleotide-dependent manner. Here we present the program Detection of Related Solvent Positions (DRoP) for crystallographic water analysis on protein surfaces and use it to study Ras. DRoP reads and superimposes multiple Protein Data Bank coordinates, transfers symmetry-related water molecules to the position closest to the protein surface, and ranks the waters according to how well conserved and tightly clustered they are in the set of structures. Coloring according to this rank allows visualization of the results. The effector-binding region of Ras is hydrated with highly conserved water molecules at the interface between the P-loop, switch I, and switch II, as well as at the Raf-RBD binding pocket. Furthermore, we discovered a new conserved water-mediated H-bonding network present in Ras-GTP, but not in Ras-GDP, that links the nucleotide sensor residues R161 and R164 on helix 5 to the active site. The double mutant RasN85A/N86A, where the final link between helix 5 and the nucleotide is not possible, is a severely impaired enzyme, while the single mutant RasN86A, with partial connection to the active site, has a wild-type hydrolysis rate. DRoP was instrumental in determining the water-mediated connectivity networks that link two lobes of the catalytic domain in Ras. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Displacement-dispersive liquid-liquid microextraction based on solidification of floating organic drop of trace amounts of palladium in water and road dust samples prior to graphite furnace atomic absorption spectrometry determination.

    PubMed

    Ghanbarian, Maryam; Afzali, Daryoush; Mostafavi, Ali; Fathirad, Fariba

    2013-01-01

    A new displacement-dispersive liquid-liquid microextraction method based on the solidification of floating organic drop was developed for separation and preconcentration of Pd(ll) in road dust and aqueous samples. This method involves two steps of dispersive liquid-liquid microextraction based on solidification. In Step 1, Cu ions react with diethyldithiocarbamate (DDTC) to form Cu-DDTC complex, which is extracted by dispersive liquid-liquid microextraction based on a solidification procedure using 1-undecanol (extraction solvent) and ethanol (dispersive solvent). In Step 2, the extracted complex is first dispersed using ethanol in a sample solution containing Pd ions, then a dispersive liquid-liquid microextraction based on a solidification procedure is performed creating an organic drop. In this step, Pd(ll) replaces Cu(ll) from the pre-extracted Cu-DDTC complex and goes into the extraction solvent phase. Finally, the Pd(ll)-containing drop is introduced into a graphite furnace using a microsyringe, and Pd(ll) is determined using atomic absorption spectrometry. Several factors that influence the extraction efficiency of Pd and its subsequent determination, such as extraction and dispersive solvent type and volume, pH of sample solution, centrifugation time, and concentration of DDTC, are optimized.

  17. An Optimized Table-Top Small-Angle X-ray Scattering Set-up for the Nanoscale Structural Analysis of Soft Matter

    NASA Astrophysics Data System (ADS)

    Sibillano, T.; de Caro, L.; Altamura, D.; Siliqi, D.; Ramella, M.; Boccafoschi, F.; Ciasca, G.; Campi, G.; Tirinato, L.; di Fabrizio, E.; Giannini, C.

    2014-11-01

    The paper shows how a table top superbright microfocus laboratory X-ray source and an innovative restoring-data algorithm, used in combination, allow to analyze the super molecular structure of soft matter by means of Small Angle X-ray Scattering ex-situ experiments. The proposed theoretical approach is aimed to restore diffraction features from SAXS profiles collected from low scattering biomaterials or soft tissues, and therefore to deal with extremely noisy diffraction SAXS profiles/maps. As biological test cases we inspected: i) residues of exosomes' drops from healthy epithelial colon cell line and colorectal cancer cells; ii) collagen/human elastin artificial scaffolds developed for vascular tissue engineering applications; iii) apoferritin protein in solution. Our results show how this combination can provide morphological/structural nanoscale information to characterize new artificial biomaterials and/or to get insight into the transition between healthy and pathological tissues during the progression of a disease, or to morphologically characterize nanoscale proteins, based on SAXS data collected in a room-sized laboratory.

  18. Purification, characterization, and crystallization of Crocodylus siamensis hemoglobin.

    PubMed

    Jandaruang, Jinda; Siritapetawee, Jaruwan; Songsiriritthigul, Chomphunuch; Preecharram, Sutthidech; Azuma, Taoka; Dhiravisit, Apisak; Fukumori, Yoshihiro; Thammasirirak, Sompong

    2014-08-01

    Crocodylus siamensis hemoglobin was purified by a size exclusion chromatography, Sephacryl S-100 with buffer containing dithiothreitol. The purified Hb was dissociated to be two forms (α chain and β chain) which observed by SDS-PAGE, indicated that the C. siamensis Hb was an unpolymerized form. The unpolymerized Hb (composed of two α chains and two β chains) showed high oxygen affinity at 3.13 mmHg (P(50)) and 1.96 (n value), and a small Bohr effect (δH(+) = -0.29) at a pH of 6.9-8.4. Adenosine triphosphate did not affect the oxygenation properties, whereas bicarbonate ions strongly depressed oxygen affinity. Crude C. siamensis Hb solutions were showed high O(2) affinity at P(50) of 2.5 mmHg which may assure efficient utilization of the lung O(2) reserve during breath holding and diving. The purified Hbs were changed to cyanmethemoglobin forms prior crystallization. Rod- and plate-shaped crystals were obtained by the sitting-drop vapor-diffusion method at 5 °C using equal volumes of protein solution (37 mg/ml) and reservoir [10-13 % (w/v) PEG 4000, with 0.1 M Tris buffer in present of 0.2 M MgCl(2)·6H(2)O] solution at a pH of 7.0-8.5.

  19. Crystallization and initial X-ray analysis of polyhydroxyalkanoate granule-associated protein from Aeromonas hydrophila

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Minglian; Li, Zhenguo; Zheng, Wei

    The phasin PhaP{sub Ah} from A. hydrophila strain 4AK4 was crystallized using the hanging-drop vapour-diffusion method. Polyhydroxyalkanoate (PHA) granule-associated proteins (phasins) were discovered in PHA-accumulating bacteria. They play a crucial role as a structural protein during initial PHA-granule formation and granule growth and also serve as interfaces for granule stabilization in vivo. The phasin PhaP{sub Ah} from Aeromonas hydrophila strain 4AK4 was crystallized using the hanging-drop vapour-diffusion method. Single crystals were cryocooled for X-ray diffraction analysis. The phasin crystals belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 80.8, b = 108.9, c = 134.4 Å.

  20. Airborne chemistry: acoustic levitation in chemical analysis.

    PubMed

    Santesson, Sabina; Nilsson, Staffan

    2004-04-01

    This review with 60 references describes a unique path to miniaturisation, that is, the use of acoustic levitation in analytical and bioanalytical chemistry applications. Levitation of small volumes of sample by means of a levitation technique can be used as a way to avoid solid walls around the sample, thus circumventing the main problem of miniaturisation, the unfavourable surface-to-volume ratio. Different techniques for sample levitation have been developed and improved. Of the levitation techniques described, acoustic or ultrasonic levitation fulfils all requirements for analytical chemistry applications. This technique has previously been used to study properties of molten materials and the equilibrium shape()and stability of liquid drops. Temperature and mass transfer in levitated drops have also been described, as have crystallisation and microgravity applications. The airborne analytical system described here is equipped with different and exchangeable remote detection systems. The levitated drops are normally in the 100 nL-2 microL volume range and additions to the levitated drop can be made in the pL-volume range. The use of levitated drops in analytical and bioanalytical chemistry offers several benefits. Several remote detection systems are compatible with acoustic levitation, including fluorescence imaging detection, right angle light scattering, Raman spectroscopy, and X-ray diffraction. Applications include liquid/liquid extractions, solvent exchange, analyte enrichment, single-cell analysis, cell-cell communication studies, precipitation screening of proteins to establish nucleation conditions, and crystallisation of proteins and pharmaceuticals.

  1. Lubrication model for evaporation of binary sessile drops

    NASA Astrophysics Data System (ADS)

    Williams, Adam; Sáenz, Pedro; Karapetsas, George; Matar, Omar; Sefiane, Khellil; Valluri, Prashant

    2017-11-01

    Evaporation of a binary mixture sessile drop from a solid substrate is a highly dynamic and complex process with flow driven both thermal and solutal Marangoni stresses. Experiments on ethanol/water drops have identified chaotic regimes on both the surface and interior of the droplet, while mixture composition has also been seen to govern drop wettability. Using a lubrication-type approach, we present a finite element model for the evaporation of an axisymmetric binary drop deposited on a heated substrate. We consider a thin drop with a moving contact line, taking also into account the commonly ignored effects of inertia which drives interfacial instability. We derive evolution equations for the film height, the temperature and the concentration field considering that the mixture comprises two ideally mixed volatile components with a surface tension linearly dependent on both temperature and concentration. The properties of the mixture such as viscosity also vary locally with concentration. We explore the parameter space to examine the resultant effects on wetting and evaporation where we find qualitative agreement with experiments in both these areas. This enables us to understand the nature of the instabilities that spontaneously emerge over the drop lifetime. EPSRC - EP/K00963X/1.

  2. Expression, purification, crystallization and preliminary X-ray analysis of tannase from Lactobacillus plantarum.

    PubMed

    Wu, Mingbo; Peng, Xiaohong; Wen, Hua; Wang, Qin; Chen, Qianming; McKinstry, William J; Ren, Bin

    2013-04-01

    Tannase catalyses the hydrolysis of the galloyl ester bond of tannins to release gallic acid. It belongs to the serine esterases and has wide applications in the food, feed, beverage, pharmaceutical and chemical industries. The tannase from Lactobacillus plantarum was cloned, expressed and purified. The protein was crystallized by the sitting-drop vapour-diffusion method with microseeding. The crystals belonged to space group P1, with unit-cell parameters a = 46.5, b = 62.8, c = 83.8 Å, α = 70.4, β = 86.0, γ = 79.4°. Although the enzyme exists mainly as a monomer in solution, it forms a dimer in the asymmetric unit of the crystal. The crystals diffracted to beyond 1.60 Å resolution using synchrotron radiation and a complete data set was collected to 1.65 Å resolution.

  3. Thermosolutal Marangoni convection short-time regimes - Proposals for drop tower experiments and real time computer simulation

    NASA Astrophysics Data System (ADS)

    Polezhaev, V. I.; Ermakov, M. K.

    1992-12-01

    Results are presented of a parametrical study of flow patterns, heat transfer, and time scales of thermosolutal Marangoni convection in a cavity with temperature and solutal gradients along the free surface and adiabatic bottom for the case of zero gravity. Nusselt number, concentration difference across the cavity, and flow/temperature fields for the different regimes are presented; they show the possibility to use Drop Tower 'Bremen' for measuring the developed secondary flow and heat/mass transfer due to thermosolutal Marangoni convection as well as the possibility to analyze and plan the drop tower for such experiments using the COMGA PC-based system.

  4. Human Immunodeficiency Virus Tat-Activated Expression of Poliovirus Protein 2A Inhibits mRNA Translation

    NASA Astrophysics Data System (ADS)

    Sun, Xiao-Hong; Baltimore, David

    1989-04-01

    To study the effect of poliovirus protein 2A on cellular RNA translation, the tat control system of human immunodeficiency virus (HIV) was used. Protein 2A was expressed from a plasmid construct (pHIV/2A) incorporating the HIV long terminal repeat. Protein synthesis was measured by using chloramphenicol acetyltransferase as a reporter gene driven by the Rous sarcoma virus long terminal repeat. When HIV/2A was contransfected with the reporter, addition of a tat-producing plasmid caused at least a 50-fold drop in chloramphenicol acetyltransferase synthesis. A HeLa cell line carrying HIV/2A was established. In it, tat expression caused more than a 10-fold drop in chloramphenicol acetyltransferase synthesis from the reporter plasmid. Furthermore, 2A induction by tat caused cleavage of the cellular translation factor P220, a part of eukaryotic translation initiation factor 4F. Thus protein 2A can, by itself, carry out the inhibition of cellular protein synthesis characteristic of a poliovirus infection. Also, the HIV tat activation provides a very effective method to control gene expression in mammalian cells.

  5. Analysis of Drop Shapes during Electrowetting on a Dielectric

    NASA Astrophysics Data System (ADS)

    Daneshbod, Yousef

    2005-03-01

    Electrowetting refers to the electrostatic control of the interfacial energy of a liquid on a solid, primarily used for the transport of micro-liter volumes of drops on surfaces with embedded electrode arrays. In the present work, the drop is modeled as a two-dimensional lens-like conductor immersed in an infinite dielectric medium slightly above a planar conductor. A matched asymptotic expansion is used to approximate the electrostatic field surrounding the drop. The outer problem models the drop as a conducting circular segment resting on the conducting plane, each maintained at a separate constant potential. The inner problem corrects the region near the edge of the drop by modeling it as an infinite planar conducting wedge lying slightly above the conducting plane. By matching the inner and outer solutions, the charge density along the entire surface of the drop can be approximated, enabling the calculation of the total capacitance of the system. An energy minimization method similar to that of Shapiro et al. [J. Appl. Phys., 93, 5794 (2003)] is applied to the total energy consisting of the liquid/gas, liquid/solid and solid/gas surface energies, together with the electrostatic contribution, subject to the constraint that the drop volume remains constant. A modified form of the Young-Lippmann equation is thus derived that includes the contribution from the extra capacitance of the drop obtained via matched asymptotics.

  6. Management of Dropped Skull Flaps.

    PubMed

    Abdelfatah, Mohamed AbdelRahman

    2017-01-01

    Dropping a skull flap on the floor is an uncommon and avoidable mistake in the neurosurgical operating theater. This study retrospectively reviewed all incidents of dropped skull flaps in Ain-Shams University hospitals during a 10-year period to show how to manage this problem and its outcome. Thirty-one incidents of dropped skull flaps occurred from January 2004 to January 2014 out of more than 10,000 craniotomies. Follow-up period varied from 20 to 44 months. The bone flap was dropped while elevating the bone (n = 16), while drilling the bone on the operating table (n = 5), and during insertion of the bone flap (n = 10). Treatment included re-insertion of the skull flap after soaking it in povidone iodine and antibiotic solution (n = 17) or after autoclaving (n = 11), or discarding the skull flap and replacing it with a mesh cranioplasty in the same operation (n = 3). No bone or wound infection was noted during the follow-up period. Management of dropped skull flap is its prevention. Replacement of the skull flap, after decontamination, is an option that avoids the expense and time of cranioplasty.

  7. Cloning, overexpression, purification and preliminary X-ray analysis of a feast/famine regulatory protein (Rv2779c) from Mycobacterium tuberculosis H37Rv.

    PubMed

    Dey, Abhishek; Ramachandran, Ravishankar

    2014-01-01

    Rv2779c from Mycobacterium tuberculosis is a feast/famine regulatory protein. This class of proteins are also known as the leucine-responsive regulatory protein/asparagine synthase C family (Lrp/AsnC) of transcriptional regulators and are known to be involved in various metabolic processes in bacteria and fungi. They contain a RAM (regulator of amino-acid metabolism) domain that is rarely found in humans and acts as the oligomerization domain. Since the oligomeric status is often linked to the particular functional role in these proteins, binding of ligands to the domain can elicit specific functional responses. Full-length Rv2779c corresponding to a molecular mass of 19.8 kDa and 179 residues was cloned and purified to homogeneity following transformation into Escherichia coli C41 (DE3) cells. Crystals were grown by vapour diffusion using the hanging-drop method. Diffraction data extending to 2.8 Å resolution were collected from a single crystal that belonged to space group P2(1)2(1)2, with unit-cell parameters a = 99.6, b = 146.0, c = 49.9 Å. Matthews coefficient (VM) calculations suggest that four molecules are present in the asymmetric unit, corresponding to a solvent content of ∼46%. Molecular-replacement calculations using the crystal structure of a homologue, Rv3291c, as the search model gave an unambiguous solution corresponding to four subunits in the asymmetric unit.

  8. Containerless protein crystal growth technology: Electrostatic multidrop positioner

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu

    1990-01-01

    A brief discussion of containerless protein crystal growth in space and a diagram of the electrostatic multidrop positioner are presented. A picture of lysome crystals growing in a drop and a graph of levitation voltage versus time (minutes) are also presented.

  9. Nature and consequences of protein-protein interactions in high protein concentration solutions.

    PubMed

    Saluja, Atul; Kalonia, Devendra S

    2008-06-24

    High protein concentration solutions are becoming increasingly important in the pharmaceutical industry. The solution behavior of proteins at high concentrations can markedly differ from that predicted based on dilute solution analysis due to thermodynamic non-ideality in these solutions. The non-ideality observed in these systems is related to the protein-protein interactions (PPI). Different types of forces play a key role in determining the overall nature and extent of these PPI and their relative contributions are affected by solute and solvent properties. However, individual contributions of these forces to the solution properties of concentrated protein solutions are not fully understood. The role of PPI, driven by these intermolecular forces, in governing solution rheology and physical stability of high protein concentration solutions is discussed from the point of view of pharmaceutical product development. Investigation of protein self-association and aggregation in concentrated protein solutions is crucial for ensuring the safety and efficacy of the final product for the duration of the desired product shelf life. Understanding rheology of high concentration protein solutions is critical for addressing issues during product manufacture and administration of final formulation to the patient. To this end, analysis of solution viscoelastic character can also provide an insight into the nature of PPI affecting solution rheology.

  10. 21 CFR 524.1200b - Kanamycin ophthalmic aqueous solution.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., removal of foreign bodies, and intraocular surgery. Instill a few drops into the affected eye every 3... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Kanamycin ophthalmic aqueous solution. 524.1200b Section 524.1200b Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  11. 21 CFR 524.1200b - Kanamycin ophthalmic aqueous solution.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., removal of foreign bodies, and intraocular surgery. Instill a few drops into the affected eye every 3... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Kanamycin ophthalmic aqueous solution. 524.1200b Section 524.1200b Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  12. 27 CFR 21.101 - tert-Butyl alcohol.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... needle). Above 20 °C. (f) Identification test. Place five drops of a solution containing approximately 0... (dissolve 5 grams of red mercuric oxide in 20 ml of concentrated sulfuric acid; add this solution to 80 ml of distilled water, and filter when cool). Heat the mixture just to the boiling point and remove from...

  13. 27 CFR 21.101 - tert-Butyl alcohol.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... needle). Above 20 °C. (f) Identification test. Place five drops of a solution containing approximately 0... (dissolve 5 grams of red mercuric oxide in 20 ml of concentrated sulfuric acid; add this solution to 80 ml of distilled water, and filter when cool). Heat the mixture just to the boiling point and remove from...

  14. 27 CFR 21.101 - tert-Butyl alcohol.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... needle). Above 20 °C. (f) Identification test. Place five drops of a solution containing approximately 0... (dissolve 5 grams of red mercuric oxide in 20 ml of concentrated sulfuric acid; add this solution to 80 ml of distilled water, and filter when cool). Heat the mixture just to the boiling point and remove from...

  15. Removal of phosphate from aqueous solutions and sewage using natural and surface modified coir pith.

    PubMed

    Krishnan, K Anoop; Haridas, Ajit

    2008-04-01

    Iron impregnated coir pith (CP-Fe-I) can be effectively used for the removal of phosphate from aqueous streams and sewage. Iron impregnation on natural coir pith was carried out by drop by drop addition method. The effect of various factors such as pH, initial concentration of phosphate, contact time and adsorbent dose on phosphate adsorption was studied by batch technique. The pH at 3.0 favored the maximum adsorption of phosphate from aqueous solutions. The effect of pH on phosphate adsorption was explained by pH(zpc), phosphate speciation in solution and affinity of anions towards the adsorbent sites. A comparative study of the adsorption of phosphate using CP-Fe-I and CP (coir pith) was made and results show that the former one is five to six times more effective than the latter. Kinetic studies revealed that the adsorption process followed a pseudo-second order kinetic model. Adsorption followed Langmuir isotherm model. Column studies were conducted to examine the utility of the investigated adsorbent for the removal of phosphate from continuously flowing aqueous solutions.

  16. Microengineered embryonic stem cells niche to induce neural differentiation.

    PubMed

    Joshi, Ramila; Tavana, Hossein

    2015-08-01

    A major challenge in therapeutic use of embryonic stem cells (ESCs) for treating neurodegenerative diseases is creating a niche in vitro for controlled neural-specific differentiation of ESCs. We employ a niche microengineering approach to derive neural cells from ESCs by mimicking embryonic development in terms of direct intercellular interactions. Using a polymeric aqueous two-phase system (ATPS) microprinting technology, murine ESCs (mESCs) are precisely localized over a monolayer of supporting stromal cells to allow formation of individual mESC colonies. Polyethylene glycol (PEG) and dextran (DEX) are dissolved in culture media to form two immiscible aqueous solutions. A robotic liquid handler is used to print a nanoliter-volume drop of the denser DEX phase solution containing mESCs onto a confluent layer of supporting PA6 stromal cells submerged in the aqueous PEG phase. mESCs proliferate into isolated colonies of uniform size. For the first time, a comprehensive protein expression analysis of individual mESC colonies is performed over a two-week culture period to track temporal progression of cells from a pluripotent stage to specific neural cells. Starting from day 4, the expression of nestin, neural cell adhesion molecule (NCAM), and beta-III tubulin shows a significant increase but then levels off after the first week of culture. The expression of specific neural cell markers glial fibrillary acidic protein (GFAP), 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase), and tyrosine hydroxylase (TH) is elevated during the second week of culture. This microengineering approach to control ESCs differentiation niche combined with the time-course protein expression analysis of individual differentiating colonies facilitates understanding of evolution of specific neural cells from ESCs and identifying underlying molecular markers.

  17. Investigation of the quality of stored red blood cells after simulated air drop in the maritime environment.

    PubMed

    Meli, Athinoula; Hancock, Vicky; Doughty, Heidi; Smedley, Steve; Cardigan, Rebecca; Wiltshire, Michael

    2018-02-01

    Maritime medical capability may be compromised by blood resupply. Air-dropped red blood cells (RBCs) is a possible mitigation factor. This study set out to evaluate RBC storage variables after a simulated parachute air drop into the sea, as limited data exist. The air load construction for the air drop of blood was subject to static drop assessment to simulate a worst-case parachute drop scenario. One control and two test Golden Hour shipping containers were each packaged with 10 RBC units. The control box was not dropped; Test Boxes 1 and 2 were further reinforced with waterproof boxes and underwent a simulated air drop on Day 7 or Day 8 postdonation, respectively. One day after the drop and once a week thereafter until Day 43 of storage, RBCs from each box were sampled and tested for full blood counts, hemolysis, adenosine triphosphate, 2,3-diphosphoglycerate, pH, extracellular potassium, glucose, lactate, deformability, and RBC microvesicles. The packaging configuration completed the air drop with no water ingress or physical damage. All units met UK specifications for volume, hemoglobin, and hemolysis. There were no significant differences for any of the variables studied between RBCs in the control box compared to RBCs in Test Boxes 1 and 2 combined over storage. The test proved that the packaging solution and the impact of a maritime air drop as performed in this study, on Day 7 or Day 8 postdonation, did not affect the in vitro quality of RBCs in SAGM over storage for 35 days. © 2017 AABB.

  18. Mouse ES cells have a potential to differentiate into odontoblast-like cells using hanging drop method.

    PubMed

    Kawai, R; Ozeki, N; Yamaguchi, H; Tanaka, T; Nakata, K; Mogi, M; Nakamura, H

    2014-05-01

    We examined whether mouse embryonic stem (ES) cells can differentiate into odontoblast-like cells without epithelial-mesenchymal interaction. Cells were cultured by the 'hanging drop' method using a collagen type-I scaffold (CS) combined with bone morphogenetic protein (BMP)-4 (CS/BMP-4). Expression of odontoblast-related mRNA and protein, and cell proliferation were performed by reverse transcription-polymerase chain reaction (RT-PCR), immunofluorescence staining and WST-1 assay, respectively. Cells potently expressed odontoblast-related cell marker mRNAs following induction of odontoblastic differentiation. Dentin sialophosphoprotein, a marker of mature odontoblasts, was strongly expressed in differentiated ES cells. The cells also acquired an odontoblast-like functional phenotype, as evidenced by the appearance of alkaline phosphatase activity and calcification. The cell-surface expression of α2, α6, αV and αVβ3 integrin proteins was rapidly upregulated in differentiated cells. Finally, anti-α2 integrin antibody suppressed the expression of odontoblastic markers in cells grown using this culture system, suggesting that α2 integrin expression in ES cells triggers their differentiation into odontoblast-like cells. Mouse ES cells cultured by the 'hanging drop' method are able to differentiate into cells with odontoblast-specific physiological functions and cell-surface integrin protein expression. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Solution identification and quantitative analysis of fiber-capacitive drop analyzer based on multivariate statistical methods

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Qiu, Zurong; Huo, Xinming; Fan, Yuming; Li, Xinghua

    2017-03-01

    A fiber-capacitive drop analyzer is an instrument which monitors a growing droplet to produce a capacitive opto-tensiotrace (COT). Each COT is an integration of fiber light intensity signals and capacitance signals and can reflect the unique physicochemical property of a liquid. In this study, we propose a solution analytical and concentration quantitative method based on multivariate statistical methods. Eight characteristic values are extracted from each COT. A series of COT characteristic values of training solutions at different concentrations compose a data library of this kind of solution. A two-stage linear discriminant analysis is applied to analyze different solution libraries and establish discriminant functions. Test solutions can be discriminated by these functions. After determining the variety of test solutions, Spearman correlation test and principal components analysis are used to filter and reduce dimensions of eight characteristic values, producing a new representative parameter. A cubic spline interpolation function is built between the parameters and concentrations, based on which we can calculate the concentration of the test solution. Methanol, ethanol, n-propanol, and saline solutions are taken as experimental subjects in this paper. For each solution, nine or ten different concentrations are chosen to be the standard library, and the other two concentrations compose the test group. By using the methods mentioned above, all eight test solutions are correctly identified and the average relative error of quantitative analysis is 1.11%. The method proposed is feasible which enlarges the applicable scope of recognizing liquids based on the COT and improves the concentration quantitative precision, as well.

  20. Cloning, overexpression, purification and preliminary crystallographic studies of a mitochondrial type II peroxiredoxin from Pisum sativum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barranco-Medina, Sergio; López-Jaramillo, Francisco Javier, E-mail: fjljara@ugr.es; Bernier-Villamor, Laura

    2006-07-01

    The isolation, purification, crystallization and molecular-replacement solution of mitochondrial type II peroxiredoxin from P. sativum is reported. A cDNA encoding an open reading frame of 199 amino acids corresponding to a type II peroxiredoxin from Pisum sativum with its transit peptide was isolated by RT-PCR. The 171-amino-acid mature protein (estimated molecular weight 18.6 kDa) was cloned into the pET3d vector and overexpressed in Escherichia coli. The recombinant protein was purified and crystallized by the hanging-drop vapour-diffusion technique. A full data set (98.2% completeness) was collected using a rotating-anode generator to a resolution of 2.8 Å from a single crystal flash-cooledmore » at 100 K. X-ray data revealed that the protein crystallizes in space group P1, with unit-cell parameters a = 61.88, b = 66.40, c = 77.23 Å, α = 102.90, β = 104.40, γ = 99.07°, and molecular replacement using a theoretical model predicted from the primary structure as a search model confirmed the presence of six molecules in the unit cell as expected from the Matthews coefficient. Refinement of the structure is in progress.« less

  1. Finite-fault slip model of the 2011 Mw 5.6 Prague, Oklahoma earthquake from regional waveforms

    USGS Publications Warehouse

    Sun, Xiaodan; Hartzell, Stephen

    2014-01-01

    The slip model for the 2011 Mw 5.6 Prague, Oklahoma, earthquake is inferred using a linear least squares methodology. Waveforms of six aftershocks recorded at 21 regional stations are used as empirical Green's functions (EGFs). The solution indicates two large slip patches: one located around the hypocenter with a depth range of 3–5.5 km; the other located to the southwest of the epicenter with a depth range from 7.5 to 9.5 km. The total moment of the solution is estimated at 3.37 × 1024 dyne cm (Mw 5.65). The peak slip and average stress drop for the source at the hypocenter are 70 cm and 90 bars, respectively, approximately one half the values for the Mw 5.8 2011 Mineral, Virginia, earthquake. The stress drop averaged over all areas of slip is 16 bars. The relatively low peak slip and stress drop may indicate an induced component in the origin of the Prague earthquake from deep fluid injection.

  2. Recovery From Amiodarone-Induced Cornea Verticillata by Application of Topical Heparin.

    PubMed

    Frings, Andreas; Schargus, Marc

    2017-11-01

    To report a case of amiodarone-induced vortex keratopathy-associated anatomical findings and subjective visual perception before and after treatment with topical heparin eye drops. Case report. A 76-year-old man complained of halos in his vision in both his eyes due to prominent bilateral cornea verticillata. For treatment of cornea verticillata, we prescribed unpreserved eye drops of a sterile, phosphate-free solution of 0.1% sodium hyaluronate with 1300 IU/mL heparin sodium 3 times daily to the left eye, whereas the other side served as the control. The area of corneal deposits was measured by 2 examiners before and at the 1- and 3-month examination. At last follow-up, cornea verticillata had been reduced from 6 to 2 mm in area by approximately 66% from grade-III to grade-II amiodarone keratopathy. In patients using amiodarone, clearing of cornea verticillata may be achieved by topical use of unpreserved eye drops of a sterile, phosphate-free solution of 0.1% sodium hyaluronate with 1300 IU/mL heparin sodium.

  3. Cyclodextrins in eye drop formulations: enhanced topical delivery of corticosteroids to the eye.

    PubMed

    Loftsson, Thorsteinn; Stefánsson, Einar

    2002-04-01

    Cyclodextrins are cylindrical oligosaccharides with a lipophilic central cavity and hydrophilic outer surface. They can form water-soluble complexes with lipophilic drugs, which 'hide' in the cavity. Cyclodextrins can be used to form aqueous eye drop solutions with lipophilic drugs, such as steroids and some carbonic anhydrase inhibitors. The cyclodextrins increase the water solubility of the drug, enhance drug absorption into the eye, improve aqueous stability and reduce local irritation. Cyclodextrins are useful excipients in eye drop formulations of various drugs, including steroids of any kind, carbonic anhydrase inhibitors, pilocarpine, cyclosporins, etc. Their use in ophthalmology has already begun and is likely to expand the selection of drugs available as eye drops. In this paper we review the properties of cyclodextrins and their application in eye drop formulations, of which their use in the formulation of dexamethasone eye drops is an example. Cyclodextrins have been used to formulate eye drops containing corticosteroids, such as dexamethasone, with levels of concentration and ocular absorption which, according to human and animal studies, are many times those seen with presently available formulations. Cyclodextrin-based dexamethasone eye drops are well tolerated in the eye and seem to provide a higher degree of bioavailability and clinical efficiency than the steroid eye drop formulations presently available. Such formulations offer the possibility of once per day application of corticosteroid eye drops after eye surgery, and more intensive topical steroid treatment in severe inflammation. While cyclodextrins have been known for more than a century, their use in ophthalmology is just starting. Cyclodextrins are useful excipients in eye drop formulations for a variety of lipophilic drugs. They will facilitate eye drop formulations for drugs that otherwise might not be available for topical use, while improving absorption and stability and decreasing local irritation.

  4. Protein crystal growth in space

    NASA Technical Reports Server (NTRS)

    Bugg, C. E.; Clifford, D. W.

    1987-01-01

    The advantages of protein crystallization in space, and the applications of protein crystallography to drug design, protein engineering, and the design of synthetic vaccines are examined. The steps involved in using protein crystallography to determine the three-dimensional structure of a protein are discussed. The growth chamber design and the hand-held apparatus developed for protein crystal growth by vapor diffusion techniques (hanging-drop method) are described; the experimental data from the four Shuttle missions are utilized to develop hardware for protein crystal growth in space and to evaluate the effects of gravity on protein crystal growth.

  5. Investigating a Drop-on-Demand Microdispenser for Standardized Sample Preparation

    DTIC Science & Technology

    2011-09-01

    including the printing of photodiodes , polymer and protein arrays , and in electronics manufacturing (4–7). These applications benefit from the wide...photograph of an array of microdroplets demonstrates a more even sample dispersion when sample is dispensed with a DOD microdispenser... threats encountered. A variety of techniques that offer temporary alternatives have been employed, including drop-and-dry (dropcasting) and spray

  6. Controllable embedding of sulfur in high surface area nitrogen doped three dimensional reduced graphene oxide by solution drop impregnation method for high performance lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Zegeye, Tilahun Awoke; Tsai, Meng-Che; Cheng, Ju-Hsiang; Lin, Ming-Hsien; Chen, Hung-Ming; Rick, John; Su, Wei-Nien; Kuo, Chung-Feng Jeffrey; Hwang, Bing-Joe

    2017-06-01

    High capacity lithium-sulfur batteries with stable cycle performance and sulfur loadings greater than 70 wt% are regarded as promising candidates for energy storage devices. However, it has been challenged to achieving practical application of sulfur cathode because of low loading of active sulfur and poor cycle performance. Herein, we design novel nanocomposite cathode materials consist of sulfur (80 wt%) embedded within nitrogen doped three-dimensional reduced graphene oxide (N-3D-rGO) by controllable sulfur-impregnation method. Nitrogen doping helps increase the surface area by ten times from pristine graphene, and pore volume by seven times. These structural features allow the cathode to hold more sulfur. It also adsorbs polysulfides and prevents their detachment from the host materials; thereby achieving stable cycle performance. The solution drop sulfur-impregnation method provides uniform distribution of nano-sulfur in controlled manner. The material delivers a high initial discharge capacity of 1042 mAhg-1 and 916 mAhg-1 with excellent capacity retention of 94.8% and 81.9% at 0.2 C and 0.5 C respectively after 100 cycles. Thus, the combination of solution drop and nitrogen doping opens a new chapter for resolving capacity fading as well as long cycling problems and creates a new strategy to increase sulfur loading in controlled mechanism.

  7. Interfacial layers from the protein HFBII hydrophobin: dynamic surface tension, dilatational elasticity and relaxation times.

    PubMed

    Alexandrov, Nikola A; Marinova, Krastanka G; Gurkov, Theodor D; Danov, Krassimir D; Kralchevsky, Peter A; Stoyanov, Simeon D; Blijdenstein, Theodorus B J; Arnaudov, Luben N; Pelan, Eddie G; Lips, Alex

    2012-06-15

    The pendant-drop method (with drop-shape analysis) and Langmuir trough are applied to investigate the characteristic relaxation times and elasticity of interfacial layers from the protein HFBII hydrophobin. Such layers undergo a transition from fluid to elastic solid films. The transition is detected as an increase in the error of the fit of the pendant-drop profile by means of the Laplace equation of capillarity. The relaxation of surface tension after interfacial expansion follows an exponential-decay law, which indicates adsorption kinetics under barrier control. The experimental data for the relaxation time suggest that the adsorption rate is determined by the balance of two opposing factors: (i) the barrier to detachment of protein molecules from bulk aggregates and (ii) the attraction of the detached molecules by the adsorption layer due to the hydrophobic surface force. The hydrophobic attraction can explain why a greater surface coverage leads to a faster adsorption. The relaxation of surface tension after interfacial compression follows a different, square-root law. Such behavior can be attributed to surface diffusion of adsorbed protein molecules that are condensing at the periphery of interfacial protein aggregates. The surface dilatational elasticity, E, is determined in experiments on quick expansion or compression of the interfacial protein layers. At lower surface pressures (<11 mN/m) the experiments on expansion, compression and oscillations give close values of E that are increasing with the rise of surface pressure. At higher surface pressures, E exhibits the opposite tendency and the data are scattered. The latter behavior can be explained with a two-dimensional condensation of adsorbed protein molecules at the higher surface pressures. The results could be important for the understanding and control of dynamic processes in foams and emulsions stabilized by hydrophobins, as well as for the modification of solid surfaces by adsorption of such proteins. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Water Transport in Bicontinuous, Phase-Separated Membranes Made from Reactive Block Copolymers

    DTIC Science & Technology

    2014-12-01

    polyurethane foam impregnated with activated carbon, a design that allows perspiration to evaporate while chemical agents are adsorbed onto the activated... dispersed into a minimal volume (4–5 drops) of ethanol. The catalyst solution was then added to the polymer solution while stirring rapidly. The solution...substituted styrene monomer; one interior block with units of other styrene monomers which have been sulfonated; non- dispersible and solid in water

  9. Method for producing nuclear fuel

    DOEpatents

    Haas, Paul A.

    1983-01-01

    Nuclear fuel is made by contacting an aqueous solution containing an actinide salt with an aqueous solution containing ammonium hydroxide, ammonium oxalate, or oxalic acid in an amount that will react with a fraction of the actinide salt to form a precipitate consisting of the hydroxide or oxalate of the actinide. A slurry consisting of the precipitate and solution containing the unreacted actinide salt is formed into drops which are gelled, calcined, and pressed to form pellets.

  10. SPECIFIC HEAT INDICATOR

    DOEpatents

    Horn, F.L.; Binns, J.E.

    1961-05-01

    Apparatus for continuously and automatically measuring and computing the specific heat of a flowing solution is described. The invention provides for the continuous measurement of all the parameters required for the mathematical solution of this characteristic. The parameters are converted to logarithmic functions which are added and subtracted in accordance with the solution and a null-seeking servo reduces errors due to changing voltage drops to a minimum. Logarithmic potentiometers are utilized in a unique manner to accomplish these results.

