Science.gov

Sample records for protein sp-b strongly

  1. A Function of Lung Surfactant Protein SP-B

    NASA Astrophysics Data System (ADS)

    Longo, M. L.; Bisagno, A. M.; Zasadzinski, J. A. N.; Bruni, R.; Waring, A. J.

    1993-07-01

    The primary function of lung surfactant is to form monolayers at the alveolar interface capable of lowering the normal surface tension to near zero. To accomplish this process, the surfactant must be capable of maintaining a coherent, tightly packed monolayer that avoids collapse during expiration. The positively charged amino-terminal peptide SP-B1-25 of lung surfactant-specific protein SP-B increases the collapse pressure of an important component of lung surfactant, palmitic acid (PA), to nearly 70 millinewtons per meter. This alteration of the PA isotherms removes the driving force for "squeeze-out" of the fatty acids from the primarily dipalmitoylphosphatidylcholine monolayers of lung surfactant. An uncharged mutant of SP-B1-25 induced little change in the isotherms, suggesting that a specific charge interaction between the cationic peptide and the anionic lipid is responsible for the stabilization. The effect of SP-B1-25 on fatty acid isotherms is remarkably similar to that of simple poly-cations, suggesting that such polymers might be useful as components of replacement surfactants for the treatment of respiratory distress syndrome.

  2. Environmental Pollutant Ozone Causes Damage to Lung Surfactant Protein B (SP-B)

    PubMed Central

    2015-01-01

    Lung surfactant protein B (SP-B) is an essential protein found in the surfactant fluid at the air–water interface of the lung. Exposure to the air pollutant ozone could potentially damage SP-B and lead to respiratory distress. We have studied two peptides, one consisting of the N-terminus of SP-B [SP-B(1–25)] and the other a construct of the N- and C-termini of SP-B [SP-B(1–25,63–78)], called SMB. Exposure to dilute levels of ozone (∼2 ppm) of monolayers of each peptide at the air–water interface leads to a rapid reaction, which is evident from an increase in the surface tension. Fluorescence experiments revealed that this increase in surface tension is accompanied by a loss of fluorescence from the tryptophan residue at the interface. Neutron and X-ray reflectivity experiments show that, in contrast to suggestions in the literature, the peptides are not solubilized upon oxidation but rather remain at the interface with little change in their hydration. Analysis of the product material reveals that no cleavage of the peptides occurs, but a more hydrophobic product is slowly formed together with an increased level of oligomerization. We attributed this to partial unfolding of the peptides. Experiments conducted in the presence of phospholipids reveal that the presence of the lipids does not prevent oxidation of the peptides. Our results strongly suggest that exposure to low levels of ozone gas will damage SP-B, leading to a change in its structure. The implication is that the oxidized protein will be impaired in its ability to interact at the air–water interface with negatively charged phosphoglycerol lipids, thus compromising what is thought to be its main biological function. PMID:26270023

  3. The Interactions between SP-B Protein and Anionic Lipids Found in Human Lung Surfactant

    NASA Astrophysics Data System (ADS)

    Lee, Ka Yee C.; Lipp, Michael M.; Zasadzinski, Joseph A.; Waring, Alan J.

    1997-03-01

    Several lung pathologies, including neonatal respiratory distress syndrome, are characterized by a failure of the lung surfactant (LS) system to function properly. Utilizing fluorescence and Brewster angle microscopy, we have investigated the phase behavior of monolayers of binary mixtures of anionic lipids found in LS (palmitic acid, and both saturated and unsaturated phosphatidylglycerol) with both the full length SP-B protein and a shorter, 25-amino acid sequence based on its amino terminus. We found that both protein candidates interact specifically yet differently with each of the lipid components, altering their phase behavior to resemble more closely to that of an ideal LS monolayer. The SP-B protein incorporates itself in the lipid monolayer in all cases, and partitions preferentially into the fluid-type phases during phase transitions; its presence drastically changes the collapse mechanism of the monolayer.

  4. Dimeric N-terminal segment of human surfactant protein B (dSP-B(1-25)) has enhanced surface properties compared to monomeric SP-B(1-25).

    PubMed Central

    Veldhuizen, E J; Waring, A J; Walther, F J; Batenburg, J J; van Golde, L M; Haagsman, H P

    2000-01-01

    Surfactant protein B (SP-B) is a 17-kDa dimeric protein produced by alveolar type II cells. Its main function is to lower the surface tension by inserting lipids into the air/liquid interface of the lung. SP-B's function can be mimicked by a 25-amino acid peptide, SP-B(1-25), which is based on the N-terminal sequence of SP-B. We synthesized a dimeric version of this peptide, dSP-B(1-25), and the two peptides were tested for their surface activity. Both SP-B(1-25) and dSP-B(1-25) showed good lipid mixing and adsorption activities. The dimeric peptide showed activity comparable to that of native SP-B in the pressure-driven captive bubble surfactometer. Spread surface films led to stable near-zero minimum surface tensions during cycling while protein free, and films containing SP-B(1-25) lost material from the interface during compression. We propose that dimerization of the peptide is required to create a lipid reservoir attached to the monolayer from which new material can enter the surface film upon expansion of the air/liquid interface. The dimeric state of SP-B can fulfill the same function in vivo. PMID:10866963

  5. Lipid-protein interactions of hydrophobic proteins SP-B and SP-C in lung surfactant assembly and dynamics.

    PubMed

    Pérez-Gil, J

    2001-01-01

    Phospholipids have the major role in pulmonary surfacant concerning its biophysical function of reducing surface tension at the alveolar air-liquid interface to facilitate respiratory mechanics. However, the presence of some specific, highly hydrophobic polypeptides is essential to modulate the physical behavior of phospholipids and to promote rapid formation of stable surface films that are able to produce surface tensions in the range of 0 dynes/cm during cyclic compression. The present review summarizes the available data on the parameters governing lipid-protein interactions of the hydrophobic surfactant proteins SP-B and SP-C with the main surfactant phospholipids. Lipid-protein interactions in surfactant have been studied in vitro using preparations reconstituted with very different methodological procedures. Conclusions concerning the role of hydrophobic surfactant proteins on the assembly of lipid-protein surfactant structures in vivo have been revised in this respect. This review presents the knowledge available on the disposition of SP-B and SP-C in surfactant structures, the mode, extent, selectivity, and stoichiometry of their lipid-protein interactions, and the effect of the proteins on structure and dynamics of surfactant bilayers and monolayers. Some considerations are given to possible concerted actions, under physiological conditions, of both proteins SP-B and SP-C.

  6. Effects of lung surfactant proteins, SP-B and SP-C, and palmitic acid on monolayer stability.

    PubMed Central

    Ding, J; Takamoto, D Y; von Nahmen, A; Lipp, M M; Lee, K Y; Waring, A J; Zasadzinski, J A

    2001-01-01

    Langmuir isotherms and fluorescence and atomic force microscopy images of synthetic model lung surfactants were used to determine the influence of palmitic acid and synthetic peptides based on the surfactant-specific proteins SP-B and SP-C on the morphology and function of surfactant monolayers. Lung surfactant-specific protein SP-C and peptides based on SP-C eliminate the loss to the subphase of unsaturated lipids necessary for good adsorption and respreading by inducing a transition between monolayers and multilayers within the fluid phase domains of the monolayer. The morphology and thickness of the multilayer phase depends on the lipid composition of the monolayer and the concentration of SP-C or SP-C peptide. Lung surfactant protein SP-B and peptides based on SP-B induce a reversible folding transition at monolayer collapse that allows all components of surfactant to be retained at the interface during respreading. Supplementing Survanta, a clinically used replacement lung surfactant, with a peptide based on the first 25 amino acids of SP-B also induces a similar folding transition at monolayer collapse. Palmitic acid makes the monolayer rigid at low surface tension and fluid at high surface tension and modifies SP-C function. Identifying the function of lung surfactant proteins and lipids is essential to the rational design of replacement surfactants for treatment of respiratory distress syndrome. PMID:11325728

  7. Combinations of fluorescently labeled pulmonary surfactant proteins SP-B and SP-C in phospholipid films.

    PubMed Central

    Nag, K; Taneva, S G; Perez-Gil, J; Cruz, A; Keough, K M

    1997-01-01

    Hydrophobic pulmonary surfactant (PS) proteins B (SP-B) and C (SP-C) modulate the surface properties of PS lipids. Epifluorescence microscopy was performed on solvent-spread monolayers of fluorescently labeled porcine SP-B (R-SP-B, labeled with Texas Red) and SP-C (F-SP-C, labeled with fluorescein) in dipalmitoylphosphatidylcholine (DPPC) (at protein concentrations of 10 and 20 wt%, and 10 wt% of both) under conditions of cyclic compression and expansion. Matrix-assisted laser desorption/ionization (MALDI) spectroscopy of R-SP-B and F-SP-C indicated that the proteins were intact and labeled with the appropriate fluorescent probe. The monolayers were compressed and expanded for four cycles at an initial rate of 0.64 A2 x mol(-1) x s(-1) (333 mm2 x s x [-1]) up to a surface pressure pi approximately 65 mN/m, and pi-area per residue (pi-A) isotherms at 22 +/- 1 degrees C were obtained. The monolayers were microscopically observed for the fluorescence emission of the individual proteins present in the film lipid matrix, and their visual features were video recorded for image analysis. The pi-A isotherms of the DPPC/protein monolayers showed characteristic "squeeze out" effects at pi approximately 43 mN/m for R-SP-B and 55 mN/m for F-SP-C, as had previously been observed for monolayers of the native proteins in DPPC. Both proteins associated with the expanded (fluid) phase of DPPC monolayers remained in or associated with the monolayers at high pi (approximately 65 mN/m) and redispersed in the monolayer upon its reexpansion. At comparable pi and area/molecule of the lipid, the proteins reduced the amounts of condensed (gel-like) phase of DPPC monolayers, with F-SP-C having a greater effect on a weight basis than did R-SP-B. In any one of the lipid/protein monolayers the amounts of the DPPC in condensed phase were the same at equivalent pi during compression and expansion and from cycle to cycle. This indicated that only minor loss of components from these systems

  8. Synergistic Effect of Caffeine and Glucocorticoids on Expression of Surfactant Protein B (SP-B) mRNA

    PubMed Central

    Fehrholz, Markus; Bersani, Iliana; Kramer, Boris W.; Speer, Christian P.; Kunzmann, Steffen

    2012-01-01

    Administration of glucocorticoids and caffeine is a common therapeutic intervention in the neonatal period, but possible interactions between these substances are still unclear. The present study investigated the effect of caffeine and different glucocorticoids on expression of surfactant protein (SP)-B, crucial for the physiological function of pulmonary surfactant. We measured expression levels of SP-B, various SP-B transcription factors including erythroblastic leukemia viral oncogene homolog 4 (ErbB4) and thyroid transcription factor-1 (TTF-1), as well as the glucocorticoid receptor (GR) after administering different doses of glucocorticoids, caffeine, cAMP, or the phosphodiesterase-4 inhibitor rolipram in the human airway epithelial cell line NCI-H441. Administration of dexamethasone (1 µM) or caffeine (5 mM) stimulated SP-B mRNA expression with a maximal of 38.8±11.1-fold and 5.2±1.4-fold increase, respectively. Synergistic induction was achieved after co-administration of dexamethasone (1 mM) in combination with caffeine (10 mM) (206±59.7-fold increase, p<0.0001) or cAMP (1 mM) (213±111-fold increase, p = 0.0108). SP-B mRNA was synergistically induced also by administration of caffeine with hydrocortisone (87.9±39.0), prednisolone (154±66.8), and betamethasone (123±6.4). Rolipram also induced SP-B mRNA (64.9±21.0-fold increase). We detected a higher expression of ErbB4 and GR mRNA (7.0- and 1.7-fold increase, respectively), whereas TTF-1, Jun B, c-Jun, SP1, SP3, and HNF-3α mRNA expression was predominantly unchanged. In accordance with mRNA data, mature SP-B was induced significantly by dexamethasone with caffeine (13.8±9.0-fold increase, p = 0.0134). We found a synergistic upregulation of SP-B mRNA expression induced by co-administration of various glucocorticoids and caffeine, achieved by accumulation of intracellular cAMP. This effect was mediated by a caffeine-dependent phosphodiesterase inhibition and by upregulation of both ErbB4 and

  9. Intra-amniotic endotoxin increases pulmonary surfactant proteins and induces SP-B processing in fetal sheep.

    PubMed

    Bachurski, C J; Ross, G F; Ikegami, M; Kramer, B W; Jobe, A H

    2001-02-01

    Intra-amniotic (IA) endotoxin induces lung maturation within 6 days in fetal sheep of 125 days gestational age. To determine the early fetal lung response to IA endotoxin, the timing and characteristics of changes in surfactant components were evaluated. Fetal sheep were exposed to 20 mg of Escherichia coli 055:B5 endotoxin by IA injection from 1 to 15 days before preterm delivery at 125 days gestational age. Surfactant protein (SP) A, SP-B, and SP-C mRNAs were maximally induced at 2 days. SP-D mRNA was increased fourfold at 1 day and remained at peak levels for up to 7 days. Bronchoalveolar lavage fluid from control animals contained very little SP-B protein, 75% of which was a partially processed intermediate. The alveolar pool of SP-B was significantly increased between 4 and 7 days in conjunction with conversion to the fully processed active airway peptide. All SPs were significantly elevated in the bronchoalveolar lavage fluid by 7 days. IA endotoxin caused rapid and sustained increases in SP mRNAs that preceded the increase in alveolar saturated phosphatidylcholine processing of SP-B and improved lung compliance in prematurely delivered lambs.

  10. Conformational Stability of the NH2-Terminal Propeptide of the Precursor of Pulmonary Surfactant Protein SP-B

    PubMed Central

    Bañares-Hidalgo, Ángeles; Estrada, Pilar

    2016-01-01

    Assembly of pulmonary surfactant lipid-protein complexes depends on conformational changes coupled with proteolytic maturation of proSP-B, the precursor of pulmonary surfactant protein B (SP-B), along the surfactant biogenesis pathway in pneumocytes. Conformational destabilization of the N-terminal propeptide of proSP-B (SP-BN) triggers exposure of the mature SP-B domain for insertion into surfactant lipids. We have studied the conformational stability during GdmCl- or urea-promoted unfolding of SP-BN with trp fluorescence and circular dichroism spectroscopies. Binding of the intermediate states to bis-ANS suggests their molten globule-like character. ΔG0H2O was ~ 12.7 kJ·mol-1 either with urea or GdmCl. None of the thermal transitions of SP-BN detected by CD correspond to protein unfolding. Differential scanning calorimetry of SP-BN evidenced two endothermic peaks involved in oligomer dissociation as confirmed with 2 M urea. Ionic strength was relevant since at 150 mM NaCl, the process originating the endotherm at the highest temperature was irreversible (Tm2 = 108.5°C) with an activation energy of 703.8 kJ·mol-1. At 500 mM NaCl the process became reversible (Tm2 = 114.4°C) and data were fitted to the Non-two States model with two subpeaks. No free thiols in the propeptide could be titrated by DTNB with or without 5.7 M GdmCl, indicating disulfide bonds establishment. PMID:27380171

  11. Conformational Stability of the NH2-Terminal Propeptide of the Precursor of Pulmonary Surfactant Protein SP-B.

    PubMed

    Bañares-Hidalgo, Ángeles; Pérez-Gil, Jesús; Estrada, Pilar

    2016-01-01

    Assembly of pulmonary surfactant lipid-protein complexes depends on conformational changes coupled with proteolytic maturation of proSP-B, the precursor of pulmonary surfactant protein B (SP-B), along the surfactant biogenesis pathway in pneumocytes. Conformational destabilization of the N-terminal propeptide of proSP-B (SP-BN) triggers exposure of the mature SP-B domain for insertion into surfactant lipids. We have studied the conformational stability during GdmCl- or urea-promoted unfolding of SP-BN with trp fluorescence and circular dichroism spectroscopies. Binding of the intermediate states to bis-ANS suggests their molten globule-like character. ΔG0H2O was ~ 12.7 kJ·mol-1 either with urea or GdmCl. None of the thermal transitions of SP-BN detected by CD correspond to protein unfolding. Differential scanning calorimetry of SP-BN evidenced two endothermic peaks involved in oligomer dissociation as confirmed with 2 M urea. Ionic strength was relevant since at 150 mM NaCl, the process originating the endotherm at the highest temperature was irreversible (Tm2 = 108.5°C) with an activation energy of 703.8 kJ·mol-1. At 500 mM NaCl the process became reversible (Tm2 = 114.4°C) and data were fitted to the Non-two States model with two subpeaks. No free thiols in the propeptide could be titrated by DTNB with or without 5.7 M GdmCl, indicating disulfide bonds establishment.

  12. Lung Surfactant Protein A (SP-A) Interactions with Model Lung Surfactant Lipids and an SP-B Fragment

    PubMed Central

    2011-01-01

    Surfactant protein A (SP-A) is the most abundant protein component of lung surfactant, a complex mixture of proteins and lipids. SP-A performs host defense activities and modulates the biophysical properties of surfactant in concerted action with surfactant protein B (SP-B). Current models of lung surfactant mechanism generally assume SP-A functions in its octadecameric form. However, one of the findings of this study is that when SP-A is bound to detergent and lipid micelles that mimic lung surfactant phospholipids, it exists predominantly as smaller oligomers, in sharp contrast to the much larger forms observed when alone in water. These investigations were carried out in sodium dodecyl sulfate (SDS), dodecylphosphocholine (DPC), lysomyristoylphosphatidylcholine (LMPC), lysomyristoylphosphatidylglycerol (LMPG), and mixed LMPC + LMPG micelles, using solution and diffusion nuclear magnetic resonance (NMR) spectroscopy. We have also probed SP-A’s interaction with Mini-B, a biologically active synthetic fragment of SP-B, in the presence of micelles. Despite variations in Mini-B’s own interactions with micelles of different compositions, SP-A is found to interact with Mini-B in all micelle systems and perhaps to undergo a further structural rearrangement upon interacting with Mini-B. The degree of SP-A–Mini-B interaction appears to be dependent on the type of lipid headgroup and is likely mediated through the micelles, rather than direct binding. PMID:21553841

  13. Lung surfactant protein A (SP-A) interactions with model lung surfactant lipids and an SP-B fragment.

    PubMed

    Sarker, Muzaddid; Jackman, Donna; Booth, Valerie

    2011-06-07

    Surfactant protein A (SP-A) is the most abundant protein component of lung surfactant, a complex mixture of proteins and lipids. SP-A performs host defense activities and modulates the biophysical properties of surfactant in concerted action with surfactant protein B (SP-B). Current models of lung surfactant mechanism generally assume SP-A functions in its octadecameric form. However, one of the findings of this study is that when SP-A is bound to detergent and lipid micelles that mimic lung surfactant phospholipids, it exists predominantly as smaller oligomers, in sharp contrast to the much larger forms observed when alone in water. These investigations were carried out in sodium dodecyl sulfate (SDS), dodecylphosphocholine (DPC), lysomyristoylphosphatidylcholine (LMPC), lysomyristoylphosphatidylglycerol (LMPG), and mixed LMPC + LMPG micelles, using solution and diffusion nuclear magnetic resonance (NMR) spectroscopy. We have also probed SP-A's interaction with Mini-B, a biologically active synthetic fragment of SP-B, in the presence of micelles. Despite variations in Mini-B's own interactions with micelles of different compositions, SP-A is found to interact with Mini-B in all micelle systems and perhaps to undergo a further structural rearrangement upon interacting with Mini-B. The degree of SP-A-Mini-B interaction appears to be dependent on the type of lipid headgroup and is likely mediated through the micelles, rather than direct binding.

  14. Synchrotron X-ray study of lung surfactant-specific protein SP-B in lipid monolayers.

    PubMed Central

    Lee, K Y; Majewski, J; Kuhl, T L; Howes, P B; Kjaer, K; Lipp, M M; Waring, A J; Zasadzinski, J A; Smith, G S

    2001-01-01

    This work reports the first x-ray scattering measurements to determine the effects of SP-B(1-25), the N-terminus peptide of lung surfactant-specific protein SP-B, on the structure of palmitic acid (PA) monolayers. In-plane diffraction shows that the peptide fluidizes a portion of the monolayer but does not affect the packing of the residual ordered phase. This implies that the peptide resides in the disordered phase, and that the ordered phase is essentially pure lipid, in agreement with fluorescence microscopy studies. X-ray reflectivity shows that the peptide is oriented in the lipid monolayer at an angle of approximately 56 degrees relative to the interface normal, with one end protruding past the hydrophilic region into the fluid subphase and the other end embedded in the hydrophobic region of the monolayer. The quantitative insights afforded by this study lead to a better understanding of the lipid/protein interactions found in lung surfactant systems. PMID:11423439

  15. Identification of a segment in the precursor of pulmonary surfactant protein SP-B, potentially involved in pH-dependent membrane assembly of the protein.

    PubMed

    Serrano, Alicia G; Cabré, Elisa J; Pérez-Gil, Jesús

    2007-05-01

    In the present work, the hydrophobic properties of proSP-B, the precursor of pulmonary surfactant protein SP-B, have been analyzed under different pH conditions, and the sequence segment at position 111-135 of the N-terminal domain of the precursor has been detected as potentially possessing pH-dependent hydrophobic properties. We have studied the structure and lipid-protein interactions of the synthetic peptides BpH, with sequence corresponding to the segment 111-135 of proSP-B, and BpH-W, bearing the conservative substitution F127W to use the tryptophan as an intrinsic fluorescent probe. Peptide BpH-W interacts with both zwitterionic and anionic phospholipid vesicles at neutral pH, as monitored by the blue-shifted maximum emission of its tryptophan reporter. Insertion of tryptophan into the membranes is further improved at pH 5.0, especially in negatively-charged membranes. Peptides BpH and BpH-W also showed pH-dependent properties to insert into phospholipid monolayers. We have also found that the single sequence variation F120K decreases substantially the interaction of this segment with phospholipid surfaces as well as its pH-dependent insertion into deeper regions of the membranes. We hypothesize that this region could be involved in pH-triggered conformational changes occurring in proSP-B along the exocytic pathway of surfactant in type II cells, leading to the exposure of the appropriate segments for processing and assembly of SP-B within surfactant lipids.

  16. Experimental Study on How Human Lung Surfactant Protein SP-B1-25 is Oxidized by Ozone in the Presence of Fe(II) and Ascorbic Acid

    NASA Astrophysics Data System (ADS)

    Colussi, A. J.; Enami, S.; Hoffmann, M. R.

    2014-12-01

    We will report the results of experiments on the chemical fate of the human lung surfactant protein SP-B1-25 upon exposure to gaseous ozone in realistic aqueous media simulating the conditions prevalent in epithelial lining fluids in polluted ambient air. Our experiments consist of exposing aqueous microjets containing SP-B1-25, the natural antioxidant ascorbic acid, and the Fe2+ carried by most atmospheric fine particulates, under mild acidic conditions, such as those created by the innate lung host defense response. Reactants and the products of such interactions are detected via online electrospray ionization mass spectrometry. We will show that ascorbic acid largely inhibits the ozonation of SP-B1-25 in the absence of Fe2+, leading to the formation of an ascorbic acid ozonide (Enami et al., PNAS 2008). In the presence of Fe2+, however, the ozonide decomposes into reactive intermediates that result in the partial oxidation of SP-B1-25, presumable affecting its function as surfactant. We infer that these experimental results establish a plausible causal link for the observed synergic adverse health effects of ambient ozone and fine particulates

  17. Aberrant processing forms of lung surfactant proteins SP-B and SP-C revealed by high-resolution mass spectrometry.

    PubMed

    Galetskiy, Dmitry; Woischnik, Markus; Ripper, Jan; Griese, Matthias; Przybylski, Michael

    2008-01-01

    The mutation (g.1286T>C) of the pulmonary surfactant-associated protein C gene (SFTPC) leads to the I73T substitution in the precursor protein (pro-SP-C) and results in interstitial lung disease with the histological pattern of non-specific interstitial pneumonia and pulmonary alveolar proteinosis. Central for the disease is the abnormal processing of the SP-C pro-protein to mature SP-C; however little is known about the nature of intermediates and processing products. We report here the application of high resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry to the characterization of processing intermediates of hydrophobic pulmonary surfactant proteins SP-B and SP-C in intra- alveolar surfactant material of a patient with I73T mutation. SP-C and SP-B processing forms were separated from broncho-alveolar lavage fluid using chloroform/methanol extraction and sodium dodecyl sulfate poly acrylamide gel electrophoreis, detected by Western blot and identified by electrospray- and matrix-assisted laser desorption/ionization-FT-ICR mass spectrometry. The mass spectrometric and immuno-analytical results show the intra-alveolar accumulation of an aberrant C-terminal SP-C processing products in which the mature SP-C protein part is missing and aberrant processing intermediates of SP-B.

  18. Lipid Polymorphism Induced by Surfactant Peptide SP-B1-25

    PubMed Central

    Farver, R. Suzanne; Mills, Frank D.; Antharam, Vijay C.; Chebukati, Janetricks N.; Fanucci, Gail E.; Long, Joanna R.

    2010-01-01

    Pulmonary surfactant protein B (SP-B) is an essential protein for lowering surface tension in the alveoli. SP-B1-25, a peptide comprised of the N-terminal 25 amino-acid residues of SP-B, is known to retain much of the biological activity of SP-B. Circular dichroism has shown that when SP-B1-25 interacts with negatively charged lipid vesicles, it contains significant helical structure for the lipid compositions and peptide/lipid ratios studied here. The effect of SP-B1-25 on lipid organization and polymorphisms was investigated via DSC, dynamic light scattering, transmission electron microscopy, and solid-state NMR spectroscopy. At 1-3 mol% peptide and physiologic temperature, SP-B1-25 partitions at the interface of negatively charged PC/PG lipid bilayers. In lipid mixtures containing 1-5 mol% peptide, the structure of SP-B1-25 remains constant, but 2H and 31P NMR spectra show the presence of an isotropic lipid phase in exchange with the lamellar phase below the Tm of the lipids. This behavior is observed for both DPPC/POPG and POPC/POPG lipid mixtures as well as for both the PC and PG components of the mixtures. For 1-3 mol% SP-B1-25, a return to a single lamellar phase above the lipid mixture Tm is observed, but for 5 mol% SP-B1-25 a significant isotropic component is observed at physiologic temperatures for DPPC and exchange broadening is observed in 2H and 31P NMR spectra of the other lipid components in the two mixtures. DLS and TEM rule out the formation of micellar structures and suggest that SP-B1-25 promotes the formation of a fluid isotropic phase. The ability of SP-B1-25 to fuse lipid lamellae via this mechanism, particularly those enriched in DPPC, suggests a specific role for the highly conserved N-terminus of SP-B in the packing of lipid lamellae into surfactant lamellar bodies or in stabilizing multilayer structures at the air-liquid interface. Importantly, this behavior has not been seen for the other SP-B fragments of SP-B8-25 and SP-B59

  19. Entropic Anomaly Observed in Lipid Polymorphisms Induced by Surfactant Peptide SP-B(1-25).

    PubMed

    Tran, Nhi; Kurian, Justin; Bhatt, Avni; McKenna, Robert; Long, Joanna R

    2017-09-25

    The N-terminal 25 amino-acid residues of pulmonary surfactant protein B (SP-B1-25) induces unusual lipid polymorphisms in a model lipid system, 4:1 DPPC/POPG, mirroring the lipid composition of native pulmonary surfactant. It is widely suggested that SP-B1-25-induced lipid polymorphisms within the alveolar aqueous subphase provide a structural platform for rapid lipid adsorption to the air-water interface. Here, we characterize in detail the phase behavior of DPPC and POPG in hydrated lipid assemblies containing therapeutic levels of SP-B1-25 using (2)H and (31)P solid state NMR spectroscopy. The appearance of a previously observed isotropic lipid phase is found to be highly dependent on the thermal cycling of the samples. Slow heating of frozen samples leads to phase separation of DPPC into a lamellar phase whereas POPG lipids interact with the peptide to form an isotropic phase at physiologic temperature. Rapid heating of frozen samples to room temperature leads to strongly isotropic phase behavior for both DPPC and POPG lipids, with DPPC in exchange between isotropic and interdigitated phases. (31)P T2 relaxation times confirm the isotropic phase to be consistent with a lipid cubic phase. The observed phases exhibit thermal stability up to physiologic temperature (37 °C) and are consistent with the formation of a ripple phase containing a large number of peptide-induced membrane structural defects enabling rapid transit of lipids between lipid lamellae. The coexistance of a lipid cubic phase with interdigitated lipids suggests a specific role for the highly conserved N-terminus of SP-B in stabilizing this unusual lipid polymorphism.

  20. Amplification of steroid-mediated SP-B expression by physiological levels of caffeine.

    PubMed

    Fehrholz, Markus; Hütten, Matthias; Kramer, Boris W; Speer, Christian P; Kunzmann, Steffen

    2014-01-01

    Factors positively influencing surfactant homeostasis in general and surfactant protein B (SP-B) expression in particular are considered of clinical importance regarding an improvement of lung function in preterm infants. The objective of this study was to identify effects of physiological levels of caffeine on glucocorticoid-mediated SP-B expression in vitro and in vivo. Levels of SP-B and pepsinogen C were quantified by quantitative real-time RT-PCR or immunoblotting in NCI-H441 cells daily exposed to caffeine and/or dexamethasone (DEX). In vivo, SP-B expression was analyzed in bronchoalveolar lavage (BAL) of preterm sheep exposed to antenatal DEX and/or postnatal caffeine. If DEX and caffeine were continuously present, SP-B mRNA and protein levels were increased for up to 6 days after induction (P < 0.05). Additionally, caffeine enhanced SP-B mRNA expression in DEX-pretreated cells (P < 0.05). Moreover, caffeine amplified DEX-induced pepsinogen C mRNA expression (P < 0.05). After short-term treatment with caffeine in vivo, only slightly higher SP-B levels could be detected in BAL of preterm sheep following antenatal DEX, combined with an increase of arterial oxygen partial pressure (P < 0.01). Our data demonstrated that the continuous presence of caffeine in vitro is able to amplify DEX-mediated SP-B expression. In contrast, short-term improvement of lung function in vivo is likely to be independent of altered SP-B transcription and translation. An impact of caffeine on release of surfactant reservoirs from lamellar bodies could, however, quickly affect SP-B content in BAL, which has to be further investigated. Our findings indicate that caffeine is able to amplify main effects of glucocorticoids that result from changes in surfactant production, maturation, and release.

  1. Quantum Strong Coupling with Protein Vibrational Modes.

    PubMed

    Vergauwe, Robrecht M A; George, Jino; Chervy, Thibault; Hutchison, James A; Shalabney, Atef; Torbeev, Vladimir Y; Ebbesen, Thomas W

    2016-10-07

    In quantum electrodynamics, matter can be hybridized to confined optical fields by a process known as light-matter strong coupling. This gives rise to new hybrid light-matter states and energy levels in the coupled material, leading to modified physical and chemical properties. Here, we report for the first time the strong coupling of vibrational modes of proteins with the vacuum field of a Fabry-Perot mid-infrared cavity. For two model systems, poly(l-glutamic acid) and bovine serum albumin, strong coupling is confirmed by the anticrossing in the dispersion curve, the square root dependence on the concentration, and a vacuum Rabi splitting that is larger than the cavity and vibration line widths. These results demonstrate that strong coupling can be applied to the study of proteins with many possible applications including the elucidation of the role of vibrational dynamics in enzyme catalysis and in H/D exchange experiments.

  2. Genetic Polymorphisms of SP-A, SP-B, and SP-D and Risk of Respiratory Distress Syndrome in Preterm Neonates

    PubMed Central

    Chang, Hong-Yu; Li, Fang; Li, Feng-Sheng; Zheng, Cheng-Zhong; Lei, Yan-Zhe; Wang, Jing

    2016-01-01

    Background We examined selected polymorphisms in 3 pulmonary surfactant-associated proteins (SP) for their influence on serum SP levels and risk of respiratory distress syndrome (RDS) in preterm neonates. Material/Methods Premature infants from a Han population were enrolled, including 100 premature infants with RDS (case group) and 120 premature infants without RDS (control group). SNP genotyping for SP-A (+186A/G and +655C/T), SP-B (−18A/C and 1580C/T), and SP-D (Met11ThrT/C and Ala160ThrG/A) used polymerase chain reaction-restriction fragment length polymorphism. Haplotypes were calculated with Shesis software and serum SP-A/B/D levels were quantified by ELISA. Results Case and control groups exhibited significant differences in genotype and allele frequencies of SP-A (+186A/G, +655C/T) and SP-B (1580C/T). However, no statistically significant differences were observed in the allele and genotype frequencies of SP-B −18A/C, SP-D Met11ThrT/C, and SP-D Ala160ThrG/A. Importantly, serum SP-A and SP-B levels were reduced in RDS patients carrying SP-A (+186A/G, +655C/T) and SP-B (1580C/T) polymorphisms. AA genotype of +186A/G, SP-A level, and CC genotype of 1580C/T were independently correlated with increased RDS risk. Conclusions SP-A (+186A/G) and SP-B (1580C/T) polymorphisms are strongly associated with the risk of RDS in preterm infants. Notably, reduced serum SP-A levels were correlated with a high risk of RDS and may serve as novel biomarkers for RDS detection and monitoring. PMID:28011976

  3. Kraft lignin biodegradation by Novosphingobium sp. B-7 and analysis of the degradation process.

    PubMed

    Chen, Yuehui; Chai, Liyuan; Tang, Chongjian; Yang, Zhihui; Zheng, Yu; Shi, Yan; Zhang, Huan

    2012-11-01

    This study focused on the biodegradation of kraft lignin (KL) by Novosphingobium sp. B-7 using KL as sole carbon source. Results revealed that Novosphingobium sp. B-7 reduced the chemical oxygen demand (COD) by 34.7% in KL mineral salt medium after 7days of incubation. Additionally, the maximum activities of manganese peroxidase (MnP) of 3229.8Ul(-1) and laccase (Lac) of 1275Ul(-1) were observed at 4th and 5th day, respectively. GC-MS analysis indicated that after incubated with Novosphingobium sp. B-7, low molecular weight alcohols and lignin-related monomer compounds such as ethanediol, p-hydroxy benzoic acid and vanillic acid were formed in the system, which strongly confirmed the degradation of KL by Novosphingobium sp. B-7. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. DIFFERENTIAL SUSCEPTIBILITY OF HUMAN SP-B GENETIC VARIANTS ON LUNG INJURY CAUSED BY BACTERIAL PNEUMONIA AND THE EFFECT OF A CHEMICALLY MODIFIED CURCUMIN.

    PubMed

    Xu, Yongan; Ge, Lin; Abdel-Razek, Osama; Jain, Sumeet; Liu, Zhiyong; Hong, Yucai; Nieman, Gary; Johnson, Francis; Golub, Lorne M; Cooney, Robert N; Wang, Guirong

    2016-04-01

    Staphylococcus aureus is a common cause of nosocomial pneumonia frequently resulting in acute respiratory distress syndrome (ARDS). Surfactant protein B (SP-B) gene expresses two proteins involved in lowering surface tension and host defense. Genotyping studies demonstrate a significant association between human SP-B genetic variants and ARDS. Curcumins have been shown to attenuate host inflammation in many sepsis models. Our hypothesis is that functional differences of SP-B variants and treatment with curcumin (CMC2.24) modulate lung injury in bacterial pneumonia. Humanized transgenic mice, expressing either SP-B T or C allele without mouse SP-B gene, were used. Bioluminescent labeled S. aureus Xen 36 (50 μL) was injected intratracheally to cause pneumonia. Infected mice received daily CMC2.24 (40 mg/kg) or vehicle alone by oral gavage. Dynamic changes of bacteria were monitored using in vivo imaging system. Histological, cellular, and molecular indices of lung injury were studied in infected mice 48 h after infection. In vivo imaging analysis revealed total flux (bacterial number) was higher in the lung of infected SP-B-C mice compared with infected SP-B-T mice (P < 0.05). Infected SP-B-C mice demonstrated increased mortality, lung injury, apoptosis, and NF-κB expression compared with infected SP-B-T mice. Compared with controls, CMC2.24 treatment significantly reduced the following: mortality, total bacterial flux and lung tissue apoptosis, inflammatory cells, NF-κB expression (P < 0.05), and MMPs-2, -9, -12 activities (P < 0.05). We conclude that mice with SP-B-C allele are more susceptible to S. aureus pneumonia than mice with SP-B-T allele, and that CMC2.24 attenuates lung injury thus reducing mortality.

  5. DIFFERENTIAL SUSCEPTIBILITY OF HUMAN SP-B GENETIC VARIANTS ON LUNG INJURY CAUSED BY BACTERIAL PNEUMONIA AND THE EFFECT OF A CHEMICALLY MODIFIED CURCUMIN

    PubMed Central

    Xu, Yongan; Ge, Lin; Abdel-Razek, Osama; Jain, Sumeet; Liu, Zhiyong; Hong, Yucai; Nieman, Gary; Johnson, Francis; Golub, Lorne M.; Cooney, Robert N; Wang, Guirong

    2015-01-01

    Staphylococcus aureus is a common cause of nosocomial pneumonia frequently resulting in acute respiratory distress syndrome (ARDS). Surfactant protein B (SP-B) gene expresses two proteins involved in lowering surface tension and host defense. Genotyping studies demonstrate a significant association between human SP-B genetic variants and ARDS. Curcumins have been shown to attenuate host inflammation in many sepsis models. Our hypothesis is that functional differences of SP-B variants and treatment with curcumin (CMC2.24) modulate lung injury in bacterial pneumonia. Humanized transgenic mice, expressing either SP-B T or C allele without mouse SP-B gene, were used. Bioluminescent labeled S. aureus Xen36 (50 μl) was injected intratracheally to cause pneumonia. Infected mice received daily CMC2.24 (40 mg/kg) or vehicle alone by oral gavage. Dynamic changes of bacteria were monitored using in vivo imaging system. Histological, cellular and molecular indices of lung injury were studied in infected mice 48h after infection. In vivo imaging analysis revealed total flux (bacterial number) was higher in the lung of infected SP-B-C mice compared to infected SP-B-T mice (p<0.05). Infected SP-B-C mice demonstrated increased mortality, lung injury, apoptosis and NF-κB expression compared to infected SP-B-T mice. Compared to controls, CMC2.24 treatment significantly reduced the following: mortality, total bacterial flux and lung tissue apoptosis, inflammatory cells, NF-κB expression (p<0.05), and MMPs-2, -9, -12 activities (p<0.05). We conclude that mice with SP-B-C allele are more susceptible to S. aureus pneumonia than mice with SP-B-T allele; and that CMC2.24 attenuates lung injury thus reducing mortality. PMID:26863117

  6. Purification and characterization of Fe(III)-EDTA reductase from Bacillus sp. B-3.

    PubMed

    Shinagawa, Emiko

    2011-01-01

    Fe(III)-EDTA reductase was purified from Bacillus sp. B-3 isolated as a Fe(III)-EDTA-degrading bacterium. The purified enzyme showed a single protein band corresponding to a molecular mass of 19 kDa on SDS-PAGE, and had FMN as cofactor. It was alkali-thermostable. Its N-terminal amino acid sequence was identical with that of NADPH azoreductase from several species of Bacillus.

  7. Artificial surfactants based on analogues of SP-B and SP-C.

    PubMed

    Johansson, J; Curstedt, T; Robertson, B

    2001-01-01

    The hydrophobic proteins SP-B and SP-C are important components of natural surfactant preparations currently used in clinical practice, and physiologically active surfactants can be made from isolated SP-B and/or SP-C reconstituted with synthetic lipids. Efforts have been made to produce these polypeptides, or analogues with similarfunction, by organic synthesis or expression in heterologous systems. It is important to obtain proper folding of the synthetic peptides, as required for optimal interaction with the surfactant lipids. Another issue is to avoid loss of SP-C activity due to alpha-helix to beta-sheet transition. This latter problem can be circumvented by replacing the polyvaline stretch of SP-C with a polyleucine stretch containing a few lysines. Palmitoylation of cysteines or serines at positions 5 and 6 also seems important for the properties of SP-C. SP-B, which is too big a molecule to be easily produced by organic synthesis. apparently can be replaced in an artificial surfactant by a peptide capable of cross-linking phospholipid bilayers. The development of synthetic analogues of the surfacant proteins might make it possible to tailor artificial surfactants for specific therapeutic missions, for instance by enhancing resistance to inactivation by meconium, plasma proteins, or oxygen radicals or maximizing bacteriostatic effects.

  8. Do cancer proteins really interact strongly in the human protein-protein interaction network?

    PubMed

    Xia, Junfeng; Sun, Jingchun; Jia, Peilin; Zhao, Zhongming

    2011-06-01

    Protein-protein interaction (PPI) network analysis has been widely applied in the investigation of the mechanisms of diseases, especially cancer. Recent studies revealed that cancer proteins tend to interact more strongly than other categories of proteins, even essential proteins, in the human interactome. However, it remains unclear whether this observation was introduced by the bias towards more cancer studies in humans. Here, we examined this important issue by uniquely comparing network characteristics of cancer proteins with three other sets of proteins in four organisms, three of which (fly, worm, and yeast) whose interactomes are essentially not biased towards cancer or other diseases. We confirmed that cancer proteins had stronger connectivity, shorter distance, and larger betweenness centrality than non-cancer disease proteins, essential proteins, and control proteins. Our statistical evaluation indicated that such observations were overall unlikely attributed to random events. Considering the large size and high quality of the PPI data in the four organisms, the conclusion that cancer proteins interact strongly in the PPI networks is reliable and robust. This conclusion suggests that perturbation of cancer proteins might cause major changes of cellular systems and result in abnormal cell function leading to cancer. © 2011 Elsevier Ltd. All rights reserved.

  9. Conformational Changes in SP-B as a Function of Surface Pressure

    PubMed Central

    Fullagar, Wilfred K.; Aberdeen, Karen A.; Bucknall, David G.; Kroon, Paulus A.; Gentle, Ian R.

    2003-01-01

    X-ray reflectivity of bovine and sheep surfactant-associated protein B (SP-B) monolayers is used in conjunction with pressure-area isotherms and protein models to suggest that the protein undergoes changes in its tertiary structure at the air/water interface under the influence of surface pressure, indicating the likely importance of such changes to the phenomena of protein squeeze out as well as lipid exchange between the air-water interface and subphase structures. We describe an algorithm based on the well-established box- or layer-models that greatly assists the fitting of such unknown scattering-length density profiles, and which takes the available instrumental resolution into account. Scattering-length density profiles from neutron reflectivity of bovine SP-B monolayers on aqueous subphases are shown to be consistent with the exchange of a large number of labile protons as well as the inclusion of a significant amount of water, which is partly squeezed out of the protein monolayer at elevated surface pressures. PMID:14507725

  10. Phenanthrene degradation by Biejerinickia sp. B8/36

    SciTech Connect

    Strandberg, G.W.; Abraham, T.J. Jr.; Frazier, G.C.

    1986-01-01

    The use of fossil fuels has greatly increased the ubiquity of polynuclear aromatic hydrocarbons (PAHs) in the environment, and their potential toxicity has generated considerable interest in the ability of microorganisms to utilize and/or detoxify these pollutants. One PAH of concern is phenanthrene. Numerous microbial species are known to degrade phenanthrene and there appear to be several metabolic routes available, depending upon the species, strain, and even the cultural conditions. Although there is a substantial amount of literature on the metabolic pathways of phenanthrene utilization, the authors have found little information regarding the effects of environmental conditions on phenanthrene degradation rates. Such information would be of importance to understanding the fate of this compound in natural and controlled (i.e., wastewater treatment) biological systems. During preliminary experiments, the authors found Beijerinickia sp. B3/36 to be unable to grow solely on phenanthrene, but capable of growth and phenanthrene utilization when yeast extract was supplied. The authors discuss the effects of pH and temperature on growth and phenanthrene degradation by intact cells of Biejerinickia sp. B8/36.

  11. Spectroscopic Evidences for Strong Hydrogen Bonds with Selenomethionine in Proteins.

    PubMed

    Mundlapati, V Rao; Sahoo, Dipak Kumar; Ghosh, Sanat; Purame, Umesh Kumar; Pandey, Shubhant; Acharya, Rudresh; Pal, Nitish; Tiwari, Prince; Biswal, Himansu S

    2017-02-16

    Careful protein structure analysis unravels many unknown and unappreciated noncovalent interactions that control protein structure; one such unrecognized interaction in protein is selenium centered hydrogen bonds (SeCHBs). We report, for the first time, SeCHBs involving the amide proton and selenium of selenomethionine (Mse), i.e., amide-N-H···Se H-bonds discerned in proteins. Using mass selective and conformer specific high resolution vibrational spectroscopy, gold standard quantum chemical calculations at CCSD(T), and in-depth protein structure analysis, we establish that amide-N-H···Se and amide-N-H···Te H-bonds are as strong as conventional amide-NH···O and amide-NH···O═C H-bonds despite smaller electronegativity of selenium and tellurium than oxygen. It is in fact, electronegativity, atomic charge, and polarizability of the H-bond acceptor atoms are at play in deciding the strength of H-bonds. The amide-N-H···Se and amide-N-H···Te H-bonds presented here are not only new additions to the ever expanding world of noncovalent interactions, but also are of central importance to design new force-fields for better biomolecular structure simulations.

  12. Strong Keratin-like Nanofibers Made of Globular Protein

    NASA Astrophysics Data System (ADS)

    Dror, Yael; Makarov, Vadim; Admon, Arie; Zussman, Eyal

    2008-03-01

    Protein fibers as elementary structural and functional elements in nature inspire the engineering of protein-based products for versatile bio-medical applications. We have recently used the electrospinning process to fabricate strong sub-micron fibers made solely of serum albumin (SA). This raises the challenges of turning a globular non-viscous protein solution into a polymer--like spinnable solution and producing keratin-like fibers enriched in inter S-S bridges. A stable spinning process was achieved by using SA solution in a rich trifluoroethanol-water mixture with β-mercaptoethanol. The breakage of the intra disulfide bridges, as identified by mass spectrometry, together with the denaturing alcohol, enabled a pronounced expansion of the protein. This in turn, affects the rheological properties of the solution. X-ray diffraction pattern of the fibers revealed equatorial orientation, indicating the alignment of structures along the fiber axis. The mechanical properties reached remarkable average values (Young's modulus of 1.6GPa, and max stress of 36MPa) as compared to other fibrous protein nanofibers. These significant results are attributed to both the alignment and inter disulfide bonds (cross linking) that were formed by spontaneous post-spinning oxidation.

  13. Reaction mechanism of fluoroacetate dehalogenase from Moraxella sp. B.

    PubMed

    Liu, J Q; Kurihara, T; Ichiyama, S; Miyagi, M; Tsunasawa, S; Kawasaki, H; Soda, K; Esaki, N

    1998-11-20

    Fluoroacetate dehalogenase (EC 3.8.1.3) catalyzes the dehalogenation of fluoroacetate and other haloacetates. The amino acid sequence of fluoroacetate dehalogenase from Moraxella sp. B is similar to that of haloalkane dehalogenase (EC 3.8.1.5) from Xanthobacter autotrophicus GJ10 in the regions around Asp-105 and His-272, which correspond to the active site nucleophile Asp-124 and the base catalyst His-289 of the haloalkane dehalogenase, respectively (Krooshof, G. H., Kwant, E. M., Damborský, J., Koca, J., and Janssen, D. B. (1997) Biochemistry 36, 9571-9580). After multiple turnovers of the fluoroacetate dehalogenase reaction in H218O, the enzyme was digested with trypsin, and the molecular masses of the peptide fragments formed were measured by ion-spray mass spectrometry. Two 18O atoms were shown to be incorporated into the octapeptide, Phe-99-Arg-106. Tandem mass spectrometric analysis of this peptide revealed that Asp-105 was labeled with two 18O atoms. These results indicate that Asp-105 acts as a nucleophile to attack the alpha-carbon of the substrate, leading to the formation of an ester intermediate, which is subsequently hydrolyzed by the nucleophilic attack of a water molecule on the carbonyl carbon atom. A His-272 --> Asn mutant (H272N) showed no activity with either fluoroacetate or chloroacetate. However, ion-spray mass spectrometry revealed that the H272N mutant enzyme was covalently alkylated with the substrate. The reaction of the H272N mutant enzyme with [14C]chloroacetate also showed the incorporation of radioactivity into the enzyme. These results suggest that His-272 probably acts as a base catalyst for the hydrolysis of the covalent ester intermediate.

  14. Molecular Dynamics Simulations of the Anchoring and Tilting of the Lung-Surfactant Peptide SP-B1-25 in Palmitic Acid Monolayers

    PubMed Central

    Lee, Hwankyu; Kandasamy, Senthil K.; Larson, Ronald G.

    2005-01-01

    We have performed molecular dynamics simulations of multiple copies of the lung-surfactant peptide SP-B1-25 in a palmitic acid (PA) monolayer. SP-B1-25 is a shorter version of lung-surfactant protein B, an important component of lung surfactant. Up to 30 ns simulations of 20 wt % SP-B1-25 in the PA monolayers were performed with different surface areas of PA, extents of PA ionization, and various initial configurations of the peptides. Starting with initial peptide orientation perpendicular to the monolayer, the predicted final tilt angles average 54°∼ 62° with respect to the monolayer normal, similar to those measured experimentally by Lee et al. (Biophysical Journal. 2001. Synchrotron x-ray study of lung surfactant-specific protein SP-B in lipid monolayers. 81:572–585). In their final conformations, hydrogen-bond analysis and amino acid mutation studies show that the peptides are anchored by hydrogen bond interactions between the cationic residues Arg-12 and Arg-17 and the hydrogen bond acceptors of the ionized PA headgroup, and the tilt angle is affected by the interactions of Tyr-7 and Gln-19 with the PA headgroup. Our work indicates that the factors controlling orientation of small peptides in lipid layers can now be uncovered through molecular dynamics simulations. PMID:16169980

  15. Dispersion interactions govern the strong thermal stability of a protein.

    PubMed

    Vondrásek, Jirí; Kubar, Tomás; Jenney, Francis E; Adams, Michael W W; Kozísek, Milan; Cerný, Jirí; Sklenár, Vladimír; Hobza, Pavel

    2007-01-01

    Rubredoxin from the hyperthermophile Pyrococcus furiosus (Pf Rd) is an extremely thermostable protein, which makes it an attractive subject of protein folding and stability studies. A fundamental question arises as to what the reason for such extreme stability is and how it can be elucidated from a complex set of interatomic interactions. We addressed this issue first theoretically through a computational analysis of the hydrophobic core of the protein and its mutants, including the interactions taking place inside the core. Here we show that a single mutation of one of phenylalanine's residues inside the protein's hydrophobic core results in a dramatic decrease in its thermal stability. The calculated unfolding Gibbs energy as well as the stabilization energy differences between a few core residues follows the same trend as the melting temperature of protein variants determined experimentally by microcalorimetry measurements. NMR spectroscopy experiments have shown that the only part of the protein affected by mutation is the reasonably rearranged hydrophobic core. It is hence concluded that stabilization energies, which are dominated by London dispersion, represent the main source of stability of this protein.

  16. Glucocorticoids potentiate IL-6-induced SP-B expression in H441 cells by enhancing the JAK-STAT signaling pathway

    PubMed Central

    Ladenburger, Andreas; Seehase, Matthias; Kramer, Boris W.; Thomas, Wolfgang; Wirbelauer, Johannes; Speer, Christian P.

    2010-01-01

    The respiratory distress syndrome (RDS) contributes to perinatal morbidity and mortality associated with preterm birth. Surfactant protein B (SP-B) is decreased in RDS. Both maternal antenatal steroid administration and chorioamnionitis reduce the incidence and severity of RDS. An important mediator in chorioamnionitis is IL-6 using the JAK-STAT signaling pathway for signal transduction. We hypothesized that the steroids, betamethasone (BTM) and dexamethasone (DXM), and IL-6 had synergistic effects on SP-B gene expression and STAT3 phosphorylation in H441 cells. DXM and BTM increased SP-B mRNA levels by 16.5 (13.3)-fold and IL-6 alone by 2.3-fold. After 48-h exposure of cells to DXM or BTM, IL-6 caused a significantly greater increase in SP-B mRNA levels (28.1-fold) than IL-6 or glucocorticoids alone. Whereas IL-6 stimulated tyrosine phosphorylation of STAT3 in a time- and dose-dependent way, DXM and BTM had no effect on STAT3 phosphorylation. Both DXM and BTM could potentiate IL-6-induced phosphorylation of STAT3. The synergism of glucocorticoids and IL-6 on SP-B gene expression and the effect of glucocorticoids on IL-6-induced STAT3 phosphorylation could be blocked by a JAK inhibitor. Expression level analysis showed that glucocorticoids increased the expression of the IL-6-binding α-subunit receptor (IL-6R) on mRNA and protein level. Our findings could represent an example of a pulmonary regulation system in which one role of glucocorticoids is to increase the effect of a cytokine by upregulation of its receptor. The described in vitro interaction of IL-6 and glucocorticoids could help explain the clinical observation that prenatal inflammation in preterm babies with antenatal steroid administration can attenuate severity of RDS. PMID:20693312

  17. Characterization of cells resistant to the potent histone deacetylase inhibitor spiruchostatin B (SP-B) and effect of overexpressed p21waf1/cip1 on the SP-B resistance or susceptibility of human leukemia cells.

    PubMed

    Kanno, Syu-Ichi; Maeda, Naoyuki; Tomizawa, Ayako; Yomogida, Shin; Katoh, Tadashi; Ishikawa, Masaaki

    2012-09-01

    We previously showed that the B cell leukemia cell line NALM-6 had the highest susceptibility among a number of leukemia cell lines to spiruchostatin B (SP-B), a potent histone deacetylase (HDAC) inhibitor. We also showed that SP-B-induced cytotoxicity depended on induction of apoptosis that was mediated by p21waf1/cip1 expression. In the present study, we generated and characterized a stable, SP-B-resistant NALM-6 cell line (NALM-6/SP-B) by continuous exposure to SP-B, starting with a low SP-B concentration. NALM-6/SP-B cells were also more resistant to FK228, which has a similar chemical structure to SP-B, and were slightly more resistant to the P-gp substrates doxorubicin and vincristine than parental cells, but displayed similar susceptibility to other HDAC inhibitors and to paclitaxel as the parental cells. There was little change in the basal mRNA expression of HDAC1, p53, Bax, Bcl-2, Fas, caspase-3, c-Myc and MDR1 in NALM-6/SP-B compared to parental cells, but the mRNA expression of p21waf1/cip1 was decreased. The introduction of an exogenous p21waf1/cip1 expression vector restored SP-B induction of NALM-6/SP-B cell apoptosis. Moreover, overexpressed p21waf1/cip1 enhanced SP-B induction of the apoptosis of the human erythroleukemia leukemia cell line K562 which is less susceptible to SP-B than NALM-6 cells. These results suggest that downregulation of p21waf1/cip1, which is a characteristic feature of NALM-6/SP-B cells, was important for their resistance to SP-B, and that this SP-B resistance could be overcome by the introduction of exogenous p21waf1/cip1. Furthermore, introduction of p21waf1/cip1 to other leukemia cells such as K562 may enhance their susceptibility to SP-B. This is the first report of the characterization of SP-B-resistant cells and of the effect of overexpressed p21waf1/cip1 on the resistance or susceptibility of human leukemia cells to SP-B.

  18. An antioxidant exopolysaccharide devoid of pro-oxidant activity produced by the soil bacterium Bordetella sp. B4.

    PubMed

    Lin, Yanliang; Liu, Jinglei; Hu, Yibo; Song, Xin; Zhao, Yueran

    2012-11-01

    An exopolysaccharide (EPS) with a molecular weight of 230 kDa, was isolated from Bordetella sp. B4. The EPS was identified as linear alpha-1,6-(6-methyl)-glucan with N-acetyl-D-glucosamine branches at alpha-1, 4-linkages by IR and NMR spectroscopy. The free radical scavenging capacities of EPS on 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS(+)), H(2)O(2), -OH and lipid peroxidation were 2-, 86-, 134- and 18-fold higher than that of ascorbic acid, respectively. Compared with ascorbic acid, the EPS was more effective in preventing DNA and protein from free radical damage induced by 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH). More significantly, the EPS did not degrade DNA and protein by the pro-oxidant effect in the presence of copper ions and H(2)O(2). Furthermore, EPS could protect human umbilical vein endothelium cells (HUVECs) from high glucose-mediated damage. The production of EPS reached 10.2 g/L in the fermentation medium containing 3.0 g/L cholesterol, suggesting that Bordetella sp. B4 was a potential producer of antioxidant EPS.

  19. Synthetic surfactant based on analogues of SP-B and SP-C is superior to single-peptide surfactants in ventilated premature rabbits.

    PubMed

    Almlén, Andreas; Walther, Frans J; Waring, Alan J; Robertson, Bengt; Johansson, Jan; Curstedt, Tore

    2010-06-01

    Respiratory distress syndrome (RDS) is currently treated with surfactant preparations obtained from natural sources and attempts to develop equally active synthetic surfactants have been unsuccessful. One difference in composition is that naturally derived surfactants contain the two hydrophobic proteins SP-B and SP-C while synthetic preparations contain analogues of either SP-B or SP-C. It was recently shown that both SP-B and SP-C (or SP-C33, an SP-C analogue) are necessary to establish alveolar stability at end-expiration in a rabbit RDS model, as reflected by high lung gas volumes without application of positive end-expiratory pressure. To study the efficacy of fully synthetic surfactants containing analogues of both SP-B and SP-C compared to surfactants with only one protein analogue. Premature newborn rabbits, treated with synthetic surfactants, were ventilated for 30 min without positive end-expiratory pressure. Tidal volumes as well as lung gas volumes at end-expiration were determined. Treatment with 2% Mini-B (a short-cut version of SP-B) and 2% SP-C33, or its C-terminally truncated form SP-C30, in 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol, 68:31 (w/w) resulted in median lung gas volumes of 8-9 ml/kg body weight, while animals treated with 2% Mini-B surfactant or 2% SP-C33/SP-C30 surfactant had lung gas volumes of 3-4 ml/kg, and those treated with Curosurf, a porcine surfactant, 15-17 ml/kg. In contrast, mixing SP-C33 with peptides with different distributions of positively charged and hydrophobic residues did not improve lung gas volumes. The data indicate that synthetic surfactants containing analogues of both SP-B and SP-C might be superior to single-peptide surfactants in the treatment of RDS.

  20. Synthetic Surfactant Based on Analogues of SP-B and SP-C Is Superior to Single-Peptide Surfactants in Ventilated Premature Rabbits

    PubMed Central

    Almlén, Andreas; Walther, Frans J.; Waring, Alan J.; Robertson, Bengt; Johansson, Jan; Curstedt, Tore

    2010-01-01

    Background Respiratory distress syndrome (RDS) is currently treated with surfactant preparations obtained from natural sources and attempts to develop equally active synthetic surfactants have been unsuccessful. One difference in composition is that naturally derived surfactants contain the two hydrophobic proteins SP-B and SP-C while synthetic preparations contain analogues of either SP-B or SP-C. It was recently shown that both SP-B and SP-C (or SP-C33, an SP-C analogue) are necessary to establish alveolar stability at end-expiration in a rabbit RDS model, as reflected by high lung gas volumes without application of positive end-expiratory pressure. Objectives: To study the efficacy of fully synthetic surfactants containing analogues of both SP-B and SP-C compared to surfactants with only one protein analogue. Methods Premature newborn rabbits, treated with synthetic surfactants, were ventilated for 30 min without positive end-expiratory pressure. Tidal volumes as well as lung gas volumes at end-expiration were determined. Results Treatment with 2% Mini-B (a short-cut version of SP-B) and 2% SP-C33, or its C-terminally truncated form SP-C30, in 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol, 68:31 (w/w) resulted in median lung gas volumes of 8–9 ml/kg body weight, while animals treated with 2% Mini-B surfactant or 2% SP-C33/SP-C30 surfactant had lung gas volumes of 3–4 ml/kg, and those treated with Curosurf, a porcine surfactant, 15–17 ml/kg. In contrast, mixing SP-C33 with peptides with different distributions of positively charged and hydrophobic residues did not improve lung gas volumes. Conclusions The data indicate that synthetic surfactants containing analogues of both SP-B and SP-C might be superior to single-peptide surfactants in the treatment of RDS. PMID:20110733

  1. Depolymerization and decolorization of kraft lignin by bacterium Comamonas sp. B-9.

    PubMed

    Chai, Li-yuan; Chen, Yue-hui; Tang, Chong-jian; Yang, Zhi-hui; Zheng, Yu; Shi, Yan

    2014-02-01

    There is no commercial or industrial-scale process for the remediation of black liquor using microorganisms to date. One of the most important causes is that most microorganisms are not able to use lignin as their principal metabolic carbon or energy source. The bacterial strain Comamonas sp. B-9 has shown remarkable ability to degrade kraft lignin and decolorize black liquor using lignin as its principal metabolic carbon and energy source. This report looks at the depolymerization and decolorization of kraft lignin by Comamonas sp. B-9. The degradation, decolorization, and total carbon removal reached 45, 54, and 47.3%, respectively, after 7 days treatment. Comamonas sp. B-9 was capable of depolymerizing kraft lignin effectively as analyzed by gel permeation chromatography and decolorization via degrading benzene ring structures as shown using Fourier transform infrared spectroscopy analysis.

  2. Molecular Dynamics Study of the Lung Surfactant Peptide SP-B1–25 with DPPC Monolayers: Insights into Interactions and Peptide Position and Orientation

    PubMed Central

    Kandasamy, Senthil K.; Larson, Ronald G.

    2005-01-01

    We have performed molecular dynamics simulations of the interactions of the peptide SP-B1–25, which is a truncated version of the full pulmonary surfactant protein SP-B, with dipalmitoylphosphatidylcholine monolayers, which are the major lipid components of lung surfactant. Simulations of durations of 10–20 ns show that persistent hydrogen bonds form between the donor atoms of the protein and the acceptors of the lipid headgroup and that these bonds determine the position, orientation, and secondary structure of the peptide in the membrane environment. From an ensemble of initial conditions, the most probable equilibrium orientation of the α-helix of the peptide is predicted to be parallel to the interface, matching recent experimental results on model lipid mixtures. Simulations of a few mutated analogs of SP-B1–25 also suggest that the charged amino acids are important in determining the position of the peptide in the interface. The first eight amino acids of the peptide, also known as the insertion sequence, are found to be essential in reducing the fluctuations and anchoring the peptide in the lipid/water interface. PMID:15738465

  3. Environmentally safe treatment of black liquor with Comamonas sp. B-9 under high-alkaline conditions.

    PubMed

    Zheng, Yu; Chai, Liyuan; Yang, Zhihui; Chen, Yuehui; Shi, Yan; Wang, Yangyang

    2014-02-01

    The strain Comamonas sp. B-9 was isolated from steeping fluid of erosive bamboo slips derived from Kingdom Wu during the Three-Kingdoms Dynasty of ancient China (A.D. 220-280). It could be used to treat black liquor (BL) with high-alkaline pH and with an initial chemical oxygen demand (COD) of 18,000-25,000 mg L(-1) , without the addition of other carbon and nitrogen sources. The results revealed that Comamonas sp. B-9 was capable of reducing the COD, color, and lignin content of BL by up to 56.8, 35.3, and 43.5%, respectively. High levels of laccase, manganese peroxidase, cellulase, and xylanase enzymatic activities were also observed, and these enzymes could play an important role in the biotreatment of BL. Further, GC-MS analysis showed that most of the compounds detected in BL after biotreatment with Comamonas sp. B-9 were diminished, while 4-methyl benzaldehyde, 3,4,5-trihydroxybenzoic acid ethyl ester, and 4-hydroxy-3,5-dimethoxy benzaldehyde were produced as metabolites. The presented results indicate that Comamonas sp. B-9 has potential application for the treatment of wastewaters from pulp and paper processing with high COD load under high-alkaline conditions.

  4. Complete genomic structure of the cultivated rice endophyte Azospirillum sp. B510.

    PubMed

    Kaneko, Takakazu; Minamisawa, Kiwamu; Isawa, Tsuyoshi; Nakatsukasa, Hiroki; Mitsui, Hisayuki; Kawaharada, Yasuyuki; Nakamura, Yasukazu; Watanabe, Akiko; Kawashima, Kumiko; Ono, Akiko; Shimizu, Yoshimi; Takahashi, Chika; Minami, Chiharu; Fujishiro, Tsunakazu; Kohara, Mitsuyo; Katoh, Midori; Nakazaki, Naomi; Nakayama, Shinobu; Yamada, Manabu; Tabata, Satoshi; Sato, Shusei

    2010-02-01

    We determined the nucleotide sequence of the entire genome of a diazotrophic endophyte, Azospirillum sp. B510. Strain B510 is an endophytic bacterium isolated from stems of rice plants (Oryza sativa cv. Nipponbare). The genome of B510 consisted of a single chromosome (3,311,395 bp) and six plasmids, designated as pAB510a (1,455,109 bp), pAB510b (723,779 bp), pAB510c (681,723 bp), pAB510d (628,837 bp), pAB510e (537,299 bp), and pAB510f (261,596 bp). The chromosome bears 2893 potential protein-encoding genes, two sets of rRNA gene clusters (rrns), and 45 tRNA genes representing 37 tRNA species. The genomes of the six plasmids contained a total of 3416 protein-encoding genes, seven sets of rrns, and 34 tRNAs representing 19 tRNA species. Eight genes for plasmid-specific tRNA species are located on either pAB510a or pAB510d. Two out of eight genomic islands are inserted in the plasmids, pAB510b and pAB510e, and one of the islands is inserted into trnfM-CAU in the rrn located on pAB510e. Genes other than the nif gene cluster that are involved in N(2) fixation and are homologues of Bradyrhizobium japonicum USDA110 include fixABCX, fixNOQP, fixHIS, fixG, and fixLJK. Three putative plant hormone-related genes encoding tryptophan 2-monooxytenase (iaaM) and indole-3-acetaldehyde hydrolase (iaaH), which are involved in IAA biosynthesis, and ACC deaminase (acdS), which reduces ethylene levels, were identified. Multiple gene-clusters for tripartite ATP-independent periplasmic-transport systems and a diverse set of malic enzymes were identified, suggesting that B510 utilizes C(4)-dicarboxylate during its symbiotic relationship with the host plant.