  11. Experimental study of the effect of drag reducing agent on pressure drop and thermal efficiency of an air cooler

    NASA Astrophysics Data System (ADS)

    Peyghambarzadeh, S. M.; Hashemabadi, S. H.; Saffarian, H.; Shekari, F.

    2016-01-01

    Effect of polymeric drag reduction agents (DRAs) on pressure drop and heat transfer was studied. Aqueous solutions of carboxy methyl cellulose were used inside an air-finned heat exchanger. Despite the previous studies which indicated the importance of drag reduction just in turbulent flow, results of this study in laminar flow indicated that the addition of DRA increases drag reduction, and decreases the overall heat transfer coefficient.

  12. A mixed formulation for interlaminar stresses in dropped-ply laminates

    NASA Technical Reports Server (NTRS)

    Harrison, Peter N.; Johnson, Eric R.

    1993-01-01

    A structural model is developed for the linear elastic response of structures consisting of multiple layers of varying thickness such as laminated composites containing internal ply drop-offs. The assumption of generalized plane deformation is used to reduce the solution domain to two dimensions while still allowing some out-of-plane deformation. The Hellinger-Reissner variational principle is applied to a layerwise assumed stress distribution with the resulting governing equations solved using finite differences.

  13. Fluorescent Approaches to High Throughput Crystallography

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Forsythe, Elizabeth

    2005-01-01

    X-ray crystallography remains the primary method for determining the structure of macromolecules. The first requirement is to have crystals, and obtaining them is often the rate-limiting step. The numbers of crystallization trials that are set up for any one protein for structural genomics, and the rate at which they are being set up, now overwhelm the ability for strictly human analysis of the results. Automated analysis methods are now being implemented with varying degrees of success, but these typically cannot reliably extract intermediate results. By covalently modifying a subpopulation, 51%, of a macromolecule solution with a fluorescent probe, the labeled material will add to a growing crystal as a microheterogeneous growth unit. Labeling procedures can be readily incorporated into the final stages of purification. The covalently attached probe will concentrate in the crystal relative to the solution, and under fluorescent illumination the crystals show up as bright objects against a dark background. As crystalline packing is more dense than amorphous precipitate, the fluorescence intensity can be used as a guide in distinguishing different types of precipitated phases, even in the absence of obvious crystalline features, widening the available potential lead conditions in the absence of clear hits. Non-protein structures, such as salt crystals, will not incorporate the probe and will not show up under fluorescent illumination. Also, brightly fluorescent crystals are readily found against less fluorescent precipitated phases, which under white light illumination may serve to obscure the crystals. Automated image analysis to find crystals should be greatly facilitated, without having to first define crystallization drop boundaries and by having the protein or protein structures all that show up. The trace fluorescently labeled crystals will also emit with sufficient intensity to aid in the automation of crystal alignment using relatively low cost optics, further increasing throughput at synchrotrons. This presentation will focus on the methodology for fluorescent labeling, the crystallization results, and the effects of the trace labeling on the crystal quality.

  14. Fluorescent Approaches to High Throughput Crystallography

    NASA Technical Reports Server (NTRS)

    Minamitani, Elizabeth Forsythe; Pusey, Marc L.

    2004-01-01

    X-ray crystallography remains the primary method for determining the structure of macromolecules. The first requirement is to have crystals, and obtaining them is often the rate-limiting step. The numbers of crystallization trials that are set up for any one protein for structural genomics, and the rate at which they are being set up, now overwhelm the ability for strictly human analysis of the results. Automated analysis methods are now being implemented with varying degrees of success, but these typically cannot reliably extract intermediate results. By covalently modifying a subpopulation, less than or = 1%, of a macromolecule solution with a fluorescent probe, the labeled material will add to a growing crystal as a microheterogeneous growth unit. Labeling procedures can be readily incorporated into the final stages of a macromolecules purification. The covalently attached probe will concentrate in the crystal relative to the solution, and under fluorescent illumination the crystals will show up as bright objects against a dark background. As crystalline packing is more dense than amorphous precipitate, the fluorescence intensity can be used as a guide in distinguishing different types of precipitated phases, even in the absence of obvious crystalline features, widening the available potential lead conditions in the absence of clear "bits." Non-protein structures, such as salt crystals, will not incorporate the probe and will not show up under fluorescent illumination. Also, brightly fluorescent crystals are readily found against less fluorescent precipitated phases, which under white light illumination may serve to obscure the crystals. Automated image analysis to find crystals should be greatly facilitated, without having to first define crystallization drop boundaries and by having the protein or protein structures all that show up. The trace fluorescently labeled crystals will also emit with sufficient intensity to aid in the automation of crystal alignment using relatively low cost optics, further increasing throughput at synchrotrons. This presentation will focus on the methodology for fluorescent labeling, the crystallization results, and the effects of the trace labeling on the crystal quality.

  15. Fluorescent Approaches to High Throughput Crystallography

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Forsythe, Elizabeth; Achari, Amiruddha

    2005-01-01

    X-ray crystallography remains the primary method for determining the structure of macromolecules. The first requirement is to have crystals, and obtaining them is often the rate-limiting step. The numbers of crystallization trials that are set up for any one protein for structural genomics, and the rate at which they are being set up, now overwhelm the ability for strictly human analysis of the results. Automated analysis methods are now being implemented with varying degrees of success, but these typically cannot reliably extract intermediate results. By covalently modifying a subpopulation, less than or = 1 %, of a macromolecule solution with a fluorescent probe, the labeled material will add to a growing crystal as a microheterogeneous growth unit. Labeling procedures can be readily incorporated into the final stages of purification. The covalently attached probe will concentrate in the crystal relative to the solution, and under fluorescent illumination the crystals show up as bright objects against a dark background. As crystalline packing is more dense than amorphous precipitate, the fluorescence intensity can be used as a guide in distinguishing different types of precipitated phases, even in the absence of obvious crystalline features, widening the available potential lead conditions in the absence of clear "hits." Non-protein structures, such as salt crystals, will not incorporate the probe and will not show up under fluorescent illumination. Also, brightly fluorescent crystals are readily found against less fluorescent precipitated phases, which under white light illumination may serve to obscure the crystals. Automated image analysis to find crystals should be greatly facilitated, without having to first define crystallization drop boundaries and by having the protein or protein structures all that show up. The trace fluorescently labeled crystals will also emit with sufficient intensity to aid in the automation of crystal alignment using relatively low cost optics, further increasing throughput at synchrotrons. Preliminary experiments show that the presence of the fluorescent probe does not affect the nucleation process or the quality of the X-ray data obtained.

  16. Fluorescent Approaches to High Throughput Crystallography

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Forsythe, Elizabeth

    2004-01-01

    X-ray crystallography remains the primary method for determining the structure of macromolecules. The first requirement is to have crystals, and obtaining them is often the rate-limiting step. The numbers of crystallization trials that are set up for any one protein for structural genomics, and the rate at which they are being set up, now overwhelm the ability for strictly human analysis of the results. Automated analysis methods are now being implemented with varying degrees of success, but these typically can not reliably extract intermediate results. By covalently modifying a subpopulation, less than or = 1%, of a macromolecule solution with a fluorescent probe, the labeled material will add to a growing crystal as a microheterogeneous growth unit. Labeling procedures can be readily incorporated into the final stages of purification. The covalently attached probe will concentrate in the crystal relative to the solution, and under fluorescent illumination the crystals show up as bright objects against a dark background. As crystalline packing is more dense than amorphous precipitate, the fluorescence intensity can be used as a guide in distinguishing different types of precipitated phases, even in the absence of obvious crystalline features, widening the available potential lead conditions in the absence of clear "hits." Non-protein structures, such as salt crystals, will not incorporate the probe and will not show up under fluorescent illumination. Also, brightly fluorescent crystals are readily found against less fluorescent precipitated phases, which under white light illumination may serve to obscure the crystals. Automated image analysis to find crystals should be greatly facilitated, without having to first define crystallization drop boundaries and by having the protein or protein structures all that show up. The trace fluorescently labeled crystals will also emit with sufficient intensity to aid in the automation of crystal alignment using relatively low cost optics, further increasing throughput at synchrotrons. This presentation will focus on the methodology for fluorescent labeling, the crystallization results, and the effects of the trace labeling on the crystal quality.

  17. A Fiber Optic Probe for Monitoring Protein Aggregation, Nucleation, and Crystallization

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Suh, Kwang I.; Arabshahi, Alireza; Wilson, William W.; Bray, Terry L.; DeLucas, Lawrence J.

    1996-01-01

    Protein crystals are experimentally grown in hanging drops in microgravity experiments on-board the Space Shuttle orbiter. The technique of dynamic light scattering (DLS) can be used to monitor crystal growth process in hanging droplets (approx. 30 (L)) in microgravity experiments, but elaborate instrumentation and optical alignment problems have made in-situ applications difficult. In this paper we demonstrate that such experiments are now feasible. We apply a newly developed fiber optic probe to various earth and space (micro- gravity) bound protein crystallization system configurations to test its capability. These include conventional batch (cuvette or capillary) systems, hanging drop method in a six-pack hanging drop vapor diffusion apparatus (HDVDA), a modified HDVDA for temperature- induced nucleation and aggregation studies, and a newly envisioned dynamically controlled vapor diffusion system (DCVDS) configuration. Our compact system exploits the principles of DLS and offers a fast (within a few seconds) means of quantitatively and non-invasively monitoring the various growth stages of protein crystallization. In addition to DLS capability, the probe can also be used for performing single-angle static light scattering measurements. It utilizes extremely low levels of laser power (approx. few (W)) without a need of having any optical alignment and vibration isolation. The compact probe is also equipped with a miniaturized microscope for visualization of macroscopic protein crystals. This new optical diagnostic system opens up enormous opportunity for exploring new ways to grow good quality crystals suitable for x-ray crystallographic analysis and may help develop a concrete scientific basis for understanding the process of crystallization.

  18. On the autonomous motion of active drops or bubbles.

    PubMed

    Ryazantsev, Yuri S; Velarde, Manuel G; Guzman, Eduardo; Rubio, Ramón G; Ortega, Francisco; Montoya, Juan-Jose

    2018-05-19

    Thermo-capillary stresses on the surface of a drop can be the result of a non-isothermal surface chemical conversion of a reactant dissolved in the host fluid. The strength of heat production (with e.g. absorption) on the surface is ruled by the diffusion of the reactant and depends on the state of motion of the drop. Such thermo-capillary stresses can provoke the motion of the drop or its motionless state in the presence of an external body force. If in the balance of forces, including indeed viscous drag, the net resultant force vanishes there is the possibility of autonomous motion with constant velocity of the drop. Focusing on drops with radii in the millimeter range provided here is a quantitative study of the possibility of such autonomous motion when the drop, considered as active unit, is seat of endo- or exo-thermic reactive processes that dominate its motion. The framework is restricted to Stokes flows in the hydrodynamics, negligible heat Peclet number while the solute Peclet number is considered very high. A boundary layer approximation is used in the description of reactant diffusion. Those processes eventually end up in the action being expressed by surface tension gradients and the Marangoni effect. Explicit expressions of the force acting on the drop and the velocity fields inside and outside the drop are provided. Some significant particular cases are discussed to illustrate the usefulness of the theory. Copyright © 2018. Published by Elsevier Inc.

  19. Crystallization and preliminary X-ray diffraction studies of choline-binding protein F from Streptococcus pneumoniae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molina, Rafael; González, Ana; Moscoso, Miriam

    2007-09-01

    The modular choline-binding protein F (CbpF) from S. pneumoniae has been crystallized by the hanging-drop vapour-diffusion method. A SAD data set from a gadolinium-complex derivative has been collected to 2.1 Å resolution. Choline-binding protein F (CbpF) is a modular protein that is bound to the pneumococcal cell wall through noncovalent interactions with choline moieties of the bacterial teichoic and lipoteichoic acids. Despite being one of the more abundant proteins on the surface, along with the murein hydrolases LytA, LytB, LytC and Pce, its function is still unknown. CbpF has been crystallized using the hanging-drop vapour-diffusion method at 291 K. Diffraction-qualitymore » orthorhombic crystals belong to space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 49.13, b = 114.94, c = 75.69 Å. A SAD data set from a Gd-HPDO3A-derivatized CbpF crystal was collected to 2.1 Å resolution at the gadolinium L{sub III} absorption edge using synchrotron radiation.« less

  20. Oscillations in a Linearly Stratified Salt Solution

    ERIC Educational Resources Information Center

    Heavers, Richard M.

    2007-01-01

    Our physics students like to watch a ball bouncing underwater. They do this by dropping a weighted plastic ball into a 1000-ml cylinder filled with a linearly stratified salt-water solution at room temperature. The ball oscillates and comes to rest at about mid-depth. Its motion is analogous to the damped vertical oscillations of a mass hanging…

  1. The influence of gravity on the distribution of the deposit formed onto a substrate by sessile, hanging, and sandwiched hanging drop evaporation.

    PubMed

    Sandu, Ion; Fleaca, Claudiu Teodor

    2011-06-15

    The focus of the present article is the study of the influence of gravity on the particle deposition profiles on a solid substrate during the evaporation of sessile, hanging and sandwiched hanging drops of colloidal particle suspensions. For concentrations of nanoparticles in the colloidal solutions in the range 0.0001-1 wt.%, highly diluted suspensions will preferentially form rings while concentrated suspensions will preferentially form spots in both sessile and hanging drop evaporation. For intermediary concentrations, the particle deposition profiles will depend on the nanoparticle aggregation dynamics in the suspension during the evaporation process, gravity and on the detailed evaporation geometry. The evaporation of a drop of toluene/carbon nanoparticle suspension hanging from a pendant water drop will leave on the substrate a circular spot with no visible external ring. By contrast, a clear external ring is formed on the substrate by the sessile evaporation of a similar drop of suspension sandwiched between a water drop and the substrate. From the application viewpoint, these processes can be used to create preferential electrical conductive carbon networks and contacts for arrays of self-assembled nanostructures fabricated on solid substrates as well as on flexible polymeric substrates. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Suppressing the coffee stain effect: how to control colloidal self-assembly in evaporating drops using electrowetting

    NASA Astrophysics Data System (ADS)

    Eral, Burak; Mampallil Augustine, Dileep; Duits, Michel; Mugele, Frieder; Physics of Complex Fluids Group, University of Twente Team

    2011-11-01

    We study the influence of electrowetting on the evaporative self-assembly and formation of undesired solute residues, so-called coffee stains, during the evaporation of a drop containing non-volatile solvents. Electrowetting is found to suppress coffee stains of both colloidal particles of various sizes and DNA solutions at alternating (AC) frequencies ranging from a few Hertz to a few tens of kHz. Two main effects are shown to contribute to the suppression: (i) the time-dependent electrostatic force prevents pinning of the three phase contact line and (ii) internal flow fields generated by AC electrowetting counteract the evaporation driven flux and thereby prevent the accumulation of solutes along the contact line Please see the link below for a short presentation and movies: http://www.youtube.com/watch?v=xwipCVZnN4E We thank the Chemical Sciences division of the Netherlands Organization for Scientific Research (NWO-CW) for financial support (ECHO grant).

  3. [Clinical study of the effectiveness of a dexpanthenol containing artificial tears solution (Siccaprotect) in treatment of dry eyes].

    PubMed

    Göbbels, M; Gross, D

    1996-01-01

    In this controlled, randomized, double-masked study the effect of dexpanthenol-containing artificial tears (Siccaprotect) on patients with dry eyes was examined. 50 patients applied either dexpanthenol-containing artificial tears (Siccaprotect) or the identical, but free of dexpanthenol, eye drops five times daily into the conjunctival sac. No other ophthalmics were administered. The corneal epithelial permeability was measured by fluorophotometry and Schirmer-Test, Rose Bengal staining, tear film break-up time and the patients' subjective complaints were determined before and after 6 weeks of treatment. The dexpanthenol-containing artificial tears (Siccaprotect) improved disturbances of the corneal epithelial permeability significantly in comparison to the dexpanthenol-free eyes drops. The other parameters didn't show relevant differences. These data suggest that, in dry eyes, treatment with dexpanthenol-containing eye drops leads to a favorable and comparing with dexpanthenol-free eye drops superior improvement in disturbances of corneal epithelium permeability.

  4. Green chemistry and nanofabrication in a levitated Leidenfrost drop

    NASA Astrophysics Data System (ADS)

    Abdelaziz, Ramzy; Disci-Zayed, Duygu; Hedayati, Mehdi Keshavarz; Pöhls, Jan-Hendrik; Zillohu, Ahnaf Usman; Erkartal, Burak; Chakravadhanula, Venkata Sai Kiran; Duppel, Viola; Kienle, Lorenz; Elbahri, Mady

    2013-10-01

    Green nanotechnology focuses on the development of new and sustainable methods of creating nanoparticles, their localized assembly and integration into useful systems and devices in a cost-effective, simple and eco-friendly manner. Here we present our experimental findings on the use of the Leidenfrost drop as an overheated and charged green chemical reactor. Employing a droplet of aqueous solution on hot substrates, this method is capable of fabricating nanoparticles, creating nanoscale coatings on complex objects and designing porous metal in suspension and foam form, all in a levitated Leidenfrost drop. As examples of the potential applications of the Leidenfrost drop, fabrication of nanoporous black gold as a plasmonic wideband superabsorber, and synthesis of superhydrophilic and thermal resistive metal-polymer hybrid foams are demonstrated. We believe that the presented nanofabrication method may be a promising strategy towards the sustainable production of functional nanomaterials.

  5. Green chemistry and nanofabrication in a levitated Leidenfrost drop

    PubMed Central

    Abdelaziz, Ramzy; Disci-Zayed, Duygu; Hedayati, Mehdi Keshavarz; Pöhls, Jan-Hendrik; Zillohu, Ahnaf Usman; Erkartal, Burak; Chakravadhanula, Venkata Sai Kiran; Duppel, Viola; Kienle, Lorenz; Elbahri, Mady

    2013-01-01

    Green nanotechnology focuses on the development of new and sustainable methods of creating nanoparticles, their localized assembly and integration into useful systems and devices in a cost-effective, simple and eco-friendly manner. Here we present our experimental findings on the use of the Leidenfrost drop as an overheated and charged green chemical reactor. Employing a droplet of aqueous solution on hot substrates, this method is capable of fabricating nanoparticles, creating nanoscale coatings on complex objects and designing porous metal in suspension and foam form, all in a levitated Leidenfrost drop. As examples of the potential applications of the Leidenfrost drop, fabrication of nanoporous black gold as a plasmonic wideband superabsorber, and synthesis of superhydrophilic and thermal resistive metal–polymer hybrid foams are demonstrated. We believe that the presented nanofabrication method may be a promising strategy towards the sustainable production of functional nanomaterials. PMID:24169567

  6. Pumping power considerations in the designs of NASA-Redox flow cells

    NASA Technical Reports Server (NTRS)

    Hoberecht, M. A.

    1981-01-01

    Pressure drop data for six different cell geometries of various flow port, manifold, and cavity dimensions are presented. The redox/energy/storage system uses two fully soluble redox couples as anode and cathode fluids. Both fluids are pumped through a redox cell, or stack of cells, where the electrochemical reactions take place at porous carbon felt electrodes. Pressure drop losses are therefore associated with this system due to the continuous flow of reactant solutions. The exact pressure drop within a redox flow cell is directly dependent on the flow rate as well as the various cell dimensions. Pumping power requirements for a specific set of cell operating conditions are found for various cell geometries once the flow rate and pressure drop are determined. These pumping power requirements contribute to the overall system parasitic energy losses which must be minimized, the choice of cell geometry becomes critical.

  7. Fabrication, Characterization and Modeling of Functionally Graded Materials

    NASA Astrophysics Data System (ADS)

    Lee, Po-Hua

    In the past few decades, a number of theoretical and experimental studies for design, fabrication and performance analysis of solar panel systems (photovoltaic/thermal systems) have been documented. The existing literature shows that the use of solar energy provides a promising solution to alleviate the shortage of natural resources and the environmental pollution associated with electricity generation. A hybrid solar panel has been invented to integrate photovoltaic (PV) cells onto a substrate through a functionally graded material (FGM) with water tubes cast inside, through which water flow serves as both a heat sink and a solar heat collector. Due to the unique and graded material properties of FGMs, this novel design not only supplies efficient thermal harvest and electrical production, but also provides benefits such as structural integrity and material efficiency. In this work, a sedimentation method has been used to fabricate aluminum (Al) and high-density polyethylene (HDPE) FGMs. The size effect of aluminum powder on the material gradation along the depth direction is investigated. Aluminum powder or the mixture of Al and HDPE powder is thoroughly mixed and uniformly dispersed in ethanol and then subjected to sedimentation. During the sedimentation process, the concentration of Al and HDPE particles temporally and spatially changes in the depth direction due to the non-uniform motion of particles; this change further affects the effective viscosity of the suspension and thus changes the drag force of particles. A Stokes' law based model is developed to simulate the sedimentation process, demonstrate the effect of manufacturing parameters on sedimentation, and predict the graded microstructure of deposition in the depth direction. In order to improve the modeling for sedimentation behavior of particles, the Eshelby's equivalent inclusion method (EIM) is presented to determine the interaction between particles, which is not considered in a Stokes' law based model. This method is initially applied to study the case of one drop moving in a viscous fluid; the solution recovers the closed form classic solution when the drop is spherical. Moreover, this method is general and can be applied to the cases of different drop shapes and the interaction between multiple drops. The translation velocities of the drops depend on the relative position, the center-to-center distance of drops, the viscosity and size of drops. For the case of a pair of identical spherical drops, the present method using a linear approximation of the eigenstrain rate has provided a very close solution to the classic explicit solution. If a higher order of the polynomial form of the eigenstrain rate is used, one can expect a more accurate result. To meet the final goal of mass production of the aforementioned Al-HDPE FGM, a faster and more economical material manufacturing method is proposed through a vibration method. The particle segregation of larger aluminum particles embedded in the concentrated suspension of smaller high-density polyethylene is investigated under vibration with different frequencies and magnitudes. Altering experimental parameters including time and amplitude of vibration, the suspension exhibits different particle segregation patterns: uniform-like, graded and bi-layered. For material characterization, small cylinder films of Al-HDPE system FGM are obtained after the stages of dry, melt and solidification. Solar panel prototypes are fabricated and tested at different water flow rates and solar irradiation intensities. The temperature distribution in the solar panel is measured and simulated to evaluate the performance of the solar panel. Finite element simulation results are very consistent with the experimental data. The understanding of heat transfer in the hybrid solar panel prototypes gained through this study will provide a foundation for future solar panel design and optimization.

  8. Expression, purification, crystallization and preliminary X-ray analysis of tannase from Lactobacillus plantarum

    PubMed Central

    Wu, Mingbo; Peng, Xiaohong; Wen, Hua; Wang, Qin; Chen, Qianming; McKinstry, William J.; Ren, Bin

    2013-01-01

    Tannase catalyses the hydrolysis of the galloyl ester bond of tannins to release gallic acid. It belongs to the serine esterases and has wide applications in the food, feed, beverage, pharmaceutical and chemical industries. The tannase from Lactobacillus plantarum was cloned, expressed and purified. The protein was crystallized by the sitting-drop vapour-diffusion method with microseeding. The crystals belonged to space group P1, with unit-cell paramters a = 46.5, b = 62.8, c = 83.8 Å, α = 70.4, β = 86.0, γ = 79.4°. Although the enzyme exists mainly as a monomer in solution, it forms a dimer in the asymmetric unit of the crystal. The crystals diffracted to beyond 1.60 Å resolution using synchrotron radiation and a complete data set was collected to 1.65 Å resolution. PMID:23545659

  9. Relationship between frequency and impedance change in an infusion rate measurement system employing a capacitance sensor - biomed 2011.

    PubMed

    Amano, Hikaru; Ogawa, Hidekuni; Maki, Hiromichi; Tsukamoto, Sosuke; Yonezawa, Yoshiharu; Hahn, Allen W; Caldwell, W Morton

    2011-01-01

    We have been searching for a suitable frequency range for an electrical impedance measurement infusion solution drip monitoring system, which we have previously reported. This electrical impedance, which is formed between two electrodes wrapped around the infusion supply polyvinyl-chloride tube and around the drip chamber, is changed by the growth and fall of each drop of fluid. Thus, the drip rate can be detected by measuring this impedance. However, many different kinds of infusion solutions such as glucose, amino acid, soya oil, and lactated Ringer’s solution are used in hospitals and care facilities. Therefore, it was necessary to find a suitable frequency for driving the capacitance-change sensor with a wide range of infusion solutions. In this study, the sensor electrical impedance change of 16 infusion solutions was measured from 1 kHz up to 1 MHz. The drip impedance produced by 5% glucose solution, 10% glucose solution and soya oil indicated the maximum sensor output change at 10 kHz, 20 kHz, and 70 kHz, respectively. The other 13 infusion solutions increased up to 10 kHz, and were constant from 10 kHz to 1 MHz. However, the growth, fall, and drip rate of the drops of all the infusion solutions were monitored by measuring the impedance change from 10 kHz to 30 kHz. Our experimental results indicated that most suitable excitation range for the infusion monitoring system is from 10 kHz to 30 kHz. Thus, we can now “fine-tune” the system for optimal sensing.

  10. Detailed statistical contact angle analyses; "slow moving" drops on inclining silicon-oxide surfaces.

    PubMed

    Schmitt, M; Groß, K; Grub, J; Heib, F

    2015-06-01

    Contact angle determination by sessile drop technique is essential to characterise surface properties in science and in industry. Different specific angles can be observed on every solid which are correlated with the advancing or the receding of the triple line. Different procedures and definitions for the determination of specific angles exist which are often not comprehensible or reproducible. Therefore one of the most important things in this area is to build standard, reproducible and valid methods for determining advancing/receding contact angles. This contribution introduces novel techniques to analyse dynamic contact angle measurements (sessile drop) in detail which are applicable for axisymmetric and non-axisymmetric drops. Not only the recently presented fit solution by sigmoid function and the independent analysis of the different parameters (inclination, contact angle, velocity of the triple point) but also the dependent analysis will be firstly explained in detail. These approaches lead to contact angle data and different access on specific contact angles which are independent from "user-skills" and subjectivity of the operator. As example the motion behaviour of droplets on flat silicon-oxide surfaces after different surface treatments is dynamically measured by sessile drop technique when inclining the sample plate. The triple points, the inclination angles, the downhill (advancing motion) and the uphill angles (receding motion) obtained by high-precision drop shape analysis are independently and dependently statistically analysed. Due to the small covered distance for the dependent analysis (<0.4mm) and the dominance of counted events with small velocity the measurements are less influenced by motion dynamics and the procedure can be called "slow moving" analysis. The presented procedures as performed are especially sensitive to the range which reaches from the static to the "slow moving" dynamic contact angle determination. They are characterised by small deviations of the computed values. Additional to the detailed introduction of this novel analytical approaches plus fit solution special motion relations for the drop on inclined surfaces and detailed relations about the reactivity of the freshly cleaned silicon wafer surface resulting in acceleration behaviour (reactive de-wetting) are presented. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Stress Drop and Directivity Patterns Observed in Small-Magnitude (

    NASA Astrophysics Data System (ADS)

    Ruhl, C. J.; Hatch, R. L.; Abercrombie, R. E.; Smith, K.

    2017-12-01

    Recent improvements in seismic instrumentation and network coverage in the Reno, NV area have provided high-quality records of abundant microseismicity, including several swarms and clusters. Here, we discuss stress drop and directivity patterns of small-magnitude seismicity in the 2008 Mw4.9 Mogul earthquake swarm in Reno, NV and in the nearby region of an ML3.2 sequence near Virginia City, NV. In both sequences, double-difference relocated earthquakes cluster on multiple distinct structures consistent with focal mechanism and moment tensor fault plane solutions. Both sequences also show migration potentially related to fluid flow. We estimate corner frequency and stress drop using EGF-derived spectral ratios, convolving earthquake pairs (target*EGF) such that we preserve phase and recover source-time functions (STF) on a station-by-station basis. We then stack individual STFs per station for all EGF-target pairs per target earthquake, increasing the signal-to-noise of our results. By applying an azimuthal- and incidence-angle-dependent stretching factor to STFs in the time domain, we are able to invert for rupture directivity and velocity assuming both unilateral and bilateral rupture. Earthquakes in both sequences, some as low as ML2.1, show strong unilateral directivity consistent with independent fault plane solutions. We investigate and compare the relationship between rupture and migration directions on subfaults within each sequence. Average stress drops for both sequences are 4 MPa, but there is large variation in individual estimates for both sequences. Although this variation is not explained simply by any one parameter (e.g., depth), spatiotemporal variation in the Mogul swarm is distinct: coherent clusters of high and low stress drop earthquakes along the mainshock fault plane are seen, and high-stress-drop foreshocks correlate with an area of reduced aftershock productivity. These observations are best explained by a difference in rheology along the fault plane. The unprecedented detail achieved for these small magnitude earthquakes confirms that stress drop, when measured precisely, is a valuable observation of physically-meaningful fault zone properties and earthquake behavior.

  12. Evaporation of Binary Sessile Drops: Infrared and Acoustic Methods To Track Alcohol Concentration at the Interface and on the Surface.

    PubMed

    Chen, Pin; Toubal, Malika; Carlier, Julien; Harmand, Souad; Nongaillard, Bertrand; Bigerelle, Maxence

    2016-09-27

    Evaporation of droplets of three pure liquids (water, 1-butanol, and ethanol) and four binary solutions (5 wt % 1-butanol-water-based solution and 5, 25, and 50 wt % ethanol-water-based solutions) deposited on hydrophobic silicon was investigated. A drop shape analyzer was used to measure the contact angle, diameter, and volume of the droplets. An infrared camera was used for infrared thermal mapping of the droplet's surface. An acoustic high-frequency echography technique was, for the first time, applied to track the alcohol concentration in a binary-solution droplet. Evaporation of pure alcohol droplets was executed at different values of relative humidity (RH), among which the behavior of pure ethanol evaporation was notably influenced by the ambient humidity as a result of high hygrometry. Evaporation of droplets of water and binary solutions was performed at a temperature of 22 °C and a mean humidity of approximately 50%. The exhaustion times of alcohol in the droplets estimated by the acoustic method and the visual method were similar for the water-1-butanol mixture; however, the time estimated by the acoustic method was longer when compared with that estimated by the visual method for the water-ethanol mixture due to the residual ethanol at the bottom of the droplet.

  13. Analysis of random drop for gateway congestion control. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Hashem, Emam Salaheddin

    1989-01-01

    Lately, the growing demand on the Internet has prompted the need for more effective congestion control policies. Currently No Gateway Policy is used to relieve and signal congestion, which leads to unfair service to the individual users and a degradation of overall network performance. Network simulation was used to illustrate the character of Internet congestion and its causes. A newly proposed gateway congestion control policy, called Random Drop, was considered as a promising solution to the pressing problem. Random Drop relieves resource congestion upon buffer overflow by choosing a random packet from the service queue to be dropped. The random choice should result in a drop distribution proportional to the bandwidth distribution among all contending TCP connections, thus applying the necessary fairness. Nonetheless, the simulation experiments demonstrate several shortcomings with this policy. Because Random Drop is a congestion control policy, which is not applied until congestion has already occurred, it usually results in a high drop rate that hurts too many connections including well-behaved ones. Even though the number of packets dropped is different from one connection to another depending on the buffer utilization upon overflow, the TCP recovery overhead is high enough to neutralize these differences, causing unfair congestion penalties. Besides, the drop distribution itself is an inaccurate representation of the average bandwidth distribution, missing much important information about the bandwidth utilization between buffer overflow events. A modification of Random Drop to do congestion avoidance by applying the policy early was also proposed. Early Random Drop has the advantage of avoiding the high drop rate of buffer overflow. The early application of the policy removes the pressure of congestion relief and allows more accurate signaling of congestion. To be used effectively, algorithms for the dynamic adjustment of the parameters of Early Random Drop to suite the current network load must still be developed.

  14. Structure of High-Speed Sprays.

    DTIC Science & Technology

    1985-02-01

    red (Appendix B and Ref. 9) and computed (Appendix C and Ref. 10) the drop veloci lies in the farfield of non vaporizing Diesel-type sprays; measured...and Ref. 9) and computed (Appendix C and Ref. 10) the drop velocities in the farfield of non vaporizing Diesel-type sprays; measured (11) (and are...r) e and 41 - ,(r) e Solutions free from singularities on the axis r- O are found to be f, = C , Io(kr) and #I = C , rI,(.r), where C , and Ca are

  15. Viscosity Measurement of Highly Viscous Liquids Using Drop Coalescence in Low Gravity

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.; Ethridge, Edwin; Maxwell, Daniel

    1999-01-01

    The method of drop coalescence is being investigated for use as a method for determining the viscosity of highly viscous undercooled liquids. Low gravity environment is necessary in this case to minimize the undesirable effects of body forces and liquid motion in levitated drops. Also, the low gravity environment will allow for investigating large liquid volumes which can lead to much higher accuracy for the viscosity calculations than possible under 1 - g conditions. The drop coalescence method is preferred over the drop oscillation technique since the latter method can only be applied for liquids with vanishingly small viscosities. The technique developed relies on both the highly accurate solution of the Navier-Stokes equations as well as on data from experiments conducted in near zero gravity environment. In the analytical aspect of the method two liquid volumes are brought into contact which will coalesce under the action of surface tension alone. The free surface geometry development as well as its velocity during coalescence which are obtained from numerical computations are compared with an analogous experimental model. The viscosity in the numerical computations is then adjusted to bring into agreement of the experimental results with the calculations. The true liquid viscosity is the one which brings the experiment closest to the calculations. Results are presented for method validation experiments performed recently on board the NASA/KC-135 aircraft. The numerical solution for this validation case was produced using the Boundary Element Method. In these tests the viscosity of a highly viscous liquid, in this case glycerine at room temperature, was determined to high degree of accuracy using the liquid coalescence method. These experiments gave very encouraging results which will be discussed together with plans for implementing the method in a shuttle flight experiment.

  16. Electrodynamic pressure modulation of protein stability in cosolvents.

    PubMed

    Damodaran, Srinivasan

    2013-11-19

    Cosolvents affect structural stability of proteins in aqueous solutions. A clear understanding of the mechanism by which cosolvents impact protein stability is critical to understanding protein folding in a biological milieu. In this study, we investigated the Lifshitz-van der Waals dispersion interaction of seven different solutes with nine globular proteins and report that in an aqueous medium the structure-stabilizing solutes exert a positive electrodynamic pressure, whereas the structure-destabilizing solutes exert a negative electrodynamic pressure on the proteins. The net increase in the thermal denaturation temperature (ΔTd) of a protein in 1 M solution of various solutes was linearly related to the electrodynamic pressure (PvdW) between the solutes and the protein. The slope of the PvdW versus ΔTd plots was protein-dependent. However, we find a positive linear relationship (r(2) = 0.79) between the slope (i.e., d(ΔTd)/dPvdW) and the adiabatic compressibility (βs) of the proteins. Together, these results clearly indicate that the Lifshitz's dispersion forces are inextricably involved in solute-induced stabilization/destabilization of globular proteins. The positive and/or negative electrodynamic pressure generated by the solute-protein interaction across the water medium seems to be the fundamental mechanism by which solutes affect protein stability. This is at variance with the existing preferential hydration concept. The implication of these results is significant in the sense that, in addition to the hydrophobic effect that drives protein folding, the electrodynamic forces between the proteins and solutes in the biological milieu also might play a role in the folding process as well as in the stability of the folded state.

  17. Rapid and automatic on-plate desalting protocol for MALDI-MS: using imprinted hydrophobic polymer template.

    PubMed

    Jia, Weitao; Wu, Huixia; Lu, Haojie; Li, Na; Zhang, Yang; Cai, Ruifang; Yang, Pengyuan

    2007-08-01

    A novel protocol of rapid and automatic on-plate desalting (OPD) and peptide concentration for 2-DE-MALDI-MS has been developed by the approach of templating the hydrophobic polymer solution over Kapton-etched mask. For the template technique, small hydrophobic polymer [linear poly(methyl methacrylate) (PMMA), PMMA derivatized with fullerene-C60 (PMMA-C60), linear polystyrene (PSt), or PSt derivatized with fullerene-C60 (PSt-C60)] spots (990 microm od) are patterned at the centers of stainless MALDI plate wells (1400 microm id). Tryptic-peptide solution with no predesalting was dropped onto the central hydrophobic spots, resulting in a concentration of proteolytic peptides on the hydrophobic polymer surface with a reduced spot size. The dried peptide layer was then covered subsequently with over-volume matrix solution, causing the removal of redissolved salts from the spot center to the spot edge by means of a natural "outward flow." The proposed OPD protocol exhibited a dramatic enhancement in S/N up to 850 for 14 fmol BSA digests in the coexistence of 100 mM salts, compared with barely detectable peaks in ordinary way. This analysis has shown that the success rate of identification was increased by two-fold for low abundance proteins in the human liver tissue with no need for the conventional ZipPlate desalting strategy.

  18. Lysozyme

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Protein isolated from hen egg-white and functions as a bacteriostatic enzyme by degrading bacterial cell walls. First enzyme ever characterized by protein crystallography. It is used as an excellent model system for better understanding parameters involved in microgravity experiments with data from laboratory experiments to study the equilibrium rate of hanging drop experiments in microgravity.