  5. Complete Genomic Structure of the Cultivated Rice Endophyte Azospirillum sp. B510

    PubMed Central

    Kaneko, Takakazu; Minamisawa, Kiwamu; Isawa, Tsuyoshi; Nakatsukasa, Hiroki; Mitsui, Hisayuki; Kawaharada, Yasuyuki; Nakamura, Yasukazu; Watanabe, Akiko; Kawashima, Kumiko; Ono, Akiko; Shimizu, Yoshimi; Takahashi, Chika; Minami, Chiharu; Fujishiro, Tsunakazu; Kohara, Mitsuyo; Katoh, Midori; Nakazaki, Naomi; Nakayama, Shinobu; Yamada, Manabu; Tabata, Satoshi; Sato, Shusei

    2010-01-01

    We determined the nucleotide sequence of the entire genome of a diazotrophic endophyte, Azospirillum sp. B510. Strain B510 is an endophytic bacterium isolated from stems of rice plants (Oryza sativa cv. Nipponbare). The genome of B510 consisted of a single chromosome (3 311 395 bp) and six plasmids, designated as pAB510a (1 455 109 bp), pAB510b (723 779 bp), pAB510c (681 723 bp), pAB510d (628 837 bp), pAB510e (537 299 bp), and pAB510f (261 596 bp). The chromosome bears 2893 potential protein-encoding genes, two sets of rRNA gene clusters (rrns), and 45 tRNA genes representing 37 tRNA species. The genomes of the six plasmids contained a total of 3416 protein-encoding genes, seven sets of rrns, and 34 tRNAs representing 19 tRNA species. Eight genes for plasmid-specific tRNA species are located on either pAB510a or pAB510d. Two out of eight genomic islands are inserted in the plasmids, pAB510b and pAB510e, and one of the islands is inserted into trnfM-CAU in the rrn located on pAB510e. Genes other than the nif gene cluster that are involved in N2 fixation and are homologues of Bradyrhizobium japonicum USDA110 include fixABCX, fixNOQP, fixHIS, fixG, and fixLJK. Three putative plant hormone-related genes encoding tryptophan 2-monooxytenase (iaaM) and indole-3-acetaldehyde hydrolase (iaaH), which are involved in IAA biosynthesis, and ACC deaminase (acdS), which reduces ethylene levels, were identified. Multiple gene-clusters for tripartite ATP-independent periplasmic-transport systems and a diverse set of malic enzymes were identified, suggesting that B510 utilizes C4-dicarboxylate during its symbiotic relationship with the host plant. PMID:20047946

  6. Effects of colonization of a bacterial endophyte, Azospirillum sp. B510, on disease resistance in tomato.

    PubMed

    Fujita, Moeka; Kusajima, Miyuki; Okumura, Yasuko; Nakajima, Masami; Minamisawa, Kiwamu; Nakashita, Hideo

    2017-08-01

    A plant growth-promoting bacteria, Azospirillum sp. B510, isolated from rice, can enhance growth and yield and induce disease resistance against various types of diseases in rice. Because little is known about the interaction between other plant species and this strain, we have investigated the effect of its colonization on disease resistance in tomato plants. Treatment with this strain by soil-drenching method established endophytic colonization in root tissues in tomato plant. The endophytic colonization with this strain-induced disease resistance in tomato plant against bacterial leaf spot caused by Pseudomonas syringae pv. tomato and gray mold caused by Botrytis cinerea. In Azospirillum-treated plants, neither the accumulation of SA nor the expression of defense-related genes was observed. These indicate that endophytic colonization with Azospirillum sp. B510 is able to activate the innate immune system also in tomato, which does not seem to be systemic acquired resistance.

  7. Effect of strong detergents and chaotropes on the detection of proteins in two-dimensional gels.

    PubMed

    Fountoulakis, M; Takács, B

    2001-05-01

    The solubilization of a particular protein is mandatory for its subsequent resolution and detection in two-dimensional gels. However, the extraction solutions, that are compatible with the first-dimensional separation step, such as urea and 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS), do not solubilize all proteins in a sample. We studied the effect of various common, strong detergents and chaotropes, widely used as solubilizing agents, such as sodium dodecyl sulfate, lithium dodecyl sulfate and guanidine hydrochloride, on the solubilization of the total and membrane proteins of the bacterium Haemophilus influenzae. The proteins solubilized with each system were analyzed by two-dimensional electrophoresis and these of interest were identified by matrix assisted laser desorption/ionization-mass spectrometry (MALDI-MS). Use of sodium dodecyl sulfate, lithium dodecyl sulfate or guanidine hydrochloride for the solubilization of total proteins of the microorganism resulted in the detection of several additional spots, representing mainly outer membrane proteins, in comparison with those detected in the soluble protein fraction. Solubilization of the proteins of the cell envelope fraction with sodium dodecyl sulfate did not result in a more efficient protein detection when compared to the extraction with the urea/CHAPS system. When the dry immobilized pH gradient strips were rehydrated in a solution containing the proteins of the membrane fraction solubilized with sodium dodecyl sulfate or lithium dodecyl sulfate, a larger number of protein spots were detected in comparison with strips that were rehydrated in the urea/CHAPS solution. However, no improvement was observed in comparison with protein application in sample cups. The additional proteins detected with the use of strong detergents and chaotropes are in the majority difficult to solubilize and less hydrophobic proteins.

  8. Metabolic networks and bioenergetics of Aurantiochytrium sp. B-072 during storage lipid formation

    PubMed Central

    Chaisawang, Montri; Verduyn, Cornelis; Chauvatcharin, Somchai; Suphantharika, Manop

    2012-01-01

    Baffled shake flask cultivation of Aurantiochytrium sp. B-072 was carried out at in a glucose-monosodium glutamate mineral medium at different C/N-ratios (30–165) with glucose fixed at 90 g/L. With increasing C/N-ratio, a modest increase in lipid content (60 to 73 % w/w) was observed whereas fat-free biomass decreased but overall biomass showed little variation. FA-profiles were not affected to a large extent by C/N-ratio and absolute docosahexaenoic (DHA)-levels fell in narrow range (5–6 g/L). However at C/N > 64 a rapid decrease in lipid synthetic rate and/or incomplete glucose utilization occurred. Glucose and FA-fluxes based on fat-free biomass peaked at a C/N ratio of 56. This condition was chosen for calculation of the redox balance (NAD(P)H) and energy (ATP) requirement and to estimate the in vivo P/O ratio during the main period of fatty acid biosynthesis. Several models with different routes for NADPH, acetyl-CoA formation and re-oxidation of OAA formed via ATP-citrate lyase were considered as these influence the redox- and energy balance. As an example, using a commonly shown scheme whereby NADPH is supplied by a cytosolic “transhydrogenase cycle” (pyruvate-OAA-malate-pyruvate) and OAA formed by ATP-citrate lyase is recycled via import into the mitochondria as malate, the calculated NADPH-requirement amounted to 5.5 with an ATP-demand of 10.5 mmol/(g fat-free biomass x h) and an in vivo P/O-ratio (not including non-growth associated maintenance) of 1.6. The lowest ATP requirement is found when acetyl-CoA would be transported directly from the mitochondria to the cytosol by carnitine acetyltransferase. Assay of some enzymes critical for NADPH supply indicates that activity of glucose-6-phosphate dehydrogenase, the first enzyme in the HMP pathway, is far insufficient for the required NADPH-flux and malic enzyme must be a major source. Activity of the latter (ca. 300 mU/mg protein) far exceeds that in oleaginous fungi and yeast. PMID:24031944

  9. Biodegradation of kraft lignin by a bacterial strain Comamonas sp. B-9 isolated from eroded bamboo slips.

    PubMed

    Chen, Y H; Chai, L Y; Zhu, Y H; Yang, Z H; Zheng, Y; Zhang, H

    2012-05-01

    The aim was to obtain evidences for lignin degradation by unicellular bacterium Comamonas sp. B-9. Comamonas sp. B-9 was inoculated into kraft lignin-mineral salt medium (KL-MSM) at pH 7·0 and 30°C for 7 days of incubation. The bacterial growth, chemical oxygen demand (COD) reduction, secretion of ligninolytic enzymes and productions of low-molecular-weight compounds revealed that Comamonas sp. B-9 was able to degrade kraft lignin (KL). COD in KL-MSM reduced by 32% after 7 days of incubation. The maximum activities of manganese peroxidase (MnP) of 2903·2 U l(-1) and laccase (Lac) of 1250 U l(-1) were observed at 4th and 6th day, respectively. The low-molecular-weight compounds such as ethanediol, 3, 5-dimethyl-benzaldehyde and phenethyl alcohol were formed in the degradation of KL by Comamonas sp. B-9 based on GC-MS analysis. This study confirmed that Comamonas sp. B-9 could utilize KL as a sole carbon source and degrade KL to low-molecular-weight compounds. Comamonas sp. B-9 may be useful in the utilization and bioconversion of lignin and lignin-derived aromatic compounds in biotechnological applications. Meanwhile, using Comamonas sp. B-9 in treatment of wastewater in pulp and paper industry is a meaningful work. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  10. Conjugation Strategy Strongly Impacts the Conformational Stability of a PEG-Protein Conjugate.

    PubMed

    Lawrence, Paul B; Billings, Wendy M; Miller, McKenzie B; Pandey, Brijesh K; Stephens, Andrew R; Langlois, Minnie I; Price, Joshua L

    2016-07-15

    Site-specific PEGylation is an important strategy for enhancing the pharmacokinetic properties of protein drugs, and has been enabled by the recent development of many chemoselective reactions for protein side-chain modification. However, the impact of these different conjugation strategies on the properties of PEG-protein conjugates is poorly understood. Here we show that the ability of PEG to enhance protein conformational stability depends strongly on the identity of the PEG-protein linker, with the most stabilizing linkers involving conjugation of PEG to planar polar groups near the peptide backbone. We also find that branched PEGs provide superior stabilization relative to their linear counterparts, suggesting additional applications for branched PEGs in protein stabilization.

  11. Synthetic surfactant containing SP-B and SP-C mimics is superior to single-peptide formulations in rabbits with chemical acute lung injury.

    PubMed

    Walther, Frans J; Hernández-Juviel, José M; Gordon, Larry M; Waring, Alan J

    2014-01-01

    Background. Chemical spills are on the rise and inhalation of toxic chemicals may induce chemical acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Although the pathophysiology of ALI/ARDS is well understood, the absence of specific antidotes has limited the effectiveness of therapeutic interventions. Objectives. Surfactant inactivation and formation of free radicals are important pathways in (chemical) ALI. We tested the potential of lipid mixtures with advanced surfactant protein B and C (SP-B and C) mimics to improve oxygenation and lung compliance in rabbits with lavage- and chemical-induced ALI/ARDS. Methods. Ventilated young adult rabbits underwent repeated saline lung lavages or underwent intratracheal instillation of hydrochloric acid to induce ALI/ARDS. After establishment of respiratory failure rabbits were treated with a single intratracheal dose of 100 mg/kg of synthetic surfactant composed of 3% Super Mini-B (S-MB), a SP-B mimic, and/or SP-C33 UCLA, a SP-C mimic, in a lipid mixture (DPPC:POPC:POPG 5:3:2 by weight), the clinical surfactant Infasurf(®), a bovine lung lavage extract with SP-B and C, or synthetic lipids alone. End-points consisted of arterial oxygenation, dynamic lung compliance, and protein and lipid content in bronchoalveolar lavage fluid. Potential mechanism of surfactant action for S-MB and SP-C33 UCLA were investigated with captive bubble surfactometry (CBS) assays. Results. All three surfactant peptide/lipid mixtures and Infasurf equally lowered the minimum surface tension on CBS, and also improved oxygenation and lung compliance. In both animal models, the two-peptide synthetic surfactant with S-MB and SP-C33 UCLA led to better arterial oxygenation and lung compliance than single peptide synthetic surfactants and Infasurf. Synthetic surfactants and Infasurf improved lung function further in lavage- than in chemical-induced respiratory failure, with the difference probably due to greater capillary-alveolar protein

  12. Synthetic surfactant containing SP-B and SP-C mimics is superior to single-peptide formulations in rabbits with chemical acute lung injury

    PubMed Central

    Hernández-Juviel, José M.; Gordon, Larry M.; Waring, Alan J.

    2014-01-01

    Background. Chemical spills are on the rise and inhalation of toxic chemicals may induce chemical acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Although the pathophysiology of ALI/ARDS is well understood, the absence of specific antidotes has limited the effectiveness of therapeutic interventions. Objectives. Surfactant inactivation and formation of free radicals are important pathways in (chemical) ALI. We tested the potential of lipid mixtures with advanced surfactant protein B and C (SP-B and C) mimics to improve oxygenation and lung compliance in rabbits with lavage- and chemical-induced ALI/ARDS. Methods. Ventilated young adult rabbits underwent repeated saline lung lavages or underwent intratracheal instillation of hydrochloric acid to induce ALI/ARDS. After establishment of respiratory failure rabbits were treated with a single intratracheal dose of 100 mg/kg of synthetic surfactant composed of 3% Super Mini-B (S-MB), a SP-B mimic, and/or SP-C33 UCLA, a SP-C mimic, in a lipid mixture (DPPC:POPC:POPG 5:3:2 by weight), the clinical surfactant Infasurf®, a bovine lung lavage extract with SP-B and C, or synthetic lipids alone. End-points consisted of arterial oxygenation, dynamic lung compliance, and protein and lipid content in bronchoalveolar lavage fluid. Potential mechanism of surfactant action for S-MB and SP-C33 UCLA were investigated with captive bubble surfactometry (CBS) assays. Results. All three surfactant peptide/lipid mixtures and Infasurf equally lowered the minimum surface tension on CBS, and also improved oxygenation and lung compliance. In both animal models, the two-peptide synthetic surfactant with S-MB and SP-C33 UCLA led to better arterial oxygenation and lung compliance than single peptide synthetic surfactants and Infasurf. Synthetic surfactants and Infasurf improved lung function further in lavage- than in chemical-induced respiratory failure, with the difference probably due to greater capillary-alveolar protein

  13. Strong negative self regulation of Prokaryotic transcription factors increases the intrinsic noise of protein expression

    PubMed Central

    Stekel, Dov J; Jenkins, Dafyd J

    2008-01-01

    Background Many prokaryotic transcription factors repress their own transcription. It is often asserted that such regulation enables a cell to homeostatically maintain protein abundance. We explore the role of negative self regulation of transcription in regulating the variability of protein abundance using a variety of stochastic modeling techniques. Results We undertake a novel analysis of a classic model for negative self regulation. We demonstrate that, with standard approximations, protein variance relative to its mean should be independent of repressor strength in a physiological range. Consequently, in that range, the coefficient of variation would increase with repressor strength. However, stochastic computer simulations demonstrate that there is a greater increase in noise associated with strong repressors than predicted by theory. The discrepancies between the mathematical analysis and computer simulations arise because with strong repressors the approximation that leads to Michaelis-Menten-like hyperbolic repression terms ceases to be valid. Because we observe that strong negative feedback increases variability and so is unlikely to be a mechanism for noise control, we suggest instead that negative feedback is evolutionarily favoured because it allows the cell to minimize mRNA usage. To test this, we used in silico evolution to demonstrate that while negative feedback can achieve only a modest improvement in protein noise reduction compared with the unregulated system, it can achieve good improvement in protein response times and very substantial improvement in reducing mRNA levels. Conclusion Strong negative self regulation of transcription may not always be a mechanism for homeostatic control of protein abundance, but instead might be evolutionarily favoured as a mechanism to limit the use of mRNA. The use of hyperbolic terms derived from quasi-steady-state approximation should also be avoided in the analysis of stochastic models with strong repressors

  14. Strong negative self regulation of prokaryotic transcription factors increases the intrinsic noise of protein expression.

    PubMed

    Stekel, Dov J; Jenkins, Dafyd J

    2008-01-18

    Many prokaryotic transcription factors repress their own transcription. It is often asserted that such regulation enables a cell to homeostatically maintain protein abundance. We explore the role of negative self regulation of transcription in regulating the variability of protein abundance using a variety of stochastic modeling techniques. We undertake a novel analysis of a classic model for negative self regulation. We demonstrate that, with standard approximations, protein variance relative to its mean should be independent of repressor strength in a physiological range. Consequently, in that range, the coefficient of variation would increase with repressor strength. However, stochastic computer simulations demonstrate that there is a greater increase in noise associated with strong repressors than predicted by theory. The discrepancies between the mathematical analysis and computer simulations arise because with strong repressors the approximation that leads to Michaelis-Menten-like hyperbolic repression terms ceases to be valid. Because we observe that strong negative feedback increases variability and so is unlikely to be a mechanism for noise control, we suggest instead that negative feedback is evolutionarily favoured because it allows the cell to minimize mRNA usage. To test this, we used in silico evolution to demonstrate that while negative feedback can achieve only a modest improvement in protein noise reduction compared with the unregulated system, it can achieve good improvement in protein response times and very substantial improvement in reducing mRNA levels. Strong negative self regulation of transcription may not always be a mechanism for homeostatic control of protein abundance, but instead might be evolutionarily favoured as a mechanism to limit the use of mRNA. The use of hyperbolic terms derived from quasi-steady-state approximation should also be avoided in the analysis of stochastic models with strong repressors.

  15. Positive and strongly relaxed purifying selection drive the evolution of repeats in proteins

    PubMed Central

    Persi, Erez; Wolf, Yuri I.; Koonin, Eugene V

    2016-01-01

    Protein repeats are considered hotspots of protein evolution, associated with acquisition of new functions and novel phenotypic traits, including disease. Paradoxically, however, repeats are often strongly conserved through long spans of evolution. To resolve this conundrum, it is necessary to directly compare paralogous (horizontal) evolution of repeats within proteins with their orthologous (vertical) evolution through speciation. Here we develop a rigorous methodology to identify highly periodic repeats with significant sequence similarity, for which evolutionary rates and selection (dN/dS) can be estimated, and systematically characterize their evolution. We show that horizontal evolution of repeats is markedly accelerated compared with their divergence from orthologues in closely related species. This observation is universal across the diversity of life forms and implies a biphasic evolutionary regime whereby new copies experience rapid functional divergence under combined effects of strongly relaxed purifying selection and positive selection, followed by fixation and conservation of each individual repeat. PMID:27857066

  16. Strong Selection Significantly Increases Epistatic Interactions in the Long-Term Evolution of a Protein

    PubMed Central

    Gupta, Aditi; Adami, Christoph

    2016-01-01

    Epistatic interactions between residues determine a protein’s adaptability and shape its evolutionary trajectory. When a protein experiences a changed environment, it is under strong selection to find a peak in the new fitness landscape. It has been shown that strong selection increases epistatic interactions as well as the ruggedness of the fitness landscape, but little is known about how the epistatic interactions change under selection in the long-term evolution of a protein. Here we analyze the evolution of epistasis in the protease of the human immunodeficiency virus type 1 (HIV-1) using protease sequences collected for almost a decade from both treated and untreated patients, to understand how epistasis changes and how those changes impact the long-term evolvability of a protein. We use an information-theoretic proxy for epistasis that quantifies the co-variation between sites, and show that positive information is a necessary (but not sufficient) condition that detects epistasis in most cases. We analyze the “fossils” of the evolutionary trajectories of the protein contained in the sequence data, and show that epistasis continues to enrich under strong selection, but not for proteins whose environment is unchanged. The increase in epistasis compensates for the information loss due to sequence variability brought about by treatment, and facilitates adaptation in the increasingly rugged fitness landscape of treatment. While epistasis is thought to enhance evolvability via valley-crossing early-on in adaptation, it can hinder adaptation later when the landscape has turned rugged. However, we find no evidence that the HIV-1 protease has reached its potential for evolution after 9 years of adapting to a drug environment that itself is constantly changing. We suggest that the mechanism of encoding new information into pairwise interactions is central to protein evolution not just in HIV-1 protease, but for any protein adapting to a changing environment. PMID

  17. Hydrogen production of a salt tolerant strain Bacillus sp. B2 from marine intertidal sludge.

    PubMed

    Liu, Hongyan; Wang, Guangce

    2012-01-01

    To isolate a salt tolerant hydrogen-producing bacterium, we used the sludge from the intertidal zone of a bathing beach in Tianjin as inoculum to enrich hydrogen-producing bacteria. The sludge was treated by heat-shock pretreatment with three different temperature (80, 100 and 121°C) respectively. A hydrogen-producing bacterium was isolated from the sludge pretreated at 80°C by sandwich plate technique and identified using microscopic examination and 16S rDNA gene sequence analysis. The isolated bacterium was named as Bacillus sp. B2. The present study examined the hydrogen-producing ability of Bacillus sp. B2. The strain was able to produce hydrogen over a wide range of initial pH from 5.0 to 10.0, with an optimum at pH 7.0. The level of hydrogen production was also affected by the salt concentration. Strain B2 has unique capability to adapt high salt concentration. It could produce hydrogen at the salt concentration from 4 to 60‰. The maximum of hydrogen-producing yield of strain B2 was 1.65 ± 0.04 mol H(2)/mol glucose (mean ± SE) at an initial pH value of 7.0 in marine culture conditions. Hydrogen production under fresh culture conditions reached a higher level than that in marine ones. As a result, it is likely that Bacillus sp. B2 could be applied to biohydrogen production using both marine and fresh organic waste.

  18. Exploring Strong Interactions in Proteins with Quantum Chemistry and Examples of Their Applications in Drug Design.

    PubMed

    Xie, Neng-Zhong; Du, Qi-Shi; Li, Jian-Xiu; Huang, Ri-Bo

    2015-01-01

    Three strong interactions between amino acid side chains (salt bridge, cation-π, and amide bridge) are studied that are stronger than (or comparable to) the common hydrogen bond interactions, and play important roles in protein-protein interactions. Quantum chemical methods MP2 and CCSD(T) are used in calculations of interaction energies and structural optimizations. The energies of three types of amino acid side chain interactions in gaseous phase and in aqueous solutions are calculated using high level quantum chemical methods and basis sets. Typical examples of amino acid salt bridge, cation-π, and amide bridge interactions are analyzed, including the inhibitor design targeting neuraminidase (NA) enzyme of influenza A virus, and the ligand binding interactions in the HCV p7 ion channel. The inhibition mechanism of the M2 proton channel in the influenza A virus is analyzed based on strong amino acid interactions. (1) The salt bridge interactions between acidic amino acids (Glu- and Asp-) and alkaline amino acids (Arg+, Lys+ and His+) are the strongest residue-residue interactions. However, this type of interaction may be weakened by solvation effects and broken by lower pH conditions. (2) The cation- interactions between protonated amino acids (Arg+, Lys+ and His+) and aromatic amino acids (Phe, Tyr, Trp and His) are 2.5 to 5-fold stronger than common hydrogen bond interactions and are less affected by the solvation environment. (3) The amide bridge interactions between the two amide-containing amino acids (Asn and Gln) are three times stronger than hydrogen bond interactions, which are less influenced by the pH of the solution. (4) Ten of the twenty natural amino acids are involved in salt bridge, or cation-, or amide bridge interactions that often play important roles in protein-protein, protein-peptide, protein-ligand, and protein-DNA interactions.

  19. Strong Antibody Responses Induced by Protein Antigens Conjugated onto the Surface of Lecithin-Based Nanoparticles

    PubMed Central

    Sloat, Brian R.; Sandoval, Michael A.; Hau, Andrew M.; He, Yongqun; Cui, Zhengrong

    2009-01-01

    An accumulation of research over the years has demonstrated the utility of nanoparticles as antigen carriers with adjuvant activity. Herein we defined the adjuvanticity of a novel lecithin-based nanoparticle engineered from emulsions. The nanoparticles were spheres of around 200 nm. Model protein antigens, bovine serum albumin (BSA) or Bacillus anthracis protective antigen (PA) protein, were covalently conjugated onto the nanoparticles. Mice immunized with the BSA-conjugated nanoparticles developed strong anti-BSA antibody responses comparable to that induced by BSA adjuvanted with incomplete Freund's adjuvant and 6.5-fold stronger than that induced by BSA adsorbed onto aluminum hydroxide. Immunization of mice with the PA-conjugated nanoparticles elicited a quick, strong, and durable anti-PA antibody response that afforded protection of the mice against a lethal dose of anthrax lethal toxin challenge. The potent adjuvanticity of the nanoparticles was likely due to their ability to move the antigens into local draining lymph nodes, to enhance the uptake of the antigens by antigen-presenting cells (APCs), and to activate APCs. This novel nanoparticle system has the potential to serve as a universal protein-based vaccine carrier capable of inducing strong immune responses. PMID:19729045

  20. Strong cation-exchange chromatography of proteins on a sulfoalkylated monolithic cryogel.

    PubMed

    Perçin, Işık; Khalaf, Rushd; Brand, Bastian; Morbidelli, Massimo; Gezici, Orhan

    2015-03-20

    A new strong cation exchanger (SCX) monolithic column was synthesized by at-line surface modification of a cryogel prepared by copolymerization of 2-hydroxyethylmethacrylate (HEMA) and glycidylmethacrylate (GMA). Sodium salt of 3-Mercaptopropane sulfonic acid (3-MPS) was used as the ligand to transform the surface of the monolith into a strong cation exchanger. The obtained material was characterized in terms of elemental analysis, infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Brunauer-Emmett-Teller (BET) N2 adsorption, and used as a stationary phase for strong-cation exchange chromatography of some proteins, such as α-chymotrypsinogen, cytochrome c and lysozyme. Water permeability of the column was calculated according to Darcy's law (2.66×10(-13)m(2)). The performance of the monolithic cryogel column was evaluated on the basis of Height Equivalent to a Theoretical Plate (HETP). Retention behavior of the studied proteins was modeled on the basis of Yamamoto model to understand the role of the ion-exchange mechanism in retention behaviors. The considered proteins were successfully separated, and the obtained chromatogram was compared with that obtained with a non-functionalized cryogel column. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Discovery of a super-strong promoter enables efficient production of heterologous proteins in cyanobacteria.

    PubMed

    Zhou, Jie; Zhang, Haifeng; Meng, Hengkai; Zhu, Yan; Bao, Guanhui; Zhang, Yanping; Li, Yin; Ma, Yanhe

    2014-03-28

    Cyanobacteria are oxygenic photosynthetic prokaryotes that play important roles in the global carbon cycle. Recently, engineered cyanobacteria capable of producing various small molecules from CO2 have been developed. However, cyanobacteria are seldom considered as factories for producing proteins, mainly because of the lack of efficient strong promoters. Here, we report the discovery and verification of a super-strong promoter P(cpc560), which contains two predicted promoters and 14 predicted transcription factor binding sites (TFBSs). Using P(cpc560), functional proteins were produced at a level of up to 15% of total soluble protein in the cyanobacterium Synechocystis sp. 6803, a level comparable to that produced in Escherichia coli. We demonstrated that the presence of multiple TFBSs in P(cpc560) is crucial for its promoter strength. Genetically transformable cyanobacteria neither have endotoxins nor form inclusion bodies; therefore, P(cpc560) opens the possibility to use cyanobacteria as alternative hosts for producing heterogeneous proteins from CO2 and inorganic nutrients.

  2. Embedded proteins and sacrificial bonds provide the strong adhesive properties of gastroliths

    NASA Astrophysics Data System (ADS)

    Thormann, Esben; MizunoPresent Address: Nihon L'Oreal, Research; Innovation Center, 3-2-1 Sakado, Takatsu, Kawasaki, Kanagawa, Japan., Hiroyasu; Jansson, Kjell; Hedin, Niklas; Fernández, M. Soledad; Arias, José Luis; Rutland, Mark W.; PaiPresent Address: CenterFunctional Nanomaterials, Brookhaven National Laboratory, 735 Brookhaven Avenue, Upton, New York 11973., Ranjith Krishna; Bergström, Lennart

    2012-06-01

    The adhesive properties of gastroliths from a freshwater crayfish (Cherax quadricarinatus) were quantified by colloidal probe atomic force microscopy (AFM) between heavily demineralized gastrolith microparticles and gastrolith substrates of different composition. Combined AFM and transmission electron microscopy studies demonstrated that the sequential detachment and large adhesion energies that characterise the adhesive behaviour of a native gastrolith substrate are dominated by sacrificial bonds between chitin fibres and between chitin fibres and CaCO3. The sacrificial bonds were shown to be strongly related to the gastrolith proteins and when the majority of these proteins were removed by ethylenediaminetetraacetic acid (EDTA), the sequential detachment disappeared and the adhesive energy was reduced by more than two orders of magnitude.The adhesive properties of gastroliths from a freshwater crayfish (Cherax quadricarinatus) were quantified by colloidal probe atomic force microscopy (AFM) between heavily demineralized gastrolith microparticles and gastrolith substrates of different composition. Combined AFM and transmission electron microscopy studies demonstrated that the sequential detachment and large adhesion energies that characterise the adhesive behaviour of a native gastrolith substrate are dominated by sacrificial bonds between chitin fibres and between chitin fibres and CaCO3. The sacrificial bonds were shown to be strongly related to the gastrolith proteins and when the majority of these proteins were removed by ethylenediaminetetraacetic acid (EDTA), the sequential detachment disappeared and the adhesive energy was reduced by more than two orders of magnitude. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr30536d

  3. Polymeric strong cation-exchange monolithic column for capillary liquid chromatography of peptides and proteins.

    PubMed

    Chen, Xin; Tolley, H Dennis; Lee, Milton L

    2009-08-01

    A strong cation-exchange (SCX) monolithic stationary phase was prepared in 75 microm id capillaries by direct in situ polymerization of sulfopropyl methacrylate and polyethylene glycol diacrylate in a ternary porogen system consisting of methanol, cyclohexanol, and water. The resulting monolith exhibited good dynamic binding capacity, fast kinetic adsorption of proteins, and high permeability. The monolith had a dynamic binding capacity of approximately 52 mg/mL of column volume for lysozyme and cytochrome C. The monolith was evaluated for SCX capillary LC of synthetic peptides, natural peptides, and protein standards. Fast separation of proteins was achieved in less than 4 min. The average peak capacity for peptides was 28 using a relatively steep gradient when hydrophobic interactions were suppressed with 40% acetonitrile.

  4. Cell and protein compatible 3D bioprinting of mechanically strong constructs for bone repair.

    PubMed

    Sawkins, M J; Mistry, P; Brown, B N; Shakesheff, K M; Bonassar, L J; Yang, J

    2015-07-02

    Rapid prototyping of bone tissue engineering constructs often utilizes elevated temperatures, organic solvents and/or UV light for materials processing. These harsh conditions may prevent the incorporation of cells and therapeutic proteins in the fabrication processes. Here we developed a method for using bioprinting to produce constructs from a thermoresponsive microparticulate material based on poly(lactic-co-glycolic acid) at ambient conditions. These constructs could be engineered with yield stresses of up to 1.22 MPa and Young's moduli of up to 57.3 MPa which are within the range of properties of human cancellous bone. Further study showed that protein-releasing microspheres could be incorporated into the bioprinted constructs. The release of the model protein lysozyme from bioprinted constructs was sustainted for a period of 15 days and a high degree of protein activity could be measured up to day 9. This work suggests that bioprinting is a viable route to the production of mechanically strong constructs for bone repair under mild conditions which allow the inclusion of viable cells and active proteins.

  5. General Strategy for the Bioorthogonal Incorporation of Strongly Absorbing, Solvation-Sensitive Infrared Probes into Proteins

    PubMed Central

    2015-01-01

    A high-sensitivity metal-carbonyl-based IR probe is described that can be incorporated into proteins or other biomolecules in very high yield via Click chemistry. A two-step strategy is demonstrated. First, a methionine auxotroph is used to incorporate the unnatural amino acid azidohomoalanine at high levels. Second, a tricarbonyl (η5-cyclopentadienyl) rhenium(I) probe modified with an alkynyl linkage is coupled via the Click reaction. We demonstrate these steps using the C-terminal domain of the ribosomal protein L9 as a model system. An overall incorporation level of 92% was obtained at residue 109, which is a surface-exposed residue. Incorporation of the probe into a surface site is shown not to perturb the stability or structure of the target protein. Metal carbonyls are known to be sensitive to solvation and protein electrostatics through vibrational lifetimes and frequency shifts. We report that the frequencies and lifetimes of this probe also depend on the isotopic composition of the solvent. Comparison of the lifetimes measured in H2O versus D2O provides a probe of solvent accessibility. The metal carbonyl probe reported here provides an easy and robust method to label very large proteins with an amino-acid-specific tag that is both environmentally sensitive and a very strong absorber. PMID:24749542

  6. Strong underwater adhesives made by self-assembling multi-protein nanofibres.

    PubMed

    Zhong, Chao; Gurry, Thomas; Cheng, Allen A; Downey, Jordan; Deng, Zhengtao; Stultz, Collin M; Lu, Timothy K

    2014-10-01

    Many natural underwater adhesives harness hierarchically assembled amyloid nanostructures to achieve strong and robust interfacial adhesion under dynamic and turbulent environments. Despite recent advances, our understanding of the molecular design, self-assembly and structure-function relationships of these natural amyloid fibres remains limited. Thus, designing biomimetic amyloid-based adhesives remains challenging. Here, we report strong and multi-functional underwater adhesives obtained from fusing mussel foot proteins (Mfps) of Mytilus galloprovincialis with CsgA proteins, the major subunit of Escherichia coli amyloid curli fibres. These hybrid molecular materials hierarchically self-assemble into higher-order structures, in which, according to molecular dynamics simulations, disordered adhesive Mfp domains are exposed on the exterior of amyloid cores formed by CsgA. Our fibres have an underwater adhesion energy approaching 20.9 mJ m(-2), which is 1.5 times greater than the maximum of bio-inspired and bio-derived protein-based underwater adhesives reported thus far. Moreover, they outperform Mfps or curli fibres taken on their own and exhibit better tolerance to auto-oxidation than Mfps at pH ≥ 7.0.

  7. Strong underwater adhesives made by self-assembling multi-protein nanofibres

    NASA Astrophysics Data System (ADS)

    Zhong, Chao; Gurry, Thomas; Cheng, Allen A.; Downey, Jordan; Deng, Zhengtao; Stultz, Collin M.; Lu, Timothy K.

    2014-10-01

    Many natural underwater adhesives harness hierarchically assembled amyloid nanostructures to achieve strong and robust interfacial adhesion under dynamic and turbulent environments. Despite recent advances, our understanding of the molecular design, self-assembly and structure-function relationships of these natural amyloid fibres remains limited. Thus, designing biomimetic amyloid-based adhesives remains challenging. Here, we report strong and multi-functional underwater adhesives obtained from fusing mussel foot proteins (Mfps) of Mytilus galloprovincialis with CsgA proteins, the major subunit of Escherichia coli amyloid curli fibres. These hybrid molecular materials hierarchically self-assemble into higher-order structures, in which, according to molecular dynamics simulations, disordered adhesive Mfp domains are exposed on the exterior of amyloid cores formed by CsgA. Our fibres have an underwater adhesion energy approaching 20.9 mJ m-2, which is 1.5 times greater than the maximum of bio-inspired and bio-derived protein-based underwater adhesives reported thus far. Moreover, they outperform Mfps or curli fibres taken on their own and exhibit better tolerance to auto-oxidation than Mfps at pH ≥ 7.0.

  8. Study of Fluid Flow Control In Protein Crystallization Using Strong Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Leslie, F.; Ciszak, E.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular crystals for diffraction analyses has been the central focus for biochemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of the container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and sedimentation, as is achieved in 'microgravity', researchers have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, formation of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. Whether this limited convection in a magnetic field will provide the environment for the growth of high quality crystals is still a matter of conjecture that our research will address. The approach exploits the variation of fluid magnetic susceptibility with concentration for this purpose and the convective damping is realized by appropriately

  9. Study of Fluid Flow Control In Protein Crystallization Using Strong Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Leslie, F.; Ciszak, E.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular crystals for diffraction analyses has been the central focus for biochemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of the container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and sedimentation, as is achieved in 'microgravity', researchers have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, formation of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. Whether this limited convection in a magnetic field will provide the environment for the growth of high quality crystals is still a matter of conjecture that our research will address. The approach exploits the variation of fluid magnetic susceptibility with concentration for this purpose and the convective damping is realized by appropriately

  10. Molecular cloning of mouse erythrocyte protein 4.2: a membrane protein with strong homology with the transglutaminase supergene family.

    PubMed

    Rybicki, A C; Schwartz, R S; Qiu, J J; Gilman, J G

    1994-07-01

    We report the molecular cloning and characterization of mouse erythrocyte protein 4.2 (P4.2). Mouse erythrocyte P4.2 is a 691-amino-acid protein with a predicted MW of 77 kDa. Northern blot analysis detected a 2.2-kb transcript in mouse reticulocytes, compared with a 2.4- to 2.5-kb transcript in human reticulocytes, which is consistent with the absence of the 30-amino-acid splicing insert in mouse erythrocyte P4.2 that is found in the human protein (isoform I). Like the human erythrocyte P4.2, mouse erythrocyte P4.2 contains regions strikingly homologous with the transglutaminase (TGase) proteins although it too most likely lacks TGase crosslinking activity. Mouse P4.2 is on average 73% identical with human erythrocyte P4.2, although regional variations exist, with greatest conservation in the regions of the molecule that contain the TGase active site, the TGase calcium-binding site, and a band 3 binding site. Hydropathy analysis reveals a protein containing a series of hydrophobic domains, similar to the situation for human P4.2 and consistent with its tight binding to the membrane, although the mouse P4.2 is missing both the strongly hydrophilic region and adjacent highly charged region that are present in the human protein, suggesting that the two proteins could differ in their physical characteristics, binding associations, or functional properties. The availability of the complete mouse erythrocyte P4.2 cDNA should help in the design of P4.2-deficient animal models (for example, ribozyme or homologous recombinant "knockout" models) that should accelerate the understanding of P4.2 function in both erythroid and non-erythroid cells.

  11. Biochemical investigation of kraft lignin degradation by Pandoraea sp. B-6 isolated from bamboo slips.

    PubMed

    Shi, Yan; Chai, Liyuan; Tang, Chongjian; Yang, Zhihui; Zheng, Yu; Chen, Yuehui; Jing, Qingxiu

    2013-12-01

    Kraft lignin (KL) is the major pollutant in black liquor. The bacterial strain Pandoraea sp. B-6 was able to degrade KL without any co-substrate under high alkaline conditions. At least 38.2 % of chemical oxygen demand and 41.6 % of color were removed in 7 days at concentrations from 1 to 6 g L(-1). The optimum pH for KL degradation was 10 and the optimum temperature was 30 °C. The greatest activities of 2,249.2 U L(-1) for manganese peroxidase and 1,120.6 U L(-1) for laccase were detected on the third and fifth day at pH 10, respectively. Many small molecules, such as cinnamic acid, ferulic acid, 2-hydroxy benzyl alcohol, and vanillyl methyl ketone, were formed during the period of KL degradation based on GC-MS analysis. These results indicate that this strain has great potential for biotreatment of black liquor.

  12. L233P mutation of the Tax protein strongly correlated with leukemogenicity of bovine leukemia virus.

    PubMed

    Inoue, Emi; Matsumura, Keiko; Soma, Norihiko; Hirasawa, Shintaro; Wakimoto, Mayuko; Arakaki, Yoshihiro; Yoshida, Takashi; Osawa, Yoshiaki; Okazaki, Katsunori

    2013-12-27

    The bovine leukemia virus (BLV) Tax protein is believed to play a crucial role in leukemogenesis by the virus. BLV usually causes asymptomatic infections in cattle, but only one-third develop persistent lymphocytosis that rarely progress after a long incubation period to lymphoid tumors, namely enzootic bovine leucosis (EBL). In the present study, we demonstrated that the BLV tax genes could be divided into two alleles and developed multiplex PCR detecting an L233P mutation of the Tax protein. Then, in order to define the relationship between the Tax protein and leukemogenicity, we examined 360 tumor samples randomly collected from dairy or breeding cattle in Japan, of which Tax proteins were categorized, for age at the time of diagnosis of EBL. The ages of 288 animals (80.0%) associated with L233-Tax and those of 70 animals (19.4%) with P233-Tax individually followed log-normal distributions. Only the two earliest cases (0.6%) with L233-Tax disobeyed the log-normal distribution. These findings suggest that the animals affected by EBL were infected with the virus at a particular point in life, probably less than a few months after birth. Median age of those with P233-Tax was 22 months older than that with L233-Tax and geometric means exhibited a significant difference (P<0.01). It is also quite unlikely that viruses carrying the particular Tax protein infect older cattle. Here, we conclude that BLV could be divided into two categories on the basis of amino acid at position 233 of the Tax protein, which strongly correlated with leukemogenicity. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. The General Phosphotransferase System Proteins Localize to Sites of Strong Negative Curvature in Bacterial Cells

    PubMed Central

    Govindarajan, Sutharsan; Elisha, Yair; Nevo-Dinur, Keren; Amster-Choder, Orna

    2013-01-01

    ABSTRACT The bacterial cell poles are emerging as subdomains where many cellular activities take place, but the mechanisms for polar localization are just beginning to unravel. The general phosphotransferase system (PTS) proteins, enzyme I (EI) and HPr, which control preferential use of carbon sources in bacteria, were recently shown to localize near the Escherichia coli cell poles. Here, we show that EI localization does not depend on known polar constituents, such as anionic lipids or the chemotaxis receptors, and on the cell division machinery, nor can it be explained by nucleoid occlusion or localized translation. Detection of the general PTS proteins at the budding sites of endocytotic-like membrane invaginations in spherical cells and their colocalization with the negative curvature sensor protein DivIVA suggest that geometric cues underlie localization of the PTS system. Notably, the kinetics of glucose uptake by spherical and rod-shaped E. coli cells are comparable, implying that negatively curved “pole-like” sites support not only the localization but also the proper functioning of the PTS system in cells with different shapes. Consistent with the curvature-mediated localization model, we observed the EI protein from Bacillus subtilis at strongly curved sites in both B. subtilis and E. coli. Taken together, we propose that changes in cell architecture correlate with dynamic survival strategies that localize central metabolic systems like the PTS to subcellular domains where they remain active, thus maintaining cell viability and metabolic alertness. PMID:24129255

  14. Study of Fluid Flow Control in Protein Crystallization using Strong Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Ramachandran, Narayanan; Leslie, Fred; Ciszak, Ewa

    2002-01-01

    An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular crystals for diffraction analyses has been the central focus for biochemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of the container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and sedimentation, as is achieved in "microgravity", researchers have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, formation of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. Whether this limited convection in a magnetic field will provide the environment for the growth of high quality crystals is still a matter of conjecture that our research will address. The approach exploits the variation of fluid magnetic susceptibility with concentration for this purpose and the convective damping is realized by appropriately

  15. The contribution of polar group burial to protein stability is strongly context-dependent.

    PubMed

    Takano, Kazufumi; Scholtz, J Martin; Sacchettini, James C; Pace, C Nick

    2003-08-22

    We previously suggested that proteins gain more stability from the burial and hydrogen bonding of polar groups than from the burial of nonpolar groups (Pace, C. N. (2001) Biochemistry 40, 310-313). To study this further, we prepared eight Thr-to-Val mutants of RNase Sa, four in which the Thr side chain is hydrogen-bonded and four in which it is not. We measured the stability of these mutants by analyzing their thermal denaturation curves. The four hydrogen-bonded Thr side chains contribute 1.3 +/- 0.9 kcal/mol to the stability; those that are not still contribute 0.4 +/- 0.9 kcal/mol to the stability. For 40 Thr-to-Val mutants of 11 proteins, the average decrease in stability is 1.0 +/- 1.0 kcal/mol when the Thr side chain is hydrogen-bonded and 0.0 +/- 0.5 kcal/mol when it is not. This is clear evidence that hydrogen bonds contribute favorably to protein stability. In addition, we prepared four Val-to-Thr mutants of RNase Sa, measured their stability, and determined their crystal structures. In all cases, the mutants are less stable than the wild-type protein, with the decreases in stability ranging from 0.5 to 4.4 kcal/mol. For 41 Val-to-Thr mutants of 11 proteins, the average decrease in stability is 1.8 +/- 1.3 kcal/mol and is unfavorable for 40 of 41 mutants. This shows that placing an [bond]OH group at a site designed for a [bond]CH3 group is very unfavorable. So, [bond]OH groups can contribute favorably to protein stability, even if they are not hydrogen-bonded, if the site was selected for an [bond]OH group, but they will make an unfavorable contribution to stability, even if they are hydrogen-bonded, when they are placed at a site selected for a [bond]CH3 group. The contribution that polar groups make to protein stability depends strongly on their environment.

  16. Dimethyl disulfide produced by the naturally associated bacterium bacillus sp B55 promotes Nicotiana attenuata growth by enhancing sulfur nutrition.

    PubMed

    Meldau, Dorothea G; Meldau, Stefan; Hoang, Long H; Underberg, Stefanie; Wünsche, Hendrik; Baldwin, Ian T

    2013-07-01

    Bacillus sp B55, a bacterium naturally associated with Nicotiana attenuata roots, promotes growth and survival of wild-type and, particularly, ethylene (ET)-insensitive (35)S-ethylene response1 (etr1) N. attenuata plants, which heterologously express the mutant Arabidopsis thaliana receptor ETR1-1. We found that the volatile organic compound (VOC) blend emitted by B55 promotes seedling growth, which is dominated by the S-containing compound dimethyl disulfide (DMDS). DMDS was depleted from the headspace during cocultivation with seedlings in bipartite Petri dishes, and (35)S was assimilated from the bacterial VOC bouquet and incorporated into plant proteins. In wild-type and (35)S-etr1 seedlings grown under different sulfate (SO(4)(-2)) supply conditions, exposure to synthetic DMDS led to genotype-dependent plant growth promotion effects. For the wild type, only S-starved seedlings benefited from DMDS exposure. By contrast, growth of (35)S-etr1 seedlings, which we demonstrate to have an unregulated S metabolism, increased at all SO(4)(-2) supply rates. Exposure to B55 VOCs and DMDS rescued many of the growth phenotypes exhibited by ET-insensitive plants, including the lack of root hairs, poor lateral root growth, and low chlorophyll content. DMDS supplementation significantly reduced the expression of S assimilation genes, as well as Met biosynthesis and recycling. We conclude that DMDS by B55 production is a plant growth promotion mechanism that likely enhances the availability of reduced S, which is particularly beneficial for wild-type plants growing in S-deficient soils and for (35)S-etr1 plants due to their impaired S uptake/assimilation/metabolism.

  17. Strong precursor-pore interactions constrain models for mitochondrial protein import.

    PubMed Central

    Chauwin, J F; Oster, G; Glick, B S

    1998-01-01

    Mitochondrial precursor proteins are imported from the cytosol into the matrix compartment through a proteinaceous translocation pore. Import is driven by mitochondrial Hsp70 (mHsp70), a matrix-localized ATPase. There are currently two postulated mechanisms for this function of mHsp70: 1) The "Brownian ratchet" model proposes that the precursor chain diffuses within the pore, and that binding of mHsp70 to the lumenal portion of the chain biases this diffusion. 2) The "power stroke" model proposes that mHsp70 undergoes a conformational change that actively pulls the precursor chain through the pore. Here we formulate these two models quantitatively, and compare their performance in light of recent experimental evidence that precursor chains interact strongly with the walls of the translocation pore. Under these conditions the simulated Brownian ratchet is inefficient, whereas the power stroke mechanism seems to be a plausible description of the import process. PMID:9545036

  18. Thermoresponsive anionic copolymer brushes containing strong acid moieties for effective separation of basic biomolecules and proteins.

    PubMed

    Nagase, Kenichi; Kobayashi, Jun; Kikuchi, Akihiko; Akiyama, Yoshikatsu; Kanazawa, Hideko; Okano, Teruo

    2014-10-13

    A thermoresponsive copolymer brush possessing the sulfonic acid group, poly(N-isopropylacrylamide (IPAAm)-co-2-acrylamido-2-methylpropanesulfonic acid (AMPS)-co-tert-butylacrylamide (tBAAm)), was grafted onto the surface of silica beads through surface-initiated atom transfer radical polymerization. Prepared copolymer and copolymer brushes on silica beads were characterized by observing the phase transition profile, CHNS elemental analysis, X-ray photoelectron spectroscopy, and gel permeation chromatography. The phase transition profile indicated that an appropriate AMPS composition for enabling thermally modulated property changes is 5 mol %, while excessive amounts of sulfonic acid groups prevented copolymer phase transition. Chromatographic elutions of catecholamine derivatives and basic proteins were observed, using the prepared copolymer brush-modified beads as chromatographic matrices, and the results suggest that the beads interact with these analytes through relatively strong electrostatic interactions. Thus, poly(IPAAm-co-AMPS-co-tBAAm) brush-modified beads will be useful for effective thermoresponsive chromatography matrices that separate basic biomolecules through strong electrostatic interactions.

  19. [Preparation of highly hydrophilic strong cation exchangers and their applications in protein analysis].

    PubMed

    Liu, Jizhong; Huang, Yanyan; Yang, Bo; Chang, Jianhua; Liu, Guoquan; Zhao, Rui

    2013-04-01

    Based on the needs of new packing materials for rapid and efficient separation, purification and analysis of biomacromolecules, a novel sulfonic acid-type strong cation exchange resin (SP-G-PGMA SCX resin) was prepared. The porous poly(glycidyl methacrylate) microspheres (PGMA) were selected as the matrix and glucose was used as the hydrophilic modifier to block the hydrophobic domains of PGMA beads. Glucose modification on PGMA beads improved the biocompatibility and reduced the non-specific adsorption so as to increase the recoveries of protein. The PGMA beads possess the porous structure and the relatively high specific surface area, which make the PGMA-based resins good permeability and high loading capacity. The application of such SP-G-PGMA SCX resin for the chromatographic separation of biomacromolecules was explored. Four basic proteins were baseline separated within 6 min with the column size of 100 mm x 4.6 mm. The adsorption capacity of lysozyme on SP-G-PGMA SCX resin was determined as 39.5 g/L. The results make the material promising for the separation and purification of biomacromolecules.

  20. Study of Fluid Flow Control in Protein Crystallization using Strong Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Ramachandran, Narayanan; Leslie, Fred; Ciszak, Ewa

    2002-11-01

    An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular crystals for diffraction analyses has been the central focus for biochemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of the container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and sedimentation, as is achieved in "microgravity", researchers have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, formation of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. Whether this limited convection in a magnetic field will provide the environment for the growth of high quality crystals is still a matter of conjecture that our research will address. The approach exploits the variation of fluid magnetic susceptibility with concentration for this purpose and the convective damping is realized by appropriately

  1. Study of Fluid Flow Control in Protein Crystallization using Strong Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Ramachandran, Narayanan; Leslie, Fred; Ciszak, Ewa

    2002-01-01

    An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular crystals for diffraction analyses has been the central focus for biochemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of the container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and sedimentation, as is achieved in "microgravity", researchers have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, formation of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. Whether this limited convection in a magnetic field will provide the environment for the growth of high quality crystals is still a matter of conjecture that our research will address. The approach exploits the variation of fluid magnetic susceptibility with concentration for this purpose and the convective damping is realized by appropriately

  2. Human Tetherin Exerts Strong Selection Pressure on the HIV-1 Group N Vpu Protein

    PubMed Central

    Sauter, Daniel; Unterweger, Daniel; Vogl, Michael; Usmani, Shariq M.; Heigele, Anke; Kluge, Silvia F.; Hermkes, Elisabeth; Moll, Markus; Barker, Edward; Peeters, Martine; Learn, Gerald H.; Bibollet-Ruche, Frederic; Fritz, Joëlle V.; Fackler, Oliver T.; Hahn, Beatrice H.; Kirchhoff, Frank

    2012-01-01

    HIV-1 groups M and N emerged within the last century following two independent cross-species transmissions of SIVcpz from chimpanzees to humans. In contrast to pandemic group M strains, HIV-1 group N viruses are exceedingly rare, with only about a dozen infections identified, all but one in individuals from Cameroon. Poor adaptation to the human host may be responsible for this limited spread of HIV-1 group N in the human population. Here, we analyzed the function of Vpu proteins from seven group N strains from Cameroon, the place where this zoonosis originally emerged. We found that these N-Vpus acquired four amino acid substitutions (E15A, V19A and IV25/26LL) in their transmembrane domain (TMD) that allow efficient interaction with human tetherin. However, despite these adaptive changes, most N-Vpus still antagonize human tetherin only poorly and fail to down-modulate CD4, the natural killer (NK) cell ligand NTB-A as well as the lipid-antigen presenting protein CD1d. These functional deficiencies were mapped to amino acid changes in the cytoplasmic domain that disrupt putative adaptor protein binding sites and an otherwise highly conserved ßTrCP-binding DSGxxS motif. As a consequence, N-Vpus exhibited aberrant intracellular localization and/or failed to recruit the ubiquitin-ligase complex to induce tetherin degradation. The only exception was the Vpu of a group N strain recently discovered in France, but originally acquired in Togo, which contained intact cytoplasmic motifs and counteracted tetherin as effectively as the Vpus of pandemic HIV-1 M strains. These results indicate that HIV-1 group N Vpu is under strong host-specific selection pressure and that the acquisition of effective tetherin antagonism may lead to the emergence of viral variants with increased transmission fitness. PMID:23308067

  3. Degradation of aromatic compounds and degradative pathway of 4-nitrocatechol by Ochrobactrum sp. B2.

    PubMed

    Zhong, Qiuzan; Zhang, Haiyan; Bai, Wenqin; Li, Mei; Li, Baotong; Qiu, Xinghui

    2007-12-01

    The potential capacity of a soil methyl parathion-degrading bacterium strain, Ochrobactrum sp. B2, for degrading various aromatic compounds were investigated. The results showed B2 was capable of degrading diverse aromatic compounds, but amino-substituted benzene compounds, at a concentration up to 100 mg L(-1) in 4 days. B2 could use 4-nitrocatechol (4-NC) as a sole carbon and energy source with release of nitrite ion. The pathway for 4-NC degradation via 1,2,4-benzenetriol (BT) and hydroquinone (HQ) formation in B2 was proposed based on the identification and quantification of intermediates by gas chromatography-mass spectrometry (GC-MS), and high performance liquid chromatography (HPLC). Degradation studies carried out on a plasmid-cured derivative showed that the genes for 4-NC degradative pathway was plasmid-borne in B2, suggesting that B2 degrades both p-nitrophenol and 4-NC by enzymes encoded by genes on the same plasmid.

  4. Identification, cloning, and expression of L-amino acid oxidase from marine Pseudoalteromonas sp. B3.

    PubMed

    Yu, Zhiliang; Zhou, Ning; Qiao, Hua; Qiu, Juanping

    2014-01-01

    L-amino acid oxidase (LAAO) is attracting more attentions due to its broad and important biological functions. Recently, an LAAO-producing marine microorganism (strain B3) was isolated from the intertidal zone of Dinghai sea area, China. Physiological, biochemical, and molecular identifications together with phylogenetic analysis congruously suggested that it belonged to the genus Pseudoalteromonas. Therefore, it was designated as Pseudoalteromonas sp. B3. Its capability of LAAO production was crossly confirmed by measuring the products of H2O2, a-keto acids, and NH4+ in oxidization reaction. Two rounds of PCR were performed to gain the entire B3-LAAO gene sequence of 1608 bps in length encoding for 535 amino acid residues. This deduced amino acid sequence showed 60 kDa of the calculated molecular mass, supporting the SDS-PAGE result. Like most of flavoproteins, B3-LAAO also contained two conserved typical motifs, GG-motif and βαβ-dinucleotide-binding domain motif. On the other hand, its unique substrate spectra and sequence information suggested that B3-LAAO was a novel LAAO. Our results revealed that it could be functionally expressed in E. coli BL21(DE3) using vectors, pET28b(+) and pET20b(+). However, compared with the native LAAO, the expression level of the recombinant one was relatively low, most probably due to the formation of inclusion bodies. Several solutions are currently being conducted in our lab to increase its expression level.

  5. Evidence for a Strong Correlation Between Transcription Factor Protein Disorder and Organismic Complexity

    PubMed Central

    Oldfield, Christopher J.; Niklas, Karl J.; Dunker, A. Keith

    2017-01-01

    Studies of diverse phylogenetic lineages reveal that protein disorder increases in concert with organismic complexity but that differences nevertheless exist among lineages. To gain insight into this phenomenology, we analyzed all of the transcription factor (TF) families for which sequences are known for 17 species spanning bacteria, yeast, algae, land plants, and animals and for which the number of different cell types has been reported in the primary literature. Although the fraction of disordered residues in TF sequences is often moderately or poorly correlated with organismic complexity as gauged by cell-type number (r2 < 0.5), an unbiased and phylogenetically broad analysis shows that organismic complexity is positively and strongly correlated with the total number of TFs, the number of their spliced variants and their total disordered residues content (r2 > 0.8). Furthermore, the correlation between the fraction of disordered residues and cell-type number becomes stronger when confined to the TF families participating in cell cycle, cell size, cell division, cell differentiation, or cell proliferation, and other important developmental processes. The data also indicate that evolutionarily simpler organisms allow for the detection of subtle differences in the conserved IDRs of TFs as well as changes in variable IDRs, which can influence the DNA recognition and multifunctionality of TFs through direct or indirect mechanisms. Although strong correlations cannot be taken as evidence for cause-and-effect relationships, we interpret our data to indicate that increasing TF disorder likely was an important factor contributing to the evolution of organismic complexity and not merely a concurrent unrelated effect of increasing organismic complexity. PMID:28430951

  6. Comparison of Strong Cation Exchange and SDS/PAGE Fractionation for Analysis of Multi-Protein Complexes

    PubMed Central

    Das, Sudipto; Bosley, Allen D.; Ye, Xiaoying; Chan, King C.; Chu, Isabel; Green, Jeffery E.; Issaq, Haleem J.; Veenstra, Timothy D.; Andresson, Thorkell

    2013-01-01

    Affinity purification of protein complexes followed by identification using liquid chromatography/mass spectrometry (LC-MS/MS) is a robust method to study the fundamental process of protein interaction. While affinity isolation reduces the complexity of the sample, fractionation prior to LC-MS/MS analysis is still necessary to maximize protein coverage. In this study, we compared the protein coverage obtained via LC-MS/MS analysis of protein complexes pre-fractionated using two commonly employed methods, SDS-PAGE and strong cation exchange chromatography (SCX). The two complexes analyzed focused on the nuclear proteins Bmi-1 and GATA3 that were expressed within the cells at low and high levels, respectively. Pre-fractionation of the complexes at the peptide level using SCX consistently resulted in the identification of approximately 3-fold more proteins compared to separation at the protein level using SDS-PAGE. The increase in the number of identified proteins was especially pronounced for the Bmi-1 complex, where the target protein was expressed at a low level. The data shows that pre-fractionation of affinity isolated protein complexes using SCX prior to LC-MS/MS analysis significantly increases the number of identified proteins and individual protein coverage, particularly for target proteins expressed at low levels. PMID:20968308

  7. Two novel antioxidant nonapeptides from protein hydrolysate of skate (Raja porosa) muscle.

    PubMed

    Hu, Fa-Yuan; Chi, Chang-Feng; Wang, Bin; Deng, Shang-Gui

    2015-04-03

    In the current study, the preparation conditions of neutrase hydrolysate (SMH) from skate (Raja porosa) muscle protein were optimized using orthogonal L9(3)4 tests, and R values indicated that pH was the most important factor affecting HO· scavenging activity of SMH. Under the optimum conditions of pH 7.0, enzymolysis temperature 60 °C, enzyme/substrate ratio (E/S) 2%, and enzymolysis time 5 h, EC50 of SMH on HO· was 2.14 ± 0.17 mg/mL. Using ultrafiltration, gel filtration chromatography, and RP-HPLC, two novel antioxidant nonapeptides (SP-A and SP-B) were isolated from SMH and their amino acid sequences were found to be APPTAYAQS (SP-A) and NWDMEKIWD (SP-B) with calculated molecular masses of 904.98 Da and 1236.38 Da, respectively. Both showed strong antioxidant activities. SP-A and SP-B exhibited good scavenging activities on HO· (EC50 0.390 and 0.176 mg/mL), DPPH· (EC50 0.614 and 0.289 mg/mL), and O2-· (EC50 0.215 and 0.132 mg/mL) in a dose-dependent manner. SP-B was also effective against lipid peroxidation in the model system. The aromatic (2Trp), acidic (2Asp and Glu), and basic (Lys) amino acid residues within the sequences of SP-B might account for its pronounced antioxidant activity. The results of this study suggested that protein hydrolysate and peptides from skate muscle might be effective as food additives for retarding lipid peroxidation occurring in foodstuffs.

  8. Two Novel Antioxidant Nonapeptides from Protein Hydrolysate of Skate (Raja porosa) Muscle

    PubMed Central

    Hu, Fa-Yuan; Chi, Chang-Feng; Wang, Bin; Deng, Shang-Gui

    2015-01-01

    In the current study, the preparation conditions of neutrase hydrolysate (SMH) from skate (Raja porosa) muscle protein were optimized using orthogonal L9(3)4 tests, and R values indicated that pH was the most important factor affecting HO· scavenging activity of SMH. Under the optimum conditions of pH 7.0, enzymolysis temperature 60 °C, enzyme/substrate ratio (E/S) 2%, and enzymolysis time 5 h, EC50 of SMH on HO· was 2.14 ± 0.17 mg/mL. Using ultrafiltration, gel filtration chromatography, and RP-HPLC, two novel antioxidant nonapeptides (SP-A and SP-B) were isolated from SMH and their amino acid sequences were found to be APPTAYAQS (SP-A) and NWDMEKIWD (SP-B) with calculated molecular masses of 904.98 Da and 1236.38 Da, respectively. Both showed strong antioxidant activities. SP-A and SP-B exhibited good scavenging activities on HO· (EC50 0.390 and 0.176 mg/mL), DPPH· (EC50 0.614 and 0.289 mg/mL), and O2−· (EC50 0.215 and 0.132 mg/mL) in a dose-dependent manner. SP-B was also effective against lipid peroxidation in the model system. The aromatic (2Trp), acidic (2Asp and Glu), and basic (Lys) amino acid residues within the sequences of SP-B might account for its pronounced antioxidant activity. The results of this study suggested that protein hydrolysate and peptides from skate muscle might be effective as food additives for retarding lipid peroxidation occurring in foodstuffs. PMID:25854645

  9. Pepsinogen C Proteolytic Processing of Surfactant Protein B*S⃞

    PubMed Central

    Gerson, Kristin D.; Foster, Cherie D.; Zhang, Peggy; Zhang, Zhenguo; Rosenblatt, Michael M.; Guttentag, Susan H.

    2008-01-01

    Surfactant protein B (SP-B) is essential to the function of pulmonary surfactant and to lamellar body genesis in alveolar epithelial type 2 cells. The bioactive, mature SP-B is derived from multistep post-translational proteolysis of a larger proprotein. The identity of the proteases involved in carboxyl-terminal cleavage of proSP-B remains uncertain. This cleavage event distinguishes SP-B production in type 2 cells from less complete processing in bronchiolar Clara cells. We previously identified pepsinogen C as an alveolar type 2 cell-specific protease that was developmentally regulated in the human fetal lung. We report that pepsinogen C cleaved recombinant proSP-B at Met302 in addition to an amino-terminal cleavage at Ser197. Using a well described model of type 2 cell differentiation, small interfering RNA knockdown of pepsinogen C inhibited production of mature SP-B, whereas overexpression of pepsinogen C increased SP-B production. Inhibition of SP-B production recapitulated the SP-B-deficient phenotype evident by aberrant lamellar body genesis. Together, these data support a primary role for pepsinogen C in SP-B proteolytic processing in alveolar type 2 cells. PMID:18256027

  10. Impact of Azospirillum sp. B510 inoculation on rice-associated bacterial communities in a paddy field.

    PubMed

    Bao, Zhihua; Sasaki, Kazuhiro; Okubo, Takashi; Ikeda, Seishi; Anda, Mizue; Hanzawa, Eiko; Kakizaki, Kaori; Sato, Tadashi; Mitsui, Hisayuki; Minamisawa, Kiwamu

    2013-01-01

    Rice seedlings were inoculated with Azospirillum sp. B510 and transplanted into a paddy field. Growth in terms of tiller numbers and shoot length was significantly increased by inoculation. Principal-coordinates analysis of rice bacterial communities using the 16S rRNA gene showed no overall change from B510 inoculation. However, the abundance of Veillonellaceae and Aurantimonas significantly increased in the base and shoots, respectively, of B510-inoculated plants. The abundance of Azospirillum did not differ between B510-inoculated and uninoculated plants (0.02-0.50%). These results indicate that the application of Azospirillum sp. B510 not only enhanced rice growth, but also affected minor rice-associated bacteria.