  19. Microgravity

    NASA Image and Video Library

    2004-04-15

    Protein isolated from hen egg-white and functions as a bacteriostatic enzyme by degrading bacterial cell walls. First enzyme ever characterized by protein crystallography. It is used as an excellent model system for better understanding parameters involved in microgravity experiments with data from laboratory experiments to study the equilibrium rate of hanging drop experiments in microgravity.

  20. Degree and duration of corneal anesthesia after topical application of 0.4% oxybuprocaine hydrochloride ophthalmic solution in ophthalmically normal dogs.

    PubMed

    Douet, Jean-Yves; Michel, Julien; Regnier, Alain

    2013-10-01

    To assess the anesthetic efficacy and local tolerance of topically applied 0.4% oxybuprocaine ophthalmic solution to in dogs and compare its effects with those of 1% tetracaine solution. 34 ophthalmically normal Beagles. Dogs were assigned to 2 groups, and baseline corneal touch threshold (CTT) was measured bilaterally with a Cochet-Bonnet aesthesiometer. Dogs of group 1 (n = 22) received a single drop of 0.4% oxybuprocaine ophthalmic solution in one eye and saline (0.9% NaCl) solution (control treatment) in the contralateral eye. Dogs of group 2 (n = 12) received a single drop of 0.4% oxybuprocaine ophthalmic solution in one eye and 1% tetracaine ophthalmic solution in the contralateral eye. The CTT of each eye was measured 1 and 5 minutes after topical application and then at 5-minute intervals until 75 minutes after topical application. CTT changes over time differed significantly between oxybuprocaine-treated and control eyes. After instillation of oxybuprocaine, maximal corneal anesthesia (CTT = 0) was achieved within 1 minute, and CTT was significantly decreased from 1 to 45 minutes, compared with the baseline value. No significant difference in onset, depth, and duration of corneal anesthesia was found between oxybuprocaine-treated and tetracaine-treated eyes. Conjunctival hyperemia and chemosis were detected more frequently in tetracaine-treated eyes than in oxybuprocaine-treated eyes. Topical application of oxybuprocaine and tetracaine similarly reduced corneal sensitivity in dogs, but oxybuprocaine was less irritating to the conjunctiva than was tetracaine.

  1. Viscosity Analysis of Dual Variable Domain Immunoglobulin Protein Solutions: Role of Size, Electroviscous Effect and Protein-Protein Interactions.

    PubMed

    Raut, Ashlesha S; Kalonia, Devendra S

    2016-01-01

    Increased solution viscosity results in difficulties in manufacturing and delivery of therapeutic protein formulations, increasing both the time and production costs, and leading to patient inconvenience. The solution viscosity is affected by the molecular properties of both the solute and the solvent. The purpose of this work was to investigate the effect of size, charge and protein-protein interactions on the viscosity of Dual Variable Domain Immunoglobulin (DVD-Ig(TM)) protein solutions. The effect of size of the protein molecule on solution viscosity was investigated by measuring intrinsic viscosity and excluded volume calculations for monoclonal antibody (mAb) and DVD-Ig(TM) protein solutions. The role of the electrostatic charge resulting in electroviscous effects for DVD-Ig(TM) protein was assessed by measuring zeta potential. Light scattering measurements were performed to detect protein-protein interactions affecting solution viscosity. DVD-Ig(TM) protein exhibited significantly higher viscosity compared to mAb. Intrinsic viscosity and excluded volume calculations indicated that the size of the molecule affects viscosity significantly at higher concentrations, while the effect was minimal at intermediate concentrations. Electroviscous contribution to the viscosity of DVD-Ig(TM) protein varied depending on the presence or absence of ions in the solution. In buffered solutions, negative k D and B 2 values indicated the presence of attractive interactions which resulted in high viscosity for DVD-Ig(TM) protein at certain pH and ionic strength conditions. Results show that more than one factor contributes to the increased viscosity of DVD-Ig(TM) protein and interplay of these factors modulates the overall viscosity behavior of the solution, especially at higher concentrations.

  2. Structural and Biochemical Studies of the Ovarian Tumor Domain

    DTIC Science & Technology

    2007-05-01

    solution containing Bis-Tris pH 5.5-6.5, 16-20% PEG 3350 , and 100-200 mM of a magnesium cation. These crystals belong to spacegroup P64 with unit...drop method using a reservoir solution containing Bis-Tris pH 5.5-6.5, 16-20% PEG 3350 , and 50-200 mM ammonium acetate . Orthorhombic crystals

  3. Non-Toxic, Low-Freezing, Drop-In Replacement Heat Transfer Fluids

    NASA Technical Reports Server (NTRS)

    Cutbirth, J. Michael

    2012-01-01

    A non-toxic, non-flammable, low-freezing heat transfer fluid is being developed for drop-in replacement within current and future heat transfer loops currently using water or alcohol-based coolants. Numerous water-soluble compounds were down-selected and screened for toxicological, physical, chemical, compatibility, thermodynamic, and heat transfer properties. Two fluids were developed, one with a freezing point near 0 C, and one with a suppressed freezing point. Both fluids contain an additive package to improve material compatibility and microbial resistance. The optimized sub-zero solution had a freezing point of 30 C, and a freezing volume expansion of 10-percent of water. The toxicity of the solutions was experimentally determined as LD(50) greater than 5g/kg. The solutions were found to produce minimal corrosion with materials identified by NASA as potentially existing in secondary cooling loops. Thermal/hydrodynamic performance exceeded that of glycol-based fluids with comparable freezing points for temperatures Tf greater than 20 C. The additive package was demonstrated as a buffering agent to compensate for CO2 absorption, and to prevent microbial growth. The optimized solutions were determined to have physically/chemically stable shelf lives for freeze/thaw cycles and longterm test loop tests.

  4. Investigation of the required length for fully developed pipe flow with drag-reducing polymer solutions

    NASA Astrophysics Data System (ADS)

    Farsiani, Yasaman; Elbing, Brian

    2015-11-01

    Adding trace amounts of long chain polymers into a liquid flow is known to reduce skin friction drag by up to 80%. While polymer drag reduction (PDR) has been successfully implemented in internal flows, diffusion and degradation have limited its external flow applications. A weakness in many previous PDR studies is that there was no characterization of the polymer being injected into the turbulent boundary layer, which can be accomplished by testing a sample in a pressure-drop tube. An implicit assumption in polymer characterization is that the flow is fully developed at the differential pressure measurement. While available data in the literature shows that the entry length to achieve fully developed flow increases with polymeric solutions, it is unclear how long is required to achieve fully developed flow for non-Newtonian turbulent flows. In the present study, the pressure-drop is measured across a 1.05 meter length section of a 1.04 cm inner diameter pipe. Differential pressure is measured with a pressure transducer for different entry lengths, flow and polymer solution properties. This presentation will present preliminary data on the required entrance length as well as characterization of polymer solution an estimate of the mean molecular weight.

  5. Antimicrobial activity of a new preservative for multiuse ophthalmic solutions.

    PubMed

    Ghelardi, Emilia; Celandroni, Francesco; Gueye, Sokhna A; Salvetti, Sara; Campa, Mario; Senesi, Sonia

    2013-01-01

    The aim of this study was to examine the antimicrobial activity and the preservative efficacy of a novel preservative solution containing sodium hydroxymethyl glycinate (SHMG) and edetate disodium (EDTA), which is used for preservation of some commercial ophthalmic formulations. In vitro susceptibility assays were performed against several gram-positive (Staphylococcus aureus, Staphylococcus epidermidis, and Bacillus cereus) and gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria representative of the microbial flora of epithelial surfaces or colonizing the conjunctiva, as well as against Candida albicans and Aspergillus niger. Using different concentrations of SHMG alone or in combination with EDTA, the minimal inhibitory and microbicidal concentrations against these organisms were assessed. In addition, 8 brands of multidose eye drops containing 0.002% SHMG and 0.1% EDTA as preservative were tested for antimicrobial activity using the antimicrobial effectiveness test recommended by the international pharmacopoeias. The minimal inhibitory and bactericidal/fungicidal concentration values of SHMG ranged from 0.0025% to 0.0125% for bacteria and from 0.125% to 0.50% for mold and yeast. Susceptibility testing demonstrated that the addition of EDTA substantially increased the SHMG activity against all bacterial and fungal strains. The preservative effectiveness test was applied to commercial eye drops. All the drop solutions met the criteria reported by the U.S. Pharmacopeia for parenteral and ophthalmic preparations. All products also satisfied the major acceptance criteria of the European Pharmacopeia with respect to the antifungal activity. With regard to the antibacterial activity, the less-stringent criteria of the European Pharmacopeia were fulfilled. The present study demonstrates the efficacy of a novel preservative for ophthalmic solutions (SHMG/EDTA) and its activity in protecting selected commercial artificial tears against microbial contamination.

  6. Early containment of high-alkaline solution simulating low-level radioactive waste stream in clay-bearing blended cement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, A.A.; Olson, R.A.; Tennis, P.D.

    1995-04-01

    Portland cement blended with fly ash and attapulgite clay was mixed with high-alkaline solution simulating low-level radioactive waste stream at a one-to-one weight ratio. Mixtures were adiabatically and isothermally cured at various temperatures and analyzed for phase composition, total alkalinity, pore solution chemistry, and transport properties as measured by impedance spectroscopy. Total alkalinity is characterized by two main drops. The early one corresponds to a rapid removal of phosphorous, aluminum, sodium, and to a lesser extent potassium solution. The second drop from about 10 h to 3 days is mainly associated with the removal of aluminum, silicon, and sodium. Thereafter,more » the total alkalinity continues descending, but at a lower rate. All pastes display a rapid flow loss that is attributed to an early precipitation of hydrated products. Hemicarbonate appears as early as one hour after mixing and is probably followed by apatite precipitation. However, the former is unstable and decomposes at a rate that is inversely related to the curing temperature. At high temperatures, zeolite appears at about 10 h after mixing. At 30 days, the stabilized crystalline composition Includes zeolite, apatite and other minor amounts of CaCO{sub 3}, quartz, and monosulfate Impedance spectra conform with the chemical and mineralogical data. The normalized conductivity of the pastes shows an early drop, which is followed by a main decrease from about 12 h to three days. At three days, the permeability of the cement-based waste as calculated by Katz-Thompson equation is over three orders of magnitude lower than that of ordinary portland cement paste. However, a further decrease in the calculated permeability is questionable. Chemical stabilization is favorable through incorporation of waste species into apatite and zeolite.« less

  7. Organic matter in central California radiation fogs.

    PubMed

    Herckes, Pierre; Lee, Taehyoung; Trenary, Laurie; Kang, Gongunn; Chang, Hui; Collett, Jeffrey L

    2002-11-15

    Organic matter was studied in radiation fogs in the San Joaquin Valley of California during the California Regional Particulate Air Quality Study (CRPAQS). Total organic carbon (TOC) concentrations ranged from 2 to 40 ppm of C. While most organic carbon was found in solution as dissolved organic carbon (DOC), 23% on average was not dissolved inside the fog drops. We observe a clear variation of organic matter concentration with droplet size. TOC concentrations in small fog drops (<17 microm) were a factor of 3, on average, higher than TOC concentrations in larger drops. As much as half of the dissolved organic matter was determined to have a molecular weight higher than 500 Da. Deposition fluxes of organic matter in fog drops were high (0.5-4.3 microg of C m(-2) min(-1)), indicating the importance of fog processing as a vector for removal of organic matter from the atmosphere. Deposition velocities of organic matter, however, were usually found to be lower than deposition velocities for fogwater, consistent with the enrichment of the organic matter in smaller fog drops with lower terminal settling velocities.

  8. Expression, Purification, Crystallization of Two Major Envelope Proteins from White Spot Syndrome Virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang,X.; Hew, C.

    2007-01-01

    White spot syndrome virus (WSSV) is a major virulent pathogen known to infect penaeid shrimp and other crustaceans. VP26 and VP28, two major envelope proteins from WSSV, have been identified and overexpressed in Escherichia coli. In order to facilitate purification and crystallization, predicted N-terminal transmembrane regions of approximately 35 amino acids have been truncated from both VP26 and VP28. Truncated VP26 and VP28 and their corresponding SeMet-labelled proteins were purified and the SeMet proteins were crystallized by the hanging-drop vapor-diffusion method. Crystals of SeMet-labelled VP26 were obtained using a reservoir consisting of 0.1 M citric acid pH 3.5, 3.0 Mmore » sodium chloride and 1%(w/v) polyethylene glycol 3350, whereas SeMet VP28 was crystallized using a reservoir solution consisting of 25% polyethylene glycol 8000, 0.2 M calcium acetate, 0.1 M Na HEPES pH 7.5 and 1.5%(w/v) 1,2,3-heptanetriol. Crystals of SeMet-labelled VP26 diffract to 2.2 {angstrom} resolution and belong to space group R32, with unit-cell parameters a = b = 73.92, c = 199.31 {angstrom}. SeMet-labelled VP28 crystallizes in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 105.33, b = 106.71, c = 200.37 {angstrom}, and diffracts to 2.0 {angstrom} resolution.« less

  9. X-ray transparent Microfluidics for Protein Crystallization and Biomineralization

    NASA Astrophysics Data System (ADS)

    Opathalage, Achini

    Protein crystallization demands the fundamental understanding of nucleation and applying techniques to find the optimal conditions to achieve the kinetic pathway for a large and defect free crystal. Classical nucleation theory predicts that the nucleation occurs at high supersaturation conditions. In this dissertation we sought out to develop techniques to attain optimal supersaturation profile to a large defect free crystal and subject it to in-situ X-ray diffraction using microfluidics. We have developed an emulsion-based serial crystallographic technology in nanolitre-sized droplets of protein solution encapsulated in to nucleate one crystal per drop. Diffraction data are measured, one crystal at a time, from a series of room temperature crystals stored on an X-ray semi-transparent microfluidic chip, and a 93% complete data set is obtained by merging single diffraction frames taken from different un-oriented crystals. As proof of concept, the structure of Glucose Isomerase was solved to 2.1 A. We have developed a suite of X-ray semi-transparent micrfluidic devices which enables; controlled evaporation as a method of increasing supersaturation and manipulating the phase space of proteins and small molecules. We exploited the inherently high water permeability of the thin X-ray semi-transparent devices as a mean of increasing the supersaturation by controlling the evaporation. We fabricated the X-ray semi-transparent version of the PhaseChip with a thin PDMS membrane by which the storage and the reservoir layers are separated, and studies the phase transition of amorphous CaCO3.

  10. Calculation of the attenuation and phase displacement per unit of length due to rain composed of ellipsoidal drops

    NASA Technical Reports Server (NTRS)

    Maggiori, D.

    1981-01-01

    All of the phenomena which influence the propagation of radiowaves at frequencies above 10 GHz (attenuation, depolarization, scintillation) can by intensified by parameters directly derived from a solution of individual scatter, naturally in addition to be meteorological elements which characterize the physical medium. The diffusion caused by rainy precipitation was studied using Mie's algorithm for rain composed of spherical drops, and Oguchi's algorithm for rain composed of drops in an ellipsoidal form with axes of rotational symmetry arrange along the vertical line of a generic reference point. Specific phase displacement and attenuation along the principal planes, propagation of radiowaves in generic polarization, and propagation with inclined axes are also considered.

  11. Fluorescent Applications to Crystallization

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Forsythe, Elizabeth; Achari, Aniruddha

    2006-01-01

    By covalently modifying a subpopulation, less than or equal to 1%, of a macromolecule with a fluorescent probe, the labeled material will add to a growing crystal as a microheterogeneous growth unit. Labeling procedures can be readily incorporated into the final stages of purification, and tests with model proteins have shown that labeling u to 5 percent of the protein molecules does not affect the X-ray data quality obtained . The presence of the trace fluorescent label gives a number of advantages. Since the label is covalently attached to the protein molecules, it "tracks" the protein s response to the crystallization conditions. The covalently attached probe will concentrate in the crystal relative to the solution, and under fluorescent illumination crystals show up as bright objects against a darker background. Non-protein structures, such as salt crystals, do not show up under fluorescent illumination. Crystals have the highest protein concentration and are readily observed against less bright precipitated phases, which under white light illumination may obscure the crystals. Automated image analysis to find crystals should be greatly facilitated, without having to first define crystallization drop boundaries as the protein or protein structures is all that shows up. Fluorescence intensity is a faster search parameter, whether visually or by automated methods, than looking for crystalline features. Preliminary tests, using model proteins, indicates that we can use high fluorescence intensity regions, in the absence of clear crystalline features or "hits", as a means for determining potential lead conditions. A working hypothesis is that more rapid amorphous precipitation kinetics may overwhelm and trap more slowly formed ordered assemblies, which subsequently show up as regions of brighter fluorescence intensity. Experiments are now being carried out to test this approach using a wider range, of proteins. The trace fluorescently labeled crystals will also emit with sufficient intensity to aid in the automation of crystal alignment using relatively low cost optics, further increasing throughput at synchrotrons.

  12. Guaranteed Discrete Energy Optimization on Large Protein Design Problems.

    PubMed

    Simoncini, David; Allouche, David; de Givry, Simon; Delmas, Céline; Barbe, Sophie; Schiex, Thomas

    2015-12-08

    In Computational Protein Design (CPD), assuming a rigid backbone and amino-acid rotamer library, the problem of finding a sequence with an optimal conformation is NP-hard. In this paper, using Dunbrack's rotamer library and Talaris2014 decomposable energy function, we use an exact deterministic method combining branch and bound, arc consistency, and tree-decomposition to provenly identify the global minimum energy sequence-conformation on full-redesign problems, defining search spaces of size up to 10(234). This is achieved on a single core of a standard computing server, requiring a maximum of 66GB RAM. A variant of the algorithm is able to exhaustively enumerate all sequence-conformations within an energy threshold of the optimum. These proven optimal solutions are then used to evaluate the frequencies and amplitudes, in energy and sequence, at which an existing CPD-dedicated simulated annealing implementation may miss the optimum on these full redesign problems. The probability of finding an optimum drops close to 0 very quickly. In the worst case, despite 1,000 repeats, the annealing algorithm remained more than 1 Rosetta unit away from the optimum, leading to design sequences that could differ from the optimal sequence by more than 30% of their amino acids.

  13. [Safety and efficacy of a new preservative-free levocabastine ophthalmic solution (Levofree®) using the conjunctival provocation test].

    PubMed

    Allaire, C; Siou-Mermet, R; Bassols, A

    2012-09-01

    To evaluate the safety and efficacy of preservative-free levocabastine 0.05 % ophthalmic solution compared to placebo (vehicle) and to preserved levocabastine 0.05 % ophthalmic suspension in the prevention of allergic conjunctivitis induced by a conjunctival provocation test. Ninety-two subjects (18-50 years) with a previous history of allergic conjunctivitis to pollen were randomised to receive either preservative-free levocabastine solution in one eye and preserved levocabastine suspension in the fellow eye (n=69), or preservative-free levocabastine in one eye and placebo in the fellow eye (n=23). One drop of each product was administered 10 minutes (visit 3) and 4 hours (visit 4) prior to the provocation test. The primary efficacy criterion was the sum of the itching and conjunctival hyperemia scores assessed at 3, 5 and 10 minutes after the provocation test. The safety evaluation included adverse events, visual acuity, intra-ocular pressure and study drug drop sensation. The efficacy of the preservative-free solution was significantly higher than that of placebo at all time points (P≤0.01) with one exception at visit 4 (3 minutes after the provocation test). It was significantly higher than that of the preserved suspension at visit 3, and equivalent at visit 4. The incidence of adverse events was lower with the preservative-free solution than with the preserved suspension. 94.2 % and 95.7 % subjects rated preservative-free levocabastine drop sensation as "good" or "very good" at visits 3 and 4 respectively, whereas these rates were 68.1 % and 63.8 % with preserved levocabastine. This difference between the two formulations was highly statistically significant (P<0.001). The efficacy of preservative-free levocabastine was superior to that of the placebo and of the preserved suspension at visit 3, at least as effective as the preserved suspension at visit 4, and better tolerated at each visit. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  14. Accurate high-speed liquid handling of very small biological samples.

    PubMed

    Schober, A; Günther, R; Schwienhorst, A; Döring, M; Lindemann, B F

    1993-08-01

    Molecular biology techniques require the accurate pipetting of buffers and solutions with volumes in the microliter range. Traditionally, hand-held pipetting devices are used to fulfill these requirements, but many laboratories have also introduced robotic workstations for the handling of liquids. Piston-operated pumps are commonly used in manually as well as automatically operated pipettors. These devices cannot meet the demands for extremely accurate pipetting of very small volumes at the high speed that would be necessary for certain applications (e.g., in sequencing projects with high throughput). In this paper we describe a technique for the accurate microdispensation of biochemically relevant solutions and suspensions with the aid of a piezoelectric transducer. It is suitable for liquids of a viscosity between 0.5 and 500 milliPascals. The obtainable drop sizes range from 5 picoliters to a few nanoliters with up to 10,000 drops per second. Liquids can be dispensed in single or accumulated drops to handle a wide volume range. The system proved to be excellently suitable for the handling of biological samples. It did not show any detectable negative impact on the biological function of dissolved or suspended molecules or particles.

  15. Energetics of metastudtite and implications for nuclear waste alteration

    PubMed Central

    Guo, Xiaofeng; Ushakov, Sergey V.; Labs, Sabrina; Curtius, Hildegard; Bosbach, Dirk; Navrotsky, Alexandra

    2014-01-01

    Metastudtite, (UO2)O2(H2O)2, is one of two known natural peroxide minerals, but little is established about its thermodynamic stability. In this work, its standard enthalpy of formation, −1,779.6 ± 1.9 kJ/mol, was obtained by high temperature oxide melt drop solution calorimetry. Decomposition of synthetic metastudtite was characterized by thermogravimetry and differential scanning calorimetry (DSC) with ex situ X-ray diffraction analysis. Four decomposition steps were observed in oxygen atmosphere: water loss around 220 °C associated with an endothermic heat effect accompanied by amorphization; another water loss from 400 °C to 530 °C; oxygen loss from amorphous UO3 to crystallize orthorhombic α-UO2.9; and reduction to crystalline U3O8. This detailed characterization allowed calculation of formation enthalpy from heat effects on decomposition measured by DSC and by transposed temperature drop calorimetry, and both these values agree with that from drop solution calorimetry. The data explain the irreversible transformation from studtite to metastudtite, the conditions under which metastudtite may form, and its significant role in the oxidation, corrosion, and dissolution of nuclear fuel in contact with water. PMID:25422465

  16. Energetics of metastudtite and implications for nuclear waste alteration

    DOE PAGES

    Guo, Xiaofeng; Ushakov, Sergey V.; Labs, Sabrina; ...

    2014-11-24

    Metastudtite, (UO 2)O 2(H 2O) 2, is one of two known natural peroxide minerals, but little is established about its thermodynamic stability. In this work, its standard enthalpy of formation, $-$1,779.6 ± 1.9 kJ/mol, was obtained by high temperature oxide melt drop solution calorimetry. Decomposition of synthetic metastudtite was characterized by thermogravimetry and differential scanning calorimetry (DSC) with ex situ X-ray diffraction analysis. We observed four decomposition steps in oxygen atmosphere: water loss around 220 °C associated with an endothermic heat effect accompanied by amorphization; another water loss from 400 °C to 530 °C; oxygen loss from amorphous UO 3more » to crystallize orthorhombic α-UO 2.9; and reduction to crystalline U 3O 8. This detailed characterization allowed calculation of formation enthalpy from heat effects on decomposition measured by DSC and by transposed temperature drop calorimetry, and both these values agree with that from drop solution calorimetry. The data explain the irreversible transformation from studtite to metastudtite, the conditions under which metastudtite may form, and its significant role in the oxidation, corrosion, and dissolution of nuclear fuel in contact with water.« less

  17. Unstable bidimensional grids of liquid filaments: Drop pattern after breakups

    NASA Astrophysics Data System (ADS)

    Diez, Javier; Cuellar, Ingrith; Ravazzoli, Pablo; Gonzalez, Alejandro

    2017-11-01

    A rectangular grid formed by liquid filaments on a partially wetting substrate evolves in a series of breakups leading to arrays of drops with different shapes distributed in a rather regular bidimensional pattern. Our study is focused on the configuration produced when two long parallel filaments of silicone oil, which are placed upon a glass substrate previously coated with a fluorinated solution, are crossed perpendicularly by another pair of long parallel filaments. A remarkable feature of this kind of grids is that there are two qualitatively different types of drops. While one set is formed at the crossing points, the rest are consequence of the breakup of shorter filaments formed between the crossings. Here, we analyze the main geometric features of all types of drops, such as shape of the footprint and contact angle distribution along the drop periphery. The formation of a series of short filaments with similar geometric and physical properties allows us to have simultaneously quasi identical experiments to study the subsequent breakups. We develop a simple hydrodynamic model to predict the number of drops that results from a filament of given initial length and width. This model is able to yield the length intervals corresponding to a small number of drops. We acknowledge support from CONICET-Argentina (Grant PIP 844/2012) and ANPCyT-Argentina (Grant PICT 931/2012).

  18. A modified Lowry protein test for dilute protein solutions

    Treesearch

    Garold F. Gregory; Keith F. Jensen

    1971-01-01

    A modified Lowry protein test for dilute protein solutions modified Lowry protein test was compared with the standard Lowry protein test. The modified test was found to give estimates of protein concentration that were as good as the standard test and has the advange that proteins can be measured in very dilute solutions.

  19. Crystallization and preliminary X-ray diffraction of the DEAD-box protein Mss116p complexed with an RNA oligonucleotide and AMP-PNP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del Campo, Mark; Lambowitz, Alan M.; Texas)

    2009-09-02

    The Saccharomyces cerevisiae DEAD-box protein Mss116p is a general RNA chaperone which functions in mitochondrial group I and group II intron splicing, translation and RNA-end processing. For crystallization trials, full-length Mss116p and a C-terminally truncated protein (Mss116p/{Delta}598-664) were overproduced in Escherichia coli and purified to homogeneity. Mss116p exhibited low solubility in standard solutions ({le}1 mg ml{sup -1}), but its solubility could be increased by adding 50 mM L-arginine plus 50 mM L-glutamate and 50% glycerol to achieve concentrations of {approx}10 mg ml{sup -1}. Initial crystals were obtained by the microbatch method in the presence of a U{sub 10} RNA oligonucleotidemore » and the ATP analog AMP-PNP and were then improved by using seeding and sitting-drop vapor diffusion. A cryocooled crystal of Mss116p/{Delta}598-664 in complex with AMP-PNP and U{sub 10} belonged to space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 88.54, b = 126.52, c = 55.52 {angstrom}, and diffracted X-rays to beyond 1.9 {angstrom} resolution using synchrotron radiation from sector 21 at the Advanced Photon Source.« less

  20. Analysis of solute-protein interactions and solute-solute competition by zonal elution affinity chromatography.

    PubMed

    Tao, Pingyang; Poddar, Saumen; Sun, Zuchen; Hage, David S; Chen, Jianzhong

    2018-02-02

    Many biological processes involve solute-protein interactions and solute-solute competition for protein binding. One method that has been developed to examine these interactions is zonal elution affinity chromatography. This review discusses the theory and principles of zonal elution affinity chromatography, along with its general applications. Examples of applications that are examined include the use of this method to estimate the relative extent of solute-protein binding, to examine solute-solute competition and displacement from proteins, and to measure the strength of these interactions. It is also shown how zonal elution affinity chromatography can be used in solvent and temperature studies and to characterize the binding sites for solutes on proteins. In addition, several alternative applications of zonal elution affinity chromatography are discussed, which include the analysis of binding by a solute with a soluble binding agent and studies of allosteric effects. Other recent applications that are considered are the combined use of immunoextraction and zonal elution for drug-protein binding studies, and binding studies that are based on immobilized receptors or small targets. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Interlaminar stress analysis of dropped-ply laminated plates and shells by a mixed method. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Harrison, Peter N.; Johnson, Eric R.; Starnes, James H., Jr.

    1994-01-01

    A mixed method of approximation based on Reissner's variational principle is developed for the linear analysis of interlaminar stresses in laminated composites, with special interest in laminates that contain terminated internal plies (dropped-ply laminates). Two models are derived, one for problems of generalized plane deformation and the other for the axisymmetric response of shells of revolution. A layerwise approach is taken in which the stress field is assumed with an explicit dependence on the thickness coordinate in each layer. The dependence of the stress field on the thickness coordinate is determined such that the three-dimensional equilibrium equations are satisfied by the approximation. The solution domain is reduced to one dimension by integration through the thickness. Continuity of tractions and displacements between layers is imposed. The governing two-point boundary value problem is composed of a system of both differential and algebraic equations (DAE's) and their associated boundary conditions. Careful evaluation of the system of DAE's was required to arrive at a form that allowed application of a one-step finite difference approximation. A two-stage Gauss implicit Runge-Kutta finite difference scheme was used for the solution because of its relatively high degree of accuracy. Patch tests of the two models revealed problems with solution accuracy for the axisymmetric model of a cylindrical shell loaded by internal pressure. Parametric studies of dropped-ply laminate characteristics and their influence on the interlaminar stresses were performed using the generalized plane deformation model. Eccentricity of the middle surface of the laminate through the ply drop-off was found to have a minimal effect on the interlaminar stresses under longitudinal compression, transverse tension, and in-plane shear. A second study found the stiffness change across the ply termination to have a much greater influence on the interlaminar stresses.

  2. Characterizing SHP2 as a Novel Therapeutic Target in Breast Cancer

    DTIC Science & Technology

    2013-02-01

    attempted to elucidate interactions with molecular docking (5). The peptide was docked into the SH2 active site of 2SHP.pdb (with SH2 domains...activated protein kinase (MAPK) pathway, which is read as a drop in phosphorylated ERK protein(3). 5 First, the problem of cell permeability

  3. Viscoelastic drops moving on hydrophilic and superhydrophobic surfaces.

    PubMed

    Xu, H; Clarke, A; Rothstein, J P; Poole, R J

    2018-03-01

    So-called "superhydrophobic" surfaces are strongly non-wetting such that fluid droplets very easily roll off when the surface is tilted. Our interest here is in understanding if this is also true, all else held equal, for viscoelastic fluid drops. We study the movement of Newtonian and well-characterised constant-viscosity elastic liquids when various surfaces, including hydrophilic (smooth glass), weakly hydrophobic (embossed polycarbonate) and superhydrophobic surfaces (embossed PTFE), are impulsively tilted. Digital imaging is used to record the motion and extract drop velocity. Optical and SEM imaging is used to probe the surfaces. In comparison with "equivalent" Newtonian fluids (same viscosity, density surface tension and contact angles), profound differences for the elastic fluids are only observed on the superhydrophobic surfaces: the elastic drops slide at a significantly reduced rate and complex branch-like patterns are left on the surface by the drop's wake including, on various scales, beads-on-a-string-like phenomena. The strong viscoelastic effect is caused by stretching filaments of fluid from isolated islands, residing at pinning sites on the surface pillars, of order ∼30 µm in size. On this scale, the local strain rates are sufficient to extend the polymer chains, locally increasing the extensional viscosity of the solution, retarding the drop. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Corneal thickness values before and after oxybuprocaine 0.4% eye drops.

    PubMed

    Asensio, Isabel; Rahhal, Saleh M; Alonso, Luis; Palanca-Sanfrancisco, José M; Sanchis-Gimeno, Juan A

    2003-08-01

    To determine changes in corneal thickness after topical anesthesia. Corneal thickness was measured before and 3 minutes after administration of two drops of oxybuprocaine 0.4% to 26 patients (26 eyes). We analyzed the corneal thickness of a control group, which was made up of 26 patients (26 eyes) before and 3 minutes after administration of two drops of saline solution. Corneal thickness was measured with the Orbscan Topography System II (Bausch Lomb Surg., Barcelona). Variations higher than +/- 10 microm were found following the instillation of 2 oxybuprocaine eye drops in eight eyes (30.76%) at the inferonasal cornea, in six eyes (23.08%) at the superotemporal, temporal and inferotemporal cornea, in five eyes (19.23%) at the nasal cornea, in three eyes (11.53%) at the central cornea, and in two eyes (7.69%) at the superonasal cornea. Nevertheless, no significant differences in the mean corneal thickness at each corneal location between the first and the second corneal thickness measurements were found in anesthetized eyes. Some individuals can present important increases and decreases in corneal thickness values after anesthetic eye drops. This effect of anesthetic eye drops must be considered by refractive surgeons when carrying out preoperative laser in situ keratomileusis corneal thickness measurements.

  5. Timolol Ophthalmic

    MedlinePlus

    ... after you instill timolol eye drops or gel-forming solution.tell your doctor if you have or have ever had thyroid, heart, or lung disease; congestive heart failure; myasthenia gravis; or diabetes.tell your doctor if you are pregnant, plan ...

  6. Pharmaceutical Perspective on Opalescence and Liquid-Liquid Phase Separation in Protein Solutions.

    PubMed

    Raut, Ashlesha S; Kalonia, Devendra S

    2016-05-02

    Opalescence in protein solutions reduces aesthetic appeal of a formulation and can be an indicator of the presence of aggregates or precursor to phase separation in solution signifying reduced product stability. Liquid-liquid phase separation of a protein solution into a protein-rich and a protein-poor phase has been well-documented for globular proteins and recently observed for monoclonal antibody solutions, resulting in physical instability of the formulation. The present review discusses opalescence and liquid-liquid phase separation (LLPS) for therapeutic protein formulations. A brief discussion on theoretical concepts based on thermodynamics, kinetics, and light scattering is presented. This review also discusses theoretical concepts behind intense light scattering in the vicinity of the critical point termed as "critical opalescence". Both opalescence and LLPS are affected by the formulation factors including pH, ionic strength, protein concentration, temperature, and excipients. Literature reports for the effect of these formulation factors on attractive protein-protein interactions in solution as assessed by the second virial coefficient (B2) and the cloud-point temperature (Tcloud) measurements are also presented. The review also highlights pharmaceutical implications of LLPS in protein solutions.

  7. Liquid-Liquid Phase Separation in a Dual Variable Domain Immunoglobulin Protein Solution: Effect of Formulation Factors and Protein-Protein Interactions.

    PubMed

    Raut, Ashlesha S; Kalonia, Devendra S

    2015-09-08

    Dual variable domain immunoglobulin proteins (DVD-Ig proteins) are large molecules (MW ∼ 200 kDa) with increased asymmetry because of their extended Y-like shape, which results in increased formulation challenges. Liquid-liquid phase separation (LLPS) of protein solutions into protein-rich and protein-poor phases reduces solution stability at intermediate concentrations and lower temperatures, and is a serious concern in formulation development as therapeutic proteins are generally stored at refrigerated conditions. In the current work, LLPS was studied for a DVD-Ig protein molecule as a function of solution conditions by measuring solution opalescence. LLPS of the protein was confirmed by equilibrium studies and by visually observing under microscope. The protein does not undergo any structural change after phase separation. Protein-protein interactions were measured by light scattering (kD) and Tcloud (temperature that marks the onset of phase separation). There is a good agreement between kD measured in dilute solution with Tcloud measured in the critical concentration range. Results indicate that the increased complexity of the molecule (with respect to size, shape, and charge distribution on the molecule) increases contribution of specific and nonspecific interactions in solution, which are affected by formulation factors, resulting in LLPS for DVD-Ig protein.

  8. Sensitive determination of cadmium using solidified floating organic drop microextraction-slotted quartz tube-flame atomic absorption spectroscopy.

    PubMed

    Akkaya, Erhan; Chormey, Dotse Selali; Bakırdere, Sezgin

    2017-09-20

    In this study, solidified floating organic drop microextraction (SFODME) by 1-undecanol was combined with slotted quartz tube flame atomic absorption spectrometry (SQT-FAAS) for the determination of cadmium at trace levels. Formation of a complex with 4,4'-dimethyl-2,2'-bipyridine facilitated the extraction of cadmium from aqueous solutions. Several chemical variables were optimized in order to obtain high extraction outputs. Parameters such as concentration of the ligand, pH, and amount of buffer solution were optimized to enhance the formation of cadmium complex. The SFODME method was assisted by dispersion of extractor solvent into aqueous solutions using 2-propanol. Under the optimum extraction and instrumental conditions, the limit of detection and limit of quantitation values obtained for cadmium using the combined methods (SFODME-SQT-FAAS) were found to be 0.4 and 1.3 μg L -1 , respectively. Matrix effects on the method were also examined for tap water and wastewater, and spiked recovery results were found to be very satisfactory. Graphical Abstract SFODME-SQT-FAAS system for sensitive determination of cadmium.

  9. Simple Preparation of Timolol 0.5% Gel from Eye Drop Solution for Superficial Infantile Hemangiomas.

    PubMed

    Choo, Winnie

    2017-01-01

    The discovery of beta-adrenergic blocker effects on infantile hemangiomas has affected the choice of treatment in recent years. Oral propranolol is effective in treating infantile hemangiomas, but the risk of systemic side effects remains a concern. Data from literature review reported positive clinical outcomes with no major adverse effects observed in children using topical beta-blocker such as timolol maleate. Topical application of timolol eye drop has been mentioned in few studies, most of which reported that the solution cannot stay on the site of application due to its fluidity. Adding hydroxyethyl cellulose into a timolol solution increased its viscosity by forming a hydrogel and thus changed the rheology property. The compounded timolol gel exhibited thixotropy property allowing better and longer contact at sites of application. Experimental data from literature review showed desirable characteristics and measurable flux of timolol across human stratum corneum. Gel dosage form allows easy and precise application and maximizes timolol's therapeutic efficacy at the sites of application. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  10. Solution of mixed convection heat transfer from isothermal in-line fins

    NASA Technical Reports Server (NTRS)

    Khalilollahi, Amir

    1993-01-01

    Transient and steady state combined natural and forced convective flows over two in-line finite thickness fins (louvers) in a vertical channel are numerically solved using two methods. The first method of solution is based on the 'Simple Arbitrary Lagrangian Eulerian' (SALE) technique which incorporates mainly two computational phases: (1) a Lagrangian phase in which the velocity field is updated by the effects of all forces, and (2) an Eulerian phase that executes all advective fluxes of mass, momentum and energy. The second method of solution uses the finite element code entitled FIDAP. In the first part, comparison of the results by FIDAP, SALE, and available experimental work were done and discussed for steady state forced convection over louvered fins. Good agreements were deduced between the three sets of results especially for the flow over a single fin. In the second part and in the absence of experimental literature, the numerical predictions were extended to the transient transports and to the opposing flow where pressure drop is reversed. Results are presented and discussed for heat transfer and pressure drop in assisting and opposing mixed convection flows.

  11. PLGA-PEG-PLGA hydrogel for ocular drug delivery of dexamethasone acetate.

    PubMed

    Gao, Yuan; Sun, Yan; Ren, Fuzheng; Gao, Shen

    2010-10-01

    This study aims to investigate the suitability of thermosensitive triblock polymer poly-(DL-lactic acid-co-glycolic acid) (PLGA)-polyethylene glycol (PEG)-PLGA as a matrix material for ocular delivery of dexamethasone acetate (DXA). The copolymer was synthesized and evaluated for its thermosensitive and gelation properties. DXA in situ gel-forming solution based on PLGA-PEG-PLGA copolymer of 20% (w/w) was prepared and evaluated for ocular pharmacokinetics in rabbit according to the microdialysis method, which was compared to the normal eye drop. The copolymer with 20% (w/w) had a low critical solution temperature of 32 degrees C, which is close to the surface temperature of the eye. The C(max) of DXA in the anterior chamber for the PLGA-PEG-PLGA solution was 125.2 microg/mL, which is sevenfold higher than that of the eye drop, along with greater area under the concentration-time curves (AUC). These results suggest that the PLGA-PEG-PLGA copolymer is potential thermosensitive in situ gel-forming material for ocular drug delivery, and it may improve the bioavailability, efficacy of some eye drugs.

  12. An Herbal Nasal Drop Enhanced Frontal and Anterior Cingulate Cortex Activity

    PubMed Central

    Chan, Agnes S.; Cheung, Mei-chun; Sze, Sophia L.; Leung, Winnie W.; Shi, Dejian

    2011-01-01

    The present study examined the neuro-electrophysiological activity of the brain associated with the application of a herbal remedy developed by a Shaolin monk based upon the Chan healing principle of clearing the orifices (i.e., the nasal cavities). A repeated-measures design was used. Fourteen normal adults were administered herbal remedy and saline solution intranasally on separate sessions. Two intervals of eyes-closed resting EEG data were obtained individually before and after each administration. Results showed that only the herbal remedy but not the saline solution induced elevation in cordance, an index correlated with cerebral perfusion, in the anterior brain region. In addition, the activity of the anterior cingulate cortex (ACC), as examined by the LORETA analysis, was also increased after the application of the herbal remedy but not saline solution. The present study provided some preliminary evidence suggesting that the herbal nasal drop enhanced the activity of the frontal lobe and ACC. Implications for the potential clinical application of the herbal remedy to treat patients with frontal lobe disorders were discussed. PMID:19996154

  13. Fiber knob domain lacking the shaft sequence but fused to a coiled coil is a candidate subunit vaccine against egg-drop syndrome.

    PubMed

    Harakuni, Tetsuya; Andoh, Kiyohiko; Sakamoto, Ryu-Ichi; Tamaki, Yukihiro; Miyata, Takeshi; Uefuji, Hirotaka; Yamazaki, Ken-Ichi; Arakawa, Takeshi

    2016-06-08

    Egg-drop syndrome (EDS) virus is an avian adenovirus that causes a sudden drop in egg production and in the quality of the eggs when it infects chickens, leading to substantial economic losses in the poultry industry. Inactivated EDS vaccines produced in embryonated duck eggs or cell culture systems are available for the prophylaxis of EDS. However, recombinant subunit vaccines that are efficacious and inexpensive are a desirable alternative. In this study, we engineered chimeric fusion proteins in which the trimeric fiber knob domain lacking the triple β-spiral motif in the fiber shaft region was genetically fused to trimeric coiled coils, such as those of the engineered form of the GCN4 leucine zipper peptide or chicken cartilage matrix protein (CMP). The fusion proteins were expressed predominantly as soluble trimeric proteins in Escherichia coli at levels of 15-80mg/L of bacterial culture. The single immunization of chickens with the purified fusion proteins, at a dose equivalent to 10μg of the knob moiety, elicited serum antibodies with high hemagglutination inhibition (HI) activities, similar to those induced by an inactivated EDS vaccine. A dose-response analysis indicated that a single immunization with as little as 1μg of the knob moiety of the CMP-knob fusion protein was as effective as the inactivated vaccine in inducing antibodies with HI activity. The immunization of laying hens had no apparent adverse effects on egg production and effectively prevented clinical symptoms of EDS when the chickens were challenged with pathogenic EDS virus. This study demonstrates that the knob domain lacking the shaft sequence but fused to a trimeric coiled coil is a promising candidate subunit vaccine for the prophylaxis of EDS in chickens. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Pancrelipase

    MedlinePlus

    ... improve nutrition by breaking down fats, proteins, and starches from food into smaller substances that can be ... drops, creams, patches, and inhalers) are not child-resistant and young children can open them easily. To ...

  15. Sedimentation and deformation of an aqueous sodium hydroxide drop in vegetable oil

    NASA Astrophysics Data System (ADS)

    White, Andrew; Hyacinthe, Hyaquino; Ward, Thomas

    2013-11-01

    The addition of water droplets in fuels is known to provide benefits such as decreased Nitrous Oxide NOx emissions. Unfortunately the shelf life of a water-fuel emulsion is limited by the sedimentation rate of the water droplets. It is well known that adding surfactants can significantly slow the sedimentation rate due to the introduction of Marangoni stresses. In the case of a vegetable oil fuel, adding sodium hydroxide (NaOH) to the water droplets will produce surfactants through saponification in the form of sodium-carboxylate salts. Pendant drops of aqueous NaOH solutions with pH between 11 and 13 will be suspended in several oils such as corn, olive, canola and soybean oil in order to measure the interfacial tension. The change in interfacial tension with time will be used to estimate the surfactant concentration and the saponification rate. Then individual drops will be placed in the oils to observe the settling velocity and drop deformation. NSF CBET.

  16. Pre-Harvest Dropped Kinnow ( Citrus reticulata Blanco) Waste Management through the Extraction of Naringin and Pectin from their Peels using Indigenous Resin

    NASA Astrophysics Data System (ADS)

    Laxmi Deepak Bhatlu, M.; Katiyar, Prashant; Singh, Satya Vir; Verma, Ashok Kumar

    2016-09-01

    About 10-20 % kinnow fruits are dropped in preharvest stage which are waste and are problem to farmer as these create nuisance by rotting and insect rearing ground. The peels of these dropped fruits as well as peels from kinnow processing may be good source of naringin and pectin. Naringin is used in pharmaseutics while pectin is used in food industry. For recovery of naringin and pectn, peels of preharvest dropped kinnow fruits were boiled in water. The extract was passed through macroporus polymeric adsorbent resin Indion PA 800, naringin was adsorbed on it. The adsorbed naringin was desorbed with ethanol. This solution was passed through membrane filter and filtrate was evaporated to obtain naringin. The extract remaining after adsorption of naringin was used to recover pectin using acid extraction method. The recovery of naringin and pectin was about 52 and 58 % respectively. The naringin finally obtained had 91-93 % purity.

  17. Long-run operation of a reverse electrodialysis system fed with wastewaters.

    PubMed

    Luque Di Salvo, Javier; Cosenza, Alessandro; Tamburini, Alessandro; Micale, Giorgio; Cipollina, Andrea

    2018-07-01

    The performance of a Reverse ElectroDialysis (RED) system fed by unconventional wastewater solutions for long operational periods is analysed for the first time. The experimental campaign was divided in a series of five independent long-runs which combined real wastewater solutions with artificial solutions for at least 10 days. The time evolution of electrical variables, gross power output and net power output, considering also pumping losses, was monitored: power density values obtained during the long-runs are comparable to those found in literature with artificial feed solutions of similar salinity. The increase in pressure drops and the development of membrane fouling were the main detrimental factors of system performance. Pressure drops increase was related to the physical obstruction of the feed channels defined by the spacers, while membrane fouling was related to the adsorption of foulants over the membrane surfaces. In order to manage channels partial clogging and fouling, different kinds of easily implemented in situ backwashings (i.e. neutral, acid, alkaline) were adopted, without the need for an abrupt interruption of the RED unit operation. The application of periodic ElectroDialysis (ED) pulses is also tested as fouling prevention strategy. The results collected suggest that RED can be used to produce electric power by unworthy wastewaters, but additional studies are still needed to characterize better membrane fouling and further improve system performance with these solutions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Compound Capillary Flows in Complex Containers: Drop Tower Test Results

    NASA Astrophysics Data System (ADS)

    Bolleddula, Daniel A.; Chen, Yongkang; Semerjian, Ben; Tavan, Noël; Weislogel, Mark M.

    2010-10-01

    Drop towers continue to provide unique capabilities to investigate capillary flow phenomena relevant to terrestrial and space-based capillary fluidics applications. In this study certain `capillary rise' flows and the value of drop tower experimental investigations are briefly reviewed. A new analytic solution for flows along planar interior edges is presented. A selection of test cell geometries are then discussed where compound capillary flows occur spontaneously and simultaneously over local and global length scales. Sample experimental results are provided. Tertiary experiments on a family of asymmetric geometries that isolate the global component of such flows are then presented along with a qualitative analysis that may be used to either avoid or exploit such flows. The latter may also serve as a design tool with which to assess the impact of inadvertent container asymmetry.

  19. Crystallization and preliminary X-ray diffraction analysis of central structure domains from mumps virus F protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yueyong; Xu, Yanhui; Zhu, Jieqing

    2005-09-01

    Single crystals of the central structure domains from mumps virus F protein have been obtained by the hanging-drop vapour-diffusion method. A diffraction data set has been collected to 2.2 Å resolution. Fusion of members of the Paramyxoviridae family involves two glycoproteins: the attachment protein and the fusion protein. Changes in the fusion-protein conformation were caused by binding of the attachment protein to the cellular receptor. In the membrane-fusion process, two highly conserved heptad-repeat (HR) regions, HR1 and HR2, are believed to form a stable six-helix coiled-coil bundle. However, no crystal structure has yet been determined for this state in themore » mumps virus (MuV, a member of the Paramyxoviridae family). In this study, a single-chain protein consisting of two HR regions connected by a flexible amino-acid linker (named 2-Helix) was expressed, purified and crystallized by the hanging-drop vapour-diffusion method. A complete X-ray data set was obtained in-house to 2.2 Å resolution from a single crystal. The crystal belongs to space group C2, with unit-cell parameters a = 161.2, b = 60.8, c = 40.1 Å, β = 98.4°. The crystal structure will help in understanding the molecular mechanism of Paramyxoviridae family membrane fusion.« less

  20. Effect of mistletoe combined with carboxymethyl cellulose on dry eye in postmenopausal women

    PubMed Central

    Jiang, Nan; Ye, Lin-Hong; Ye, Lei; Yu, Jing; Yang, Qi-Chen; Yuan, Qing; Zhu, Pei-Wen; Shao, Yi

    2017-01-01

    AIM To investigate the protective effect of mistletoe combined with carboxymethyl cellulose eye drops on dry eye in postmenopausal women. METHODS Sixty postmenopause female patients diagnosed of dry eye were assigned randomly to mistletoe combined with carboxymethyl cellulose eye drops treatment group (n=30) and control group treated with normal saline eye drops (n=30). The subjective symptoms of ocular surface, Ocular Surface Disease Index (OSDI), tear film function tests, tear protein and corneal morphology by confocal scanning microscopy were analyzed before treatment and at 1, 2, 4 and 8wk after treatment respectively. To ensure the safety of the trial, all patients were examined with systolic pressure, diastolic pressure, glutamic-pyruvic transaminase, glutamic oxaloacetic transaminase, urine creatinine, and blood urea nitrogen at 8wk after treatment. RESULTS There were no obvious differences between two groups before the treatment (P>0.05). In two months after the treatment, the symptoms of ocular surface, OSDI, tear protein, and tear film function were only slightly changed in normal saline eye drops group. However, all indices were improved after the treatment of mistletoe combined with carboxymethyl cellulose eye drops group (P<0.05). In addition, the average amount of corneal epithelium basal cells and inflammatory cells of mistletoe treated group were 3174±379 and 38±25 cells/mm2, significantly decreased as compared to the control group with 4309±612 and 158± 61 cells/mm2, respectively. In the control group, although nerves still maintained straight under corneal epithelium, the number of nerves were significantly decreased, as compared with normal female. In the mistletoe treated group, the number of nerves was only slightly reduced, compared with normal female. CONCLUSION Mistletoe combined with carboxymethyl cellulose eye drops can alleviate the symptoms and signs of dry eye symptoms. PMID:29181309

  1. Drop pattern resulting from the breakup of a bidimensional grid of liquid filaments

    NASA Astrophysics Data System (ADS)

    Cuellar, Ingrith; Ravazzoli, Pablo D.; Diez, Javier A.; González, Alejandro G.

    2017-10-01

    A rectangular grid formed by liquid filaments on a partially wetting substrate evolves in a series of breakups leading to arrays of drops with different shapes distributed in a rather regular bidimensional pattern. Our study is focused on the configuration produced when two long parallel filaments of silicone oil, which are placed upon a glass substrate previously coated with a fluorinated solution, are crossed perpendicularly by another pair of long parallel filaments. A remarkable feature of this kind of grids is that there are two qualitatively different types of drops. While one set is formed at the crossing points, the rest are consequence of the breakup of shorter filaments formed between the crossings. Here, we analyze the main geometric features of all types of drops, such as shape of the footprint and contact angle distribution along the drop periphery. The formation of a series of short filaments with similar geometric and physical properties allows us to have simultaneously quasi identical experiments to study the subsequent breakups. We develop a simple hydrodynamic model to predict the number of drops that results from a filament of given initial length and width. This model is able to yield the length intervals corresponding to a small number of drops, and its predictions are successfully compared with the experimental data as well as with numerical simulations of the full Navier-Stokes equation that provide a detailed time evolution of the dewetting motion of the filament till the breakup into drops. Finally, the prediction for finite filaments is contrasted with the existing theories for infinite ones.

  2. Electrochemical properties of nanostructured porous gold electrodes in biofouling solutions.

    PubMed

    Patel, Jay; Radhakrishnan, Logudurai; Zhao, Bo; Uppalapati, Badharinadh; Daniels, Rodney C; Ward, Kevin R; Collinson, Maryanne M

    2013-12-03

    The effect of electrode porosity on the electrochemical response of redox active molecules (potassium ferricyanide, ruthenium(III) hexammine, and ferrocene methanol) in the presence of bovine serum albumin or fibrinogen was studied at macroporous (pore diameter: 1200 nm), hierarchical (1200/60 nm), and nanoporous (<50 nm) gold. These electrodes were prepared using standard templating or dealloying techniques, and cyclic voltammetry (CV) was utilized to evaluate the effect of protein adsorption on the electron transfer of the diffusing redox probes. Following exposure to albumin (or fibrinogen) under near neutral pH conditions, planar gold electrodes showed an immediate reduction in Faradaic peak current and increase in peak splitting for potassium ferricyanide. The rate at which the CV curves changed was highly dependent on the morphology of the electrode. For example, the time required for the Faradaic current to drop to one-half of its original value was 3, 12, and 38 min for planar gold, macroporous gold, and hierarchical gold, respectively. Remarkably, for nanoporous gold, only a few percent drop in the peak Faradaic current was observed after an hour in solution. A similar suppression in the voltammetry at planar gold was also noted for ruthenium hexammine at pH 3 after exposure to albumin for several hours. At nanoporous gold, no significant loss in response was observed. The order of performance of the electrodes as judged by their ability to efficiently transfer electrons in the presence of biofouling agents tracked porosity with the electrode having the smallest pore size and largest surface area, providing near ideal results. Nanoporous gold electrodes when immersed in serum or heparinized blood containing potassium ferricyanide showed ideal voltammetry while significant fouling was evident in the electrochemical response at planar gold. The small nanopores in this 3D open framework are believed to restrict the transport of large biomolecules, thus minimizing passivation of the inner surfaces while permitting access to small redox probes to efficiently exchange electrons.

  3. Voltammetric analysis of N-containing drugs using the hanging galinstan drop electrode (HGDE).

    PubMed

    Channaa, H; Surmann, P

    2009-03-01

    The electrochemical behaviour of several N-containing voltammetric active drugs such as 1,4-benzodiazepines (chlordiazepoxide, nitrazepam and diazepam) as well as one nitro-compound (nitrofurantoin) and one azo-compound (phenazopyridine) is described using a new kind of liquid electrode, the hanging galinstan drop electrode. Concentrations of 10(-5) - 10(-8) mol L(-1) are generally measurable. Differential pulse and adsorptive stripping voltammograms are recorded in different supporting electrolytes, like 0.1 M KNO3, acetate buffer solution pH = 4.6 and phosphate buffer solution pH = 7.0. The effects of varying the starting potentials, U(start) for DPV and accumulation times, t(acc) for AdSV are considered. Briefly, it is shown that the novel galinstan electrode is suitable for reducing several functional groups in organic substances, here presented for N-oxide-, azomethine-, nitro- and azo-groups.

  4. Technology Solutions Case Study: Duct in Conditioned Space in a Dropped Ceiling or Fur-down, Gainesville, Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2014-09-01

    Forced-air distribution systems (duct systems) typically are installed out of sight for aesthetic reasons, most often in unconditioned areas such as attics or crawlspaces. Any leakage of air to or from the duct system in unconditioned space not only loses energy, but impacts home and equipment durability and indoor air quality. An obvious solution is to bring the duct system into the interior of the house, either by sealing the area where the ducts are installed (attic or crawlspace) or by building an interior cavity or chase above the ceiling plane (raised ceiling or fur-up chase) or below the ceilingmore » plane (dropped ceiling or fur-down) for the duct system. In this project, Building America Partnership for Improved Residential Construction team partnered with Tommy Williams Homes to implement an inexpensive, quick, and effective method of building a fur-down chase.« less

  5. Transport phenomena in the crystallization of lysozyme by osmotic dewatering and liquid-liquid diffusion in low gravity

    NASA Technical Reports Server (NTRS)

    Todd, Paul; Sportiello, Michael G.; Gregory, Derek; Cassanto, John M.; Alvarado, Ulises A.; Ostroff, Robert; Korszun, Z. R.

    1993-01-01

    Two methods of protein crystallization, osmotic dewatering and liquid-liquid diffusion, like the vapor diffusion (hanging-drop and sessile-drop) methods allow a gradual approach to supersaturation conditions. The crystallization of hen egg-white lysozyme, an extensively characterized protein crystal, in the presence of sodium chloride was used as an experimental model with which to compare these two methods in low gravity and in the laboratory. Comparisons of crystal growth rates by the two methods under the two conditions have, to date, indicated that the rate of crystal growth by osmotic dewatering is nearly the same in low gravity and on the ground, while much faster crystal growth rates can be achieved by the liquid-liquid diffusion method in low gravity.

  6. Evaluation of the cytotoxic effects of ophthalmic solutions containing benzalkonium chloride on corneal epithelium using an organotypic 3-D model

    PubMed Central

    Khoh-Reiter, Su; Jessen, Bart A

    2009-01-01

    Background Benzalkonium chloride (BAC) is a common preservative used in ophthalmic solutions. The aim of this study was to compare the cytotoxic effects of BAC-containing ophthalmic solutions with a BAC-free ophthalmic solution using an organotypic 3-dimensional (3-D) corneal epithelial model and to determine the effects of latanoprost ophthalmic solution and its BAC-containing vehicle on corneal thickness in a monkey model. Methods The cytotoxicity of commercially available BAC-containing ophthalmic formulations of latanoprost (0.02% BAC) and olopatadine (0.01% BAC) was compared to that of BAC-free travoprost and saline in a corneal organotypic 3-D model using incubation times of 10 and 25 minutes. To compare the extent of differentiation of 3-D corneal cultures to monolayer transformed human corneal epithelial (HCE-T) cell cultures, expression levels (mRNA and protein) of the corneal markers epidermal growth factor receptor, transglutaminase 1 and involucrin were quantified. Finally, latanoprost ophthalmic solution or its vehicle was administered at suprapharmacologic doses (two 30 μL drops twice daily in 1 eye for 1 year) in monkey eyes, and corneal pachymetry was performed at baseline and at weeks 4, 13, 26 and 52. Results In the 3-D corneal epithelial culture assays, there were no significant differences in cytotoxicity between the BAC-containing latanoprost and olopatadine ophthalmic solutions and BAC-free travoprost ophthalmic solution at either the 10- or 25-minute time points. The 3-D cultures expressed higher levels of corneal epithelial markers than the HCE-T monolayers, indicating a greater degree of differentiation. There were no significant differences between the corneal thickness of monkey eyes treated with latanoprost ophthalmic solution or its vehicle (both containing 0.02% BAC) and untreated eyes. Conclusion The lack of cytotoxicity demonstrated in 3-D corneal cultures and in monkey studies suggests that the levels of BAC contained in ophthalmic solutions are not likely to cause significant direct toxicity to epithelium of otherwise normal corneas. PMID:19638217

  7. Treatment with galectin-1 eye drops regulates mast cell degranulation and attenuates the severity of conjunctivitis.

    PubMed

    Mello-Bosnic, Claudia; Gimenes, Alexandre Dantas; Oliani, Sonia Maria; Gil, Cristiane Damas

    2018-05-31

    Galectin-1 (Gal-1) is a β-galactoside-binding protein with diverse biological activities in the pathogenesis of inflammation, however the mechanisms by which Gal-1 modulates cellular responses in allergic inflammatory processes have not been fully determined. In this study, we evaluated the therapeutic potential of Gal-1 eye drops in an experimental model of conjunctivitis. Wistar rats received a topical application of compound (C)48/80 (100 mg/ml) into right eyes and a drop of vehicle into the contralateral eye. Another group of rats received Gal-1 (0.3 or 3 μg/eye) or sodium cromoglycate (SCG; 40 mg/ml) in both eyes and, after 15 min, right eye was challenged with C48/80. Conjunctivitis-induced by C48/80 was characterized by severe eyelid oedema and tearing, but clinical signs were ameliorated by eye drop doses of both Gal-1 (0.3/3 μg) and SCG. As expected, an increased proportion of degranulated mast cells (62%, P < 0.01) and lower histamine levels were observed after 6 h of C48/80 challenge, compared to control (32%). This effect was abrogated by Gal-1 and SCG, which reduced mast cell degranulation (31-36%), eosinophil migration and eosinophil peroxidase levels in the eyes. Gal-1 (3 μg) and SCG treatments also decreased IL-4 levels, as well as activation of mitogen activated protein kinases compared to untreated C48/80 eyes. Our findings suggest that Gal-1 eye drops represent a new therapeutic strategy for ocular allergic inflammation. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Statistics of acoustic emissions and stress drops during granular shearing using a stick-slip fiber bundle mode

    NASA Astrophysics Data System (ADS)

    Cohen, D.; Michlmayr, G.; Or, D.

    2012-04-01

    Shearing of dense granular materials appears in many engineering and Earth sciences applications. Under a constant strain rate, the shearing stress at steady state oscillates with slow rises followed by rapid drops that are linked to the build up and failure of force chains. Experiments indicate that these drops display exponential statistics. Measurements of acoustic emissions during shearing indicates that the energy liberated by failure of these force chains has power-law statistics. Representing force chains as fibers, we use a stick-slip fiber bundle model to obtain analytical solutions of the statistical distribution of stress drops and failure energy. In the model, fibers stretch, fail, and regain strength during deformation. Fibers have Weibull-distributed threshold strengths with either quenched and annealed disorder. The shape of the distribution for drops and energy obtained from the model are similar to those measured during shearing experiments. This simple model may be useful to identify failure events linked to force chain failures. Future generalizations of the model that include different types of fiber failure may also allow identification of different types of granular failures that have distinct statistical acoustic emission signatures.

  9. Isolation of Cryptococcus neoformans and other opportunistic fungi from pigeon droppings.

    PubMed

    Soltani, Maryam; Bayat, Mansour; Hashemi, Seyed J; Zia, Mohammadali; Pestechian, Nader

    2013-01-01

    Invasive fungal infections cause considerable morbidity and mortality in immunocompromised hosts. Pigeon droppings could especially be a potential carrier in the spread of pathogenic yeasts and mold fungi into the environment. The objective of this study was to isolation of Cryptococcus neoformans and other opportunistic fungi from pigeon droppings. One hundred twenty samples of pigeon droppings were suspended 1:10 in saline solution and then cultured. Identification of C. neoformans was performed on bird seed agar, presence of a capsule on India ink preparation, urease production on urea agar medium and RapID yeast plus system. The identification of candida species was based on micro-morphological analysis on corn meal-Tween 80 agar, RapID yeast plus system and growth in CHROMagar candida. The identification of other fungi was based on macromorphologic, microscopic, biochemical and physiological characteristics. The highest frequency of yeasts and mold fungi were observed in Candida albicans 6.6% and Penicillium spp. 25%. The frequency rate of C. neoformans isolation was 2.5%. Several types of fungi are present in pigeon droppings that can spread in environment and transmit to children and elderly as well as immunocompromised patients who are at increased risk of contracting opportunistic diseases.

  10. Ultrasound-Assisted Emulsification Microextraction Based on Solidification Floating Organic Drop Trace Amounts of Manganese Prior to Graphite Furnace Atomic Absorption Spectrometry Determination

    PubMed Central

    Mohadesi, Alireza; Falahnejad, Masoumeh

    2012-01-01

    In the present study, an ultrasound-assisted emulsification microextraction based on solidification floating organic drop method is described for preconcentration of trace amounts of Mn (II). 2-(5-Bromo-2-pyridylazo)-5 diethylaminophenol was added to a solution of Mn+2 at ph = 10.0. After this, 1-undecanol was added to the solution as an extraction solvent, and solution was stirred. Several factors influencing the microextraction efficiency, such as pH, the amount of chelating agent, nature and volume of extraction solvent, the volume of sample solution, stirring rate, and extraction time were investigated and optimized. Then sample vial was cooled by inserting into an ice bath, and the solidified was transferred into a suitable vial for immediate melting. Finally the sample was injected into a graphite furnace atomic absorption spectrometry. Under the optimum condition the linear dynamic range was 0.50–10.0 ng mL−1 with a correlation coefficient of 0.9926, and the detection limit of 0.3 ng mL−1 was obtained. The enrichment factor was 160. The proposed method was successfully applied for separation and determination of manganese in sea, rain, tap, and river water samples. PMID:22645504

  11. Value-added products from chicken feather fiber and protein

    NASA Astrophysics Data System (ADS)

    Fan, Xiuling

    Worldwide poultry consumption has generated a huge amount of feather "waste" annually. Currently, the feather has a low value-being used for animal feed in the world. The quality of fibrous air filters depend on their main component, fibers. The main physical structure of chicken feathers is barbs which can be used directly as fibers. They have small diameter, which makes them a good choice for air filtration. The main chemical structure of chicken feathers is structural fibrous protein, keratin. Therefore, chicken feathers could potentially be used for protein fiber production. To obtain chicken feather fibers, barbs were stripped from the quills by a stripping device and separated with a blender. Some feather fibers were entangled with polyester staple fibers, and needlepunched to form a nonwoven fabric. Some feather fibers were blended with CelBond(TM) bi-component polyester as binder fibers, and pressed between two hot plates to produce thermobonded nonwovens. Whole chicken feathers were ground into powder and their keratin was reduced in water. The reduced keratin was salt precipitated, dried and dissolved in ionic liquid with/without bleach cotton. The reduced chicken feather keratin ionic liquid solutions were spun into regenerated fibers through dry-jet wet spinning. The needlepunched and thermobonded nonwovens were tested for filtration and other properties. With an increase of areal density and feather fiber composition, the air permeability of the needlepunched nonwovens decreased, and their filtration efficiency and pressure drop both increased. The case can be made that feather fibers gave fabrics better filtration at the same fabric weight, but at the expense of air permeability and pressure drop. The scrim and needlepunching process improved the filtration efficiency. Their strength depended on scrim. The hot-press process was very simple. The thermobonded nonwovens had very high air permeability. In them, there was also an inverse relation between air permeability and either pressure drop or filtration efficiency. From these kinds of nonwovens, it is realized that feather fibers' fineness and the tree/fan-like structure of the feather does not offer a high level of performance advantages over conventional fibers. The use of feather fiber in air filtration applications must rely primarily on a favorable cost and weight differential in favor of the feather fiber. Only after chicken feather keratin was reduced, could it dissolve well in ionic liquid. 100% chicken feather keratin did not produce high tenacity fibers. Reduced chicken feather keratin and cellulose produced blend fibers with mechanical properties close to silk, cotton, and polyester fibers. Chemically reforming crosslinks might improve mechanical properties and the stability of the fibers to water and make them suitable for most fibrous applications. From this, it can be proposed that using chicken feathers for fiber production may be a good way to add value to chicken feather "waste".

  12. High-throughput method for optimum solubility screening for homogeneity and crystallization of proteins

    DOEpatents

    Kim, Sung-Hou [Moraga, CA; Kim, Rosalind [Moraga, CA; Jancarik, Jamila [Walnut Creek, CA

    2012-01-31

    An optimum solubility screen in which a panel of buffers and many additives are provided in order to obtain the most homogeneous and monodisperse protein condition for protein crystallization. The present methods are useful for proteins that aggregate and cannot be concentrated prior to setting up crystallization screens. A high-throughput method using the hanging-drop method and vapor diffusion equilibrium and a panel of twenty-four buffers is further provided. Using the present methods, 14 poorly behaving proteins have been screened, resulting in 11 of the proteins having highly improved dynamic light scattering results allowing concentration of the proteins, and 9 were crystallized.

  13. Growth directions of C8-BTBT thin films during drop-casting

    NASA Astrophysics Data System (ADS)

    Iizuka, Naoki; Zanka, Tomohiko; Onishi, Yosuke; Fujieda, Ichiro

    2016-02-01

    Because charge transport in a single crystal is anisotropic, control of its orientation is important for enhancing electrical characteristics and reducing variations among devices. For growing an organic thin film, a solution process such as inkjet printing offers advantages in throughput. We have proposed to apply an external temperature gradient during drop-casting and to control the direction of solvent evaporation. In experiment, a temperature gradient was generated in a bare Si substrate by placing it on a Si plate bridging two heat stages. When a solution containing 2,7-dioctyl [1]benzothieno[3,2-b]benzothiophene (C8-BTBT) was dropped on the substrate, evaporation started at the hotter side of the droplet and proceeded toward the colder side. The front line of the liquid was not pinned and the solution extended toward the colder region. As a result, a thin film was formed in a 7mm-long region. The peripheral region of the film was significantly thicker due to the coffee ring effect. The surface of the rest of the film was mostly smooth and terrace structures with 2.6nm steps were observed. The step roughly corresponds to the length of the C8-BTBT molecule. The film thickness varied from 20nm to 50nm over the distance of 3mm. Another film was grown on a glass substrate under a similar condition. Observation of the film with a polarizing microscope revealed that fan-shaped domains were formed in the film and that their optical axes were mostly along the directions of the solvent evaporation.

  14. Experimental studies of contact angle hysteresis phenomena on polymer surfaces – Toward the understanding and control of wettability for different applications.

    PubMed

    Grundke, K; Pöschel, K; Synytska, A; Frenzel, R; Drechsler, A; Nitschke, M; Cordeiro, A L; Uhlmann, P; Welzel, P B

    2015-08-01

    Contact angle hysteresis phenomena on polymer surfaces have been studied by contact angle measurements using sessile liquid droplets and captive air bubbles in conjunction with a drop shape method known as Axisymmetric Drop Shape Analysis - Profile (ADSA-P). In addition, commercially available sessile drop goniometer techniques were used. The polymer surfaces were characterized with respect to their surface structure (morphology, roughness, swelling) and surface chemistry (elemental surface composition, acid-base characteristics) by scanning electron microscopy (SEM), scanning force microscopy (SFM), ellipsometry, X-ray photoelectron spectroscopy (XPS) and streaming potential measurements. Heterogeneous polymer surfaces with controlled roughness and chemical composition were prepared by different routes using plasma etching and subsequent dip coating or grafting of polymer brushes, anodic oxidation of aluminium substrates coated with thin polymer films, deposition techniques to create regular patterned and rough fractal surfaces from core-shell particles, and block copolymers. To reveal the effects of swelling and reorientation at the solid/liquid interface contact angle hysteresis phenomena on polyimide surfaces, cellulose membranes, and thermo-responsive hydrogels have been studied. The effect of different solutes in the liquid (electrolytes, surfactants) and their impact on contact angle hysteresis were characterized for solid polymers without and with ionizable functional surface groups in aqueous electrolyte solutions of different ion concentrations and pH and for photoresist surfaces in cationic aqueous surfactant solutions. The work is an attempt toward the understanding of contact angle hysteresis phenomena on polymer surfaces aimed at the control of wettability for different applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Microgravity

    NASA Image and Video Library

    1986-06-03

    Crystals grown in the hand-held Protein Crystallization Apparatus for Microgravity (PCAM) onboard STS-61C. The PCAM has a pedestal in the center of a circular chamber, the surrounding chamber holds an absorbent reservoir that contains a solution of the precipitant. Vapor pressure differences between the protein solution and the reservoir solution force water to move from the protein solution to the reservoir. As protein concentrations increase, protein crystals begin to nucleate and grow.

  16. Lump, periodic lump and interaction lump stripe solutions to the (2+1)-dimensional B-type Kadomtsev-Petviashvili equation

    NASA Astrophysics Data System (ADS)

    Wu, Pinxia; Zhang, Yufeng; Muhammad, Iqbal; Yin, Qiqi

    2018-03-01

    In this paper, the Hirota’s bilinear form is employed to investigate the lump, periodic lump and interaction lump stripe solutions of the (2+1)-dimensional B-type Kadomtsev-Petviashvili (BKP) equation. Many results are obtained by dynamic process of figures. We analyze the propagation direction and horizontal velocity of lump solutions to find some constraint conditions which include positiveness and localization. In the process of the travel of the periodic lump solutions, it appears that the energy distribution is not symmetrical. The interaction lump stripe solutions of non-elastic indicate that the lump solitons are dropped and swallowed by the stripe soliton.

  17. Rapid detection of bacteria in foods and biological fluids

    NASA Technical Reports Server (NTRS)

    Fealey, R. D.; Renner, W.

    1973-01-01

    Simple and inexpensive apparatus, called "redox monitoring cell," rapidly detects presence of bacteria. Bacteria is detected by measuring drop in oxygen content in test solution. Apparatus consists of vial with two specially designed electrodes connected to sensitive voltmeter.

  18. [Sterility caused by protein deficiency: the role of prolactin].

    PubMed

    Dushimimana, A; Maes, M; Ketelslegers, J M; Lederer, J A

    1984-01-01

    The first piece of research was made on mice in order to try to determine the importance of the ration of protein in the food in the maintenance of pregnancy and the mechanism by which protein lack leads to sterility. Five groups of 100 couples were given diets which contained 23.5%, 12.48%, 10.50%, 7.01% and 0% of protein respectively over a period of 100 days. The drop in the percentage of protein was obtained by adding detoxicated cassava flour and the diet without any protein was made up of starch, maize oil, mineral salts and vitamins. The number of litterings per 100 couples was only lowered when the diet was down to 7.01% of protein and at the same time it was only with this diet that one found a significant reduction in the number of young per litter. When the diet had no protein in it at all no young were born at all. Pregnant rats were fed diets which contained 23.5%, 7.01% or no protein at all. In this last diet we watched to stop coprophagia. There was very little difference in the number of implantations and young born with a diet of 7.01% of protein but a very significant drop with the diet without protein. With this last diet was very little significant difference in the series whether one had watched to stop coprophagia or not. An injection of 10 I.U. of HCG from the 3rd to the 13th day of pregnancy in rats fed a protein-free died did not alter significantly the number of implantations and did lead to complete resorption of the embryos.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Microorganism Identification Based On MALDI-TOF-MS Fingerprints

    NASA Astrophysics Data System (ADS)

    Elssner, Thomas; Kostrzewa, Markus; Maier, Thomas; Kruppa, Gary

    Advances in MALDI-TOF mass spectrometry have enabled the ­development of a rapid, accurate and specific method for the identification of bacteria directly from colonies picked from culture plates, which we have named the MALDI Biotyper. The picked colonies are placed on a target plate, a drop of matrix solution is added, and a pattern of protein molecular weights and intensities, "the protein fingerprint" of the bacteria, is produced by the MALDI-TOF mass spectrometer. The obtained protein mass fingerprint representing a molecular signature of the microorganism is then matched against a database containing a library of previously measured protein mass fingerprints, and scores for the match to every library entry are produced. An ID is obtained if a score is returned over a pre-set threshold. The sensitivity of the techniques is such that only approximately 104 bacterial cells are needed, meaning that an overnight culture is sufficient, and the results are obtained in minutes after culture. The improvement in time to result over biochemical methods, and the capability to perform a non-targeted identification of bacteria and spores, potentially makes this method suitable for use in the detect-to-treat timeframe in a bioterrorism event. In the case of white-powder samples, the infectious spore is present in sufficient quantity in the powder so that the MALDI Biotyper result can be obtained directly from the white powder, without the need for culture. While spores produce very different patterns from the vegetative colonies of the corresponding bacteria, this problem is overcome by simply including protein fingerprints of the spores in the library. Results on spores can be returned within minutes, making the method suitable for use in the "detect-to-protect" timeframe.