  11. Impact of Azospirillum sp. B510 Inoculation on Rice-Associated Bacterial Communities in a Paddy Field

    PubMed Central

    Bao, Zhihua; Sasaki, Kazuhiro; Okubo, Takashi; Ikeda, Seishi; Anda, Mizue; Hanzawa, Eiko; Kakizaki, Kaori; Sato, Tadashi; Mitsui, Hisayuki; Minamisawa, Kiwamu

    2013-01-01

    Rice seedlings were inoculated with Azospirillum sp. B510 and transplanted into a paddy field. Growth in terms of tiller numbers and shoot length was significantly increased by inoculation. Principal-coordinates analysis of rice bacterial communities using the 16S rRNA gene showed no overall change from B510 inoculation. However, the abundance of Veillonellaceae and Aurantimonas significantly increased in the base and shoots, respectively, of B510-inoculated plants. The abundance of Azospirillum did not differ between B510-inoculated and uninoculated plants (0.02–0.50%). These results indicate that the application of Azospirillum sp. B510 not only enhanced rice growth, but also affected minor rice-associated bacteria. PMID:24256970

  12. FTIR investigation of the effects of ultra-strong static magnetic field on the secondary structures of protein in bacteria

    NASA Astrophysics Data System (ADS)

    She, Zichao; Hu, Xing; Zhao, Xusheng; Ren, Zhongming; Ding, Guoji

    2009-07-01

    Secondary structures of protein in Escherichia coli ( E. coli) and Staphylococcus aureus ( S. aureus) exposed to the ultra-strong static magnetic field (SMF) were investigated by Fourier transformation infrared spectroscopy (FTIR). Difference index D value of amide I (1600-1700 cm -1) showed that the ultra-strong magnetic field had little impact on S. aureus, but had strong impact on E. coli. The results indicated that 3.46-9.92% of the disorder coils in the secondary structures of protein in E. coli were turned into α-helices under SMF while applying deconvolution and curve fitting to amide I. At the same time, intermolecular β-sheets transforming into intramolecular ones suggested that cohesion among protein molecules had been destroyed and intramolecular hydrogen bonds strengthened. All the differences among the compositions of protein's secondary structures in E. coli were mostly due to the varying degrees of various proteins affected by the magnetic field. The results may provide new insights into the structural changes of proteins induced by the SMF.

  13. New Method for Measuring the Anchoring Energy of Strongly-Bound Membrane-Associated Proteins [Method for measuring the anchoring energy of strongly-bound membrane-associated proteins].

    SciTech Connect

    Kent, Michael S.; La Bauve, Elisa; Vernon, Briana C.; Ye, Dongmei; Rogers, David M.; Siegrist, Cathryn M.; Carson, Bryan; Rempe, Susan L.; Zheng, Aihua; Kielian, Margaret; Schreve, Andrew P.

    2016-02-01

    Here, we describe a new method to measure the activation energy required to remove a strongly-bound membrane-associated protein from a lipid membrane (anchoring energy). It is based on measuring the rate of release of a liposome-bound protein during centrifugation on a sucrose gradient as a function of time and temperature. The method was used to determine anchoring energy for the soluble dengue virus envelope protein (sE) strongly bound to 80:20 POPC:POPG liposomes at pH 5.5. We also measured the binding energy of sE at the same pH for the initial, predominantly reversible, phase of binding to a 70:30 PC:PG lipid bilayer. The anchoring energy (37 +/- 1.7 kcal/mol, 20% PG) was found to be much larger than the binding energy (7.8 +/- 0.3 kcal/mol for 30% PG, or est. 7.0 kcal/mol for 20% PG). This is consistent with data showing that free sE is a monomer at pH 5.5, but assembles into trimers after associating with membranes. But, trimerization alone is insufficient to account for the observed difference in energies, and we conclude that some energy dissipation occurs during the release process. This new method to determine anchoring energy should be useful to understand the complex interactions of integral monotopic proteins and strongly-bound peripheral membrane proteins with lipid membranes.

  14. Cooperative folding of intrinsically disordered domains drives assembly of a strong elongated protein

    NASA Astrophysics Data System (ADS)

    Gruszka, Dominika T.; Whelan, Fiona; Farrance, Oliver E.; Fung, Herman K. H.; Paci, Emanuele; Jeffries, Cy M.; Svergun, Dmitri I.; Baldock, Clair; Baumann, Christoph G.; Brockwell, David J.; Potts, Jennifer R.; Clarke, Jane

    2015-06-01

    Bacteria exploit surface proteins to adhere to other bacteria, surfaces and host cells. Such proteins need to project away from the bacterial surface and resist significant mechanical forces. SasG is a protein that forms extended fibrils on the surface of Staphylococcus aureus and promotes host adherence and biofilm formation. Here we show that although monomeric and lacking covalent cross-links, SasG maintains a highly extended conformation in solution. This extension is mediated through obligate folding cooperativity of the intrinsically disordered E domains that couple non-adjacent G5 domains thermodynamically, forming interfaces that are more stable than the domains themselves. Thus, counterintuitively, the elongation of the protein appears to be dependent on the inherent instability of its domains. The remarkable mechanical strength of SasG arises from tandemly arrayed `clamp' motifs within the folded domains. Our findings reveal an elegant minimal solution for the assembly of monomeric mechano-resistant tethers of variable length.

  15. Coarsening of protein clusters on subcellular drops exhibits strong and sudden size selectivity

    NASA Astrophysics Data System (ADS)

    Brown, Aidan; Rutenberg, Andrew

    2015-03-01

    Autophagy is an important process for the degradation of cellular components, with receptor proteins targeting substrates to downstream autophagy machinery. An important question is how receptor protein interactions lead to their selective accumulation on autophagy substrates. Receptor proteins have recently been observed in clusters, raising the possibility that clustering could affect autophagy selectivity. We investigate the clustering dynamics of the autophagy receptor protein NBR1. In addition to standard receptor protein domains, NBR1 has a ``J'' domain that anchors it to membranes, and a coiled-coil domain that enhances self-interaction. We model coarsening clusters of NBR1 on the surfaces of a polydisperse collection of drops, representing organelles. Despite the disconnected nature of the drop surfaces, we recover dynamical scaling of cluster sizes. Significantly, we find that at a well-defined time after coarsening begins, clusters evaporate from smaller drops and grow on larger drops. Thus, coarsening-driven size selection will localize protein clusters to larger substrates, leaving smaller substrates without clusters. This provides a possible physical mechanism for autophagy selectivity, and can explain reports of size selection during peroxisome degradation.

  16. Small structural differences of targeted anti-tumor toxins result in strong variation of protein expression.

    PubMed

    Gilabert-Oriol, Roger; Thakur, Mayank; Weise, Christoph; Dernedde, Jens; von Mallinckrodt, Benedicta; Fuchs, Hendrik; Weng, Alexander

    2013-09-01

    Targeted anti-tumor toxins consist of a toxic functional moiety that is chemically linked or recombinantly fused to a cell-directing ligand. Ribosome-inactivating proteins (RIPs), especially type I RIPs such as saporin or dianthin, are commonly used as toxin components. Although expression of type I RIP-based fusion proteins is well reported, the achievement of higher protein yields in heterologous expression systems through innovative strategies is of major interest. In the present study, the targeted toxins (his)saporin-EGF (SE) and (his)dianthin-EGF (DE) were expressed as fusion proteins under identical expression conditions. However, the total amount of DE was nearly two-times higher than SE. The identity of the heterologously expressed targeted toxins was confirmed by mass spectrometric studies. Their biological specific activity, monitored in real time, was almost equal. Sequence alignment shows 84% identity and a structural comparison revealed five major differences, two of which affect the secondary structure resulting in a loop (SE) to β-strand (DE) conversion and one introduces a gap in SE (after position 57). In conclusion, these structural variations resulted in different protein expression levels while codon usage and toxicity to bacteria were excluded as a cause. Minor structural differences identified in this study may be considered responsible for the protection of DE from bacterial proteases and therefore may serve as a lead to modify certain domains in type I RIP-based targeted toxins. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Development of transgenic fish for ornamental and bioreactor by strong expression of fluorescent proteins in the skeletal muscle.

    PubMed

    Gong, Zhiyuan; Wan, Haiyan; Tay, Tuan Leng; Wang, Hai; Chen, Mingru; Yan, Tie

    2003-08-15

    In the present study, new applications of the transgenic technology in developing novel varieties of ornamental fish and bioreactor fish were explored in a model fish, the zebrafish (Danio rerio). Three "living color" fluorescent proteins, green fluorescent protein (GFP), yellow fluorescent protein (YFP), and red fluorescent protein (RFP or dsRed), were expressed under a strong muscle-specific mylz2 promoter in stable lines of transgenic zebrafish. These transgenic zebrafish display vivid fluorescent colors (green, red, yellow, or orange) visible to unaided eyes under both daylight and ultraviolet light in the dark. The level of foreign protein expression is estimated between 3% and 17% of total muscle proteins, equivalent to 4.8-27.2mg/g wet muscle tissue. Thus, the fish muscle may be explored as another useful bioreactor system for production of recombinant proteins. In spite of the high level of foreign protein expression, the expression of endogenous mylz2 mRNAs was not negatively affected. Furthermore, compared to the wild-type fish, these fluorescent transgenic fish have no advantage in survival and reproduction.

  18. Surface film formation in vitro by infant and therapeutic surfactants: role of surfactant protein B.

    PubMed

    Danhaive, Olivier; Chapin, Cheryl; Horneman, Hart; Cogo, Paola E; Ballard, Philip L

    2015-02-01

    Pulmonary surfactant provides an alveolar surface-active film that is critical for normal lung function. Our objective was to determine in vitro film formation properties of therapeutic and infant surfactants and the influence of surfactant protein (SP)-B content. We used a multiwell fluorescent assay measuring maximum phospholipid surface accumulation (Max), phospholipid concentration required for half-maximal film formation (½Max), and time for maximal accumulation (tMax). Among five therapeutic surfactants, calfactant (highest SP-B content) had film formation values similar to natural surfactant, and addition of SP-B to beractant (lowest SP-B) normalized its Max value. Addition of budesonide to calfactant did not adversely affect film formation. In tracheal aspirates of preterm infants with evolving chronic lung disease, SP-B content correlated with ½Max and tMax values, and SP-B supplementation of SP-B-deficient infant surfactant restored normal film formation. Reconstitution of normal surfactant indicated a role for both SP-B and SP-C in film formation. Film formation in vitro differs among therapeutic surfactants and is highly dependent on SP-B content in infant surfactant. The results support a critical role of SP-B for promoting surface film formation.

  19. New Method for Measuring the Anchoring Energy of Strongly-Bound Membrane-Associated Proteins [Method for measuring the anchoring energy of strongly-bound membrane-associated proteins].

    DOE PAGES

    Kent, Michael S.; La Bauve, Elisa; Vernon, Briana C.; ...

    2016-02-01

    Here, we describe a new method to measure the activation energy required to remove a strongly-bound membrane-associated protein from a lipid membrane (anchoring energy). It is based on measuring the rate of release of a liposome-bound protein during centrifugation on a sucrose gradient as a function of time and temperature. The method was used to determine anchoring energy for the soluble dengue virus envelope protein (sE) strongly bound to 80:20 POPC:POPG liposomes at pH 5.5. We also measured the binding energy of sE at the same pH for the initial, predominantly reversible, phase of binding to a 70:30 PC:PG lipidmore » bilayer. The anchoring energy (37 +/- 1.7 kcal/mol, 20% PG) was found to be much larger than the binding energy (7.8 +/- 0.3 kcal/mol for 30% PG, or est. 7.0 kcal/mol for 20% PG). This is consistent with data showing that free sE is a monomer at pH 5.5, but assembles into trimers after associating with membranes. But, trimerization alone is insufficient to account for the observed difference in energies, and we conclude that some energy dissipation occurs during the release process. This new method to determine anchoring energy should be useful to understand the complex interactions of integral monotopic proteins and strongly-bound peripheral membrane proteins with lipid membranes.« less

  20. Strong Ionic Hydrogen Bonding Causes a Spectral Isotope Effect in Photoactive Yellow Protein

    PubMed Central

    Kaledhonkar, Sandip; Hara, Miwa; Stalcup, T. Page; Xie, Aihua; Hoff, Wouter D.

    2013-01-01

    Standard hydrogen bonds are of great importance for protein structure and function. Ionic hydrogen bonds often are significantly stronger than standard hydrogen bonds and exhibit unique properties, but their role in proteins is not well understood. We report that hydrogen/deuterium exchange causes a redshift in the visible absorbance spectrum of photoactive yellow protein (PYP). We expand the range of interpretable isotope effects by assigning this spectral isotope effect (SIE) to a functionally important hydrogen bond at the active site of PYP. The inverted sign and extent of this SIE is explained by the ionic nature and strength of this hydrogen bond. These results show the relevance of ionic hydrogen bonding for protein active sites, and reveal that the inverted SIE is a novel, to our knowledge, tool to probe ionic hydrogen bonds. Our results support a classification of hydrogen bonds that distinguishes the properties of ionic hydrogen bonds from those of both standard and low barrier hydrogen bonds, and show how this classification helps resolve a recent debate regarding active site hydrogen bonding in PYP. PMID:24314088

  1. Cooperative folding of intrinsically disordered domains drives assembly of a strong elongated protein

    PubMed Central

    Gruszka, Dominika T.; Whelan, Fiona; Farrance, Oliver E.; Fung, Herman K. H.; Paci, Emanuele; Jeffries, Cy M.; Svergun, Dmitri I.; Baldock, Clair; Baumann, Christoph G.; Brockwell, David J.; Potts, Jennifer R.; Clarke, Jane

    2015-01-01

    Bacteria exploit surface proteins to adhere to other bacteria, surfaces and host cells. Such proteins need to project away from the bacterial surface and resist significant mechanical forces. SasG is a protein that forms extended fibrils on the surface of Staphylococcus aureus and promotes host adherence and biofilm formation. Here we show that although monomeric and lacking covalent cross-links, SasG maintains a highly extended conformation in solution. This extension is mediated through obligate folding cooperativity of the intrinsically disordered E domains that couple non-adjacent G5 domains thermodynamically, forming interfaces that are more stable than the domains themselves. Thus, counterintuitively, the elongation of the protein appears to be dependent on the inherent instability of its domains. The remarkable mechanical strength of SasG arises from tandemly arrayed ‘clamp' motifs within the folded domains. Our findings reveal an elegant minimal solution for the assembly of monomeric mechano-resistant tethers of variable length. PMID:26027519

  2. Synthetic lung surfactants containing SP-B and SP-C peptides plus novel phospholipase-resistant lipids or glycerophospholipids

    PubMed Central

    Notter, Robert H.; Gupta, Rohun; Schwan, Adrian L.; Wang, Zhengdong; Shkoor, Mohanad Gh

    2016-01-01

    Background This study examines the biophysical and preclinical pulmonary activity of synthetic lung surfactants containing novel phospholipase-resistant phosphonolipids or synthetic glycerophospholipids combined with Super Mini-B (S-MB) DATK and/or SP-Css ion-lock 1 peptides that replicate the functional biophysics of surfactant proteins (SP)-B and SP-C. Phospholipase-resistant phosphonolipids used in synthetic surfactants are DEPN-8 and PG-1, molecular analogs of dipalmitoyl phosphatidylcholine (DPPC) and palmitoyl-oleoyl phosphatidylglycerol (POPG), while glycerophospholipids used are active lipid components of native surfactant (DPPC:POPC:POPG 5:3:2 by weight). The objective of the work is to test whether these novel lipid/peptide synthetic surfactants have favorable preclinical activity (biophysical, pulmonary) for therapeutic use in reversing surfactant deficiency or dysfunction in lung disease or injury. Methods Surface activity of synthetic lipid/peptide surfactants was assessed in vitro at 37 °C by measuring adsorption in a stirred subphase apparatus and dynamic surface tension lowering in pulsating and captive bubble surfactometers. Shear viscosity was measured as a function of shear rate on a Wells-Brookfield micro-viscometer. In vivo pulmonary activity was determined by measuring lung function (arterial oxygenation, dynamic lung compliance) in ventilated rats and rabbits with surfactant deficiency/dysfunction induced by saline lavage to lower arterial PO2 to <100 mmHg, consistent with clinical acute respiratory distress syndrome (ARDS). Results Synthetic surfactants containing 5:3:2 DPPC:POPC:POPG or 9:1 DEPN-8:PG-1 combined with 3% (by wt) of S-MB DATK, 3% SP-Css ion-lock 1, or 1.5% each of both peptides all adsorbed rapidly to low equilibrium surface tensions and also reduced surface tension to ≤1 mN/m under dynamic compression at 37 °C. However, dual-peptide surfactants containing 1.5% S-MB DATK + 1.5% SP-Css ion-lock 1 combined with 9:1 DEPN-8

  3. Strong physical constraints on sequence-specific target location by proteins on DNA molecules

    PubMed Central

    Flyvbjerg, Henrik; Keatch, Steven A.; Dryden, David T.F.

    2006-01-01

    Sequence-specific binding to DNA in the presence of competing non-sequence-specific ligands is a problem faced by proteins in all organisms. It is akin to the problem of parking a truck at a loading bay by the side of a road in the presence of cars parked at random along the road. Cars even partially covering the loading bay prevent correct parking of the truck. Similarly on DNA, non-specific ligands interfere with the binding and function of sequence-specific proteins. We derive a formula for the probability that the loading bay is free from parked cars. The probability depends on the size of the loading bay and allows an estimation of the size of the footprint on the DNA of the sequence-specific protein by assaying protein binding or function in the presence of increasing concentrations of non-specific ligand. Assaying for function gives an ‘activity footprint’; the minimum length of DNA required for function rather than the more commonly measured physical footprint. Assaying the complex type I restriction enzyme, EcoKI, gives an activity footprint of ∼66 bp for ATP hydrolysis and 300 bp for the DNA cleavage function which is intimately linked with translocation of DNA by EcoKI. Furthermore, considering the coverage of chromosomal DNA by proteins in vivo, our theory shows that the search for a specific DNA sequence is very difficult; most sites are obscured by parked cars. This effectively rules out any significant role in target location for mechanisms invoking one-dimensional, linear diffusion along DNA. PMID:16698961

  4. Strong physical constraints on sequence-specific target location by proteins on DNA molecules.

    PubMed

    Flyvbjerg, Henrik; Keatch, Steven A; Dryden, David T F

    2006-01-01

    Sequence-specific binding to DNA in the presence of competing non-sequence-specific ligands is a problem faced by proteins in all organisms. It is akin to the problem of parking a truck at a loading bay by the side of a road in the presence of cars parked at random along the road. Cars even partially covering the loading bay prevent correct parking of the truck. Similarly on DNA, non-specific ligands interfere with the binding and function of sequence-specific proteins. We derive a formula for the probability that the loading bay is free from parked cars. The probability depends on the size of the loading bay and allows an estimation of the size of the footprint on the DNA of the sequence-specific protein by assaying protein binding or function in the presence of increasing concentrations of non-specific ligand. Assaying for function gives an 'activity footprint'; the minimum length of DNA required for function rather than the more commonly measured physical footprint. Assaying the complex type I restriction enzyme, EcoKI, gives an activity footprint of approximately 66 bp for ATP hydrolysis and 300 bp for the DNA cleavage function which is intimately linked with translocation of DNA by EcoKI. Furthermore, considering the coverage of chromosomal DNA by proteins in vivo, our theory shows that the search for a specific DNA sequence is very difficult; most sites are obscured by parked cars. This effectively rules out any significant role in target location for mechanisms invoking one-dimensional, linear diffusion along DNA.

  5. Force sensing by the vascular protein von Willebrand factor is tuned by a strong intermonomer interaction

    PubMed Central

    Müller, Jochen P.; Mielke, Salomé; Löf, Achim; Obser, Tobias; Beer, Christof; Bruetzel, Linda K.; Pippig, Diana A.; Vanderlinden, Willem; Lipfert, Jan; Schneppenheim, Reinhard; Benoit, Martin

    2016-01-01

    The large plasma glycoprotein von Willebrand factor (VWF) senses hydrodynamic forces in the bloodstream and responds to elevated forces with abrupt elongation, thereby increasing its adhesiveness to platelets and collagen. Remarkably, forces on VWF are elevated at sites of vascular injury, where VWF’s hemostatic potential is important to mediate platelet aggregation and to recruit platelets to the subendothelial layer. Adversely, elevated forces in stenosed vessels lead to an increased risk of VWF-mediated thrombosis. To dissect the remarkable force-sensing ability of VWF, we have performed atomic force microscopy (AFM)-based single-molecule force measurements on dimers, the smallest repeating subunits of VWF multimers. We have identified a strong intermonomer interaction that involves the D4 domain and critically depends on the presence of divalent ions, consistent with results from small-angle X-ray scattering (SAXS). Dissociation of this strong interaction occurred at forces above ∼50 pN and provided ∼80 nm of additional length to the elongation of dimers. Corroborated by the static conformation of VWF, visualized by AFM imaging, we estimate that in VWF multimers approximately one-half of the constituent dimers are firmly closed via the strong intermonomer interaction. As firmly closed dimers markedly shorten VWF’s effective length contributing to force sensing, they can be expected to tune VWF’s sensitivity to hydrodynamic flow in the blood and to thereby significantly affect VWF’s function in hemostasis and thrombosis. PMID:26787887

  6. New ammunition for the proteomic reactor: strong anion exchange beads and multiple enzymes enhance protein identification and sequence coverage.

    PubMed

    Zhou, Hu; Hou, Weimin; Lambert, Jean-Philippe; Figeys, Daniel

    2010-08-01

    The enrichment and processing of proteomic samples prior to multi-dimensional chromatography remain a challenge in 'gel-free' proteomics. We previously reported the development of a microfluidic device called the "proteomic reactor" that relied on enriching proteins by using strong cation exchange (SCX) followed by trypsin digestion in an interstitial volume as little as 50 nL. Here, we report a novel proteomic reactor that is based on polymeric strong anion exchange (SAX) material to analyse proteomic samples. We also compare the performance of the SAX proteomic reactor to our previously reported SCX proteomic reactor for analysing complex yeast proteomes. Our results indicate that the SAX protein reactor preferentially identifies more acidic peptides and proteins compared to the SCX reactor. We show that the SAX and SCX reactors are complementary and that their combination increases the number of unique peptides and proteins identified by 50%. Furthermore, we show that the number of protein identified can be increased further by up to 40% using different proteolytic enzymes on the proteomic reactor.

  7. Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber

    PubMed Central

    Xia, Xiao-Xia; Qian, Zhi-Gang; Ki, Chang Seok; Park, Young Hwan; Kaplan, David L.; Lee, Sang Yup

    2010-01-01

    Spider dragline silk is a remarkably strong fiber that makes it attractive for numerous applications. Much has thus been done to make similar fibers by biomimic spinning of recombinant dragline silk proteins. However, success is limited in part due to the inability to successfully express native-sized recombinant silk proteins (250–320 kDa). Here we show that a 284.9 kDa recombinant protein of the spider Nephila clavipes is produced and spun into a fiber displaying mechanical properties comparable to those of the native silk. The native-sized protein, predominantly rich in glycine (44.9%), was favorably expressed in metabolically engineered Escherichia coli within which the glycyl-tRNA pool was elevated. We also found that the recombinant proteins of lower molecular weight versions yielded inferior fiber properties. The results provide insight into evolution of silk protein size related to mechanical performance, and also clarify why spinning lower molecular weight proteins does not recapitulate the properties of native fibers. Furthermore, the silk expression, purification, and spinning platform established here should be useful for sustainable production of natural quality dragline silk, potentially enabling broader applications. PMID:20660779

  8. An Anion-π Interaction Strongly Stabilizes the β-Sheet Protein WW.

    PubMed

    Smith, Mason S; Lawrence, Eliza E K; Billings, Wendy M; Larsen, Kimberlee S; Bécar, Natalie A; Price, Joshua L

    2017-09-14

    Anions have long been known to engage in stabilizing interactions with electron-deficient arenes. However, the precise nature and energetic contribution of anion-π interactions to protein stability remains a subject of debate. Here, we show that placing a negatively charged Asp in close proximity to electron-rich Phe in a reverse turn within the WW domain results in a favorable interaction that increases WW conformational stability by -1.3 kcal/mol.

  9. Partial characterization of a biosurfactant extracted from Pseudomonas sp. B0406 that enhances the solubility of pesticides.

    PubMed

    García-Reyes, Selene; Yáñez-Ocampo, Gustavo; Wong-Villarreal, Arnoldo; Rajaretinam, Rajesh Kannan; Thavasimuthu, Citarasu; Patiño, Rodrigo; Ortiz-Hernández, Ma Laura

    2017-08-22

    Biodegradation of some organochlorine and organophosphate pesticides is difficult because of their low solubility in water and, therefore, their low bioavailability. To overcome the hydrophobicity problem and the limited pesticide availability, biosurfactants play a major role. In this study, we evaluated the effect of an extract from Pseudomonas sp. B0406 strain with surfactant properties, on the solubility of two pesticides: endosulfan (ED) and methyl parathion (MP). Such a process was performed in order to increase the aqueous solubility of both pesticides, to increase its availability to microorganisms and to promote their biodegradation. The extract from Pseudomonas sp. B0406 showed a critical micellar concentration of 1.4 g/L and the surface tension at that point was 40.4 mN/m. The preliminary chemical and physical partial characterization of the extract with surfactant properties indicated that it is an anionic glycolipid, which increases the solubility of both pesticides of 0.41 at 0.92 mg/L for ED and of 34.58 at 48.10 mg/L for MP. The results of this study suggest the effectiveness of this extract in improving the solubility of both pesticides ED and MP in water and, therefore, of its potential use to enhance the degradation of these pesticides.

  10. Enhancement of protein production via the strong DIT1 terminator and two RNA-binding proteins in Saccharomyces cerevisiae

    PubMed Central

    Ito, Yoichiro; Kitagawa, Takao; Yamanishi, Mamoru; Katahira, Satoshi; Izawa, Shingo; Irie, Kenji; Furutani-Seiki, Makoto; Matsuyama, Takashi

    2016-01-01

    Post-transcriptional upregulation is an effective way to increase the expression of transgenes and thus maximize the yields of target chemicals from metabolically engineered organisms. Refractory elements in the 3′ untranslated region (UTR) that increase mRNA half-life might be available. In Saccharomyces cerevisiae, several terminator regions have shown activity in increasing the production of proteins by upstream coding genes; among these terminators the DIT1 terminator has the highest activity. Here, we found in Saccharomyces cerevisiae that two resident trans-acting RNA-binding proteins (Nab6p and Pap1p) enhance the activity of the DIT1 terminator through the cis element GUUCG/U within the 3′-UTR. These two RNA-binding proteins could upregulate a battery of cell-wall–related genes. Mutagenesis of the DIT1 terminator improved its activity by a maximum of 500% of that of the standard PGK1 terminator. Further understanding and improvement of this system will facilitate inexpensive and stable production of complicated organism-derived drugs worldwide. PMID:27845367

  11. Enhancement of protein production via the strong DIT1 terminator and two RNA-binding proteins in Saccharomyces cerevisiae.

    PubMed

    Ito, Yoichiro; Kitagawa, Takao; Yamanishi, Mamoru; Katahira, Satoshi; Izawa, Shingo; Irie, Kenji; Furutani-Seiki, Makoto; Matsuyama, Takashi

    2016-11-15

    Post-transcriptional upregulation is an effective way to increase the expression of transgenes and thus maximize the yields of target chemicals from metabolically engineered organisms. Refractory elements in the 3' untranslated region (UTR) that increase mRNA half-life might be available. In Saccharomyces cerevisiae, several terminator regions have shown activity in increasing the production of proteins by upstream coding genes; among these terminators the DIT1 terminator has the highest activity. Here, we found in Saccharomyces cerevisiae that two resident trans-acting RNA-binding proteins (Nab6p and Pap1p) enhance the activity of the DIT1 terminator through the cis element GUUCG/U within the 3'-UTR. These two RNA-binding proteins could upregulate a battery of cell-wall-related genes. Mutagenesis of the DIT1 terminator improved its activity by a maximum of 500% of that of the standard PGK1 terminator. Further understanding and improvement of this system will facilitate inexpensive and stable production of complicated organism-derived drugs worldwide.

  12. Strong seed-specific protein expression from the Vigna radiata storage protein 8SGα promoter in transgenic Arabidopsis seeds.

    PubMed

    Chen, Mo-Xian; Zheng, Shu-Xiao; Yang, Yue-Ning; Xu, Chao; Liu, Jie-Sheng; Yang, Wei-Dong; Chye, Mee-Len; Li, Hong-Ye

    2014-03-20

    Vigna radiata (mung bean) is an important crop plant and is a major protein source in developing countries. Mung bean 8S globulins constitute nearly 90% of total seed storage protein and consist of three subunits designated as 8SGα, 8SGα' and 8SGβ. The 5'-flanking sequences of 8SGα' has been reported to confer high expression in transgenic Arabidopsis seeds. In this study, a 472-bp 5'-flanking sequence of 8SGα was identified by genome walking. Computational analysis subsequently revealed the presence of numerous putative seed-specific cis-elements within. The 8SGα promoter was then fused to the gene encoding β-glucuronidase (GUS) to create a reporter construct for Arabidopsis thaliana transformation. The spatial and temporal expression of 8SGα∷GUS, as investigated using GUS histochemical assays, showed GUS expression exclusively in transgenic Arabidopsis seeds. Quantitative GUS assays revealed that the 8SGα promoter showed 2- to 4-fold higher activity than the Cauliflower Mosaic Virus (CaMV) 35S promoter. This study has identified a seed-specific promoter of high promoter strength, which is potentially useful for directing foreign protein expression in seed bioreactors. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Individual protein balance strongly influences δ15N and δ13C values in Nile tilapia, Oreochromis niloticus

    NASA Astrophysics Data System (ADS)

    Gaye-Siessegger, Julia; Focken, Ulfert; Abel, Hansjörg; Becker, Klaus

    Although stable isotope ratios in animals have often been used as indicators of the trophic level and for the back-calculation of diets, few experiments have been done under standardized laboratory conditions to investigate factors influencing δ15N and δ13C values. An experiment using Nile tilapia [Oreochromis niloticus (L.)] was therefore carried out to test the effect of different dietary protein contents (35.4, 42.3, and 50.9%) on δ15N and δ13C values of the whole tilapia. The fish were fed the isoenergetic and isolipidic semi-synthetic diets at a relatively low level. δ15N and δ13C values of the lipid-free body did not differ between the fish fed the diets with different protein contents, but the trophic shift for N and C isotopes decreased with increasing protein accretion in the individual fish, for N from 6.5‰ to 4‰ and for C in the lipid-free body from 4‰ to 2.5‰. This is the first study showing the strong influence of the individual protein balance to the degree to which the isotopic signature of dietary protein was modified in tissue protein of fish. The extrapolation of the trophic level or the reconstruction of the diet of an animal from stable isotope ratios without knowledge of the individual physiological condition and the feeding rate may lead to erroneous results.

  14. MAP5: a novel brain microtubule-associated protein under strong developmental regulation.

    PubMed

    Riederer, B; Cohen, R; Matus, A

    1986-12-01

    A novel microtubule-associated protein, MAP5, is described, whose chemical properties and cytological distribution distinguish it from other known microtubule-associated proteins (MAPs). Its status as a MAP is indicated by the observations that (i) it co-assembles efficiently with microtubules in vitro, (ii) it is localized on microtubules in brain sections by immunogold staining with monoclonal antibody against MAP5 and (iii) immunoaffinity purified MAP5 stimulates tubulin polymerization. Immunoperoxidase staining of brain sections showed that MAP5 is present in neurons throughout the brain and that in them it is evenly distributed throughout axons, dendrites and cell bodies. In this respect it differs from previously described MAPs (1, 2, 3 and tau) which are differentially compartmentalized in brain neurons. MAP5 is not present in axon terminals, dendritic spines or other synaptic elements. It is present at substantially higher levels in neonatal brain than adult and it is more abundant than either MAP1 or MAP2a up to postnatal day 10. The fall in amount of MAP5, from juvenile to adult levels, is completed between postnatal days 10 and 20. This suggests that MAP5 is particularly important in modulating microtubule function during the formation of neuronal processes.

  15. Enrichment of proteinaceous materials on a strong cation-exchange diol silica restricted access material: protein-protein displacement and interaction effects.

    PubMed

    Willemsen, Olga; Machtejevas, Egidijus; Unger, Klaus K

    2004-02-06

    A study of size exclusion and enrichment of proteins employing strong cation-exchange diol silica restricted access material (SCX-RAM) under saturation conditions is presented. Experiments were carried out with bacitracin, protamine, ribonuclease, lysozyme and bovine serum albumin as individual proteinaceous analytes as well as comprehensive binary mixtures and with human urine samples. Protein size dependent capacity features of the SCX-RAM column was observed. Bacitracin demonstrated the highest capacity followed by protamine while adsorption capacities of both ribonuclease and lysozyme were found smaller by a factor of 10. Applying binary protein samples occurring displacement effects were apparent: proteins with strong cationic properties displaced those already adsorbed by the bonded cation-exchange ligands. Bacitracin was displaced in all binary mixture experiments in particular by protamine. Furthermore, the binary mixtures displayed increased adsorption for some proteins due to complex formation. Lysozyme and ribonuclease showed double capacity values when paired with bacitracin. Both phenomena, displacement and enhanced adsorption occurred in the saturated state and led to changes in the urine composition during sample preparation. Injecting urine samples the relative proportions of fractions changed from 4 up to more than 20 times, due to the differences of the protein adsorption capacities on the SCX-RAM column. Analysing urine samples the SCX-RAM column provided extensive long-term stability.

  16. Bone morphogenetic protein-4 strongly potentiates growth factor-induced proliferation of mammary epithelial cells

    SciTech Connect

    Montesano, Roberto Sarkoezi, Rita; Schramek, Herbert

    2008-09-12

    Bone morphogenetic proteins (BMPs) are multifunctional cytokines that elicit pleiotropic effects on biological processes such as cell proliferation, cell differentiation and tissue morphogenesis. With respect to cell proliferation, BMPs can exert either mitogenic or anti-mitogenic activities, depending on the target cells and their context. Here, we report that in low-density cultures of immortalized mammary epithelial cells, BMP-4 did not stimulate cell proliferation by itself. However, when added in combination with suboptimal concentrations of fibroblast growth factor (FGF)-2, FGF-7, FGF-10, epidermal growth factor (EGF) or hepatocyte growth factor (HGF), BMP-4 potently enhanced growth factor-induced cell proliferation. These results reveal a hitherto unsuspected interplay between BMP-4 and growth factors in the regulation of mammary epithelial cell proliferation. We suggest that the ability of BMP-4 to potentiate the mitogenic activity of multiple growth factors may contribute to mammary gland ductal morphogenesis as well as to breast cancer progression.

  17. Protein domains correlate strongly with exons in multiple eukaryotic genomes--evidence of exon shuffling?

    PubMed

    Liu, Mingyi; Grigoriev, Andrei

    2004-09-01

    We conducted a multi-genome analysis correlating protein domain organization with the exon-intron structure of genes in nine eukaryotic genomes. We observed a significant correlation between the borders of exons and domains on a genomic scale for both invertebrates and vertebrates. In addition, we found that the more complex organisms displayed consistently stronger exon-domain correlation, with substantially more significant correlations detected in vertebrates compared with invertebrates. Our observations concur with the principles of exon shuffling theory, including the prediction of predominantly symmetric phase of introns flanking the borders of correlating exons. These results suggest that extensive exon shuffling events during evolution significantly contributed to the shaping of eukaryotic proteomes.

  18. Cloning of a Mycobacterium tuberculosis gene encoding a purifed protein derivative protein that elicits strong tuberculosis-specific delayed-type hypersensitivity.

    PubMed

    Coler, R N; Skeiky, Y A; Ovendale, P J; Vedvick, T S; Gervassi, L; Guderian, J; Jen, S; Reed, S G; Campos-Neto, A

    2000-07-01

    The purified protein derivative (PPD) skin test has been used for the diagnosis of tuberculosis for more than 75 years. However, the test lacks specificity because all mycobacteria share antigens present in PPD. Therefore, sensitization with nontuberculous pathogenic or with environmental nonpathogenic mycobacteria can lead to positive skin tests. This communication describes a novel PPD protein present only in tuberculous complex mycobacteria. A recombinant protein was obtained and named DPPD on the basis of the first 4 amino acids of its N-terminus sequence. DPPD elicited delayed-type hypersensitivity (DTH) in 100% of Mycobacterium tuberculosis-infected guinea pigs but in no animals sensitized with several organisms representative of all members of the Mycobacterium genus. Preliminary results indicate that DPPD induces strong and specific DTH in humans. This work points to the definition of a single recombinant M. tuberculosis protein that may be an alternative to the PPD test.

  19. Preclinical evaluation of bacterially produced RSV-G protein vaccine: Strong protection against RSV challenge in cotton rat model

    PubMed Central

    Fuentes, Sandra; Klenow, Laura; Golding, Hana; Khurana, Surender

    2017-01-01

    In current study, we evaluated the safety and protective efficacy of recombinant unglycosylated RSV G protein ectodomain produced in E. coli (in presence and absence of oil-in-water adjuvant) in a preclinical RSV susceptible cotton rat challenge model compared to formaldehyde inactivated RSV (FI-RSV) and live RSV experimental infection. The adjuvanted G protein vaccine induced robust neutralization antibody responses comparable to those generated by live RSV infection. Importantly, adjuvanted G protein significantly reduced viral loads in both the lungs and nose at early time points following viral challenge. Antibody kinetics determined by Surface Plasmon Resonance showed that adjuvanted G generated 10-fold higher G-binding antibodies compared to non-adjvuanted G vaccine and live RSV infection, which correlated strongly with both neutralization titers and viral load titers in the nose and lungs post-viral challenge. Antibody diversity analysis revealed immunodominant antigenic sites in the N- and C-termini of the RSV-G protein, that were boosted >10-fold by adjuvant and inversely correlated with viral load titers. Enhanced lung pathology was observed only in animals vaccinated with FI-RSV, but not in animals vaccinated with unadjuvanted or adjuvanted RSV-G vaccine after viral challenge. The bacterially produced unglycosylated G protein could be developed as a protective vaccine against RSV disease. PMID:28186208

  20. Preclinical evaluation of bacterially produced RSV-G protein vaccine: Strong protection against RSV challenge in cotton rat model.

    PubMed

    Fuentes, Sandra; Klenow, Laura; Golding, Hana; Khurana, Surender

    2017-02-10

    In current study, we evaluated the safety and protective efficacy of recombinant unglycosylated RSV G protein ectodomain produced in E. coli (in presence and absence of oil-in-water adjuvant) in a preclinical RSV susceptible cotton rat challenge model compared to formaldehyde inactivated RSV (FI-RSV) and live RSV experimental infection. The adjuvanted G protein vaccine induced robust neutralization antibody responses comparable to those generated by live RSV infection. Importantly, adjuvanted G protein significantly reduced viral loads in both the lungs and nose at early time points following viral challenge. Antibody kinetics determined by Surface Plasmon Resonance showed that adjuvanted G generated 10-fold higher G-binding antibodies compared to non-adjvuanted G vaccine and live RSV infection, which correlated strongly with both neutralization titers and viral load titers in the nose and lungs post-viral challenge. Antibody diversity analysis revealed immunodominant antigenic sites in the N- and C-termini of the RSV-G protein, that were boosted >10-fold by adjuvant and inversely correlated with viral load titers. Enhanced lung pathology was observed only in animals vaccinated with FI-RSV, but not in animals vaccinated with unadjuvanted or adjuvanted RSV-G vaccine after viral challenge. The bacterially produced unglycosylated G protein could be developed as a protective vaccine against RSV disease.

  1. Structural Ensembles of Intrinsically Disordered Proteins Depend Strongly on Force Field: A Comparison to Experiment.

    PubMed

    Rauscher, Sarah; Gapsys, Vytautas; Gajda, Michal J; Zweckstetter, Markus; de Groot, Bert L; Grubmüller, Helmut

    2015-11-10

    Intrinsically disordered proteins (IDPs) are notoriously challenging to study both experimentally and computationally. The structure of IDPs cannot be described by a single conformation but must instead be described as an ensemble of interconverting conformations. Atomistic simulations are increasingly used to obtain such IDP conformational ensembles. Here, we have compared the IDP ensembles generated by eight all-atom empirical force fields against primary small-angle X-ray scattering (SAXS) and NMR data. Ensembles obtained with different force fields exhibit marked differences in chain dimensions, hydrogen bonding, and secondary structure content. These differences are unexpectedly large: changing the force field is found to have a stronger effect on secondary structure content than changing the entire peptide sequence. The CHARMM 22* ensemble performs best in this force field comparison: it has the lowest error in chemical shifts and J-couplings and agrees well with the SAXS data. A high population of left-handed α-helix is present in the CHARMM 36 ensemble, which is inconsistent with measured scalar couplings. To eliminate inadequate sampling as a reason for differences between force fields, extensive simulations were carried out (0.964 ms in total); the remaining small sampling uncertainty is shown to be much smaller than the observed differences. Our findings highlight how IDPs, with their rugged energy landscapes, are highly sensitive test systems that are capable of revealing force field deficiencies and, therefore, contributing to force field development.

  2. Preparation of a novel dual-function strong cation exchange/hydrophobic interaction chromatography stationary phase for protein separation.

    PubMed

    Zhao, Kailou; Yang, Li; Wang, Xuejiao; Bai, Quan; Yang, Fan; Wang, Fei

    2012-08-30

    We have explored a novel dual-function stationary phase which combines both strong cation exchange (SCX) and hydrophobic interaction chromatography (HIC) characteristics. The novel dual-function stationary phase is based on porous and spherical silica gel functionalized with ligand containing sulfonic and benzyl groups capable of electrostatic and hydrophobic interaction functionalities, which displays HIC character in a high salt concentration, and IEC character in a low salt concentration in mobile phase employed. As a result, it can be employed to separate proteins with SCX and HIC modes, respectively. The resolution and selectivity of the dual-function stationary phase were evaluated under both HIC and SCX modes with standard proteins and can be comparable to that of conventional IEC and HIC columns. More than 96% of mass and bioactivity recoveries of proteins can be achieved in both HIC and SCX modes, respectively. The results indicated that the novel dual-function column could replace two individual SCX and HIC columns for protein separation. Mixed retention mechanism of proteins on this dual-function column based on stoichiometric displacement theory (SDT) in LC was investigated to find the optimal balance of the magnitude of electrostatic and hydrophobic interactions between protein and the ligand on the silica surface in order to obtain high resolution and selectivity for protein separation. In addition, the effects of the hydrophobicity of the ligand of the dual-function packings and pH of the mobile phase used on protein separation were also investigated in detail. The results show that the ligand with suitable hydrophobicity to match the electrostatic interaction is very important to prepare the dual-function stationary phase, and a better resolution and selectivity can be obtained at pH 6.5 in SCX mode. Therefore, the dual-function column can replace two individual SCX and HIC columns for protein separation and be used to set up two-dimensional liquid

  3. Strong morphological defects in conditional Arabidopsis abp1 knock-down mutants generated in absence of functional ABP1 protein

    PubMed Central

    Perrot-Rechenmann, Catherine; Friml, Jiří

    2016-01-01

    The Auxin Binding Protein 1 (ABP1) is one of the most studied proteins in plants. Since decades ago, it has been the prime receptor candidate for the plant hormone auxin with a plethora of described functions in auxin signaling and development. The developmental importance of ABP1 has recently been questioned by identification of Arabidopsis thaliana abp1 knock-out alleles that show no obvious phenotypes under normal growth conditions. In this study, we examined the contradiction between the normal growth and development of the abp1 knock-outs and the strong morphological defects observed in three different ethanol-inducible abp1 knock-down mutants ( abp1-AS, SS12K, SS12S). By analyzing segregating populations of abp1 knock-out vs. abp1 knock-down crosses we show that the strong morphological defects that were believed to be the result of conditional down-regulation of ABP1 can be reproduced also in the absence of the functional ABP1 protein. This data suggests that the phenotypes in  abp1 knock-down lines are due to the off-target effects and asks for further reflections on the biological function of ABP1 or alternative explanations for the missing phenotypic defects in the abp1 loss-of-function alleles. PMID:26925228

  4. Achieving efficient protein expression in Trichoderma reesei by using strong constitutive promoters

    PubMed Central

    2012-01-01

    Backgrounds The fungus Trichoderma reesei is an important workhorse for expression of homologous or heterologous genes, and the inducible cbh1 promoter is generally used. However, constitutive expression is more preferable in some cases than inducible expression that leads to production of unwanted cellulase components. In this work, constitutive promoters of T. reesei were screened and successfully used for high level homologous expression of xylanase II. Results The transcriptional profiles of 13 key genes that participate in glucose metabolism in T. reesei were analyzed by quantitative real-time reverse-transcription polymerase chain reaction (RT-qPCR). The results indicated that the mRNA levels of pdc (encoding pyruvate decarboxylase) and eno (encoding enolase) genes were much higher than other genes under high glucose conditions. Recombinant T. reesei strains that homologously expressed xylanase II were constructed by using the promoters of the pdc and eno genes, and they respectively produced 9266 IU/ml and 8866 IU/ml of xylanase activities in the cultivation supernatant in a medium with high glucose concentration. The productivities of xylanase II were 1.61 g/L (with the pdc promoter) and 1.52 g/L (with the eno promoter), approximately accounted for 83% and 82% of the total protein secreted by T. reesei, respectively. Conclusions This work demonstrates the screening of constitutive promoters by using RT-qPCR in T. reesei, and has obtained the highest expression of recombinant xylanase II to date by using these promoters. PMID:22709462

  5. Polymer monoliths with low hydrophobicity for strong cation-exchange capillary liquid chromatography of peptides and proteins.

    PubMed

    Gu, Binghe; Li, Yun; Lee, Milton L

    2007-08-01

    Two polymer monoliths were designed and synthesized from commercially available monomers with an attempt to decrease hydrophobicity for strong cation-exchange chromatography. One was prepared from the copolymerization of sulfoethyl methacrylate and poly(ethylene glycol) diacrylate, and the other was synthesized from vinylsulfonic acid and poly(ethylene glycol) diacrylate. Both of the monoliths were synthesized inside 75-microm i.d., UV-transparent fused-silica capillaries by photopolymerization. The hydrophobicities of the two monoliths were systematically evaluated using standard synthetic undecapeptides under ion-exchange conditions and propyl paraben under reversed-phase conditions. The poly(sulfoethyl methacrylate) monolith demonstrated similar hydrophobicity as a monolith prepared from copolymerization of 2-acrylamido-2-methyl-1-propanesulfonic acid and poly(ethylene glycol) diacrylate, and 40% acetonitrile was required to suppress any hydrophobic interactions with peptides under ion-exchange conditions. However, with the use of vinylsulfonic acid as the functional monomer, a monolith with very low hydrophobicity was obtained, making it suitable for strong cation-exchange liquid chromatography of both peptides and proteins. It was found that monolith hydrophobicity could be adjusted by selection of monomers that differ in hydrocarbon content and type of vinyl group. Finally, excellent separations of model protein standards and high-density lipoproteins were achieved using the poly(vinylsulfonic acid) monolith. Five subclasses of high-density lipoproteins were resolved using a simple linear NaCl gradient.

  6. The Expression of the Zonula Adhaerens Protein PLEKHA7 Is Strongly Decreased in High Grade Ductal and Lobular Breast Carcinomas

    PubMed Central

    Tille, Jean-Christophe; Ho, Liza; Shah, Jimit; Seyde, Olivia; McKee, Thomas A.; Citi, Sandra

    2015-01-01

    PLEKHA7 is a junctional protein, which participates in a complex that stabilizes E-cadherin at the zonula adhaerens. Since E-cadherin is involved in epithelial morphogenesis, signaling, and tumor progression, we explored PLEKHA7 expression in cancer. PLEKHA7 expression was assessed in invasive ductal and lobular carcinomas of the breast by immunohistochemistry, immunofluorescence and quantitative RT-PCR. PLEKHA7 was detected at epithelial junctions of normal mammary ducts and lobules, and of tubular and micropapillary structures within G1 and G2 ductal carcinomas. At these junctions, the localization of PLEKHA7 was along the circumferential belt (zonula adhaerens), and only partially overlapping with that of E-cadherin, p120ctn and ZO-1, as shown previously in rodent tissues. PLEKHA7 immunolabeling was strongly decreased in G3 ductal carcinomas and undetectable in lobular carcinomas. PLEKHA7 mRNA was detected in both ductal and lobular carcinomas, with no observed correlation between mRNA levels and tumor type or grade. In summary, PLEKHA7 is a junctional marker of epithelial cells within tubular structures both in normal breast tissue and ductal carcinomas, and since PLEKHA7 protein but not mRNA expression is strongly decreased or lost in high grade ductal carcinomas and in lobular carcinomas, loss of PLEKHA7 is a newly characterized feature of these carcinomas. PMID:26270346

  7. Dengue E Protein Domain III-Based DNA Immunisation Induces Strong Antibody Responses to All Four Viral Serotypes

    PubMed Central

    Chan, Kuan Rong; Tan, Hwee Cheng; Bestagno, Marco; Ooi, Eng Eong; Burrone, Oscar R.

    2015-01-01

    Dengue virus (DENV) infection is a major emerging disease widely distributed throughout the tropical and subtropical regions of the world affecting several millions of people. Despite constants efforts, no specific treatment or effective vaccine is yet available. Here we show a novel design of a DNA immunisation strategy that resulted in the induction of strong antibody responses with high neutralisation titres in mice against all four viral serotypes. The immunogenic molecule is an engineered version of the domain III (DIII) of the virus E protein fused to the dimerising CH3 domain of the IgG immunoglobulin H chain. The DIII sequences were also codon-optimised for expression in mammalian cells. While DIII alone is very poorly secreted, the codon-optimised fusion protein is rightly expressed, folded and secreted at high levels, thus inducing strong antibody responses. Mice were immunised using gene-gun technology, an efficient way of intradermal delivery of the plasmid DNA, and the vaccine was able to induce neutralising titres against all serotypes. Additionally, all sera showed reactivity to a recombinant DIII version and the recombinant E protein produced and secreted from mammalian cells in a mono-biotinylated form when tested in a conformational ELISA. Sera were also highly reactive to infective viral particles in a virus-capture ELISA and specific for each serotype as revealed by the low cross-reactive and cross-neutralising activities. The serotype specific sera did not induce antibody dependent enhancement of infection (ADE) in non-homologous virus serotypes. A tetravalent immunisation protocol in mice showed induction of neutralising antibodies against all four dengue serotypes as well. PMID:26218926

  8. Sand Fly Salivary Proteins Induce Strong Cellular Immunity in a Natural Reservoir of Visceral Leishmaniasis with Adverse Consequences for Leishmania

    PubMed Central

    Collin, Nicolas; Gomes, Regis; Teixeira, Clarissa; Cheng, Lily; Laughinghouse, Andre; Ward, Jerrold M.; Elnaiem, Dia-Eldin; Fischer, Laurent; Valenzuela, Jesus G.; Kamhawi, Shaden

    2009-01-01

    Immunity to a sand fly salivary protein protects against visceral leishmaniasis (VL) in hamsters. This protection was associated with the development of cellular immunity in the form of a delayed-type hypersensitivity response and the presence of IFN-γ at the site of sand fly bites. To date, there are no data available regarding the cellular immune response to sand fly saliva in dogs, the main reservoirs of VL in Latin America, and its role in protection from this fatal disease. Two of 35 salivary proteins from the vector sand fly Lutzomyia longipalpis, identified using a novel approach termed reverse antigen screening, elicited strong cellular immunity in dogs. Immunization with either molecule induced high IgG2 antibody levels and significant IFN-γ production following in vitro stimulation of PBMC with salivary gland homogenate (SGH). Upon challenge with uninfected or infected flies, immunized dogs developed a cellular response at the bite site characterized by lymphocytic infiltration and IFN-γ and IL-12 expression. Additionally, SGH-stimulated lymphocytes from immunized dogs efficiently killed Leishmania infantum chagasi within autologous macrophages. Certain sand fly salivary proteins are potent immunogens obligatorily co-deposited with Leishmania parasites during transmission. Their inclusion in an anti-Leishmania vaccine would exploit anti-saliva immunity following an infective sand fly bite and set the stage for a protective anti-Leishmania immune response. PMID:19461875

  9. On-line strong cation exchange micro-HPLC-ESI-MS/MS for protein identification and process optimization.

    PubMed

    Le Bihan, Thierry; Duewel, Henry S; Figeys, Daniel

    2003-07-01

    We have developed an on-line strong cation exchange (SCX)-ESI-MS/MS platform for the rapid identification of proteins contained in mixtures. This platform consists of a SCX precolumn followed by a nanoflow SCX column on-line with an electrospray ion trap mass spectrometer. We also used this platform to study the dynamics of peptide separation/extraction by SCX, in particular to understand the parameters affecting the performance of SCX in multidimensional chromatography. For example, we have demonstrated that the buffer typically used for tryptic digestion of protein mixtures can have a detrimental effect on the chromatographic behaviour of peptides during SCX separations, thereby affecting certain peptide quantitation approaches that rely on reproducible peptide fractionation. We have also demonstrated that band broadening results when a step (discontinuous) gradient approach is used to displace peptides from the SCX precolumn, reducing the separation power of SCX in multidimensional chromatography. In contrast, excellent chromatographic peak shapes are observed when a defined (continuous) gradient is used. Finally, using a tryptic digest of a protein extract derived from human K562 cells, we observed that larger molecular weight peptides are identified using this on-line SCX approach compared to the more conventional reverse phase (RP) LC/MS approach. Both methods used in tandem complement each other and can lead to a greater number of peptide identifications from a given sample.

  10. Dimethyl Disulfide Produced by the Naturally Associated Bacterium Bacillus sp B55 Promotes Nicotiana attenuata Growth by Enhancing Sulfur Nutrition[W

    PubMed Central

    Meldau, Dorothea G.; Meldau, Stefan; Hoang, Long H.; Underberg, Stefanie; Wünsche, Hendrik; Baldwin, Ian T.

    2013-01-01

    Bacillus sp B55, a bacterium naturally associated with Nicotiana attenuata roots, promotes growth and survival of wild-type and, particularly, ethylene (ET)–insensitive 35S-ethylene response1 (etr1) N. attenuata plants, which heterologously express the mutant Arabidopsis thaliana receptor ETR1-1. We found that the volatile organic compound (VOC) blend emitted by B55 promotes seedling growth, which is dominated by the S-containing compound dimethyl disulfide (DMDS). DMDS was depleted from the headspace during cocultivation with seedlings in bipartite Petri dishes, and 35S was assimilated from the bacterial VOC bouquet and incorporated into plant proteins. In wild-type and 35S-etr1 seedlings grown under different sulfate (SO4−2) supply conditions, exposure to synthetic DMDS led to genotype-dependent plant growth promotion effects. For the wild type, only S-starved seedlings benefited from DMDS exposure. By contrast, growth of 35S-etr1 seedlings, which we demonstrate to have an unregulated S metabolism, increased at all SO4−2 supply rates. Exposure to B55 VOCs and DMDS rescued many of the growth phenotypes exhibited by ET-insensitive plants, including the lack of root hairs, poor lateral root growth, and low chlorophyll content. DMDS supplementation significantly reduced the expression of S assimilation genes, as well as Met biosynthesis and recycling. We conclude that DMDS by B55 production is a plant growth promotion mechanism that likely enhances the availability of reduced S, which is particularly beneficial for wild-type plants growing in S-deficient soils and for 35S-etr1 plants due to their impaired S uptake/assimilation/metabolism. PMID:23903320

  11. Translating mRNAs strongly correlate to proteins in a multivariate manner and their translation ratios are phenotype specific.

    PubMed

    Wang, Tong; Cui, Yizhi; Jin, Jingjie; Guo, Jiahui; Wang, Guibin; Yin, Xingfeng; He, Qing-Yu; Zhang, Gong

    2013-05-01

    As a well-known phenomenon, total mRNAs poorly correlate to proteins in their abundances as reported. Recent findings calculated with bivariate models suggested even poorer such correlation, whereas focusing on the translating mRNAs (ribosome nascent-chain complex-bound mRNAs, RNC-mRNAs) subset. In this study, we analysed the relative abundances of mRNAs, RNC-mRNAs and proteins on genome-wide scale, comparing human lung cancer A549 and H1299 cells with normal human bronchial epithelial (HBE) cells, respectively. As discovered, a strong correlation between RNC-mRNAs and proteins in their relative abundances could be established through a multivariate linear model by integrating the mRNA length as a key factor. The R(2) reached 0.94 and 0.97 in A549 versus HBE and H1299 versus HBE comparisons, respectively. This correlation highlighted that the mRNA length significantly contributes to the translational modulation, especially to the translational initiation, favoured by its correlation with the mRNA translation ratio (TR) as observed. We found TR is highly phenotype specific, which was substantiated by both pathway analysis and biased TRs of the splice variants of BDP1 gene, which is a key transcription factor of transfer RNAs. These findings revealed, for the first time, the intrinsic and genome-wide translation modulations at translatomic level in human cells at steady-state, which are tightly correlated to the protein abundance and functionally relevant to cellular phenotypes.

  12. Draft Genome Sequence of the Fungus Paraphoma sp. B47-9, a Producer of a Biodegradable Plastic–Degrading Enzyme

    PubMed Central

    Sameshima-Yamashita, Yuka; Koike, Hideaki; Koitabashi, Motoo; Saika, Azusa; Morita, Tomotake; Yarimizu, Tohru

    2016-01-01

    Paraphoma sp. B47-9 is a producer of a biodegradable plastic–degrading enzyme. Here, we report the draft genome sequence of this strain. The draft genome assembly has a size of 39.3 Mb with a GC content of 52.4% and consists of 185 scaffolds. PMID:27795277

  13. Draft Genome Sequence of the Fungus Paraphoma sp. B47-9, a Producer of a Biodegradable Plastic-Degrading Enzyme.

    PubMed

    Sameshima-Yamashita, Yuka; Koike, Hideaki; Koitabashi, Motoo; Saika, Azusa; Morita, Tomotake; Yarimizu, Tohru; Kitamoto, Hiroko

    2016-10-20

    Paraphoma sp. B47-9 is a producer of a biodegradable plastic-degrading enzyme. Here, we report the draft genome sequence of this strain. The draft genome assembly has a size of 39.3 Mb with a GC content of 52.4% and consists of 185 scaffolds.

  14. Strong stimulation of recombinant protein production in Escherichia coli by combining stimulatory control elements in an expression cassette

    PubMed Central

    2012-01-01

    Background The XylS/Pm expression system has been used to produce recombinant proteins at industrial levels in Escherichia coli. Activation of transcription from the Pm promoter takes place in the presence of benzoic acid or derivatives of it. Previous mutagenesis studies resulted in identification of several variants of the expression control elements xylS (X), Pm (P) and the 5'-untranslated region (U) that individually gave rise to strongly stimulated expression. The goal of this study was to test if combination of such stimulatory mutations in the same expression vectors would lead to further increase of expression levels. Results We combined X, P and U variants that were originally identified due to their ability to strongly stimulate expression of the reporter gene bla (resistance to penicillin). Combination of optimized elements stimulated bla expression up to 75-fold (X, P and U combined) relative to the wild-type system, while accumulated transcript levels increased about 50-fold. This is much more than for the elements individually. We also tested combination of the variant elements on two other and unrelated genes, celB (encoding phosphoglucomutase) and the human growth factor gene gm-csf. Protein production from these genes is much more efficient than from bla in the wild-type system, but expression was still significantly stimulated by the combination of X, P and U variants, although not to the same extent as for bla. We also integrated a single copy of the expression cassette with each gene into the E. coli chromosome and found that the expression level from this single copy was higher for bla than for the wild-type plasmid system, while it was lower for celB and gm-csf. Conclusion Our results show that combination of stimulatory expression control elements can be used to further increase production of different proteins in E. coli. For one reporter gene (bla) this allowed for more protein production from a single gene copy integrated on the chromosome

  15. Natural Anti-Infective Pulmonary Proteins: In Vivo Cooperative Action of Surfactant Protein SP-A and the Lung Antimicrobial Peptide SP-BN.

    PubMed

    Coya, Juan Manuel; Akinbi, Henry T; Sáenz, Alejandra; Yang, Li; Weaver, Timothy E; Casals, Cristina

    2015-08-15

    The anionic antimicrobial peptide SP-B(N), derived from the N-terminal saposin-like domain of the surfactant protein (SP)-B proprotein, and SP-A are lung anti-infective proteins. SP-A-deficient mice are more susceptible than wild-type mice to lung infections, and bacterial killing is enhanced in transgenic mice overexpressing SP-B(N). Despite their potential anti-infective action, in vitro studies indicate that several microorganisms are resistant to SP-A and SP-B(N). In this study, we test the hypothesis that these proteins act synergistically or cooperatively to strengthen each other's microbicidal activity. The results indicate that the proteins acted synergistically in vitro against SP-A- and SP-B(N)-resistant capsulated Klebsiella pneumoniae (serotype K2) at neutral pH. SP-A and SP-B(N) were able to interact in solution (Kd = 0.4 μM), which enabled their binding to bacteria with which SP-A or SP-B(N) alone could not interact. In vivo, we found that treatment of K. pneumoniae-infected mice with SP-A and SP-B(N) conferred more protection against K. pneumoniae infection than each protein individually. SP-A/SP-B(N)-treated infected mice showed significant reduction of bacterial burden, enhanced neutrophil recruitment, and ameliorated lung histopathology with respect to untreated infected mice. In addition, the concentrations of inflammatory mediators in lung homogenates increased early in infection in contrast with the weak inflammatory response of untreated K. pneumoniae-infected mice. Finally, we found that therapeutic treatment with SP-A and SP-B(N) 6 or 24 h after bacterial challenge conferred significant protection against K. pneumoniae infection. These studies show novel anti-infective pathways that could drive development of new strategies against pulmonary infections.

  16. Sulfonamide inhibition studies of the β-carbonic anhydrase from the newly discovered bacterium Enterobacter sp. B13.

    PubMed

    Eminoğlu, Ayşenur; Vullo, Daniela; Aşık, Aycan; Çolak, Dilşat Nigar; Çanakçı, Sabriye; Beldüz, Ali Osman; Supuran, Claudiu T

    2016-04-01

    The genome of the newly identified bacterium Enterobacter sp. B13 encodes for a β-class carbonic anhydrases (CAs, EC 4.2.1.1), EspCA. This enzyme was recently cloned, and characterized kinetically by this group (J. Enzyme Inhib. Med. Chem. 2016, 31). Here we report an inhibition study with sulfonamides and sulfamates of this enzyme. The best EspCA inhibitors were some sulfanylated sulfonamides with elongated molecules, metanilamide, 4-aminoalkyl-benzenesulfonamides, acetazolamide, and deacetylated methazolamide (KIs in the range of 58.7-96.5nM). Clinically used agents such as methazolamide, ethoxzolamide, dorzolamide, brinzolamide, benzolamide, zonisamide, sulthiame, sulpiride, topiramate and valdecoxib were slightly less effective inhibitors (KIs in the range of 103-138nM). Saccharin, celecoxib, dichlorophenamide and many simple benzenesulfonamides were even less effective as EspCA inhibitors, with KIs in the range of 384-938nM. Identification of effective inhibitors of this bacterial enzyme may lead to pharmacological tools useful for understanding the physiological role(s) of the β-class CAs in bacterial pathogenicity/virulence.

  17. Cloning, expression and biochemical characterization of a β-carbonic anhydrase from the soil bacterium Enterobacter sp. B13.

    PubMed

    Eminoğlu, Ayşenur; Vullo, Daniela; Aşık, Aycan; Çolak, Dilşat Nigar; Supuran, Claudiu T; Çanakçı, Sabriye; Osman Beldüz, Ali

    2016-12-01

    A recombinant carbonic anhydrase (CA, EC 4.2.1.1) from the soil-dwelling bacterium Enterobacter sp. B13 was cloned and purified by Co(2+) affinity chromatography. Bioinformatic analysis showed that the new enzyme (denominated here B13-CA) belongs to the β-class CAs and to possess 95% homology with the ortholog enzyme from Escherichia coli encoded by the can gene, whereas its sequence homology with the other such enzyme from E. coli (encoded by the cynT gene) was of 33%. B13-CA was characterized kinetically as a catalyst for carbon dioxide hydration to bicarbonate and protons. The enzyme shows a significant catalytic activity, with the following kinetic parameters at 20 °C and pH of 8.3: kcat of 4.8 × 10(5) s(-1) and kcat/Km of 5.6 × 10(7) M(-1) × s(-1). This activity was potently inhibited by acetazolamide which showed a KI of 78.9 nM. Although only this compound was investigated for the moment as B13-CA inhibitor, further studies may reveal new classes of inhibitors/activators of this enzyme which may show biomedical or environmental applications, considering the posssible role of this enzyme in CaCO3 biomineralization processes.

  18. Elongation Factor Tu and Heat Shock Protein 70 Are Membrane-Associated Proteins from Mycoplasma ovipneumoniae Capable of Inducing Strong Immune Response in Mice

    PubMed Central

    Jiang, Fei; He, Jinyan; Navarro-Alvarez, Nalu; Xu, Jian; Li, Xia; Li, Peng; Wu, Wenxue

    2016-01-01

    Chronic non-progressive pneumonia, a disease that has become a worldwide epidemic has caused considerable loss to sheep industry. Mycoplasma ovipneumoniae (M. ovipneumoniae) is the causative agent of interstitial pneumonia in sheep, goat and bighorn. We here have identified by immunogold and immunoblotting that elongation factor Tu (EF-Tu) and heat shock protein 70 (HSP 70) are membrane-associated proteins on M. ovipneumonaiea. We have evaluated the humoral and cellular immune responses in vivo by immunizing BALB/c mice with both purified recombinant proteins rEF-Tu and rHSP70. The sera of both rEF-Tu and rHSP70 treated BALB/c mice demonstrated increased levels of IgG, IFN-γ, TNF-α, IL-12(p70), IL-4, IL-5 and IL-6. In addition, ELISPOT assay showed significant increase in IFN-γ+ secreting lymphocytes in the rHSP70 group when compared to other groups. Collectively our study reveals that rHSP70 induces a significantly better cellular immune response in mice, and may act as a Th1 cytokine-like adjuvant in immune response induction. Finally, growth inhibition test (GIT) of M. ovipneumoniae strain Y98 showed that sera from rHSP70 or rEF-Tu-immunized mice inhibited in vitro growth of M. ovipneumoniae. Our data strongly suggest that EF-Tu and HSP70 of M. ovipneumoniae are membrane-associated proteins capable of inducing antibody production, and cytokine secretion. Therefore, these two proteins may be potential candidates for vaccine development against M. ovipneumoniae infection in sheep. PMID:27537186

  19. Elongation Factor Tu and Heat Shock Protein 70 Are Membrane-Associated Proteins from Mycoplasma ovipneumoniae Capable of Inducing Strong Immune Response in Mice.