  20. Effect of the Fabrication Parameters of the Nanosphere Lithography Method on the Properties of the Deposited Au-Ag Nanoparticle Arrays

    PubMed Central

    Liu, Jing; Chen, Chaoyang; Yang, Guangsong; Chen, Yushan; Yang, Cheng-Fu

    2017-01-01

    The nanosphere lithography (NSL) method can be developed to deposit the Au-Ag triangle hexagonal nanoparticle arrays for the generation of localized surface plasmon resonance. Previously, we have found that the parameters used to form the NSL masks and the physical methods required to deposit the Au-Ag thin films had large effects on the geometry properties of the nanoparticle arrays. Considering this, the different parameters used to grow the Au-Ag triangle hexagonal nanoparticle arrays were investigated. A single-layer NSL mask was formed by using self-assembly nano-scale polystyrene (PS) nanospheres with an average radius of 265 nm. At first, the concentration of the nano-scale PS nanospheres in the solution was set at 6 wt %. Two coating methods, drop-coating and spin-coating, were used to coat the nano-scale PS nanospheres as a single-layer NSL mask. From the observations of scanning electronic microscopy (SEM), we found that the matrixes of the PS nanosphere masks fabricated by using the drop-coating method were more uniform and exhibited a smaller gap than those fabricated by the spin-coating method. Next, the drop-coating method was used to form the single-layer NSL mask and the concentration of nano-scale PS nanospheres in a solution that was changed from 4 to 10 wt %, for further study. The SEM images showed that when the concentrations of PS nanospheres in the solution were 6 and 8 wt %, the matrixes of the PS nanosphere masks were more uniform than those of 4 and 10 wt %. The effects of the one-side lifting angle of substrates and the vaporization temperature for the solvent of one-layer self-assembly PS nanosphere thin films, were also investigated. Finally, the concentration of the nano-scale PS nanospheres in the solution was set at 8 wt % to form the PS nanosphere masks by the drop-coating method. Three different physical deposition methods, including thermal evaporation, radio-frequency magnetron sputtering, and e-gun deposition, were used to deposit the Au-Ag triangle hexagonal periodic nanoparticle arrays. The SEM images showed that as the single-layer PS nanosphere mask was well controlled, the thermal evaporation could deposit the Au-Ag triangle hexagonal nanoparticle arrays with a higher quality than the other two methods. PMID:28772741

  1. Effect of the Fabrication Parameters of the Nanosphere Lithography Method on the Properties of the Deposited Au-Ag Nanoparticle Arrays.

    PubMed

    Liu, Jing; Chen, Chaoyang; Yang, Guangsong; Chen, Yushan; Yang, Cheng-Fu

    2017-04-03

    The nanosphere lithography (NSL) method can be developed to deposit the Au-Ag triangle hexagonal nanoparticle arrays for the generation of localized surface plasmon resonance. Previously, we have found that the parameters used to form the NSL masks and the physical methods required to deposit the Au-Ag thin films had large effects on the geometry properties of the nanoparticle arrays. Considering this, the different parameters used to grow the Au-Ag triangle hexagonal nanoparticle arrays were investigated. A single-layer NSL mask was formed by using self-assembly nano-scale polystyrene (PS) nanospheres with an average radius of 265 nm. At first, the concentration of the nano-scale PS nanospheres in the solution was set at 6 wt %. Two coating methods, drop-coating and spin-coating, were used to coat the nano-scale PS nanospheres as a single-layer NSL mask. From the observations of scanning electronic microscopy (SEM), we found that the matrixes of the PS nanosphere masks fabricated by using the drop-coating method were more uniform and exhibited a smaller gap than those fabricated by the spin-coating method. Next, the drop-coating method was used to form the single-layer NSL mask and the concentration of nano-scale PS nanospheres in a solution that was changed from 4 to 10 wt %, for further study. The SEM images showed that when the concentrations of PS nanospheres in the solution were 6 and 8 wt %, the matrixes of the PS nanosphere masks were more uniform than those of 4 and 10 wt %. The effects of the one-side lifting angle of substrates and the vaporization temperature for the solvent of one-layer self-assembly PS nanosphere thin films, were also investigated. Finally, the concentration of the nano-scale PS nanospheres in the solution was set at 8 wt % to form the PS nanosphere masks by the drop-coating method. Three different physical deposition methods, including thermal evaporation, radio-frequency magnetron sputtering, and e-gun deposition, were used to deposit the Au-Ag triangle hexagonal periodic nanoparticle arrays. The SEM images showed that as the single-layer PS nanosphere mask was well controlled, the thermal evaporation could deposit the Au-Ag triangle hexagonal nanoparticle arrays with a higher quality than the other two methods.

  2. Determination of bisphenol A in thermal printing papers treated by alkaline aqueous solution using the combination of single-drop microextraction and HPLC.

    PubMed

    Gao, Leihong; Zou, Jing; Liu, Haihong; Zeng, Jingbin; Wang, Yiru; Chen, Xi

    2013-04-01

    A method for the quantitative determination of bisphenol A in thermal printing paper was developed and validated. Bisphenol A was extracted from the paper samples using 2% NaOH solution, then the extracted analyte was enriched using single-drop microextraction followed by HPLC analysis. Several parameters relating to the single-drop microextraction efficiency including extraction solvent, extraction temperature and time, stirring rate, and pH of donor phase were studied and optimized. Spiked recovery of bisphenol A at 20 and 5 mg/g was found to be 95.8 and 108%, and the method detection limit and method quantification limit was 0.03 and 0.01 mg/g, respectively. Under the optimized conditions, the proposed method was applied to the determination of bisphenol A in seven types of thermal printing paper samples, and the concentration of bisphenol A was found in the range of 0.53-20.9 mg/g. The considerably minimum usage of organic solvents (5 μL 1-octanol) and high enrichment factor (189-197) in the sample preparation are the two highlighted advantages in comparison with previously published works. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Volume regulation during dehydration of desert beetles.

    PubMed

    Zachariassen, Karl Erik; Pedersen, Sindre Andre

    2002-11-01

    In arid areas in East Africa, dietary water is available only during the rainy seasons. Since the rainy seasons are separated by dry seasons, which may last for many months and in extreme cases for more than a year, the beetles may lose more than 80% of their body water. The water loss takes place mainly at the expense of the extracellular fluid, i.e. as the haemolymph volume drops to zero, the cell volume is only moderately reduced. The protection of cell volume at the expense of the haemolymph requires that solutes are removed from the haemolymph. The solutes are either excreted from the body or sequestered within the body in an osmotically inactive state. In predatory beetles of the family Carabidae, where Na is the dominating extracellular solute, Na is excreted, but it can easily be replaced from the diet. In most herbivorous beetles, such as the Tenebrionidae, which feed on a low Na diet, and which have low extracellular Na levels, Na is usually, but not always, deposited within the body. Free amino acids are moved from haemolymph to cells, but some seem to be made osmotically inactive by polymerization to peptides. As beetles become rehydrated, the peptides are rapidly depolymerized and the amino acids released to the haemolymph. Another factor, which may be important in the stabilisation of cell volume, is the colloid osmotic contribution of intracellular proteins, which may have a steep increase in their osmotic activity with increasing concentration.

  4. Equilibrium and stability of axisymmetric drops on a conical substrate under gravity

    NASA Astrophysics Data System (ADS)

    Nurse, A. K.; Colbert-Kelly, S.; Coriell, S. R.; McFadden, G. B.

    2015-08-01

    Motivated by recent investigations of toroidal tissue clusters that are observed to climb conical obstacles after self-assembly [Nurse et al., "A model of force generation in a three-dimensional toroidal cluster of cells," J. Appl. Mech. 79, 051013 (2012)], we study a related problem of the determination of the equilibrium and stability of axisymmetric drops on a conical substrate in the presence of gravity. A variational principle is used to characterize equilibrium shapes that minimize surface energy and gravitational potential energy subject to a volume constraint, and the resulting Euler equation is solved numerically using an angle/arclength formulation. The resulting equilibria satisfy a Laplace-Young boundary condition that specifies the contact angle at the three-phase trijunction. The vertical position of the equilibrium drops on the cone is found to vary significantly with the dimensionless Bond number that represents the ratio of gravitational and capillary forces; a global force balance is used to examine the conditions that affect the drop positions. In particular, depending on the contact angle and the cone half-angle, we find that the vertical position of the drop can either increase ("the drop climbs the cone") or decrease due to a nominal increase in the gravitational force. Most of the equilibria correspond to upward-facing cones and are analogous to sessile drops resting on a planar surface; however, we also find equilibria that correspond to downward facing cones that are instead analogous to pendant drops suspended vertically from a planar surface. The linear stability of the drops is determined by solving the eigenvalue problem associated with the second variation of the energy functional. The drops with positive Bond number are generally found to be unstable to non-axisymmetric perturbations that promote a tilting of the drop. Additional points of marginal stability are found that correspond to limit points of the axisymmetric base state. Drops that are far from the tip are subject to azimuthal instabilities with higher mode numbers that are analogous to the Rayleigh instability of a cylindrical interface. We have also found a range of completely stable solutions that correspond to small contact angles and cone half-angles.

  5. Conservative treatment for late-onset bleb leaks after trabeculectomy with mitomycin C in patients with ocular surface disease

    PubMed Central

    Sagara, Hideto; Iida, Tomohiro; Saito, Kimimori; Noji, Hiroki; Ogasawara, Masashi; Oyamada, Hiroshi

    2012-01-01

    Background Sodium hyaluronate and autologous serum eye drops are used to treat ocular surface disease (OSD) and are reported to prevent and treat late-onset bleb leaks following trabeculectomy with mitomycin C. In this study, we evaluated the efficacy of a combination of sodium hyaluronate and autologous serum eye drops and treatment for obstructive meibomian gland dysfunction as a therapy for late-onset bleb leaks after trabeculectomy with mitomycin C. Methods This was a retrospective, interventional, nonsimultaneous study of 12 subjects (12 eyes) of mean age of 64.3 ± 18.3 years with OSD and apparent late-onset bleb leaks following trabeculectomy with mitomycin C between 1998 and 2008. We compared patients diagnosed with leakages before July 2005, who had been treated with separate eye drop solutions containing 0.1% sodium hyaluronate, 50% autologous serum, and 0.3% ofloxacin (sodium hyaluronate and autologous serum group, n = 7), with patients diagnosed from August 2005 to December 2008, who were treated with a combination of eye drops (0.1% sodium hyaluronate, 50% autologous serum, and 0.08% levofloxacin hydrate) and eyelid massage and warm compresses for obstructive meibomian gland dysfunction (combination eye drop group, n = 5). Results Leakage was resolved in one patient (14.3%) in the separately treated sodium hyaluronate and autologous serum eye drop group and in five patients (100%) in the combination eye drop group (P = 0.015). The period after resolution of leakage with conservative treatment was 23 months in the one eye in the sodium hyaluronate and autologous serum group and 36–61 (mean 52.4 ± 10.1) months in the five eyes in the combination eye drop group. Conclusion Late-onset bleb leaks following trabeculectomy with mitomycin C can be treated effectively using a combination of sodium hyaluronate and autologous serum eye drops, eyelid massage, and warm compresses. Furthermore, combining eye drops may improve patient adherence to the drug regimen by decreasing the frequency of administration. PMID:22927739

  6. Erythrocyte membrane fluidity and indices of plasmatic oxidative damage after acute physical exercise in humans.

    PubMed

    Berzosa, C; Gómez-Trullén, E M; Piedrafita, E; Cebrián, I; Martínez-Ballarín, E; Miana-Mena, F J; Fuentes-Broto, L; García, J J

    2011-06-01

    Optimal levels of membrane fluidity are essential for numerous cell functions including cell growth, solute transport and signal transduction. Since exercise enhances free radical production, our aim was to evaluate in healthy male subjects the effects of an acute bout of maximal and submaximal exercise on the erythrocyte membrane fluidity and its possible relation to the oxidative damage overproduction due to exercise. Subjects (n = 34) performed three cycloergometric tests: a continuous progressive exercise, a strenuous exercise until exhaustion and an acute bout of exercise at an intensity corresponding to 70% of maximal work capacity for 30 min. Venous blood samples were collected before and immediately after these exercises. Erythrocyte membrane fluidity was assessed by fluorescence spectroscopy. Plasma malondialdehyde (MDA) and 4-hydroxyalkenals (4-HDA) concentrations and carbonyl content of plasmatic proteins were used as an index of lipid and protein oxidation, respectively. Exercise produced a dramatic drop in the erythrocyte membrane fluidity as compared to resting time, but this was not accompanied by significant changes in the plasmatic MDA and 4-HDA concentrations. The highest erythrocyte membrane rigidity was detected immediately after strenuous exercise until exhaustion was performed. Protein carbonyl levels were higher after exhaustive exercises than at rest. Continuous progressive and strenuous exercises until exhaustion, but not submaximal workload, resulted in a significant enhanced accumulation of carbonylated proteins in the plasma. These findings are consistent with the idea that exercise exaggerates oxidative damage, which may contribute, at least partially, to explain the rigidity in the membrane of the erythrocytes due to acute exercise.

  7. Ring formation on an inclined surface

    NASA Astrophysics Data System (ADS)

    Deegan, Robert; Du, Xiyu

    2015-11-01

    A drop dried on a solid surface will typically leave a narrow band of solute deposited along the contact line. We examined variations of this deposit due to the inclination of the substrate using numerical simulations of a two-dimensional drop, equivalent to a strip-like drop. An asymptotic analysis of the contact line region predicts that the upslope deposit will grow faster at early times, but the growth of this deposit ends sooner because the upper contact line depins first. From our simulations we find that the deposit can be larger at either the upper or lower contact line depending on the initial drop volume and substrate inclination. For larger drops and steeper inclinations, the early lead in deposited mass at the upper contact line is wiped out by the earlier depinning of the upper contact line and subsequent continued growth at the lower contact line. Conversely, for smaller drops and shallower inclinations, the early lead of the upper contact line is insurmountable despite its earlier termination in growth. Our results show that it is difficult to reconstruct a postiorithe inclination of the substrate based solely on the shape of the deposit. The authors thank the James S. McDonnell Foundation for support through a 21st Century Science Initiative in Studying Complex Systems Research Award, and the National Science Foundation for support under Grant No. 0932600.

  8. Optical sensors based on the NiPc-CoPc composite films deposited by drop casting and under the action of centrifugal force

    NASA Astrophysics Data System (ADS)

    Fatima, Noshin; Ahmed, Muhammad M.; Karimov, Khasan S.; Ahmad, Zubair; Fariq Muhammad, Fahmi

    2017-06-01

    In this study, solution processed composite films of nickel phthalocyanine (NiPc) and cobalt phthalocyanine (CoPc) are deposited by drop casting and under centrifugal force. The films are deposited on surface-type inter-digitated silver electrodes on ceramic alumina substrates. The effects of illumination on the impedance and capacitance of the NiPc-CoPc composite samples are investigated. The samples deposited under centrifugal force show better conductivity than the samples deposited by drop casting technique. In terms of impedance and capacitance sensitivities the samples fabricated under centrifugal force are more sensitive than the drop casting samples. The values of impedance sensitivity ({S}z) are equal to (-1.83) {{M}}{{Ω }}\\cdot {{cm}}2/{mW} and (-5.365){{M}}{{Ω }}\\cdot {{cm}}2/{mW} for the samples fabricated using drop casting and under centrifugal force, respectively. Similarly, the values of capacitance sensitivity ({S}{{c}}) are equal to 0.083 {pF}\\cdot {{cm}}2/{mW} and 0.185 {pF}\\cdot {{cm}}2/{mW} for the samples fabricated by drop casting and under centrifugal force. The films deposited using the different procedures could potentially be viable for different operational modes (i.e., conductive or capacitive) of the optical sensors. Both experimental and simulated results are discussed. Project supported by the Center for Advanced Materials (CAM), Qatar University, Qatar.

  9. The preservative polyquaternium-1 increases cytoxicity and NF-kappaB linked inflammation in human corneal epithelial cells

    PubMed Central

    Paimela, Tuomas; Ryhänen, Tuomas; Kauppinen, Anu; Marttila, Liisa; Salminen, Antero

    2012-01-01

    Purpose In numerous clinical and experimental studies, preservatives present in eye drops have had detrimental effects on ocular epithelial cells. The aim of this study was to compare the cytotoxic and inflammatory effects of the preservative polyquaternium-1 (PQ-1) containing Travatan (travoprost 0.004%) and Systane Ultra eye drops with benzalkonium chloride (BAK) alone or BAK-preserved Xalatan (0.005% latanoprost) eye drops in HCE-2 human corneal epithelial cell culture. Methods HCE-2 cells were exposed to the commercial eye drops Travatan, Systane Ultra, Xalatan, and the preservative BAK. Cell viability was determined using colorimetric MTT (3-(4,5-dimethyldiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and by release of lactate dehydrogenase (LDH). Induction of apoptosis was measured with a using a colorimetric caspase-3 assay kit. DNA binding of the nuclear factor kappa B (NF-κB) transcription factor, and productions of the proinflammatory cytokines, interleukins IL-6 and IL-8, were determined using an enzyme-linked immunosorbent assay (ELISA) method. Results Cell viability, as measured by the MTT assay, declined by up to 50% after exposure to Travatan or Systane Ultra solutions which contain 0.001% PQ-1. BAK at 0.02% rather than at 0.001% concentration evoked total cell death signs on HCE-2 cells. In addition, cell membrane permeability, as measured by LDH release, was elevated by sixfold with Travatan and by a maximum threefold with Systane Ultra. Interestingly, Travatan and Systane Ultra activated NF-κB and elevated the secretion of inflammation markers IL-6 by 3 to eightfold and IL-8 by 1.5 to 3.5 fold, respectively, as analyzed with ELISA. Conclusions Eye drops containing PQ-1 evoke cytotoxicity and enhance the NF-κB driven inflammation reaction in cultured HCE-2 cells. Our results indicate that these harmful effects of ocular solutions preserved with PQ-1 should be further evaluated in vitro and in vivo. PMID:22605930

  10. Inhibition mechanisms of baicalin and its phospholipid complex against DHAV-1 replication.

    PubMed

    Chen, Yun; Yuan, Wenjuan; Yang, Yuhui; Yao, Fangke; Ming, Ke; Liu, Jiaguo

    2018-06-15

    Duck hepatitis A virus type 1 (DHAV-1) is a serious infectious virus of ducklings. Recent study showed baicalin (BA) and baicalin phospholipid complex (BAPC) possessed anti-DHAV-1 effect. However, the antiviral mechanism is not clear. Therefore, the aim of the present work is to study influences and mechanisms of BA and BAPC on DHAV-1. The effects of BA and BAPC on DHAV-1 replication were analyzed by CCK-8 and RT-qPCR methods. And the results showed BA inhibited the replication of DHAV-1, and BAPC was more effective. Then, the influences of BA and BAPC on DHAV-1 protein translation and RNA synthesis were detected by western blot and RT-qPCR. Both BA and BAPC inhibited the protein translation, and BAPC did better. Furthermore, BAPC also inhibited the RNA synthesis. Afterwards, DHAV-1 IRES activity, DHAV-1 3D protein stability, and cellular Hsp70 expression were studied to in-depth understand the inhibition effects of BA and BAPC on DHAV-1 replication. The results indicated BA and BAPC dropped the protein translation via suppressing DHAV-1 IRES activity. Additionally, BAPC dropped the RNA synthesis via reducing the 3D protein stability and inhibiting cellular Hsp70 expression.

  11. Recombinant egg drop syndrome subunit vaccine offers an alternative to virus propagation in duck eggs.

    PubMed

    Gutter, B; Fingerut, E; Gallili, G; Eliahu, D; Perelman, B; Finger, A; Pitcovski, J

    2008-02-01

    Egg drop syndrome (EDS) virus vaccines are routinely produced in embryonated duck eggs (Solyom et al., 1982). This procedure poses the risk of dissemination of pathogens, such as avian influenza virus, as the eggs used are not from specific pathogen free birds. To address this problem, the knob and part of the shaft domain of the fibre protein of the EDS virus (termed knob-s) were expressed in Escherichia coli and assessed as a subunit vaccine. A single vaccination with the recombinant protein induced the production of anti-EDS virus antibodies, as detected by haemagglutination inhibition, enzyme-linked immunosorbent assay and virus neutralization tests, for at least 20 weeks. A positive correlation was demonstrated between these three assays. A dose-response assessment showed that the vaccine was effective over the range of 2 to 64 microg protein per dose. Two vaccinations with the recombinant protein, administered before the onset of lay, induced high haemagglutination inhibition antibody titres, comparable with those induced by an inactivated whole-virus vaccine. The vaccine did not have any adverse effects on egg production, quality or weight. The present study has shown that two vaccinations with the recombinant knob-s protein elicited high neutralizing antibody titres that persisted for more than 50 weeks of lay.

  12. Detection of environmental sources of Histoplasma capsulatum in Chiang Mai, Thailand, by nested PCR.

    PubMed

    Norkaew, Treepradab; Ohno, Hideaki; Sriburee, Pojana; Tanabe, Koichi; Tharavichitkul, Prasit; Takarn, Piyawan; Puengchan, Tanpalang; Bumrungsri, Sara; Miyazaki, Yoshitsugu

    2013-12-01

    Histoplasmosis is a systemic mycosis caused by inhaling spores of Histoplasma capsulatum, a dimorphic fungus. This fungus grows in soil contaminated with bat and avian excreta. Each year, patients with disseminated histoplasmosis have been diagnosed in Chiang Mai, northern Thailand. No published information is currently available on the environmental sources of this fungus in Chiang Mai or anywhere else in Thailand. The aim of this study was to detect H. capsulatum in soil samples contaminated with bat guano and avian droppings by nested PCR. Two hundred and sixty-five samples were collected from the following three sources: soil contaminated with bat guano, 88 samples; soil contaminated with bird droppings, 86 samples; and soil contaminated with chicken droppings, 91 samples. Genomic DNA was directly extracted from each sample, and H. capsulatum was detected by nested PCR using a primer set specific to a gene encoding 100-kDa-like protein (HcI, HcII and HcIII, HcIV). Histoplasma capsulatum was detected in seven of 88 soil samples contaminated with bat guano, one of 21 soil samples contaminated with pigeon droppings and 10 of 91 soil samples contaminated with chicken droppings. The results indicate the possibility of the association of bat guano and chicken droppings with H. capsulatum in this area of Thailand.

  13. Study of poly(L-lactide) microparticles based on supercritical CO2.

    PubMed

    Chen, Ai-Zheng; Pu, Xi-Ming; Kang, Yun-Qing; Liao, Li; Yao, Ya-Dong; Yin, Guang-Fu

    2007-12-01

    Poly(L-lactide) (PLLA) microparticles were prepared in supercritical anti-solvent process. The effects of several key factors on surface morphology, and particle size and particle size distribution were investigated. These factors included initial drops size, saturation ratio of PLLA solution, pressure, temperature, concentration of the organic solution, the flow rate of the solution and molecular weight of PLLA. The results indicated that the saturation ratio of PLLA solution, concentration of the organic solution and flow rate of the solution played important roles on the properties of products. Various microparticles with the mean particle size ranging from 0.64 to 6.64 microm, could be prepared by adjusting the operational parameters. Fine microparticles were obtained in a process namely solution-enhanced dispersion by supercritical fluids (SEDS) process with dichloromethane/acetone mixture as solution.

  14. Sonic wave separation of invertase from a dilute solution to generated droplets.

    PubMed

    Tanner, R D; Ko, S; Loha, V; Prokop, A

    2000-01-01

    It has previously been shown that a droplet fractionation process, simulated by shaking a separatory funnel containing a dilute protein solution, can generate droplets richer in protein than present in the original dilute solution. In this article, we describe an alternative method that can increase the amount of protein transferred to the droplets. The new method uses ultrasonic waves, enhanced by a bubble gas stream to create the droplets. The amount of protein in these droplets increases by about 50%. In this method, the top layer of the dilute protein solution (of the solution-air interface) becomes enriched in protein when air is bubbled into the solution. This concentrating procedure is called bubble fractionation. Once the protein has passed through the initial buildup, this enriched protein layer is transferred into droplets with the aid of a vacuum above the solution at the same time that ultrasonic waves are introduced. The droplets are then carried over to a condenser and coalesced. We found that this new method provides an easier way to remove the protein-enriched top layer of the dilute solution and generates more droplets within a shorter period than the separatory funnel droplet generation method. The added air creates the bubbles and carries the droplets, and the vacuum helps remove the effluent airstream from the condenser. The maximum partition coefficient, the ratio of the protein concentration in the droplets to that in the residual solution (approx 8.5), occurred at pH 5.0.

  15. Purification, characterization and preliminary crystallographic studies of a PR-10 protein from Pachyrrhizus erosus seeds.

    PubMed

    Wu, Fang; Li, Yikun; Chang, Shaojie; Zhou, Zhaocai; Wang, Fang; Song, Xiaomin; Lin, Yujuan; Gong, Weimin

    2002-12-01

    A 16 kDa protein SPE16 was purified from the seeds of Pachyrrhizus erosus. Its N-terminal amino-acid sequence showed significant sequence homology to pathogenesis-related proteins from the PR-10 family. An activity assay indicated that SPE16 possesses ribonuclease activity as do some other PR-10 proteins. SPE16 crystals were obtained by the hanging-drop vapour-diffusion method. The space group is P2(1)2(1)2(1), with unit-cell parameters a = 53.36, b = 63.70, c = 72.96 A.

  16. Comparative evaluation of Nano-Hydroxyapatite preparation and Calcium Sucrose Phosphate on microhardness of deciduous teeth after iron drop exposure - An in-vitro study.

    PubMed

    Rathi, Nilesh; Baid, Rutika; Baliga, Sudhindra; Thosar, Nilima

    2017-04-01

    To evaluate and compare the microhardness of deciduous teeth treated with nano-hydroxyapatite and calcium sucrose phosphate after iron drop exposure. Twenty healthy anterior deciduous teeth were collected and stored in 0.9% saline solution at room temperature. All the teeth were immersed in artificial saliva in an incubator shaker at 37° for an hour and then subjected to Vickers microhardness test at 100g load for 5 seconds. The teeth were then immersed in iron drop for 5 minutes, twice daily, rinsed with distilled water and kept in artificial saliva. This procedure was repeated for 7 days and teeth were subjected to microhardness testing. Further, the teeth were divided in two groups, each group containing 10 teeth. In group I, nanohydroxyapatite preparation and in group II, calcium sucrose phosphate were applied for 10 minutes, twice daily for 7 days and subjected again to microhardness testing again. Vickers microhardness analysis revealed that iron drop exposure to teeth caused significant decrease in microhardness ( p <0.05). Application of nanohydroxyapatite preparation in Group I showed significantly increased enamel microhardness (206.90) than that after iron drop exposure. Similarly, application of calcium sucrose phosphate in Group II showed significantly increased enamel microhardness (200.89) than that after iron drop exposure. Statistical difference was seen between the two groups, with nanohydroxyapatite preparation showing increased microhardness than calcium sucrose phosphate. Nanohydroxyapatite preparation and calcium sucrose phosphate have remineralizing effect over teeth affected by acid challenge of iron drops, nanohydroxyapatite preparation showing better results than calcium sucrose phosphate. Key words: Iron drops, Nanohydroxyapaptite, calcium sucrose phosphate, anticay.

  17. Exocharmic Reactions up Close

    ERIC Educational Resources Information Center

    Ramette, R. W.

    2007-01-01

    The exocharmic reactions that can be observed microscopically are discussed. The students can discover the optimal concentration of an acidic lead nitrate solution, so that a crystal of potassium iodide, nudged to the edge of a drop, results in glinting golden hexagons of lead iodide.

  18. Effect of protein solution components in the adsorption of Herbaspirillum seropedicae GlnB protein on mica.

    PubMed

    Ferreira, Cecília F G; Benelli, Elaine M; Klein, Jorge J; Schreiner, Wido; Camargo, Paulo C

    2009-10-15

    The adsorption of proteins and its buffer solution on mica surfaces was investigated by atomic force microscopy (AFM). Different salt concentration of the Herbaspirillum seropedicae GlnB protein (GlnB-Hs) solution deposited on mica was investigated. This protein is a globular, soluble homotrimer (36kDa), member of PII-like proteins family involved in signal transducing in prokaryote. Supramolecular structures were formed when this protein was deposited onto bare mica surface. The topographic AFM images of the GlnB-Hs films showed that at high salt concentration the supramolecular structures are spherical-like, instead of the typical doughnut-like shape for low salt concentration. AFM images of NaCl and Tris from the buffer solution showed structures with the same pattern as those observed for high salt protein solution, misleading the image interpretation. XPS experiments showed that GlnB protein film covers the mica surface without chemical reaction.

  19. Transverse kinetics of a charged drop in an external electric field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bondarenko, S.; Komoshvili, K.

    2016-01-22

    We investigate a non-equilibrium behavior of a small, dense and charged drop in the transverse plane. A collective motion of the drop’s particles with constant entropy is described. Namely, we solve Vlasov’s equation with non-isotropic initial conditions. Thereby a non-equilibrium distribution function of the process of the droplet evolution in the transverse plane is calculated. An external electric field is included in the initial conditions of the equation that affects on the form of the obtained solution. Applicability of the results to the description of initial states of quark-gluon plasma is also discussed.

  20. Anemia of Inflammation and Chronic Disease

    MedlinePlus

    ... of red blood cells or the amount of hemoglobin in the red blood cells drops below normal, ... prevents the body’s cells from getting enough oxygen. Hemoglobin is an iron-rich protein that gives blood ...

  1. Losing weight after pregnancy

    MedlinePlus

    ... choices such as fruits, vegetables, whole grains, low-fat dairy, and lean protein. DO NOT drop ... Weight loss that happens too fast can make you produce less milk. Losing about a pound and a half (670 ...

  2. [Cloning and sequence analysis of 55 K protein of egg drop syndrome virus].

    PubMed

    Zhu, L; Jin, Q; Zeng, L

    1999-06-30

    For understanding the characteristics of genomic structure of egg drop syndrome virus(EDSV). Nucleic acid was extracted using routine method from weak virulent strain AA-2 of EDSV isolated from Chinese sick hens. Construction of the whole genomic library was by hydrolysis with Hind III, strand encoding 55 K gene locating in Hind III--A segment was sequenced and analyzed. The open reading frame has a length of 1,014 nt and codes a polypeptide of 337 amino acids with molecular weight of 38,200. Analysis of the amino acid sequence revealed a homology from 25.5%-32.4% to the 55 K protein of human adenovirus types 2, 12, 40, canine adenovirus and fowl adenoviruses of group 1, whereas to ovine adenovirus is 46.4%. The genomic structure of EDSV has some relationship with adenoviruses.

  3. Phospholipid transfer activities in toad oocytes and developing embryos. [Bufo arenarum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rusinol, A.; Salomon, R.A.; Bloj, B.

    1987-01-01

    The role of lipid transfer proteins during plasma membrane biogenesis was explored. Developing amphibia embryos were used because during their growth an active plasma membrane biosynthesis occurs together with negligible mitochondrial and endoplasmic reticulum proliferation. Sonicated vesicles, containing /sup 14/C-labeled phospholipids and /sup 3/H-labeled triolein, as donor particles and cross-linked erythrocyte ghosts as acceptor particles were used to measure phospholipid transfer activities in unfertilized oocytes and in developing embryos of the toad Bufo arenarum. Phosphatidylcholine transfer activity in pH 5.1 supernatant of unfertilized oocytes was 8-fold higher than the activity found in female toad liver supernatant, but dropped steadily aftermore » fertilization. After 20 hr of development, at the stage of late blastula, the phosphatidylcholine transfer activity had dropped 4-fold. Unfertilized oocyte supernatant exhibited phosphatidylinositol and phosphatidylethanolamine transfer activity also, but at the late blastula stage the former had dropped 18-fold and the latter was no longer detectable under our assay conditions. Our results show that fertilization does not trigger a phospholipid transport process catalyzed by lipid transfer proteins. Moreover, they imply that 75% of the phosphatidylcholine transfer activity and more than 95% of the phosphatidylinositol and phosphatidylethanolamine transfer activities present in pH 5.1 supernatants of unfertilized oocytes may not be essential for toad embryo development. Our findings do not rule out, however, that a phosphatidylcholine-specific lipid transfer protein could be required for embryo early growth.« less

  4. Preservation of Biological Activity of Plasma and Platelet-Derived Eye Drops After Their Different Time and Temperature Conditions of Storage.

    PubMed

    Anitua, Eduardo; de la Fuente, María; Riestra, Ana; Merayo-Lloves, Jesús; Muruzábal, Francisco; Orive, Gorka

    2015-09-01

    To analyze whether plasma rich in growth factors (PRGF) eye drops preserve their biological characteristics and activity after storage for 3 and 6 months at -20°C, at 4°C, and at room temperature for 72 hours, compared with fresh samples (t0). Blood from 6 healthy donors was harvested and centrifuged to obtain PRGF free of leukocytes. Resulting PRGF eye drops were stored for 3 and 6 months at -20°C. At each time, 2 aliquots were maintained at room temperature or at 4°C for 72 hours. Platelet-derived growth factor-AB, transforming growth factor-β1, vascular endothelial growth factor, epidermal growth factor, insulin-like growth factor-1, angiopoietin-1, and thrombospondin-1 were quantified at each time and temperature of storage. Also, the effect of PRGF eye drops on proliferation of primary human keratocytes was evaluated. All the analyzed growth factor levels remained constant at each time and storage condition. No differences were observed in the proliferative activity of keratocytes after treatment with PRGF eye drops at any studied time or temperature. Finally, there was no microbial contamination in any of the PRGF eye drops. The preservation of the PRGF eye drops at -20°C for up to 3 and 6 months does not mean reduction of the main growth factors and proteins implicated in ocular surface wound healing. Eye drop characteristics and in vitro biological activity were not affected by their usage and conservation for 72 hours at 4°C or at room temperature.

  5. Amyloid-carbon hybrid membranes for universal water purification

    NASA Astrophysics Data System (ADS)

    Bolisetty, Sreenath; Mezzenga, Raffaele

    2016-04-01

    Industrial development, energy production and mining have led to dramatically increased levels of environmental pollutants such as heavy metal ions, metal cyanides and nuclear waste. Current technologies for purifying contaminated waters are typically expensive and ion specific, and there is therefore a significant need for new approaches. Here, we report inexpensive hybrid membranes made from protein amyloid fibrils and activated porous carbon that can be used to remove heavy metal ions and radioactive waste from water. During filtration, the concentration of heavy metal ions drops by three to five orders of magnitude per passage and the process can be repeated numerous times. Notably, their efficiency remains unaltered when filtering several ions simultaneously. The performance of the membrane is enabled by the ability of the amyloids to selectively absorb heavy metal pollutants from solutions. We also show that our membranes can be used to recycle valuable heavy metal contaminants by thermally reducing ions trapped in saturated membranes, leading to the creation of elemental metal nanoparticles and films.

  6. Phormidium phycoerythrin forms hexamers in crystals: a crystallographic study

    PubMed Central

    Sonani, Ravi Raghav; Sharma, Mahima; Gupta, Gagan Deep; Kumar, Vinay; Madamwar, Datta

    2015-01-01

    The crystallographic analysis of a marine cyanobacterium (Phormidium sp. A09DM) phycoerythrin (PE) that shows distinct sequence features compared with known PE structures from cyanobacteria and red algae is reported. Phormidium PE was crystallized using the sitting-drop vapour-diffusion method with ammonium sulfate as a precipitant. Diffraction data were collected on the protein crystallography beamline at the Indus-2 synchrotron. The crystals diffracted to about 2.1 Å resolution at 100 K. The crystals, with an apparent hexagonal morphology, belonged to space group P1, with unit-cell parameters a = 108.3, b = 108.4 Å, c = 116.6 Å, α = 78.94, β = 82.50, γ = 60.34°. The molecular-replacement solution confirmed the presence of 12 αβ monomers in the P1 cell. The Phormidium PE elutes as an (αβ)3 trimer of αβ monomers from a molecular-sieve column and exists as [(αβ)3]2 hexamers in the crystal lattice. Unlike red algal PE proteins, the hexamers of Phormidium PE do not form higher-order structures in the crystals. The existence of only one characteristic visual absorption band at 564 nm suggests the presence of phycoerythrobilin chromophores, and the absence of any other types of bilins, in the Phormidium PE assembly. PMID:26249689

  7. Treatment with solubilized Silk-Derived Protein (SDP) enhances rabbit corneal epithelial wound healing.

    PubMed

    Abdel-Naby, Waleed; Cole, Brigette; Liu, Aihong; Liu, Jingbo; Wan, Pengxia; Schreiner, Ryan; Infanger, David W; Paulson, Nicholas B; Lawrence, Brian D; Rosenblatt, Mark I

    2017-01-01

    There is a significant clinical need to improve current therapeutic approaches to treat ocular surface injuries and disease, which affect hundreds of millions of people annually worldwide. The work presented here demonstrates that the presence of Silk-Derived Protein (SDP) on the healing rabbit corneal surface, administered in an eye drop formulation, corresponds with an enhanced epithelial wound healing profile. Rabbit corneas were denuded of their epithelial surface, and then treated for 72-hours with either PBS or PBS containing 5 or 20 mg/mL SDP in solution four times per day. Post-injury treatment with SDP formulations was found to accelerate the acute healing phase of the injured rabbit corneal epithelium. In addition, the use of SDP corresponded with an enhanced tissue healing profile through the formation of a multi-layered epithelial surface with increased tight junction formation. Additional biological effects were also revealed that included increased epithelial proliferation, and increased focal adhesion formation with a corresponding reduction in the presence of MMP-9 enzyme. These in vivo findings demonstrate for the first time that the presence of SDP on the injured ocular surface may aid to improve various steps of rabbit corneal wound healing, and provides evidence that SDP may have applicability as an ingredient in therapeutic ophthalmic formulations.