    PubMed

    Jiang, Fei; He, Jinyan; Navarro-Alvarez, Nalu; Xu, Jian; Li, Xia; Li, Peng; Wu, Wenxue

    2016-01-01

    Chronic non-progressive pneumonia, a disease that has become a worldwide epidemic has caused considerable loss to sheep industry. Mycoplasma ovipneumoniae (M. ovipneumoniae) is the causative agent of interstitial pneumonia in sheep, goat and bighorn. We here have identified by immunogold and immunoblotting that elongation factor Tu (EF-Tu) and heat shock protein 70 (HSP 70) are membrane-associated proteins on M. ovipneumonaiea. We have evaluated the humoral and cellular immune responses in vivo by immunizing BALB/c mice with both purified recombinant proteins rEF-Tu and rHSP70. The sera of both rEF-Tu and rHSP70 treated BALB/c mice demonstrated increased levels of IgG, IFN-γ, TNF-α, IL-12(p70), IL-4, IL-5 and IL-6. In addition, ELISPOT assay showed significant increase in IFN-γ+ secreting lymphocytes in the rHSP70 group when compared to other groups. Collectively our study reveals that rHSP70 induces a significantly better cellular immune response in mice, and may act as a Th1 cytokine-like adjuvant in immune response induction. Finally, growth inhibition test (GIT) of M. ovipneumoniae strain Y98 showed that sera from rHSP70 or rEF-Tu-immunized mice inhibited in vitro growth of M. ovipneumoniae. Our data strongly suggest that EF-Tu and HSP70 of M. ovipneumoniae are membrane-associated proteins capable of inducing antibody production, and cytokine secretion. Therefore, these two proteins may be potential candidates for vaccine development against M. ovipneumoniae infection in sheep.

  20. Oral Combination Vaccine, Comprising Bifidobacterium Displaying Hepatitis C Virus Nonstructural Protein 3 and Interferon-α, Induces Strong Cellular Immunity Specific to Nonstructural Protein 3 in Mice.

    PubMed

    Kitagawa, Koichi; Omoto, Chika; Oda, Tsugumi; Araki, Ayame; Saito, Hiroki; Shigemura, Katsumi; Katayama, Takane; Hotta, Hak; Shirakawa, Toshiro

    2017-01-23

    We previously generated an oral hepatitis C virus (HCV) vaccine using Bifidobacterium displaying the HCV nonstructural protein 3 (NS3) polypeptide. NS3-specific cellular immunity is important for viral clearance and recovery from HCV infection. In this study, we enhanced the cellular immune responses induced by our oral HCV vaccine, Bifidobacterium longum 2165 (B. longum 2165), by combining interferon-α (IFN-α) as an adjuvant with the vaccine in a mouse experimental model. IFN-α is a widely used cytokine meeting the standard of care (SOC) for HCV infection and plays various immunoregulatory roles. We treated C57BL/6N mice with B. longum 2165 every other day and/or IFN-α twice a week for a month and then analyzed the immune responses using spleen cells. We determined the induction of NS3-specific cellular immunity by cytokine quantification, intracellular cytokine staining, and a cytotoxic T lymphocyte (CTL) assay targeting EL4 tumor cells expressing NS3/4A protein (EL4-NS3/4A). We also treated mice bearing EL4-NS3/4A tumor with the combination therapy in vivo. The results confirmed that the combination therapy of B. longum 2165 and IFN-α induced significantly higher IFN-γ secretion, higher population of CD4(+)T and CD8(+)T cells secreting IFN-γ, and higher CTL activity against EL4-NS3/4A cells compared with the control groups of phosphate-buffered saline, B. longum 2165 alone, and IFN-α alone (p < 0.05). We also confirmed that the combination therapy strongly enhanced tumor growth inhibitory effects in vivo with no serious adverse effects (p < 0.05). These results suggest that the combination of B. longum 2165 and IFN-α could induce a strong cellular immunity specific to NS3 protein as a combination therapy augmenting the current SOC immunotherapy against chronic HCV infection.

  1. Molecular-level understanding of protein adsorption at the interface between water and a strongly interacting uncharged solid surface.

    PubMed

    Penna, Matthew J; Mijajlovic, Milan; Biggs, Mark J

    2014-04-09

    Although protein adsorption on solids is of immense relevance, experimental limitations mean there is still a remarkable lack of understanding of the adsorption mechanism, particularly at a molecular level. By subjecting 240+ molecular dynamics simulations of two peptide/water/solid surface systems to statistical analysis, a generalized molecular level mechanism for peptide adsorption has been identified for uncharged surfaces that interact strongly with the solution phase. This mechanism is composed of three phases: (1) biased diffusion of the peptide from the bulk phase toward the surface; (2) anchoring of the peptide to the water/solid interface via interaction of a hydrophilic group with the water adjacent to the surface or a strongly interacting hydrophobic group with the surface; and (3) lockdown of the peptide on the surface via a slow, stepwise and largely sequential adsorption of its residues, which we term 'statistical zippering'. The adsorption mechanism is dictated by the existence of water layers adjacent to the solid and orientational ordering therein. By extending the solid into the solution by ~8 Å and endowing it with a charged character, the water layers ensure the peptide feels the effect of the solid at a range well beyond the dispersion force that arises from it, thus inducing biased diffusion from afar. The charging of the interface also facilitates anchoring of the peptide near the surface via one of its hydrophilic groups, allowing it time it would otherwise not have to rearrange and lockdown. Finally, the slowness of the lockdown process is dictated by the need for the peptide groups to replace adjacent tightly bound interfacial water.

  2. SP-B and SP-C Containing New Synthetic Surfactant for Treatment of Extremely Immature Lamb Lung

    PubMed Central

    Sato, Atsuyasu; Ikegami, Machiko

    2012-01-01

    Although superiority of synthetic surfactant over animal-driven surfactant has been known, there is no synthetic surfactant commercially available at present. Many trials have been made to develop synthetic surfactant comparable in function to animal-driven surfactant. The efficacy of treatment with a new synthetic surfactant (CHF5633) containing dipalmitoylphosphatidylcholine, phosphatidylglycerol, SP-B analog, and SP-C analog was evaluated using immature newborn lamb model and compared with animal lung tissue-based surfactant Survanta. Lambs were treated with a clinical dose of 200 mg/kg CHF5633, 100 mg/kg Survanta, or air after 15 min initial ventilation. All the lambs treated with air died of respiratory distress within 90 min of age. During a 5 h study period, Pco2 was maintained at 55 mmHg with 24 cmH2O peak inspiratory pressure for both groups. The preterm newborn lamb lung functions were dramatically improved by CHF5633 treatment. Slight, but significant superiority of CHF5633 over Survanta was demonstrated in tidal volume at 20 min and dynamic lung compliance at 20 and 300 min. The ultrastructure of CHF5633 was large with uniquely aggregated lipid particles. Increased uptake of CHF5633 by alveolar monocytes for catabolism was demonstrated by microphotograph, which might be associated with the higher treatment dose of CHF5633. The higher catabolism of CHF5633 was also suggested by the similar amount of surfactant lipid in bronchoalveolar lavage fluid (BALF) between CHF5633 and Survanta groups, despite the 2-fold higher treatment dose of CHF5633. Under the present ventilation protocol, lung inflammation was minimal for both groups, evaluated by inflammatory cell numbers in BALF and expression of IL-1β, IL-6, IL-8, and TNFα mRNA in the lung tissue. In conclusion, the new synthetic surfactant CHF5633 was effective in treating extremely immature newborn lambs with surfactant deficiency during the 5 h study period. PMID:22808033

  3. High yield expression of an AHL-lactonase from Bacillus sp. B546 in Pichia pastoris and its application to reduce Aeromonas hydrophila mortality in aquaculture

    PubMed Central

    2010-01-01

    Background Aeromonas hydrophila is a serious pathogen and can cause hemorrhagic septicemia in fish. To control this disease, antibiotics and chemicals are widely used which can consequently result in "superbugs" and chemical accumulation in the food chain. Though vaccine against A. hydrophila is available, its use is limited due to multiple serotypes of this pathogen and problems of safety and efficacy. Another problem with vaccination is the ability to apply it to small fish especially in high numbers. In this study, we tried a new way to attenuate the A. hydrophila infection by using a quorum quenching strategy with a recombinant AHL-lactonase expressed in Pichia pastoris. Results The AHL-lactonase (AiiAB546) from Bacillus sp. B546 was produced extracellularly in P. pastoris with a yield of 3,558.4 ± 81.3 U/mL in a 3.7-L fermenter when using 3-oxo-C8-HSL as the substrate. After purification with a HiTrap Q Sepharose column, the recombinant homogenous protein showed a band of 33.6 kDa on SDS-PAGE, higher than the calculated molecular mass (28.14 kDa). Deglycosylation of AiiAB546 with Endo H confirmed the occurrence of N-glycosylation. The purified recombinant AiiAB546 showed optimal activity at pH 8.0 and 20°C, exhibited excellent stability at pH 8.0-12.0 and thermal stability at 70°C, was firstly confirmed to be significantly protease-resistant, and had wide substrate specificity. In application test, when co-injected with A. hydrophila in common carp, recombinant AiiAB546 decreased the mortality rate and delayed the mortality time of fish. Conclusions Our results not only indicate the possibility of mass-production of AHL-lactonase at low cost, but also open up a promising foreground of application of AHL-lactonase in fish to control A. hydrophila disease by regulating its virulence. To our knowledge, this is the first report on heterologous expression of AHL-lactonase in P. pastoris and attenuating A. hydrophila virulence by co-injection with AHL

  4. Impaired surfactant protein B synthesis in infants with congenital diaphragmatic hernia.

    PubMed

    Cogo, Paola E; Simonato, Manuela; Danhaive, Olivier; Verlato, Giovanna; Cobellis, Giovanna; Savignoni, Francesco; Peca, Donatella; Baritussio, Aldo; Carnielli, Virgilio P

    2013-03-01

    Pulmonary hypoplasia and hypertension account for significant morbidity and mortality in neonates with congenital diaphragmatic hernia (CDH). Whether CDH is associated with surfactant dysfunction remains controversial. Therefore, we measured disaturated phosphatidylcholine (DSPC) and surfactant protein (SP)-B concentration in tracheal aspirates and their synthesis rate in infants with CDH compared to infants without lung disease. (2)H2O as a precursor of DSPC and 1-(13)C-leucine as a precursor of SP-B were administered to 13 infants with CDH and eight controls matched for gestational age. DSPC and SP-B were isolated from tracheal aspirates, and their fractional synthesis rate was derived from (2)H and (13)C enrichment curves obtained by mass spectrometry. DSPC and SP-B amounts in tracheal aspirates were also measured. In infants with CDH, SP-B fractional synthesis rate and amount were 62±27% and 57±22% lower, respectively, than the value found in infants without lung disease (p<0.01 and p<0.05, respectively). There were no significant group differences in DSPC fractional synthesis rate and amount. Infants with CDH have a lower rate of synthesis of SP-B and less SP-B in tracheal aspirates. In these infants, partial SP-B deficiency could contribute to the severity of respiratory failure and its correction might represent a therapeutic goal.

  5. Strong HER-2/neu protein overexpression by immunohistochemistry often does not predict oncogene amplification by fluorescence in situ hybridization.

    PubMed

    Hammock, Lauren; Lewis, Melinda; Phillips, Carol; Cohen, Cynthia

    2003-10-01

    Breast cancer patients with HER-2/neu oncogene amplification by fluorescence in situ hybridization (FISH) have been shown to have a better response to trastuzumab (Herceptin) therapy than those showing HER-2/neu protein overexpression only. Many centers currently perform FISH only on tumors showing 2+ HER-2/neu positivity by immunohistochemistry (IHC), with the assumption that 3+ positivity virtually equates with amplification. Results of FISH performed on 102 breast cancer cases over a 12-month period were correlated with HER-2/neu IHC results. FISH was performed using a ratio of HER-2/neu and chromosome 17 centromere signal counts (PathVysion; Vysis, Downers Grove, IL). Immunohistochemical expression of HER-2/neu was evaluated according to the published scoring guidelines of the HercepTest (Dako, Carpinteria, CA). Only 22 of 45 tumors with 3+ positivity (49%) showed amplification by FISH. Only 2 of 25 cases with 2+ staining by IHC (6%) showed gene amplification, and 1 of 25 cases with negative IHC staining (4%) showed weak amplification. Of the 25 cases showing oncogene amplification, 22 (88%) showed 3+ IHC positivity, 2 (8%) showed 2+ positivity, and 1 (4%) was negative by IHC. More than 50% of breast tumors showing strong 3+ HER-2/neu staining do not show oncogene amplification by FISH. Most tumors with 2+ and negative IHC also fail to amplify. In our experience, FISH studies should be performed on all 3+ and 2+ staining tumors to avoid inappropriate and toxic treatment. The decision to perform FISH on IHC-negative tumors should be guided by additional parameters, including tumor grade and estrogen receptor status.

  6. Strong associations among rumen endotoxin and acute phase proteins with plasma minerals in lactating cows fed graded amounts of concentrate.

    PubMed

    Zebeli, Q; Dunn, S M; Ametaj, B N

    2010-04-01

    The objective of this investigation was to determine associations among rumen endotoxin, plasma serum amyloid A (SAA), and C-reactive protein (CRP) with plasma Ca, Fe, Zn, and Cu in lactating cows challenged with graded amounts of rolled barley grain in the diet (i.e., 0, 15, 30, and 45% of DMI). Correlative relationships among variables were determined by linear and nonlinear regression procedures adjusted for the effects of day, animal, and experimental period. Increasing the amount of grain in the diet was successful in inducing an acute phase response, as assessed by augmentation of rumen endotoxin and plasma CRP and SAA (P < 0.01). The correlative analysis revealed inverse, nonlinear relationships of rumen endotoxin and plasma SAA with circulating Ca. Interestingly, plasma Ca reached the asymptotic plateau at 10.6 mg/dL. The increase in rumen endotoxin was associated with an abrupt decrease in plasma Fe (R(2) = 0.91; P < 0.001). A similar relationship, although at a reduced estimation accuracy (R(2) = 0.21; P < 0.01), was observed between rumen endotoxin and plasma Zn. Augmentation of rumen endotoxin and plasma CRP resulted in a positive, biphasic response of plasma Cu. In conclusion, the increase in rumen endotoxin in response to high-grain diets, and the resulting increases in plasma SAA and CRP, were strongly correlated with fluctuations of plasma minerals. Results suggest that new feeding strategies should be developed to curb the release of endotoxin in the rumen fluid to prevent perturbing minerals in the plasma.

  7. Experimental and numerical studies of the chromatofocusing of dilute proteins using retained pH gradients formed on a strong-base anion-exchange column.

    PubMed

    Strong, J C; Frey, D D

    1997-05-09

    The separation of dilute protein mixtures was achieved using simple monovalent buffering species to form retained, internally produced pH gradients on a strong-basic anion-exchange column. Highly focused proteins bands localized on stepwise pH transitions were produced experimentally under trace and volume overloaded feed conditions. Numerical simulations were performed that accurately predict the pH profile and protein band shapes in the column effluent. Experimental results were combined with numerical investigations to explore strategies for designing efficient preparative-scale chromatofocusing systems using simple, inexpensive buffers and adsorbents.

  8. Strong resistance of (tridecafluoro-1,1,2,2-tetrahydrooctyl)triethoxysilane (TTS) nanofilm to protein adsorption.

    PubMed

    Alluri, Chandrakanth; Ji, Hai-Feng; Sit, PingFai Sidney

    2013-01-01

    In this report, the properties of fluorocarbon-containing (tridecafluoro-1,1,2,2-tetrahydrooctyl)triethoxysilane (TTS) (C14 H19 F13 O3 Si) nanofilm coated on silicon surface and its potential to resist protein adsorption were examined. Thickness and wettability of the silicon surface before and after TTS nanofilm coating were examined by ellipsometry and contact angle goniometry, respectively. The same techniques were used to examine protein layer on nonmodified and TTS-coated silicon surface. In addition, bright-field optical microscopy and fluorescence spectrophotometry were used to provide visual, qualitative description of adsorbed proteins and the specific signal of fluorescence-labeled bovine serum albumin (BSA), respectively, on bare and TTS-coated silicon surface. Single-component protein solution of four model proteins, namely BSA, human fibrinogen, bovine serum immunoglobulin G, and fibronectin, was prepared, and the adsorption responses of these four proteins on TTS nanofilm were examined, using nonmodified silicon surface as comparison. TTS substantially reduces the adsorption of all four proteins tested. Our results indicate that fluorocarbon-containing TTS, once coated on surfaces, is an effective molecule for resisting protein adsorption. This will open up potential applications, particularly for silicon-containing implant devices such as glass. © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  9. Essentiality Is a Strong Determinant of Protein Rates of Evolution during Mutation Accumulation Experiments in Escherichia coli.

    PubMed

    Alvarez-Ponce, David; Sabater-Muñoz, Beatriz; Toft, Christina; Ruiz-González, Mario X; Fares, Mario A

    2016-09-26

    The Neutral Theory of Molecular Evolution is considered the most powerful theory to understand the evolutionary behavior of proteins. One of the main predictions of this theory is that essential proteins should evolve slower than dispensable ones owing to increased selective constraints. Comparison of genomes of different species, however, has revealed only small differences between the rates of evolution of essential and nonessential proteins. In some analyses, these differences vanish once confounding factors are controlled for, whereas in other cases essentiality seems to have an independent, albeit small, effect. It has been argued that comparing relatively distant genomes may entail a number of limitations. For instance, many of the genes that are dispensable in controlled lab conditions may be essential in some of the conditions faced in nature. Moreover, essentiality can change during evolution, and rates of protein evolution are simultaneously shaped by a variety of factors, whose individual effects are difficult to isolate. Here, we conducted two parallel mutation accumulation experiments in Escherichia coli, during 5,500-5,750 generations, and compared the genomes at different points of the experiments. Our approach (a short-term experiment, under highly controlled conditions) enabled us to overcome many of the limitations of previous studies. We observed that essential proteins evolved substantially slower than nonessential ones during our experiments. Strikingly, rates of protein evolution were only moderately affected by expression level and protein length. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  10. Surfactant protein B labelled with [(99m)Tc(CO)3(H20)3](+) retains biological activity in vitro..

    PubMed

    Amann, A; Decristoforo, C; Ott, I; Wenger, M; Bader, D; Alberto, R; Putz, G

    2001-04-01

    Labelling of the hydrophobic surfactant protein B (SP-B) under non-reducing conditions was achieved with [(99m)Tc(CO)(3)(H2O)(3)](+) prepared according to Alberto et al. (JACS, 1998). The binding of radioactivity was protein-specific, with an overall radiochemical yield of 50%. Gel electrophoresis and Westernblot analyses showed no structural changes of SP-B. Spreading properties and surface activity of (99m)Tc-labelled SP-B in an air/water interface coincided with those of unlabelled SP-B. (99m)Tc-SP-B seems to be a promising agent to observe surfactant spreading under clinical conditions. Therapeutic results for surfactant instillation in clinical trials are conflicting. The (99m)Tc-labelling of surfactant would allow to observe its spreading in the lung under clinical conditions. [(99m)Tc(CO)(3)(H2O)(3)](+) was prepared as described by Alberto et al. (JACS, 1998). This carbonyl complex was used for the direct labelling of surfactant protein B (SP-B) under non-reductive conditions by direct incubation with SP-B at elevated temperature followed by extraction into CHCl(3)/MeOH. The hydrophobic protein SP-B was labelled with [(99m)Tc(CO)(3)(H2O)(3)](+). An overall radiochemical yield of about 50% was achieved. HPLC-analysis revealed a single radiolabelled species according to UV elution profile of SP-B, supported by paper and size exclusion chromatography. Gel electrophoresis confirmed that the dimer structure of SP-B was preserved. Spreading properties of (99m)Tc-labelled SP-B in an air/water interface coincided with those of unlabelled SP-B. Spreading of radioactivity observed in a glass trough of 26 cm x 27 cm with a gamma camera was completed during the first 7-9 sec after application of (99m)Tc-labelled SP-B. The corresponding decrease of surface tension to 45 mN/m at the peripheral surface tension sensors took 7 sec +/- 2 sec (MEAN +/- STD; n = 3). Direct and specific (99m)Tc-labelling of the hydrophobic surfactant protein B was achieved using the [(99m

  11. Chromatofocusing of peptides and proteins using linear pH gradients formed on strong ion-exchange adsorbents.

    PubMed

    Kang, Xuezhen; Frey, Douglas D

    2004-08-05

    Although it is commonly believed that a column packing used for chromatofocusing must have an "even" buffering capacity in order to produce a linear pH gradient, it is demonstrated here that linear pH gradients suitable for chromatofocusing can be produced on a column packing having a minimal buffering capacity. In particular, if either a strong-acid cation-exchange column packing or a strong-base anion-exchange column packing is presaturated with either a weak acid titrated with a strong base, or a weak base titrated with a strong acid, respectively, to the initial pH, then a linear or nearly linear pH gradient can be formed using a polyampholyte elution buffer by taking advantage of the presence of small quantities of weak-acid or weak-base functional groups that generally exist on these types of column packings. Experimental and theoretical studies are used to demonstrate that such systems have potential advantages over traditional chromatofocusing methods in terms of the speed of the separation, the resolution achieved, and the range of applications possible. Among other techniques described, a method for separating tryptic peptides using chromatofocusing and a strong-acid cation-exchange column packing is demonstrated to be a useful alternative to capillary isoelectric focusing and ion-exchange chromatography using a salt gradient for this purpose.

  12. Identification of two homologous mitochondrial DNA sequences, which bind strongly and specifically to a mitochondrial protein of Paracentrotus lividus.

    PubMed Central

    Roberti, M; Mustich, A; Gadaleta, M N; Cantatore, P

    1991-01-01

    Using a combination of band shift and DNasel protection experiments, two Paracentrotus lividus mitochondrial sequences, able to bind tightly and selectively to a mitochondrial protein from sea urchin embryos, have been found. The two sequences, which compete with each other for binding to the protein, are located in two genome regions which are thought to contain regulatory signals for mitochondrial replication and transcription. A computer analysis suggests that the sequence TTTTRTANNTCYYATCAYA, common to the two binding regions, is the minimal recognition signal for the binding to the protein. We discuss the hypothesis that the protein binding capacity of these two sequences is involved in the control of sea urchin mtDNA replication during developmental stages. Images PMID:1956785

  13. Macrophages in T cell/histiocyte rich large B cell lymphoma strongly express metal-binding proteins and show a bi-activated phenotype.

    PubMed

    Hartmann, Sylvia; Tousseyn, Thomas; Döring, Claudia; Flüchter, Patricia; Hackstein, Holger; Herreman, An; Ponzoni, Maurilio; de Wolf-Peeters, Chris; Facchetti, Fabio; Gascoyne, Randy D; Küppers, Ralf; Steidl, Christian; Hansmann, Martin-Leo

    2013-12-01

    Abundant macrophage infiltration in tumors often correlates with a poor prognosis. T cell/histiocyte rich large B cell lymphoma (THRLBCL) is a distinct aggressive B cell lymphoma entity showing a high macrophage content. To further elucidate the role of tumor-associated macrophages in THRLBCL, we performed gene expression profiling of microdissected histiocyte subsets of THRLBCL, nodular lymphocyte predominant Hodgkin lymphoma (NLPHL), Piringer lymphadenitis, sarcoidosis, nonspecific lymphadenitis and monocytes from peripheral blood. In a supervised principal component analysis, histiocytes from THRLBCL were most closely related to epithelioid cells from NLPHL, with both types of cells expressing genes related to proinflammatory and regulatory macrophage activity. Moreover, histiocytes from THRLBCL strongly expressed metal-binding proteins like MT2A, by which histiocytes of THRLBCL can be distinguished from the other histiocyte subsets investigated. Interestingly, the validation at the protein level showed a strong expression of TXN, CXCL9, MT2A and SOD2 not only in macrophages of THRLBCL but also in the tumor cells of NLPHL and classical Hodgkin lymphoma (cHL). Overall, the present findings indicate that macrophages in the microenvironment of THRLBCL have acquired a distinct gene expression pattern that is characterized by a mixed M1/M2 phenotype and a strong expression of several metal binding proteins. The microenvironments in NLPHL and THRLBCL appear to have a similar influence on the macrophage phenotype. The high expression of metal binding proteins in histiocytes of THRLBCL may be diagnostically useful, but a potential pathophysiological role remains to be identified.

  14. Increasing the secretion ability of the kil gene for recombinant proteins in Escherichia coli by using a strong stationary-phase promoter.

    PubMed

    Beshay, Usama; Miksch, Gerhard; Friehs, Karl; Flaschel, Erwin

    2007-12-01

    By using a beta-glucanase from Bacillus as a model protein, we investigated whether the secretion competence based on the action of the kil gene can be improved using stronger promoters for the expression of the kil gene. Since the production of extracellular target proteins also depends on the promoter strengths of the target gene, we constructed four expression vectors with all possible combinations of a weak and a strong stationary-phase promoter for the kil gene, and a weak and a strong constitutive promoter, respectively, for the beta-glucanase gene. The results of batch fermentations showed that the use of stronger promoters generally decreased the cell density. However, a drastic increase of productivity of the cells to produce and secrete beta-glucanase resulted in a significantly higher activity of extracellular beta-glucanase. The yield of extracellular beta-glucanase can be increased (to 168 %) by using a strong promoter for the beta-glucanase alone. However, the increase was much higher when the weak promoter of the kil gene was replaced by a strong stationary-phase promoter (to 221 %). An even higher yield of extracellular beta-glucanase was reached when beta-glucanase was expressed by a strong promoter in addition indicating a combinatorial effect. This shows that the extracellular production of a recombinant target gene can be optimized by tuning the promoter strengths of components, the kil gene and the target gene.

  15. Live baculovirus acts as a strong B and T cell adjuvant for monomeric and oligomeric protein antigens.

    PubMed

    Heinimäki, Suvi; Tamminen, Kirsi; Malm, Maria; Vesikari, Timo; Blazevic, Vesna

    2017-11-01

    Recombinant proteins produced by baculovirus (BV) expression systems contain residual BV after crude purification. We studied adjuvant effect of BV on antibody and T cell responses against two model antigens, monomeric ovalbumin (OVA) protein and oligomeric norovirus (NoV) virus-like particles (VLPs). BALB/c mice were immunized intradermally with OVA alone or OVA formulated with live or inactivated BV, and VLP formulations comprised of chromatographically purified NoV GII.4 VLPs alone or mixed with BV, or of crude purified VLPs containing BV impurities from expression system. Live BV improved immunogenicity of NoV VLPs, sparing VLP dose up to 10-fold. Moreover, soluble OVA protein induced IgG2a antibodies and T cell response only when co-administered with live BV. BV adjuvant effect was completely abrogated by removal or inactivation of BV. These findings support the usage of crude purified proteins containing residual BV as vaccine antigens. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Hypoxia Strongly Affects Mitochondrial Ribosomal Proteins and Translocases, as Shown by Quantitative Proteomics of HeLa Cells.

    PubMed

    Bousquet, Paula A; Sandvik, Joe Alexander; Arntzen, Magnus Ø; Jeppesen Edin, Nina F; Christoffersen, Stine; Krengel, Ute; Pettersen, Erik O; Thiede, Bernd

    2015-01-01

    Hypoxia is an important and common characteristic of many human tumors. It is a challenge clinically due to the correlation with poor prognosis and resistance to radiation and chemotherapy. Understanding the biochemical response to hypoxia would facilitate the development of novel therapeutics for cancer treatment. Here, we investigate alterations in gene expression in response to hypoxia by quantitative proteome analysis using stable isotope labeling with amino acids in cell culture (SILAC) in conjunction with LCMS/MS. Human HeLa cells were kept either in a hypoxic environment or under normoxic conditions. 125 proteins were found to be regulated, with maximum alteration of 18-fold. In particular, three clusters of differentially regulated proteins were identified, showing significant upregulation of glycolysis and downregulation of mitochondrial ribosomal proteins and translocases. This interaction is likely orchestrated by HIF-1. We also investigated the effect of hypoxia on the cell cycle, which shows accumulation in G1 and a prolonged S phase under these conditions. Implications. This work not only improves our understanding of the response to hypoxia, but also reveals proteins important for malignant progression, which may be targeted in future therapies.

  17. Novel Halomonas sp. B15 isolated from Larnaca Salt Lake in Cyprus that generates vanillin and vanillic acid from ferulic acid.

    PubMed

    Vyrides, Ioannis; Agathangelou, Maria; Dimitriou, Rodothea; Souroullas, Konstantinos; Salamex, Anastasia; Ioannou, Aristostodimos; Koutinas, Michalis

    2015-08-01

    Vanillin is a high value added product with many applications in the food, fragrance and pharmaceutical industries. A natural and low-cost method to produce vanillin is by microbial bioconversions through ferulic acid. Until now, limited microorganisms have been found capable of bioconverting ferulic acid to vanillin at high yield. This study aimed to screen halotolerant strains of bacteria from Larnaca Salt Lake which generate vanillin and vanillic acid from ferulic acid. From a total of 50 halotolenant/halophilic strains 8 grew in 1 g/L ferulic acid and only 1 Halomonas sp. B15 and 3 Halomonas elognata strains were capable of bioconverting ferulic acid to vanillic acid at 100 g NaCl/L. The highest vanillic acid (365 mg/L) at these conditions generated by Halomonas sp. B15 which corresponds to ferulic acid bioconversion yield of 36.5%. Using the resting cell technique with an initial ferulic acid concentration of 0.5 g/L at low salinity, the highest production of vanillin (245 mg/L) took place after 48 h, corresponding to a bioconversion yield of 49%. This is the first reported Halomonas sp. with high yield of vanillin production from ferulic acid at low salinity.

  18. Crystallization and preliminary X-ray analysis of the complex of NADH and 3α-hydroxysteroid dehydrogenase from Pseudomonas sp. B-0831

    SciTech Connect

    Kataoka, Sachiyo; Nakamura, Shota; Ohkubo, Tadayasu; Ueda, Shigeru; Uchiyama, Susumu; Kobayashi, Yuji; Oda, Masayuki

    2006-06-01

    The complex of NADH and 3α-HSD from Pseudomonas sp. B-0831 has been crystallized and X-ray diffraction data have been collected to 1.8 Å resolution. The NAD(P){sup +}-dependent enzyme 3α-hydroxysteroid dehydrogenase (3α-HSD) catalyzes the reversible interconversion of hydroxyl and oxo groups at position 3 of the steroid nucleus. The complex of NADH and 3α-HSD from Pseudomonas sp. B-0831 was crystallized by the hanging-drop vapour-diffusion method. Refinement of crystallization conditions with microseeding improved the quality of the X-ray diffraction data to a resolution of 1.8 Å. The crystals belonged to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 62.46, b = 82.25, c = 86.57 Å, and contained two molecules, reflecting dimer formation of 3α-HSD, in the asymmetric unit.

  19. Structural Insights into the Unusually Strong ATPase Activity of the AAA Domain of the Caenorhabditis elegans Fidgetin-like 1 (FIGL-1) Protein*

    PubMed Central

    Peng, Wentao; Lin, Zhijie; Li, Weirong; Lu, Jing; Shen, Yuequan; Wang, Chunguang

    2013-01-01

    The FIGL-1 (fidgetin like-1) protein is a homolog of fidgetin, a protein whose mutation leads to multiple developmental defects. The FIGL-1 protein contains an AAA (ATPase associated with various activities) domain and belongs to the AAA superfamily. However, the biological functions and developmental implications of this protein remain unknown. Here, we show that the AAA domain of the Caenorhabditis elegans FIGL-1 protein (CeFIGL-1-AAA), in clear contrast to homologous AAA domains, has an unusually high ATPase activity and forms a hexamer in solution. By determining the crystal structure of CeFIGL-1-AAA, we found that the loop linking helices α9 and α10 folds into the short helix α9a, which has an acidic surface and interacts with a positively charged surface of the neighboring subunit. Disruption of this charge interaction by mutagenesis diminishes both the ATPase activity and oligomerization capacity of the protein. Interestingly, the acidic residues in helix α9a of CeFIGL-1-AAA are not conserved in other homologous AAA domains that have relatively low ATPase activities. These results demonstrate that the sequence of CeFIGL-1-AAA has adapted to establish an intersubunit charge interaction, which contributes to its strong oligomerization and ATPase activity. These unique properties of CeFIGL-1-AAA distinguish it from other homologous proteins, suggesting that CeFIGL-1 may have a distinct biological function. PMID:23979136

  20. Rice bran protein hydrolysates exhibit strong in vitro α-amylase, β-glucosidase and ACE-inhibition activities.

    PubMed

    Uraipong, Chatchaporn; Zhao, Jian

    2016-03-15

    The objective of this study was to systematically examine the in vitro health-promotion activities of rice bran protein hydrolysates. Rice bran proteins were fractioned into albumin, globulin, prolamin and glutelin, which were subjected to hydrolysis by four protease preparations, namely Alcalase, Neutrase, Flavourzyme and Protamax, and the inhibitory activities of the hydrolysates against α-amylase, α-glucosidase and angiotensin converting enzyme (ACE), were monitored over a hydrolysis period of 240 min. Active peptides in the hydrolysates were isolated by ultra-filtration and ion-exchange chromatography and the peptide sequences of the active fractions were identified by LC-MS/MS. Hydrolysis of the proteins resulted in significant increases in these bioactivities, which were generally correlated with the degree of protein hydrolysis. In general, the highest bioactivities were found with albumin and glutelin hydrolysates, followed by globulin hydrolysates, while prolamin hydrolysates showed the lowest activities. Of the four enzymes used, Alcalase- and Protamax-catalysed hydrolysates generally had the highest activities while Flavourzyme-produced hydrolysates had the lowest activity. The MW < 3 kDa fraction of the Alcalase-catalysed glutelin hydrolysates had the highest β-glucosidase inhibition activity, which was identified to contain 13 peptides with six to 32 amino acid residues. The α-amylase and α-glucosidase inhibitory activities of albumin and glutelin hydrolysates produced by Alcalase and Protamax were comparable in magnitude to those of the standard anti-diabetic drug acarbose, and had the potential to be developed into a dietary or nutraceutical supplement for the management of diabetes. © 2015 Society of Chemical Industry.

  1. Peanut protein extraction conditions strongly influence yield of allergens Ara h 1 and 2 and sensitivity of immunoassays.

    PubMed

    Walczyk, Nicole E; Smith, Penelope M C; Tovey, Euan R; Roberts, Thomas H

    2017-04-15

    The clinical importance of peanut (Arachis hypogaea) allergies demands standardized allergen extraction protocols. We determined the effectiveness of common extraction conditions (20 buffers, defatting reagents, extraction time/temperatures, processing, extraction repeats) on crude protein and Ara h 1 and 2 yields. Despite similar 1D-gel profiles, defatting with n-hexane resulted in significantly higher yields of crude protein, Ara h 1, and Ara h 2 than with diethyl ether. The yields were affected by the composition and pH of the extraction buffers and other conditions, but crude protein yield did not always correlate with Ara h 1 and 2 yields. Denaturants, reducing agents, acidic buffers, and thermal processing of peanuts perturbed allergen quantification in ELISAs, probably via exposure of additional epitopes. Allergen detection in 2D-Western blots with PBS resulted in greater sensitivity than with TBS or Tris. We recommend that allergen extraction conditions be selected based on the research question being investigated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Investigations of ultrafast ligand rebinding to heme and heme proteins using temperature and strong magnetic field perturbations

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenyu

    This thesis is written to summarize investigations of the mechanisms that underlie the kinetics of diatomic ligand rebinding to the iron atom of the heme group, which is chelated inside heme proteins. The family of heme proteins is a major object of studies for several branches of scientific research activity. Understanding the ligand binding mechanisms and pathways is one of the major goals for biophysics. My interests mainly focus on the physics of this ligand binding process. Therefore, to investigate the problem, isolated from the influence of the protein matrix, Fe-protophorphyrin IX is chosen as the prototype system in my studies. Myoglobin, the most extensively and intensively studied protein, is another ideal system that allows coupling the protein polypeptide matrix into the investigation. A technique to synchro-lock two laser pulse trains electronically is applied to our pump-probe spectroscopic studies. Based on this technique, a two color, fs/ps pump-probe system is developed which extends the temporal window for our investigation to 13ns and fills a gap existing in previous pump-probe investigations. In order to apply this newly-developed pump-probe laser system to implement systematic studies on the kinetics of diatomic ligand (NO, CO, O2) rebinding to heme and heme proteins, several experimental setups are utilized. In Chapter 1, the essential background knowledge, which helps to understand the iron-ligand interaction, is briefly described. In Chapter 2, in addition to a description of the preparation protocols of protein samples and details of the method for data analysis, three home-made setups are described, which include: a picosecond laser regenerative amplifier, a pump-probe application along the bore (2-inch in diameter) of a superconducting magnet and a temperature-controllable cryostat for spinning sample cell. Chapter 3 presents high magnetic field studies of several heme-ligand or protein-ligand systems. Pump-probe spectroscopy is used to

  3. Side Chain Packing below the Fusion Peptide Strongly Modulates Triggering of the Hendra Virus F Protein

    PubMed Central

    Smith, Everett Clinton; Dutch, Rebecca Ellis

    2010-01-01

    Triggering of the Hendra virus fusion (F) protein is required to initiate the conformational changes which drive membrane fusion, but the factors which control triggering remain poorly understood. Mutation of a histidine predicted to lie near the fusion peptide to alanine greatly reduced fusion despite wild-type cell surface expression levels, while asparagine substitution resulted in a moderate restoration in fusion levels. Slowed kinetics of six-helix bundle formation, as judged by sensitivity to heptad repeat B-derived peptides, was observed for all H372 mutants. These data suggest that side chain packing beneath the fusion peptide is an important regulator of Hendra virus F triggering. PMID:20702638

  4. Structural and functional analyses of a strong chitin-binding protein-1 (SCBP-1) from the exoskeleton of the crayfish Procambarus clarkii.

    PubMed

    Suzuki, Michio; Sugisaka-Nobayashi, Arisa; Kogure, Toshihiro; Nagasawa, Hiromichi

    2013-01-01

    The organic matrices in the exoskeleton of the crayfish Procambarus clarkii are classified into three groups depending on solubility; acid soluble, acid insoluble-SDS/dithiothreitol (DTT) soluble, and acid insoluble-SDS/DTT insoluble fractions. In our previous studies, Casp-1 and -2 were identified in the acid soluble fraction, and CAP-1 and -2 were identified in the acid insoluble-SDS/DTT soluble fraction. In this study, acid insoluble-SDS/DTT insoluble materials were digested with proteases and the resulting peptides were purified and sequenced. Based on the sequences, a cDNA encoding this protein was cloned. The whole primary sequence of the matrix protein named strong chitin-binding protein-1 (SCBP-1), was deduced. SCBP-1 consisted of 155 amino acid residues and had a Rebers-Riddiford consensus sequence for chitin binding. A recombinant protein of SCBP-N corresponding to the N-terminal part of SCBP-1 showed no chitin-binding ability, while SCBP-C corresponding to the C-terminal part of SCBP-1, showed weak affinity to chitin. These results suggest that the primary sequence of SCBP-1 does not have strong chitin-binding ability. Therefore, SCBP-1 probably binds covalently to chitin through a particular residue contained in the peptide part that was not obtained by protease digestion.

  5. Acid and rennet gels exhibit strong differences in the kinetics of milk protein digestion and amino acid bioavailability.

    PubMed

    Barbé, Florence; Ménard, Olivia; Le Gouar, Yann; Buffière, Caroline; Famelart, Marie-Hélène; Laroche, Béatrice; Feunteun, Steven Le; Rémond, Didier; Dupont, Didier

    2014-01-15

    This study aimed at determining the kinetics of milk protein digestion and amino acid absorption after ingestion by six multi-canulated mini-pigs of two gelled dairy matrices having the same composition, similar rheological and structural properties, but differing by their mode of coagulation (acidification/renneting). Duodenal, mid-jejunal effluents and plasma samples were collected at different times during 7h after meal ingestion. Ingestion of the acid gel induced a peak of caseins and β-lactoglobulin in duodenal effluents after 20min of digestion and a peak of amino acids in the plasma after 60min. The rennet gel induced lower levels of both proteins in the duodenum (with no defined peak) as well as much lower levels of amino acids in the plasma than the acid gel. Plasma ghrelin concentrations suggested a potentially more satiating effect of the rennet gel compared to the acid gel. This study clearly evidences that the gelation process can significantly impact on the nutritive value of dairy products. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Strong and widespread action of site-specific positive selection in the snake venom Kunitz/BPTI protein family

    PubMed Central

    Župunski, Vera; Kordiš, Dušan

    2016-01-01

    S1 family of serine peptidases is the largest family of peptidases. They are specifically inhibited by the Kunitz/BPTI inhibitors. Kunitz domain is characterized by the compact 3D structure with the most important inhibitory loops for the inhibition of S1 peptidases. In the present study we analysed the action of site-specific positive selection and its impact on the structurally and functionally important parts of the snake venom Kunitz/BPTI family of proteins. By using numerous models we demonstrated the presence of large numbers of site-specific positively selected sites that can reach between 30–50% of the Kunitz domain. The mapping of the positively selected sites on the 3D model of Kunitz/BPTI inhibitors has shown that these sites are located in the inhibitory loops 1 and 2, but also in the Kunitz scaffold. Amino acid replacements have been found exclusively on the surface, and the vast majority of replacements are causing the change of the charge. The consequence of these replacements is the change in the electrostatic potential on the surface of the Kunitz/BPTI proteins that may play an important role in the precise targeting of these inhibitors into the active site of S1 family of serine peptidases. PMID:27841308

  7. Molecular energy dissipation in nanoscale networks of Dentin Matrix Protein 1 is strongly dependent on ion valence

    PubMed Central

    Adams, J; Fantner, G E; Fisher, L W; Hansma, P K

    2008-01-01

    The fracture resistance of biomineralized tissues such as bone, dentin, and abalone is greatly enhanced through the nanoscale interactions of stiff inorganic mineral components with soft organic adhesive components. A proper understanding of the interactions that occur within the organic component, and between the organic and inorganic components, is therefore critical for a complete understanding of the mechanics of these tissues. In this paper, we use Atomic Force Microscope (AFM) force spectroscopy and dynamic force spectroscopy to explore the effect of ionic interactions within a nanoscale system consisting of networks of Dentin Matrix Protein 1 (DMP1) (a component of both bone and dentin organic matrix), a mica surface, and an AFM tip. We find that DMP1 is capable of dissipating large amounts of energy through an ion-mediated mechanism, and that the effectiveness increases with increasing ion valence. PMID:18843380

  8. Molecular energy dissipation in nanoscale networks of dentin matrix protein 1 is strongly dependent on ion valence

    NASA Astrophysics Data System (ADS)

    Adams, J.; Fantner, G. E.; Fisher, L. W.; Hansma, P. K.

    2008-09-01

    The fracture resistance of biomineralized tissues such as bone, dentin, and abalone is greatly enhanced through the nanoscale interactions of stiff inorganic mineral components with soft organic adhesive components. A proper understanding of the interactions that occur within the organic component, and between the organic and inorganic components, is therefore critical for a complete understanding of the mechanics of these tissues. In this paper, we use atomic force microscope (AFM) force spectroscopy and dynamic force spectroscopy to explore the effect of ionic interactions within a nanoscale system consisting of networks of dentin matrix protein 1 (DMP1) (a component of both bone and dentin organic matrix), a mica surface and an AFM tip. We find that DMP1 is capable of dissipating large amounts of energy through an ion-mediated mechanism, and that the effectiveness increases with increasing ion valence.

  9. Strong functional patterns in the evolution of eukaryotic genomes revealed by the reconstruction of ancestral protein domain repertoires

    PubMed Central

    2011-01-01

    Background Genome size and complexity, as measured by the number of genes or protein domains, is remarkably similar in most extant eukaryotes and generally exhibits no correlation with their morphological complexity. Underlying trends in the evolution of the functional content and capabilities of different eukaryotic genomes might be hidden by simultaneous gains and losses of genes. Results We reconstructed the domain repertoires of putative ancestral species at major divergence points, including the last eukaryotic common ancestor (LECA). We show that, surprisingly, during eukaryotic evolution domain losses in general outnumber domain gains. Only at the base of the animal and the vertebrate sub-trees do domain gains outnumber domain losses. The observed gain/loss balance has a distinct functional bias, most strikingly seen during animal evolution, where most of the gains represent domains involved in regulation and most of the losses represent domains with metabolic functions. This trend is so consistent that clustering of genomes according to their functional profiles results in an organization similar to the tree of life. Furthermore, our results indicate that metabolic functions lost during animal evolution are likely being replaced by the metabolic capabilities of symbiotic organisms such as gut microbes. Conclusions While protein domain gains and losses are common throughout eukaryote evolution, losses oftentimes outweigh gains and lead to significant differences in functional profiles. Results presented here provide additional arguments for a complex last eukaryotic common ancestor, but also show a general trend of losses in metabolic capabilities and gain in regulatory complexity during the rise of animals. PMID:21241503

  10. Multidimensional separation of tryptic peptides from human serum proteins using reversed-phase, strong cation exchange, weak anion exchange, and fused-core fluorinated stationary phases.

    PubMed

    Boichenko, Alexander P; Govorukhina, Natalia; van der Zee, Ate G J; Bischoff, Rainer

    2013-11-01

    Proteome profiling of crude serum is a challenging task due to the wide dynamic range of protein concentrations and the presence of high-abundance proteins, which cover >90% of the total protein mass in serum. Peptide fractionation on strong cation exchange, weak anion exchange in the electrostatic repulsion hydrophilic interaction chromatography (ERLIC) mode, RP C18 at pH 2.5 (low pH), fused-core fluorinated at pH 2.5, and RP C18 at pH 9.7 (high pH) stationary phases resulted in two to three times more identified proteins and three to four times more identified peptides in comparison with 1D nanoChip-LC-MS/MS quadrupole TOF analysis (45 proteins, 185 peptides). The largest number of peptides and proteins was identified after prefractionation in the ERLIC mode due to the more uniform distribution of peptides among the collected fractions and on the RP column at high pH due to the high efficiency of RP separations and the complementary selectivity of both techniques to low-pH RP chromatography. A 3D separation scheme combining ERLIC, high-pH RP, and low-pH nanoChip-LC-MS/MS for crude serum proteome profiling resulted in the identification of 208 proteins and 1088 peptides with the lowest reported concentration of 11 ng/mL for heat shock protein 74. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Strong protection against ricin challenge induced by a novel modified ricin A-chain protein in mouse model

    PubMed Central

    Zhang, Tao; Yang, Hao; Kang, Lin; Gao, Shan; Xin, Wenwen; Yao, Wenwu; Zhuang, Xiangjin; Ji, Bin; Wang, Jinglin

    2015-01-01

    Ricin toxin (RT) is an extremely potent toxin derived from the castor bean plant. As a possible bioterrorist weapon, it was categorized as a level B agent in international society. With the growing awareness and concerns of the “white powder incident” in recent years, it is indispensable to develop an effective countermeasure against RT intoxication. In this study we used site-directed mutagenesis and polymerase chain reaction (PCR) techniques to modify the gene of ricin A-chain (RTA). As a result, we have generated a mutated and truncated ricin A-chain (mtRTA) vaccine antigen by E.coli strain. The cytotoxicity assay was used to evaluate the safety of the as-prepared mtRTA antigen, and the results showed that there was no residual toxicity observed when compared to the recombinant RTA (rRTA) or native RT. Furthermore, BALB/c mice were subcutaneously (s.c.) vaccinated with mtRTA 3 times at an interval of 2 weeks, and then the survivals were evaluated after intraperitoneal (i.p.) or intratracheal challenge of RT. The vaccinated mice developed a strong protective immune response that was wholly protective against 40 × LD50 of RT i.p. injection or 20 × LD50 of RT intratracheal spraying. The mtRTA antigen has great potential to be a vaccine candidate for future application in humans. PMID:26038805

  12. Strong protection against ricin challenge induced by a novel modified ricin A-chain protein in mouse model.

    PubMed

    Zhang, Tao; Yang, Hao; Kang, Lin; Gao, Shan; Xin, Wenwen; Yao, Wenwu; Zhuang, Xiangjin; Ji, Bin; Wang, Jinglin

    2015-01-01

    Ricin toxin (RT) is an extremely potent toxin derived from the castor bean plant. As a possible bioterrorist weapon, it was categorized as a level B agent in international society. With the growing awareness and concerns of the "white powder incident" in recent years, it is indispensable to develop an effective countermeasure against RT intoxication. In this study we used site-directed mutagenesis and polymerase chain reaction (PCR) techniques to modify the gene of ricin A-chain (RTA). As a result, we have generated a mutated and truncated ricin A-chain (mtRTA) vaccine antigen by E.coli strain. The cytotoxicity assay was used to evaluate the safety of the as-prepared mtRTA antigen, and the results showed that there was no residual toxicity observed when compared to the recombinant RTA (rRTA) or native RT. Furthermore, BALB/c mice were subcutaneously (s.c.) vaccinated with mtRTA 3 times at an interval of 2 weeks, and then the survivals were evaluated after intraperitoneal (i.p.) or intratracheal challenge of RT. The vaccinated mice developed a strong protective immune response that was wholly protective against 40 × LD50 of RT i.p. injection or 20 × LD50 of RT intratracheal spraying. The mtRTA antigen has great potential to be a vaccine candidate for future application in humans.

  13. Why does the silica-binding protein "Si-tag" bind strongly to silica surfaces? Implications of conformational adaptation of the intrinsically disordered polypeptide to solid surfaces.

    PubMed

    Ikeda, Takeshi; Kuroda, Akio

    2011-09-01

    We recently reported that the bacterial 50S ribosomal protein L2 binds strongly to silica surfaces even in the presence of high salt concentrations, detergents, and denaturants such as 8 M urea. We designated L2 as Si-tag, a fusion tag for immobilizing functional proteins on silica materials. Here we discuss the remarkable properties of the Si-tag polypeptide in order to understand the mechanism underlying this binding. Experimental and theoretical studies have shown that the 60-aa N-terminal region and the 71-aa C-terminal region, both of which are rich in positively charged residues, lack a well-defined three-dimensional structure under physiological conditions. This lack of a stable tertiary structure suggests that Si-tag belongs to a family of intrinsically disordered (ID) proteins that exist as dynamic ensembles of rapidly fluctuating structures in aqueous solution. Because of its inherent flexibility, Si-tag could form a large intermolecular interface and optimize its structure for surface interactions by conformational adaptation at the binding interface. Such conformational adaptation occurring concomitantly with binding is common to many ID proteins and is called "coupled folding and binding". Through this conformational adaptation, Si-tag could optimize the interactions between its positively charged side chains and ionized surface silanol groups and between its apolar side chains and hydrophobic surface siloxane sites. The cumulative contribution of these contacts would significantly strengthen the binding of Si-tag, resulting in strong, virtually irreversible binding. Our study suggests that flexible ID proteins have tremendous potential for connecting biomolecules to inorganic materials. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Strong immunogenicity and cross-reactivity of Mycobacterium tuberculosis ESX-5 type VII secretion: encoded PE-PPE proteins predicts vaccine potential.

    PubMed

    Sayes, Fadel; Sun, Lin; Di Luca, Mariagrazia; Simeone, Roxane; Degaiffier, Nathalie; Fiette, Laurence; Esin, Semih; Brosch, Roland; Bottai, Daria; Leclerc, Claude; Majlessi, Laleh

    2012-04-19

    The genome of Mycobacterium tuberculosis (Mtb) encodes five type VII secretion systems, ESX-1 to ESX-5, most of which are associated with genes encoding PE/PPE proteins, named after their N-terminal Pro-Glu (PE) or Pro-Pro-Glu (PPE) motifs. Here, we describe the strong T cell immunogenicity of the ESX-5-encoded PE/PPE proteins, which share a large panel of cross-reactive CD4(+) epitopes with substantial numbers of their ESX-5-nonassociated PE/PPE homologs. The immunogenicity of these numerous PE/PPE proteins is dependent on their export by a functional EccD(5), the predicted transmembrane channel of the ESX-5 secretion apparatus. The Mtb Δppe25-pe19 mutant deleted for all ESX-5-associated pe and ppe genes, although highly attenuated in immunocompetent mice, remains able to induce immunity against the ESX-5-associated PE/PPE virulence factors, via cross-reactivity with their numerous homologs, and against the ESX-1 virulence factors ESAT-6/CFP-10. The Δppe25-pe19 strain is strongly protective against Mtb infection in mice and represents a potential antituberculosis vaccine candidate.

  15. irGPU.proton.Net: Irregular strong charge interaction networks of protonatable groups in protein molecules--a GPU solver using the fast multipole method and statistical thermodynamics.

    PubMed

    Kantardjiev, Alexander A

    2015-04-05

    A cluster of strongly interacting ionization groups in protein molecules with irregular ionization behavior is suggestive for specific structure-function relationship. However, their computational treatment is unconventional (e.g., lack of convergence in naive self-consistent iterative algorithm). The stringent evaluation requires evaluation of Boltzmann averaged statistical mechanics sums and electrostatic energy estimation for each microstate. irGPU: Irregular strong interactions in proteins--a GPU solver is novel solution to a versatile problem in protein biophysics--atypical protonation behavior of coupled groups. The computational severity of the problem is alleviated by parallelization (via GPU kernels) which is applied for the electrostatic interaction evaluation (including explicit electrostatics via the fast multipole method) as well as statistical mechanics sums (partition function) estimation. Special attention is given to the ease of the service and encapsulation of theoretical details without sacrificing rigor of computational procedures. irGPU is not just a solution-in-principle but a promising practical application with potential to entice community into deeper understanding of principles governing biomolecule mechanisms. © 2015 Wiley Periodicals, Inc.

  16. Mercury (II) removal by resistant bacterial isolates and mercuric (II) reductase activity in a new strain of Pseudomonas sp. B50A.

    PubMed

    Giovanella, Patricia; Cabral, Lucélia; Bento, Fátima Menezes; Gianello, Clesio; Camargo, Flávio Anastácio Oliveira

    2016-01-25

    This study aimed to isolate mercury resistant bacteria, determine the minimum inhibitory concentration for Hg, estimate mercury removal by selected isolates, explore the mer genes, and detect and characterize the activity of the enzyme mercuric (II) reductase produced by a new strain of Pseudomonas sp. B50A. The Hg removal capacity of the isolates was determined by incubating the isolates in Luria Bertani broth and the remaining mercury quantified by atomic absorption spectrophotometry. A PCR reaction was carried out to detect the merA gene and the mercury (II) reductase activity was determined in a spectrophotometer at 340 nm. Eight Gram-negative bacterial isolates were resistant to high mercury concentrations and capable of removing mercury, and of these, five were positive for the gene merA. The isolate Pseudomonas sp. B50A removed 86% of the mercury present in the culture medium and was chosen for further analysis of its enzyme activity. Mercuric (II) reductase activity was detected in the crude extract of this strain. This enzyme showed optimal activity at pH 8 and at temperatures between 37 °C and 45 °C. The ions NH4(+), Ba(2+), Sn(2+), Ni(2+) and Cd(2+) neither inhibited nor stimulated the enzyme activity but it decreased in the presence of the ions Ca(2+), Cu(+) and K(+). The isolate and the enzyme detected were effective in reducing Hg(II) to Hg(0), showing the potential to develop bioremediation technologies and processes to clean-up the environment and waste contaminated with mercury.

  17. A G-protein α subunit, GOA-1, plays a role in C. elegans avoidance behavior of strongly alkaline pH.

    PubMed

    Sassa, Toshihiro; Maruyama, Ichi N

    2013-11-01

    The ability of animals to avoid strongly alkaline pH is critical for survival. However, the means by which they sense high pH has not been determined. We have previously found that the nematode Caenorhabditis elegans (C. elegans) avoids environmental pH above 10.5. Detection involves ASH nociceptive neurons as the major sensors. Upon stimulation, transient receptor potential vanilloid-type (TRPV) ion channels encoded by osm-9 and ocr-2 play an essential role in Ca(2+) entry into ASH. Here we report that C. elegans mutants deficient in a G-protein α subunit, GOA-1, failed to avoid strongly alkaline pH with normal Ca(2+) influx into ASH. These results suggest that GOA-1 regulates signal transmission downstream of Ca(2+) influx through OSM-9/OCR-2 TRPV channels in ASH.

  18. Decreases in procalcitonin and C-reactive protein are strong predictors of survival in ventilator-associated pneumonia

    PubMed Central

    Seligman, Renato; Meisner, Michael; Lisboa, Thiago C; Hertz, Felipe T; Filippin, Tania B; Fachel, Jandyra MG; Teixeira, Paulo JZ

    2006-01-01

    Introduction This study sought to assess the prognostic value of the kinetics of procalcitonin (PCT), C-reactive protein (CRP) and clinical scores (clinical pulmonary infection score (CPIS), Sequential Organ Failure Assessment (SOFA)) in the outcome of ventilator-associated pneumonia (VAP) at an early time point, when adequacy of antimicrobial treatment is evaluated. Methods This prospective observational cohort study was conducted in a teaching hospital. The subjects were 75 patients consecutively admitted to the intensive care unit from October 2003 to August 2005 who developed VAP. Patients were followed for 28 days after the diagnosis, when they were considered survivors. Patients who died before the 28th day were non-survivors. There were no interventions. Results PCT, CRP and SOFA score were determined on day 0 and day 4. Variables included in the univariable logistic regression model for survival were age, Acute Physiology and Chronic Health Evaluation (APACHE) II score, decreasing ΔSOFA, decreasing ΔPCT and decreasing ΔCRP. Survival was directly related to decreasing ΔPCT with odds ratio (OR) = 5.67 (95% confidence interval 1.78 to 18.03), decreasing ΔCRP with OR = 3.78 (1.24 to 11.50), decreasing ΔSOFA with OR = 3.08 (1.02 to 9.26) and APACHE II score with OR = 0.92 (0.86 to 0.99). In a multivariable logistic regression model for survival, only decreasing ΔPCT with OR = 4.43 (1.08 to 18.18) and decreasing ΔCRP with OR = 7.40 (1.58 to 34.73) remained significant. Decreasing ΔCPIS was not related to survival (p = 0.59). There was a trend to correlate adequacy to survival. Fifty percent of the 20 patients treated with inadequate antibiotics and 65.5% of the 55 patients on adequate antibiotics survived (p = 0.29). Conclusion Measurement of PCT and CRP at onset and on the fourth day of treatment can predict survival of VAP patients. A decrease in either one of these marker values predicts survival. PMID:16956405

  19. Goose parvovirus structural proteins expressed by recombinant baculoviruses self-assemble into virus-like particles with strong immunogenicity in goose

    SciTech Connect

    Ju, Huanyu; Wei, Na; Wang, Qian; Wang, Chunyuan; Jing, Zhiqiang; Guo, Lu; Liu, Dapeng; Gao, Mingchun; Ma, Bo; Wang, Junwei

    2011-05-27

    Highlights: {yields} All three capsid proteins can be expressed in insect cells in baculovirus expression system. {yields} All three recombinant proteins were spontaneously self-assemble into virus-like particles whose size and appearance were similar to those of native purified GPV virions. {yields} The immunogenicity of GPV-VLPs was better than commercial inactivated vaccine and attenuated vaccine. -- Abstract: Goose parvovirus (GPV), a small non-enveloped ssDNA virus, can cause Derzsy's disease, and three capsid proteins of VP1, VP2, and VP3 are encoded by an overlapping nucleotide sequence. However, little is known on whether recombinant viral proteins (VPs) could spontaneously assemble into virus-like particles (VLPs) in insect cells and whether these VLPs could retain their immunoreactivity and immunogenicity in susceptible geese. To address these issues, genes for these GPV VPs were amplified by PCR, and the recombinant VPs proteins were expressed in insect cells using a baculovirus expression system for the characterization of their structures, immunoreactivity, and immunogenicity. The rVP1, rVP2, and rVP3 expressed in Sf9 cells were detected by anti-GPV sera, anti-VP3 sera, and anti-His antibodies, respectively. Electron microscopy revealed that these rVPs spontaneously assembled into VLPs in insect cells, similar to that of the purified wild-type GPV virions. In addition, vaccination with individual types of VLPs, particularly with the rVP2-VLPs, induced higher titers of antibodies and neutralized different strains of GPVs in primary goose and duck embryo fibroblast cells in vitro. These data indicated that these VLPs retained immunoreactivity and had strong immunogenicity in susceptible geese. Therefore, our findings may provide a framework for development of new vaccines for the prevention of Derzsy's disease and vehicles for the delivery of drugs.

  20. Strong anion exchange liquid chromatographic separation of protein amino acids for natural 13C-abundance determination by isotope ratio mass spectrometry.

    PubMed

    Abaye, Daniel A; Morrison, Douglas J; Preston, Tom

    2011-02-15

    Amino acids are the building blocks of proteins and the analysis of their (13)C abundances is greatly simplified by the use of liquid chromatography (LC) systems coupled with isotope ratio mass spectrometry (IRMS) compared with gas chromatography (GC)-based methods. To date, various cation exchange chromatography columns have been employed for amino acid separation. Here, we report strong anion exchange chromatography (SAX) coupled to IRMS with a Liquiface interface for amino acid δ(13)C determination. Mixtures of underivatised amino acids (0.1-0.5 mM) and hydrolysates of representative proteins (prawns and bovine serum albumin) were resolved by LC/IRMS using a SAX column and inorganic eluents. Background inorganic carbon content was minimised through careful preparation of alkaline reagents and use of a pre-injector on-line carbonate removal device. SAX chromatography completely resolved 11 of the 16 expected protein amino acids following acid hydrolysis in underivatised form. Basic and neutral amino acids were resolved with 35 mM NaOH in isocratic mode. Elution of the aromatic and acidic amino acids required a higher hydroxide concentration (180 mM) and a counterion (NO 3-, 5-25 mM). The total run time was 70 min. The average δ(13)C precision of baseline-resolved peaks was 0.75‰ (range 0.04 to 1.06‰). SAX is a viable alternative to cation chromatography, especially where analysis of basic amino acids is important. The technology shows promise for (13)C amino acid analysis in ecology, archaeology, forensic science, nutrition and protein metabolism.

  1. The regulation of synaptic vesicle recycling by cGMP-dependent protein kinase type II in cerebellar granule cells under strong and sustained stimulation.

    PubMed

    Collado-Alsina, Andrea; Ramírez-Franco, Jorge; Sánchez-Prieto, José; Torres, Magdalena

    2014-06-25

    From the early periods of neurogenesis and migration, up until synaptogenesis, both nitric oxide (NO) and its downstream messenger, cGMP, are thought to influence the development of neurons. The NO/cGMP/cGMP-dependent protein kinase (cGK) pathway regulates the clustering and recruitment of synaptic proteins and vesicles to the synapse, adjusting the exoendocytic cycle to the intensity of activity and accelerating endocytosis following large-scale exocytosis. Here, we show that blockage of the N-methyl-D-aspartate receptor impairs the cycling of synaptic vesicles in a subset of boutons on cerebellar granule cells, an effect that was reversed by increasing cGMP. Furthermore, we demonstrate that presynaptic cGK type II (cGKII) plays a major role in this process. Using the FM1-43 dye to track vesicle recycling, we found that knockdown of cGKII and/or the application of a cGK inhibitor reduced the efficiency of synaptic vesicle recycling to a similar extent. Likewise, in cerebellar granule cells transfected with vGlut1-pHluorin to follow the exoendocytotic cycle, application of a cGK inhibitor slowed vesicle endocytosis when exocytosis was accelerated through strong and sustained stimulation. Additionally, ultrastructural analysis showed that cGKII knockdown or inhibition favored the formation of endosomal-like structures after strong and sustained stimulation. We conclude that cGKII controls the homeostatic balance of vesicle exocytosis and endocytosis in synaptic boutons of rat cerebellar granule cells.

  2. [Preparation of strong cation exchange packings based on monodisperse hydrophilic non-porous resins and their application for fast separation of proteins].

    PubMed

    Zhu, Jinxia; Bo, Chunmiao; Gong, Bolin

    2006-03-01

    Monodisperse, 3.0 microm non-porous hydrophilic poly (glycidylmethacrylate-co-ethylenedimethacrylate) particles were prepared by an one-step swelling and polymerization method. The particles were modified to be a strong cation exchange (SCX) stationary phase for high performance liquid chromatography (HPLC) in the following steps. First, the particles were completely hydrolyzed. Second, the hydrolyzed particles were treated with epichlorhydrin followed by another hydrolysis of the newly introduced epoxide groups. Third, the particles were reacted with chlorosulfonic acid. The SCX stationary phase was evaluated in light of the ion exchange property, separability and hydrophilicity on the separation and retention of proteins in detail. Four proteins were quickly separated in 1.0 min with linear gradient elution using the synthesized SCX stationary phase. It was found that it followed ion exchange chromatographic (IEC) retention mechanism. The SCX resin was used for the fast purification of lysozyme from egg white and cytochrome-C from pig heart in 3.0 min with only one step. The results obtained were satisfactory.

  3. Interfacial reactions of ozone with surfactant protein B in a model lung surfactant system.

    PubMed

    Kim, Hugh I; Kim, Hyungjun; Shin, Young Shik; Beegle, Luther W; Jang, Seung Soon; Neidholdt, Evan L; Goddard, William A; Heath, James R; Kanik, Isik; Beauchamp, J L

    2010-02-24

    Oxidative stresses from irritants such as hydrogen peroxide and ozone (O(3)) can cause dysfunction of the pulmonary surfactant (PS) layer in the human lung, resulting in chronic diseases of the respiratory tract. For identification of structural changes of pulmonary surfactant protein B (SP-B) due to the heterogeneous reaction with O(3), field-induced droplet ionization (FIDI) mass spectrometry has been utilized. FIDI is a soft ionization method in which ions are extracted from the surface of microliter-volume droplets. We report structurally specific oxidative changes of SP-B(1-25) (a shortened version of human SP-B) at the air-liquid interface. We also present studies of the interfacial oxidation of SP-B(1-25) in a nonionizable 1-palmitoyl-2-oleoyl-sn-glycerol (POG) surfactant layer as a model PS system, where competitive oxidation of the two components is observed. Our results indicate that the heterogeneous reaction of SP-B(1-25) at the interface is quite different from that in the solution phase. In comparison with the nearly complete homogeneous oxidation of SP-B(1-25), only a subset of the amino acids known to react with ozone are oxidized by direct ozonolysis in the hydrophobic interfacial environment, both with and without the lipid surfactant layer. Combining these experimental observations with the results of molecular dynamics simulations provides an improved understanding of the interfacial structure and chemistry of a model lung surfactant system subjected to oxidative stress.

  4. AFCo1, a meningococcal B-derived cochleate adjuvant, strongly enhances antibody and T-cell immunity against Plasmodium falciparum merozoite surface protein 4 and 5

    PubMed Central

    Bracho, Gustavo; Zayas, Caridad; Wang, Lina; Coppel, Ross; Pérez, Oliver; Petrovsky, Nikolai

    2009-01-01

    Background Whilst a large number of malaria antigens are being tested as candidate malaria vaccines, a major barrier to the development of an effective vaccine is the lack of a suitable human adjuvant capable of inducing a strong and long lasting immune response. In this study, the ability of AFCo1, a potent T and B cell adjuvant based on cochleate structures derived from meningococcal B outer membrane proteoliposomes (MBOMP), to boost the immune response against two Plasmodium falciparum antigens, merozoite surface protein 4 (MSP4) and 5 (MSP5), was evaluated. Methods Complete Freund's adjuvant (CFA), which is able to confer protection against malaria in animal MSP4/5 vaccine challenge models, was used as positive control adjuvant. MSP4 and 5-specific IgG, delayed-type hypersensitivity (DTH), T-cell proliferation, and cytokine production were evaluated in parallel in mice immunized three times intramuscularly with MSP4 or MSP5 incorporated into AFCo1, synthetic cochleate structures, CFA or phosphate buffered saline. Results AFCo1 significantly enhanced the IgG and T-cell response against MSP4 and MSP5, with a potency equivalent to CFA, with the response being characterized by both IgG1 and IgG2a isotypes, increased interferon gamma production and a strong DTH response, consistent with the ability of AFCo1 to induce Th1-like immune responses. Conclusion Given the proven safety of MBOMP, which is already in use in a licensed human vaccine, AFCo1 could assist the development of human malaria vaccines that require a potent and safe adjuvant. PMID:19250541

  5. Measurement of human surfactant protein-B turnover in vivo from tracheal aspirates using targeted proteomics.

    PubMed

    Tomazela, Daniela M; Patterson, Bruce W; Hanson, Elizabeth; Spence, Kimberly L; Kanion, Tiffany B; Salinger, David H; Vicini, Paolo; Barret, Hugh; Heins, Hillary B; Cole, F Sessions; Hamvas, Aaron; MacCoss, Michael J

    2010-03-15

    We describe a method to measure protein synthesis and catabolism in humans without prior purification and use the method to measure the turnover of surfactant protein-B (SP-B). SP-B, a lung-specific, hydrophobic protein essential for fetal-neonatal respiratory transition, is present in only picomolar quantities in tracheal aspirate samples and difficult to isolate for dynamic turnover studies using traditional in vivo tracer techniques. Using infusion of [5,5,5-(2)H(3)] leucine and a targeted proteomics method, we measured both the quantity and kinetics of SP-B tryptic peptides in tracheal aspirate samples of symptomatic newborn infants. The fractional synthetic rate (FSR) of SP-B measured using the most abundant proteolytic fragment, a 10 amino acid peptide from the carboxy-terminus of proSP-B (SPTGEWLPR), from the circulating leucine pool was 0.035 +/- 0.005 h(-1), and the fractional catabolic rate was 0.044 +/- 0.003 h(-1). This technique permits high-throughput and sensitive measurement of turnover of low abundance proteins with minimal sample preparation.

  6. Measurement of human surfactant protein-B turnover in vivo from tracheal aspirates using targeted proteomics

    PubMed Central

    Tomazela, Daniela; Patterson, Bruce W.; Hanson, Elizabeth; Spence, Kimberly L.; Kanion, Tiffany B.; Salinger, David H.; Vicini, Paolo; Barret, Hugh; Heins, Hillary B.; Cole, F. Sessions; Hamvas, Aaron; MacCoss, Michael J.

    2010-01-01

    We describe a method to measure protein synthesis and catabolism in humans without prior purification and use the method to measure the turnover of surfactant protein-B (SP-B). SP-B, a lung-specific, hydrophobic protein essential for fetal-neonatal respiratory transition, is present in only picomolar quantities in tracheal aspirate samples and difficult to isolate for dynamic turnover studies using traditional in vivo tracer techniques. Using infusion of [5,5,5-2H3] leucine and a targeted proteomics method, we measured both the quantity and kinetics of SP-B tryptic peptides in tracheal aspirate samples of symptomatic newborn infants. The fractional synthetic rate (FSR) of SP-B measured using the most abundant proteolytic fragment, a 10 amino acid peptide from the carboxy-terminus of proSP-B (SPTGEWLPR), from the circulating leucine pool was 0.035±0.005 hr−1 and fractional catabolic rate was 0.044±0.003 hr−1. This technique permits high-throughput, sensitive measurement of turnover of low abundance proteins with minimal sample preparation. PMID:20178338

  7. Glucocorticoids regulate surfactant protein synthesis in a pulmonary adenocarcinoma cell line

    SciTech Connect

    O'Reilly, M.A.; Gazdar, A.F.; Clark, J.C.; Pilot-Matias, T.J.; Wert, S.E.; Hull, W.M.; Whitsett, J.A. )

    1989-12-01

    Synthesis of pulmonary surfactant proteins SP-A, SP-B, and SP-C was demonstrated in a cell line derived from a human adenocarcinoma of the lung. The cells contained numerous lamellar inclusion bodies and formed organized groups of cells containing well-developed junctional complexes and apical microvillous membranes. Synthesis of SP-A was detected in the cells by enzyme-linked immunoabsorbent assay and by immunoprecipitation of (35S)methionine-labeled protein. SP-A was identified as an Mr 31,000-36,000 polypeptide containing asparagine-linked carbohydrate. Northern blot analysis detected SP-A mRNA of 2.2 kb. Dexamethasone (1-10 nM) enhanced the relative abundance of SP-A mRNA. Despite stimulation of SP-A mRNA, intracellular SP-A content was unaltered or inhibited by dexamethasone. SP-B and SP-C mRNAs and synthesis of the SP-B and SP-C precursors were markedly induced by dexamethasone. ProSP-B was synthesized and secreted primarily as an Mr 42,000-46,000 polypeptide. Proteolysis of the proSP-B resulted in the generation of endoglycosidase F-sensitive Mr = 19,000-21,000 and 25,000-27,000 peptides, which were detected both intra- and extracellularly. SP-C proprotein of Mr = 22,000 and smaller SP-C fragments were detected intracellularly but were not detected in the media. Mature forms of SP-B (Mr = 8,000) and SP-C (Mr = 4,000) were not detected. Glucocorticoids directly enhance the relative synthesis and mRNA of the surfactant proteins SP-A, SP-B, and SP-C. Discrepancies among SP-A mRNA, its de novo synthesis, and cell content suggest that glucocorticoid may alter both pre- and posttranslational factors modulating SP-A expression.

  8. Surfactant protein B inhibits secretory phospholipase A2 hydrolysis of surfactant phospholipids

    PubMed Central

    Grier, Bonnie L.; Waite, B. Moseley; Veldhuizen, Ruud A.; Possmayer, Fred; Yao, Li-Juan; Seeds, Michael C.

    2012-01-01

    Hydrolysis of surfactant phospholipids (PL) by secretory phospholipases A2 (sPLA2) contributes to surfactant damage in inflammatory airway diseases such as acute lung injury/acute respiratory distress syndrome. We and others have reported that each sPLA2 exhibits specificity in hydrolyzing different PLs in pulmonary surfactant and that the presence of hydrophilic surfactant protein A (SP-A) alters sPLA2-mediated hydrolysis. This report tests the hypothesis that hydrophobic SP-B also inhibits sPLA2-mediated surfactant hydrolysis. Three surfactant preparations were used containing varied amounts of SP-B and radiolabeled tracers of phosphatidylcholine (PC) or phosphatidylglycerol (PG): 1) washed ovine surfactant (OS) (pre- and postorganic extraction) compared with Survanta (protein poor), 2) Survanta supplemented with purified bovine SP-B (1–5%, wt/wt), and 3) a mixture of dipalmitoylphosphatidylcholine (DPPC), 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC), and 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG) (DPPC:POPC:POPG, 40:40:20) prepared as vesicles and monomolecular films in the presence or absence of SP-B. Hydrolysis of PG and PC by Group IB sPLA2 (PLA2G1A) was significantly lower in the extracted OS, which contains SP-B, compared with Survanta (P = 0.005), which is SP-B poor. Hydrolysis of PG and PC in nonextracted OS, which contains all SPs, was lower than both Survanta and extracted OS. When Survanta was supplemented with 1% SP-B, PG and PC hydrolysis by PLA2G1B was significantly lower (P < 0.001) than in Survanta alone. When supplemented into pure lipid vesicles and monomolecular films composed of PG and PC mixtures, SP-B also inhibited hydrolysis by both PLA2G1B and Group IIA sPLA2 (PLA2G2A). In films, PLA2G1B hydrolyzed surfactant PL monolayers at surface pressures ≤30 mN/m (P < 0.01), and SP-B lowered the surface pressure range at which hydrolysis can occur. These results suggest the hydrophobic SP, SP-B, protects alveolar surfactant PL from

  9. Endogenous proteolytic cleavage of disease-associated prion protein to produce C2 fragments is strongly cell- and tissue-dependent.

    PubMed

    Dron, Michel; Moudjou, Mohammed; Chapuis, Jérôme; Salamat, Muhammad Khalid Farooq; Bernard, Julie; Cronier, Sabrina; Langevin, Christelle; Laude, Hubert

    2010-04-02

    The abnormally folded form of the prion protein (PrP(Sc)) accumulating in nervous and lymphoid tissues of prion-infected individuals can be naturally cleaved to generate a N-terminal-truncated fragment called C2. Information about the identity of the cellular proteases involved in this process and its possible role in prion biology has remained limited and controversial. We investigated PrP(Sc) N-terminal trimming in different cell lines and primary cultured nerve cells, and in the brain and spleen tissue from transgenic mice infected by ovine and mouse prions. We found the following: (i) the full-length to C2 ratio varies considerably depending on the infected cell or tissue. Thus, in primary neurons and brain tissue, PrP(Sc) accumulated predominantly as untrimmed species, whereas efficient trimming occurred in Rov and MovS cells, and in spleen tissue. (ii) Although C2 is generally considered to be the counterpart of the PrP(Sc) proteinase K-resistant core, the N termini of the fragments cleaved in vivo and in vitro can actually differ, as evidenced by a different reactivity toward the Pc248 anti-octarepeat antibody. (iii) In lysosome-impaired cells, the ratio of full-length versus C2 species dramatically increased, yet efficient prion propagation could occur. Moreover, cathepsin but not calpain inhibitors markedly inhibited C2 formation, and in vitro cleavage by cathepsins B and L produced PrP(Sc) fragments lacking the Pc248 epitope, strongly arguing for the primary involvement of acidic hydrolases of the endolysosomal compartment. These findings have implications on the molecular analysis of PrP(Sc) and cell pathogenesis of prion infection.

  10. An anti-transferrin receptor-avidin fusion protein exhibits both strong proapoptotic activity and the ability to deliver various molecules into cancer cells

    PubMed Central

    Ng, Patrick P.; Dela Cruz, Jay S.; Sorour, David N.; Stinebaugh, James M.; Shin, Seung-Uon; Shin, Daniel S.; Morrison, Sherie L.; Penichet, Manuel L.

    2002-01-01

    We have developed an antibody fusion protein (anti-rat TfR IgG3-Av) with the ability to deliver different molecules into cancer cells. It consists of avidin genetically fused to the CH3 region of a human IgG3 specific for the rat transferrin receptor. It forms strong, noncovalent interactions with biotinylated molecules such as glucose oxidase and β-galactosidase, and delivers them into the rat myeloma cell line Y3-Ag1.2.3 through receptor-mediated endocytosis. Importantly, the β-galactosidase retains activity after internalization. Furthermore, we have unexpectedly discovered that anti-rat TfR IgG3-Av, but not a recombinant anti-rat TfR IgG3 or a nonspecific IgG3-Av, possesses proapoptotic activities against Y3-Ag1.2.3 and the rat T cell lymphoma cell line C58 (NT) D.1.G.OVAR.1. These activities were not observed in two rat cell lines of nonhematopoietic lineage (bladder carcinoma BC47 and gliosarcoma 9L). Anti-human TfR IgG3-Av also demonstrated proapoptotic activity against the human erythroleukemia cell line K562. Studies showed that anti-rat TfR IgG3-Av exists as a dimer, suggesting that cross-linking of the surface transferrin receptor may be responsible for the cytotoxic activity. These findings demonstrate that it is possible to transform an antibody specific for a growth factor receptor that does not exhibit inhibitory activity into a drug with significant intrinsic cytotoxic activity against selected cells by fusing it with avidin. The antitumor activity may be enhanced by delivering biotinylated therapeutics into cancer cells. Further development of this technology may lead to effective therapeutics for in vivo eradication of hematological malignancies, and ex vivo purging of cancer cells in autologous transplantation. PMID:12149472

  11. The role of charged amphipathic helices in the structure and function of surfactant protein B.

    PubMed

    Waring, A J; Walther, F J; Gordon, L M; Hernandez-Juviel, J M; Hong, T; Sherman, M A; Alonso, C; Alig, T; Braun, A; Bacon, D; Zasadzinski, J A

    2005-12-01

    Surfactant protein B (SP-B) is essential for normal lung surfactant function. Theoretical models predict that the disulfide cross-linked, N- and C-terminal domains of SP-B fold as charged amphipathic helices, and suggest that these adjacent helices participate in critical surfactant activities. This hypothesis is tested using a disulfide-linked construct (Mini-B) based on the primary sequences of the N- and C-terminal domains. Consistent with theoretical predictions of the full-length protein, both isotope-enhanced Fourier transform infrared (FTIR) spectroscopy and molecular modeling confirm the presence of charged amphipathic alpha-helices in Mini-B. Similar to that observed with native SP-B, Mini-B in model surfactant lipid mixtures exhibits marked in vitro activity, with spread films showing near-zero minimum surface tensions during cycling using captive bubble surfactometry. In vivo, Mini-B shows oxygenation and dynamic compliance that compare favorably with that of full-length SP-B. Mini-B variants (i.e. reduced disulfides or cationic residues replaced by uncharged residues) or Mini-B fragments (i.e. unlinked N- and C-terminal domains) produced greatly attenuated in vivo and in vitro surfactant properties. Hence, the combination of structure and charge for the amphipathic alpha-helical N- and C-terminal domains are key to SP-B function.

  12. A yeast two-hybrid screen reveals a strong interaction between the Legionella chaperonin Hsp60 and the host cell small heat shock protein Hsp10.

    PubMed

    Nasrallah, Gheyath K

    2015-06-01

    L. pneumophila is an intracellular bacterium that replicates inside a membrane-bound vacuole called Legionella-containing vacuole (LCV), where it plentifully liberates its HtpB chaperonin. From LCV, HtpB reaches the host cell cytoplasm, where it interacts with SAMDC, a cytoplasmic protein required for synthesis of host polyamines that are important for intracellular growth of L. pneumophila. Additionally, cytoplasmic expression of HtpB in S. cerevisiae induces pseudohyphal growth, and in mammalian cells recruits mitochondria to LCV, and modifies actin microfilaments organization. This led us to hypothesize here that HtpB recruits a protein(s) from eukaryotic cells that is involved in the emergence of the aforementioned phenotypes. To identify this protein, a commercially available HeLa cDNA library was screened using a yeast two-hybrid system. Approximately 5×10(6) yeast clones carrying HeLa cDNA library plasmid were screened. Twenty-one positive clones were identified. DNA sequence analysis revealed that all of these positive clones encoded the mammalian small heat shock protein Hsp10. Based on the fact that chaperonions are required to interact with co-chaperonins to function properly in protein folding, we believe that HtpB recruits the host cell Hsp10 to appropriately interact with SAMDC and to induce the multifunction phenotypes deemed important in L. pneumophila pathogenesis.

  13. The heat treatment and the gelation are strong determinants of the kinetics of milk proteins digestion and of the peripheral availability of amino acids.

    PubMed

    Barbé, Florence; Ménard, Olivia; Le Gouar, Yann; Buffière, Caroline; Famelart, Marie-Hélène; Laroche, Béatrice; Le Feunteun, Steven; Dupont, Didier; Rémond, Didier

    2013-02-15

    This study aimed to determine the kinetics of milk protein digestion and amino acid absorption after ingestion of four dairy matrices by six minipigs: unheated or heated skim milk and corresponding rennet gels. Digestive contents and plasma samples were collected over a 7 h-period after meal ingestion. Gelation of milk slowed down the outflow of the meal from the stomach and the subsequent absorption of amino acids, and decreased their bioavailability in peripheral blood. The gelled rennet matrices also led to low levels of milk proteins at the duodenum. Caseins and β-lactoglobulin, respectively, were sensitive and resistant to hydrolysis in the stomach with the unheated matrices, but showed similar digestion with the heated matrices, with a heat-induced susceptibility to hydrolysis for β-lactoglobulin. These results suggest a significant influence of the meal microstructure (resulting from heat treatment) and macrostructure (resulting from gelation process) on the different steps of milk proteins digestion.

  14. Functional and evolutionary analyses of Helicobacter pylori HP0231 (DsbK) protein with strong oxidative and chaperone activity characterized by a highly diverged dimerization domain.

    PubMed

    Bocian-Ostrzycka, Katarzyna M; Łasica, Anna M; Dunin-Horkawicz, Stanisław; Grzeszczuk, Magdalena J; Drabik, Karolina; Dobosz, Aneta M; Godlewska, Renata; Nowak, Elżbieta; Collet, Jean-Francois; Jagusztyn-Krynicka, Elżbieta K

    2015-01-01

    Helicobacter pylori does not encode the classical DsbA/DsbB oxidoreductases that are crucial for oxidative folding of extracytoplasmic proteins. Instead, this microorganism encodes an untypical two proteins playing a role in disulfide bond formation - periplasmic HP0231, which structure resembles that of EcDsbC/DsbG, and its redox partner, a membrane protein HpDsbI (HP0595) with a β-propeller structure. The aim of presented work was to assess relations between HP0231 structure and function. We showed that HP0231 is most closely related evolutionarily to the catalytic domain of DsbG, even though it possesses a catalytic motif typical for canonical DsbA proteins. Similarly, the highly diverged N-terminal dimerization domain is homologous to the dimerization domain of DsbG. To better understand the functioning of this atypical oxidoreductase, we examined its activity using in vivo and in vitro experiments. We found that HP0231 exhibits oxidizing and chaperone activities but no isomerizing activity, even though H. pylori does not contain a classical DsbC. We also show that HP0231 is not involved in the introduction of disulfide bonds into HcpC (Helicobacter cysteine-rich protein C), a protein involved in the modulation of the H. pylori interaction with its host. Additionally, we also constructed a truncated version of HP0231 lacking the dimerization domain, denoted HP0231m, and showed that it acts in Escherichia coli cells in a DsbB-dependent manner. In contrast, HP0231m and classical monomeric EcDsbA (E. coli DsbA protein) were both unable to complement the lack of HP0231 in H. pylori cells, though they exist in oxidized forms. HP0231m is inactive in the insulin reduction assay and possesses high chaperone activity, in contrast to EcDsbA. In conclusion, HP0231 combines oxidative functions characteristic of DsbA proteins and chaperone activity characteristic of DsbC/DsbG, and it lacks isomerization activity.

  15. Functional and evolutionary analyses of Helicobacter pylori HP0231 (DsbK) protein with strong oxidative and chaperone activity characterized by a highly diverged dimerization domain

    PubMed Central

    Bocian-Ostrzycka, Katarzyna M.; Łasica, Anna M.; Dunin-Horkawicz, Stanisław; Grzeszczuk, Magdalena J.; Drabik, Karolina; Dobosz, Aneta M.; Godlewska, Renata; Nowak, Elżbieta; Collet, Jean-Francois; Jagusztyn-Krynicka, Elżbieta K.

    2015-01-01

    Helicobacter pylori does not encode the classical DsbA/DsbB oxidoreductases that are crucial for oxidative folding of extracytoplasmic proteins. Instead, this microorganism encodes an untypical two proteins playing a role in disulfide bond formation – periplasmic HP0231, which structure resembles that of EcDsbC/DsbG, and its redox partner, a membrane protein HpDsbI (HP0595) with a β-propeller structure. The aim of presented work was to assess relations between HP0231 structure and function. We showed that HP0231 is most closely related evolutionarily to the catalytic domain of DsbG, even though it possesses a catalytic motif typical for canonical DsbA proteins. Similarly, the highly diverged N-terminal dimerization domain is homologous to the dimerization domain of DsbG. To better understand the functioning of this atypical oxidoreductase, we examined its activity using in vivo and in vitro experiments. We found that HP0231 exhibits oxidizing and chaperone activities but no isomerizing activity, even though H. pylori does not contain a classical DsbC. We also show that HP0231 is not involved in the introduction of disulfide bonds into HcpC (Helicobacter cysteine-rich protein C), a protein involved in the modulation of the H. pylori interaction with its host. Additionally, we also constructed a truncated version of HP0231 lacking the dimerization domain, denoted HP0231m, and showed that it acts in Escherichia coli cells in a DsbB-dependent manner. In contrast, HP0231m and classical monomeric EcDsbA (E. coli DsbA protein) were both unable to complement the lack of HP0231 in H. pylori cells, though they exist in oxidized forms. HP0231m is inactive in the insulin reduction assay and possesses high chaperone activity, in contrast to EcDsbA. In conclusion, HP0231 combines oxidative functions characteristic of DsbA proteins and chaperone activity characteristic of DsbC/DsbG, and it lacks isomerization activity. PMID:26500620

  16. StGCPRP, a potato gene strongly expressed in stomatal guard cells, defines a novel type of repetitive proline-rich proteins.

    PubMed

    Menke, U; Renault, N; Mueller-Roeber, B

    2000-03-01

    Guard cells represent a highly differentiated cell type within the epidermis of plant leaves and stems. They respond to many endogenous and environmental signals and thereby modify the size of the stomatal pore they surround. We identified a novel gene that is highly expressed in guard cells of potato (Solanum tuberosum). It encodes a repetitive proline (Pro)-rich protein of 54 kD (491 amino acids) and was named StGCPRP (S. tuberosum guard cell Pro-rich protein). StGCPRP has a bipartite structure. The C-terminal part of StGCPRP contains a high percentage (46%) of Pro residues organized in distinct repetitive sequence motifs, whereas its extended N terminus is essentially free of Pros. StGCPRP represents the first member of a novel class of hybrid Pro-rich proteins that we designated NHyPRPs. In young but not in mature leaves, StGCPRP transcripts were also present at high levels in mesophyll cells (in addition to guard cells), indicating developmental regulation of StGCPRP gene expression. In addition, StGCPRP expression is regulated by environmental factors, as shown by a decrease in StGCPRP transcript levels under drought stress. Two proteins similar to StGCPRP were found to be encoded by the Arabidopsis genome, indicating that NHyPRPs are more widely distributed in higher plants.

  17. Development of high-productivity, strong cation-exchange adsorbers for protein capture by graft polymerization from membranes with different pore sizes

    PubMed Central

    Chenette, Heather C.S.; Robinson, Julie R.; Hobley, Eboni; Husson, Scott M.

    2012-01-01

    This paper describes the surface modification of macroporous membranes using ATRP (atom transfer radical polymerization) to create cation-exchange adsorbers with high protein binding capacity at high product throughput. The work is motivated by the need for a more economical and rapid capture step in downstream processing of protein therapeutics. Membranes with three reported nominal pore sizes (0.2, 0.45, 1.0 μm) were modified with poly(3-sulfopropyl methacrylate, potassium salt) tentacles, to create a high density of protein binding sites. A special formulation was used in which the monomer was protected by a crown ether to enable surface-initiated ATRP of this cationic polyelectrolyte. Success with modification was supported by chemical analysis using Fourier-transform infrared spectroscopy and indirectly by measurement of pure water flux as a function of polymerization time. Uniformity of modification within the membranes was visualized with confocal laser scanning microscopy. Static and dynamic binding capacities were measured using lysozyme protein to allow comparisons with reported performance data for commercial cation-exchange materials. Dynamic binding capacities were measured for flow rates ranging from 13 to 109 column volumes (CV)/min. Results show that this unique ATRP formulation can be used to fabricate cation-exchange membrane adsorbers with dynamic binding capacities as high as 70 mg/mL at a throughput of 100 CV/min and unprecedented productivity of 300 mg/mL/min. PMID:23175597

  18. StGCPRP, a Potato Gene Strongly Expressed in Stomatal Guard Cells, Defines a Novel Type of Repetitive Proline-Rich Proteins1

    PubMed Central

    Menke, Ulrich; Renault, Nathalie; Mueller-Roeber, Bernd

    2000-01-01

    Guard cells represent a highly differentiated cell type within the epidermis of plant leaves and stems. They respond to many endogenous and environmental signals and thereby modify the size of the stomatal pore they surround. We identified a novel gene that is highly expressed in guard cells of potato (Solanum tuberosum). It encodes a repetitive proline (Pro)-rich protein of 54 kD (491 amino acids) and was named StGCPRP (S. tuberosum guard cell Pro-rich protein). StGCPRP has a bipartite structure. The C-terminal part of StGCPRP contains a high percentage (46%) of Pro residues organized in distinct repetitive sequence motifs, whereas its extended N terminus is essentially free of Pros. StGCPRP represents the first member of a novel class of hybrid Pro-rich proteins that we designated NHyPRPs. In young but not in mature leaves, StGCPRP transcripts were also present at high levels in mesophyll cells (in addition to guard cells), indicating developmental regulation of StGCPRP gene expression. In addition, StGCPRP expression is regulated by environmental factors, as shown by a decrease in StGCPRP transcript levels under drought stress. Two proteins similar to StGCPRP were found to be encoded by the Arabidopsis genome, indicating that NHyPRPs are more widely distributed in higher plants. PMID:10712530

  19. Nuclear detection of Y-box protein-1 (YB-1) closely associates with progesterone receptor negativity and is a strong adverse survival factor in human breast cancer.

    PubMed

    Dahl, Edgar; En-Nia, Abdelaziz; Wiesmann, Frank; Krings, Renate; Djudjaj, Sonja; Breuer, Elisabeth; Fuchs, Thomas; Wild, Peter J; Hartmann, Arndt; Dunn, Sandra E; Mertens, Peter R

    2009-11-24

    Y-box binding protein-1 (YB-1) is the prototypic member of the cold shock protein family that fulfills numerous cellular functions. In the nucleus YB-1 protein orchestrates transcription of proliferation-related genes, whereas in the cytoplasm it associates with mRNA and directs translation. In human tumor entities, such as breast, lung and prostate cancer, cellular YB-1 expression indicates poor clinical outcome, suggesting that YB-1 is an attractive marker to predict patients' prognosis and, potentially, is suitable to individualize treatment protocols. Given these predictive qualities of YB-1 detection we sought to establish a highly specific monoclonal antibody (Mab) for diagnostic testing and its characterization towards outcome prediction (relapse-free and overall survival). Hybridoma cell generation was carried out with recombinant YB-1 protein as immunogen and Mab characterization was performed using immunoblotting and ELISA with recombinant and tagged YB-1 proteins, as well as immunohistochemistry of healthy and breast cancer specimens. Breast tumor tissue array staining results were analyzed for correlations with receptor expression and outcome parameters. YB-1-specific Mab F-E2G5 associates with conformational binding epitopes mapping to two domains within the N-terminal half of the protein and detects nuclear YB-1 protein by immunohistochemistry in paraffin-embedded breast cancer tissues. Prognostic evaluation of Mab F-E2G5 was performed by immunohistochemistry of a human breast cancer tissue microarray comprising 179 invasive breast cancers, 8 ductal carcinoma in situ and 37 normal breast tissue samples. Nuclear YB-1 detection in human breast cancer cells was associated with poor overall survival (p = 0.0046). We observed a close correlation between nuclear YB-1 detection and absence of progesterone receptor expression (p = 0.002), indicating that nuclear YB-1 detection marks a specific subgroup of breast cancer. Likely due to limitation of sample size

  20. A single endoplasmic reticulum aminopeptidase-1 protein allotype is a strong risk factor for Behçet’s disease in HLA-B*51 carriers

    PubMed Central

    Takeuchi, Masaki; Ombrello, Michael J; Kirino, Yohei; Erer, Burak; Tugal-Tutkun, Ilknur; Seyahi, Emire; Özyazgan, Yilmaz; Watts, Norman; Gül, Ahmet; Kastner, Daniel L.; Remmers, Elaine F

    2016-01-01

    Introduction Endoplasmic reticulum aminopeptidase 1 (ERAP1) protein is highly polymorphic with numerous missense amino acid variants. We sought to determine the naturally occurring ERAP1 protein allotypes and their contribution to Behçet’s disease. Methods Genotypes of all reported missense ERAP1 gene variants with 1000 Genomes EUR super-population frequency greater than 1% were determined in 1,900 Behçet’s disease cases and 1,779 controls from Turkey. ERAP1 protein allotypes and their contributions to Behçet’s disease risk were determined by haplotype identification and disease association analyses. Results One ERAP1 protein allotype with 5 non-ancestral amino acids was recessively associated with disease (P = 3.13 × 10−6, odds ratio 2.55, 95% CI 1.70 to 3.82). The ERAP1 association was absent in individuals who lacked HLA-B*51. Individuals who carry HLA-B*51 and who are also homozygous for the haplotype had an increased disease odds compared with those with neither risk factor (P = 4.80 × 10−20, odds ratio 10.96, 95% CI 5.91 to 20.32). Discussion The Behçet’s disease-associated ERAP1 protein allotype was previously shown to have poor peptide trimming activity. Combined with its requirement for HLA-B*51, these data suggest that a hypoactive ERAP1 allotype contributes to Behçet’s disease risk by altering the peptides available for binding to HLA-B*51. PMID:27217550

  1. In Vivo-Expressed Proteins of Virulent Leptospira interrogans Serovar Autumnalis N2 Elicit Strong IgM Responses of Value in Conclusive Diagnosis

    PubMed Central

    Raja, Veerapandian; Shanmughapriya, Santhanam; Kanagavel, Murugesan; Artiushin, Sergey C.; Velineni, Sridhar; Timoney, John F.

    2015-01-01

    Leptospirosis is a serious zoonosis that is underdiagnosed because of limited access to laboratory facilities in Southeast Asia, Central and South America, and Oceania. Timely diagnosis of locally distributed serovars of high virulence is crucial for successful care and outbreak management. Using pooled patient sera, an expression gene library of a virulent Leptospira interrogans serovar Autumnalis strain N2 isolated in South India was screened. The identified genes were characterized, and the purified recombinant proteins were used as antigens in IgM enzyme-linked immunosorbent assay (ELISA) either singly or in combination. Sera (n = 118) from cases of acute leptospirosis along with sera (n = 58) from healthy subjects were tested for reactivity with the identified proteins in an ELISA designed to detect specific IgM responses. We have identified nine immunoreactive proteins, ArgC, RecA, GlpF, FliD, TrmD, RplS, RnhB, Lp28.6, and Lrr44.9, which were found to be highly conserved among pathogenic leptospires. Apparently, the proteins ArgC, RecA, GlpF, FliD, TrmD, and Lrr44.9 are expressed during natural infection of the host and undetectable in in vitro cultures. Among all the recombinant proteins used as antigens in IgM ELISA, ArgC had the highest sensitivity and specificity, 89.8% and 95.5%, respectively, for the conclusive diagnosis of leptospirosis. The use of ArgC and RecA in combination for IgM ELISA increased the sensitivity and specificity to 95.7% and 94.9%, respectively. ArgC and RecA thus elicited specific IgM responses and were therefore effective in laboratory confirmation of Leptospira infection. PMID:26607308

  2. A single endoplasmic reticulum aminopeptidase-1 protein allotype is a strong risk factor for Behçet's disease in HLA-B*51 carriers.

    PubMed

    Takeuchi, Masaki; Ombrello, Michael J; Kirino, Yohei; Erer, Burak; Tugal-Tutkun, Ilknur; Seyahi, Emire; Özyazgan, Yilmaz; Watts, Norman R; Gül, Ahmet; Kastner, Daniel L; Remmers, Elaine F

    2016-12-01

    Endoplasmic reticulum aminopeptidase-1 (ERAP1) protein is highly polymorphic with numerous missense amino acid variants. We sought to determine the naturally occurring ERAP1 protein allotypes and their contribution to Behçet's disease. Genotypes of all reported missense ERAP1 gene variants with 1000 Genomes Project EUR superpopulation frequency >1% were determined in 1900 Behçet's disease cases and 1779 controls from Turkey. ERAP1 protein allotypes and their contributions to Behçet's disease risk were determined by haplotype identification and disease association analyses. One ERAP1 protein allotype with five non-ancestral amino acids was recessively associated with disease (p=3.13×10(-6), OR 2.55, 95% CI 1.70 to 3.82). The ERAP1 association was absent in individuals who lacked HLA-B*51. Individuals who carry HLA-B*51 and who are also homozygous for the haplotype had an increased disease odds compared with those with neither risk factor (p=4.80×10(-20), OR 10.96, 95% CI 5.91 to 20.32). The Behçet's disease-associated ERAP1 protein allotype was previously shown to have poor peptide trimming activity. Combined with its requirement for HLA-B*51, these data suggest that a hypoactive ERAP1 allotype contributes to Behçet's disease risk by altering the peptides available for binding to HLA-B*51. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  3. Directed, strong, and reversible immobilization of proteins tagged with a β-trefoil lectin domain: a simple method to immobilize biomolecules on plain agarose matrixes.

    PubMed

    López-Gallego, Fernando; Acebrón, Ivan; Mancheño, Jose Miguel; Raja, Sebastian; Lillo, M Pilar; Guisán Seijas, Jose Manuel

    2012-03-21

    A highly stable lipase from Geobacillus thermocatenolatus (BTL2) and the enhanced green fluorescent protein from Aquorea victoria (EGFP) were recombinantly produced N-terminally tagged to the lectin domain of the hemolytic pore-forming toxin LSLa from the mushroom Laetiporus sulphureus . Such a domain (LSL(150)), recently described as a novel fusion tag, is based on a β-trefoil scaffold with two operative binding sites for galactose or galactose-containing derivatives. The fusion proteins herein analyzed have enabled us to characterize the binding mode of LSL(150) to polymeric and solid substrates such as agarose beads. The lectin-fusion proteins are able to be quantitatively bound to both cross-linked and non-cross-linked agarose matrixes in a very rapid manner, resulting in a surprisingly dynamic protein distribution inside the porous beads that evolves from heterogeneous to homogeneous along the postimmobilization time. Such dynamic distribution can be related to the reversible nature of the LSL(150)-agarose interaction. Furthermore, this latter interaction is temperature dependent since it is 4-fold stronger when the immobilization takes place at 25 °C than when it does at 4 °C. The strongest lectin-agarose interaction is also quite stable under a survey of different conditions such as high temperatures (up to 60 °C) or high organic solvent concentrations (up to 60% of acetonitrile). Notably, the use of cross-linked agarose would endow the system with more robustness due to its better mechanical properties compared to the noncross-linked one. The stability of the LSL(150)-agarose interaction would prevent protein leaching during the operation process unless high pH media are used. In summary, we believe that the LSL(150) lectin domain exhibits interesting structural features as an immobilization domain that makes it suitable to reversibly immobilize industrially relevant enzymes in very simple carriers as agarose.

  4. Calcium ions as "miscibility switch": colocalization of surfactant protein B with anionic lipids under absolute calcium free conditions.

    PubMed

    Saleem, Mohammed; Meyer, Michaela C; Breitenstein, Daniel; Galla, Hans-Joachim

    2009-07-22

    One of the main determinants of lung surfactant function is the complex interplay between its protein and lipid components. The lipid specificity of surfactant protein B (SP-B), however, and the protein's ability to selectively squeeze out lipids, has remained contradictory. In this work we present, for the first time to our knowledge, by means of time-of-flight secondary ion mass spectrometry chemical imaging, a direct evidence for colocalization of SP-B as well as its model peptide KL(4) with negatively charged dipalmitoylphosphatidylglycerol under absolute calcium free conditions. Our results prove that protein/lipid localization depends on the miscibility of all surfactant components, which itself is influenced by subphase ionic conditions. In contrast to our earlier studies reporting SP-B/KL(4) colocalization with zwitterionic dipalmitoylphosphatidylcholine, in the presence of even the smallest traces of calcium, we finally evidence an apparent reversal of protein/lipid mixing behavior upon calcium removal with ethylene diamine tetraacetic acid. In addition, scanning force microscopy measurements reveal that by depleting the subphase from calcium ions the protrusion formation ability of SP-B or KL(4) is not hampered. However, in the case of KL(4), distinct differences in protrusion morphology and height are visible. Our results support the idea that calcium ions act as a "miscibility switch" in surfactant model systems and probably are one of the major factors steering lipid/protein mixing behavior as well as influencing the protein's protrusion formation ability.

  5. A phenylalanine to serine substitution within an O-protein mannosyltransferase led to strong resistance to PMT-inhibitors in Pichia pastoris.

    PubMed

    Argyros, Rebecca; Nelson, Stephanie; Kull, Angela; Chen, Ming-Tang; Stadheim, Terrance A; Jiang, Bo

    2013-01-01

    Protein O-mannosyltransferases (PMTs) catalyze the initial reaction of protein O-mannosylation by transferring the first mannose unit onto serine and threonine residues of a nascent polypeptide being synthesized in the endoplasmic reticulum (ER). The PMTs are well conserved in eukaryotic organisms, and in vivo defects of these enzymes result in cell death in yeast and congenital diseases in humans. A group of rhodanine-3-acetic acid derivatives (PMTi) specifically inhibits PMT activity both in vitro and in vivo. As such, these chemical compounds have been effectively used to minimize the extent of O-mannosylation on heterologously produced proteins from different yeast expression hosts. However, very little is known about how these PMT-inhibitors interact with the PMT enzyme, or what structural features of the PMTs are required for inhibitor-protein interactions. To better understand the inhibitor-enzyme interactions, and to gain potential insights for developing more effective PMT-inhibitors, we isolated PMTi-resistant mutants in Pichia pastoris. In this study, we report the identification and characterization of a point mutation within the PpPMT2 gene. We demonstrate that this F664S point mutation resulted in a near complete loss of PMTi sensitivity, both in terms of growth-inhibition and reduction in O-mannosylglycan site occupancy. Our results provide genetic evidence demonstrating that the F664 residue plays a critical role in mediating the inhibitory effects of these PMTi compounds. Our data also indicate that the main target of these PMT-inhibitors in P. pastoris is Pmt2p, and that the F664 residue most likely interacts directly with the PMTi-compounds.

  6. Characterization of Streptokinases from Group A Streptococci Reveals a Strong Functional Relationship That Supports the Coinheritance of Plasminogen-binding M Protein and Cluster 2b Streptokinase*

    PubMed Central

    Zhang, Yueling; Liang, Zhong; Hsueh, Hsing-Tse; Ploplis, Victoria A.; Castellino, Francis J.

    2012-01-01

    Group A streptococcus (GAS) strains secrete the protein streptokinase (SK), which functions by activating host human plasminogen (hPg) to plasmin (hPm), thus providing a proteolytic framework for invasive GAS strains. The types of SK secreted by GAS have been grouped into two clusters (SK1 and SK2) and one subcluster (SK2a and SK2b). SKs from cluster 1 (SK1) and cluster 2b (SK2b) display significant evolutionary and functional differences, and attempts to relate these properties to GAS skin or pharynx tropism and invasiveness are of great interest. In this study, using four purified SKs from each cluster, new relationships between plasminogen-binding group A streptococcal M (PAM) protein and SK2b have been revealed. All SK1 proteins efficiently activated hPg, whereas all subclass SK2b proteins only weakly activated hPg in the absence of PAM. Surface plasmon resonance studies revealed that the lower affinity of SK2b to hPg served as the basis for the attenuated activation of hPg by SK2b. Binding of hPg to either human fibrinogen (hFg) or PAM greatly enhanced activation of hPg by SK2b but minimally influenced the already effective activation of hPg by SK1. Activation of hPg in the presence of GAS cells containing PAM demonstrated that PAM is the only factor on the surface of SK2b-expressing cells that enabled the direct activation of hPg by SK2b. As the binding of hPg to PAM is necessary for hPg activation by SK2b, this dependence explains the coinherant relationship between PAM and SK2b and the ability of these particular strains to generate the proteolytic activity that disrupts the innate barriers that limit invasiveness. PMID:23086939

  7. The bovine viral diarrhea virus E2 protein formulated with a novel adjuvant induces strong, balanced immune responses and provides protection from viral challenge in cattle.

    PubMed

    Snider, Marlene; Garg, Ravendra; Brownlie, Robert; van den Hurk, Jan V; van Drunen Littel-van den Hurk, Sylvia

    2014-11-28

    Bovine viral diarrhea virus (BVDV) is still one of the most serious pathogens in cattle, meriting the development of improved vaccines. Recently, we developed a new adjuvant consisting of poly[di(sodium carboxylatoethylphenoxy)]-phosphazene (PCEP), either CpG ODN or poly(I:C), and an immune defense regulator (IDR) peptide. As this adjuvant has been shown to mediate the induction of robust, balanced immune responses, it was evaluated in an E2 subunit vaccine against BVDV in lambs and calves. The BVDV type 2 E2 protein was produced at high levels in a mammalian expression system and purified. When formulated with either CpG ODN or poly(I:C), together with IDR and PCEP, the E2 protein elicited high antibody titers and production of IFN-γ secreting cells in lambs. As the immune responses were stronger when poly(I:C) was used, the E2 protein with poly(I:C), IDR and PCEP was subsequently tested in cattle. Robust virus neutralizing antibodies as well as cell-mediated immune responses, including CD8(+) cytotoxic T cell (CTL) responses, were induced. The fact that CTL responses were demonstrated in calves vaccinated with an E2 protein subunit vaccine indicates that this adjuvant formulation promotes cross-presentation. Furthermore, upon challenge with a high dose of virulent BVDV-2, the vaccinated calves showed almost no temperature response, weight loss, leukopenia or virus replication, in contrast to the control animals, which had severe clinical disease. These data suggest that this E2 subunit formulation induces significant protection from BVDV-2 challenge, and thus is a promising BVDV vaccine candidate; in addition, the adjuvant platform has applications in bovine vaccines in general.

  8. Disruption of the ESX-5 system of Mycobacterium tuberculosis causes loss of PPE protein secretion, reduction of cell wall integrity and strong attenuation.

    PubMed

    Bottai, Daria; Di Luca, Mariagrazia; Majlessi, Laleh; Frigui, Wafa; Simeone, Roxane; Sayes, Fadel; Bitter, Wilbert; Brennan, Michael J; Leclerc, Claude; Batoni, Giovanna; Campa, Mario; Brosch, Roland; Esin, Semih

    2012-03-01

    The chromosome of Mycobacterium tuberculosis encodes five type VII secretion systems (ESX-1-ESX-5). While the role of the ESX-1 and ESX-3 systems in M. tuberculosis has been elucidated, predictions for the function of the ESX-5 system came from data obtained in Mycobacterium marinum, where it transports PPE and PE_PGRS proteins and modulates innate immune responses. To define the role of the ESX-5 system in M. tuberculosis, in this study, we have constructed five M. tuberculosis H37Rv ESX-5 knockout/deletion mutants, inactivating eccA(5), eccD(5), rv1794 and esxM genes or the ppe25-pe19 region. Whereas the Mtbrv1794ko displayed no obvious phenotype, the other four mutants showed defects in secretion of the ESX-5-encoded EsxN and PPE41, a representative member of the large PPE protein family. Strikingly, the MtbeccD(5) ko mutant also showed enhanced sensitivity to detergents and hydrophilic antibiotics. When the virulence of the five mutants was evaluated, the MtbeccD(5) ko and MtbΔppe25-pe19 mutants were found attenuated both in macrophages and in the severe combined immune-deficient mouse infection model. Altogether these findings indicate an essential role of ESX-5 for transport of PPE proteins, cell wall integrity and full virulence of M. tuberculosis, thereby opening interesting new perspectives for the study of this human pathogen.

  9. Diet with a combination of high protein and high total antioxidant capacity is strongly associated with low prevalence of frailty among old Japanese women: a multicenter cross-sectional study.

    PubMed

    Kobayashi, Satomi; Suga, Hitomi; Sasaki, Satoshi

    2017-05-12

    with the combination of high dietary protein and high dietary TAC was strongly inversely associated with the prevalence of frailty in this population. To select food combinations that allow for an increase of both protein and antioxidants in diet according to the local food culture and dietary habits may be an effective strategy for frailty prevention.

  10. AdoMet radical proteins—from structure to evolution—alignment of divergent protein sequences reveals strong secondary structure element conservation

    PubMed Central

    Nicolet, Yvain; Drennan, Catherine L.

    2004-01-01

    Eighteen subclasses of S-adenosyl-l-methionine (AdoMet) radical proteins have been aligned in the first bioinformatics study of the AdoMet radical superfamily to utilize crystallographic information. The recently resolved X-ray structure of biotin synthase (BioB) was used to guide the multiple sequence alignment, and the recently resolved X-ray structure of coproporphyrinogen III oxidase (HemN) was used as the control. Despite the low 9% sequence identity between BioB and HemN, the multiple sequence alignment correctly predicted all but one of the core helices in HemN, and correctly predicted the residues in the enzyme active site. This alignment further suggests that the AdoMet radical proteins may have evolved from half-barrel structures (αβ)4 to three-quarter-barrel structures (αβ)6 to full-barrel structures (αβ)8. It predicts that anaerobic ribonucleotide reductase (RNR) activase, an ancient enzyme that, it has been suggested, serves as a link between the RNA and DNA worlds, will have a half-barrel structure, whereas the three-quarter barrel, exemplified by HemN, will be the most common architecture for AdoMet radical enzymes, and fewer members of the superfamily will join BioB in using a complete (αβ)8 TIM-barrel fold to perform radical chemistry. These differences in barrel architecture also explain how AdoMet radical enzymes can act on substrates that range in size from 10 atoms to 608 residue proteins. PMID:15289575

  11. [A novel immunization strategy to induce strong humoral responses against HIV-1 using combined DNA, recombinant vaccinia virus and protein vaccines].

    PubMed

    Liu, Chang; Wang, Shu-hui; Ren, Li; Hao, Yan-ling; Zhang, Qi-cheng; Liu, Ying

    2014-11-01

    To optimize the immunization strategy against HIV-1, a DNA vaccine was combined with a recombinant vaccinia virus (rTV) vaccine and a protein vaccine. Immune responses against HIV-1 were detected in 30 female guinea pigs divided into six groups. Three groups of guinea pigs were primed with HIV-1 DNA vaccine three times, boosted with rTV at week 14, and then boosted with gp140 protein at intervals of 4, 8 or 12 weeks. Simultaneously, the other three groups of animals were primed with rTV vaccine once, and then boosted with gp140 after 4, 8 or 12 weeks. The HIV-1 specific binding antibody and neutralizing antibody, in addition to the relative affinity of these antibodies, were detected at different time points after the final administration of vaccine in each group. The DNA-rTV-gp140 immune regimen induced higher titers and affinity levels of HIV-1 gp120/gp140 antibodies and stronger V1V2-gp70 antibodies than the rTV-gp140 regimen. In the guinea pigs that underwent the DNA-rTV-gp140 regimen, the highest V1V2-gp70 antibody was induced in the 12-week-interval group. However, the avidity of antibodies was improved in the 4-week-interval group. Using the rTV-gp140 immunization strategy, guinea pigs boosted at 8 or 12 weeks after rTV priming elicited stronger humoral responses than those boosted at 4 weeks after priming. In conclusion, this study shows that the immunization strategy of HIV-1 DNA vaccine priming, followed by rTV and protein vaccine boosting, could strengthen the humoral response against HIV-1. Longer intervals were better to induce V1V2-gp70-specific antibodies, while shorter intervals were more beneficial to enhance the avidity of antibodies.

  12. Reconstituting redox active centers of heme-containing proteins with biomineralized gold toward peroxidase mimics with strong intrinsic catalysis and electrocatalysis for H2O2 detection.

    PubMed

    Zhang, Liyan; Li, Shuai; Dong, Minmin; Jiang, Yao; Li, Ru; Zhang, Shuo; Lv, Xiaoxia; Chen, Lijun; Wang, Hua

    2017-01-15

    A facile and efficient enzymatic reconstitution methodology has been proposed for high-catalysis peroxidase mimics by remolding the redox active centers of heme-containing proteins with the in-site biomineralized gold using hemoglobin (Hb) as a model. Catalytic hemin (Hem) was extracted from the active centers of Hb for the gold biomineralization and then reconstituted into apoHb to yield the Hem-Au@apoHb nanocomposites showing dramatically improved intrinsic catalysis and electrocatalysis over natural Hb and Hem. The biomineralized gold, on the one hand, would act as "nanowires" to promote the electron transferring of the nanocomposites. On the other hand, it would create a reactivity pathway to pre-organize and accumulate more substrates towards the active sites of the peroxidase mimics. Steady-state kinetics studies indicate that Hem-Au@apoHb could present much higher substrate affinity (lower Michaelis constants) and intrinsic catalysis even than some natural peroxidases. Moreover, the application feasibility of the prepared artificial enzymes was demonstrated by colorimetric assays and direct electrocatalysis for H2O2 sensing, showing a detection limitation low as 0.45μM. Importantly, such a catalysis active-center reconstitution protocol may circumvent the substantial improvement of the intrinsic catalysis and electrocatalysis of diverse heme-containing proteins or enyzmes toward the extensive applications in the chemical, enviromental, and biomedical catalysis fields.

  13. A bacterial transgene for catalase protects translation of d1 protein during exposure of salt-stressed tobacco leaves to strong light.

    PubMed

    Al-Taweel, Khaled; Iwaki, Toshio; Yabuta, Yukinori; Shigeoka, Shigeru; Murata, Norio; Wadano, Akira

    2007-09-01

    During photoinhibition of photosystem II (PSII) in cyanobacteria, salt stress inhibits the repair of photodamaged PSII and, in particular, the synthesis of the D1 protein (D1). We investigated the effects of salt stress on the repair of PSII and the synthesis of D1 in wild-type tobacco (Nicotiana tabacum 'Xanthi') and in transformed plants that harbored the katE gene for catalase from Escherichia coli. Salt stress due to NaCl enhanced the photoinhibition of PSII in leaf discs from both wild-type and katE-transformed plants, but the effect of salt stress was less significant in the transformed plants than in wild-type plants. In the presence of lincomycin, which inhibits protein synthesis in chloroplasts, the activity of PSII decreased rapidly and at similar rates in both types of leaf disc during photoinhibition, and the observation suggests that repair of PSII was protected by the transgene-coded enzyme. Incorporation of [(35)S]methionine into D1 during photoinhibition was inhibited by salt stress, and the transformation mitigated this inhibitory effect. Northern blotting revealed that the level of psbA transcripts was not significantly affected by salt stress or by the transformation. Our results suggest that salt stress enhanced photoinhibition by inhibiting repair of PSII and that the katE transgene increased the resistance of the chloroplast's translational machinery to salt stress by scavenging hydrogen peroxide.

  14. Schistosoma mansoni Infection of Mice, Rats and Humans Elicits a Strong Antibody Response to a Limited Number of Reduction-Sensitive Epitopes on Five Major Tegumental Membrane Proteins

    PubMed Central

    Tremblay, Jacqueline M.; Oliveira, Sergio C.; Da’dara, Akram A.; Skelly, Patrick J.

    2017-01-01

    Schistosomiasis is a major disease of the developing world for which no vaccine has been successfully commercialized. While numerous Schistosoma mansoni worm antigens have been identified that elicit antibody responses during natural infections, little is known as to the identities of the schistosome antigens that are most prominently recognized by antibodies generated through natural infection. Non-reducing western blots probed with serum from schistosome-infected mice, rats and humans on total extracts of larval or adult schistosomes revealed that a small number of antigen bands predominate in all cases. Recognition of each of these major bands was lost when the blots were run under reducing condition. We expressed a rationally selected group of schistosome tegumental membrane antigens in insect host cells, and used the membrane extracts of these cells to unambiguously identify the major antigens recognized by S. mansoni infected mouse, rat and human serum. These results revealed that a limited number of dominant, reduction-sensitive conformational epitopes on five major tegumental surface membrane proteins: SmTsp2, Sm23, Sm29, SmLy6B and SmLy6F, are primary targets of mouse, rat and human S. mansoni infection sera antibodies. We conclude that, Schistosoma mansoni infection of both permissive (mouse) and non-permissive (rat) rodent models, as well as humans, elicit a dominant antibody response recognizing a limited number of conformational epitopes on the same five tegumental membrane proteins. Thus it appears that neither infecting schistosomula nor mature adult schistosomes are substantively impacted by the robust circulating anti-tegumental antibody response they elicit to these antigens. Importantly, our data suggest a need to re-evaluate host immune responses to many schistosome antigens and has important implications regarding schistosome immune evasion mechanisms and schistosomiasis vaccine development. PMID:28095417

  15. Plasma Levels of Acylation-Stimulating Protein Are Strongly Predicted by Waist/Hip Ratio and Correlate with Decreased LDL Size in Men

    PubMed Central

    Saleh, Jumana; Wahab, Rabab A.; Farhan, Hatem; Al-Amri, Issa; Cianflone, Katherine

    2013-01-01

    The association of abdominal obesity with cardiovascular risk is often linked to altered secretion of adipose-derived factors and an abnormal lipid profile including formation of atherogenic small dense low density lipoprotein particles (sdLDL). Acylation-stimulating protein (ASP) is an adipose-derived hormone that exhibits potent lipogenic effects. Plasma ASP levels increase in obesity; however, the association of ASP levels with body fat distribution is not yet established, and no study to date has investigated the association of ASP with LDL size. In this study, we examined the association of ASP levels with abdominal obesity measures and the lipid profile including LDL size in 83 men with a wide range of abdominal girths. Regression analysis showed that waist/hip ratio was the main predictor of ASP levels (β = 0.52, P < 0.0001), significantly followed by decreased LDL size. BMI and TG levels, although positively correlated with ASP levels, were excluded as significant predictors in regression analysis. No correlation was found with LDL-C or apoB levels. ASP levels were 62.5% higher in abdominally obese compared to nonobese men. Waist/hip ratio presenting as the main predictor of ASP levels, suggests increased ASP production by abdominal fat which, as proposed previously, may result from resistance to ASP function causing delayed TG clearance and subsequent formation of atherogenic sdLDL. PMID:24533222

  16. Data mining and multiparameter analysis of lung surfactant protein genes in bronchopulmonary dysplasia.

    PubMed

    Rova, Meri; Haataja, Ritva; Marttila, Riitta; Ollikainen, Vesa; Tammela, Outi; Hallman, Mikko

    2004-06-01

    Bronchopulmonary dysplasia (BPD), the most common chronic lung disease in infancy, is influenced by a number of antenatal and postnatal risk factors and is mostly preceded by respiratory distress syndrome (RDS) in the newborn. Surfactant protein (SP-A, -B, -C and -D) gene variations may play a role in both BPD and RDS. An association study between these candidate genes and BPD was performed. A total of 365 preterm Finnish infants in a high-risk population with gestational age SP-B intron 4 deletion variant allele was increased in BPD versus controls (P=0.008, OR=2.0, 95%CI 1.2-3.4). The presence of the SP-B intron 4 deletion variant was a risk factor for BPD even when essential external confounding factors were included in the analyses. No other SP polymorphisms associated with BPD, and the SP-B intron 4 variation did not associate with RDS. Transcription Element Search Software predicted allele-specific differences at several putative transcription factor binding sites that may be important in SP-B regulation. The present multiparameter analysis demonstrates the presumable direct involvement of the SP-B intron 4 deletion variant allele as a genetic risk factor to BPD. We propose that two separate SP-B gene polymorphisms have a phenotypic significance via separate molecular mechanisms: the intron 4 length variation affecting transcriptional regulation, and the exonic Ile131Thr variation affecting post-translationally.

  17. Liquid-liquid extraction of strongly protein bound BMS-299897 from human plasma and cerebrospinal fluid, followed by high-performance liquid chromatography/tandem mass spectrometry.

    PubMed

    Xue, Y J; Pursley, Janice; Arnold, Mark

    2007-04-11

    BMS-299897 is a gamma-secretase inhibitor that is being developed for the treatment of Alzheimer's disease. Liquid-liquid extraction (LLE), chromatographic/tandem mass spectrometry (LC/MS/MS) methods have been developed and validated for the quantitation of BMS-299897 in human plasma and cerebrospinal fluid (CSF). Both methods utilized (13)C6-BMS-299897, the stable label isotope analog, as the internal standard. For the human plasma extraction method, two incubation steps were required after the addition of 5 mM ammonium acetate and the internal standard in acetonitrile to release the analyte bound to proteins prior to LLE with toluene. For the human CSF extraction method, after the addition of 0.5 N HCl and the internal standard, CSF samples were extracted with toluene and no incubation was required. The organic layers obtained from both extraction methods were removed and evaporated to dryness. The residues were reconstituted and injected into the LC/MS/MS system. Chromatographic separation was achieved isocratically on a MetaChem C18 Hypersil BDS column (2.0 mm x 50 mm, 3 microm). The mobile phase contained 10 mM ammonium acetate pH 5 and acetonitrile. Detection was by negative ion electrospray tandem mass spectrometry. The standard curves ranged from 1 to 1000 ng/ml for human plasma and 0.25-100 ng/ml for human CSF. Both standard curves were fitted to a 1/x weighted quadratic regression model. For both methods, the intra-assay precision was within 8.2% CV, the inter-assay precision was within 5.4% CV, and assay accuracy was within +/-7.4% of the nominal values. The validation and sample analysis results demonstrated that both methods had acceptable precision and accuracy across the calibration ranges.

  18. Strong conservation of rhoptry-associated-protein-1 (RAP-1) locus organization and sequence among Babesia isolates infecting sheep from China (Babesia motasi-like phylogenetic group).

    PubMed

    Niu, Qingli; Valentin, Charlotte; Bonsergent, Claire; Malandrin, Laurence

    2014-12-01

    Rhoptry-associated-protein 1 (RAP-1) is considered as a potential vaccine candidate due to its involvement in red blood cell invasion by parasites in the genus Babesia. We examined its value as a vaccine candidate by studying RAP-1 conservation in isolates of Babesia sp. BQ1 Ningxian, Babesia sp. Tianzhu and Babesia sp. Hebei, responsible for ovine babesiosis in different regions of China. The rap-1 locus in these isolates has very similar features to those described for Babesia sp. BQ1 Lintan, another Chinese isolate also in the B. motasi-like phylogenetic group, namely the presence of three types of rap-1 genes (rap-1a, rap-1b and rap-1c), multiple conserved rap-1b copies (5) interspaced with more or less variable rap-1a copies (6), and the 3' localization of one rap-1c. The isolates Babesia sp. Tianzhu, Babesia sp. BQ1 Lintan and Ningxian were almost identical (average nucleotide identity of 99.9%) over a putative locus of about 31 Kb, including the intergenic regions. Babesia sp. Hebei showed a similar locus organization but differed in the rap-1 locus sequence, for each gene and intergenic region, with an average nucleotide identity of 78%. Our results are in agreement with 18S rDNA phylogenetic studies performed on these isolates. However, in extremely closely related isolates the rap-1 locus seems more conserved (99.9%) than the 18S rDNA (98.7%), whereas in still closely related isolates the identities are much lower (78%) compared with the 18S rDNA (97.7%). The particularities of the rap-1 locus in terms of evolution, phylogeny, diagnosis and vaccine development are discussed. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Characterization of Ca(2+)-binding sites in the kidney stone inhibitor glycoprotein nephrocalcin using vanadyl ions: different metal binding properties in strong and weak inhibitor proteins revealed by EPR and ENDOR.

    PubMed

    Mustafi, D; Nakagawa, Y

    1996-11-26

    Nephrocalcin (NC), a calcium-binding glycoprotein of 14,000 molecular weight as a monomer, is known to inhibit the growth of calcium oxalate monohydrate (COM) crystals in renal tubules. We have isolated NC from bovine kidney tissue and purified into four isoforms, fractions A-D. NC-A and NC-B strongly inhibit the growth of COM crystals, and NC-C and NC-D inhibit crystal growth weakly. The strongly inhibitor proteins are abundant in normal subjects, whereas stone formers excrete less of NC-A and NC-B and more of NC-C and NC-D. NC-C was characterized with respect to its metal binding sites by using vanadyl ion (VO2+) as a paramagnetic probe in electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) spectroscopic studies. We demonstrated that VO2+ binds to NC-C with a stoichiometry of metal:protein binding of 4:1 and that VO2+ competes with Ca2+ in binding to NC-C. In NC-C, the metal ion is exposed to solvent water molecules and two water molecules are detected in the inner coordination sphere of the metal ion by ENDOR. In the metal binding environment of NC-A, as reported previously (Mustafi, D., & Nakagawa, Y. (1994) Proc. Natl. Acad. Sci. U.S.A. 91, 11323-11327), inner sphere coordinated water is completely excluded. Based on the results of the metal binding properties in both strong and weak inhibitor proteins, a probable mechanism of inhibition of COM crystal growth by NC has been outlined.

  20. Cell-specific modulation of surfactant proteins by ambroxol treatment

    SciTech Connect

    Seifart, Carola . E-mail: zwiebel@mailer.uni-marburg.de; Clostermann, Ursula; Seifart, Ulf

    2005-02-15

    Ambroxol [trans-4-(2-amino-3,5-dibromobenzylamino)-cyclohexanole hydrochloride], a mucolytic agent, was postulated to provide surfactant stimulatory properties and was previously used to prevent surfactant deficiency. Currently, the underlying mechanisms are not exactly clear. Because surfactant homeostasis is regulated by surfactant-specific proteins (SP), we analyzed protein amount and mRNA expression in whole lung tissue, isolated type II pneumocytes and bronchoalveolar lavage of Sprague-Dawley rats treated with ambroxol i.p. (75 mg/kg body weight, twice a day [every 12 h]). The methods used included competitive polymerase chain reaction (RT-PCR), Northern blotting, Western immunoblotting, and immunohistochemistry. In isolated type II pneumocytes of ambroxol-treated animals, SP-C protein and mRNA content were increased, whereas SP-A, -B and -D protein, mRNA, and immunoreactivity remained unaffected. However, ambroxol treatment resulted in a significant increase of SP-B and in a decrease of SP-D in whole lung tissue with enhanced immunostaining for SP-B in Clara Cells. SP-A and SP-D were significantly decreased in BAL fluid of ambroxol-treated animals. The data suggest that surfactant protein expression is modulated in a cell-specific manner by ambroxol, as type II pneumocytes exhibited an increase in SP-C, whereas Clara cells exhibited an increase in the immunoreactivity for SP-B accounting for the increased SP-B content of whole lung tissue. The results indicate that ambroxol may exert its positive effects, observed in the treatment of diseases related to surfactant deficiency, via modulation of surfactant protein expression.