  8. Theoretical investigation of interaction of sorbitol molecules with alcohol dehydrogenase in aqueous solution using molecular dynamics simulation.

    PubMed

    Bahrami, Homayoon; Zahedi, Mansour; Moosavi-Movahedi, Ali Akbar; Azizian, Homa; Amanlou, Massoud

    2011-03-01

    The nature of protein-sorbitol-water interaction in solution at the molecular level, has been investigated using molecular dynamics simulations. In order to do this task, two molecular dynamics simulations of the protein ADH in solution at room temperature have been carried out, one in the presence (about 0.9 M) and another in the absence of sorbitol. The results show that the sorbitol molecules cluster and move toward the protein, and form hydrogen bonds with protein. Also, coating by sorbitol reduces the conformational fluctuations of the protein compared to the sorbitol-free system. Thus, it is concluded that at moderate concentration of sorbitol solution, sorbitol molecules interact with ADH via many H-bonds that prevent the protein folding. In fact, at more concentrated sorbitol solution, water and sorbitol molecules accumulate around the protein surface and form a continuous space-filling network to reduce the protein flexibility. Namely, in such solution, sorbitol molecules can stabilize a misfolded state of ADH, and prevent the protein from folding to its native structure.

  9. Adaptive Peer Sampling with Newscast

    NASA Astrophysics Data System (ADS)

    Tölgyesi, Norbert; Jelasity, Márk

    The peer sampling service is a middleware service that provides random samples from a large decentralized network to support gossip-based applications such as multicast, data aggregation and overlay topology management. Lightweight gossip-based implementations of the peer sampling service have been shown to provide good quality random sampling while also being extremely robust to many failure scenarios, including node churn and catastrophic failure. We identify two problems with these approaches. The first problem is related to message drop failures: if a node experiences a higher-than-average message drop rate then the probability of sampling this node in the network will decrease. The second problem is that the application layer at different nodes might request random samples at very different rates which can result in very poor random sampling especially at nodes with high request rates. We propose solutions for both problems. We focus on Newscast, a robust implementation of the peer sampling service. Our solution is based on simple extensions of the protocol and an adaptive self-control mechanism for its parameters, namely—without involving failure detectors—nodes passively monitor local protocol events using them as feedback for a local control loop for self-tuning the protocol parameters. The proposed solution is evaluated by simulation experiments.

  10. Picoliter Drop-On-Demand Dispensing for Multiplex Liquid Cell Transmission Electron Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patterson, Joseph P.; Parent, Lucas R.; Cantlon, Joshua

    2016-05-03

    Abstract Liquid cell transmission electron microscopy (LCTEM) provides a unique insight into the dynamics of nanomaterials in solution. Controlling the addition of multiple solutions to the liquid cell remains a key hurdle in our ability to increase throughput and to study processes dependent on solution mixing including chemical reactions. Here, we report that a piezo dispensing technique allows for mixing of multiple solutions directly within the viewing area. This technique permits deposition of 50 pL droplets of various aqueous solutions onto the liquid cell window, before assembly of the cell in a fully controlled manner. This proof-of-concept study highlights themore » great potential of picoliter dispensing in combination with LCTEM for observing nanoparticle mixing in the solution phase and the creation of chemical gradients.« less

  11. Thermocapillary motion of deformable drops

    NASA Technical Reports Server (NTRS)

    Haj-Hariri, Hossein; Shi, Qingping; Borhan, Ali

    1994-01-01

    The thermocapillary motion of initially spherical drops/bubbles driven by a constant temperature gradient in an unbounded liquid medium is simulated numerically. Effects of convection of momentum and energy, as well as shape deformations, are addressed. The method used is based on interface tracking on a base cartesian grid, and uses a smeared color or indicator function for the determination of the surface topology. Quad-tree adaptive refinement of the cartesian grid is implemented to enhance the fidelity of the surface tracking. It is shown that convection of energy results in a slowing of the drop, as the isotherms get wrapped around the front of the drop. Shape deformation resulting from inertial effects affect the migration velocity. The physical results obtained are in agreement with the existing literature. Furthermore, remarks are made on the sensitivity of the calculated solutions to the smearing of the fluid properties. Analysis and simulations show that the migration velocity depends very strongly on the smearing of the interfacial force whereas it is rather insensitive to the smearing of other properties, hence the adaptive grid.

  12. Characterization of zinc oxide thin film for pH detector

    NASA Astrophysics Data System (ADS)

    Hashim, Uda; Fathil, M. F. M.; Arshad, M. K. Md; Gopinath, Subash C. B.; Uda, M. N. A.

    2017-03-01

    This paper presents the fabrication process of the zinc oxide thin films for using to act as pH detection by using different PH solution. Sol-gel solution technique is used for preparing zinc oxide seed solution, followed by metal oxide deposition process by using spin coater on the silicon dioxide. Silicon dioxide layer is grown on the silicon wafer, then, ZnO seed solution is deposited on the silicon layer, baked, and annealing process carried on to undergo the characterization of its surface morphology, structural and crystalline phase. Electrical characterization is showed by using PH 4, 7, and 10 is dropped on the surface of the die, in addition, APTES solution is used as linker and also as a references of the electrical characterization.

  13. Arginine and lysine reduce the high viscosity of serum albumin solutions for pharmaceutical injection.

    PubMed

    Inoue, Naoto; Takai, Eisuke; Arakawa, Tsutomu; Shiraki, Kentaro

    2014-05-01

    Therapeutic protein solutions for subcutaneous injection must be very highly concentrated, which increases their viscosity through protein-protein interactions. However, maintaining a solution viscosity below 50 cP is important for the preparation and injection of therapeutic protein solutions. In this study, we examined the effect of various amino acids on the solution viscosity of very highly concentrated bovine serum albumin (BSA) and human serum albumin (HSA) at a physiological pH. Among the amino acids tested, l-arginine hydrochloride (ArgHCl) and l-lysine hydrochloride (LysHCl) (50-200 mM) successfully reduced the viscosity of both BSA and HSA solutions; guanidine hydrochloride (GdnHCl), NaCl, and other sodium salts were equally as effective, indicating the electrostatic shielding effect of these additives. Fourier transform infrared spectroscopy showed that BSA is in its native state even in the presence of ArgHCl, LysHCl, and NaCl at high protein concentrations. These results indicate that weakened protein-protein interactions play a key role in reducing solution viscosity. ArgHCl and LysHCl, which are also non-toxic compounds, will be used as additives to reduce the solution viscosity of concentrated therapeutic proteins. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Netarsudil Ophthalmic

    MedlinePlus

    ... an eye injury or develop an eye or eye lid infection while using netarsudil ophthalmic solution, ask your doctor if you can continue using netarsudil ophthalmic.If you wear contact lenses, remove them before instilling netarsudil. You may put them back in 15 minutes after you instill the drops.

  15. Isolation of Cryptococcus neoformans and other opportunistic fungi from pigeon droppings

    PubMed Central

    Soltani, Maryam; Bayat, Mansour; Hashemi, Seyed J.; Zia, Mohammadali; Pestechian, Nader

    2013-01-01

    Background: Invasive fungal infections cause considerable morbidity and mortality in immunocompromised hosts. Pigeon droppings could especially be a potential carrier in the spread of pathogenic yeasts and mold fungi into the environment. The objective of this study was to isolation of Cryptococcus neoformans and other opportunistic fungi from pigeon droppings. Materials and Methods: One hundred twenty samples of pigeon droppings were suspended 1:10 in saline solution and then cultured. Identification of C. neoformans was performed on bird seed agar, presence of a capsule on India ink preparation, urease production on urea agar medium and RapID yeast plus system. The identification of candida species was based on micro-morphological analysis on corn meal-Tween 80 agar, RapID yeast plus system and growth in CHROMagar candida. The identification of other fungi was based on macromorphologic, microscopic, biochemical and physiological characteristics. Results: The highest frequency of yeasts and mold fungi were observed in Candida albicans 6.6% and Penicillium spp. 25%. The frequency rate of C. neoformans isolation was 2.5%. Conclusion: Several types of fungi are present in pigeon droppings that can spread in environment and transmit to children and elderly as well as immunocompromised patients who are at increased risk of contracting opportunistic diseases. PMID:23901339

  16. Conjunctiva-Associated Lymphoid Tissue (CALT) Reactions to Antiglaucoma Prostaglandins with or without BAK-Preservative in Rabbit Acute Toxicity Study

    PubMed Central

    Liang, Hong; Baudouin, Christophe; Labbe, Antoine; Riancho, Luisa; Brignole-Baudouin, Françoise

    2012-01-01

    Conjunctiva-associated lymphoid tissue (CALT) is closely associated with ocular surface immunity. This study investigated the effects of antiglaucoma prostaglandin analogs with or without benzalkonium chloride (BAK) preservative on organized CALT using an acute toxic model. A total of 48 albino rabbits were used and seven groups of treatments were constituted. Solutions (50 µl) of PBS, 0.02%BAK, 0.02%BAK+latanoprost, 0.015%BAK+travoprost, 0.005%BAK+bimatoprost, BAK-freetravoprost preserved with the SofZia® system or BAK-freetafluprost were instilled 15 times at 5-min intervals in both eyes. CALT changes were analyzed using in vivo confocal microscopy (IVCM), immunohistology in cryosections for detecting MUC-5AC+ mucocytes and CD45+ hematopoietic cells. Antiglaucoma eye drops stimulated inflammatory cell infiltration in the CALT, and seemed to be primarily related to the concentration of their BAK content. The CALT reaction after instillation of BAK-containing eye drops was characterized by inflammatory cell infiltration in the dome and intrafollicular layers and by cell circulation inside the lymph vessels. CD45 was strongly expressed in the CALT after instillation of all BAK-containing solutions at 4 h and decreased at 24 h. The number of MUC-5AC+ mucocytes around the CALT structure decreased dramatically after instillation of BAK-containing solutions. This study showed for the first time the in vivo aspect of rabbit CALT after toxic stimuli, confirming the concentration-dependent toxic effects of BAK. IVCM-CALT analysis could be a pertinent tool in the future for understanding the immunotoxicologic challenges in the ocular surface and would provide useful criteria for evaluating newly developed eye drops. PMID:22442734

  17. Comparison of preservative-free ketotifen fumarate and preserved olopatadine hydrochloride eye drops in the treatment of moderate to severe seasonal allergic conjunctivitis.

    PubMed

    Mortemousque, B; Bourcier, T; Khairallah, M; Messaoud, R; Brignole-Baudouin, F; Renault, D; Rebika, H; Brémond-Gignac, D

    2014-01-01

    To compare preservative-free ketotifen 0.025% ophthalmic solution to olopatadine 0.1% ophthalmic solution in with the treatment of seasonal allergic conjunctivitis (SAC) in clinical practice. This was a comparative, randomised, investigator-masked, pilot clinical study in adult patients with documented history of SAC and presenting with moderate to severe itching and conjunctival hyperemia. Eligible patients initiated either ketotifen or olopatadine treatment at a dose of one drop twice daily for 28days. The resolution of ocular signs and symptoms was assessed on day 7 and day 28. Itching was also assessed within 15minutes following the first instillation (day 0). Conjunctival impression cytology was performed at each visit to assess the evolution of ICAM-1 expression (day 0, 7 and 28). Seventy-five patients were randomised (ketotifen: 38 patients; olopatadine: 37 patients). At day 28, the composite score for primary criteria (itching, tearing, and conjunctival hyperemia) improved from 6.8±1.2 to 0.9±1.0 in the Ketotifen group, without statistically significant difference between treatment groups (P=0.67). There was no relevant difference between treatment groups in other efficacy parameters, except a trend for a more rapid resolution of conjunctival hyperemia in the Ketotifen group. Both drugs were well tolerated, with a trend for a better tolerability reported by patients on ketotifen compared to those on olopatadine at day 7 (P=0.054). A rapid and comparable improvement in SAC was achieved after 28days of treatment with both preservative-free ketotifen and preserved olopatadine ophthalmic solutions, with a slightly better ocular tolerance with unpreserved ketotifen 0.025% eye drops. Copyright © 2013. Published by Elsevier Masson SAS.

  18. Variability of computational fluid dynamics solutions for pressure and flow in a giant aneurysm: the ASME 2012 Summer Bioengineering Conference CFD Challenge.

    PubMed

    Steinman, David A; Hoi, Yiemeng; Fahy, Paul; Morris, Liam; Walsh, Michael T; Aristokleous, Nicolas; Anayiotos, Andreas S; Papaharilaou, Yannis; Arzani, Amirhossein; Shadden, Shawn C; Berg, Philipp; Janiga, Gábor; Bols, Joris; Segers, Patrick; Bressloff, Neil W; Cibis, Merih; Gijsen, Frank H; Cito, Salvatore; Pallarés, Jordi; Browne, Leonard D; Costelloe, Jennifer A; Lynch, Adrian G; Degroote, Joris; Vierendeels, Jan; Fu, Wenyu; Qiao, Aike; Hodis, Simona; Kallmes, David F; Kalsi, Hardeep; Long, Quan; Kheyfets, Vitaly O; Finol, Ender A; Kono, Kenichi; Malek, Adel M; Lauric, Alexandra; Menon, Prahlad G; Pekkan, Kerem; Esmaily Moghadam, Mahdi; Marsden, Alison L; Oshima, Marie; Katagiri, Kengo; Peiffer, Véronique; Mohamied, Yumnah; Sherwin, Spencer J; Schaller, Jens; Goubergrits, Leonid; Usera, Gabriel; Mendina, Mariana; Valen-Sendstad, Kristian; Habets, Damiaan F; Xiang, Jianping; Meng, Hui; Yu, Yue; Karniadakis, George E; Shaffer, Nicholas; Loth, Francis

    2013-02-01

    Stimulated by a recent controversy regarding pressure drops predicted in a giant aneurysm with a proximal stenosis, the present study sought to assess variability in the prediction of pressures and flow by a wide variety of research groups. In phase I, lumen geometry, flow rates, and fluid properties were specified, leaving each research group to choose their solver, discretization, and solution strategies. Variability was assessed by having each group interpolate their results onto a standardized mesh and centerline. For phase II, a physical model of the geometry was constructed, from which pressure and flow rates were measured. Groups repeated their simulations using a geometry reconstructed from a micro-computed tomography (CT) scan of the physical model with the measured flow rates and fluid properties. Phase I results from 25 groups demonstrated remarkable consistency in the pressure patterns, with the majority predicting peak systolic pressure drops within 8% of each other. Aneurysm sac flow patterns were more variable with only a few groups reporting peak systolic flow instabilities owing to their use of high temporal resolutions. Variability for phase II was comparable, and the median predicted pressure drops were within a few millimeters of mercury of the measured values but only after accounting for submillimeter errors in the reconstruction of the life-sized flow model from micro-CT. In summary, pressure can be predicted with consistency by CFD across a wide range of solvers and solution strategies, but this may not hold true for specific flow patterns or derived quantities. Future challenges are needed and should focus on hemodynamic quantities thought to be of clinical interest.

  19. An intercomparison of methods for solving the stochastic collection equation with a focus on cloud radar Doppler spectra in drizzling stratocumulus

    NASA Astrophysics Data System (ADS)

    Lee, H.; Fridlind, A. M.; Ackerman, A. S.; Kollias, P.

    2017-12-01

    Cloud radar Doppler spectra provide rich information for evaluating the fidelity of particle size distributions from cloud models. The intrinsic simplifications of bulk microphysics schemes generally preclude the generation of plausible Doppler spectra, unlike bin microphysics schemes, which develop particle size distributions more organically at substantial computational expense. However, bin microphysics schemes face the difficulty of numerical diffusion leading to overly rapid large drop formation, particularly while solving the stochastic collection equation (SCE). Because such numerical diffusion can cause an even greater overestimation of radar reflectivity, an accurate method for solving the SCE is essential for bin microphysics schemes to accurately simulate Doppler spectra. While several methods have been proposed to solve the SCE, here we examine those of Berry and Reinhardt (1974, BR74), Jacobson et al. (1994, J94), and Bott (2000, B00). Using a simple box model to simulate drop size distribution evolution during precipitation formation with a realistic kernel, it is shown that each method yields a converged solution as the resolution of the drop size grid increases. However, the BR74 and B00 methods yield nearly identical size distributions in time, whereas the J94 method produces consistently larger drops throughout the simulation. In contrast to an earlier study, the performance of the B00 method is found to be satisfactory; it converges at relatively low resolution and long time steps, and its computational efficiency is the best among the three methods considered here. Finally, a series of idealized stratocumulus large-eddy simulations are performed using the J94 and B00 methods. The reflectivity size distributions and Doppler spectra obtained from the different SCE solution methods are presented and compared with observations.

  20. Ice Melting to Release Reactants in Solution Syntheses.

    PubMed

    Wei, Hehe; Huang, Kai; Zhang, Le; Ge, Binghui; Wang, Dong; Lang, Jialiang; Ma, Jingyuan; Wang, Da; Zhang, Shuai; Li, Qunyang; Zhang, Ruoyu; Hussain, Naveed; Lei, Ming; Liu, Li-Min; Wu, Hui

    2018-03-19

    Aqueous solution syntheses are mostly based on mixing two solutions with different reactants. It is shown that freezing one solution and melting it in another solution provides a new interesting strategy to mix chemicals and to significantly change the reaction kinetics and thermodynamics. For example, a precursor solution containing a certain concentration of AgNO 3 was frozen and dropped into a reductive NaBH 4 solution at about 0 °C. The ultra-slow release of reactants was successfully achieved. An ice-melting process can be used to synthesize atomically dispersed metals, including cobalt, nickel, copper, rhodium, ruthenium, palladium, silver, osmium, iridium, platinum, and gold, which can be easily extended to other solution syntheses (such as precipitation, hydrolysis, and displacement reactions) and provide a generalized method to redesign the interphase reaction kinetics and ion diffusion in wet chemistry. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Surface tension isotherms of the dioxane-acetone-water and glycerol-ethanol-water ternary systems

    NASA Astrophysics Data System (ADS)

    Dzhambulatov, R. S.; Dadashev, R. Kh.; Elimkhanov, D. Z.; Dadashev, I. N.

    2016-10-01

    The results of the experimental and theoretical studies of the concentration dependence of surface tension of aqueous solutions of the 1,4-dioxane-acetone-water and glycerol-ethanol-water ternary systems were given. The studies were performed by the hanging-drop method on a DSA100 tensiometer. The maximum error of surface tension was 1%. The theoretical models for calculating the surface tension of the ternary systems of organic solutions were analyzed.

  2. Inertial Confinement fusion targets

    NASA Technical Reports Server (NTRS)

    Hendricks, C. D.

    1982-01-01

    Inertial confinement fusion (ICF) targets are made as simple flat discs, as hollow shells or as complicated multilayer structures. Many techniques were devised for producing the targets. Glass and metal shells are made by using drop and bubble techniques. Solid hydrogen shells are also produced by adapting old methods to the solution of modern problems. Some of these techniques, problems, and solutions are discussed. In addition, the applications of many of the techniques to fabrication of ICF targets is presented.

  3. Preparation and release characteristics of polymer-coated and blended alginate microspheres.

    PubMed

    Lee, D W; Hwang, S J; Park, J B; Park, H J

    2003-01-01

    To prevent a rapid drug release from alginate microspheres in simulated intestinal media, alginate microspheres were coated or blended with polymers. Three polymers were selected and evaluated such as HPMC, Eudragit RS 30D and chitosan, as both coating materials and additive polymers for controlling the drug release. This study focused on the release characteristics of polymer-coated and blended alginate microspheres, varying the type of polymer and its concentration. The alginate microspheres were prepared by dropping the mixture of drug and sodium alginate into CaCl(2) solution using a spray-gun. Polymer-coated microspheres were prepared by adding alginate microspheres into polymer solution with mild stirring. Polymer-blended microspheres were prepared by dropping the mixture of drug, sodium alginate and additive polymer with plasticizer into CaCl(2) solution. In vitro release test was carried out to investigate the release profiles in 500 ml of phosphate buffered saline (PBS, pH 7.4). As the amount of polymer in sodium alginate or coating solution increase, the drug release generally decreased. HPMC-blended microspheres swelled but withstood the disintegration, showing an ideal linear release profiles. Chitosan-coated microspheres showed smooth and round surface and extended the release of drug. In comparison with chitosan-coated microspheres, HPMC-blended alginate microspheres can be easily made and used for controlled drug delivery systems due to convenient process and controlled drug release.

  4. Effect of Ingested Liquids on Color Change of Composite Resins.

    PubMed

    Malek Afzali, Beheshteh; Ghasemi, Amir; Mirani, Asrin; Abdolazimi, Zahra; Akbarzade Baghban, Alireza; Kharazifard, Mohammad Javad

    2015-08-01

    Color change of composite restorations is well known to dentists. However, the effect of commonly consumed drinks on discoloration of composite resins has yet to be determined. This study sought to assess the color change of a nanofilled (Premise) and a flowable composite resin (Premise flowable) following simulated consumption of tea, cola, iron drops and multivitamin syrup. Forty disk-shaped specimens (7 mm in diameter and 2 mm thick) were fabricated from each composite resin. The baseline color values were measured according to the CIE L*a*b* system using digital imaging. The specimens of each restorative material were randomly divided into five groups (eight each) according to the storage media namely tea, cola, iron drops, multivitamin syrup or distilled water (control). The specimens were immersed in staining solutions for three hours daily over a 40-day test period. Following this, the color change values (ΔE*) were calculated. For statistical analyses, the color differences were analyzed using two-way ANOVA and Tukey's test (P< 0.05). There was no significant difference in ΔE* values between the two types of composite resins (P>0.05). In both composite materials, the difference among the solutions was not significant (P>0.05). Under the tested experimental conditions, both restorative materials were susceptible to discoloration by all four staining solutions. The color change values were not related to the solution or the type of material used.

  5. Composition of incubation solution impacts in vitro protein uptake to silicone hydrogel contact lenses

    PubMed Central

    Heynen, Miriam; Luensmann, Doerte; Jones, Lyndon

    2012-01-01

    Purpose To determine the impact of incubation solution composition on protein deposition to silicone hydrogel (SH) contact lenses using a simplistic and a complex model of the tear film. Methods Three SH materials – senofilcon A (SA), lotrafilcon B (LB), and balafilcon A (BA) – were incubated in two different solutions; Solution A was a simplistic augmented buffered saline solution containing a single protein, whereas Solution B was a complex artificial tear solution (ATS), containing the augmented buffered saline solution in addition to proteins, lipids, and mucins (pH=7.4). The proteins of interest (lysozyme, lactoferrin, albumin) were radiolabeled with Iodine-125 (2% protein of interest) and the accumulation of the conjugated protein to the lens materials was determined after 1, 7, 14, and 28 days of incubation. Protein deposition was measured using a gamma counter and the raw data were translated into absolute amounts (µg/lens) via extrapolation from standards. Results After 28 days, lysozyme uptake was significantly lower on BA lenses when incubated in Solution A (33.7 μg) compared to Solution B (56.2 μg), p<0.001. SA lenses deposited similar amounts of lysozyme when incubated in either Solution A (2.6 μg) or Solution B (4.1 μg), p>0.05. LB lenses also deposited similar amounts of lysozyme for both solutions (Solution A: 5.0 μg, Solution B: 4.7 μg, p>0.05). After 28 days, BA lenses accumulated approximately twice the amount of lactoferrin than the other lens materials, with 30.3 μg depositing when exposed to Solution A and 22.0 μg with Solution B. The difference between the two solutions was statistically significant (p<0.001). LB materials deposited significantly greater amounts of lactoferrin when incubated in Solution A (16.6 μg) compared to Solution B (10.3 μg), p<0.001. Similar amounts of lactoferrin were accumulated onto SA lenses regardless of incubation solution composition (Solution A: 8.2 μg, Solution B: 11.2 μg, p>0.05). After 28 days, albumin deposition onto BA lenses was significantly greater when lenses were incubated in Solution B (1.7 μg) compared to Solution A (0.9 μg), p<0.001. Similar amounts of albumin were deposited on SA lenses when incubated in either solution (0.6 μg versus 0.7 μg, p>0.05). LB lenses incubated in Solution A deposited more albumin compared to Solution B (0.9 μg versus 0.6 μg), p=0.003. Discussion Protein deposition onto SH materials varied when contact lenses were incubated in either a complex ATS compared to a single protein solution. More lysozyme accumulated onto BA lenses incubated in a complex analog of the human tear film, whereas lactoferrin deposited onto SA lenses independent of incubation solution composition. To better mimic the ex vivo environment, future studies should use more appropriate analogs of the tear film. PMID:22355245

  6. Soliton-like defects in nematic liquid crystal thin layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuvyrov, A. N.; Krekhov, A. P.; Lebedev, Yu. A., E-mail: lebedev@anrb.ru

    The nonsingular soliton-like defects in plane nematic liquid crystal (NLC) layers and spherical NLC drops are experimentally detected and studied when the interaction of NLC molecules with a bounding surface is varied. The dynamics and the annihilation of nonsingular defects of opposite signs on a plane surface are investigated. Periodic transformations of the soliton-like defects in NLC drops in an electric field are detected. The theory of elasticity is used to show that the surface energy taken into account in the total free energy of NLC in the case of weak anchoring leads to the possibility of nonsingular solutions ofmore » a director equilibrium equation. The calculated pictures of director distribution in a plane NLC layer and in a spherical NLC drop characterized by weak surface anchoring agree well with the results of polarized light optical observations.« less

  7. Effect of surfactant on single drop mass transfer for extraction of aromatics from lubricating oils

    NASA Astrophysics Data System (ADS)

    Izza, H.; Ben Abdessalam, S.; Korichi, M.

    2018-03-01

    Solvent extraction is an effective method for the reduction of the content of aromatic of lubricating oil. Frequently, with phenol, furfural, the NMP (out of N-methyl pyrrolidone). The power solvent and the selectivity can be still to increase while using surfactant as additive which facilitates the separation of phase and increases the yeild in raffinat. Liquid-liquid mass transfer coefficients for single freely rising drops in the presence of surfactant in an extraction column have been investigated. The surfactant used in this study was sodium lauryl ether sulfate (SLES). The experiments were performed by bubbling a solvent as a series of individual drops from the top of the column containing furfural-SLES solution. The column used in this experiment was made from glass with 17 mm inner diameter and a capacity of 125ml. The effects of the concentration of surfactant on the overall coefficient of mass transfer was investigated.

  8. A precise goniometer/tensiometer using a low cost single-board computer

    NASA Astrophysics Data System (ADS)

    Favier, Benoit; Chamakos, Nikolaos T.; Papathanasiou, Athanasios G.

    2017-12-01

    Measuring the surface tension and the Young contact angle of a droplet is extremely important for many industrial applications. Here, considering the booming interest for small and cheap but precise experimental instruments, we have constructed a low-cost contact angle goniometer/tensiometer, based on a single-board computer (Raspberry Pi). The device runs an axisymmetric drop shape analysis (ADSA) algorithm written in Python. The code, here named DropToolKit, was developed in-house. We initially present the mathematical framework of our algorithm and then we validate our software tool against other well-established ADSA packages, including the commercial ramé-hart DROPimage Advanced as well as the DropAnalysis plugin in ImageJ. After successfully testing for various combinations of liquids and solid surfaces, we concluded that our prototype device would be highly beneficial for industrial applications as well as for scientific research in wetting phenomena compared to the commercial solutions.

  9. Inhibition of Protein Carbamylation in Urea Solution Using Ammonium Containing Buffers

    PubMed Central

    Sun, Shisheng; Zhou, Jian-Ying; Yang, Weiming; Zhang, Hui

    2013-01-01

    Urea solution is one of the most commonly employed protein denaturants for protease digestion in proteomic studies. However, it has long been recognized that urea solution can cause carbamylation at the N-termini of proteins/peptides and at the side chain amino groups of lysine and arginine residues. Protein/peptide carbamylation blocks protease digestion and affects protein identification and quantification in mass spectrometry analysis by blocking peptide amino groups from isotopic/isobaric labeling and changing peptide charge states, retention times and masses. In addition, protein carbamylation during sample preparation makes it difficult to study in vivo protein carbamylation. In this study, we compared the peptide carbamylation in urea solutions of different buffers and found that ammonium containing buffers were the most effective buffers to inhibit protein carbamylation in urea solution. The possible mechanism of carbamylation inhibition by ammonium containing buffers is discussed, and a revised procedure for the protease digestion of proteins in urea and ammonium containing buffers was developed to facilitate its application in proteomic research. PMID:24161613

  10. Crystallization and preliminary diffraction analysis of a DsbA homologue from Wolbachia pipientis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurz, M.; Iturbe-Ormaetxe, I.; Jarrott, R.

    2008-02-01

    The first crystallization of a W. pipientis protein, α-DsbA1, was achieved using hanging-drop and sitting-drop vapour diffusion. α-DsbA1 is one of two DsbA homologues encoded by the Gram-negative α-proteobacterium Wolbachia pipientis, an endosymbiont that can behave as a reproductive parasite in insects and as a mutualist in medically important filarial nematodes. The α-DsbA1 protein is thought to be important for the folding and secretion of Wolbachia proteins involved in the induction of reproductive distortions. Crystals of native and SeMet α-DsbA1 were grown by vapour diffusion and belong to the monoclinic space group C2, with unit-cell parameters a = 71.4, bmore » = 49.5, c = 69.3 Å, β = 107.0° and one molecule in the asymmetric unit (44% solvent content). X-ray data were recorded from native crystals to a resolution of 2.01 Å using a copper anode and data from SeMet α-DsbA1 crystals were recorded to 2.45 Å resolution using a chromium anode.« less

  11. Rapid and nondestructive method for evaluation of embryo culture media using drop coating deposition Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Huang, Zufang; Sun, Yan; Wang, Jing; Du, Shengrong; Li, Yongzeng; Lin, Juqiang; Feng, Shangyuan; Lei, Jinping; Lin, Hongxin; Chen, Rong; Zeng, Haishan

    2013-12-01

    In this study, a rapid and simple method which combines drop coating deposition and Raman spectroscopy (DCDR) was developed to characterize the dry embryo culture media (ECM) droplet. We demonstrated that Raman spectra obtained from the droplet edge presented useful and characteristic signatures for protein and amino acids assessment. Using a different analytical method, scanning electron microscopy coupled with energy dispersive X-ray analysis, we further confirmed that Na, K, and Cl were mainly detected in the central area of the dry ECM droplet while sulphur, an indicative of the presence of macromolecules such as proteins, was mainly found at the periphery of the droplet. In addition, to reduce sample preparation time, different temperatures for drying the droplets were tested. The results showed that drying temperature at 50°C can effectively reduce the sample preparation time to 6 min (as compared to 50 min for drying at room temperature, ˜25°C) without inducing thermal damage to the proteins. This work demonstrated that DCDR has potential for rapid and reliable metabolomic profiling of ECM in clinical applications.

  12. Device and method for screening crystallization conditions in solution crystal growth

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor)

    1995-01-01

    A device and method for detecting optimum protein crystallization conditions and for growing protein crystals in either 1g or microgravity environments comprising a housing, defining at least one pair of chambers for containing crystallization solutions is presented. The housing further defines an orifice therein for providing fluid communication between the chambers. The orifice is adapted to receive a tube which contains a gelling substance for limiting the rate of diffusive mixing of the crystallization solutions. The solutions are diffusively mixed over a period of time defined by the quantity of gelling substance sufficient to achieve equilibration and to substantially reduce density driven convection disturbances therein. The device further includes endcaps to seal the first and second chambers. One of the endcaps includes a dialysis chamber which contains protein solution in which protein crystals are grown. Once the endcaps are in place, the protein solution is exposed to the crystallization solutions wherein the solubility of the protein solution is reduced at a rate responsive to the rate of diffusive mixing of the crystallization solutions. This allows for a controlled approach to supersaturation and allows for screening of crystal growth conditions at preselected intervals.

  13. Device and Method for Screening Crystallization Conditions in Solution Crystal Growth

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor)

    1997-01-01

    A device and method for detecting optimum protein crystallization conditions and for growing protein crystals in either 1 g or microgravity environments comprising a housing defining at least one pair of chambers for containing crystallization solutions. The housing further defines an orifice therein for providing fluid communication between the chambers. The orifice is adapted to receive a tube which contains a gelling substance for limiting the rate of diffusive mixing of the crystallization solutions. The solutions are diffusively mixed over a period of time defined by the quantity of gelling substance sufficient to achieve equilibration and to substantially reduce density driven convection disturbances therein. The device further includes endcaps to seal the first and second chambers. One of the endcaps includes a dialysis chamber which contains protein solution in which protein crystals are grown. Once the endcaps are in place. the protein solution is exposed to the crystallization solutions wherein the solubility of the protein solution is reduced at a rate responsive to the rate of diffusive mixing of the crystallization solutions. This allows for a controlled approach to supersaturation and allows for screening of crystal growth conditions at preselected intervals.

  14. Deformational behaviour of knee cartilage and changes in serum cartilage oligomeric matrix protein (COMP) after running and drop landing.

    PubMed

    Niehoff, A; Müller, M; Brüggemann, L; Savage, T; Zaucke, F; Eckstein, F; Müller-Lung, U; Brüggemann, G-P

    2011-08-01

    To investigate (1) the effect of running and drop landing interventions on knee cartilage deformation and serum cartilage oligomeric matrix protein (COMP) concentration and (2) if the changes in cartilage volume correlate with the changes in serum COMP level. Knee joint cartilage volume and thickness were determined using magnetic resonance imaging (MRI) as well as COMP concentration from serum samples before and after in vivo loading of 14 healthy adults (seven male and seven female). Participants performed different loading interventions of 30 min duration on three different days: (1) 100 vertical drop landings from a 73 cm high platform, (2) running at a velocity of 2.2m/s (3.96 km), and (3) resting on a chair. Blood samples were taken immediately before, immediately after and 0.5h, 1h, 2h and 3h post intervention. Pre- and post-loading coronal and axial gradient echo MR images with fat suppression were used to determine the patellar, tibial and femoral cartilage deformation. Serum COMP levels increased immediately after the running (+30.7%, pre: 7.3U/l, 95% confidence interval (CI): 5.6, 8.9, post: 9.1U/l, 95% CI: 7.2, 11.0, P=0.001) and after drop landing intervention (+32.3%, pre: 6.8U/l, 95% CI: 5.3, 8.4; post: 8.9U/l, 95% CI: 6.8, 10.9, P=0.001). Cartilage deformation was more pronounced after running compared to drop landing intervention, with being significant (volume: P=0.002 and thickness: P=0.001) only in the lateral tibia. We found a significant correlation (r(2)=0.599, P=0.001) between changes in serum COMP (%) and in cartilage volume (%) after the drop landing intervention, but not after running. In vivo exercise interventions differentially regulate serum COMP concentrations and knee cartilage deformations. The relation between changes in COMP and in cartilage volume seems to depend on both mechanical and biochemical factors. Copyright © 2011 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  15. Microgravity

    NASA Image and Video Library

    1995-09-12

    DCAM, developed by MSFC, grows crystals by the dialysis and liquid-liquid diffusion methods. In both methods, protein crystal growth is induced by changing conditions in the protein. In dialysis, a semipermeable membrane retains the protein solution in one compartment, while allowing molecules of precipitant to pass freely through the membrane from an adjacent compartment. As the precipitant concentration increases within the protein compartment, crystallization begins. In liquid-liquid diffusion, a protein solution and a precipitant solution are layered in a container and allowed to diffuse into each other. This leads to conditions which may induce crystallization of the protein. Liquid-liquid diffusion is difficult on Earth because density and temperature differences cause the solutions to mix rapidly.

  16. Modifications in structure and interaction of nanoparticle-protein-surfactant complexes in electrolyte solution

    NASA Astrophysics Data System (ADS)

    Mehan, Sumit; Kumar, S.; Aswal, V. K.; Schweins, R.

    2016-05-01

    SANS experiments of three-component system of anionic silica nanoparticles, anionic BSA protein and anionic SDS surfactants have been carried out without and with electrolyte in aqueous solution. In both the cases, the interaction of surfactant with protein results in formation of bead-necklace structure of protein-surfactant complexes in solution. These protein-surfactant complexes interact very differently with nanoparticles in absence and presence of electrolyte. In absence of electrolyte, nanoparticles remain in dispersed phase in solution, whereas with the addition of electrolyte the nanoparticles fractal aggregates are formed. SANS describes the phase behavior to be governed by competition of electrostatic and depletion interactions among the components solution.