  1. Cell-specific modulation of surfactant proteins by ambroxol treatment.

    PubMed

    Seifart, Carola; Clostermann, Ursula; Seifart, Ulf; Müller, Bernd; Vogelmeier, Claus; von Wichert, Peter; Fehrenbach, Heinz

    2005-02-15

    Ambroxol [trans-4-(2-amino-3,5-dibromobenzylamino)-cyclohexanole hydrochloride], a mucolytic agent, was postulated to provide surfactant stimulatory properties and was previously used to prevent surfactant deficiency. Currently, the underlying mechanisms are not exactly clear. Because surfactant homeostasis is regulated by surfactant-specific proteins (SP), we analyzed protein amount and mRNA expression in whole lung tissue, isolated type II pneumocytes and bronchoalveolar lavage of Sprague-Dawley rats treated with ambroxol i.p. (75 mg/kg body weight, twice a day [every 12 h]). The methods used included competitive polymerase chain reaction (RT-PCR), Northern blotting, Western immunoblotting, and immunohistochemistry. In isolated type II pneumocytes of ambroxol-treated animals, SP-C protein and mRNA content were increased, whereas SP-A, -B and -D protein, mRNA, and immunoreactivity remained unaffected. However, ambroxol treatment resulted in a significant increase of SP-B and in a decrease of SP-D in whole lung tissue with enhanced immunostaining for SP-B in Clara Cells. SP-A and SP-D were significantly decreased in BAL fluid of ambroxol-treated animals. The data suggest that surfactant protein expression is modulated in a cell-specific manner by ambroxol, as type II pneumocytes exhibited an increase in SP-C, whereas Clara cells exhibited an increase in the immunoreactivity for SP-B accounting for the increased SP-B content of whole lung tissue. The results indicate that ambroxol may exert its positive effects, observed in the treatment of diseases related to surfactant deficiency, via modulation of surfactant protein expression.

  2. Nearly 1000 Protein Identifications from 50 ng of Xenopus laevis Zygote Homogenate Using Online Sample Preparation on a Strong Cation Exchange Monolith Based Microreactor Coupled with Capillary Zone Electrophoresis.

    PubMed

    Zhang, Zhenbin; Sun, Liangliang; Zhu, Guijie; Cox, Olivia F; Huber, Paul W; Dovichi, Norman J

    2016-01-05

    A sulfonate-silica hybrid strong cation exchange monolith microreactor was synthesized and coupled to a linear polyacrylamide coated capillary for online sample preparation and capillary zone electrophoresis-tandem mass spectrometry (CZE-MS/MS) bottom-up proteomic analysis. The protein sample was loaded onto the microreactor in an acidic buffer. After online reduction, alkylation, and digestion with trypsin, the digests were eluted with 200 mM ammonium bicarbonate at pH 8.2 for CZE-MS/MS analysis using 1 M acetic acid as the background electrolyte. This combination of basic elution and acidic background electrolytes results in both sample stacking and formation of a dynamic pH junction. 369 protein groups and 1274 peptides were identified from 50 ng of Xenopus laevis zygote homogenate, which is comparable with an offline sample preparation method, but the time required for sample preparation was decreased from over 24 h to less than 40 min. Dramatically improved performance was produced by coupling the reactor to a longer separation capillary (∼100 cm) and a Q Exactive HF mass spectrometer. 975 protein groups and 3749 peptides were identified from 50 ng of Xenopus protein using the online sample preparation method.

  3. A truncated receptor-binding domain of MERS-CoV spike protein potently inhibits MERS-CoV infection and induces strong neutralizing antibody responses: implication for developing therapeutics and vaccines.

    PubMed

    Du, Lanying; Kou, Zhihua; Ma, Cuiqing; Tao, Xinrong; Wang, Lili; Zhao, Guangyu; Chen, Yaoqing; Yu, Fei; Tseng, Chien-Te K; Zhou, Yusen; Jiang, Shibo

    2013-01-01

    An emerging respiratory infectious disease with high mortality, Middle East respiratory syndrome (MERS), is caused by a novel coronavirus (MERS-CoV). It was first reported in 2012 in Saudi Arabia and has now spread to eight countries. Development of effective therapeutics and vaccines is crucial to save lives and halt the spread of MERS-CoV. Here, we show that a recombinant protein containing a 212-amino acid fragment (residues 377-588) in the truncated receptor-binding domain (RBD: residues 367-606) of MERS-CoV spike (S) protein fused with human IgG Fc fragment (S377-588-Fc) is highly expressed in the culture supernatant of transfected 293T cells. The purified S377-588-Fc protein efficiently binds to dipeptidyl peptidase 4 (DPP4), the receptor of MERS-CoV, and potently inhibited MERS-CoV infection, suggesting its potential to be further developed as a therapeutic modality for treating MERS-CoV infection and saving the patients' lives. The recombinant S377-588-Fc is able to induce in the vaccinated mice strong MERS-CoV S-specific antibodies, which blocks the binding of RBD to DPP4 receptor and effectively neutralizes MERS-CoV infection. These findings indicate that this truncated RBD protein shows promise for further development as an effective and safe vaccine for the prevention of MERS-CoV infection.

  4. Interfacial Reactions of Ozone with Surfactant Protein B in a Model Lung Surfactant System

    PubMed Central

    Kim, Hugh I.; Kim, Hyungjun; Shin, Young Shik; Beegle, Luther W.; Jang, Seung Soon; Neidholdt, Evan L.; Goddard, William A.; Heath, James R.; Kanik, Isik; Beauchamp, J. L.

    2010-01-01

    Oxidative stresses from irritants such as hydrogen peroxide and ozone (O3) can cause dysfunction of the pulmonary surfactant (PS) layer in the human lung, resulting in chronic diseases of the respiratory tract. For identification of structural changes of pulmonary surfactant protein B due to the heterogeneous reaction with O3, field induced droplet ionization (FIDI) mass spectrometry is utilized. FIDI is a soft ionization method in which ions are extracted from the surface of microliter-volume droplets. We report the structurally specific oxidative changes of SP-B1-25 (a shortened version of human surfactant protein B) at the air-liquid interface. We also present studies of the interfacial oxidation of SP-B1-25 in a non-ionizable 1-palmitoyl-2-oleoyl-sn-glycerol (POG) surfactant layer as a model PS system, where the competitive oxidation of the two components is observed. Our results indicate that the heterogeneous reaction of SP-B1-25 at the interface is quite different from that in the solution phase. Compared to the nearly complete homogeneous oxidation of SP-B1-25, only a subset of the amino acids known to react with ozone is oxidized by direct ozonolysis in the hydrophobic interfacial environment, both with and without the lipid monolayer. Combining these experimental observations with the results of molecular dynamics simulations provides an improved understanding of the interfacial structure and chemistry of a model lung surfactant system when subject to oxidative stress. PMID:20121208

  5. The mitochondrial precursor protein apocytochrome c strongly influences the order of the headgroup and acyl chains of phosphatidylserine dispersions. A sup 2 H and sup 31 P NMR study

    SciTech Connect

    Jordi, W.; de Kroon, A.I.P.M.; Killian, A.; de Kruijff, B. )

    1990-03-06

    Deuterium and phosphorus nuclear magnetic resonance techniques were used to study the interaction of the mitochondrial precursor protein apocytochrome c with headgroup-deuterated (dioleoylphosphatidyl-L-(2-{sup 2}H{sub 1})serine) and acyl chain deuterated (1,2-(11,11-{sup 2}H{sub 2})dioleoylphosphatidylserine) dispersions. Binding of the protein to dioleoylphosphatidylserine liposomes results in phosphorus nuclear magnetic resonance spectra typical of phospholipids undergoing fast axial rotation in extended liquid-crystalline bilayers with a reduced residual chemical shift anisotropy and an increased line width. {sup 2}H NMR spectra on headgroup-deuterated dioleoylphosphatidylserine dispersions showed a decrease in quadrupolar splitting and a broadening of the signal on interaction with apocytochrome c. Addition of increasing amounts of apocytochrome c to the acyl chain deuterated dioleoylphosphatidylserine dispersions results in the gradual appearance of a second component in the spectra with a 44% reduced quadrupolar splitting. Such large reduction of the quadrupolar splitting has never been observed for any protein studied yet. The induction of a new spectral component with a well-defined reduced quadrupolar splitting seems to be confined to the N-terminus since addition of a small hydrophilic amino-terminal peptide (residues 1-38) also induces a second component with a strongly reduced quadrupolar splitting. A chemically synthesized peptide corresponding to amino acid residues 2-17 of the presequence of the mitochondrial protein cytochrome oxidase subunit IV also has a large perturbing effect on the order of the acyl chains, indicating that the observed effects may be a property shared by many mitochondrial precursor proteins. Implications of these data for the import of apocytochrome c into mitochondria will be discussed.

  6. Cartilage-specific matrix protein, chondromodulin-I (ChM-I), is a strong angio-inhibitor in endochondral ossification of human neonatal vertebral tissues in vivo: relationship with angiogenic factors in the cartilage.

    PubMed

    Kusafuka, Kimihide; Hiraki, Yuji; Shukunami, Chisa; Kayano, Teruo; Takemura, Tamiko

    2002-01-01

    Although cartilage contains many angiogenic factors during endochondral ossification, it is an avascular tissue. The cartilage-specific non-collagenous matrix protein chondromodulin-I (ChM-I) has been shown to be a strong angio-inhibitor. To elucidate whether ChM-I plays an essential role in angio-inhibition during endochondral ossification in man, we investigated the expression and localization of ChM-I in comparison with those of angiogenic factors and the endothelial cell marker CD34 in human neonatal vertebral tissues. Although invasion of CD34-positive endothelial cells was observed in primary subchondral spongiosa, expression of the marker of endothelial cells, CD34, was not found in neonatal vertebral cartilage matrix. Type II collagen was deposited in all matrices during endochondral ossification, whereas aggrecan was deposited in the matrix of hypertrophic cartilage, especially around lacunae. Vascular endothelial growth factor (VEGF), which is known to be a strong angiogenic factor, was localized in chondrocytes in mature to hypertrophic cartilage and also in bone marrow. Fibroblast growth factor-2 (FGF-2; basic fibroblast growth factor), which is also known to be a strong angiogenic factor, was localized in the cytoplasm of chondrocytes of mature cartilage in human vertebral cartilage tissues. Transforming growth factor (TGF)-beta has been reported to have many functions including angiogenesis, and TGF-beta1 was also localized in mature chondrocytes in endochondral tissues undergoing ossification. On the other hand, the novel cartilage-specific matrix protein ChM-I was localized in interterritorial regions of the matrix in mature to hypertrophic cartilage, especially around lacunae. In conclusion, these observations indicate that ChM-I may serve as a barrier against the angiogenic properties of VEGF, FGF-2 and TGF-beta1 during endochondral ossification, and this matrix molecule may play an essential role in determining the avascular nature of cartilage

  7. Mature Surfactant Protein-B Expression by Immunohistochemistry as a Marker for Surfactant System Development in the Fetal Sheep Lung

    PubMed Central

    Lock, Mitchell C.; McGillick, Erin V.; Orgeig, Sandra; Zhang, Song; McMillen, I. Caroline; Morrison, Janna L.

    2015-01-01

    Evaluation of the number of type II alveolar epithelial cells (AECs) is an important measure of the lung’s ability to produce surfactant. Immunohistochemical staining of these cells in lung tissue commonly uses antibodies directed against mature surfactant protein (SP)-C, which is regarded as a reliable SP marker of type II AECs in rodents. There has been no study demonstrating reliable markers for surfactant system maturation by immunohistochemistry in the fetal sheep lung despite being widely used as a model to study lung development. Here we examine staining of a panel of surfactant pro-proteins (pro–SP-B and pro–SP-C) and mature proteins (SP-B and SP-C) in the fetal sheep lung during late gestation in the saccular/alveolar phase of development (120, 130, and 140 days), with term being 150 ± 3 days, to identify the most reliable marker of surfactant producing cells in this species. Results from this study indicate that during late gestation, use of anti-SP-B antibodies in the sheep lung yields significantly higher cell counts in the alveolar epithelium than SP-C antibodies. Furthermore, this study highlights that mature SP-B antibodies are more reliable markers than SP-C antibodies to evaluate surfactant maturation in the fetal sheep lung by immunohistochemistry. PMID:26297137

  8. Mature Surfactant Protein-B Expression by Immunohistochemistry as a Marker for Surfactant System Development in the Fetal Sheep Lung.

    PubMed

    Lock, Mitchell C; McGillick, Erin V; Orgeig, Sandra; Zhang, Song; McMillen, I Caroline; Morrison, Janna L

    2015-11-01

    Evaluation of the number of type II alveolar epithelial cells (AECs) is an important measure of the lung's ability to produce surfactant. Immunohistochemical staining of these cells in lung tissue commonly uses antibodies directed against mature surfactant protein (SP)-C, which is regarded as a reliable SP marker of type II AECs in rodents. There has been no study demonstrating reliable markers for surfactant system maturation by immunohistochemistry in the fetal sheep lung despite being widely used as a model to study lung development. Here we examine staining of a panel of surfactant pro-proteins (pro-SP-B and pro-SP-C) and mature proteins (SP-B and SP-C) in the fetal sheep lung during late gestation in the saccular/alveolar phase of development (120, 130, and 140 days), with term being 150 ± 3 days, to identify the most reliable marker of surfactant producing cells in this species. Results from this study indicate that during late gestation, use of anti-SP-B antibodies in the sheep lung yields significantly higher cell counts in the alveolar epithelium than SP-C antibodies. Furthermore, this study highlights that mature SP-B antibodies are more reliable markers than SP-C antibodies to evaluate surfactant maturation in the fetal sheep lung by immunohistochemistry.

  9. Biophysical mimicry of lung surfactant protein B by random nylon-3 copolymers

    PubMed Central

    Dohm, Michelle T.; Mowery, Brendan P.; Czyzewski, Ann M.; Stahl, Shannon S.; Gellman, Samuel H.; Barron, Annelise E.

    2010-01-01

    Non-natural oligomers have recently shown promise as functional analogues of lung surfactant proteins B and C (SP-B and SP-C), two helical and amphiphilic proteins that are critical for normal respiration. The generation of non-natural mimics of SP-B and SP-C has previously been restricted to step-by-step, sequence-specific synthesis, which results in discrete oligomers that are intended to manifest specific structural attributes. Here we present an alternative approach to SP-B mimicry that is based on sequence-random copolymers containing cationic and lipophilic subunits. These materials, members of the nylon-3 family, are prepared by ring-opening polymerization of β-lactams. The best of the nylon-3 polymers display promising in vitro surfactant activities in a mixed lipid film. Pulsating bubble surfactometry data indicate that films containing the most surface-active polymers attain adsorptive and dynamic-cycling properties that surpass those of discrete peptides intended to mimic SP-B. Attachment of an N-terminal octadecanoyl unit to the nylon-3 copolymers – inspired by the post-translational modifications found in SP-C – affords further improvements by reducing the percent surface area compression to reach low minimum surface tension. Cytotoxic effects of the copolymers are diminished relative to that of an SP-B-derived peptide and a peptoid-based mimic. The current study provides evidence that sequence-random copolymers can mimic the in vitro surface-active behavior of lung surfactant proteins in a mixed lipid film. These findings raise the possibility that random copolymers might be useful for developing a lung surfactant replacement, which is an attractive prospect given that such polymers are easier to prepare than are sequence-specific oligomers. PMID:20481635

  10. Biophysical mimicry of lung surfactant protein B by random nylon-3 copolymers.

    PubMed

    Dohm, Michelle T; Mowery, Brendan P; Czyzewski, Ann M; Stahl, Shannon S; Gellman, Samuel H; Barron, Annelise E

    2010-06-16

    Non-natural oligomers have recently shown promise as functional analogues of lung surfactant proteins B and C (SP-B and SP-C), two helical and amphiphilic proteins that are critical for normal respiration. The generation of non-natural mimics of SP-B and SP-C has previously been restricted to step-by-step, sequence-specific synthesis, which results in discrete oligomers that are intended to manifest specific structural attributes. Here we present an alternative approach to SP-B mimicry that is based on sequence-random copolymers containing cationic and lipophilic subunits. These materials, members of the nylon-3 family, are prepared by ring-opening polymerization of beta-lactams. The best of the nylon-3 polymers display promising in vitro surfactant activities in a mixed lipid film. Pulsating bubble surfactometry data indicate that films containing the most surface-active polymers attain adsorptive and dynamic-cycling properties that surpass those of discrete peptides intended to mimic SP-B. Attachment of an N-terminal octadecanoyl unit to the nylon-3 copolymers, inspired by the post-translational modifications found in SP-C, affords further improvements by reducing the percent surface area compression to reach low minimum surface tension. Cytotoxic effects of the copolymers are diminished relative to that of an SP-B-derived peptide and a peptoid-based mimic. The current study provides evidence that sequence-random copolymers can mimic the in vitro surface-active behavior of lung surfactant proteins in a mixed lipid film. These findings raise the possibility that random copolymers might be useful for developing a lung surfactant replacement, which is an attractive prospect given that such polymers are easier to prepare than are sequence-specific oligomers.

  11. Partially strong WW scattering

    SciTech Connect

    Cheung Kingman; Chiang Chengwei; Yuan Tzuchiang

    2008-09-01

    What if only a light Higgs boson is discovered at the CERN LHC? Conventional wisdom tells us that the scattering of longitudinal weak gauge bosons would not grow strong at high energies. However, this is generally not true. In some composite models or general two-Higgs-doublet models, the presence of a light Higgs boson does not guarantee complete unitarization of the WW scattering. After partial unitarization by the light Higgs boson, the WW scattering becomes strongly interacting until it hits one or more heavier Higgs bosons or other strong dynamics. We analyze how LHC experiments can reveal this interesting possibility of partially strong WW scattering.

  12. A sugar beet chlorophyll a/b binding protein promoter void of G-box like elements confers strong and leaf specific reporter gene expression in transgenic sugar beet

    PubMed Central

    Stahl, Dietmar J; Kloos, Dorothee U; Hehl, Reinhard

    2004-01-01

    Background Modification of leaf traits in sugar beet requires a strong leaf specific promoter. With such a promoter, expression in taproots can be avoided which may otherwise take away available energy resources for sugar accumulation. Results Suppression Subtractive Hybridization (SSH) was utilized to generate an enriched and equalized cDNA library for leaf expressed genes from sugar beet. Fourteen cDNA fragments corresponding to thirteen different genes were isolated. Northern blot analysis indicates the desired tissue specificity of these genes. The promoters for two chlorophyll a/b binding protein genes (Bvcab11 and Bvcab12) were isolated, linked to reporter genes, and transformed into sugar beet using promoter reporter gene fusions. Transient and transgenic analysis indicate that both promoters direct leaf specific gene expression. A bioinformatic analysis revealed that the Bvcab11 promoter is void of G-box like regulatory elements with a palindromic ACGT core sequence. The data indicate that the presence of a G-box element is not a prerequisite for leaf specific and light induced gene expression in sugar beet. Conclusions This work shows that SSH can be successfully employed for the identification and subsequent isolation of tissue specific sugar beet promoters. These promoters are shown to drive strong leaf specific gene expression in transgenic sugar beet. The application of these promoters for expressing resistance improving genes against foliar diseases is discussed. PMID:15579211

  13. AMNIOTIC FLUID CONCENTRATION OF SURFACTANT PROTEINS IN INTRA-AMNIOTIC INFECTION

    PubMed Central

    Chaiworapongsa, Tinnakorn; Hong, Joon-Seok; Hull, William M.; Romero, Roberto; Whitsett, Jeffrey A.

    2008-01-01

    OBJECTIVE: Pulmonary surfactant is a complex molecule of lipids and proteins synthesized and secreted by type II alveolar cells into the alveolar epithelial lining. Both lipids and protein components are essential for lung function in postnatal life. Infection is a well-established cause of preterm delivery and several inflammatory cytokines play a role in the mechanisms of preterm parturition. An increased concentration of inflammatory cytokines in amniotic fluid or fetal plasma has been linked to the onset of preterm parturition and fetal/neonatal injury including cerebral palsy and chronic lung disease. Experimental evidence indicated that inflammatory mediators also regulated surfactant protein synthesis and histologic chorioamnionitis was associated with a decreased incidence of hyaline membrane disease in neonates. This study was conducted to determine if amniotic fluid concentration of surfactant protein (SP)-A, SP-B and SP-D changes in patients with and without intra-amniotic infection (IAI). MATERIAL AND METHODS: A case-control study was conducted to determine amniotic fluid concentrations of SP-A, SP-B, SP-D, and total protein in patients who had an amniocentesis performed between 18 and 34 weeks of gestation for the detection of IAI in patients with spontaneous preterm labor with intact membranes (n=42) and cervical insufficiency prior to the application for cerclage (n=6). Amniotic fluid samples were selected from a bank of biological specimens and included patients with (n=16) and without (n=32) IAI matched for gestational age at amniocentesis. Intra-amniotic infection was defined a positive amniotic fluid culture for microorganisms. Each group was further subdivided according to a history of corticosteroid administration within 7 days prior to amniocentesis into the following subgroups: 1) patients without IAI who had received antenatal corticosteroid (n=21); 2) patients with IAI who had received antenatal corticosteroid (n=9); 3) patients without IAI

  14. Strong Navajo Marriages

    ERIC Educational Resources Information Center

    Skogrand, Linda; Mueller, Mary Lou; Arrington, Rachel; LeBlanc, Heidi; Spotted Elk, Davina; Dayzie, Irene; Rosenbrand, Reva

    2008-01-01

    The purpose of this qualitative study, conducted in two Navajo Nation chapters, was to learn what makes Navajo marriages strong because no research has been done on this topic. Twenty-one Navajo couples (42 individuals) who felt they had strong marriages volunteered to participate in the study. Couples identified the following marital strengths:…

  15. Proteins.

    ERIC Educational Resources Information Center

    Doolittle, Russell F.

    1985-01-01

    Examines proteins which give rise to structure and, by virtue of selective binding to other molecules, make genes. Binding sites, amino acids, protein evolution, and molecular paleontology are discussed. Work with encoding segments of deoxyribonucleic acid (exons) and noncoding stretches (introns) provides new information for hypotheses. (DH)

  16. Proteins.

    ERIC Educational Resources Information Center

    Doolittle, Russell F.

    1985-01-01

    Examines proteins which give rise to structure and, by virtue of selective binding to other molecules, make genes. Binding sites, amino acids, protein evolution, and molecular paleontology are discussed. Work with encoding segments of deoxyribonucleic acid (exons) and noncoding stretches (introns) provides new information for hypotheses. (DH)

  17. Protein

    USDA-ARS?s Scientific Manuscript database

    Proteins are the major structural and functional components of all cells in the body. They are macromolecules that comprise 1 or more chains of amino acids that vary in their sequence and length and are folded into specific 3-dimensional structures. The sizes and conformations of proteins, therefor...

  18. Living Bones, Strong Bones

    NASA Image and Video Library

    In this classroom activity, engineering, nutrition, and physical activity collide when students design and build a healthy bone model of a space explorer which is strong enough to withstand increas...

  19. The Strong Nuclear Force

    SciTech Connect

    Lincoln, Don

    2016-05-24

    Scientists are aware of four fundamental forces- gravity, electromagnetism, and the strong and weak nuclear forces. Most people have at least some familiarity with gravity and electromagnetism, but not the other two. How is it that scientists are so certain that two additional forces exist? In this video, Fermilab’s Dr. Don Lincoln explains why scientists are so certain that the strong force exists.

  20. The Strong Nuclear Force

    ScienceCinema

    Lincoln, Don

    2016-07-12

    Scientists are aware of four fundamental forces- gravity, electromagnetism, and the strong and weak nuclear forces. Most people have at least some familiarity with gravity and electromagnetism, but not the other two. How is it that scientists are so certain that two additional forces exist? In this video, Fermilab’s Dr. Don Lincoln explains why scientists are so certain that the strong force exists.

  1. Critical Structural and Functional Roles for the N-Terminal Insertion Sequence in Surfactant Protein B Analogs

    PubMed Central

    Walther, Frans J.; Waring, Alan J.; Hernandez-Juviel, Jose M.; Gordon, Larry M.; Wang, Zhengdong; Jung, Chun-Ling; Ruchala, Piotr; Clark, Andrew P.; Smith, Wesley M.; Sharma, Shantanu; Notter, Robert H.

    2010-01-01

    Background Surfactant protein B (SP-B; 79 residues) belongs to the saposin protein superfamily, and plays functional roles in lung surfactant. The disulfide cross-linked, N- and C-terminal domains of SP-B have been theoretically predicted to fold as charged, amphipathic helices, suggesting their participation in surfactant activities. Earlier structural studies with Mini-B, a disulfide-linked construct based on the N- and C-terminal regions of SP-B (i.e., ∼residues 8–25 and 63–78), confirmed that these neighboring domains are helical; moreover, Mini-B retains critical in vitro and in vivo surfactant functions of the native protein. Here, we perform similar analyses on a Super Mini-B construct that has native SP-B residues (1–7) attached to the N-terminus of Mini-B, to test whether the N-terminal sequence is also involved in surfactant activity. Methodology/Results FTIR spectra of Mini-B and Super Mini-B in either lipids or lipid-mimics indicated that these peptides share similar conformations, with primary α-helix and secondary β-sheet and loop-turns. Gel electrophoresis demonstrated that Super Mini-B was dimeric in SDS detergent-polyacrylamide, while Mini-B was monomeric. Surface plasmon resonance (SPR), predictive aggregation algorithms, and molecular dynamics (MD) and docking simulations further suggested a preliminary model for dimeric Super Mini-B, in which monomers self-associate to form a dimer peptide with a “saposin-like” fold. Similar to native SP-B, both Mini-B and Super Mini-B exhibit in vitro activity with spread films showing near-zero minimum surface tension during cycling using captive bubble surfactometry. In vivo, Super Mini-B demonstrates oxygenation and dynamic compliance that are greater than Mini-B and compare favorably to full-length SP-B. Conclusion Super Mini-B shows enhanced surfactant activity, probably due to the self-assembly of monomer peptide into dimer Super Mini-B that mimics the functions and putative structure of

  2. Strong Cosmic Censorship

    NASA Astrophysics Data System (ADS)

    Isenberg, James

    2017-01-01

    The Hawking-Penrose theorems tell us that solutions of Einstein's equations are generally singular, in the sense of the incompleteness of causal geodesics (the paths of physical observers). These singularities might be marked by the blowup of curvature and therefore crushing tidal forces, or by the breakdown of physical determinism. Penrose has conjectured (in his `Strong Cosmic Censorship Conjecture`) that it is generically unbounded curvature that causes singularities, rather than causal breakdown. The verification that ``AVTD behavior'' (marked by the domination of time derivatives over space derivatives) is generically present in a family of solutions has proven to be a useful tool for studying model versions of Strong Cosmic Censorship in that family. I discuss some of the history of Strong Cosmic Censorship, and then discuss what is known about AVTD behavior and Strong Cosmic Censorship in families of solutions defined by varying degrees of isometry, and discuss recent results which we believe will extend this knowledge and provide new support for Strong Cosmic Censorship. I also comment on some of the recent work on ``Weak Null Singularities'', and how this relates to Strong Cosmic Censorship.

  3. Protein

    MedlinePlus

    ... Search for: Harvard T.H. Chan School of Public Health Email People Departments Calendar Careers Give my.harvard ... Nutrition Source Harvard T.H. Chan School of Public Health > The Nutrition Source > What Should I Eat? > Protein ...

  4. Novel influenza virus vectors expressing Brucella L7/L12 or Omp16 proteins in cattle induced a strong T-cell immune response, as well as high protectiveness against B. abortus infection.

    PubMed

    Tabynov, Kaissar; Kydyrbayev, Zhailaubay; Ryskeldinova, Sholpan; Yespembetov, Bolat; Zinina, Nadezhda; Assanzhanova, Nurika; Kozhamkulov, Yerken; Inkarbekov, Dulat; Gotskina, Tatyana; Sansyzbay, Abylai

    2014-04-11

    This paper presents the results of a study of the immunogenicity and protectiveness of new candidate vector vaccine against Brucella abortus - a bivalent vaccine formulation consisting of a mixture of recombinant influenza A subtype H5N1 or H1N1 (viral constructs vaccine formulation) viruses expressing Brucella ribosomal protein L7/L12 and Omp16, in cattle. To increase the effectiveness of the candidate vaccine, adjuvants such as Montanide Gel01 or chitosan were included in its composition. Immunization of cattle (heifers aged 1-1.5 years, 5 animals per group) with the viral constructs vaccine formulation only, or its combination with adjuvants Montanide Gel01 or chitosan, was conducted via the conjunctival method using cross prime (influenza virus subtype H5N1) and booster (influenza virus subtype H1N1) vaccination schedules at an interval of 28 days. Vaccine candidates were evaluated in comparison with the positive (B. abortus S19) and negative (PBS) controls. The viral constructs vaccine formulations, particularly in combination with Montanide Gel01 adjuvant promoted formation of IgG antibodies (with a predominance of antibodies of isotype IgG2a) against Brucella L7/L12 and Omp16 proteins in ELISA. Moreover, these vaccines in cattle induced a strong antigen-specific T-cell immune response, as indicated by a high number of CD4(+) and CD8(+) cells, as well as the concentration of IFN-γ, and most importantly provided a high level of protectiveness comparable to the commercial B. abortus S19 vaccine and superior to the B. abortus S19 vaccine in combination with Montanide Gel01 adjuvant. Based on these findings, we recommended the bivalent vaccine formulation containing the adjuvant Montanide Gel01 for practical use in cattle.

  5. Vaccination of koalas (Phascolarctos cinereus) with a recombinant chlamydial major outer membrane protein adjuvanted with poly I:C, a host defense peptide and polyphosphazine, elicits strong and long lasting cellular and humoral immune responses.

    PubMed

    Khan, Shahneaz Ali; Waugh, Courtney; Rawlinson, Galit; Brumm, Jacqui; Nilsson, Karen; Gerdts, Volker; Potter, Andrew; Polkinghorne, Adam; Beagley, Kenneth; Timms, Peter

    2014-10-07

    Chlamydial infections are wide spread in koalas across their range and a solution to this debilitating disease has been sought for over a decade. Antibiotics are the currently accepted therapeutic measure, but are not an effective treatment due to the asymptomatic nature of some infections and a low efficacy rate. Thus, a vaccine would be an ideal way to address this infectious disease threat in the wild. Previous vaccine trials have used a three-dose regimen; however this is very difficult to apply in the field as it would require multiple capture events, which are stressful and invasive processes for the koala. In addition, it requires skilled koala handlers and a significant monetary investment. To overcome these challenges, in this study we utilized a polyphosphazine based poly I:C and a host defense peptide adjuvant combined with recombinant chlamydial major outer membrane protein (rMOMP) antigen to induce long lasting (54 weeks) cellular and humoral immunity in female koalas with a novel single immunizing dose. Immunized koalas produced a strong IgG response in plasma, as well as at mucosal sites. Moreover, they showed high levels of C. pecorum specific neutralizing antibodies in the plasma as well as vaginal and conjunctival secretions. Lastly, Chlamydia-specific lymphocyte proliferation responses were produced against both whole chlamydial elementary bodies and rMOMP protein, over the 12-month period. The results of this study suggest that a single dose rMOMP vaccine incorporating a poly I:C, host defense peptide and polyphosphazine adjuvant is able to stimulate both arms of the immune system in koalas, thereby providing an alternative to antibiotic treatment and/or a three-dose vaccine regime. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. On Strong Anticipation

    PubMed Central

    Stepp, N.; Turvey, M. T.

    2009-01-01

    We examine Dubois's (2003) distinction between weak anticipation and strong anticipation. Anticipation is weak if it arises from a model of the system via internal simulations. Anticipation is strong if it arises from the system itself via lawful regularities embedded in the system's ordinary mode of functioning. The assumption of weak anticipation dominates cognitive science and neuroscience and in particular the study of perception and action. The assumption of strong anticipation, however, seems to be required by anticipation's ubiquity. It is, for example, characteristic of homeostatic processes at the level of the organism, organs, and cells. We develop the formal distinction between strong and weak anticipation by elaboration of anticipating synchronization, a phenomenon arising from time delays in appropriately coupled dynamical systems. The elaboration is conducted in respect to (a) strictly physical systems, (b) the defining features of circadian rhythms, often viewed as paradigmatic of biological behavior based in internal models, (c) Pavlovian learning, and (d) forward models in motor control. We identify the common thread of strongly anticipatory systems and argue for its significance in furthering understanding of notions such as “internal”, “model” and “prediction”. PMID:20191086

  7. Yugoslav strong motion network

    NASA Astrophysics Data System (ADS)

    Mihailov, Vladimir

    1985-04-01

    Data concerning ground motion and the response of structures during strong earthquakes are necessary for seismic hazard evaluation and the definition of design criteria for structures to be constructed in seismically active zones. The only way to obtain such data is the installation of a strong-motion instrument network. The Yugoslav strong-motion programme was created in 1972 to recover strong-motion response data used by the structural engineering community in developing earthquake resistant design. Instruments, accelerographs SMA-1 and seismoscopes WM-1, were installed in free-field stations and on structures (high-rise buildings, dams, bridges, etc.). A total number of 176 accelerographs and 137 seismoscopes have been installed and are operating in Yugoslavia. The strong-motion programme in Yugoslavia consists of five subactivities: network design, network operation, data processing, network management and research as well as application. All these activities are under the responsibility of IZIIS in cooperation with the Yugoslav Association of Seismology. By 1975 in the realisation of this project participated the CALTECH as cooperative institution in the joint American-Yugoslav cooperative project. The results obtained which are presented in this paper, and their application in the aseismic design justify the necessity for the existence of such a network in Yugoslavia.

  8. A mutation in the surfactant protein B gene responsible for fatal neonatal respiratory disease in multiple kindreds.

    PubMed Central

    Nogee, L M; Garnier, G; Dietz, H C; Singer, L; Murphy, A M; deMello, D E; Colten, H R

    1994-01-01

    To determine the molecular defect accounting for the deficiency of pulmonary surfactant protein B (SP-B) in full-term neonates who died from respiratory failure associated with alveolar proteinosis, the sequence of the SP-B transcript in affected infants was ascertained. A frameshift mutation consisting of a substitution of GAA for C in codon 121 of the SP-B cDNA was identified. The three affected infants in the index family were homozygous for this mutation, which segregated in a fashion consistent with autosomal recessive inheritance of disease. The same mutation was found in two other unrelated infants who died from alveolar proteinosis, one of whom was also homozygous, and in the parents of an additional unrelated, affected infant, but was not observed in 50 control subjects. We conclude that this mutation is responsible for SP-B deficiency and neonatal alveolar proteinosis in multiple families and speculate that the disorder is more common than was recognized previously. Images PMID:8163685

  9. Strong Little Magnets

    ERIC Educational Resources Information Center

    Moloney, Michael J.

    2007-01-01

    Did you know that some strong little cylindrical magnets available in local hardware stores can have an effective circumferential current of 2500 A? This intriguing information can be obtained by hanging a pair of magnets at the center of a coil, as shown in Fig. 1, and measuring the oscillation frequency as a function of coil current.

  10. Partners: Forging Strong Relationships.

    ERIC Educational Resources Information Center

    Spears, Ellen, Ed.

    1999-01-01

    This newsletter issue asserts that sound, effective relationships in which diverse groups of people and organizations work together toward a common goal are the basis of the collaborative efforts in education that can accomplish change. The first article, "Partners: Forging Strong Relationships" (Sarah E. Torian), briefly describes the…

  11. Strong Little Magnets

    ERIC Educational Resources Information Center

    Moloney, Michael J.

    2007-01-01

    Did you know that some strong little cylindrical magnets available in local hardware stores can have an effective circumferential current of 2500 A? This intriguing information can be obtained by hanging a pair of magnets at the center of a coil, as shown in Fig. 1, and measuring the oscillation frequency as a function of coil current.

  12. Networks of strong ties

    NASA Astrophysics Data System (ADS)

    Shi, Xiaolin; Adamic, Lada A.; Strauss, Martin J.

    2007-05-01

    Social networks transmitting covert or sensitive information cannot use all ties for this purpose. Rather, they can only use a subset of ties that are strong enough to be “trusted”. This paper addresses whether it is still possible, under this restriction, for information to be transmitted widely and rapidly in social networks. We use transitivity as evidence of strong ties, requiring one or more shared contacts in order to count an edge as strong. We examine the effect of removing all non-transitive ties in two real social network data sets, imposing varying thresholds in the number of shared contacts. We observe that transitive ties occupy a large portion of the network and that removing all other ties, while causing some individuals to become disconnected, preserves the majority of the giant connected component. Furthermore, the average shortest path, important for the rapid diffusion of information, increases only slightly relative to the original network. We also evaluate the cost of forming transitive ties by modeling a random graph composed entirely of closed triads and comparing its connectivity and average shortest path with the equivalent Erdös-Renyi random graph. Both the empirical study and random model point to a robustness of strong ties with respect to the connectivity and small world property of social networks.

  13. Abortion: Strong's counterexamples fail.

    PubMed

    Di Nucci, E

    2009-05-01

    This paper shows that the counterexamples proposed by Strong in 2008 in the Journal of Medical Ethics to Marquis's argument against abortion fail. Strong's basic idea is that there are cases--for example, terminally ill patients--where killing an adult human being is prima facie seriously morally wrong even though that human being is not being deprived of a "valuable future". So Marquis would be wrong in thinking that what is essential about the wrongness of killing an adult human being is that they are being deprived of a valuable future. This paper shows that whichever way the concept of "valuable future" is interpreted, the proposed counterexamples fail: if it is interpreted as "future like ours", the proposed counterexamples have no bearing on Marquis's argument. If the concept is interpreted as referring to the patient's preferences, it must be either conceded that the patients in Strong's scenarios have some valuable future or admitted that killing them is not seriously morally wrong. Finally, if "valuable future" is interpreted as referring to objective standards, one ends up with implausible and unpalatable moral claims.

  14. Human immunodeficiency virus type 1 nucleocapsid protein promotes efficient strand transfer and specific viral DNA synthesis by inhibiting TAR-dependent self-priming from minus-strand strong-stop DNA.

    PubMed Central

    Guo, J; Henderson, L E; Bess, J; Kane, B; Levin, J G

    1997-01-01

    During the first strand transfer in reverse transcription, minus-strand strong-stop DNA [(-) SSDNA] is annealed to the 3' end of the acceptor RNA in a reaction mediated by base-pairing between terminal repeat sequences in the RNA and their complement in the DNA. The large stem-loop structure in the repeat region known as TAR could interfere with this annealing reaction. We have developed an in vitro human immunodeficiency virus type 1 (HIV-1) system to investigate the effect of TAR on strand transfer. Mutational analysis demonstrates that the presence of TAR in the donor and acceptor templates inhibits strand transfer and is correlated with extensive synthesis of heterogeneous DNAs formed by self-priming from (-) SSDNA. These DNAs are not precursors to the transfer product. Interestingly, products of self-priming are not detected in HIV-1 endogenous reactions; this suggests that virions contain a component which prevents self-priming. Our results show that the viral nucleocapsid protein (NC), which can destabilize secondary structures, drastically reduces self-priming and dramatically increases the efficiency of strand transfer. In addition, the data suggest that the ability to eliminate self-priming is a general property of NC which is manifested during reverse transcriptase pausing at sites of secondary structure in the template. We conclude that this activity of NC is critical for achieving highly efficient and specific viral DNA synthesis. Our findings raise the possibility that inactivation of NC could provide a new approach for targeting reverse transcription in anti-HIV therapy. PMID:9188585

  15. Mucosal Administration of CpG Oligodeoxynucleotide Elicits Strong CC and CXC Chemokine Responses in the Vagina and Serves as a Potent Th1-Tilting Adjuvant for Recombinant gD2 Protein Vaccination against Genital Herpes

    PubMed Central

    Tengvall, Sara; Lundqvist, Annika; Eisenberg, Roselyn J.; Cohen, Gary H.; Harandi, Ali M.

    2006-01-01

    Although sexually transmitted pathogens are capable of inducing pathogen-specific immune responses, vaginal administration of nonreplicating antigens elicits only weak, nondisseminating immune responses. The present study was undertaken to examine the potential of CpG-containing oligodeoxynucleotide (CpG ODN) for induction of chemokine responses in the genital tract mucosa and also as a vaginal adjuvant in combination with glycoprotein D of herpes simplex virus type 2 (HSV-2) for induction of antigen-specific immune responses. We found that a single intravaginal administration of CpG ODN in mice stimulates a rapid and potent response of CC chemokines macrophage inflammatory protein 1α (MIP-1α), MIP-1β, and RANTES as well as of CXC chemokines MIP-2 and IP-10 in the vagina and/or the genital lymph nodes. Importantly, intravaginal vaccination with recombinant gD2 in combination with CpG ODN gave rise to a strong antigen-specific Th1-like immune response in the genital lymph nodes as well as the spleens of the vaccinated mice. Further, such an immunization scheme conferred both systemic and mucosal immunoglobulin G antibody responses as well as protection against an otherwise lethal vaginal challenge with HSV-2. These results illustrate the potential of CpG ODN for induction of potent chemokine responses in the genital tract and also as a vaginal adjuvant for generation of Th1-type mucosal and systemic immune responses towards a nonreplicating antigen derived from a sexually transmitted pathogen. These data have implications for the development of a mucosal vaccine against genital herpes and possibly other sexually transmitted diseases. PMID:16699008

  16. Strongly Regular Graphs,

    DTIC Science & Technology

    1973-10-01

    The theory of strongly regular graphs was introduced by Bose r7 1 in 1963, in connection with partial geometries and 2 class association schemes. One...non adjacent vertices is constant and equal to ~. We shall denote by ~(p) (reap.r(p)) the set of vertices adjacent (resp.non adjacent) to a vertex p...is the complement of .2’ if the set of vertices of ~ is the set of vertices of .2’ and if two vertices in .2’ are adjacent if and only if they were

  17. Electromagnetic strong plasma turbulence

    SciTech Connect

    Melatos, A.; Jenet, F. A.; Robinson, P. A.

    2007-02-15

    The first large-scale simulations of continuously driven, two-dimensional electromagnetic strong plasma turbulence are performed, for electron thermal speeds 0.01c{<=}v{<=}0.57c, by integrating the Zakharov equations for coupled Langmuir and transverse (T) waves near the plasma frequency. Turbulence scalings and wave number spectra are calculated, a transition is found from a mix of trapped and free T eigenstates for v{>=}0.1c to just free eigenstates for v{<=}0.1c, and wave energy densities are observed to undergo slow quasiperiodic oscillations.

  18. Strongly correlated materials.

    PubMed

    Morosan, Emilia; Natelson, Douglas; Nevidomskyy, Andriy H; Si, Qimiao

    2012-09-18

    Strongly correlated materials are profoundly affected by the repulsive electron-electron interaction. This stands in contrast to many commonly used materials such as silicon and aluminum, whose properties are comparatively unaffected by the Coulomb repulsion. Correlated materials often have remarkable properties and transitions between distinct, competing phases with dramatically different electronic and magnetic orders. These rich phenomena are fascinating from the basic science perspective and offer possibilities for technological applications. This article looks at these materials through the lens of research performed at Rice University. Topics examined include: Quantum phase transitions and quantum criticality in "heavy fermion" materials and the iron pnictide high temperature superconductors; computational ab initio methods to examine strongly correlated materials and their interface with analytical theory techniques; layered dichalcogenides as example correlated materials with rich phases (charge density waves, superconductivity, hard ferromagnetism) that may be tuned by composition, pressure, and magnetic field; and nanostructure methods applied to the correlated oxides VO₂ and Fe₃O₄, where metal-insulator transitions can be manipulated by doping at the nanoscale or driving the system out of equilibrium. We conclude with a discussion of the exciting prospects for this class of materials.

  19. Strong Poison Revisited

    SciTech Connect

    Prince, R.C.; Gailer, J.; Gunson, D.E.; Turner, R.J.; George, G.N.; Pickering, I.J.

    2009-06-04

    Selenium in the form of selenocysteine plays an essential role in a number of proteins, but its role in non-enzymatic biochemistry is also important. In this short review we discuss the interactions between inorganic selenium, arsenic and mercury under physiological conditions, especially in the presence of glutathione. This chemistry is obviously important in making the arsenic and mercury unavailable for more toxic interactions, but in the process it suggests that a side-effect of chronic arsenic and/or mercury exposure is likely to be functional selenium deficiency.

  20. Strong, Lightweight, Porous Materials

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas; Meador, Mary Ann B.; Johnston, James C.; Fabrizio, Eve F.; Ilhan, Ulvi

    2007-01-01

    A new class of strong, lightweight, porous materials has been invented as an outgrowth of an effort to develop reinforced silica aerogels. The new material, called X-Aerogel is less hygroscopic, but no less porous and of similar density to the corresponding unmodified aerogels. However, the property that sets X-Aerogels apart is their mechanical strength, which can be as much as two and a half orders of magnitude stronger that the unmodified aerogels. X-Aerogels are envisioned to be useful for making extremely lightweight, thermally insulating, structural components, but they may also have applications as electrical insulators, components of laminates, catalyst supports, templates for electrode materials, fuel-cell components, and filter membranes.

  1. Quine's 'needlessly strong' holism.

    PubMed

    Verhaegh, Sander

    2017-02-01

    Quine is routinely perceived as having changed his mind about the scope of the Duhem-Quine thesis, shifting from what has been called an 'extreme holism' to a more moderate view. Where the Quine of 'Two Dogmas of Empiricism' argues that "the unit of empirical significance is the whole of science" (1951, 42), the later Quine seems to back away from this "needlessly strong statement of holism" (1991, 393). In this paper, I show that the received view is incorrect. I distinguish three ways in which Quine's early holism can be said to be wide-scoped and show that he has never changed his mind about any one of these aspects of his early view. Instead, I argue that Quine's apparent change of mind can be explained away as a mere shift of emphasis.

  2. Strongly correlated electronic materials

    SciTech Connect

    Bedell, K.; Albers, R.; Balatsky, A.; Bishop, A.; Bonca, J.; Gubernatis, J.; Gulasci, M.; Silver, R.; Trugman, S.

    1996-04-01

    This is the final report of a 3-year project. Novel electronic materials characterized by strong electronic correlations display a number of unexpected, often extraordinary, properties. These are likely to play a major role in purpose-specific high-technology electronic materials of the future developed for electronic, magnetic, and optical applications. This project sought to develop predictive control of the novel properties by formulating, solving and applying many-body models for the underlying microscopic physics. This predictive control required the development of new analytical and numerical many-body techniques and strategies for materials of varying strengths of interactions, dimensionality and geometry. Results are compared with experiment on classes of novel materials, and the robust techniques are used to predict additional properties and motivate key additional experiments.

  3. Quantification of HDL proteins, cardiac events, and mortality in patients with type 2 diabetes on hemodialysis.

    PubMed

    Kopecky, Chantal; Genser, Bernd; Drechsler, Christiane; Krane, Vera; Kaltenecker, Christopher C; Hengstschläger, Markus; März, Winfried; Wanner, Christoph; Säemann, Marcus D; Weichhart, Thomas

    2015-02-06

    Impairment of HDL function has been associated with cardiovascular events in patients with kidney failure. The protein composition of HDLs is altered in these patients, presumably compromising the cardioprotective effects of HDLs. This post hoc study assessed the relation of distinct HDL-bound proteins with cardiovascular outcomes in a dialysis population. The concentrations of HDL-associated serum amyloid A (SAA) and surfactant protein B (SP-B) were measured in 1152 patients with type 2 diabetes mellitus on hemodialysis participating in The German Diabetes Dialysis Study who were randomly assigned to double-blind treatment of 20 mg atorvastatin daily or matching placebo. The association of SAA(HDL) and SP-B(HDL) with cardiovascular outcomes was assessed in multivariate regression models adjusted for known clinical risk factors. High concentrations of SAA(HDL) were significantly and positively associated with the risk of cardiac events (hazard ratio per 1 SD higher, 1.09; 95% confidence interval, 1.01 to 1.19). High concentrations of SP-B(HDL) were significantly associated with all-cause mortality (hazard ratio per 1 SD higher, 1.10; 95% confidence interval, 1.02 to 1.19). Adjustment for HDL cholesterol did not affect these associations. In patients with diabetes on hemodialysis, SAA(HDL) and SP-B(HDL) were related to cardiac events and all-cause mortality, respectively, and they were independent of HDL cholesterol. These findings indicate that a remodeling of the HDL proteome was associated with a higher risk for cardiovascular events and mortality in patients with ESRD. Copyright © 2015 by the American Society of Nephrology.

  4. Strong-interaction nonuniversality

    SciTech Connect

    Volkas, R. R.; Foot, R.; He, X.; Joshi, G. C.

    1989-07-01

    The universal QCD color theory is extended to an SU(3)/sub 1//direct product/SU(3)/sub 2//direct product/SU(3)/sub 3/ gauge theory, where quarks of the /ital i/th generation transform as triplets under SU(3)/sub /ital i// and singlets under the other two factors. The usual color group is then identified with the diagonal subgroup, which remains exact after symmetry breaking. The gauge bosons associated with the 16 broken generators then form two massive octets under ordinary color. The interactions between quarks and these heavy gluonlike particles are explicitly nonuniversal and thus an exploration of their physical implications allows us to shed light on the fundamental issue of strong-interaction universality. Nonuniversality and weak flavor mixing are shown to generate heavy-gluon-induced flavor-changing neutral currents. The phenomenology of these processes is studied, as they provide the major experimental constraint on the extended theory. Three symmetry-breaking scenarios are presented. The first has color breaking occurring at the weak scale, while the second and third divorce the two scales. The third model has the interesting feature of radiatively induced off-diagonal Kobayashi-Maskawa matrix elements.

  5. Foreshocks of strong earthquakes

    NASA Astrophysics Data System (ADS)

    Guglielmi, A. V.; Sobisevich, L. E.; Sobisevich, A. L.; Lavrov, I. P.

    2014-07-01

    The specific enhancement of ultra-low-frequency (ULF) electromagnetic oscillations a few hours prior to the strong earthquakes, which was previously mentioned in the literature, motivated us to search for the distinctive features of the mechanical (foreshock) activity of the Earth's crust in the epicentral zones of the future earthquakes. Activation of the foreshocks three hours before the main shock is revealed, which is roughly similar to the enhancement of the specific electromagnetic ULF emission. It is hypothesized that the round-the-world seismic echo signals from the earthquakes, which form the peak of energy release 2 h 50 min before the main events, act as the triggers of the main shocks due to the cumulative action of the surface waves converging to the epicenter. It is established that the frequency of the fluctuations in the foreshock activity decreases at the final stages of the preparation of the main shocks, which probably testifies to the so-called mode softening at the approach of the failure point according to the catastrophe theory.

  6. Kinematics of Strong Discontinuities

    NASA Technical Reports Server (NTRS)

    Peterson, K.; Nguyen, G.; Sulsky, D.

    2006-01-01

    Synthetic Aperture Radar (SAR) provides a detailed view of the Arctic ice cover. When processed with the RADARSAT Geophysical Processor System (RGPS), it provides estimates of sea ice motion and deformation over large regions of the Arctic for extended periods of time. The deformation is dominated by the appearance of linear kinematic features that have been associated with the presence of leads. The RGPS deformation products are based on the assumption that the displacement and velocity are smooth functions of the spatial coordinates. However, if the dominant deformation of multiyear ice results from the opening, closing and shearing of leads, then the displacement and velocity can be discontinuous. This presentation discusses the kinematics associated with strong discontinuities that describe possible jumps in displacement or velocity. Ice motion from SAR data are analyzed using this framework. It is assumed that RGPS cells deform due to the presence of a lead. The lead orientation is calculated to optimally account for the observed deformation. It is shown that almost all observed deformation can be represented by lead opening and shearing. The procedure used to reprocess motion data to account for leads will be described and applied to regions of the Beaufort Sea. The procedure not only provides a new view of ice deformation, it can be used to obtain information about the presence of leads for initialization and/or validation of numerical simulations.

  7. Studies on Strong Interactions

    NASA Astrophysics Data System (ADS)

    Coriano, Claudio

    Five studies, four in Quantum field theory and one in fermionic molecular dynamics are presented. In the first study, introduced in chapter one and developed in chapter two of this dissertation, we formulate an extension of QCD sum rules to Compton scattering of the pion at intermediate energy. The chapter is based on the research paper Fixed angle pion Compton scattering and QCD sum rules by Prof. George Sterman and the author, which has been submitted for publication as a regular article. In chapter 3 we discuss the relation between traditional bosonic exchange models of nuclear strong interaction and soliton models, in the particular case of the sine-Gordon model. The chapter is based on the research paper "Scattering in soliton models and bosonic exchange descriptions", by R. R. Parwani, H. Yamagishi, I. Zahed and the author, and is published in Phys. Rev. D 45 (1992), 2542. A preprint of this paper (Preprint 1) has been included as an Appendix to the Chapter. In Chapter 4 we discuss aspects of the propagation of quantized fields in classical backgrounds, using the light-cone expansion of the propagator. The chapter is based on the research papers "Electrodynamics in the presence of an axion", published by the author in Modern Physics Letters A 7 (1992), 1253, and on the paper "Singularity of Green's function and the effective action in massive Yang Mills theories, by Prof. H. Yamagishi and the author. This last paper is published in Physical Review D 41 (1990), 3226 and its reprint appears in the final part of the Chapter (Reprint 1). In chapter 5, entitled "On the time dependent Rayleigh-Ritz equations", we discuss aspects of the variational approach to fermionic molecular dynamics. This investigation by R. Parwani, H. Yamagishi and the author has been published in Nucl. Physics A 522 (1991), 591. A preprint of this research paper has been inserted in the final part of the Chapter (Preprint 2).

  8. Segregated ordered lipid phases and protein-promoted membrane cohesivity are required for pulmonary surfactant films to stabilize and protect the respiratory surface.

    PubMed

    Bernardino de la Serna, Jorge; Vargas, Rodolfo; Picardi, Victoria; Cruz, Antonio; Arranz, Rocío; Valpuesta, José M; Mateu, Leonardo; Pérez-Gil, Jesús

    2013-01-01

    Pulmonary surfactant is a lipid-protein complex essential to stabilize alveoli, by forming surface active films able to reach and sustain very low surface tensions (< 2 mN m(-1)) during the film compression that occurs at end-expiration. The particular lipid composition of surfactant, including a high proportion of dipalmitoylphosphatidylcholine (DPPC), induces segregation of fluid ordered and disordered phases in surfactant membranes and films at physiological temperatures. The segregation of DPPC-enriched ordered phase has been related with the ability of surfactant films to produce very low tensions, while the presence in surfactant of two specific hydrophobic polypeptides, SP-B and SP-C, is absolutely required to facilitate surfactant dynamics, including film formation and re-spreading during expansion at inspiration. In the present study, we have used X-ray scattering to analyze the structure of (1) whole native surfactant membranes purified from porcine lungs, (2) membranes reconstituted from the organic extract of surfactant containing the full lipid complement and the physiological proportion of SP-B and SP-C, and (3) membranes reconstituted from the lipid fraction of surfactant depleted of proteins. Small angle X-ray scattering data from whole surfactant or from membranes reconstituted from surfactant organic extract indicated the co-existence of two lamellar phases with different thicknesses. Such phase coexistence disappeared upon heating of the samples at temperatures above physiological values. When assessed in a captive bubble surfactometer, which mimics interfacial compression-expansion dynamics, the ability of surfactant films to produce very low tensions is only maintained at temperatures permitting the coexistence of the two lamellar phases. On the other hand, membranes reconstituted in the absence of proteins produced diffractograms indicative of the existence of a single dominant lamellar phase at all temperatures. These data suggest that SP-B

  9. Adsorption of peptides and small proteins with control access polymer permeation to affinity binding sites. Part II: Polymer permeation-ion exchange separation adsorbents with polyethylene glycol and strong anion exchange groups.

    PubMed

    González-Ortega, Omar; Porath, Jerker; Guzmán, Roberto

    2012-03-02

    In chromatographic separations, the most general problem in small biomolecule isolation and purification is that such biomolecules are usually found in extremely low concentrations together with high concentrations of large molecular weight proteins. In the first part of this work, adsorption and size exclusion chromatography (AdSEC) controlled access media, using polyethylene glycol (PEG) as a semi-permeable barrier on a polysaccharide Immobilized Metal Affinity Chromatography (IMAC) matrix was synthesized and used to develop chromatographic adsorbents that preferentially adsorb and separate low molecular weight biomolecules while rejecting large molecular weight proteins. In this second part, we expand the concept of controlled access polymer permeation adsorption (CAPPA) media by grafting polyethylene glycol (PEG) on a high capacity polysaccharide ion exchange (IEX) chromatographic resin where PEG acts as a semi-permeable barrier that preferentially allows the permeation of small molecules while rejecting large ones. The IEX resin bearing quaternary ammonium groups binds permeated biomolecules according to their ion exchange affinity while excluding large biomolecules by the PEG barrier and thus cannot compete for the binding sites. This new AdSEC media was used to study the retention of peptides and proteins covering a wide range of molecular weights from 1 to 150 kDa. The effect of protein molecular weight towards retention by ion exchange was performed using pure protein solutions. Recovery of insulin from insulin-spiked human serum and insulin-spiked human urine was evaluated under polymer controlled permeation conditions. The CAPPA media consisted of agarose beads modified with amino-PEG-methoxy and with trimethyl ammonium groups, having chloride capacities between 20 and 40 μeq/mL and were effective in rejecting high molecular weight proteins while allowing the preferential adsorption of small proteins and peptides.

  10. The immunodominant T helper 2 (Th2) response elicited in BALB/c mice by the Leishmania LiP2a and LiP2b acidic ribosomal proteins cannot be reverted by strong Th1 inducers.

    PubMed

    Iborra, S; Abánades, D R; Parody, N; Carrión, J; Risueño, R M; Pineda, M A; Bonay, P; Alonso, C; Soto, M

    2007-11-01

    The search for disease-associated T helper 2 (Th2) Leishmania antigens and the induction of a Th1 immune response to them using defined vaccination protocols is a potential strategy to induce protection against Leishmania infection. Leishmania infantum LiP2a and LiP2b acidic ribosomal protein (P proteins) have been described as prominent antigens during human and canine visceral leishmaniasis. In this study we demonstrate that BALB/c mice infected with Leishmania major develop a Th2-like humoral response against Leishmania LiP2a and LiP2b proteins and that the same response is induced in BALB/c mice when the parasite P proteins are immunized as recombinant molecules without adjuvant. The genetic immunization of BALB/c mice with eukaryotic expression plasmids coding for these proteins was unable to redirect the Th2-like response induced by these antigens, and only the co-administration of the recombinant P proteins with CpG oligodeoxynucleotides (CpG ODN) promoted a mixed Th1/Th2 immune response. According to the preponderance of a Th2 or mixed Th1/Th2 responses elicited by the different regimens of immunization tested, no evidence of protection was observed in mice after challenge with L. major. Although alterations of the clinical outcome were not detected in mice presensitized with the P proteins, the enhanced IgG1 and interleukin (IL)-4 response against total Leishmania antigens in these mice may indicate an exacerbation of the disease.

  11. NY-ESO-1 Protein Cancer Vaccine With Poly-ICLC and OK-432: Rapid and Strong Induction of NY-ESO-1-specific Immune Responses by Poly-ICLC.

    PubMed

    Takeoka, Tomohira; Nagase, Hirotsugu; Kurose, Koji; Ohue, Yoshihiro; Yamasaki, Makoto; Takiguchi, Shuji; Sato, Eiichi; Isobe, Midori; Kanazawa, Takayuki; Matsumoto, Mitsunobu; Iwahori, Kota; Kawashima, Atsunari; Morimoto-Okazawa, Akiko; Nishikawa, Hiroyoshi; Oka, Mikio; Pan, Linda; Venhaus, Ralph; Nakayama, Eiichi; Mori, Masaki; Doki, Yuichiro; Wada, Hisashi

    2017-03-23

    We conducted a clinical trial of a cancer vaccine using NY-ESO-1 protein with polyinosinic-polycytidylic acid-poly-L-lysine carboxymethylcellulose (poly-ICLC) and/or OK-432 against solid tumors. A total of 15 patients were sequentially enrolled in 4 cohorts. Patients in cohort 1 received NY-ESO-1 protein; cohort 2a received NY-ESO-1 protein+OK-432; cohort 2b received NY-ESO-1 protein+poly-ICLC; cohort 3 received NY-ESO-1 protein+OK-432+poly-ICLC with Montanide ISA-51. The endpoints of this trial were safety, NY-ESO-1 immune responses, and clinical response. Vaccine-related adverse events observed were fever and injection-site reaction (grade 1). Two patients showed stable disease after vaccination. NY-ESO-1 antibodies were observed in 4 patients at the baseline (sero-positive) and augmented in all patients after vaccination. Eleven patients showed a conversion of negative antibody responses at baseline to positive after vaccination (seroconversion). The seroconversions were observed in all 11 sero-negative patients by the fourth immunization; in particular, it was observed by the second immunization in patients with poly-ICLC, and these induced antibody responses were stronger than those in patients immunized without poly-ICLC. The number of NY-ESO-1-specific interferon (IFN)γ-producing T cells was increased in patients immunized with poly-ICLC and/or OK-432, and furthermore, the increase of IFNγ-producing CD8 T cells in patients immunized with poly-ICLC was significantly higher than that in patients without poly-ICLC. Nonspecific activations of T-cell or antigen presenting cells were not observed. Our present study showed that poly-ICLC is a promising adjuvant for cancer vaccines.

  12. [Surfactant protein and thyroid transcription factor 1 in pleuro-pulmonary neoplasia. Immunohistochemical study].

    PubMed

    Dessy, E; Falleni, M; Del Curto, B; Braidotti, P; Pietra, G G

    2000-12-01

    Aim of this work was to investigate the ability of the antibodies against Surfactant proteins (SP) and Thyroid transcription factor 1 (TTF-1) to distinguish primary neoplasms of the lung from metastatic carcinomas to the lung and pleural mesotheliomas. We evaluated the immunohistochemical expression of the antibodies anti SP-A, SP-B, pro SP-C, SP-D, and TTF-1 in a series of 56 primary lung carcinomas, 9 metastatic carcinomas to the lung, 5 pleural mesotheliomas and 8 non-pulmonary carcinomas. Among primary lung neoplasms, only adenocarcinomas immunostained for all SP (specificity = 1; total sensitivity = 0.52). TTF-1 had an excellent specificity (= 1), but a weak sensitivity (= 0.34) in recognizing primary lung carcinomas. TTF-1 was present in lung adenocarcinomas which were negative for SPs; however it failed to distinguish the subtypes. Pleural mesotheliomas, pulmonary metastases and non-pulmonary carcinomas were not immunoreactive for SP-A, SP-B, SP-D, and TTF-1. Pro SP-C was positive also in the adenocarcinomas of the large bowel and in their pulmonary and nodal metastases. These results demonstrate that the combined use of antibodies anti SP-A, SP-B and TTF-1 is the best association in distinguishing primary lung carcinomas from metastatic carcinomas to the lung and pleural mesotheliomas.

  13. CAT 53: a protein phosphatase 1 nuclear targeting subunit encoded in the MHC Class I region strongly expressed in regions of the brain involved in memory, learning, and Alzheimer's disease.

    PubMed

    Raha-Chowdhury, Ruma; Andrews, Simon R; Gruen, Jeffrey R

    2005-07-29

    We identified CAT 53 by cDNA hybridization selection as an expressed sequence tag (EST), located in the vicinity of HLA-C and designated as CAT (for HLA-C associated transcript) 53. CAT 53 encodes a protein described by others and commonly known as phosphatase 1 nuclear targeting subunit (PNUTS). PNUTS is a potent inhibitor of nuclear serine/threonine protein phosphatase 1 (PP1). We present the genomic organization of CAT 53, localize specific sites of mRNA transcription in thin sections of mouse brain by in-situ hybridization, and perform a structural analysis of the peptide domains. We also characterize the protein expression pattern for PNUTS by Western blotting and immunohistochemistry with PNUTS antibody in Alzheimer's disease (AD) brains and age-matched control brains. In-situ hybridization and immunohistochemistry analysis of human and mouse brain show high CAT 53 expression in the olfactory cortex, piriform cortex, and hippocampus. Very high expression of CAT 53 was found mainly in the hippocampus, frontal, and entorhinal cortex of control brains and in the neurofibrillary tangles of AD brain. In the hippocampus, CAT 53 is expressed in CA1 and CA3 cell layers and in the dentate gyrus. The hippocampus is known to play a fundamental role in learning and episodic memories and has been implicated in a number of neurological and psychiatric disorders, including AD, epilepsy, and schizophrenia. Our findings suggest that PNUTS, encoded by CAT 53 on 6p21.3, may have a role in the progression of AD.

  14. Co-vaccination with adeno-associated virus vectors encoding human papillomavirus 16 L1 proteins and adenovirus encoding murine GM-CSF can elicit strong and prolonged neutralizing antibody.

    PubMed

    Liu, Dai-Wei; Chang, Junn-Liang; Tsao, Yeou-Ping; Huang, Chien-Wei; Kuo, Shu-Wen; Chen, Show-Li

    2005-01-01

    Non-infectious human papillomavirus-like particles (VLPs), encoded by the major capsid gene L1, have been shown to be effective as vaccines to prevent cervical cancer. We have developed the genetic immunization of the L1 gene to induce a neutralizing antibody. We constructed and generated a recombinant adeno-associated virus encoding human papillomavirus (HPV) 16 L1 protein that could form virus-like particles in transduced cells. Previous reports have demonstrated that the formation of VLP is necessary to induce high titers of neutralizing antibodies to protect an animal from viral challenge. Therefore, we carried out a single intramuscular (i.m.) injection with recombinant adeno-associated virus encoding HPV-16 L1 protein (rAAV-16L1) in BALB/c mice, which ultimately produced stronger and more prolonged neutralizing L1 antibodies, when compared to the DNA vaccine. Immunohistochemistry showed that the accumulation of antigen presenting cells, such as macrophages and dendritic cells, in rAAV-16L1 and L1 DNA-injected muscle fibers may be due to the L1 protein expression, but not to AAV infection. When compared to the L1 VLP vaccine, however, the titers of neutralizing L1 antibodies induced by VLP were higher than those induced by rAAV-16L1. Co-vaccinating with rAAV-16L1 and adenovirus encoding murine GM-CSF (rAAV-16L1/rAd-mGM-CSF) induced comparable higher levels of neutralizing L1 antibodies with those of VLP. This implies that a single i.m. co-injection with rAAV-16L1/rAd-mGM-CSF can achieve the same vaccine effect as a VLP vaccine requiring 3 booster injections.

  15. Computer simulations and experimental studies of gel mobility patterns for weak and strong non-cooperative protein binding to two targets on the same DNA: application to binding of tet repressor variants to multiple and single tet operator sites.

    PubMed Central

    Kleinschmidt, C; Tovar, K; Hillen, W

    1991-01-01

    A series of computer simulations of gel patterns assuming non-cooperative binding of a protein to two targets on the same DNA fragment was performed and applied to interprete gel mobility shift experiments of Tet repressor-tet operator binding. While a high binding affinity leads to the expected distribution of free DNA, DNA bound by one repressor dimer and DNA bound by two repressor dimers, a lower affinity or an increased electrophoresis time results in the loss of the band corresponding to the singly occupied complex. The doubly occupied complex remains stable under these conditions. This phenomenon is typical for protein binding to DNA fragments with two identical sites. It results from statistical disproportionation of the singly occupied complex in the gel. The lack of the singly occupied complex is commonly taken to indicate cooperative binding, however, our analysis shows clearly, that cooperativity is not needed to interprete these results. Tet repressor proteins and small DNA fragments with two tet operator sites have been prepared from four classes of tetracycline resistance determinants. The results of gel mobility shift analyses of various complexes of these compounds confirm the predictions. Furthermore, calculated gel patterns assuming different gel mobilities of the two singly occupied complexes show discrete bands only if the electrophoresis time is shorter than the inverse of the microscopic dissociation rate constant. Simulations assuming increasing dissociation rates predict that the two bands first merge into one, which then disappears. This behavior was verified by gel mobility analyses of Tet repressor-tet operator titrations at increased salt concentrations as well as by direct footprinting of the complexes in the gel. It is concluded that comparison of the intensities of the single and the double occupation bands allow a rough estimation of the dissociation rate constant. On this basis the sixteen possible Tet repressor-tet operator

  16. Computer simulations and experimental studies of gel mobility patterns for weak and strong non-cooperative protein binding to two targets on the same DNA: application to binding of tet repressor variants to multiple and single tet operator sites.

    PubMed

    Kleinschmidt, C; Tovar, K; Hillen, W

    1991-03-11

    A series of computer simulations of gel patterns assuming non-cooperative binding of a protein to two targets on the same DNA fragment was performed and applied to interprete gel mobility shift experiments of Tet repressor-tet operator binding. While a high binding affinity leads to the expected distribution of free DNA, DNA bound by one repressor dimer and DNA bound by two repressor dimers, a lower affinity or an increased electrophoresis time results in the loss of the band corresponding to the singly occupied complex. The doubly occupied complex remains stable under these conditions. This phenomenon is typical for protein binding to DNA fragments with two identical sites. It results from statistical disproportionation of the singly occupied complex in the gel. The lack of the singly occupied complex is commonly taken to indicate cooperative binding, however, our analysis shows clearly, that cooperativity is not needed to interprete these results. Tet repressor proteins and small DNA fragments with two tet operator sites have been prepared from four classes of tetracycline resistance determinants. The results of gel mobility shift analyses of various complexes of these compounds confirm the predictions. Furthermore, calculated gel patterns assuming different gel mobilities of the two singly occupied complexes show discrete bands only if the electrophoresis time is shorter than the inverse of the microscopic dissociation rate constant. Simulations assuming increasing dissociation rates predict that the two bands first merge into one, which then disappears. This behavior was verified by gel mobility analyses of Tet repressor-tet operator titrations at increased salt concentrations as well as by direct footprinting of the complexes in the gel. It is concluded that comparison of the intensities of the single and the double occupation bands allow a rough estimation of the dissociation rate constant. On this basis the sixteen possible Tet repressor-tet operator

  17. Interdependent TTF1 - ErbB4 interactions are critical for surfactant protein-B homeostasis in primary mouse lung alveolar type II cells.

    PubMed

    Marten, Elger; Nielsen, Heber C; Dammann, Christiane E L

    2015-09-01

    ErbB4 receptor and thyroid transcription factor (TTF)-1 are important modulators of fetal alveolar type II (ATII) cell development and injury. ErbB4 is an upstream regulator of TTF-1, promoting its expression in MLE-12 cells, an ATII cell line. Both proteins are known to promote surfactant protein-B gene (SftpB) and protein (SP-B) expression, but their feedback interactions on each other are not known. We hypothesized that TTF-1 expression has a feedback effect on ErbB4 expression in an in-vitro model of isolated mouse ATII cells. We tested this hypothesis by analyzing the effects of overexpressing HER4 and Nkx2.1, the genes of ErbB4 and TTF-1 on TTF-1 and ErbB4 protein expression, respectively, as well as SP-B protein expression in primary fetal mouse lung ATII cells. Transient ErbB4 protein overexpression upregulated TTF-1 protein expression in primary fetal ATII cells, similarly to results previously shown in MLE-12 cells. Transient TTF-1 protein overexpression down regulated ErbB4 protein expression in both cell types. TTF-1 protein was upregulated in primary transgenic ErbB4-depleted adult ATII cells, however SP-B protein expression in these adult transgenic ATII cells was not affected by the absence of ErbB4. The observation that TTF-1 is upregulated in fetal ATII cells by ErbB4 overexpression and also in ErbB4-deleted adult ATII cells suggests additional factors interact with ErbB4 to regulate TTF-1 levels. We conclude that the interdependency of TTF-1 and ErbB4 is important for surfactant protein levels. The interactive regulation of ErbB4 and TTF-1 needs further elucidation.

  18. Osa Protein Constitutes a Strong Oncogenic Suppression System That Can Block vir-Dependent Transfer of IncQ Plasmids between Agrobacterium Cells and the Establishment of IncQ Plasmids in Plant Cells

    PubMed Central

    Lee, Lan-Ying; Gelvin, Stanton B.

    2004-01-01

    The osa (oncogenic suppressive activity) gene of the IncW group plasmid pSa is sufficient to suppress tumorigenesis by Agrobacterium tumefaciens. osa confers oncogenic suppression by inhibiting VirE2 protein export. This result is similar, but not identical, to that of oncogenic suppression by the IncQ plasmid RSF1010. We conducted a series of experiments to compare oncogenic suppression by these two systems. Agrobacterium strains harboring plasmids containing osa are more able to effect oncogenic suppression than are similar strains containing various RSF1010 derivatives. When osa is present within a donor Agrobacterium strain that also carries a derivative of RSF1010, the transfer of RSF1010 derivatives to recipient bacteria and their establishment in plants are blocked. Oncogenic suppression is still effected when the osa gene is integrated into the Agrobacterium chromosome, suggesting that it is the osa gene product that is active in suppression and that suppression does not require a protein-nucleic acid intermediate like that described for IncQ plasmids. Extracellular complementation experiments with tobacco leaf disks indicated that Osa blocks stable transfer of RSF1010 to plant cells by inhibiting transfer of VirE2, which is essential for the transfer of RSF1010 into plant cells, and not by inhibiting the actual transfer of RSF1010 itself. Our results suggest that Osa and RSF1010 cause oncogenic suppression by using different mechanisms. PMID:15489437

  19. Strong WW Interaction at LHC

    SciTech Connect

    Pelaez, Jose R

    1998-12-14

    We present a brief pedagogical introduction to the Effective Electroweak Chiral Lagrangians, which provide a model independent description of the WW interactions in the strong regime. When it is complemented with some unitarization or a dispersive approach, this formalism allows the study of the general strong scenario expected at the LHC, including resonances.

  20. Strong Beginnings: Learning To Live.

    ERIC Educational Resources Information Center

    Save the Children, Westport, CT.

    The Strong Beginnings program, initiated by the Save the Children Fund in 1991, supports community-based activities in 20 countries aimed at reconstructing educational systems in developing countries. This report presents the vision of the Strong Beginnings program, describes its components, and describes the continuing challenge to improve access…

  1. Recent advances of strong-strong beam-beam simulation

    SciTech Connect

    Qiang, Ji; Furman, Miguel A.; Ryne, Robert D.; Fischer, Wolfram; Ohmi,Kazuhito

    2004-09-15

    In this paper, we report on recent advances in strong-strong beam-beam simulation. Numerical methods used in the calculation of the beam-beam forces are reviewed. A new computational method to solve the Poisson equation on nonuniform grid is presented. This method reduces the computational cost by a half compared with the standard FFT based method on uniform grid. It is also more accurate than the standard method for a colliding beam with low transverse aspect ratio. In applications, we present the study of coherent modes with multi-bunch, multi-collision beam-beam interactions at RHIC. We also present the strong-strong simulation of the luminosity evolution at KEKB with and without finite crossing angle.

  2. The 5'UTR-specific mutation in VEEV TC-83 genome has a strong effect on RNA replication and subgenomic RNA synthesis, but not on translation of the encoded proteins.

    PubMed

    Kulasegaran-Shylini, Raghavendran; Thiviyanathan, Varatharasa; Gorenstein, David G; Frolov, Ilya

    2009-04-25

    Venezuelan equine encephalitis virus (VEEV) is one of the most pathogenic members of the Alphavirus genus in the Togaviridae family. Viruses in the VEEV serocomplex continuously circulate in the Central and South America. The only currently available attenuated strain VEEV TC-83 is being used only for vaccination of at-risk laboratory workers and military personnel. Its attenuated phenotype was shown to rely only on two point mutations, one of which, G3A, was found in the 5' untranslated region (5'UTR) of the viral genome. Our data demonstrate that the G3A mutation strongly affects the secondary structure of VEEV 5'UTR, but has only a minor effect on translation. The indicated mutation increases replication of the viral genome, downregulates transcription of the subgenomic RNA, and, thus, affects the ratio of genomic and subgenomic RNA synthesis. These findings and the previously reported G3A-induced, higher sensitivity of VEEV TC-83 to IFN-alpha/beta suggest a plausible explanation for its attenuated phenotype.

  3. The 5′UTR-specific mutation in VEEV TC-83 genome has a strong effect on RNA replication and subgenomic RNA synthesis, but not on translation of the encoded proteins

    PubMed Central

    Kulasegaran-Shylini, Raghavendran; Thiviyanathan, Varatharasa; Gorenstein, David G; Frolov, Ilya

    2009-01-01

    Venezuelan equine encephalitis virus (VEEV) is one of the most pathogenic members of the Alphavirus genus in the Togaviridae family. Viruses in the VEEV serocomplex continuously circulate in the Central and South Americas. The only currently available attenuated strain VEEV TC-83 is being used only for vaccination of at-risk laboratory workers and military personnel. Its attenuated phenotype was shown to rely only on two point mutations, one of which, G3A, was found in the 5′ untranslated region (5′UTR) of the viral genome. Our data demonstrate that the G3A mutation strongly affects the secondary structure of VEEV 5′UTR, but has only a minor effect on translation. The indicated mutation increases replication of the viral genome, downregulates transcription of the subgenomic RNA, and, thus, affects the ratio of genomic and subgenomic RNA synthesis. These findings and the previously reported G3A-induced, higher sensitivity of VEEV TC-83 to IFN-α/β suggest a plausible explanation for its attenuated phenotype. PMID:19278709

  4. Effects of strong disorder in strongly correlated superconductors

    NASA Astrophysics Data System (ADS)

    Chakraborty, Debmalya; Sensarma, Rajdeep; Ghosal, Amit

    2017-01-01

    We investigate the effect of strong disorder on a system with strong electronic repulsion. In the absence of disorder, the system has a d-wave superconducting ground state with strong non-BCS features due to its proximity to a Mott insulator. We find that while strong correlations make superconductivity in this system immune to weak disorder, superconductivity is destroyed efficiently when disorder strength is comparable to the effective bandwidth. The suppression of charge motion in regions of strong potential fluctuation leads to the formation of Mott insulating patches, which anchor a larger nonsuperconducting region around them. The system thus breaks into islands of Mott insulating and superconducting regions, with Anderson insulating regions occurring along the boundary of these regions. Thus, electronic correlation and disorder, when both are strong, aid each other in destroying superconductivity, in contrast to their competition at weak disorder. Our results shed light on why zinc impurities are efficient in destroying superconductivity in cuprates, even though it is robust to weaker impurities.

  5. Titanium: light, strong, and white

    USGS Publications Warehouse

    Woodruff, Laurel; Bedinger, George

    2013-01-01

    Titanium (Ti) is a strong silver-gray metal that is highly resistant to corrosion and is chemically inert. It is as strong as steel but 45 percent lighter, and it is twice as strong as aluminum but only 60 percent heavier. Titanium dioxide (TiO2) has a very high refractive index, which means that it has high light-scattering ability. As a result, TiO2 imparts whiteness, opacity, and brightness to many products. ...Because of the unique physical properties of titanium metal and the whiteness provided by TiO2, titanium is now used widely in modern industrial societies.

  6. Soluble amyloid beta-peptide and myelin basic protein strongly stimulate, alone and in synergism with combined proinflammatory cytokines, the expression of functional nitric oxide synthase-2 in normal adult human astrocytes.

    PubMed

    Chiarini, Anna; Dal Pra, Ilaria; Menapace, Lia; Pacchiana, Raffaella; Whitfield, James F; Armato, Ubaldo

    2005-11-01

    The accumulation of amyloid beta (Abeta)-peptides and their collection in fibrillar plaques in the human brain are believed to be responsible for Alzheimer's disease. The major neuron killers in the Alzheimer brain include proinflammatory cytokines and NO made by NOS-2 (inducible nitric oxide synthase-2). We have determined the effect of a soluble Abeta peptide, Abeta(1-40), on the expression of NOS-2 in astrocytes using a novel model system consisting of pure cultures of cells from adult human brains that, after the first three passages in vitro, become stably locked into the normal astrocytic phenotype like their counterparts in the adult human brain. Abeta(1-40) alone stimulated quiescent astrocytes to start expressing functional NOS-2 and dumping NO into the culture medium during the next 4 days. But adding three of the proinflammatory cytokines commonly produced in the Alzheimer brain--IFN-gamma, IL-1beta, and TNF-alpha--along with Abeta(1-40) more than trebled NOS-2 expression and doubled NO production. In view of the possibility of myelin breakdown in the Alzheimer brain, we also tested the capability of myelin basic protein (MBP) to stimulate NO production using human astrocytes. We found that MBP mimicked the ability of Abeta(1-40) to induce cells to release NO and adding the cytokine triad along with MBP more than doubled NO production and release. Thus, it appears that Abeta peptides and MBP can join forces with proinflammatory cytokines to enhance the NO-mediated killing of neurons in the Alzheimer brain.

  7. Creating and Nurturing Strong Teams.

    ERIC Educational Resources Information Center

    Martin, Kaye M.

    1999-01-01

    Discusses ways to create and sustain strong teaching teams, including matching curriculum goals, complementary professional strengths, and exercise of autonomy. Elaborates the administrator's role in nurturing and supporting teamwork. (JPB)

  8. Cavity quantum electrodynamics: Beyond strong

    NASA Astrophysics Data System (ADS)

    Murch, Kater

    2017-01-01

    When light and matter are strongly coupled, they lose their distinct character and merge into a hybrid state. Three experiments explore this exotic regime using artificial atoms, with promise for quantum technologies.

  9. Simulating strongly correlated electrons with a strongly interacting Fermi gas

    SciTech Connect

    Thomas, John E.

    2013-05-28

    The quantum many-body physics of strongly-correlated fermions is studied in a degenerate, strongly- interacting atomic Fermi gas, first realized by our group with DOE support in 2002. This system, which exhibits strong spin pairing, is now widely studied and provides an important paradigm for testing predictions based on state-of-the-art many-body theory in fields ranging from nuclear matter to high temperature superfluidity and superconductivity. As the system is strongly interacting, both the superfluid and the normal fluid are nontrivial and of great interest. A central part of our program on Fermi gases is the connection between the study of thermodynamics, supported by DOE and the study of hydrodynamic transport, supported by NSF. This connection is especially interesting in view of a recent conjecture from the string theory community on the concept of nearly perfect normal fluids, which exhibit a minimum ratio of shear viscosity to entropy density in strongly-interacting, scale-invariant systems.

  10. Identification of quantitative trait loci (QTL) for oil and protein contents and their relationships with other seed quality traits in Brassica juncea.

    PubMed

    Mahmood, T; Rahman, M H; Stringam, G R; Yeh, F; Good, A G

    2006-11-01

    A detailed RFLP-genomic map was used to study the genetics of oil, seed and meal protein and sum of oil and seed/meal protein contents in a recombinant doubled-haploid population developed by crossing black- and yellow-seeded Brassica juncea lines. Two yellow seed color genes (SC-B4, SC-A6) and one QTL for erucic acid content (E(1b)) showed pleiotropic effect for oil, protein and sum of oil and seed/meal protein contents. Six (O-A1, O-A6, O-A9, O-B3, O-B4, O-B5) and five (SP-A1, SP-A9, SP-B4, SP-B6, SP-C) QTLs were significant for oil and seed protein contents, respectively. Tight linkage of three of these QTLs (SP-A1, SP-A9, SP-B4, O-A1, O-A9, O-B4), with opposite effects, poses challenge to the plant breeders for simultaneous improvement of negatively correlated (r = -0.7**) oil and seed protein contents. However, one QTL for oil content (O-B3) and two for seed protein content (SP-B6, SP-C) were found to be unlinked, which offer the possibility for simultaneous improvement of these two traits. QTLs significant for meal protein (MP-A1, MP-A6, MP-A9, MP-B5, MP-B6) were significant at least for oil, seed protein or sum of oil and seed/meal protein contents (T-A6, T-A7, T-B4, T-B5). Sum of oil and seed protein contents and sum of oil and meal protein contents had a perfect correlation, as well as same epistatic interactions and QTLs with similar additive effect. This indicates that protein in seed or meal has practically the same meaning for breeding purposes. Epistatic interactions were significant for the quality traits, and their linkage reflected association among the traits.

  11. Strong fiber-reinforced hydrogel.

    PubMed

    Agrawal, Animesh; Rahbar, Nima; Calvert, Paul D

    2013-02-01

    In biological hydrogels, the gel matrix is usually reinforced with micro- or nanofibers, and the resulting composite is tough and strong. In contrast, synthetic hydrogels are weak and brittle, although they are highly elastic. The are many potential applications for strong synthetic hydrogels in medical devices, including as scaffolds for tissue growth. This work describes a new class of hydrogel composites reinforced with elastic fibers, giving them a cartilage-like structure. A three-dimensional rapid prototyping technique was used to form crossed "log-piles" of elastic fibers that are then impregnated with an epoxy-based hydrogel in order to form the fiber-reinforced gel. The fibrous construct improves the strength, modulus and toughness of the hydrogel, and also constrains the swelling. By altering the construct geometry and studying the effect on mechanical properties, we will develop the understanding needed to design strong hydrogels for biomedical devices and soft machines. Copyright © 2012. Published by Elsevier Ltd.

  12. Strong Photoassociation in Ultracold Fermions

    NASA Astrophysics Data System (ADS)

    Jing, Li; Jamison, Alan; Rvachov, Timur; Ebadi, Sepher; Son, Hyungmok; Jiang, Yijun; Zwierlein, Martin; Ketterle, Wolfgang

    2016-05-01

    Despite many studies there are still open questions about strong photoassociation in ultracold gases. Photoassociation occurs only at short range and thus can be used as a tool to probe and control the two-body correlation function in an interacting many-body system and to engineer Hamiltonians using dissipation. We propose the possibility to slow down decoherence by photoassociation through the quantum Zeno effect. This can realized by shining strong photoassociation light on the superposition of the lowest two hyperfine states of Lithium 6. NSF, ARO-MURI, Samsung, NSERC.

  13. Strong ion reserve: a viewpoint on acid base equilibria and buffering.

    PubMed

    Agrafiotis, Michalis

    2011-08-01

    Evidence suggests that strong ions can exist reversibly bound to proteins in a pH-dependent manner and that they can be recruited into the biological solution, modulating its strong ion difference in a process that opposes the acid base disturbances imposed on the system. These recruitable strong ions represent the solution's 'strong ion reserve'. The physiologic [corrected] role of these protein-bound strong ions [corrected] in the buffering of acid base disorders is discussed.

  14. PREFACE: Strongly Coupled Coulomb Systems Strongly Coupled Coulomb Systems

    NASA Astrophysics Data System (ADS)

    Neilson, David; Senatore, Gaetano

    2009-05-01

    This special issue contains papers presented at the International Conference on Strongly Coupled Coulomb Systems (SCCS), held from 29 July-2 August 2008 at the University of Camerino. Camerino is an ancient hill-top town located in the Apennine mountains of Italy, 200 kilometres northeast of Rome, with a university dating back to 1336. The Camerino conference was the 11th in a series which started in 1977: 1977: Orleans-la-Source, France, as a NATO Advanced Study Institute on Strongly Coupled Plasmas (hosted by Marc Feix and Gabor J Kalman) 1982: Les Houches, France (hosted by Marc Baus and Jean-Pierre Hansen) 1986: Santa Cruz, California, USA (hosted by Forrest J Rogers and Hugh E DeWitt) 1989: Tokyo, Japan (hosted by Setsuo Ichimaru) 1992: Rochester, New York, USA (hosted by Hugh M Van Horn and Setsuo Ichimaru) 1995: Binz, Germany (hosted by Wolf Dietrich Kraeft and Manfred Schlanges) 1997: Boston, Massachusetts, USA (hosted by Gabor J Kalman) 1999: St Malo, France (hosted by Claude Deutsch and Bernard Jancovici) 2002: Santa Fe, New Mexico, USA (hosted by John F Benage and Michael S Murillo) 2005: Moscow, Russia (hosted by Vladimir E Fortov and Vladimir Vorob'ev). The name of the series was changed in 1996 from Strongly Coupled Plasmas to Strongly Coupled Coulomb Systems to reflect a wider range of topics. 'Strongly Coupled Coulomb Systems' encompasses diverse many-body systems and physical conditions. The purpose of the conferences is to provide a regular international forum for the presentation and discussion of research achievements and ideas relating to a variety of plasma, liquid and condensed matter systems that are dominated by strong Coulomb interactions between their constituents. Each meeting has seen an evolution of topics and emphases that have followed new discoveries and new techniques. The field has continued to see new experimental tools and access to new strongly coupled conditions, most recently in the areas of warm matter, dusty plasmas

  15. Strong Ties and Job Information.

    ERIC Educational Resources Information Center

    Murray, Stephen O.; And Others

    1981-01-01

    This study of 299 social and physical scientists at universities reveals that strong personal contacts were more useful than reliance on weak ties (acquaintances) for job information. Using personal connections for employment information is thus an efficient job seeking method. (SK)

  16. Strong coupling electroweak symmetry breaking

    SciTech Connect

    Barklow, T.L.; Burdman, G.; Chivukula, R.S.

    1997-04-01

    The authors review models of electroweak symmetry breaking due to new strong interactions at the TeV energy scale and discuss the prospects for their experimental tests. They emphasize the direct observation of the new interactions through high-energy scattering of vector bosons. They also discuss indirect probes of the new interactions and exotic particles predicted by specific theoretical models.

  17. Strongly Coupled Nanotube Electromechanical Resonators.

    PubMed

    Deng, Guang-Wei; Zhu, Dong; Wang, Xin-He; Zou, Chang-Ling; Wang, Jiang-Tao; Li, Hai-Ou; Cao, Gang; Liu, Di; Li, Yan; Xiao, Ming; Guo, Guang-Can; Jiang, Kai-Li; Dai, Xing-Can; Guo, Guo-Ping

    2016-09-14

    Coupling an electromechanical resonator with carbon-nanotube quantum dots is a significant method to control both the electronic charge and the spin quantum states. By exploiting a novel microtransfer technique, we fabricate two separate strongly coupled and electrically tunable mechanical resonators for the first time. The frequency of the two resonators can be individually tuned by the bottom gates, and in each resonator, the electron transport through the quantum dot can be strongly affected by the phonon mode and vice versa. Furthermore, the conductance of either resonator can be nonlocally modulated by the other resonator through phonon-phonon interaction between the two resonators. Strong coupling is observed between the phonon modes of the two resonators, where the coupling strength larger than 200 kHz can be reached. This strongly coupled nanotube electromechanical resonator array provides an experimental platform for future studies of the coherent electron-phonon interaction, the phonon-mediated long-distance electron interaction, and entanglement state generation.

  18. Chokka-Chaffa' Kilimpi', Chikashshiyaakni' Kilimpi': strong family, strong nation.

    PubMed

    Deacon, Zermarie; Pendley, Joy; Hinson, Waymon R; Hinson, Joshua D

    2011-01-01

    To encourage the health and well-being of American Indian (AI) communities, it is first necessary to understand the meaning of health for particular tribes. As such, this investigation reports on the meaning of health and well-being for Chickasaw families. Findings from this investigation additionally highlight ways in which characteristics of strong Chickasaw families are both similar to and different from those of other AI tribes. Implications for science and practice are discussed.

  19. Micropipette Technique Study of Natural and Synthetic Lung Surfactants at the Air-Water Interface: Presence of a SP-B Analog Peptide Promotes Membrane Aggregation, Formation of Tightly Stacked Lamellae, and Growth of Myelin Figures.

    PubMed

    Parra, Elisa; Kinoshita, Koji; Needham, David

    2016-10-03

    The present study is a microscopic interfacial characterization of a series of lung surfactant materials performed with the micropipette technique. The advantages of this technique include the measurement of equilibrium and dynamic surface tensions while acquiring structural and dynamic information at microscopic air-water interfaces in real time and upon compression. Here, we characterized a series of animal-derived and synthetic lung surfactant formulations, including native surfactant obtained from porcine lungs (NS); the commercial Curosurf, Infasurf, and Survanta; and a synthetic Super Mini-B (SMB)-containing formulation. It was observed that the presence of the natural hydrophobic proteins and, more strikingly, the peptide SMB, promoted vesicle condensation as thick membrane stacks beneath the interface. Only in the presence of SMB, these stacks underwent spontaneous structural transformations, consisting of the nucleation and growth of microtubes and in some cases their subsequent coiling into helices. The dimensions of these tubes (2-15 μm diameter) and their linear (2-3 μm/s) and volumetric growth rates (20-30 μm(3)/s) were quantified, and no specific effects were found on them for increasing SMB concentrations from 0.1 to 4%. Nevertheless, a direct correlation between the number of tubes and SMB contents was found, suggesting that SMB molecules are the promoters of tube nucleation in these membranes. A detailed analysis of the tube formation process was performed following previous models for the growth of myelin figures, proposing a combined mechanism between dehydration-rehydration of the lipid bilayers and induction of mechanical defects by SMB that would act as nucleation sites for the tubes. The formation of tubes was also observed in Infasurf, and in NS only after subsequent expansion and compression but neither in the other clinical surfactants nor in protein-free preparations. Finally, the connection between this data and the observations from

  20. Galaxies with Strong Nitrogen Lines

    NASA Astrophysics Data System (ADS)

    Bergmann, T. S.; Pastoriza, M. G.

    1987-05-01

    ABSTRACT. From a qualitative spectroscopic survey of southern galaxies made by Pastoriza, a group with different morphological types whose nuclear region showed particular strong emission [N II]A6548-6584 lines when compared to Hn, was selected in order to investigate why [N II] is so strong. This work presents the results of a first analysis of the spectra of some of the galaxies above obtained with the 1-m telescope plus 2DFRUTTI detector of the Cerro Tololo Inter-American Observatory. The spectra are all very similar showing strong stellar continuum and absorption lines, and all the emission spectra show [0111] >[OII], [NIl] > H . None of the spectra show H in emission. Using the relative intensities of the H and K Call lines (Talent 1982, PLtb. A.S.P., 94,36), the obtained integrated spectra for all the observed galaxies is later than GO, which means that the H absorption lines should not be strong. From the relative intensities of the emission lines, we conclude that these galaxies cannot be classified as Starburst or LINERS. They are similar to Seyfert 2 (Osterbrock 1986, Act#va QSO4, preprint), but the FWHM of the lines is less than 300 km s . Also Ol X6300 is not clearly seen, and the absorption spectrum is strong relative to the emission spectrum. The preliminary conclusion is an activity similar but milder than that present in Seyfert 2 galaxies, as sug gested by Rose and Searle (1982, Ap. 5., 253, 556) and Rose and Cecil (1983, Ap. 5., 266, 531) for the nucleus of M51, maybe affected by an anomalous nitrogen abundance. K o : GALAXIES-ACTIVE - SPECTROSCOPY

  1. Quality control by <strong>HyperS>pectral <strong>I>maging (HSI) in solid waste recycling: logics, algorithms and procedures

    NASA Astrophysics Data System (ADS)

    Bonifazi, Giuseppe; Serranti, Silvia

    2014-03-01

    In secondary raw materials and recycling sectors, the products quality represents, more and more, the key issue to pursuit in order to be competitive in a more and more demanding market, where quality standards and products certification play a preheminent role. These goals assume particular importance when recycling actions are applied. Recovered products, resulting from waste materials, and/or dismissed products processing, are, in fact, always seen with a certain suspect. An adequate response of the industry to the market can only be given through the utilization of equipment and procedures ensuring pure, high-quality production, and efficient work and cost. All these goals can be reached adopting not only more efficient equipment and layouts, but also introducing new processing logics able to realize a full control of the handled material flow streams fulfilling, at the same time, i) an easy management of the procedures, ii) an efficient use of the energy, iii) the definition and set up of reliable and robust procedures, iv) the possibility to implement network connectivity capabilities finalized to a remote monitoring and control of the processes and v) a full data storage, analysis and retrieving. Furthermore the ongoing legislation and regulation require the implementation of recycling infrastructure characterised by high resources efficiency and low environmental impacts, both aspects being strongly linked to the waste materials and/or dismissed products original characteristics. For these reasons an optimal recycling infrastructure design primarily requires a full knowledge of the characteristics of the input waste. What previously outlined requires the introduction of a new important concept to apply in solid waste recycling, the recycling-oriented characterization, that is the set of actions addressed to strategically determine selected attributes, in order to get goaloriented data on waste for the development, implementation or improvement of recycling

  2. PREFACE: Strongly correlated electron systems Strongly correlated electron systems

    NASA Astrophysics Data System (ADS)

    Saxena, Siddharth S.; Littlewood, P. B.

    2012-07-01

    This special section is dedicated to the Strongly Correlated Electron Systems Conference (SCES) 2011, which was held from 29 August-3 September 2011, in Cambridge, UK. SCES'2011 is dedicated to 100 years of superconductivity and covers a range of topics in the area of strongly correlated systems. The correlated electronic and magnetic materials featured include f-electron based heavy fermion intermetallics and d-electron based transition metal compounds. The selected papers derived from invited presentations seek to deepen our understanding of the rich physical phenomena that arise from correlation effects. The focus is on quantum phase transitions, non-Fermi liquid phenomena, quantum magnetism, unconventional superconductivity and metal-insulator transitions. Both experimental and theoretical work is presented. Based on fundamental advances in the understanding of electronic materials, much of 20th century materials physics was driven by miniaturisation and integration in the electronics industry to the current generation of nanometre scale devices. The achievements of this industry have brought unprecedented advances to society and well-being, and no doubt there is much further to go—note that this progress is founded on investments and studies in the fundamentals of condensed matter physics from more than 50 years ago. Nevertheless, the defining challenges for the 21st century will lie in the discovery in science, and deployment through engineering, of technologies that can deliver the scale needed to have an impact on the sustainability agenda. Thus the big developments in nanotechnology may lie not in the pursuit of yet smaller transistors, but in the design of new structures that can revolutionise the performance of solar cells, batteries, fuel cells, light-weight structural materials, refrigeration, water purification, etc. The science presented in the papers of this special section also highlights the underlying interest in energy-dense materials, which

  3. A first-in-human clinical study of a new SP-B and SP-C enriched synthetic surfactant (CHF5633) in preterm babies with respiratory distress syndrome.

    PubMed

    Sweet, David G; Turner, Mark A; Straňák, Zbyněk; Plavka, Richard; Clarke, Paul; Stenson, Ben J; Singer, Dominique; Goelz, Rangmar; Fabbri, Laura; Varoli, Guido; Piccinno, Annalisa; Santoro, Debora; Speer, Christian P

    2017-05-02

    CHF5633 (Chiesi Farmaceutici S.p.A., Parma, Italy) is the first fully synthetic surfactant enriched by peptide analogues of two human surfactant proteins. We planned to assess safety and tolerability of CHF5633 and explore preliminary efficacy. Multicentre cohort study. Forty infants from 27(+0) to 33(+6) weeks gestation with respiratory distress syndrome requiring fraction of inspired oxygen (FiO2) ≥0.35 were treated with a single dose of CHF5633 within 48 hours after birth. The first 20 received 100 mg/kg and the second 20 received 200 mg/kg. Adverse events (AEs) and adverse drug reactions (ADRs) were monitored with complications of prematurity considered AEs if occurring after dosing. Systemic absorption and immunogenicity were assessed. Efficacy was assessed by change in FiO2 after dosing and need for poractant-alfa rescue. Rapid and sustained improvements in FiO2 were observed in 39 (98%) infants. One responded neither to CHF5633 nor two poractant-alfa doses. A total of 79 AEs were experienced by 19 infants in the 100 mg/kg cohort and 53 AEs by 20 infants in the 200 mg/kg cohort. Most AEs were expected complications of prematurity. Two unrelated serious AEs occurred in the second cohort. One infant died of necrotising enterocolitis and another developed viral bronchiolitis after discharge. The single ADR was an episode of transient endotracheal tube obstruction following a 200 mg/kg dose. Neither systemic absorption, nor antibody development to either peptide was detected. Both CHF5633 doses were well tolerated and showed promising clinical efficacy profile. These encouraging data provide a basis for ongoing randomised controlled trials. ClinicalTrials.gov NCT01651637. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  4. Dynamics of strongly dissipative systems

    NASA Astrophysics Data System (ADS)

    Fang, H. P.

    1994-06-01

    The attractors in two-dimensional (2D) phase space of the strongly dissipative Hénon map are reduced to those of an effectively 1D map. From the grammar for this effectively 1D map we can generate all of the unstable periodic orbits, which are exactly consistent with those from the 2D map obtained directly both with a Newton procedure and the techniques of Biham and Wenzel [Phys. Rev. Lett. 63, 819 (1989)]. This idea provides a method to give a very precise and not too cumbersome estimate of the characteristic quantities of strange attractors of strongly dissipative systems. It is also helpful to understand many observations on high-dimensional systems both experimentally and numerically.

  5. Strongly Coupled Quantum Heat Machines

    SciTech Connect

    Gelbwaser-Klimovsky, David; Aspuru-Guzik, Alán

    2015-09-03

    Energy conversion of heat into work at the quantum level is modeled by quantum heat machines (QHMs) generally assumed to operate at weak coupling to the baths. This supposition is grounded in the separability principle between systems and allows the derivation of the evolution equation. In the weak coupling regime, the machine’s output is limited by the coupling strength, restricting their application. Seeking to overcome this limitation, we analyze QHMs in the virtually unexplored strong coupling regime here, where separability, as well as other standard thermodynamic assumptions, may no longer hold. We show that strongly coupled QHMs may be as efficient as their weakly coupled counterparts. In addition, we find a novel turnover behavior where their output saturates and disappears in the limit of ultrastrong coupling.

  6. Kinetic mixing at strong coupling

    NASA Astrophysics Data System (ADS)

    Del Zotto, Michele; Heckman, Jonathan J.; Kumar, Piyush; Malekian, Arada; Wecht, Brian

    2017-01-01

    A common feature of many string-motivated particle physics models is additional strongly coupled U (1 )'s. In such sectors, electric and magnetic states have comparable mass, and integrating out modes also charged under U (1 ) hypercharge generically yields C P preserving electric kinetic mixing and C P violating magnetic kinetic mixing terms. Even though these extra sectors are strongly coupled, we show that in the limit where the extra sector has approximate N =2 supersymmetry, we can use formal methods from Seiberg-Witten theory to compute these couplings. We also calculate various quantities of phenomenological interest such as the cross section for scattering between visible sector states and heavy extra sector states as well as the effects of supersymmetry breaking induced from coupling to the minimal supersymmetric Standard Model.

  7. Tilts in strong ground motion

    USGS Publications Warehouse

    Graizer, V.

    2006-01-01

    Most instruments used in seismological practice to record ground motion are pendulum seismographs, velocigraphs, or accelerographs. In most cases it is assumed that seismic instruments are only sensitive to the translational motion of the instrument's base. In this study the full equation of pendulum motion, including the inputs of rotations and tilts, is considered. It is shown that tilting the accelerograph's base can severely impact its response to the ground motion. The method of tilt evaluation using uncorrected strong-motion accelerograms was first suggested by Graizer (1989), and later tested in several laboratory experiments with different strong-motion instruments. The method is based on the difference in the tilt sensitivity of the horizontal and vertical pendulums. The method was applied to many of the strongest records of the Mw 6.7 Northridge earthquake of 1994. Examples are shown when relatively large tilts of up to a few degrees occurred during strong earthquake ground motion. Residual tilt extracted from the strong-motion record at the Pacoima Dam-Upper Left Abutment reached 3.1?? in N45??E direction, and was a result of local earthquake-induced tilting due to high-amplitude shaking. This value is in agreement with the residual tilt measured by using electronic level a few days after the earthquake. The method was applied to the building records from the Northridge earthquake. According to the estimates, residual tilt reached 2.6?? on the ground floor of the 12-story Hotel in Ventura. Processing of most of the strongest records of the Northridge earthquake shows that tilts, if happened, were within the error of the method, or less than about 0.5??.

  8. Strongly interacting parton matter equilibration

    SciTech Connect

    Ozvenchuk, V.; Linnyk, O.; Bratkovskaya, E.; Gorenstein, M.; Cassing, W.

    2012-07-15

    We study the kinetic and chemical equilibration in 'infinite' parton matter within the Parton-Hadron-String Dynamics transport approach. The 'infinite' matter is simulated within a cubic box with periodic boundary conditions initialized at different energy densities. Particle abundances, kinetic energy distributions, and the detailed balance of the off-shell quarks and gluons in the strongly-interacting quarkgluon plasma are addressed and discussed.

  9. Strong sphalerons and electroweak baryogenesis

    NASA Astrophysics Data System (ADS)

    Giudice, G. F.; Shaposhnikov, M.

    1994-04-01

    We analyze the spontaneous baryogenesis and charge transform mechanisms suggested by Cohen, Kaplan and Nelson for baryon asymmetry generation in extended versions of electroweak theory. We find that accounting for non-perturbative chirality-breaking transitions due to strong sphalerons reduces the baryonic asymmetry by the factor (mt/πT)2 or αW, provided those processes are in thermal equilibrium. On leave of absence from the Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia.

  10. Flavour democracy in strong unification

    NASA Astrophysics Data System (ADS)

    Abel, S. A.; King, S. F.

    1998-09-01

    We show that the fermion mass spectrum may naturally be understood in terms of flavour democratic fixed points in supersymmetric theories which have a large domain of attraction in the presence of ``strong unification''. Our approach provides an alternative to the approximate Yukawa texture zeroes of the Froggatt-Nielsen mechanism. We discuss a particular model based on a broken gauged SU(3)LxSU(3)R family symmetry which illustrates our approach.

  11. Strong subadditivity and emergent surface

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Long, Jiang

    2014-09-01

    In this paper, we introduce two bounds which we call the upper differential entropy and the lower differential entropy for an infinite family of intervals (strips) in quantum field theory. The two bounds are equal provided that the theory is translational invariant and the entanglement entropy varies smoothly with respect to the interval. When the theory has a holographic dual, strong subadditivity of entanglement entropy indicates that there is always an emergent surface whose gravitational entropy is exactly given by the bound.

  12. Topics in strong Langmuir turbulence

    NASA Technical Reports Server (NTRS)

    Nicholson, D. R.

    1983-01-01

    Progress in two approaches to the study of strong Langmuir turbulence is reported. In two spatial dimensions, numerical solution of the Zakharov equations yields a steady state involving linear growth, linear damping, and a collection of coherent, long-lived entities which might loosely be called solitons. In one spatial dimension, a statistical theory is applied to the cubically nonlinear Schroedinger equation and is solved analytically in a special case.

  13. Topics in strong Langmuir turbulence

    NASA Technical Reports Server (NTRS)

    Nicholson, D. R.

    1982-01-01

    Progress in two approaches to the study of strong Langmuir turbulence is reported. In two spatial dimensions, numerical solution of the Zakharov equations yields a steady state involving linear growth, linear damping, and a collection of coherent, long-lived entities which might loosely be called solitons. In one spatial dimension, a statistical theory is applied to the cubically nonlinear Schroedinger equation and is solved analytically in a special case.

  14. Strongly magnetized classical plasma models

    NASA Technical Reports Server (NTRS)

    Montgomery, D.; Peyraud, J.; Dewitt, C.

    1974-01-01

    Discrete particle processes in the presence of a strong external magnetic field were investigated. These processes include equations of state and other equilibrium thermodynamic relations, thermal relaxation phenomena, transport properties, and microscopic statistical fluctuations in such quantities as the electric field and the charge density. Results from the equilibrium statistical mechanics of two-dimensional plasmas are discussed, along with nonequilibrium statistical mechanics of the electrostatic guiding-center plasma (a two-dimensional plasma model).

  15. Strong interactive massive particles from a strong coupled theory

    SciTech Connect

    Khlopov, Maxim Yu.; Kouvaris, Chris

    2008-03-15

    Minimal walking technicolor models can provide a nontrivial solution for cosmological dark matter, if the lightest technibaryon is doubly charged. Technibaryon asymmetry generated in the early Universe is related to baryon asymmetry, and it is possible to create an excess of techniparticles with charge (-2). These excessive techniparticles are all captured by {sup 4}He, creating techni-O-helium tOHe atoms, as soon as {sup 4}He is formed in big bang nucleosynthesis. The interaction of techni-O-helium with nuclei opens new paths to the creation of heavy nuclei in big bang nucleosynthesis. Because of the large mass of technibaryons, the tOHe ''atomic'' gas decouples from the baryonic matter and plays the role of dark matter in large scale structure formation, while structures in small scales are suppressed. Nuclear interactions with matter slow down cosmic techni-O-helium in the Earth below the threshold of underground dark matter detectors, thus escaping severe cryogenic dark matter search constraints. On the other hand, these nuclear interactions are not sufficiently strong to exclude this form of strongly interactive massive particles by constraints from the XQC experiment. Experimental tests of this hypothesis are possible in the search for tOHe in balloon-borne experiments (or on the ground) and for its charged techniparticle constituents in cosmic rays and accelerators. The tOHe atoms can cause cold nuclear transformations in matter and might form anomalous isotopes, offering possible ways to exclude (or prove?) their existence.

  16. Strongly interacting phases of metallic wires in strong magnetic field

    NASA Astrophysics Data System (ADS)

    Bulmash, Daniel; Jian, Chao-Ming; Qi, Xiao-Liang

    2017-07-01

    We investigate theoretically an interacting metallic wire with a strong magnetic field directed along its length and show that it is a highly tunable one-dimensional system. By considering a suitable change in spatial geometry, we build an analogy between the problem in the zeroth Landau level with Landau level degeneracy N to one-dimensional fermions with an N -component pseudospin degree of freedom and S U (2 ) -symmetric interactions. This analogy allows us to establish the phase diagram as a function of the interactions for small N (and make conjectures for large N ) using renormalization group and bosonization techniques. We find pseudospin-charge separation with a gapless U (1 ) charge sector and several possible strong-coupling phases in the pseudospin sector. For odd N , we find a fluctuating pseudospin-singlet charge density wave phase and a fluctuating pseudospin-singlet superconducting phase which are topologically distinct. For even N >2 , similar phases exist, although they are not topologically distinct, and an additional novel pseudospin-gapless phase appears. We discuss experimental conditions for observing our proposals.

  17. Disordered strongly correlated electronic systems

    NASA Astrophysics Data System (ADS)

    Javan Mard, Hossein

    Disorder can have a vast variety of consequences for the physics of phase transitions. Some transitions remain unchanged in the presence of disorder while others are completely destroyed. In this dissertation we study the effects of quenched disorder on electronic systmens at zero temperature. First, we perform variational studies of the interaction-localization problem to describe the interaction-induced renormalizations of the effective (screened) random potential seen by quasiparticles. Here we present results of careful finite-size scaling studies for the conductance of disordered Hubbard chains at half-filling and zero temperature. While our results indicate that quasiparticle wave functions remain exponentially localized even in the presence of moderate to strong repulsive interactions, we show that interactions produce a strong decrease of the characteristic conductance scale g* signaling the crossover to strong localization. This effect, which cannot be captured by a simple renormalization of the disorder strength, instead reflects a peculiar non-Gaussian form of the spatial correlations of the screened disordered potential, a hitherto neglected mechanism to dramatically reduce the impact of Anderson localization (interference) effects. Second, we formulate a strong-disorder renormalization-group (SDRG) approach to study the beta function of the tight-binding model in one dimension with both diagonal and off-diagonal disorder for states at the band center. We show that the SDRG method, when used to compute transport properties, yields exact results since it is identical to the transfer matrix method. The beta function is shown to be universal when only off-diagonal disorder is present even though single-parameter scaling is known to be violated. A different single-parameter scaling theory is formulated for this particular (particle-hole symmetric) case. Upon breaking particle-hole symmetry (by adding diagonal disorder), the beta function is shown to

  18. PREFACE: Strongly Coupled Coulomb Systems

    NASA Astrophysics Data System (ADS)

    Fortov, Vladimir E.; Golden, Kenneth I.; Norman, Genri E.

    2006-04-01

    This special issue contains papers presented at the International Conference on Strongly Coupled Coulomb Systems (SCCS) which was held during the week of 20 24 June 2005 in Moscow, Russia. The Moscow conference was the tenth in a series of conferences. The previous conferences were organized as follows. 1977: Orleans-la-Source, France, as a NATO Advanced Study Institute on Strongly Coupled Plasmas (organized by Marc Feix and Gabor J Kalman) 1982: Les Houches, France (organized by Marc Baus and Jean-Pierre Hansen) 1986: Santa Cruz, California, USA (hosted by Forrest J Rogers and Hugh E DeWitt) 1989: Tokyo, Japan (hosted by Setsuo Ichimaru) 1992: Rochester, NY, USA (hosted by Hugh M Van Horn and Setsuo Ichimaru) 1995: Binz, Germany (hosted by Wolf Dietrich Kraeft and Manfred Schlanges) 1997: Boston, Massachusetts, USA (hosted by Gabor J Kalman) 1999: St Malo, France (hosted by Claude Deutsch and Bernard Jancovici) 2002: Santa Fe, New Mexico, USA (hosted by John F Benage and Michael S Murillo) After 1995 the name of the series was changed from `Strongly Coupled Plasmas' to the present name in order to extend the topics of the conferences. The planned frequency for the future is once every three years. The purpose of these conferences is to provide an international forum for the presentation and discussion of research accomplishments and ideas relating to a variety of plasma liquid and condensed matter systems, dominated by strong Coulomb interactions between their constituents. Strongly coupled Coulomb systems encompass diverse many-body systems and physical conditions. Each meeting has seen an evolution of topics and emphasis as new discoveries and new methods appear. This year, sessions were organized for invited presentations and posters on dense plasmas and warm matter, astrophysics and dense hydrogen, non-neutral and ultracold plasmas, dusty plasmas, condensed matter 2D and layered charged-particle systems, Coulomb liquids, and statistical theory of SCCS. Within

  19. Strong turbulence of plasma waves

    NASA Technical Reports Server (NTRS)

    Goldman, M. V.

    1984-01-01

    This paper reviews recent work related to modulational instability and wave envelope self-focusing in dynamical and statistical systems. After introductory remarks pertinent to nonlinear optics realizations of these effects, the author summarizes the status of the subject in plasma physics, where it has come to be called 'strong Langmuir turbulence'. The paper treats the historical development of pertinent concepts, analytical theory, numerical simulations, laboratory experiments, and spacecraft observations. The role of self-similar self-focusing Langmuir envelope wave packets is emphasized, both in the Zakharov equation model for the wave dynamics and in a statistical theory based on this dynamical model.

  20. Strong Plate, Weak Slab Dichotomy

    NASA Astrophysics Data System (ADS)

    Petersen, R. I.; Stegman, D. R.; Tackley, P.

    2015-12-01

    Models of mantle convection on Earth produce styles of convection that are not observed on Earth.Moreover non-Earth-like modes, such as two-sided downwellings, are the de facto mode of convection in such models.To recreate Earth style subduction, i.e. one-sided asymmetric recycling of the lithosphere, proper treatment of the plates and plate interface are required. Previous work has identified several model features that promote subduction. A free surface or pseudo-free surface and a layer of material with a relatively low strength material (weak crust) allow downgoing plates to bend and slide past overriding without creating undue stress at the plate interface. (Crameri, et al. 2012, GRL)A low viscosity mantle wedge, possibly a result of slab dehydration, decouples the plates in the system. (Gerya et al. 2007, Geo)Plates must be composed of material which, in the case of the overriding plate, are is strong enough to resist bending stresses imposed by the subducting plate and yet, as in the case of the subducting plate, be weak enough to bend and subduct when pulled by the already subducted slab. (Petersen et al. 2015, PEPI) Though strong surface plates are required for subduction such plates may present a problem when they encounter the lower mantle.As the subducting slab approaches the higher viscosity, lower mantle stresses are imposed on the tip.Strong slabs transmit this stress to the surface.There the stress field at the plate interface is modified and potentially modifies the style of convection. In addition to modifying the stress at the plate interface, the strength of the slab affects the morphology of the slab at the base of the upper mantle. (Stegman, et al 2010, Tectonophysics)Slabs that maintain a sufficient portion of their strength after being bent require high stresses to unbend or otherwise change their shape.On the other hand slabs that are weakened though the bending process are more amenable to changes in morphology. We present the results of

  1. Dynamics of strongly correlated and strongly inhomogeneous plasmas.

    PubMed

    Kählert, Hanno; Kalman, Gabor J; Bonitz, Michael

    2014-07-01

    Kinetic and fluid equations are derived for the dynamics of classical inhomogeneous trapped plasmas in the strong coupling regime. The starting point is an extended Singwi-Tosi-Land-Sjölander (STLS) ansatz for the dynamic correlation function, which is allowed to depend on time and both particle coordinates separately. The time evolution of the correlation function is determined from the second equation of the Bogolyubov-Born-Green-Kirkwood-Yvon hierarchy. We study the equations in the linear limit and derive a nonlocal equation for the fluid displacement field. Comparisons to first-principles molecular dynamics simulations reveal an excellent quality of our approach thereby overcoming the limitations of the broadly used STLS scheme.

  2. Strong-Coupling Superconductivity. I

    NASA Astrophysics Data System (ADS)

    Scalapino, D. J.; Schrieffer, J. R.; Wilkins, J. W.

    The pairing theory of superconductivity is extended to treat systems having strong electron-phonon coupling. In this regime the Landau quasiparticle approximation is invalid. In the theory we treat phonon and Coulomb interactions on the same basis and carry out the analysis using the nonzero-temperature Green's functions of the Nambu formalism. The generalized energy-gap equation thus obtained is solved (at T = 0°K) for a model which closely represents lead and the complex energy-gap parameter Δ(ω)) is plotted as a function of energy for several choices of phonon and Coulomb interaction strengths. An expression for the single-particle tunneling density of states is derived, which, when combined with Δ(ω), gives excellent agreement with experiment, if the phonon interaction strength is chosen to give the observed energy gap Δ0 at zero temperature. The tunneling experiments therefore give a detailed justification of the phonon mechanism of superconductivity and of the validity of the strong-coupling theory. In addition, by combining theory and the tunneling experiments, much can be learned about the electron-phon interaction and the phonon density of states. The theory is accurate to terms of order the square root of the electron-ion mass ratio, 10-2-10-3.

  3. Strong dynamics at the LHC

    NASA Astrophysics Data System (ADS)

    Ittisamai, Pawin

    The limitations of the Standard Model of particle physics, despite its being a well-established theory, have prompted various proposals for new physics capable of addressing its shortcomings. The particular issue to be explored here is the mechanism of electroweak symmetry breaking, the probing of which lies within the TeV-scale physics accessible to the Large Hadron Collider (LHC). This thesis focuses on the phenomenology of a class of models featuring a dynamical breaking of the electroweak symmetry via strong dynamics. Consequences of recent experiments and aspects of near-future experiments are presented. We study the implications of the LHC Higgs searches available at the time the related journal article was written for technicolor models that feature colored technifermions. Then we discuss the properties of a technicolor model featuring strong-top dynamics that is viable for explaining the recently discovered boson of mass 126 GeV. We introduce a novel method of characterizing the color structure of a new massive vector boson, often predicted in various new physics models, using information that will be promptly available if it is discovered in the near-future experiments at the LHC. We generalize the idea for more realistic models where a vector boson has flavor non-universal couplings to quarks. Finally, we discuss the possibilities of probing the chiral structure of a new color-octet vector boson.

  4. Numerical micromagnetism of strong inhomogeneities

    NASA Astrophysics Data System (ADS)

    Andreas, Christian; Gliga, Sebastian; Hertel, Riccardo

    2014-08-01

    The size of micromagnetic structures, such as domain walls or vortices, is comparable to the exchange length of the ferromagnet. Both, the exchange length of the stray field ls and the magnetocrystalline exchange length lk, are material-dependent quantities that usually lie in the nanometer range. This emphasizes the theoretical challenges associated with the mesoscopic nature of micromagnetism: the magnetic structures are much larger than the atomic lattice constant, but at the same time much smaller than the sample size. In computer simulations, the smallest exchange length serves as an estimate for the largest cell size admissible to prevent appreciable discretization errors. This general rule is not valid in special situations where the magnetization becomes particularly inhomogeneous. When such strongly inhomogeneous structures develop, micromagnetic simulations inevitably contain systematic and numerical errors. It is suggested to combine micromagnetic theory with a Heisenberg model to resolve such problems. We analyze cases where strongly inhomogeneous structures pose limits to standard micromagnetic simulations, arising from fundamental aspects as well as from numerical drawbacks.

  5. EDITORIAL: Strongly correlated electron systems Strongly correlated electron systems

    NASA Astrophysics Data System (ADS)

    Ronning, Filip; Batista, Cristian

    2011-03-01

    Strongly correlated electrons is an exciting and diverse field in condensed matter physics. This special issue aims to capture some of that excitement and recent developments in the field. Given that this issue was inspired by the 2010 International Conference on Strongly Correlated Electron Systems (SCES 2010), we briefly give some history in order to place this issue in context. The 2010 International Conference on Strongly Correlated Electron Systems was held in Santa Fe, New Mexico, a reunion of sorts from the 1989 International Conference on the Physics of Highly Correlated Electron Systems that also convened in Santa Fe. SCES 2010—co-chaired by John Sarrao and Joe Thompson—followed the tradition of earlier conferences, in this century, hosted by Buzios (2008), Houston (2007), Vienna (2005), Karlsruhe (2004), Krakow (2002) and Ann Arbor (2001). Every three years since 1997, SCES has joined the International Conference on Magnetism (ICM), held in Recife (2000), Rome (2003), Kyoto (2006) and Karlsruhe (2009). Like its predecessors, SCES 2010 topics included strongly correlated f- and d-electron systems, heavy-fermion behaviors, quantum-phase transitions, non-Fermi liquid phenomena, unconventional superconductivity, and emergent states that arise from electronic correlations. Recent developments from studies of quantum magnetism and cold atoms complemented the traditional subjects and were included in SCES 2010. 2010 celebrated the 400th anniversary of Santa Fe as well as the birth of astronomy. So what's the connection to SCES? The Dutch invention of the first practical telescope and its use by Galileo in 1610 and subsequent years overturned dogma that the sun revolved about the earth. This revolutionary, and at the time heretical, conclusion required innovative combinations of new instrumentation, observation and mathematics. These same combinations are just as important 400 years later and are the foundation of scientific discoveries that were discussed

  6. Electrophoresis in strong electric fields.

    PubMed

    Barany, Sandor

    2009-01-01

    Two kinds of non-linear electrophoresis (ef) that can be detected in strong electric fields (several hundred V/cm) are considered. The first ("classical" non-linear ef) is due to the interaction of the outer field with field-induced ionic charges in the electric double layer (EDL) under conditions, when field-induced variations of electrolyte concentration remain to be small comparatively to its equilibrium value. According to the Shilov theory, the non-linear component of the electrophoretic velocity for dielectric particles is proportional to the cubic power of the applied field strength (cubic electrophoresis) and to the second power of the particles radius; it is independent of the zeta-potential but is determined by the surface conductivity of particles. The second one, the so-called "superfast electrophoresis" is connected with the interaction of a strong outer field with a secondary diffuse layer of counterions (space charge) that is induced outside the primary (classical) diffuse EDL by the external field itself because of concentration polarization. The Dukhin-Mishchuk theory of "superfast electrophoresis" predicts quadratic dependence of the electrophoretic velocity of unipolar (ionically or electronically) conducting particles on the external field gradient and linear dependence on the particle's size in strong electric fields. These are in sharp contrast to the laws of classical electrophoresis (no dependence of V(ef) on the particle's size and linear dependence on the electric field gradient). A new method to measure the ef velocity of particles in strong electric fields is developed that is based on separation of the effects of sedimentation and electrophoresis using videoimaging and a new flowcell and use of short electric pulses. To test the "classical" non-linear electrophoresis, we have measured the ef velocity of non-conducting polystyrene, aluminium-oxide and (semiconductor) graphite particles as well as Saccharomice cerevisiae yeast cells as a

  7. Eikonal Scattering at Strong Coupling

    NASA Astrophysics Data System (ADS)

    Irizarry-Gelpi, Melvin Eloy

    The scattering of subatomic particles is a source of important physical phenomena. Decades of work have yielded many techniques for the computation of scattering amplitudes. Most of these techniques involve perturbative quantum field theory and thus apply only at weak coupling. Complementary to scattering is the formation of bound states, which are intrinsically nonperturbative. Regge theory arose in the late 1950s as an attempt to describe, with a single framework, both scattering and the formation of bound states. In Regge theory one obtains an amplitude with bound state poles after analytic continuation of a nonperturbative scattering amplitude, corresponding to a sum of an infinite number of Feynman diagrams at large energy and fixed momentum transfer (but with crossed kinematics). Thus, in order to obtain bound states at fixed energy, one computes an amplitude at large momentum transfer. In this dissertation we calculate amplitudes with bound states in the regime of fixed energy and small momentum transfer. We formulate the elastic scattering problem in terms of many-body path integrals, familiar from quantum mechanics. Then we invoke the semiclassical JWKB approximation, where the path integral is dominated by classical paths. The dynamics in the semiclassical regime are strongly coupled, as found by Halpern and Siegel. When the momentum transfer is small, the classical paths are simple straight lines and the resulting semiclassical amplitudes display a spectrum of bound states that agrees with the spectrum found by solving wave equations with potentials. In this work we study the bound states of matter particles with various types of interactions, including electromagnetic and gravitational interactions. Our work has many analogies with the work started by Alday and Maldacena, who computed scattering amplitudes of gluons at strong coupling with semiclassical quantum mechanics of strings in anti de-Sitter spacetime. We hope that in the future we can apply our

  8. A metafluid exhibiting strong optical magnetism.

    PubMed

    Sheikholeslami, Sassan N; Alaeian, Hadiseh; Koh, Ai Leen; Dionne, Jennifer A

    2013-09-11

    Advances in the field of metamaterials have enabled unprecedented control of light-matter interactions. Metamaterial constituents support high-frequency electric and magnetic dipoles, which can be used as building blocks for new materials capable of negative refraction, electromagnetic cloaking, strong visible-frequency circular dichroism, and enhancing magnetic or chiral transitions in ions and molecules. While all metamaterials to date have existed in the solid-state, considerable interest has emerged in designing a colloidal metamaterial or "metafluid". Such metafluids would combine the advantages of solution-based processing with facile integration into conventional optical components. Here we demonstrate the colloidal synthesis of an isotropic metafluid that exhibits a strong magnetic response at visible frequencies. Protein-antibody interactions are used to direct the solution-phase self-assembly of discrete metamolecules comprised of silver nanoparticles tightly packed around a single dielectric core. The electric and magnetic response of individual metamolecules and the bulk metamaterial solution are directly probed with optical scattering and spectroscopy. Effective medium calculations indicate that the bulk metamaterial exhibits a negative effective permeability and a negative refractive index at modest fill factors. This metafluid can be synthesized in large-quantity and high-quality and may accelerate development of advanced nanophotonic and metamaterial devices.

  9. An engineered strong promoter for streptomycetes.

    PubMed

    Wang, Weishan; Li, Xiao; Wang, Juan; Xiang, Sihai; Feng, Xiaozhou; Yang, Keqian

    2013-07-01

    Well-characterized promoters are essential tools for metabolic engineering and synthetic biology. In Streptomyces coelicolor, the native kasOp is a temporally expressed promoter strictly controlled by two regulators, ScbR and ScbR2. In this work, first, kasOp was engineered to remove a common binding site of ScbR and ScbR2 upstream of its core region, thus generating a stronger promoter, kasOp3. Second, another ScbR binding site internal to the kasOp3 core promoter region was abolished by random mutation and screening of the mutant library to obtain the strongest promoter, kasOp* (where the asterisk is used to distinguish the engineered promoter from the native promoter). The activities of kasOp* were compared with those of two known strong promoters, ermEp* and SF14p, in three Streptomyces species. kasOp* showed the highest activity at the transcription and protein levels in all three hosts. Furthermore, relative to ermEp* and SF14p, kasOp* was shown to confer the highest actinorhodin production level when used to drive the expression of actII-ORF4 in S. coelicolor. Therefore, kasOp* is a simple and well-defined strong promoter useful for gene overexpression in streptomycetes.

  10. An Engineered Strong Promoter for Streptomycetes

    PubMed Central

    Wang, Weishan; Li, Xiao; Wang, Juan; Xiang, Sihai; Feng, Xiaozhou

    2013-01-01

    Well-characterized promoters are essential tools for metabolic engineering and synthetic biology. In Streptomyces coelicolor, the native kasOp is a temporally expressed promoter strictly controlled by two regulators, ScbR and ScbR2. In this work, first, kasOp was engineered to remove a common binding site of ScbR and ScbR2 upstream of its core region, thus generating a stronger promoter, kasOp3. Second, another ScbR binding site internal to the kasOp3 core promoter region was abolished by random mutation and screening of the mutant library to obtain the strongest promoter, kasOp* (where the asterisk is used to distinguish the engineered promoter from the native promoter). The activities of kasOp* were compared with those of two known strong promoters, ermEp* and SF14p, in three Streptomyces species. kasOp* showed the highest activity at the transcription and protein levels in all three hosts. Furthermore, relative to ermEp* and SF14p, kasOp* was shown to confer the highest actinorhodin production level when used to drive the expression of actII-ORF4 in S. coelicolor. Therefore, kasOp* is a simple and well-defined strong promoter useful for gene overexpression in streptomycetes. PMID:23686264

  11. Strong Winds over the Keel

    NASA Astrophysics Data System (ADS)

    2009-02-01

    The latest ESO image reveals amazing detail in the intricate structures of one of the largest and brightest nebulae in the sky, the Carina Nebula (NGC 3372), where strong winds and powerful radiation from an armada of massive stars are creating havoc in the large cloud of dust and gas from which the stars were born. ESO PR Photo 05a/09 The Carina Nebula ESO PR Video 05a/09 Pan over the Carina Nebula ESO PR Video 05b/09 Carina Nebula Zoom-in The large and beautiful image displays the full variety of this impressive skyscape, spattered with clusters of young stars, large nebulae of dust and gas, dust pillars, globules, and adorned by one of the Universe's most impressive binary stars. It was produced by combining exposures through six different filters from the Wide Field Imager (WFI), attached to the 2.2 m ESO/MPG telescope at ESO's La Silla Observatory, in Chile. The Carina Nebula is located about 7500 light-years away in the constellation of the same name (Carina; the Keel). Spanning about 100 light-years, it is four times larger than the famous Orion Nebula and far brighter. It is an intensive star-forming region with dark lanes of cool dust splitting up the glowing nebula gas that surrounds its many clusters of stars. The glow of the Carina Nebula comes mainly from hot hydrogen basking in the strong radiation of monster baby stars. The interaction between the hydrogen and the ultraviolet light results in its characteristic red and purple colour. The immense nebula contains over a dozen stars with at least 50 to 100 times the mass of our Sun. Such stars have a very short lifespan, a few million years at most, the blink of an eye compared with the Sun's expected lifetime of ten billion years. One of the Universe's most impressive stars, Eta Carinae, is found in the nebula. It is one of the most massive stars in our Milky Way, over 100 times the mass of the Sun and about four million times brighter, making it the most luminous star known. Eta Carinae is highly

  12. Strongly correlated perovskite fuel cells.

    PubMed

    Zhou, You; Guan, Xiaofei; Zhou, Hua; Ramadoss, Koushik; Adam, Suhare; Liu, Huajun; Lee, Sungsik; Shi, Jian; Tsuchiya, Masaru; Fong, Dillon D; Ramanathan, Shriram

    2016-06-09

    Fuel cells convert chemical energy directly into electrical energy with high efficiencies and environmental benefits, as compared with traditional heat engines. Yttria-stabilized zirconia is perhaps the material with the most potential as an electrolyte in solid oxide fuel cells (SOFCs), owing to its stability and near-unity ionic transference number. Although there exist materials with superior ionic conductivity, they are often limited by their ability to suppress electronic leakage when exposed to the reducing environment at the fuel interface. Such electronic leakage reduces fuel cell power output and the associated chemo-mechanical stresses can also lead to catastrophic fracture of electrolyte membranes. Here we depart from traditional electrolyte design that relies on cation substitution to sustain ionic conduction. Instead, we use a perovskite nickelate as an electrolyte with high initial ionic and electronic conductivity. Since many such oxides are also correlated electron systems, we can suppress the electronic conduction through a filling-controlled Mott transition induced by spontaneous hydrogen incorporation. Using such a nickelate as the electrolyte in free-standing membrane geometry, we demonstrate a low-temperature micro-fabricated SOFC with high performance. The ionic conductivity of the nickelate perovskite is comparable to the best-performing solid electrolytes in the same temperature range, with a very low activation energy. The results present a design strategy for high-performance materials exhibiting emergent properties arising from strong electron correlations.