  17. No evidence for adaptation of current egg drop syndrome 1976 viruses to chickens.

    PubMed

    Tsukamoto, K; Kuwabara, M; Kaneko, M; Mase, M; Imai, K

    2004-01-01

    In order to determine whether the current field strains of egg drop syndrome (EDS) 1976 viruses adapt to chickens, we compared the growth efficiency of three Japanese field strains (PA-1/79, AWI/98, Gifu/01) in chicken and duck embryo liver cells. The growth efficiency in chicken or duck embryo liver cells was almost similar in these strains. The fiber protein may carry the type-specific antigen and the hemagglutination activity, and hexon protein may contain the subgroup-specific antigenic determinants. Therefore, the fiber head and hexon loop 1 DNA domain sequences of the six Japanese field strains UPA-1/79, ME/80, 44/81, Kyoto/91, AWI/98, Gifu/01) were compared, but these DNA domains were identical among the six field strains. Our data suggested that the EDS virus was maintained without discernible changes for the last two decades in the field.

  18. Photosynthesis and Retention of Zooxanthellae and Zoochlorellae Within the Aeolid Nudibranch Aeolidia papillosa.

    PubMed

    McFarland, F K; Muller-Parker, G

    1993-04-01

    Both zooxanthellae and zoochlorellae are found in the cerata of Aeolidia papillosa after it has ingested symbiotic Anthopleura elegantissima containing these algae. High rates of photosynthesis were found in algae present in the cerata and in algae isolated from nudibranch feces. For algal cells present in the cerata of nudibranchs collected in June 1991, carbon fixation by zooxanthellae (1.18 +/- 0.36 pg C/cell/h) was significantly greater than carbon fixation by zoochlorellae (0.55 +/- 0.32 pg C/cell/h). Algal densities within the cerata of laboratory fed nudibranchs were significantly greater for zoochlorellae (175 +/- 82 cells/μg protein, light treatment; 131 +/- 106 cells/μg protein, dark treatment) than for zooxanthellae (38 +/- 18 cells/μg protein, light; 53 +/- 30 cells/ μg protein, dark). Ceratal densities of zooxanthellae (16 +/- 8 cells/μg protein) in the field during January 1992 were low in comparison to ceratal densities in the laboratory--several of the nudibranchs in the field lacked any symbiotic algae, and zoochlorellae were always absent. Nudibranch algal densities were not stable and dropped rapidly if the nudibranchs were starved. Both zoochlorella and zooxanthella densities dropped to 0 cells/μg protein within 11 days of starvation. While these results show that the relationship between A. papillosa and the two algae is not a stable symbiosis, the photosynthetic activity of the algae in the cerata suggests that the nudibranch and/or the algae may benefit from the association while it lasts.

  19. Determination of trace arsenic on hanging copper amalgam drop electrode.

    PubMed

    Piech, Robert; Baś, Bogusław; Niewiara, Ewa; Kubiak, Władysław W

    2007-04-30

    Hanging copper amalgam drop electrode has been applied for trace determination of arsenic by cathodic stripping analysis. Detection limit for As(III) as low as 0.33nM (0.02mug/L) at deposition time (240s) could be obtained. For seven successive determinations of As(III) at concentration of 5nM relative standard deviation was 2.5% (n=7). Interferences from selected metals and surfactant substances were examined. Absence of copper ions in sample solution causes easier optimization and makes method less vulnerable on contamination. The developed method was validated by analysis of certified reference materials (CRMs) and applied to arsenic determinations in natural water samples.

  20. Photoacoustic assay for probing amyloid formation: feasibility study

    NASA Astrophysics Data System (ADS)

    Petrova, Elena; Yoon, Soon Joon; Pelivanov, Ivan; O'Donnell, Matthew

    2018-02-01

    The formation of amyloid - aggregate of misfolded proteins - is associated with more than 50 human pathologies, including Alzheimer's disease, Parkinson's disease, and Type 2 diabetes mellitus. Investigating protein aggregation is a critical step in drug discovery and development of therapeutics targeted to these pathologies. However, screens to identify protein aggregates are challenging due to the stochastic character of aggregate nucleation. Here we employ photoacoustics (PA) to screen thermodynamic conditions and solution components leading to formation of protein aggregates. Particularly, we study the temperature dependence of the Gruneisen parameter in optically-contrasted, undersaturated and supersaturated solutions of glycoside hydrolase (lysozyme). As nucleation of protein aggregates proceeds in two steps, where the first is liquid-liquid separation (rearrangement of solute's density), the PA response from complex solutions and its temperature-dependence monitor nucleation and differentiate undersaturated and supersaturated protein solutions. We demonstrate that in the temperature range from 22 to 0° C the PA response of contrasted undersaturated protein solution behaves similar to water and exhibits zero thermal expansion at 4°C or below, while the response of contrasted supersaturated protein solution is nearly temperature independent, similar to the behavior of oils. These results can be used to develop a PA assay for high-throughput screening of multi-parametric conditions (pH, ionic strength, chaperone, etc.) for protein aggregation that can become a key tool in drug discovery, targeting aggregate formation for a variety of amyloids.

  1. Expression, crystallization and phasing of vacuolar H(+)-ATPase subunit C (Vma5p) of Saccharomyces cerevisiae.

    PubMed

    Drory, Omri; Mor, Adi; Frolow, Felix; Nelson, Nathan

    2004-10-01

    The expression, crystallization and phasing of subunit C (Vma5p) of the yeast (Saccharomyces cerevisiae) vacuolar proton-translocating ATPase (V-ATPase) is described. The expressed protein consists of 412 residues: 392 from the reading frame of Vma5p and 20 N-terminal residues originating from the plasmid. Diffraction-quality crystals were obtained using the hanging-drop and sitting-drop vapour-diffusion methods assisted by streak-seeding, with PEG 3350 as precipitant. The crystals formed in hanging drops diffracted to 1.80 A and belong to space group P4(3)2(1)2(1), with unit-cell parameters a = b = 62.54, c = 327.37 A, alpha = beta = gamma = 90 degrees. The structure was solved using SIRAS with a Lu(O2C2H3)2 heavy-atom derivative.

  2. Evaluating the Role of the Air-Solution Interface on the Mechanism of Subvisible Particle Formation Caused by Mechanical Agitation for an IgG1 mAb.

    PubMed

    Ghazvini, Saba; Kalonia, Cavan; Volkin, David B; Dhar, Prajnaparamita

    2016-05-01

    Mechanical agitation of monoclonal antibody (mAb) solutions often leads to protein particle formation. In this study, various formulations of an immunoglobulin G (IgG) 1 mAb were subjected to different controlled interfacial stresses using a Langmuir trough, and protein particles formed at the interface and measured in bulk solution were characterized using atomic force microscopy and flow digital imaging. Results were compared to mAb solutions agitated in glass vials and unstressed controls. At lower pH, mAb solutions exhibited larger hysteresis in their surface pressure versus area isotherms and increased number of particles in bulk solution, when subjected to interfacial stresses. mAb samples subjected to 750-1000 interfacial compression-expansion cycles in 6 h contained high particle numbers in bulk solution, and displayed similar particulation trends when agitated in vials. At compression rates of 50 cycles in 6 h, however, particle levels in mAb solutions were comparable to unstressed controls, despite protein aggregates being present at the air-solution interface. These results suggest that while the air-solution interface serves as a nucleation site for initiating protein aggregation, the number of protein particles measured in bulk mAb solutions depends on the total number of compression cycles that proteins at the air-solution interface are subjected to within a fixed time. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  3. Solid surface wetting and the deployment of drops in microgravity

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Depew, J.

    1994-01-01

    The complete or partial deployment of liquid samples in low gravity is primarily influenced by the interfacial properties of the specific liquid and solid materials used because the overwhelming bias of the Earth gravitational acceleration is removed. This study addresses the engineering aspects of injecting and deploying drops of prescribed volume into an acoustic positioning chamber in microgravity. The specific problems of interest are the design, testing, and implementation of injector tips to be used in a simultaneously retracting dual-injector system in the Drop Physics Module microgravity experiment facility. Prior to release, the liquid to be deployed must be retained within a restricted area at the very end of the injectors under dynamic stimuli from the continuous injection flow as well as from the stepped motion of the injectors. The final released drop must have a well determined volume and negligible residual linear or angular momentum. The outcome of Earth-based short-duration low gravity experiments had been the selection of two types of injector tips which were flown as back-up parts. They were successfully utilized during the USML-1 Spacelab mission as the primary tips. The combination of a larger contact surface, liquid pinning with a sharp edge, and selective coating of strategic tip surfaces with a non-wetting compound has allowed a significant increase in the success rate of deployment of simple and compound drops of aqueous solutions of glycerol and silicone oil. The diameter of the samples studied in the Drop Physics Module range between 0.3 and 2.7 cm. The tests conducted on-orbit with a manually operated small device have allowed the calibration of the volume deployed for a few drop sizes. The design for improved tips to be used during the next USML flight is based on these results.

  4. Solid Surface Wetting and the Deployment of Drops in Microgravity

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Depew, J.

    1994-01-01

    The complete or partial deployment of liquid samples in low gravity is primarily influenced by the interfacial properties of the specific liquid and solid materials used because the overwhelming bias of the Earth gravitational acceleration is removed. This study addresses the engineering aspects of injecting and deploying drops of prescribed volume into an acoustic positioning chamber in microgravity. The specific problems of interest are the design, testing, and implementation of injector tips to be used in a simuttaneously retracting dual-injector system used in the Drop Physics Module microgravity experiment facility. Prior to release, the liquid to be deployed must be retained within a restricted area at the very end of the injectors even under dynamic stimuli due to continuous injection flow as well as to the stepped motion of the injectors, and the final released drop must have a well determined volume as well as negligible residual linear or angular momentum from the deployment process. The outcome of Earthbased short-duration low gravity experiments had been the selection of two types of injector tips which were flown as back-up parts and were successfully utilized during the USML-1 Spacelab mission. The combination of a larger contact surface, liquid pinning with a sharp edge, and selective coating of strategic tip surfaces with a non-wetting compound has allowed a significant increase in the success rate of deployment of simple and compound drops of aqueous solutions of glycerol and silicone oil. The diameter of the samples studied in the Drop Physics Module ranged between 0.3 and 2.7 cm. The tests conducted onsrbit with a manually operated small device have allowed the calibration of the volume deployed for a few drop sizes. The design for improved tips to be used during the next USML flight is based on these results.

  5. Formalism of photons in a nonlinear microring resonator

    NASA Astrophysics Data System (ADS)

    Tran, Quang Loc; Yupapin, Preecha

    2018-03-01

    In this paper, using short Gaussian pulses input from a monochromatic light source, we simulate the photon distribution and analyse the output gate's signals of PANDA nonlinear ring resonator. The present analysis is restricted to directional couplers characterized by two parameters, the power coupling coefficient κ and power coupling loss γ. Add/drop filters are also employed and investigated for the suitable to implement in the practical communication system. The experiment was conducted by using the combination of Lumerical FDTD Solutions and Lumerical MODE Solutions software.

  6. Lithium-Air Battery: Study of Rechargeability and Scalability

    DTIC Science & Technology

    2012-07-01

    nanowires: MnO2 nanowires were prepared by hydrothermal method. In a typical procedure, an aqueous solution of KMnO4 (0.5 g KMnO4 in 60 ml DD water) was...reduction and oxygen evolution in Li-O2 cell. It was prepared by precipitation method, in which cerium source precipitated as cerium oxalate and...subsequent calcinations yield CeO2 nanoparticles. In a typical procedure, 0.15 M cerous nitrate solution was added drop wise to 1.5 M ammonium oxalate

  7. The Synthesis of Polymer Precursors and Exploratory Research Based on Acetylene Displacement Reaction

    DTIC Science & Technology

    1980-10-01

    the addition of solids, a soluble base, potassium 2,6-dimethylphenoxide was tried. It was felt that the two ortho -methyl groups would sterically...was obtained, but as a mixture of all three nitro -isomers. Moreover, direct crystallization from the nitration media could not be induced even by...transferred to a dropping funnel. This solution was added dropwise over ca. 1 hr to a solution of 1220 g 4- nitro - benzil in 5.1 1 DMSO in a 22-1 pot held

  8. Expression, purification and crystallization of two major envelope proteins from white spot syndrome virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Xuhua; Hew, Choy Leong, E-mail: dbshewcl@nus.edu.sg

    2007-07-01

    The crystallization of the N-terminal transmembrane region-truncated VP26 and VP28 of white spot syndrome virus is described. White spot syndrome virus (WSSV) is a major virulent pathogen known to infect penaeid shrimp and other crustaceans. VP26 and VP28, two major envelope proteins from WSSV, have been identified and overexpressed in Escherichia coli. In order to facilitate purification and crystallization, predicted N-terminal transmembrane regions of approximately 35 amino acids have been truncated from both VP26 and VP28. Truncated VP26 and VP28 and their corresponding SeMet-labelled proteins were purified and the SeMet proteins were crystallized by the hanging-drop vapour-diffusion method. Crystals ofmore » SeMet-labelled VP26 were obtained using a reservoir consisting of 0.1 M citric acid pH 3.5, 3.0 M sodium chloride and 1%(w/v) polyethylene glycol 3350, whereas SeMet VP28 was crystallized using a reservoir solution consisting of 25% polyethylene glycol 8000, 0.2 M calcium acetate, 0.1 M Na HEPES pH 7.5 and 1.5%(w/v) 1,2,3-heptanetriol. Crystals of SeMet-labelled VP26 diffract to 2.2 Å resolution and belong to space group R32, with unit-cell parameters a = b = 73.92, c = 199.31 Å. SeMet-labelled VP28 crystallizes in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 105.33, b = 106.71, c = 200.37 Å, and diffracts to 2.0 Å resolution.« less

  9. Effects of N-acetylcysteine and glutathione ethyl ester drops on streptozotocin-induced diabetic cataract in rats.

    PubMed

    Zhang, Shu; Chai, Fei-Yan; Yan, Hong; Guo, Yong; Harding, J J

    2008-05-12

    To evaluate the effect of N-acetylcysteine (NAC) and glutathione ethyl ester (GSH-EE) eye drops on the progression of diabetic cataract formation induced by streptozotocin (STZ). One hundred and thirty Sprague-Dawley (SD) rats were selected, and diabetes was induced by streptozotocin (65 mg/kg bodyweight) in a single intraperitoneal injection. The control group (group I) received only vehicle. Then, 78 rats with random blood glucose above 14 mmol/l were divided into four groups (group II-V). The drug-treated rats received NAC and GSH-EE eye drops five days before STZ injection. Group I and V animals received sodium phosphate buffer drops (pH 7.4), and those in groups II, III, and IV received 0.01% NAC, 0.05% NAC, and 0.1% GSH-EE drops, respectively. Lens transparency was monitored with a slit lamp biomicroscope and classified into six stages. At the end of four weeks, eight weeks, and 13 weeks, animals were killed and components involved in the pathogenesis of diabetic cataract including thiols (from glutathione and protein), glutathione reductase (GR), catalase (CAT), and glycated proteins were investigated in the lens extracts. Blood glucose, urine glucose, and bodyweight were also determined. The progression in lens opacity induced by diabetes showed a biphasic pattern in which an initial slow increase in the first seven weeks after STZ injection was followed by a rapid increase in the next six weeks. The progression of lens opacity in the treated groups (group II-IV) was slower than that of the untreated group (group V) in the earlier period and especially in the fourth week. There were statistically significant differences between the treated groups and the untreated group (p<0.05). However, these differences became insignificant after the sixth week, and the progression of lens opacification in all diabetic groups became aggravated. The content of thiol (from glutathione and protein), glutathione reductase (GR), and catalase (CAT) were lower in the lens extracts of the diabetic rats four weeks, eight weeks, and 13 weeks after the STZ injection while the levels of thiol and CAT activity were both higher in the treated groups (group II-IV) than in the untreated group (group V) at every stage. However, there was no statistically significant difference (p>0.05). Moreover, the diabetes resulted in an increased level of glycated proteins in both the treated groups and the untreated group, but there was no statistically significant difference between all the diabetic groups (p>0.05). NAC and GSH-EE can slightly inhibit the progression of the diabetic cataract at the earlier stage. They may maintain lens transparency and function by serving as a precursor for glutathione biosynthesis and by protecting sulfhydryl groups from oxidation.

  10. Inhibition of protein carbamylation in urea solution using ammonium-containing buffers.

    PubMed

    Sun, Shisheng; Zhou, Jian-Ying; Yang, Weiming; Zhang, Hui

    2014-02-01

    Urea solution is one of the most commonly employed protein denaturants for protease digestion in proteomic studies. However, it has long been recognized that urea solution can cause carbamylation at the N termini of proteins/peptides and at the side chain amino groups of lysine and arginine residues. Protein/peptide carbamylation blocks protease digestion and affects protein identification and quantification in mass spectrometry analysis by blocking peptide amino groups from isotopic/isobaric labeling and changing peptide charge states, retention times, and masses. In addition, protein carbamylation during sample preparation makes it difficult to study in vivo protein carbamylation. In this study, we compared the peptide carbamylation in urea solutions of different buffers and found that ammonium-containing buffers were the most effective buffers to inhibit protein carbamylation in urea solution. The possible mechanism of carbamylation inhibition by ammonium-containing buffers is discussed, and a revised procedure for the protease digestion of proteins in urea and ammonium-containing buffers was developed to facilitate its application in proteomic research. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Purification of proteins from solutions containing residual host cell proteins via preparative crystallization.

    PubMed

    Hekmat, Dariusch; Breitschwerdt, Peter; Weuster-Botz, Dirk

    2015-09-01

    To investigate quantitatively and reproducibly a scalable, preparative crystallization method in novel stirred tanks using three different protein solutions containing residual microbial host cell proteins (HCP). Lysozyme from solutions being spiked with up to 15% host cell proteins (HCP) (corresponding to 176,500 ppm) was crystallized within a 2.4-4.6 h at 93.7% yield using NaCl and glycerol. Lipase was crystallized under comparable conditions using NaCl and a mixture of two polyethylene glycols (PEG). Enhanced green fluorescent protein (eGFP) was overexpressed in E. coli yielding a solution containing 23% target protein. Residual HCP content after pre-treatment was 7-16%. eGFP was crystallized from these solutions within 1.75-4 h at 88.7% step yield using ethanol and the same mixture of two PEG as in the case of lipase. HCP contained in the solvent channels of the protein crystals could be removed by diffusive washing yielding final purities at or above 99%. Preparative crystallization can be carried out with fast kinetics and high yields from solutions containing residual impurities and may represent an attractive alternative purification method compared to preparative chromatography, especially at large production scales.

  12. Blood drop patterns: Formation and applications.

    PubMed

    Chen, Ruoyang; Zhang, Liyuan; Zang, Duyang; Shen, Wei

    2016-05-01

    The drying of a drop of blood or plasma on a solid substrate leads to the formation of interesting and complex patterns. Inter- and intra-cellular and macromolecular interactions in the drying plasma or blood drop are responsible for the final morphologies of the dried patterns. Changes in these cellular and macromolecular components in blood caused by diseases have been suspected to cause changes in the dried drop patterns of plasma and whole blood, which could be used as simple diagnostic tools to identify the health of humans and livestock. However, complex physicochemical driving forces involved in the pattern formation are not fully understood. This review focuses on the scientific development in microscopic observations and pattern interpretation of dried plasma and whole blood samples, as well as the diagnostic applications of pattern analysis. Dried drop patterns of plasma consist of intricate visible cracks in the outer region and fine structures in the central region, which are mainly influenced by the presence and concentration of inorganic salts and proteins during drying. The shrinkage of macromolecular gel and its adhesion to the substrate surface have been thought to be responsible for the formation of the cracks. Dried drop patterns of whole blood have three characteristic zones; their formation as functions of drying time has been reported in the literature. Some research works have applied engineering treatment to the evaporation process of whole blood samples. The sensitivities of the resultant patterns to the relative humidity of the environment, the wettability of the substrates, and the size of the drop have been reported. These research works shed light on the mechanisms of spreading, evaporation, gelation, and crack formation of the blood drops on solid substrates, as well as on the potential applications of dried drop patterns of plasma and whole blood in diagnosis. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  13. Combined Effects of Primary and Tertiary Blast on Rat Brain: Characterization of a Model of Blast-induced Mild Traumatic Brain Injury

    DTIC Science & Technology

    2013-03-01

    membranes and blocked with 4% non- fat dry milk for 1 h at room temperature. The blots were incubated with anti-mouse MPO monoclonal antibody (1:1000...Arun, M. Valiyaveettil, L. Biggemann, Y. Alamneh, Y. Wei, S. Oguntayo, Y. Wang, J.B. Long, M.P. Nambiar. Modulation of hearing related proteins in...skull with weight drop 30 sec post BOP, N=6-7 rats/gp) Fig 12. Changes in the neuron-specific cytoskeletal protein Microtubule-associated protein

  14. Viscoelastic behavior and microstructure of protein solutions

    USDA-ARS?s Scientific Manuscript database

    Twenty percent solutions of calcium caseinate (CC), egg albumin (EA), fish protein isolate (FPI), soy protein isolate (SPI), wheat gluten (WG), and whey protein isolate (WPI) were examined during heating by small amplitude oscillatory shear measurements, which provided an indication of protein behav...

  15. Impact of additives on the formation of protein aggregates and viscosity in concentrated protein solutions.

    PubMed

    Bauer, Katharina Christin; Suhm, Susanna; Wöll, Anna Katharina; Hubbuch, Jürgen

    2017-01-10

    In concentrated protein solutions attractive protein interactions may not only cause the formation of undesired aggregates but also of gel-like networks with elevated viscosity. To guarantee stable biopharmaceutical processes and safe formulations, both phenomenons have to be avoided as these may hinder regular processing steps. This work screens the impact of additives on both phase behavior and viscosity of concentrated protein solutions. For this purpose, additives known for stabilizing proteins in solution or modulating the dynamic viscosity were selected. These additives were PEG 300, PEG 1000, glycerol, glycine, NaCl and ArgHCl. Concentrated lysozyme and glucose oxidase solutions at pH 3 and 9 served as model systems. Fourier-transformed-infrared spectroscopy was chosen to determine the conformational stability of selected protein samples. Influencing protein interactions, the impact of additives was strongly dependent on pH. Of all additives investigated, glycine was the only one that maintained protein conformational and colloidal stability while decreasing the dynamic viscosity. Low concentrations of NaCl showed the same effect, but increasing concentrations resulted in visible protein aggregation. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Note: Nonpolar solute partial molar volume response to attractive interactions with water.

    PubMed

    Williams, Steven M; Ashbaugh, Henry S

    2014-01-07

    The impact of attractive interactions on the partial molar volumes of methane-like solutes in water is characterized using molecular simulations. Attractions account for a significant 20% volume drop between a repulsive Weeks-Chandler-Andersen and full Lennard-Jones description of methane interactions. The response of the volume to interaction perturbations is characterized by linear fits to our simulations and a rigorous statistical thermodynamic expression for the derivative of the volume to increasing attractions. While a weak non-linear response is observed, an average effective slope accurately captures the volume decrease. This response, however, is anticipated to become more non-linear with increasing solute size.

  17. Efficiency for unretained solutes in packed column supercritical fluid chromatography. I. Theory for isothermal conditions and correction factors for carbon dioxide.

    PubMed

    Poe, Donald P

    2005-06-17

    A general theory for efficiency of nonuniform columns with compressible mobile phase fluids is applied to the elution of an unretained solute in packed-column supercritical fluid chromatography (pSFC). The theoretical apparent plate height under isothermal conditions is given by the Knox equation multiplied by a compressibility correction factor f1, which is equal to the ratio of the temporal-to-spatial average densities of the mobile phase. If isothermal conditions are maintained, large pressure drops in pSFC should not result in excessive efficiency losses for elution of unretained solutes.

  18. Note: Nonpolar solute partial molar volume response to attractive interactions with water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Steven M.; Ashbaugh, Henry S., E-mail: hanka@tulane.edu

    2014-01-07

    The impact of attractive interactions on the partial molar volumes of methane-like solutes in water is characterized using molecular simulations. Attractions account for a significant 20% volume drop between a repulsive Weeks-Chandler-Andersen and full Lennard-Jones description of methane interactions. The response of the volume to interaction perturbations is characterized by linear fits to our simulations and a rigorous statistical thermodynamic expression for the derivative of the volume to increasing attractions. While a weak non-linear response is observed, an average effective slope accurately captures the volume decrease. This response, however, is anticipated to become more non-linear with increasing solute size.

  19. [Effect of solution environments on ceramic membrane microfiltration of model system of Chinese medicines].

    PubMed

    Zhang, Lianjun; Lu, Jin; Le, Kang; Fu, Tingming; Guo, Liwei

    2010-07-01

    To investigate the effect of differents solution environments on the ceramic membrane microfiltration of model system of Chinese medicines. Taking binary system of soybean protein-berberine as the research object, flux, transmittance of berberine and traping rate of protein as indexes, different solution environment on membrane process were investigated. When the concentration of soybean protein was under 1 g x L(-1), the membrane flux was minimum with the traping of berberine decreased slightly as the concentration increased. When pH was 4, the flux was maximum with the traping rate of protein was 99%, and the transmittance of berberine reached above 60%. The efficiency of membrane separation can be improved by optimizing the solution environment of water-extraction of chinese medicines. The efficiency of membrane separation is the best when adjust the pH to the isoelectric point of proteins for the proteins as the main pollutant in aqueous solution.

  20. Ordered alternating binary polymer nanodroplet array by sequential spin dewetting.

    PubMed

    Bhandaru, Nandini; Das, Anuja; Salunke, Namrata; Mukherjee, Rabibrata

    2014-12-10

    We report a facile technique for fabricating an ordered array of nearly equal-sized mesoscale polymer droplets of two constituent polymers (polystyrene, PS and poly(methyl methacrylate), PMMA) arranged in an alternating manner on a topographically patterned substrate. The self-organized array of binary polymers is realized by sequential spin dewetting. First, a dilute solution of PMMA is spin-dewetted on a patterned substrate, resulting in an array of isolated PMMA droplets arranged along the substrate grooves due to self-organization during spin coating itself. The sample is then silanized with octadecyltrichlorosilane (OTS), and subsequently, a dilute solution of PS is spin-coated on to it, which also undergoes spin dewetting. The spin-dewetted PS drops having a size nearly equal to the pre-existing PMMA droplets position themselves between two adjacent PMMA drops under appropriate conditions, forming an alternating binary polymer droplet array. The alternating array formation takes place for a narrow range of solution concentration for both the polymers and depends on the geometry of the substrate. The size of the droplets depends on the extent of confinement, and droplets as small as 100 nm can be obtained by this method, on a suitable template. The findings open up the possibility of creating novel surfaces having ordered multimaterial domains with a potential multifunctional capability.

  1. Titanate nanotubes for reinforcement of a poly(ethylene oxide)/chitosan polymer matrix

    NASA Astrophysics Data System (ADS)

    Porras, R.; Bavykin, D. V.; Zekonyte, J.; Walsh, F. C.; Wood, R. J.

    2016-05-01

    Soft polyethylene oxide (PEO)/chitosan mixtures, reinforced with hard titanate nanotubes (TiNTs) by co-precipitation from aqueous solution, have been used to produce compact coatings by the ‘drop-cast’ method, using water soluble PEO polymer and stable, aqueous colloidal solutions of TiNTs. The effects of the nanotube concentration and their length on the hardness and modulus of the prepared composite have been studied using nanoindentation and nanoscratch techniques. The uniformity of TiNT dispersion within the polymer matrix has been studied using transmission electron microscopy (TEM). A remarkable increase in hardness and reduced Young’s modulus of the composites, compared to pure polymer blends, has been observed at a TiNT concentration of 25 wt %. The short (up to 30 min) ultrasound treatment of aqueous solutions containing polymers and a colloidal TiNT mixture prior to drop casting has resulted in some improvements in both hardness and reduced Young’s modulus of dry composite films, probably due to a better dispersion of ceramic nanotubes within the matrix. However, further (more than 1 h) treatment of the mixture with ultrasound resulted in a deterioration of the mechanical properties of the composite accompanied by a shortening of the nanotubes, as observed by the TEM.

  2. Effects of varying oxygen partial pressure on molten silicon-ceramic substrate interactions

    NASA Technical Reports Server (NTRS)

    Ownby, D. P.; Barsoum, M. W.

    1980-01-01

    The silicon sessile drop contact angle was measured on hot pressed silicon nitride, silicon nitride coated on hot pressed silicon nitride, silicon carbon coated on graphite, and on Sialon to determine the degree to which silicon wets these substances. The post-sessile drop experiment samples were sectioned and photomicrographs were taken of the silicon-substrate interface to observe the degree of surface dissolution and degradation. Of these materials, silicon did not form a true sessile drop on the SiC on graphite due to infiltration of the silicon through the SiC coating, nor on the Sialon due to the formation of a more-or-less rigid coating on the liquid silicon. The most wetting was obtained on the coated Si3N4 with a value of 42 deg. The oxygen concentrations in a silicon ribbon furnace and in a sessile drop furnace were measured using the protable thoria-yttria solid solution electrolyte oxygen sensor. Oxygen partial pressures of 10 to the minus 7 power atm and 10 to the minus 8 power atm were obtained at the two facilities. These measurements are believed to represent nonequilibrium conditions.

  3. Effect of Glyceraldehyde Cross-Linking on a Rabbit Bullous Keratopathy Model.

    PubMed

    Wang, Mengmeng

    2015-01-01

    Background. To evaluate the effects of corneal glyceraldehyde CXL on the rabbit bullous keratopathy models established by descemetorhexis. Methods. Fifteen rabbits were randomly divided into five groups. Group A (n = 3) is the control group. The right eyes of animals in Groups B,C, D, and E (n = 3, resp.) were suffered with descemetorhexis procedures. From the 8th day to the 14th day postoperatively, the right eyes in Groups C and D were instilled with hyperosmolar drops and glyceraldehyde drops, respectively; the right eyes in Group E were instilled with both hyperosmolar drops and glyceraldehyde drops. Central corneal thickness (CCT), corneal transparency score, and histopathological analysis were applied on the eyes in each group. Results. Compared with Group A, statistically significant increase in CCT and corneal transparency score was found in Groups B, C, D, and E at 7 d postoperatively (P < 0.05) and in Groups C, D, and E at 14 d postoperatively (P < 0.05). Conclusion. Chemical CXL technique using glyceraldehyde improved the CCT and corneal transparency of the rabbit bullous keratopathy models. Topical instillation with glyceraldehyde and hyperosmolar solutions seems to be a good choice for the bullous keratopathy treatment.

  4. Genomic selection across multiple breeding cycles in applied bread wheat breeding.

    PubMed

    Michel, Sebastian; Ametz, Christian; Gungor, Huseyin; Epure, Doru; Grausgruber, Heinrich; Löschenberger, Franziska; Buerstmayr, Hermann

    2016-06-01

    We evaluated genomic selection across five breeding cycles of bread wheat breeding. Bias of within-cycle cross-validation and methods for improving the prediction accuracy were assessed. The prospect of genomic selection has been frequently shown by cross-validation studies using the same genetic material across multiple environments, but studies investigating genomic selection across multiple breeding cycles in applied bread wheat breeding are lacking. We estimated the prediction accuracy of grain yield, protein content and protein yield of 659 inbred lines across five independent breeding cycles and assessed the bias of within-cycle cross-validation. We investigated the influence of outliers on the prediction accuracy and predicted protein yield by its components traits. A high average heritability was estimated for protein content, followed by grain yield and protein yield. The bias of the prediction accuracy using populations from individual cycles using fivefold cross-validation was accordingly substantial for protein yield (17-712 %) and less pronounced for protein content (8-86 %). Cross-validation using the cycles as folds aimed to avoid this bias and reached a maximum prediction accuracy of [Formula: see text] = 0.51 for protein content, [Formula: see text] = 0.38 for grain yield and [Formula: see text] = 0.16 for protein yield. Dropping outlier cycles increased the prediction accuracy of grain yield to [Formula: see text] = 0.41 as estimated by cross-validation, while dropping outlier environments did not have a significant effect on the prediction accuracy. Independent validation suggests, on the other hand, that careful consideration is necessary before an outlier correction is undertaken, which removes lines from the training population. Predicting protein yield by multiplying genomic estimated breeding values of grain yield and protein content raised the prediction accuracy to [Formula: see text] = 0.19 for this derived trait.

  5. Biochemical and technological studies on the production of isolated guar protein.

    PubMed

    Khalil, M M

    2001-02-01

    Guar seeds contain 32% crude protein. Therefore, attempts were made to prepare protein isolates from guar seed flour (GSF) by extraction in different media (distilled water, salt solution, alkali solution alone or in combination) followed by a precipitation at acid pH. From the four technologies adopted, mixed salt-alkali solution was found to be the most satisfactory for extraction of protein from GSF. The highest amount of product was obtained in the mixed technology along with the highest amount of protein (87.5%). Protein isolates were also nutritionally evaluated following well-established rat bioassay procedures in a comparative study with casein as standard. The protein isolates are rich in lysine but poor in sulphur-containing amino acids such as methionine and cysteine. Protein isolates obtained by mixed salt-alkali solution showed high water and oil absorption as well as good emulsifying and foaming stability. The results indicate that protein isolates can be used as a supplementary source of protein in different food industries.

  6. Real-time HD Exchange Kinetics of Proteins from Buffered Aqueous Solution with Electrothermal Supercharging and Top-Down Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Going, Catherine C.; Xia, Zijie; Williams, Evan R.

    2016-06-01

    Electrothermal supercharging (ETS) with electrospray ionization produces highly charged protein ions from buffered aqueous solutions in which proteins have native folded structures. ETS increases the charge of ribonuclease A by 34%, whereas only a 6% increase in charge occurs for a reduced-alkylated form of this protein, which is unfolded and its structure is ~66% random coil in this solution. These results indicate that protein denaturation that occurs in the ESI droplets is the primary mechanism for ETS. ETS does not affect the extent of solution-phase hydrogen-deuterium exchange (HDX) that occurs for four proteins that have significantly different structures in solution, consistent with a droplet lifetime that is considerably shorter than observable rates of HDX. Rate constants for HDX of ubiquitin are obtained with a spatial resolution of ~1.3 residues with ETS and electron transfer dissociation of the 10+ charge-state using a single capillary containing a few μL of protein solution in which HDX continuously occurs. HDX protection at individual residues with ETS HDX is similar to that with reagent supercharging HDX and with solution-phase NMR, indicating that the high spray potentials required to induce ETS do not lead to HD scrambling.

  7. Camphor-Crataegus berry extract combination dose-dependently reduces tilt induced fall in blood pressure in orthostatic hypotension.

    PubMed

    Belz, G G; Butzer, R; Gaus, W; Loew, D

    2002-10-01

    In order to test the efficacy of a combination of natural D-camphor and an extract of fresh crataegus berries (Korodin Herz-Kreislauf-Tropfen) on orthostatic hypotension, two similar, controlled, randomized studies were carried out in a balanced crossover design in 24 patients each with orthostatic dysregulation. The camphor-crataegus berry combination (CCC) was orally administered as a single regimen in 3 different dosages of 5 drops, 20 drops and 80 drops; a placebo with 20 drops of a 60% alcoholic solution served as control. Orthostatic hypotension was assessed with the tilt table test before and after medication. Source data of both studies were pooled and meta-analytically evaluated for all 48 patients. CCC drops decreased the orthostatic fall in blood pressure versus placebo, as almost uniformly established at all times by mean arterial pressure and diastolic blood pressure. Mean arterial pressure demonstrated the very fast onset of action by a clearly dose-dependent statistically significant effect even after 1-minute orthostasis. Increase of mean arterial pressure as compared to the orthostasis test before medication was on average 4.5 mmHg. CCC affected diastolic blood pressure after 1 minute of orthostasis in all dosages as compared to placebo. A statistically significant effect of the highest dose of 80 drops on diastolic blood pressure could be demonstrated after 1-, 3-, and 5-minute orthostasis. The hemodynamic findings of a stabilizing effect on arterial pressure in orthostasis corroborate the long-term medical experience with CCC and justify the indication orthostatic hypotension.

  8. Concentration-dependent changes in apparent diffusion coefficients as indicator for colloidal stability of protein solutions.

    PubMed

    Bauer, Katharina Christin; Göbel, Mathias; Schwab, Marie-Luise; Schermeyer, Marie-Therese; Hubbuch, Jürgen

    2016-09-10

    The colloidal stability of a protein solution during downstream processing, formulation, and storage is a key issue for the biopharmaceutical production process. Thus, knowledge about colloidal solution characteristics, such as the tendency to form aggregates or high viscosity, at various processing conditions is of interest. This work correlates changes in the apparent diffusion coefficient as a parameter of protein interactions with observed protein aggregation and dynamic viscosity of the respective protein samples. For this purpose, the diffusion coefficient, the protein phase behavior, and the dynamic viscosity in various systems containing the model proteins α-lactalbumin, lysozyme, and glucose oxidase were studied. Each of these experiments revealed a wide range of variations in protein interactions depending on protein type, protein concentration, pH, and the NaCl concentration. All these variations showed to be mirrored by changes in the apparent diffusion coefficient in the respective samples. Whereas stable samples with relatively low viscosity showed an almost linear dependence, the deviation from the concentration-dependent linearity indicated both an increase in the sample viscosity and probability of protein aggregation. This deviation of the apparent diffusion coefficient from concentration-dependent linearity was independent of protein type and solution properties for this study. Thus, this single parameter shows the potential to act as a prognostic tool for colloidal stability of protein solutions. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Method for producing small hollow spheres

    DOEpatents

    Rosencwaig, Allen; Koo, Jackson C.; Dressler, John L.

    1981-01-01

    A method for producing small hollow spheres of glass having an outer diameter ranging from about 100.mu. to about 500.mu. with a substantially uniform wall thickness in the range of about 0.5-20.mu.. The method involves introducing aqueous droplets of a glass-forming solution into a long vertical drop oven or furnace having varying temperature regions. In one embodiment, one of the temperature regions is lower than both the preceeding region and the subsequent region. One region utilizes a temperature of at least 200.degree. C. higher than the melting point of the glass-forming material in the solution and, for example, may be at least 3 times higher than the temperature of the preceeding region. In addition, there is a sharp temperature gradient between these regions. As each droplet of solution passes through a first region it forms into a gel membrane having a spherical shape and encapsulates the rest of the drop retained in the elastic outer surface and the water entrapped within diffuses rapidly through the thin gel membrane which causes more of the glass-forming material to go out of solution and is incorporated into the gel membrane causing it to grow in size and become hollow. thus produced hollow glass sphere has a sphericity, concentricity, and wall uniformity of better than 5%. The sphere is capable of retaining material of up to at least 100 atmospheres therein over long periods of time. In one embodiment.

  10. Electrochemical study of the interaction between dsDNA and copper(I) using carbon paste and hanging mercury drop electrode.

    PubMed

    Stanić, Z; Girousi, S

    2008-06-30

    The interaction of copper(I) with double-stranded (ds) calf thymus DNA was studied in solution and at the electrode surface by means of transfer voltammetry using a carbon paste electrode (CPE) as working electrode in 0.2 M acetate buffer solution (pH 5.0). As a result of the interaction of Cu(I) between the base pairs of the dsDNA, the characteristic peaks of dsDNA, due to the oxidation of guanine and adenine, increased and after a certain concentration of Cu(I) a new peak at +1.37 V appeared, probably due to the formation of a purine-Cu(I) complex (dsDNA-Cu(I) complex). Accordingly, the interaction of copper(I) with calf thymus dsDNA was studied in solution as well as at the electrode surface using hanging mercury drop electrode (HMDE) by means of alternating current voltammetry (AC voltammetry) in 0.3 M NaCl and 50 mM sodium phosphate buffer (pH 8.5) as supporting electrolyte. Its interaction with DNA is shown to be time dependent. Significant changes in the characteristic peaks of dsDNA were observed after addition of higher concentration of Cu(I) to a solution containing dsDNA, as a result of the interaction between Cu(I) and dsDNA. All the experimental results indicate that Cu(I) can bind to DNA by electrostatic binding and form an association complex.

  11. Fabrication of Amperometric Glucose Sensor Using Glucose Oxidase-Cellulose Nanofiber Aqueous Solution.

    PubMed

    Yasuzawa, Mikito; Omura, Yuya; Hiura, Kentaro; Li, Jiang; Fuchiwaki, Yusuke; Tanaka, Masato

    2015-01-01

    Cellulose nanofiber aqueous solution, which remained virtually transparent for more than one week, was prepared by using the clear upper layer of diluted cellulose nanofiber solution produced by wet jet milling. Glucose oxidase (GOx) was easily dissolved in this solution and GOx-immobilized electrode was easily fabricated by simple repetitious drops of GOx-cellulose solution on the surface of a platinum-iridium electrode. Glucose sensor properties of the obtained electrodes were examined in phosphate buffer solution of pH 7.4 at 40°C. The obtained electrode provided a glucose sensor response with significantly high response speed and good linear relationship between glucose concentration and response current. After an initial decrease of response sensitivity for a few days, relatively constant sensitivity was obtained for about 20 days. Nevertheless, the influence of electroactive compounds such as ascorbic acid, uric acid and acetoaminophen were not negletable.

  12. Consumer e-health solutions: the cure for Baumol's disease?

    PubMed

    Brown, Adalsteinn D

    2014-01-01

    Baumol's disease is the fact that costs in persistently labour-intensive sectors such as healthcare do not drop, despite increased use of technology. The idea of consumer e-health solutions is seductive, because it provides one option for treating Baumol's disease. However, barriers to the implementation of these solutions exist, and the successful treatment of Baumol's disease with consumer e-health solutions rests on more than their removal. In this introduction, the editor-in-chief adds to the conversation four shifts that are critical to reaping the benefits of consumer e-health solutions: moving the focus from privacy to protection; from mere access to the use of information in decision-making; from the patient-provider dyad to one that includes a full formal and informal care team; and from structural solutions in healthcare to ones designed around the goals we have for our health system.

  13. Ultrasensitive spectroscopy based on photonic waveguides on Al2O3/SiO2 platform

    NASA Astrophysics Data System (ADS)

    Heidari, Elham; Xu, Xiaochuan; Tang, Naimei; Mokhtari-Koushyar, Farzad; Dalir, Hamed; Chen, Ray T.

    2018-02-01

    Here a photonic waveguide on Al2O3/SiO2 platform is proposed to cover the 240 320 nm wavelength-range, which is of paramount significance in protein and nuclei acid quantification. Our optical waveguide increases path-length and overlap integration for light-matter interaction with proteins. The proposed system detects one order less proteins concentration as low as 12.5 μg/ml compared with NanoDropTM that detects <125 μg/ml. Also, a linear absorbance change up to protein concentration of 7500 μg/ml is experimentally attained which is based on the Beer-Lambert-law.

  14. Salting effects on protein components in aqueous NaCl and urea solutions: toward understanding of urea-induced protein denaturation.

    PubMed

    Li, Weifeng; Zhou, Ruhong; Mu, Yuguang

    2012-02-02

    The mechanism of urea-induced protein denaturation is explored through studying the salting effect of urea on 14 amino acid side chain analogues, and N-methylacetamide (NMA) which mimics the protein backbone. The solvation free energies of the 15 molecules were calculated in pure water, aqueous urea, and NaCl solutions. Our results show that NaCl displays strong capability to salt out all 15 molecules, while urea facilitates the solvation (salting-in) of all the 15 molecules on the other hand. The salting effect is found to be largely enthalpy-driven for both NaCl and urea. Our observations can explain the higher stability of protein's secondary and tertiary structures in typical salt solutions than that in pure water. Meanwhile, urea's capability to better solvate protein backbone and side-chain components can be extrapolated to explain protein's denaturation in aqueous urea solution. Urea salts in molecules through direct binding to solute surface, and the strength is linearly dependent on the number of heavy atoms of solute molecules. The van der Waals interactions are found to be the dominant force, which challenges a hydrogen-bonding-driven mechanism proposed previously.

  15. Ring-shaped stain patterns driven by solute reactive mesogens in liquid crystal solution

    NASA Astrophysics Data System (ADS)

    Cha, Tae Woon; Bulliard, Xavier; Choi, Sang Gun; Lee, Hyoung Sub; Kong, Hyang-Shik; Han, Sang Youn

    2014-07-01

    We report on the formation of ring-shaped stain patterns in a polymer-stabilized patterned vertical alignment mode liquid crystal display (LCD) during the cell filling process. Through the interpretation of the formation mechanism, an effective way to control its development is provided. Systematic trace of the reactive mesogens reveals that the formation of patterns is strongly related to the segregation of solute mesogens in the stain area. These undesirable patterns can be avoided or controlled by reducing the drop volume at each droplet using an inkjet printing technique, meaning that the printing technique could be a useful solution in display technology. For the formation of ring-shaped patterns, the dragging of reactive mesogens during the spreading of the liquid crystal solution plays a key role in the closed LCD cell.

  16. Aerodynamic and engineering design of a 1.5 s high quality microgravity drop tower facility

    NASA Astrophysics Data System (ADS)

    Belser, Valentin; Breuninger, Jakob; Reilly, Matthew; Laufer, René; Dropmann, Michael; Herdrich, Georg; Hyde, Truell; Röser, Hans-Peter; Fasoulas, Stefanos

    2016-12-01

    Microgravity experiments are essential for research in space science, biology, fluid mechanics, combustion, and material sciences. One way to conduct microgravity experiments on Earth is by using drop tower facilities. These facilities combine a high quality of microgravity, adequate payload masses and have the advantage of virtually unlimited repeatability under same experimental conditions, at a low cost. In a collaboration between the Institute of Space Systems (IRS) at the University of Stuttgart and Baylor University (BU) in Waco, Texas, a new drop tower is currently under development at the Center for Astrophysics, Space Physics and Engineering Research (CASPER). The design parameters of the drop tower ask for at least 1.5 s in free fall duration while providing a quality of at least 10-5 g. Previously, this quality has only been achieved in vacuum drop tower facilities where the capsule experiences virtually zero aerodynamic drag during its free fall. Since this design comes at high costs, a different drop tower design concept, which does not require an evacuated drop shaft, was chosen. It features a dual-capsule system in which the experiment capsule is shielded from aerodynamic forces by surrounding it with a drag shield during the drop. As no other dual-capsule drop tower has been able to achieve a quality as good as or better than 10-5 g previous work optimized the design with an aerodynamic perspective by using computational fluid dynamics (CFD) simulations to determine the ideal shape and size of the outer capsule and to specify the aerodynamically crucial dimensions for the overall system. Experiments later demonstrated that the required quality of microgravity can be met with the proposed design. The main focus of this paper is the mechanical realization of the capsule as well as the development and layout of the surrounding components, such as the release mechanism, the deceleration device and the drop shaft. Because the drop tower facility is a complex system with many interdependencies between all of the components, several engineering challenges had to be addressed. For example, initial disturbances that are caused by the release mechanism are a common issue that arises at drop tower facilities. These vibrations may decrease the quality of microgravity during the initial segment of free fall. Because this would reduce the free fall time experiencing high quality microgravity, a mechanism has been developed to provide a soft release. Challenges and proposed solutions for all components are highlighted in this paper.

  17. Preliminary drop-tower experiments on liquid-interface geometry in partially filled containers at zero gravity

    NASA Technical Reports Server (NTRS)

    Smedley, G.

    1990-01-01

    Plexiglass containers with rounded trapezoidal cross sections were designed and built to test the validity of Concus and Finn's existence theorem (1974, 1983) for a bounded free liquid surface at zero gravity. Experiments were carried out at the NASA Lewis two-second drop tower. Dyed ethanol-water solutions and three immiscible liquid pairs, with one liquid dyed, were tested. High-speed movies were used to record the liquid motion. Liquid rose to the top of the smaller end of the containers when the contact angle was small enough, in agreement with the theory. Liquid interface motion demonstrated a strong dependence on physical properties, including surface roughness and contamination.

  18. Experimental study of the spray characteristics of a research airblast atomizer

    NASA Technical Reports Server (NTRS)

    Acosta, W. A.

    1985-01-01

    Airblast atomization was studied using a especially designed atomizer in which the liquid first impinges on a splash plate, then is directed radially outward and is atomized by the air passing through two concentric, vaned swirlers that swirl the air in opposite directions. The effect of flow conditions, air mass velocity (mass flow rate per unit area) and liquid to air ratio on the mean drop size was studied. Seven different ethanol solutions were used to simulate changes in fuel physical properties. The range of atomizing air velocities was from 30 to 80 m/s. The mean drop diameter was measured at ambient temperature (295 K) and atmospheric pressure.

  19. Experimental study of the spray characteristics of a research airblast atomizer

    NASA Technical Reports Server (NTRS)

    Acosta, W. A.

    1985-01-01

    Airblast atomization was studied using a especially designed atomizer in which the liquid first impinges on a splash plate, then is directed radically outward and is atomized by the air passing through two concentric, vaned swirlers that swirl the air in opposite directions. The effect of flow conditions, air mass velocity (mass flow rate per unit area) and liquid to air ratio on the mean drop size was studied. Seven different ethanol solutions were used to simulate changes in fuel physical properties. The range of atomizing air velocities was from 30 to 80 m/s. The mean drop diameter was measured at ambient temperature (295 K) and atmospheric pressure.

  20. Studying electron transfer through alkanethiol self-assembled monolayers on a hanging mercury drop electrode using potentiometric measurements.

    PubMed

    Cohen-Atiya, Meirav; Mandler, Daniel

    2006-10-14

    A new approach based on measuring the change of the open-circuit potential (OCP) of a hanging mercury drop electrode (HMDE), modified with alkanethiols of different chain length conducted in a solution containing a mixture of Ru(NH3)6(2+) and Ru(NH3)6(3+) is used for studying electron transfer across the monolayer. Following the time dependence of the OCP allowed the extraction of the kinetic parameters, such as the charge transfer resistance (R(ct)) and the electron transfer rate constant (k(et)), for different alkanethiol monolayers. An electron tunneling coefficient, beta, of 0.9 A(-1) was calculated for the monolayers on Hg.

  1. New spectrophotometric assay for pilocarpine.

    PubMed

    El-Masry, S; Soliman, R

    1980-07-01

    A quick method for the determination of pilocarpine in eye drops in the presence of decomposition products is described. The method involves complexation of the alkaloid with bromocresol purple at pH 6. After treatment with 0.1N NaOH, the liberated dye is measured at 580 nm. The method has a relative standard deviation of 1.99%, and has been successfully applied to the analysis of 2 batches of pilocarpine eye drops. The recommended method was also used to monitor the stability of a pilocarpine nitrate solution in 0.05N NaOH at 65 degrees C. The BPC method failed to detect any significant decomposition after 2 h incubation, but the recommended method revealed 87.5% decomposition.

  2. Crystallization and preliminary X-ray crystallographic analysis of the small subunit of the heterodimeric laccase POXA3b from Pleurotus ostreatus

    PubMed Central

    Ferraroni, Marta; Scozzafava, Andrea; Ullah, Sana; Tron, Thierry; Piscitelli, Alessandra; Sannia, Giovanni

    2014-01-01

    Laccases are multicopper oxidases of great biotechnological potential. While laccases are generally monomeric glycoproteins, the white-rot fungus Pleurotus ostreatus produces two closely related heterodimeric isoenzymes composed of a large subunit, homologous to the other fungal laccases, and a small subunit. The sequence of the small subunit does not show significant homology to any other protein or domain of known function and consequently its function is unknown. The highest similarity to proteins of known structure is to a putative enoyl-CoA hydratase/isomerase from Acinetobacter baumannii, which shows an identity of 27.8%. Diffraction-quality crystals of the small subunit of the heterodimeric laccase POXA3b (sPOXA3b) from P. ostreatus were obtained using the sitting-drop vapour-diffusion method at 294 K from a solution consisting of 1.8 M sodium formate, 0.1 M Tris–HCl pH 8.5. The crystals belonged to the tetragonal space group P41212 or P43212, with unit-cell parameters a = 126.6, c = 53.9 Å. The asymmetric unit contains two molecules related by a noncrystallographic twofold axis. A complete data set extending to a maximum resolution of 2.5 Å was collected at 100 K using a wavelength of 1.140 Å. PMID:24419623

  3. Experimental investigation of heat transfer and pressure drop characteristics of non-Newtonian nanofluids flowing in the shell-side of a helical baffle heat exchanger with low-finned tubes

    NASA Astrophysics Data System (ADS)

    Tan, Yunkai; He, Zhenbin; Xu, Tao; Fang, Xiaoming; Gao, Xuenong; Zhang, Zhengguo

    2017-09-01

    An aqueous solution of Xanthan Gum (XG) at a weight fraction as high as 0.2% was used as the base liquid, the stable MWCNTs-dispersed non-Newtonian nanofluids at different weight factions of MWCNTs was prepared. The base fluid and all nanofluids show pseudoplastic (shear-thinning) rheological behavior. Experiments were performed to compare the shell-side forced convective heat transfer coefficient and pressure drop of non-Newtonian nanofluids to those of non-Newtonian base fluid in an integrally helical baffle heat exchanger with low-finned tubes. The experimental results showed that the enhancement of the convective heat transfer coefficient increases with an increase in the Peclet number and the nanoparticle concentration. For nanofluids with 1.0, 0.5 and 0.2 wt% of multi-walled carbon nanotubes (MWCNTs), the heat transfer coefficients respectively augmented by 24.3, 13.2 and 4.7% on average and the pressure drops become larger than those of the base fluid. The comprehensive thermal performance factor is higher than one and increases with an increasing weight fraction of MWCNTs. A remarkable heat transfer enhancement in the shell side of helical baffle heat exchanger with low-finned tubes can be obtained by adding MWCNTs into XG aqueous solution based on thermal resistance analysis. New correlations have been suggested for the shell-side friction coefficient and the Nusselt numbers of non-Newtonian nanofluids and give very good agreement with experimental data.

  4. Co-localisation of advanced glycation end products and D-β-aspartic acid-containing proteins in gelatinous drop-like corneal dystrophy.

    PubMed

    Kaji, Yuichi; Oshika, Tetsuro; Takazawa, Yutaka; Fukayama, Masashi; Fujii, Noriko

    2012-08-01

    Gelatinous drop-like corneal dystrophy (GDLD), also known as familial subepithelial corneal amyloidosis, is an autosomal recessive disorder that causes progressive corneal opacity due to accumulation of amyloid fibrils in the corneal stroma. Genetic analyses have revealed that a mutation in membrane component chromosome 1 surface marker 1 gene is responsible for GDLD. However, the mechanism of amyloid formation in the corneal stroma remains unclear. The present study attempted to reveal the role of advanced glycation end products (AGE) and d-amino acids in amyloid formation in GDLD. Informed consent was obtained from five patients with GDLD, three patients with bullous keratopathy and three patients with interstitial keratitis and all the specimens were analysed. Localisation of amyloid fibrils was analysed using Congo-red and thioflavin T staining. In addition, the localisation of AGE (N(ε)-carboxy(methyl)-L-lysine, pyrraline and pentosidine) and D-β-aspartic acid-containing proteins, a major form of d-amino acid-containing proteins, was analysed immunohistochemically. In all GDLD specimens, strong immunoreactivity to AGE and D-β-aspartic acid-containing proteins was detected in the subepithelial amyloid-rich region. In contrast, amyloid fibrils, AGE, or D-amino acid-containing proteins were slightly detected in the corneal stroma of patients with bullous keratopathy and interstitial keratitis. Abnormally accumulated proteins rich in AGE and D-β-aspartic acid co-localise in the amyloid lesions in GDLD. These results indicate that non-enzymatic post-translational modifications of proteins, including AGE formation and isomerisation of aspartyl residues, will be the cause as well as the result of amyloid fibril formations in GDLD.

  5. Co-localisation of advanced glycation end products and d-β-aspartic acid-containing proteins in gelatinous drop-like corneal dystrophy

    PubMed Central

    Oshika, Tetsuro; Takazawa, Yutaka; Fukayama, Masashi; Fujii, Noriko

    2012-01-01

    Purpose Gelatinous drop-like corneal dystrophy (GDLD), also known as familial subepithelial corneal amyloidosis, is an autosomal recessive disorder that causes progressive corneal opacity due to accumulation of amyloid fibrils in the corneal stroma. Genetic analyses have revealed that a mutation in membrane component chromosome 1 surface marker 1 gene is responsible for GDLD. However, the mechanism of amyloid formation in the corneal stroma remains unclear. The present study attempted to reveal the role of advanced glycation end products (AGE) and d-amino acids in amyloid formation in GDLD. Methods Informed consent was obtained from five patients with GDLD, three patients with bullous keratopathy and three patients with interstitial keratitis and all the specimens were analysed. Localisation of amyloid fibrils was analysed using Congo-red and thioflavin T staining. In addition, the localisation of AGE (Nɛ-carboxy(methyl)-l-lysine, pyrraline and pentosidine) and d-β-aspartic acid-containing proteins, a major form of d-amino acid-containing proteins, was analysed immunohistochemically. Results In all GDLD specimens, strong immunoreactivity to AGE and d-β-aspartic acid-containing proteins was detected in the subepithelial amyloid-rich region. In contrast, amyloid fibrils, AGE, or d-amino acid-containing proteins were slightly detected in the corneal stroma of patients with bullous keratopathy and interstitial keratitis. Conclusions Abnormally accumulated proteins rich in AGE and d-β-aspartic acid co-localise in the amyloid lesions in GDLD. These results indicate that non-enzymatic post-translational modifications of proteins, including AGE formation and isomerisation of aspartyl residues, will be the cause as well as the result of amyloid fibril formations in GDLD. PMID:22694960

  6. Efficient biotechnological approach for lentiviral transduction of induced pluripotent stem cells.

    PubMed

    Zare, Mehrak; Soleimani, Masoud; Mohammadian, Mozhdeh; Akbarzadeh, Abolfazl; Havasi, Parvaneh; Zarghami, Nosratollah

    2016-01-01

    Induced pluripotent stem (iPS) cells are generated from differentiated adult somatic cells by reprogramming them. Unlimited self-renewal, and the potential to differentiate into any cell type, make iPS cells very promising candidates for basic and clinical research. Furthermore, iPS cells can be genetically manipulated for use as therapeutic tools. DNA can be introduced into iPS cells, using lentiviral vectors, which represent a helpful choice for efficient transduction and stable integration of transgenes. In this study, we compare two methods of lentiviral transduction of iPS cells, namely, the suspension method and the hanging drop method. In contrast to the conventional suspension method, in the hanging drop method, embryoid body (EB) formation and transduction occur concurrently. The iPS cells were cultured to form EBs, and then transduced with lentiviruses, using the conventional suspension method and the hanging drop method, to express miR-128 and green fluorescent protein (GFP). The number of transduced cells were assessed by fluorescent microscopy and flow cytometry. MTT assay and real-time PCR were performed to determine the cell viability and transgene expression, respectively. Morphologically, GFP+ cells were more detectable in the hanging drop method, and this finding was quantified by flow cytometric analysis. According to the results of the MTT assay, cell viability was considerably higher in the hanging drop method, and real-time PCR represented a higher relative expression of miR-128 in the iPS cells introduced with lentiviruses in drops. Altogether, it seems that lentiviral transduction of challenging iPS cells using the hanging drop method offers a suitable and sufficient strategy in their gene transfer, with less toxicity than the conventional suspension method.

  7. Building America Case Study: Duct in Conditioned Space in a Dropped Ceiling or Fur-down, Gainesville, Florida (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2014-09-01

    Forced air distribution systems (duct systems) typically are installed out of sight for aesthetic reasons, most often in unconditioned areas such as an attic or crawlspace. Any leakage of air to or from the duct system (duct leakage) in unconditioned space not only loses energy, but impacts home and equipment durability and indoor air quality. An obvious solution to this problem is to bring the duct system into the interior of the house, either by sealing the area where the ducts are installed (sealed attic or crawlspace) or by building an interior cavity or chase above the ceiling plane (raisedmore » ceiling or fur-up chase) or below the ceiling plane (dropped ceiling or fur-down) for the duct system. This case study examines one Building America builder partner's implementation of an inexpensive, quick and effective method of building a fur-down or dropped ceiling chase.« less

  8. Evaluation of seismic spatial interaction effects through an impact testing program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, B.D.; Driesen, G.E.

    The consequences of non-seismically qualified objects falling and striking essential, seismically qualified objects is an analytically difficult problem to assess. Analytical solutions to impact problems are conservative and only available for simple situations. In a nuclear facility, the numerous ``sources`` and ``targets`` requiring evaluation often have complex geometric configurations, which makes calculations and computer modeling difficult. Few industry or regulatory rules are available for this specialized assessment. A drop test program was recently conducted to ``calibrate`` the judgment of seismic qualification engineers who perform interaction evaluations and to further develop seismic interaction criteria. Impact tests on varying combinations of sourcesmore » and targets were performed by dropping the sources from various heights onto targets that were connected to instruments. This paper summarizes the scope, test configurations, and some results of the drop test program. Force and acceleration time history data and general observations are presented on the ruggedness of various targets when subjected to impacts from different types of sources.« less

  9. Evaluation of seismic spatial interaction effects through an impact testing program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, B.D.; Driesen, G.E.

    The consequences of non-seismically qualified objects falling and striking essential, seismically qualified objects is an analytically difficult problem to assess. Analytical solutions to impact problems are conservative and only available for simple situations. In a nuclear facility, the numerous sources'' and targets'' requiring evaluation often have complex geometric configurations, which makes calculations and computer modeling difficult. Few industry or regulatory rules are available for this specialized assessment. A drop test program was recently conducted to calibrate'' the judgment of seismic qualification engineers who perform interaction evaluations and to further develop seismic interaction criteria. Impact tests on varying combinations of sourcesmore » and targets were performed by dropping the sources from various heights onto targets that were connected to instruments. This paper summarizes the scope, test configurations, and some results of the drop test program. Force and acceleration time history data and general observations are presented on the ruggedness of various targets when subjected to impacts from different types of sources.« less

  10. Electrostatic attraction of charged drops of water inside dropwise cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shavlov, A. V.; Tyumen State Oil and Gas University, 38, Volodarskogo Str., Tyumen 625000; Dzhumandzhi, V. A.

    2013-08-15

    Based on the analytical solution of the Poisson-Boltzmann equation, we demonstrate that inside the electrically neutral system of charges an electrostatic attraction can occur between the like-charged particles, where charge Z ≫ 1 (in terms of elementary charge) and radius R > 0, whereas according to the literature, only repulsion is possible inside non-electrically neutral systems. We calculate the free energy of the charged particles of water inside a cluster and demonstrate that its minimum is when the interdroplet distance equals several Debye radii defined based on the light plasma component. The deepest minimum depth is in a cluster withmore » close spatial packing of drops by type, in a face-centered cubic lattice, if almost all the electric charge of one sign is concentrated on the drops and that of the other sign is concentrated on the light compensation carriers of charge, where the charge moved by equilibrium carriers is rather small.« less

  11. Single-Drop Raman Imaging Exposes the Trace Contaminants in Milk.

    PubMed

    Tan, Zong; Lou, Ting-Ting; Huang, Zhi-Xuan; Zong, Jing; Xu, Ke-Xin; Li, Qi-Feng; Chen, Da

    2017-08-02

    Better milk safety control can offer important means to promote public health. However, few technologies can detect different types of contaminants in milk simultaneously. In this regard, the present work proposes a single-drop Raman imaging (SDRI) strategy for semiquantitation of multiple hazardous factors in milk solutions. By developing SDRI strategy that incorporates the coffee-ring effect (a natural phenomenon often presents in a condensed circle pattern after a drop evaporated) for sample pretreatment and discrete wavelet transform for spectra processing, the method serves well to expose typical hazardous molecular species in milk products, such as melamine, sodium thiocyanate and lincomycin hydrochloride, with little sample preparation. The detection sensitivity for melamine, sodium thiocyanate, and lincomycin hydrochloride are 0.1 mg kg -1 , 1 mg kg -1 , and 0.1 mg kg -1 , respectively. Theoretically, we establish that the SDRI represents a novel and environment-friendly method that screens the milk safety efficiently, which could be well extended to inspection of other food safety.

  12. Molecular Effects of Concentrated Solutes on Protein Hydration, Dynamics, and Electrostatics.

    PubMed

    Abriata, Luciano A; Spiga, Enrico; Peraro, Matteo Dal

    2016-08-23

    Most studies of protein structure and function are performed in dilute conditions, but proteins typically experience high solute concentrations in their physiological scenarios and biotechnological applications. High solute concentrations have well-known effects on coarse protein traits like stability, diffusion, and shape, but likely also perturb other traits through finer effects pertinent at the residue and atomic levels. Here, NMR and molecular dynamics investigations on ubiquitin disclose variable interactions with concentrated solutes that lead to localized perturbations of the protein's surface, hydration, electrostatics, and dynamics, all dependent on solute size and chemical properties. Most strikingly, small polar uncharged molecules are sticky on the protein surface, whereas charged small molecules are not, but the latter still perturb the internal protein electrostatics as they diffuse nearby. Meanwhile, interactions with macromolecular crowders are favored mainly through hydrophobic, but not through polar, surface patches. All the tested small solutes strongly slow down water exchange at the protein surface, whereas macromolecular crowders do not exert such strong perturbation. Finally, molecular dynamics simulations predict that unspecific interactions slow down microsecond- to millisecond-timescale protein dynamics despite having only mild effects on pico- to nanosecond fluctuations as corroborated by NMR. We discuss our results in the light of recent advances in understanding proteins inside living cells, focusing on the physical chemistry of quinary structure and cellular organization, and we reinforce the idea that proteins should be studied in native-like media to achieve a faithful description of their function. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Protein folding, protein structure and the origin of life: Theoretical methods and solutions of dynamical problems

    NASA Technical Reports Server (NTRS)

    Weaver, D. L.

    1982-01-01

    Theoretical methods and solutions of the dynamics of protein folding, protein aggregation, protein structure, and the origin of life are discussed. The elements of a dynamic model representing the initial stages of protein folding are presented. The calculation and experimental determination of the model parameters are discussed. The use of computer simulation for modeling protein folding is considered.

  14. Earthquake Source Parameter Estimates for the Charlevoix and Western Quebec Seismic Zones in Eastern Canada

    NASA Astrophysics Data System (ADS)

    Onwuemeka, J.; Liu, Y.; Harrington, R. M.; Peña-Castro, A. F.; Rodriguez Padilla, A. M.; Darbyshire, F. A.

    2017-12-01

    The Charlevoix Seismic Zone (CSZ), located in eastern Canada, experiences a high rate of intraplate earthquakes, hosting more than six M >6 events since the 17th century. The seismicity rate is similarly high in the Western Quebec seismic zone (WQSZ) where an MN 5.2 event was reported on May 17, 2013. A good understanding of seismicity and its relation to the St-Lawrence paleorift system requires information about event source properties, such as static stress drop and fault orientation (via focal mechanism solutions). In this study, we conduct a systematic estimate of event source parameters using 1) hypoDD to relocate event hypocenters, 2) spectral analysis to derive corner frequency, magnitude, and hence static stress drops, and 3) first arrival polarities to derive focal mechanism solutions of selected events. We use a combined dataset for 817 earthquakes cataloged between June 2012 and May 2017 from the Canadian National Seismograph Network (CNSN), and temporary deployments from the QM-III Earthscope FlexArray and McGill seismic networks. We first relocate 450 events using P and S-wave differential travel-times refined with waveform cross-correlation, and compute focal mechanism solutions for all events with impulsive P-wave arrivals at a minimum of 8 stations using the hybridMT moment tensor inversion algorithm. We then determine corner frequency and seismic moment values by fitting S-wave spectra on transverse components at all stations for all events. We choose the final corner frequency and moment values for each event using the median estimate at all stations. We use the corner frequency and moment estimates to calculate moment magnitudes, static stress-drop values and rupture radii, assuming a circular rupture model. We also investigate scaling relationships between parameters, directivity, and compute apparent source dimensions and source time functions of 15 M 2.4+ events from second-degree moment estimates. To the first-order, source dimension estimates from both methods generally agree. We observe higher corner frequencies and higher stress drops (ranging from 20 to 70 MPa) typical of intraplate seismicity in comparison with interplate seismicity. We follow similar approaches to studying 25 MN 3+ events reported in the WQSZ using data recorded by the CNSN and USArray Transportable Array.

  15. Orbital, Rotational and Climatic Interactions: Energy Dissipation and Angular Momentum Exchange in the Earth-Moon System

    NASA Technical Reports Server (NTRS)

    Egbert, Gary D.

    2001-01-01

    A numerical ocean tide model has been developed and tested using highly accurate TOPEX/Poseidon (T/P) tidal solutions. The hydrodynamic model is based on time stepping a finite difference approximation to the non-linear shallow water equations. Two novel features of our implementation are a rigorous treatment of self attraction and loading (SAL), and a physically based parameterization for internal tide (IT) radiation drag. The model was run for a range of grid resolutions, and with variations in model parameters and bathymetry. For a rational treatment of SAL and IT drag, the model run at high resolution (1/12 degree) fits the T/P solutions to within 5 cm RMS in the open ocean. Both the rigorous SAL treatment and the IT drag parameterization are required to obtain solutions of this quality. The sensitivity of the solution to perturbations in bathymetry suggest that the fit to T/P is probably now limited by errors in this critical input. Since the model is not constrained by any data, we can test the effect of dropping sea-level to match estimated bathymetry from the last glacial maximum (LGM). Our results suggest that the 100 m drop in sea-level in the LGM would have significantly increased tidal amplitudes in the North Atlantic, and increased overall tidal dissipation by about 40%. However, details in tidal solutions for the past 20 ka are sensitive to the assumed stratification. IT drag accounts for a significant fraction of dissipation, especially in the LGM when large areas of present day shallow sea were exposed, and this parameter is poorly constrained at present.

  16. Fluorescent Approaches to High Throughput Crystallography

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Forsythe, Elizabeth; Achari, Aniruddha

    2006-01-01

    We have shown that by covalently modifying a subpopulation, less than or equal to 1%, of a macromolecule with a fluorescent probe, the labeled material will add to a growing crystal as a microheterogeneous growth unit. Labeling procedures can be readily incorporated into the final stages of purification, and the presence of the probe at low concentrations does not affect the X-ray data quality or the crystallization behavior. The presence of the trace fluorescent label gives a number of advantages when used with high throughput crystallizations. The covalently attached probe will concentrate in the crystal relative to the solution, and under fluorescent illumination crystals show up as bright objects against a dark background. Non-protein structures, such as salt crystals, will not incorporate the probe and will not show up under fluorescent illumination. Brightly fluorescent crystals are readily found against less bright precipitated phases, which under white light illumination may obscure the crystals. Automated image analysis to find crystals should be greatly facilitated, without having to first define crystallization drop boundaries as the protein or protein structures is all that shows up. Fluorescence intensity is a faster search parameter, whether visually or by automated methods, than looking for crystalline features. We are now testing the use of high fluorescence intensity regions, in the absence of clear crystalline features or "hits", as a means for determining potential lead conditions. A working hypothesis is that kinetics leading to non-structured phases may overwhelm and trap more slowly formed ordered assemblies, which subsequently show up as regions of brighter fluorescence intensity. Preliminary experiments with test proteins have resulted in the extraction of a number of crystallization conditions from screening outcomes based solely on the presence of bright fluorescent regions. Subsequent experiments will test this approach using a wider range of proteins. The trace fluorescently labeled crystals will also emit with sufficient intensity to aid in the automation of crystal alignment using relatively low cost optics, further increasing throughput at synchrotrons.

  17. Impact of heat treatment on miscibility of proteins and disaccharides in frozen solutions.

    PubMed

    Izutsu, Ken-ichi; Yomota, Chikako; Okuda, Haruhiro; Kawanishi, Toru; Randolph, Theodore W; Carpenter, John F

    2013-10-01

    The purpose of this study was to elucidate the effect of heat treatment (annealing) on the miscibility of concentrated protein and disaccharide mixtures in the freezing segment of lyophilization. Frozen solutions containing a protein (e.g., recombinant human albumin, chicken egg lysozyme, bovine plasma immunoglobulin G, or a humanized IgG1k monoclonal antibody) and a non-reducing disaccharide (e.g., sucrose or trehalose) showed single thermal transitions of the solute mixtures (glass transition temperature of maximally freeze-concentrated solutes: T(g)(')) in their first heating scans. Heat treatment (e.g., -5 °C, 30 min) of some disaccharide-rich mixture frozen solutions at temperatures far above their T(g)(') induced two-step T(g)(') transitions in the subsequent scans, suggesting the separation of the solutes into concentrated protein-disaccharide mixture phase and disaccharide phase. Other frozen solutions showed a single transition of the concentrated solute mixture both before and after heat treatment. The apparent effects of the heat treatment temperature and time on the changes in thermal properties suggest molecular reordering of the concentrated solutes from a kinetically fixed mixture state to a more thermodynamically favorable state as a result of increased mobility. The implications of these phenomena on the quality of protein formulations are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Discussion on "Modeling karst spring hydrograph recession based on head drop at sinkholes" by Guangquan, Li, Nico Goldscheider, Malcom S. Field

    NASA Astrophysics Data System (ADS)

    Şen, Zekâi

    2018-02-01

    Groundwater movement model development in karstic aquifers is very difficult due to the complexity of the solution cavities. The authors (Li et al., 2016) have proposed a square law model for expressing the discharge ratio in terms of hydraulic head ratio, with an exponent equal to 0.5. They have also provided the mathematical derivation in detail with application. It is noticed that the methodology can be expanded towards a better and refined solutions by consideration of the following explanations.

  19. Response of Infrared-Transparent Materials to Raindrop Impacts

    DTIC Science & Technology

    1979-10-01

    because a clear understanding of its origin will be necessary later. Consider two solutions to the wave equa- tion in the half-space denoted by (uA, tk2 ...pressute profile developed by Rosenblatt, et al. (1977) into Blowers’ formu- lation of the water drop impact problem. The deficiencies in their modifi

  20. Nothing about Us without Us! Youth-Led Solutions to Improve High School Completion Rates

    ERIC Educational Resources Information Center

    Chou, Fred; Kwee, Janelle; Lees, Robert; Firth, Kara; Florence, Jordan; Harms, Jake; Raber, Mya; Stevens, Taylor; Tatomir, Richard; Weaver, Chereca; Wilson, Scott

    2015-01-01

    This Youth Participatory Action Research (YPAR) study represents a collaboration with six students from alternative education to inquire about the experiences of vulnerable youth--students in alternative education and youth who have dropped out of school. Utilizing the Enhanced Critical Incident Technique, youth researchers asked their peers what…

Top