  13. Strongly correlated perovskite fuel cells

    NASA Astrophysics Data System (ADS)

    Zhou, You; Guan, Xiaofei; Zhou, Hua; Ramadoss, Koushik; Adam, Suhare; Liu, Huajun; Lee, Sungsik; Shi, Jian; Tsuchiya, Masaru; Fong, Dillon D.; Ramanathan, Shriram

    2016-06-01

    Fuel cells convert chemical energy directly into electrical energy with high efficiencies and environmental benefits, as compared with traditional heat engines. Yttria-stabilized zirconia is perhaps the material with the most potential as an electrolyte in solid oxide fuel cells (SOFCs), owing to its stability and near-unity ionic transference number. Although there exist materials with superior ionic conductivity, they are often limited by their ability to suppress electronic leakage when exposed to the reducing environment at the fuel interface. Such electronic leakage reduces fuel cell power output and the associated chemo-mechanical stresses can also lead to catastrophic fracture of electrolyte membranes. Here we depart from traditional electrolyte design that relies on cation substitution to sustain ionic conduction. Instead, we use a perovskite nickelate as an electrolyte with high initial ionic and electronic conductivity. Since many such oxides are also correlated electron systems, we can suppress the electronic conduction through a filling-controlled Mott transition induced by spontaneous hydrogen incorporation. Using such a nickelate as the electrolyte in free-standing membrane geometry, we demonstrate a low-temperature micro-fabricated SOFC with high performance. The ionic conductivity of the nickelate perovskite is comparable to the best-performing solid electrolytes in the same temperature range, with a very low activation energy. The results present a design strategy for high-performance materials exhibiting emergent properties arising from strong electron correlations.

  14. Strongly correlated perovskite fuel cells

    SciTech Connect

    Zhou, You; Guan, Xiaofei; Zhou, Hua; Ramadoss, Koushik; Adam, Suhare; Liu, Huajun; Lee, Sungsik; Shi, Jian; Tsuchiya, Masaru; Fong, Dillon D.; Ramanathan, Shriram

    2016-05-16

    Fuel cells convert chemical energy directly into electrical energy with high efficiencies and environmental benefits, as compared with traditional heat engines1, 2, 3, 4. Yttria-stabilized zirconia is perhaps the material with the most potential as an electrolyte in solid oxide fuel cells (SOFCs), owing to its stability and near-unity ionic transference number5. Although there exist materials with superior ionic conductivity, they are often limited by their ability to suppress electronic leakage when exposed to the reducing environment at the fuel interface. Such electronic leakage reduces fuel cell power output and the associated chemo-mechanical stresses can also lead to catastrophic fracture of electrolyte membranes6. Here we depart from traditional electrolyte design that relies on cation substitution to sustain ionic conduction. Instead, we use a perovskite nickelate as an electrolyte with high initial ionic and electronic conductivity. Since many such oxides are also correlated electron systems, we can suppress the electronic conduction through a filling-controlled Mott transition induced by spontaneous hydrogen incorporation. Using such a nickelate as the electrolyte in free-standing membrane geometry, we demonstrate a low-temperature micro-fabricated SOFC with high performance. The ionic conductivity of the nickelate perovskite is comparable to the best-performing solid electrolytes in the same temperature range, with a very low activation energy. The results present a design strategy for high-performance materials exhibiting emergent properties arising from strong electron correlations.

  15. THE PENETRATION OF STRONG ELECTROLYTES

    PubMed Central

    Cooper, W. C.; Dorcas, M. J.; Osterhout, W. J. V.

    1929-01-01

    The entrance of strong electrolytes into Valonia is very slow unless the cells are injured. This, together with the very high electrical resistance of the protoplasm, suggests that they may penetrate largely as undissociated molecules formed at the surface of the protoplasm by the collision of ions. Under favorable circumstances KCl may be absorbed to the extent of 3 x 10–8 mols per hour per sq. cm. of surface together with about 0.17 as much NaCl. Other substances which seem to penetrate to some extent are Li, Rb, Br, BrO3, I, IO3, and selenite. Little or no penetration is shown by SCN, ferricyanide, ferrocyanide, formate, salicylate, tungstate, seleniate, NO2, SO3, Sb, glycerophosphate, and many heavy metals and the alkaline earths. In sea water whose specific gravity had been increased by CsCl cells of Valonia floated for over a year and there was little or no penetration of Cs except as the result of injury. The penetration of NH4Cl decreases the specific gravity of the sap and causes the cells to float: under these circumstances they live indefinitely. It is probable that NH3 or NH4OH penetrates and is subsequently changed to NH4Cl. It would seem that if the sea contained a little more ammonia this would be a floating organism. PMID:19872471

  16. Strongly correlated perovskite fuel cells

    DOE PAGES

    Zhou, You; Guan, Xiaofei; Zhou, Hua; ...

    2016-05-16

    Fuel cells convert chemical energy directly into electrical energy with high efficiencies and environmental benefits, as compared with traditional heat engines. Yttria-stabilized zirconia is perhaps the material with the most potential as an electrolyte in solid oxide fuel cells (SOFCs), owing to its stability and near-unity ionic transference number. Although there exist materials with superior ionic conductivity, they are often limited by their ability to suppress electronic leakage when exposed to the reducing environment at the fuel interface. Such electronic leakage reduces fuel cell power output and the associated chemo-mechanical stresses can also lead to catastrophic fracture of electrolyte membranes.more » Here we depart from traditional electrolyte design that relies on cation substitution to sustain ionic conduction. Instead, we use a perovskite nickelate as an electrolyte with high initial ionic and electronic conductivity. Since many such oxides are also correlated electron systems, we can suppress the electronic conduction through a filling-controlled Mott transition induced by spontaneous hydrogen incorporation. Using such a nickelate as the electrolyte in free-standing membrane geometry, we demonstrate a low-temperature micro-fabricated SOFC with high performance. The ionic conductivity of the nickelate perovskite is comparable to the best-performing solid electrolytes in the same temperature range, with a very low activation energy. The results present a design strategy for high-performance materials exhibiting emergent properties arising from strong electron correlations.« less

  17. Strongly correlated perovskite fuel cells

    SciTech Connect

    Zhou, You; Guan, Xiaofei; Zhou, Hua; Ramadoss, Koushik; Adam, Suhare; Liu, Huajun; Lee, Sungsik; Shi, Jian; Tsuchiya, Masaru; Fong, Dillon D.; Ramanathan, Shriram

    2016-05-16

    Fuel cells convert chemical energy directly into electrical energy with high efficiencies and environmental benefits, as compared with traditional heat engines. Yttria-stabilized zirconia is perhaps the material with the most potential as an electrolyte in solid oxide fuel cells (SOFCs), owing to its stability and near-unity ionic transference number. Although there exist materials with superior ionic conductivity, they are often limited by their ability to suppress electronic leakage when exposed to the reducing environment at the fuel interface. Such electronic leakage reduces fuel cell power output and the associated chemo-mechanical stresses can also lead to catastrophic fracture of electrolyte membranes. Here we depart from traditional electrolyte design that relies on cation substitution to sustain ionic conduction. Instead, we use a perovskite nickelate as an electrolyte with high initial ionic and electronic conductivity. Since many such oxides are also correlated electron systems, we can suppress the electronic conduction through a filling-controlled Mott transition induced by spontaneous hydrogen incorporation. Using such a nickelate as the electrolyte in free-standing membrane geometry, we demonstrate a low-temperature micro-fabricated SOFC with high performance. The ionic conductivity of the nickelate perovskite is comparable to the best-performing solid electrolytes in the same temperature range, with a very low activation energy. The results present a design strategy for high-performance materials exhibiting emergent properties arising from strong electron correlations.

  18. Serum Levels of Surfactant Proteins in Patients with Combined Pulmonary Fibrosis and Emphysema (CPFE).

    PubMed

    Papaioannou, Andriana I; Kostikas, Konstantinos; Manali, Effrosyni D; Papadaki, Georgia; Roussou, Aneza; Spathis, Aris; Mazioti, Argyro; Tomos, Ioannis; Papanikolaou, Ilias; Loukides, Stelios; Chainis, Kyriakos; Karakitsos, Petros; Griese, Matthias; Papiris, Spyros

    2016-01-01

    Emphysema and idiopathic pulmonary fibrosis (IPF) present either per se or coexist in combined pulmonary fibrosis and emphysema (CPFE). Serum surfactant proteins (SPs) A, B, C and D levels may reflect lung damage. We evaluated serum SP levels in healthy controls, emphysema, IPF, and CPFE patients and their associations to disease severity and survival. 122 consecutive patients (31 emphysema, 62 IPF, and 29 CPFE) and 25 healthy controls underwent PFTs, ABG-measurements, 6MWT and chest HRCT. Serum levels of SPs were measured. Patients were followed-up for 1-year. SP-A and SP-D levels differed between groups (p = 0.006 and p<0.001 respectively). In post-hoc analysis, SP-A levels differed only between controls and CPFE (p<0.05) and CPFE and emphysema (p<0.05). SP-D differed between controls and IPF or CPFE (p<0.001 for both comparisons). In IPF SP-B correlated to pulmonary function while SP-A, correlated to the Composite Physiological Index (CPI). Controls current smokers had higher SP-A and SP-D levels compared to non-smokers (p = 0.026 and p = 0.023 respectively). SP-D levels were higher in CPFE patients with extended emphysema (p = 0.042). In patients with IPF, SP-B levels at the upper quartile of its range (≥26 ng/mL) presented a weak association with reduced survival (p = 0.05). In conclusion, serum SP-A and SP-D levels were higher where fibrosis exists or coexists and related to disease severity, suggesting that serum SPs relate to alveolar damage in fibrotic lungs and may reflect either local overproduction or overleakage. The weak association between high levels of SP-B and survival needs further validation in clinical trials.

  19. Promoting Strong Written Communication Skills

    NASA Astrophysics Data System (ADS)

    Narayanan, M.

    2015-12-01

    The reason that an improvement in the quality of technical writing is still needed in the classroom is due to the fact that universities are facing challenging problems not only on the technological front but also on the socio-economic front. The universities are actively responding to the changes that are taking place in the global consumer marketplace. Obviously, there are numerous benefits of promoting strong written communication skills. They can be summarized into the following six categories. First, and perhaps the most important: The University achieves learner satisfaction. The learner has documented verbally, that the necessary knowledge has been successfully acquired. This results in learner loyalty that in turn will attract more qualified learners.Second, quality communication lowers the cost per pupil, consequently resulting in increased productivity backed by a stronger economic structure and forecast. Third, quality communications help to improve the cash flow and cash reserves of the university. Fourth, having high quality communication enables the university to justify the need for high costs of tuition and fees. Fifth, better quality in written communication skills result in attracting top-quality learners. This will lead to happier and satisfied learners, not to mention greater prosperity for the university as a whole. Sixth, quality written communication skills result in reduced complaints, thus meaning fewer hours spent on answering or correcting the situation. The University faculty and staff are thus able to devote more time on scholarly activities, meaningful research and productive community service. References Boyer, Ernest L. (1990). Scholarship reconsidered: Priorities of the Professorate.Princeton, NJ: Carnegie Foundation for the Advancement of Teaching. Hawkins, P., & Winter, J. (1997). Mastering change: Learning the lessons of the enterprise.London: Department for Education and Employment. Buzzel, Robert D., and Bradley T. Gale. (1987

  20. The strong maximum principle revisited

    NASA Astrophysics Data System (ADS)

    Pucci, Patrizia; Serrin, James

    In this paper we first present the classical maximum principle due to E. Hopf, together with an extended commentary and discussion of Hopf's paper. We emphasize the comparison technique invented by Hopf to prove this principle, which has since become a main mathematical tool for the study of second order elliptic partial differential equations and has generated an enormous number of important applications. While Hopf's principle is generally understood to apply to linear equations, it is in fact also crucial in nonlinear theories, such as those under consideration here. In particular, we shall treat and discuss recent generalizations of the strong maximum principle, and also the compact support principle, for the case of singular quasilinear elliptic differential inequalities, under generally weak assumptions on the quasilinear operators and the nonlinearities involved. Our principal interest is in necessary and sufficient conditions for the validity of both principles; in exposing and simplifying earlier proofs of corresponding results; and in extending the conclusions to wider classes of singular operators than previously considered. The results have unexpected ramifications for other problems, as will develop from the exposition, e.g. two point boundary value problems for singular quasilinear ordinary differential equations (Sections 3 and 4); the exterior Dirichlet boundary value problem (Section 5); the existence of dead cores and compact support solutions, i.e. dead cores at infinity (Section 7); Euler-Lagrange inequalities on a Riemannian manifold (Section 9); comparison and uniqueness theorems for solutions of singular quasilinear differential inequalities (Section 10). The case of p-regular elliptic inequalities is briefly considered in Section 11.

  1. Acidic pH triggers conformational changes at the NH2-terminal propeptide of the precursor of pulmonary surfactant protein B to form a coiled coil structure.

    PubMed

    Bañares-Hidalgo, A; Pérez-Gil, J; Estrada, P

    2014-07-01

    Pulmonary surfactant protein SP-B is synthesized as a larger precursor, proSP-B. We report that a recombinant form of human SP-BN forms a coiled coil structure at acidic pH. The protonation of a residue with pK=4.8±0.06 is the responsible of conformational changes detected by circular dichroism and intrinsic fluorescence emission. Sedimentation velocity analysis showed protein oligomerisation at any pH condition, with an enrichment of the species compatible with a tetramer at acidic pH. Low 2,2,2,-trifluoroethanol concentration promoted β-sheet structures in SP-BN, which bind Thioflavin T, at acidic pH, whereas it promoted coiled coil structures at neutral pH. The amino acid stretch predicted to form β-sheet parallel association in SP-BN overlaps with the sequence predicted by several programs to form coiled coil structure. A synthetic peptide ((60)W-E(85)) designed from the sequence of the amino acid stretch of SP-BN predicted to form coiled coil structure showed random coil conformation at neutral pH but concentration-dependent helical structure at acidic pH. Sedimentation velocity analysis of the peptide indicated monomeric state at neutral pH (s20, w=0.55S; Mr~3kDa) and peptide association (s20, w=1.735S; Mr=~14kDa) at acidic pH, with sedimentation equilibrium fitting to a Monomer-Nmer-Mmer model with N=6 and M=4 (Mr=14692Da). We propose that protein oligomerisation through coiled-coil motifs could then be a general feature in the assembly of functional units in saposin-like proteins in general and in the organization of SP-B in a functional surfactant, in particular.

  2. Effect of Lung Surfactant Protein SP-C and SP-C-Promoted Membrane Fragmentation on Cholesterol Dynamics.

    PubMed

    Roldan, Nuria; Nyholm, Thomas K M; Slotte, J Peter; Pérez-Gil, Jesús; García-Álvarez, Begoña

    2016-10-18

    To allow breathing and prevent alveolar collapse, lung surfactant (LS) develops a complex membranous system at the respiratory surface. LS is defined by a specific protein and lipid composition, including saturated and unsaturated phospholipid species and cholesterol. Surfactant protein C (SP-C) has been suggested to be an essential element for sustaining the presence of cholesterol in surfactant without functional impairment. In this work, we used a fluorescent sterol-partitioning assay to assess the effect of the surfactant proteins SP-B and SP-C on cholesterol distribution in membranes. Our results suggest that in the LS context, the combined action of SP-B and SP-C appears to facilitate cholesterol dynamics, whereas SP-C does not seem to establish a direct interaction with cholesterol that could increase the partition of free cholesterol into membranes. Interestingly, SP-C exhibits a membrane-fragmentation behavior, leading to the conversion of large unilamellar vesicles into highly curved vesicles ∼25 nm in diameter. Sterol partition was observed to be sensitive to the bending of bilayers, indicating that the effect of SP-C to mobilize cholesterol could be indirectly associated with SP-C-mediated membrane remodeling. Our results suggest a potential role for SP-C in generating small surfactant structures that may participate in cholesterol mobilization and pulmonary surfactant homeostasis at the alveolar interfaces. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. 77 FR 53212 - Notice of Proposed Information Collection: Comment Request Strong Cities Strong Communities...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-31

    ... Communities National Resource Network AGENCY: Office of the Assistant Secretary for Policy Development and... Proposal: Strong Cities Strong Communities National Resource Network. OMB Control Number, if applicable... Transformation Initiative (TI) account. Through the Strong Cities Strong Communities National Resource Network...

  4. THE CONCENTRATION OF SURFACTANT PROTEIN-A IN AMNIOTIC FLUID DECREASES IN SPONTANEOUS HUMAN PARTURITION AT TERM

    PubMed Central

    Chaiworapongsa, Tinnakorn; Hong, Joon-Seok; Hull, William M.; Kim, Chong Jai; Gomez, Ricardo; Mazor, Moshe; Romero, Roberto; Whitsett, Jeffrey A.

    2012-01-01

    OBJECTIVE The fetus is thought to play a central role in the onset of labor. Pulmonary surfactant protein (SP)-A, secreted by the maturing fetal lung, has been implicated in the mechanisms initiating parturition in mice. The present study was conducted to determine whether amniotic fluid concentrations of SP-A and SP-B change during human parturition. STUDY DESIGN Amniotic fluid SP-A and SP-B concentrations were measured with sensitive and specific ELISA in the following groups of pregnant women: 1) mid-trimester of pregnancy between 15th and 18th weeks of gestation (n=29); 2) term pregnancy not in labor (n=28); and 3) term pregnancy in spontaneous labor (n=26). Non-parametric statistics were used for analysis. RESULTS SP-A was detected in all amniotic fluid samples. SP-B was detected in 24.1% (7/29) of mid-trimester samples and in all samples at term. The median amniotic fluid concentration of SP-A and SP-B were significantly higher in women at term than in women in the mid-trimester (SP-A term no labor: median 5.6 μg/ml, range 2.2–15.2 μg/ml vs. mid-trimester: median 1.64 μg/ml, range 0.1–4.7 μg/ml; and SP-B term no labor: median 0.54 μg/ml, range 0.17–1.99 μg/ml vs. mid-trimester: median 0 μg/ml, range 0–0.35 μg/ml; both p<0.001). The median amniotic fluid SP-A concentration in women at term in labor was significantly lower than that in women at term not in labor (term in labor: median 2.7 μg/ml, range 1.2–10.1 μg/ml vs. term no labor: median 5.6 μg/ml, range 2.2–15.2 μg/ml; p<0.001). There was no significant difference in the median amniotic fluid SP-B concentrations between women in labor and those not in labor (term in labor: median 0.47 μg/ml range 0.04–1.32 μg/ml vs. term no labor: median 0.54 μg/ml range 0.17–1.99 μg/ml; p=0.2). CONCLUSION The amniotic fluid concentration of surfactant protein-A decreases in spontaneous human parturition at term. PMID:18828058

  5. Strong curvature singularities and causal simplicity

    SciTech Connect

    Krolak, A. )

    1992-02-01

    Techniques of differential topology in Lorentzian manifolds developed by Geroch, Hawking, and Penrose are used to rule out a class of locally naked strong curvature singularities in strongly causal space-times. This result yields some support to the validity of Penrose's strong cosmic censorship hypothesis.

  6. Strong gravitation and models of particles

    SciTech Connect

    Panov, V.F.

    1987-01-01

    The problem of determining the most realistic model of particles in strong gravitation is considered. The relation between the hypothesis of strong gravitation and the structure of the proton is analyzed. The thermodynamics of a hadron as a black hole in strong gravitation is studied.

  7. Quantum dynamics in strong fluctuating fields

    NASA Astrophysics Data System (ADS)

    Goychuk, Igor; Hänggi, Peter

    A large number of multifaceted quantum transport processes in molecular systems and physical nanosystems, such as e.g. nonadiabatic electron transfer in proteins, can be treated in terms of quantum relaxation processes which couple to one or several fluctuating environments. A thermal equilibrium environment can conveniently be modelled by a thermal bath of harmonic oscillators. An archetype situation provides a two-state dissipative quantum dynamics, commonly known under the label of a spin-boson dynamics. An interesting and nontrivial physical situation emerges, however, when the quantum dynamics evolves far away from thermal equilibrium. This occurs, for example, when a charge transferring medium possesses nonequilibrium degrees of freedom, or when a strong time-dependent control field is applied externally. Accordingly, certain parameters of underlying quantum subsystem acquire stochastic character. This may occur, for example, for the tunnelling coupling between the donor and acceptor states of the transferring electron, or for the corresponding energy difference between electronic states which assume via the coupling to the fluctuating environment an explicit stochastic or deterministic time-dependence. Here, we review the general theoretical framework which is based on the method of projector operators, yielding the quantum master equations for systems that are exposed to strong external fields. This allows one to investigate on a common basis, the influence of nonequilibrium fluctuations and periodic electrical fields on those already mentioned dynamics and related quantum transport processes. Most importantly, such strong fluctuating fields induce a whole variety of nonlinear and nonequilibrium phenomena. A characteristic feature of such dynamics is the absence of thermal (quantum) detailed balance.ContentsPAGE1. Introduction5262. Quantum dynamics in stochastic fields531 2.1. Stochastic Liouville equation531 2.2. Non-Markovian vs. Markovian discrete

  8. Surfactant proteins, SP-A and SP-D, in respiratory fungal infections: their role in the inflammatory response.

    PubMed

    Carreto-Binaghi, Laura Elena; Aliouat, El Moukhtar; Taylor, Maria Lucia

    2016-06-01

    Pulmonary surfactant is a complex fluid that comprises phospholipids and four proteins (SP-A, SP-B, SP-C, and SP-D) with different biological functions. SP-B, SP-C, and SP-D are essential for the lungs' surface tension function and for the organization, stability and metabolism of lung parenchyma. SP-A and SP-D, which are also known as pulmonary collectins, have an important function in the host's lung immune response; they act as opsonins for different pathogens via a C-terminal carbohydrate recognition domain and enhance the attachment to phagocytic cells or show their own microbicidal activity by increasing the cellular membrane permeability. Interactions between the pulmonary collectins and bacteria or viruses have been extensively studied, but this is not the same for fungal pathogens. SP-A and SP-D bind glucan and mannose residues from fungal cell wall, but there is still a lack of information on their binding to other fungal carbohydrate residues. In addition, both their relation with immune cells for the clearance of these pathogens and the role of surfactant proteins' regulation during respiratory fungal infections remain unknown. Here we highlight the relevant findings associated with SP-A and SP-D in those respiratory mycoses where the fungal infective propagules reach the lungs by the airways.

  9. Effects of Bufei Yishen Granules Combined with Acupoint Sticking Therapy on Pulmonary Surfactant Proteins in Chronic Obstructive Pulmonary Disease Rats.

    PubMed

    Tian, Yange; Li, Jiansheng; Li, Ya; Dong, Yuqiong; Yao, Fengjia; Mao, Jing; Li, Linlin; Wang, Lili; Luo, Shan; Wang, Minghang

    2016-01-01

    Our previous studies have demonstrated the beneficial effects of Bufei Yishen granules combined with acupoint sticking therapy (the integrated therapy) in chronic obstructive pulmonary disease (COPD), but the underlying mechanism remains unclear. Dysfunction of pulmonary surfactant proteins (SPs, including SP-A, SP-B, SP-C, and SP-D) may be included in pathophysiology of COPD. This study aimed to explore the mechanism of the integrated therapy on SPs. COPD rat models were established. The treatment groups received Bufei Yishen granules or acupoint sticking or their combination. Using aminophylline as a positive control drug. The levels of SPs in serum, BALF, and lung were measured. The results showed that the integrated therapy markedly reduced the levels of SPs in serum and increased these indicators in the lung. The integrated therapy was better than aminophylline in reducing the levels of SPs and was better than Bufei Yishen granules in reducing SP-A, SP-C, and SP-D in serum. The integrated therapy was better than aminophylline and Bufei Yishen granules in increasing SP-A, SP-B, and SP-D mRNA in the lung. SP-A and SP-D in BALF were positively correlated with PEF and EF50. The levels of SPs are associated with airway limitation. The beneficial effects of the integrated therapy may be involved in regulating pulmonary surfactant proteins.

  10. Strongly Magnetized Accretion Disks Around Black Holes

    NASA Astrophysics Data System (ADS)

    Salvesen, Greg; Armitage, Philip J.; Simon, Jacob B.; Begelman, Mitchell C.

    2017-01-01

    Recent observations are suggestive of strongly magnetized accretion disks around black holes. Performing local (shearing box) simulations of accretion disks, we investigate how a strong magnetization state can develop and persist. We demonstrate that poloidal flux is a necessary prerequisite for the sustainability of strongly magnetized accretion disks. We also show that black hole spin measurements can become unconstrained if magnetic fields provide a significant contribution to the vertical pressure support of the accretion disk atmosphere.

  11. Keeping Marriages Strong in Challenging Times

    ERIC Educational Resources Information Center

    Ober, Marci Wolff

    2009-01-01

    What makes a strong marriage anyway...? There are definite qualities that exist in healthy marriages, that is, a marriage that is defined by both partners to be "mostly" or "usually" very satisfying. This article explores these qualities and looks at what really works to make and keep marriages strong, healthy, and satisfying…

  12. Keeping Marriages Strong in Challenging Times

    ERIC Educational Resources Information Center

    Ober, Marci Wolff

    2009-01-01

    What makes a strong marriage anyway...? There are definite qualities that exist in healthy marriages, that is, a marriage that is defined by both partners to be "mostly" or "usually" very satisfying. This article explores these qualities and looks at what really works to make and keep marriages strong, healthy, and satisfying…

  13. 78 FR 15710 - Strong Sensitizer Guidance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-12

    ... supplemental definition of ``strong sensitizer'' due to advancements in the science of sensitization that have... sensitization and made recommendations for proposed changes to the current definition, which eliminate... sensitization characteristics of substances, rank the criteria for classification of strong sensitizers in order...

  14. On the Strong Direct Summand Conjecture

    ERIC Educational Resources Information Center

    McCullough, Jason

    2009-01-01

    In this thesis, our aim is the study the Vanishing of Maps of Tor Conjecture of Hochster and Huneke. We mainly focus on an equivalent characterization called the Strong Direct Summand Conjecture, due to N. Ranganathan. Our results are separated into three chapters. In Chapter 3, we prove special cases of the Strong Direct Summand Conjecture in…

  15. Holographic equilibration at strong and intermediate coupling

    SciTech Connect

    Vuorinen, Aleksi

    2016-01-22

    In these conference proceedings, I will descibe recent developments in the study of thermalization dynamics in strongly, but not infinitely strongly coupled field theories using holography. After reviewing the main tools required in these calculations, I will introduce a set of central results, discuss their physical implications, and finally outline a number of challenges to be tackled in the future.

  16. Strong diamagnetism of normal metals and superconductivity

    NASA Astrophysics Data System (ADS)

    Abramov, O. V.; Gradov, O. M.; Kyrie, A. Yu

    1992-07-01

    The theory of strong diamagnetism of metals caused by the formation of a superlattice with the period being much larger than the crystal cell size has been developed. Strong diamagnetism has been shown to be the cause of the superconductivity of metals.

  17. On the Strong Direct Summand Conjecture

    ERIC Educational Resources Information Center

    McCullough, Jason

    2009-01-01

    In this thesis, our aim is the study the Vanishing of Maps of Tor Conjecture of Hochster and Huneke. We mainly focus on an equivalent characterization called the Strong Direct Summand Conjecture, due to N. Ranganathan. Our results are separated into three chapters. In Chapter 3, we prove special cases of the Strong Direct Summand Conjecture in…

  18. Seismic switch for strong motion measurement

    DOEpatents

    Harben, P.E.; Rodgers, P.W.; Ewert, D.W.

    1995-05-30

    A seismic switching device is described that has an input signal from an existing microseismic station seismometer and a signal from a strong motion measuring instrument. The seismic switch monitors the signal level of the strong motion instrument and passes the seismometer signal to the station data telemetry and recording systems. When the strong motion instrument signal level exceeds a user set threshold level, the seismometer signal is switched out and the strong motion signal is passed to the telemetry system. The amount of time the strong motion signal is passed before switching back to the seismometer signal is user controlled between 1 and 15 seconds. If the threshold level is exceeded during a switch time period, the length of time is extended from that instant by one user set time period. 11 figs.

  19. Seismic switch for strong motion measurement

    DOEpatents

    Harben, Philip E.; Rodgers, Peter W.; Ewert, Daniel W.

    1995-01-01

    A seismic switching device that has an input signal from an existing microseismic station seismometer and a signal from a strong motion measuring instrument. The seismic switch monitors the signal level of the strong motion instrument and passes the seismometer signal to the station data telemetry and recording systems. When the strong motion instrument signal level exceeds a user set threshold level, the seismometer signal is switched out and the strong motion signal is passed to the telemetry system. The amount of time the strong motion signal is passed before switching back to the seismometer signal is user controlled between 1 and 15 seconds. If the threshold level is exceeded during a switch time period, the length of time is extended from that instant by one user set time period.

  20. Puerto Rico Strong Motion Seismic Network

    NASA Astrophysics Data System (ADS)

    Huerta-Lopez, C. I.; Martínez-Cruzado, J. A.; Martínez-Pagan, J.; Santana-Torres, E. X.; Torres-O, D. M.

    2014-12-01

    The Puerto Rico Strong Motion Seismic Network is currently in charge of the operation of: (i) free-field (ff) strong motion stations, (ii) instrumented structures (STR) (Dams, Bridges, Buildings), and (iii) the data acquisition/monitoring and analysis of earthquakes considered strong from the point of view of their intensity and magnitude. All these instruments are deployed in the Puerto Rico Island (PRI), US-, and British-Virgin Islands (BVI), and Dominican Republic (DR). The Puerto Rico Island and the Caribbean region have high potential to be affected by earthquakes that could be catastrophic for the area. The Puerto Rico Strong Motion Seismic Network (actually Puerto Rico Strong Motion Program, PRSMP) has grown since 1970's from 7 ff strong motion stations and one instrumented building with analog accelerographs to 111 ff strong motion stations and 16 instrumented buildings with digital accelerographs: PRI: 88 ff, 16 STR., DR: 13 ff, BVI: 5 ff, 2 STR collecting data via IP (internet), DU (telephone), and stand alone stations The current stage of the PRSMP seismic network, the analysis of moderate earthquakes that were recorded and/or occurred on the island, results of the intensity distribution of selected earthquakes, as well as results of dynamic parameter identification of some of the instrumented structures are here presented.

  1. Biomimicry of surfactant protein C.

    PubMed

    Brown, Nathan J; Johansson, Jan; Barron, Annelise E

    2008-10-01

    Since the widespread use of exogenous lung surfactant to treat neonatal respiratory distress syndrome, premature infant survival and respiratory morbidity have dramatically improved. Despite the effectiveness of the animal-derived surfactant preparations, there still remain some concerns and difficulties associated with their use. This has prompted investigation into the creation of synthetic surfactant preparations. However, to date, no clinically used synthetic formulation is as effective as the natural material. This is largely because the previous synthetic formulations lacked analogues of the hydrophobic proteins of the lung surfactant system, SP-B and SP-C, which are critical functional constituents. As a result, recent investigation has turned toward the development of a new generation of synthetic, biomimetic surfactants that contain synthetic phospholipids along with a mimic of the hydrophobic protein portion of lung surfactant. In this Account, we detail our efforts in creating accurate mimics of SP-C for use in a synthetic surfactant replacement therapy. Despite SP-C's seemingly simple structure, the predominantly helical protein is extraordinarily challenging to work with given its extreme hydrophobicity and structural instability, which greatly complicates the creation of an effective SP-C analogue. Drawing inspiration from Nature, two promising biomimetic approaches have led to the creation of rationally designed biopolymers that recapitulate many of SP-C's molecular features. The first approach utilizes detailed SP-C structure-activity relationships and amino acid folding propensities to create a peptide-based analogue, SP-C33. In SP-C33, the problematic and metastable polyvaline helix is replaced with a structurally stable polyleucine helix and includes a well-placed positive charge to prevent aggregation. SP-C33 is structurally stable and eliminates the association propensity of the native protein. The second approach follows the same design

  2. Performance of wavefront sensors in strong scintillation

    NASA Astrophysics Data System (ADS)

    Barchers, Jeffrey D.; Fried, David L.; Link, Donald J.; Tyler, Glenn A.; Moretti, William; Brennan, Terry J.; Fugate, Robert Q.

    2003-02-01

    The estimation accuracy of wavefront sensors in strong scintillation is examined. Wave optical simulation is used to characterize the performance of several wavefront sensors in the absence of measurement noise. The estimation accuracy of a Schack-Hartmann sensor is shown to be poor in strong scintillation due primarily to the presence of branch points in the phase function. The estimation accuracy of a unit-shear, shearing interferometer is found to be significantly better than that of a Hartmann sensor in strong scintillation. The estimation accuracy of a phase shifting point diffraction interferometer is shown to be invariant with scintillation.

  3. Dual field theory of strong interactions

    SciTech Connect

    Akers, D.

    1987-07-01

    A dual field theory of strong interactions is derived from a Lagrangian of the Yang-Mills and Higgs fields. The existence of a magnetic monopole of mass 2397 MeV and Dirac charge g = (137/2)e is incorporated into the theory. Unification of the strong, weak, and electromagnetic forces is shown to converge at the mass of the intermediate vector boson W/sup +/-/. The coupling constants of the strong and weak interactions are derived in terms of the fine-structure constant ..cap alpha.. = 1/137.

  4. Strong photoassociation in a degenerate fermi gas

    NASA Astrophysics Data System (ADS)

    Rvachov, Timur; Jamison, Alan; Jing, Li; Son, Hyungmok; Ebadi, Sepehr; Jiang, Yijun; Zwierlein, Martin; Ketterle, Wolfgang

    2016-05-01

    Despite many studies there remain open questions about strong photoassociation in ultracold gases. We study the effects of strong photoassociation in ultracold fermions. Photoassociation occurs only at short range and thus can be used as a tool to probe and control the two-body correlation function in an interacting many-body system. We study the effects of strong photoassociation in 6 Li, the onset of saturation, and its effects on spin polarized and interacting spin-mixtures. This work was funded by the NSF, ARO-MURI, SAMSUNG, and NSERC.

  5. Electronic spectra of strongly modulated aperiodic structures

    SciTech Connect

    Barache, D. ); Luck, J.M. )

    1994-06-01

    We consider the tight-binding Hamiltonian on strongly modulated aperiodic chains (e.g., quasiperiodic, self-similar, random). The site energies are distributed according to a given binary sequence ([ital V][sub [ital n

  6. Finding quantum effects in strong classical potentials

    NASA Astrophysics Data System (ADS)

    Hegelich, B. Manuel; Labun, Lance; Labun, Ou Z.

    2017-06-01

    The long-standing challenge to describing charged particle dynamics in strong classical electromagnetic fields is how to incorporate classical radiation, classical radiation reaction and quantized photon emission into a consistent unified framework. The current, semiclassical methods to describe the dynamics of quantum particles in strong classical fields also provide the theoretical framework for fundamental questions in gravity and hadron-hadron collisions, including Hawking radiation, cosmological particle production and thermalization of particles created in heavy-ion collisions. However, as we show, these methods break down for highly relativistic particles propagating in strong fields. They must therefore be improved and adapted for the description of laser-plasma experiments that typically involve the acceleration of electrons. Theory developed from quantum electrodynamics, together with dedicated experimental efforts, offer the best controllable context to establish a robust, experimentally validated foundation for the fundamental theory of quantum effects in strong classical potentials.

  7. Norman Rostoker and strongly correlated plasmas

    NASA Astrophysics Data System (ADS)

    Ichimaru, Setsuo

    2016-03-01

    If Norman were alive and attended this symposium, he might have quipped: "Setsuo! What are you talking about! A plasma is, after all, a strongly correlated object, and there is nothing so special about it!" "Yes, Norman, you are so correct! A statistical system consisting of mutually non-interacting and thus uncorrelated particles may be an "ideal-gas" system from a physics teacher's pedagogical point of view, but real systems do consist of mutually interacting and thus strongly correlated particles; a plasma is definitely one of them.Here, in the memory of Professor Rostoker's outstanding contributions to strongly correlated plasmas for the past 60 years, we wish to survey on "Scattering of Electromagnetic Waves by a Strongly Correlated Plasma" and "Multi-particle Correlation, Equations of State, and Phase Diagrams" in what follows.

  8. Cooking with Strong Lenses and Other Ingredients

    NASA Astrophysics Data System (ADS)

    Bolton, Adam; SLACS; BELLS; SDSS-III

    2013-07-01

    Strong lensing offers the most direct method for constraining the distribution of mass in galaxies at cosmological distances. The combination of strong lensing with other observables increases its power, but often in ways that are model-dependent and resistant to intuition. In this talk, I will unpack the information content of spectroscopic, photometric, kinematic, and strong-lensing observables as they translate into constraints on the macroscopic distribution of luminous and dark matter in massive elliptical galaxies. I will also highlight how the choice of priors and analysis methods affects the conclusions drawn from a given set of observations. Finally, in this context I will present the latest results from observational efforts to extend strong-lensing analyses to lower mass galaxies in the Sloan Lens ACS Survey (SLACS) and to earlier cosmic times in the BOSS Emission-Line Lens Survey (BELLS).

  9. Green jobs and a strong middle class.

    PubMed

    Podesta, John D

    2009-01-01

    Green jobs are critical to building a strong middle class, and millions of green jobs can be created through energy efficiency. The models already exist for this work, but we need sustained investment to bring them to scale.

  10. Strongly magnetized accretion discs require poloidal flux

    NASA Astrophysics Data System (ADS)

    Salvesen, Greg; Armitage, Philip J.; Simon, Jacob B.; Begelman, Mitchell C.

    2016-08-01

    Motivated by indirect observational evidence for strongly magnetized accretion discs around black holes, and the novel theoretical properties of such solutions, we investigate how a strong magnetization state can develop and persist. To this end, we perform local simulations of accretion discs with an initially purely toroidal magnetic field of equipartition strength. We demonstrate that discs with zero net vertical magnetic flux and realistic boundary conditions cannot sustain a strong toroidal field. However, a magnetic pressure-dominated disc can form from an initial configuration with a sufficient amount of net vertical flux and realistic boundary conditions. Our results suggest that poloidal flux is a necessary prerequisite for the sustainability of strongly magnetized accretion discs.

  11. Attract Academically Strong Students: Market the Faculty.

    ERIC Educational Resources Information Center

    Rickard, Charles E.; Walters, James C.

    1984-01-01

    Presents a marketing strategy to assist admissions personnel in recruiting academically strong students to colleges and universities. Discusses the importance of institutional prestige and faculty achievement as well as the need to involve faculty in student recruitment. (JAC)

  12. Diffusive Mixing in Strongly Coupled Plasmas

    NASA Astrophysics Data System (ADS)

    Diaw, Abdourahmane; Murillo, Michael

    2016-10-01

    A multispecies hydrodynamic model based on moments of the Born-Bogolyubov-Green-Kirkwood-Yvon (BBGKY) hierarchy is developed for physical conditions relevant to astrophysical plasmas. The modified transport equations incorporate strong correlations through a density functional theory closure, while fluctuations enters through a mixture BGK operator. This model extends the usual Burgers equations for a dilute gas to strongly coupled and isothermal plasmas mixtures. The diffusive currents for these strongly coupled plasmas is self-consistently derived. The settling of impurities and its impact on cooling of white dwarfs and neutron stars can be greatly affected by strong Coulomb coupling, which we show can be quantified using the direct-correlation function. This work was supported by the Air Force Office of Scientific Research (Grant No. FA9550-12-1-0344).

  13. Attract Academically Strong Students: Market the Faculty.

    ERIC Educational Resources Information Center

    Rickard, Charles E.; Walters, James C.

    1984-01-01

    Presents a marketing strategy to assist admissions personnel in recruiting academically strong students to colleges and universities. Discusses the importance of institutional prestige and faculty achievement as well as the need to involve faculty in student recruitment. (JAC)

  14. Evolutionary games on cycles with strong selection

    NASA Astrophysics Data System (ADS)

    Altrock, P. M.; Traulsen, A.; Nowak, M. A.

    2017-02-01

    Evolutionary games on graphs describe how strategic interactions and population structure determine evolutionary success, quantified by the probability that a single mutant takes over a population. Graph structures, compared to the well-mixed case, can act as amplifiers or suppressors of selection by increasing or decreasing the fixation probability of a beneficial mutant. Properties of the associated mean fixation times can be more intricate, especially when selection is strong. The intuition is that fixation of a beneficial mutant happens fast in a dominance game, that fixation takes very long in a coexistence game, and that strong selection eliminates demographic noise. Here we show that these intuitions can be misleading in structured populations. We analyze mean fixation times on the cycle graph under strong frequency-dependent selection for two different microscopic evolutionary update rules (death-birth and birth-death). We establish exact analytical results for fixation times under strong selection and show that there are coexistence games in which fixation occurs in time polynomial in population size. Depending on the underlying game, we observe inherence of demographic noise even under strong selection if the process is driven by random death before selection for birth of an offspring (death-birth update). In contrast, if selection for an offspring occurs before random removal (birth-death update), then strong selection can remove demographic noise almost entirely.

  15. Evolutionary games on cycles with strong selection.

    PubMed

    Altrock, P M; Traulsen, A; Nowak, M A

    2017-02-01

    Evolutionary games on graphs describe how strategic interactions and population structure determine evolutionary success, quantified by the probability that a single mutant takes over a population. Graph structures, compared to the well-mixed case, can act as amplifiers or suppressors of selection by increasing or decreasing the fixation probability of a beneficial mutant. Properties of the associated mean fixation times can be more intricate, especially when selection is strong. The intuition is that fixation of a beneficial mutant happens fast in a dominance game, that fixation takes very long in a coexistence game, and that strong selection eliminates demographic noise. Here we show that these intuitions can be misleading in structured populations. We analyze mean fixation times on the cycle graph under strong frequency-dependent selection for two different microscopic evolutionary update rules (death-birth and birth-death). We establish exact analytical results for fixation times under strong selection and show that there are coexistence games in which fixation occurs in time polynomial in population size. Depending on the underlying game, we observe inherence of demographic noise even under strong selection if the process is driven by random death before selection for birth of an offspring (death-birth update). In contrast, if selection for an offspring occurs before random removal (birth-death update), then strong selection can remove demographic noise almost entirely.

  16. The extended reciprocity: Strong belief outperforms persistence.

    PubMed

    Kurokawa, Shun

    2017-05-21

    The existence of cooperation is a mysterious phenomenon and demands explanation, and direct reciprocity is one key potential explanation for the evolution of cooperation. Direct reciprocity allows cooperation to evolve for cooperators who switch their behavior on the basis of information about the opponent's behavior. Here, relevant to direct reciprocity is information deficiency. When the opponent's last move is unknown, how should players behave? One possibility is to choose cooperation with some default probability without using any further information. In fact, our previous paper (Kurokawa, 2016a) examined this strategy. However, there might be beneficial information other than the opponent's last move. A subsequent study of ours (Kurokawa, 2017) examined the strategy which uses the own last move when the opponent's last move is unknown, and revealed that referring to the own move and trying to imitate it when information is absent is beneficial. Is there any other beneficial information else? How about strong belief (i.e., have infinite memory and believe that the opponent's behavior is unchanged)? Here, we examine the evolution of strategies with strong belief. Analyzing the repeated prisoner's dilemma game and using evolutionarily stable strategy (ESS) analysis against an invasion by unconditional defectors, we find the strategy with strong belief is more likely to evolve than the strategy which does not use information other than the opponent player's last move and more likely to evolve than the strategy which uses not only the opponent player's last move but also the own last move. Strong belief produces the extended reciprocity and facilitates the evolution of cooperation. Additionally, we consider the two strategies game between strategies with strong belief and any strategy, and we consider the four strategies game in which unconditional cooperators, unconditional defectors, pessimistic reciprocators with strong belief, and optimistic reciprocators with

  17. The Italian Strong Motion Network (RAN)

    NASA Astrophysics Data System (ADS)

    Costa, Giovanni; Ammirati, Alfredo; de Nardis, Rita; Filippi, Luisa; Gallo, Antonella; Lavecchia, Giusy; Sirignano, Sebastiano; Zambonelli, Elisa; Nicoletti, Mario

    2014-05-01

    A network for the strong motion monitoring of the territory allows recording data that provide an excellent opportunity to study the source, path, and site effects on the ground motions, specifically in near source area, for updating seismic hazard map and consequently construction codes and earthquake resistant design. Strong motion data also help to increase the effective preparation and response to seismic emergencies and the ability of a community to quickly recover from the damages of an earthquake contributes to lower the seismic risk usually measured in term of casualties and economic losses. The Italian network for monitoring the strong movement of the national territory (RAN) is the result of a fruitful cooperation over the last 16 years between the Italian government, the regions and local authorities and now counts more than 500 stations. Over the years, as a priority the DPC has focused mainly on the expansion of the network in terms of the number of measurement points and technological improvement of instrumentation as well as the data transmission system. A data acquisition centre was implemented in which the Antelope software collects, processes and archives, automatically, the data of the RAN and of the external strong motion networks that contribute to the database of the RAN. Recently the DPC has dedicated specific resources to improve the response of the network, in particular, in case of emergency. The efficiency of the network on a daily basis is not less than 95% and temporary networks were installed in the epicentral area within 24 hours after the earthquake and connected to the data acquisition centre in Rome. A fast seismic data analysis is essential to provide useful information to Authorities which make decisions immediately after a strong earthquake occurrence. During a strong earthquake, the modern accelerometers are the only instruments which can provide near source high-quality data that are important both for scientific and for civil

  18. Strong Motion Recording in the United States

    NASA Astrophysics Data System (ADS)

    Archuleta, R. J.; Fletcher, J. B.; Shakal, A. F.

    2014-12-01

    The United States strong motion program began in 1932 when the Coast and Geodetic Survey (C&GS) installed eight strong motion accelerographs in California. During the March 1933 Long Beach earthquake, three of these produced the first strong motion records. With this success the C&GS expanded the number of accelerographs to 71 by 1964. With development of less expensive, mass-produced accelerographs the number of strong motion accelerographs expanded to ~575 by 1972. Responsibilities for operating the network and disseminating data were transferred to the National Oceanic and Atmospheric Administration in 1970 and then to the U.S. Geological Survey in 1973. In 1972 the California Legislature established the California Strong Motion Instrumentation Program (CSMIP). CSMIP operates accelerographs at 812 ground stations, with multi-channel accelerographs in 228 buildings, 125 lifelines and 37 geotechnical arrays, in California. The USGS and the ANSS effort operate accelerographs at 1584 ground stations, 96 buildings, 14 bridges, 70 dams, and 15 multi-channel geotechnical arrays. The USC Los Angeles array has 78 ground stations; UCSB operates 5 geotechnical arrays; other government and private institutions also operate accelerographs. Almost all accelerographs are now digital with a sampling rate of 200 Hz. Most of the strong motion data can be downloaded from the Center for Engineering Strong Motion Data (http://strongmotioncenter.org). As accelerographs have become more sophisticated, the concept of what constitutes strong motion has blurred because small earthquakes (M ~3) are well recorded on accelerometers as well as seismometers. However, when accelerations are over ~10%g and velocities over ~1 cm/s, the accelerometers remain on scale, providing the unclipped data necessary to analyze the ground motion and its consequences. Strong motion data are essential to the development of ground motion prediction equations, understanding structural response, performance

  19. Schirmer strip vs. capillary tube method: non-invasive methods of obtaining proteins from tear fluid.

    PubMed

    Posa, Andreas; Bräuer, Lars; Schicht, Martin; Garreis, Fabian; Beileke, Stephanie; Paulsen, Friedrich

    2013-03-01

    Human tear fluid is a complex mixture containing over 500 solute proteins, lipids, electrolytes, mucins, metabolites, hormones and desquamated epithelial cells as well as foreign substances from the ambient air. Little is known to date about the function of most tear components. The efficient and gentle collection of tear fluid facilitates closer investigation of these matters. The objective of the present paper was to compare two commonly used methods of obtaining tear fluid, the capillary tube and Schirmer strip methods, in terms of usefulness in molecular biological investigation of tear film. The comparative protein identification methods Bradford and Western Blot were used in the analyses to this end. The surfactant proteins (SP) A-D recently described as present on the eye surface were selected as the model proteins. Both methods feature sufficient uptake efficiency for proteins in or extraction from the sampling means used (capillary tube/Schirmer strip). The total protein concentration can be determined and the proteins in the tears can be detected - besides the hydrophilic SP-A and D also the non-water-soluble proteins of smaller size such as SP-B and C. Thus both methods afford a suitable basis for comparative analysis of the physiological processes in the tear fluid of healthy and diseased subjects. On the whole, the Schirmer strip has several advantages over the capillary tube. Copyright © 2012 Elsevier GmbH. All rights reserved.

  20. Visible periodicity of strong nucleosome DNA sequences.

    PubMed

    Salih, Bilal; Tripathi, Vijay; Trifonov, Edward N

    2015-01-01

    Fifteen years ago, Lowary and Widom assembled nucleosomes on synthetic random sequence DNA molecules, selected the strongest nucleosomes and discovered that the TA dinucleotides in these strong nucleosome sequences often appear at 10-11 bases from one another or at distances which are multiples of this period. We repeated this experiment computationally, on large ensembles of natural genomic sequences, by selecting the strongest nucleosomes--i.e. those with such distances between like-named dinucleotides, multiples of 10.4 bases, the structural and sequence period of nucleosome DNA. The analysis confirmed the periodicity of TA dinucleotides in the strong nucleosomes, and revealed as well other periodic sequence elements, notably classical AA and TT dinucleotides. The matrices of DNA bendability and their simple linear forms--nucleosome positioning motifs--are calculated from the strong nucleosome DNA sequences. The motifs are in full accord with nucleosome positioning sequences derived earlier, thus confirming that the new technique, indeed, detects strong nucleosomes. Species- and isochore-specific variations of the matrices and of the positioning motifs are demonstrated. The strong nucleosome DNA sequences manifest the highest hitherto nucleosome positioning sequence signals, showing the dinucleotide periodicities in directly observable rather than in hidden form.

  1. Shock waves in strongly coupled plasmas

    SciTech Connect

    Khlebnikov, Sergei; Kruczenski, Martin; Michalogiorgakis, Georgios

    2010-12-15

    Shock waves are supersonic disturbances propagating in a fluid and giving rise to dissipation and drag. Weak shocks, i.e., those of small amplitude, can be well described within the hydrodynamic approximation. On the other hand, strong shocks are discontinuous within hydrodynamics and therefore probe the microscopics of the theory. In this paper, we consider the case of the strongly coupled N=4 plasma whose microscopic description, applicable for scales smaller than the inverse temperature, is given in terms of gravity in an asymptotically AdS{sub 5} space. In the gravity approximation, weak and strong shocks should be described by smooth metrics with no discontinuities. For weak shocks, we find the dual metric in a derivative expansion, and for strong shocks we use linearized gravity to find the exponential tail that determines the width of the shock. In particular, we find that, when the velocity of the fluid relative to the shock approaches the speed of light v{yields}1 the penetration depth l scales as l{approx}(1-v{sup 2}){sup 1/4}. We compare the results with second-order hydrodynamics and the Israel-Stewart approximation. Although they all agree in the hydrodynamic regime of weak shocks, we show that there is not even qualitative agreement for strong shocks. For the gravity side, the existence of shock waves implies that there are disturbances of constant shape propagating on the horizon of the dual black holes.

  2. Nanostructure studies of strongly correlated materials.

    PubMed

    Wei, Jiang; Natelson, Douglas

    2011-09-01

    Strongly correlated materials exhibit an amazing variety of phenomena, including metal-insulator transitions, colossal magnetoresistance, and high temperature superconductivity, as strong electron-electron and electron-phonon couplings lead to competing correlated ground states. Recently, researchers have begun to apply nanostructure-based techniques to this class of materials, examining electronic transport properties on previously inaccessible length scales, and applying perturbations to drive systems out of equilibrium. We review progress in this area, particularly emphasizing work in transition metal oxides (Fe(3)O(4), VO(2)), manganites, and high temperature cuprate superconductors. We conclude that such nanostructure-based studies have strong potential to reveal new information about the rich physics at work in these materials.

  3. Global gyrokinetic simulations with strong flows

    NASA Astrophysics Data System (ADS)

    Collier, J. D.; McMillan, B. F.; Robinson, J. R.

    2016-11-01

    We report on the investigation of strong toroidal rotation effects in a global tokamak code, ORB5. This includes the implementation of a strong flow gyrokinetic Lagrangian, allowing a complete treatment of centrifugal and Coriolis effects in the laboratory frame. In order to consistently perform the linear analysis in this system, an axisymmetric gyrokinetic equilibrium distribution function is defined using the constants of motion: we show it corresponds to the standard choice in the local limit and is close to the neoclassical solution in the banana regime. The energy and momentum transport equations are presented in an analogous form to those for the weak flow system. Linear studies of Ion Temperature Gradient (ITG) modes in rotating plasmas are performed to determine how the global effects interact with the effects of strong rotation. We also determine the geodesic acoustic mode dispersion with respect to plasma rotation rate in this gyrokinetic model and compare it to MHD theory.

  4. Cosmological particle production at strong coupling

    NASA Astrophysics Data System (ADS)

    Rangamani, Mukund; Rozali, Moshe; Van Raamsdonk, Mark

    2015-09-01

    We study the dynamics of a strongly-coupled quantum field theory in a cosmological spacetime using the holographic AdS/CFT correspondence. Specifically we consider a confining gauge theory in an expanding FRW universe and track the evolution of the stress-energy tensor during a period of expansion, varying the initial temperature as well as the rate and amplitude of the expansion. At strong coupling, particle production is inseparable from entropy production. Consequently, we find significant qualitative differences from the weak coupling results: at strong coupling the system rapidly loses memory of its initial state as the amplitude is increased. Furthermore, in the regime where the Hubble parameter is much smaller than the initial temperature, the dynamics is well-modelled as a plasma evolving hydrodynamically.

  5. Strongly nonlinear stress waves in dissipative metamaterials

    NASA Astrophysics Data System (ADS)

    Xu, Yichao; Nesterenko, Vitali F.

    2017-01-01

    We present the results of measurements and numerical simulations of stress wave propagation in a one-dimensional strongly nonlinear dissipative metamaterial composed of steel disks and Nitrile O-rings. The incoming bell shape stress wave is generated by the strikers with different masses. Numerical modeling including a viscous dissipative term to describe dynamic behavior of O-rings is developed to predict the wave amplitude, shape and propagation speed of stress waves. The viscous dissipation prevented the incoming pulse from splitting into trains of solitary waves typical for non-dissipative strongly nonlinear discrete systems. The linear momentum and energy from the striker were completely transferred into this strongly nonlinear "soft" metamaterial.

  6. Multiscale equations for strongly stratified turbulent flows

    NASA Astrophysics Data System (ADS)

    Chini, Greg; Rocha, Cesar; Julien, Keith; Caulfield, Colm-Cille

    2016-11-01

    Strongly stratified turbulent shear flows are of fundamental importance owing to their widespread occurrence and their impact on diabatic mixing, yet direct numerical simulations of such flows remain challenging. Here, a reduced, multiscale description of turbulent shear flows in the presence of strong stable density stratification is derived via asymptotic analysis of the governing Boussinesq equations. The analysis explicitly recognizes the occurrence of dynamics on disparate spatiotemoporal scales, and yields simplified partial differential equations governing the coupled evolution of slowly-evolving small aspect-ratio ('pancake') modes and isotropic, strongly non-hydrostatic stratified-shear (e.g. Kelvin-Helmholtz) instability modes. The reduced model is formally valid in the physically-relevant regime in which the aspect-ratio of the pancake structures tends to zero in direct proportion to the horizontal Froude number. Relative to the full Boussinesq equations, the model offers both computational and conceptual advantages.

  7. The strong side of weak topological insulators

    NASA Astrophysics Data System (ADS)

    Kraus, Yaacov; Ringel, Zohar; Stern, Ady

    2012-02-01

    Three-dimensional topological insulators are classified into ``strong'' (STI) and ``weak'' (WTI) according to the nature of their surface states. While the surface states of the STI are topologically protected, in the WTI they are believed to be very fragile to disorder. In this work we show that the WTI surface states are actually protected from any random perturbation which does not break time-reversal symmetry, and does not close the bulk energy gap. Consequently, the conductivity of metallic surfaces in the clean system will remain finite even in the presence of strong disorder of this type. In the weak disorder limit the surfaces are perfect metals, and strong surface disorder only acts to push them inwards. We find that WTI's differ from STI's primarily in their anisotropy, and that the anisotropy is not a sign of their weakness but rather of their richness.

  8. Enhanced betatron radiation in strongly magnetized plasma

    SciTech Connect

    Pan, K. Q.; Zheng, C. Y. He, X. T.; Cao, L. H.; Liu, Z. J.

    2016-04-15

    Betatron radiation in strongly magnetized plasma is investigated by two dimensional (2D) particle-in-cell (PIC) simulations. The results show that the betatron radiation in magnetized plasmas is strongly enhanced and is more collimated compared to that in unmagnetized plasma. Single particle model analysis shows that the frequency and the amplitude of the electrons's betatron oscillation are strongly influenced by the axial external magnetic field and the axial self-generated magnetic field. And the 2D PIC simulation shows that the axial magnetic field is actually induced by the external magnetic field and tends to increase the betatron frequency. By disturbing the perturbation of the plasma density in the laser-produced channel, the hosing instability is also suppressed, which results in a better angular distribution and a better symmetry of the betatron radiation.

  9. Coherency properties of strong Langmuir turbulence

    SciTech Connect

    Rose, H.A.; DuBois, D.F.; Russell, D. )

    1989-01-01

    Strongly correlated Langmuir wave collapse has been observed in two dimensional simulations of Zakharov's model in a regime characterized by strong ion sound wave damping and an external drive frequency, {omega}{sub 0}, close to but less than the plasma frequency, ({omega}{sub p} {minus} {omega}{sub 0})/{omega}{sub 0} > {epsilon} with {epsilon} {approx equal} 0.005. Caviton-caviton interactions induce temporal correlations between different collapse sites on a time scale the order of a collapse cycle, and on a longer time scale site locations migrate possibly leading to strong spatial correlations. Certain features of ionospheric incoherent scatter radar (ISR) spectra are consistent with such correlations. 6 refs.

  10. The Coulomb Anomaly in Strongly Disordered Films

    DTIC Science & Technology

    1992-01-01

    r- AD-A271 0951 III [II[ I[Il ~ !!D T ! SC T 0 •9 3 The Coulomb Anomaly in Strongly Disordered FiiA 4 ’ Shih-Ying Hsu and J.M. Valles, Jr...strongly disordered quench condensed granular films are presented. The strength of this anomaly grows with increasing sheet resistance, RN, at low RN...Increases in the static disorder in metal The disordered films were deposited onto films degrades the screening capabilities of cooled substrates (-’ 8K

  11. De Sitter vacua of strongly interacting QFT

    NASA Astrophysics Data System (ADS)

    Buchel, Alex; Karapetyan, Aleksandr

    2017-03-01

    We use holographic correspondence to argue that Euclidean (Bunch-Davies) vacuum is a late-time attractor of the dynamical evolution of quantum gauge theories at strong coupling. The Bunch-Davies vacuum is not an adiabatic state, if the gauge theory is non-conformal — the comoving entropy production rate is nonzero. Using the N={2}^{\\ast } gauge theory holography, we explore prospects of explaining current accelerated expansion of the Universe as due to the vacuum energy of a strongly coupled QFT.

  12. Evaporation of droplets on strongly hydrophobic substrates.

    PubMed

    Stauber, Jutta M; Wilson, Stephen K; Duffy, Brian R; Sefiane, Khellil

    2015-03-31

    The manner in which the extreme modes of droplet evaporation (namely, the constant contact radius and the constant contact angle modes) become indistinguishable on strongly hydrophobic substrates is described. Simple asymptotic expressions are obtained which provide good approximations to the evolutions of the contact radius, the contact angle, and the volume of droplets evaporating in the extreme modes for a wide range of hydrophobic substrates. As a consequence, on strongly hydrophobic substrates it is appropriate to use the so-called "2/3 power law" to extrapolate the lifetimes of droplets evaporating in the constant contact radius mode as well as in the constant contact angle mode.

  13. The strong coupling constant at large distances

    SciTech Connect

    Deur, Alexandre

    2009-01-01

    In this paper we discuss effective strong coupling constants. Those are well behaved in the low-$Q^2$ domain, contrarily to $\\alpha_s$ from pQCD. We present an extraction of an effective strong coupling constant from Jefferson Lab polarized data at intermediate and low $Q^2$. We also show how these data, together with spin sum rules, allow us to obtain the effective coupling constant over the entire $Q^2$ range. We then discuss the relation between the experimentally extracted coupling constant and theoretical calculations at low $Q^2$. We conclude on the importance of such study for the application of the AdS/CFT correspondence to QCD.

  14. Thermodynamical instabilities under strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Chen, Y. J.

    2017-03-01

    The thermodynamical instabilities of low densities in the n p matter and n p e matter are studied within several relativistic nuclear models under some values of magnetic fields. The results are compared between each other and the effects of the symmetry energy slope at saturation density on the instability are investigated. The instability regions can exhibit bands due to the presence of Landau levels for very strong magnetic fields of the order of 1017 G, while for weaker magnetic fields, the bands are replaced by many diffused or scattered pieces. It also shows that the proton fraction in the inner crust of neutron stars may be complex under strong magnetic fields.

  15. Metallic Clusters in Strong Femtosecond Laser Pulses

    NASA Astrophysics Data System (ADS)

    Suraud, Eric; Reinhard, P.-G.; Ullrich, Carsten A.

    1998-03-01

    We present a theoretical study of the electron response of a Na_9^+ cluster excited by strong femtosecond laser pulses.(C. A. Ullrich, P.-G. Reinhard, and E. Suraud, J. Phys. B 30), 5043 (1997) Our approach is based on time-dependent density functional theory within the adiabatic local density approximation, including a recently developed self-interaction correction scheme. We investigate numerically the full electronic dipolar response and multiphoton ionization of the cluster and discuss the ionization mechanism. A strong correlation between induced electronic dipole oscillations and electron emission is observed, leading to a pronounced resonant enhancement of ionization at the frequency of the Mie plasmon.

  16. Semimetallization of dielectrics in strong optical fields

    NASA Astrophysics Data System (ADS)

    Kwon, Ojoon; Paasch-Colberg, Tim; Apalkov, Vadym; Kim, Bum-Kyu; Kim, Ju-Jin; Stockman, Mark I.; Kim, D.

    2016-02-01

    At the heart of ever growing demands for faster signal processing is ultrafast charge transport and control by electromagnetic fields in semiconductors. Intense optical fields have opened fascinating avenues for new phenomena and applications in solids. Because the period of optical fields is on the order of a femtosecond, the current switching and its control by an optical field may pave a way to petahertz optoelectronic devices. Lately, a reversible semimetallization in fused silica on a femtosecond time scale by using a few-cycle strong field (~1 V/Å) is manifested. The strong Wannier-Stark localization and Zener-type tunneling were expected to drive this ultrafast semimetallization. Wider spread of this technology demands better understanding of whether the strong field behavior is universally similar for different dielectrics. Here we employ a carrier-envelope-phase stabilized, few-cycle strong optical field to drive the semimetallization in sapphire, calcium fluoride and quartz and to compare this phenomenon and show its remarkable similarity between them. The similarity in response of these materials, despite the distinguishable differences in their physical properties, suggests the universality of the physical picture explained by the localization of Wannier-Stark states. Our results may blaze a trail to PHz-rate optoelectronics.

  17. Strongly correlated photons on a chip

    NASA Astrophysics Data System (ADS)

    Reinhard, Andreas; Volz, Thomas; Winger, Martin; Badolato, Antonio; Hennessy, Kevin J.; Hu, Evelyn L.; Imamoğlu, Ataç

    2012-02-01

    Optical nonlinearities at the single-photon level are key ingredients for future photonic quantum technologies. Prime candidates for the realization of the strong photon-photon interactions necessary for implementing quantum information processing tasks, as well as for studying strongly correlated photons in an integrated photonic device setting, are quantum dots embedded in photonic-crystal nanocavities. Here, we report strong quantum correlations between photons on picosecond timescales. We observe (i) photon antibunching upon resonant excitation of the lowest-energy polariton state, proving that the first cavity photon blocks the subsequent injection events, and (ii) photon bunching when the laser field is in two-photon resonance with the polariton eigenstates of the second Jaynes-Cummings manifold, demonstrating that two photons at this colour are more likely to be injected into the cavity jointly than they would otherwise. Together, these results demonstrate unprecedented strong single-photon nonlinearities, paving the way for the realization of a quantum optical Josephson interferometer or a single-photon transistor.

  18. Semimetallization of dielectrics in strong optical fields

    DOE PAGES

    Kwon, Ojoon; Paasch-Colberg, Tim; Apalkov, Vadym; ...

    2016-02-18

    At the heart of ever growing demands for faster signal processing is ultrafast charge transport and control by electromagnetic fields in semiconductors. Intense optical fields have opened fascinating avenues for new phenomena and applications in solids. Because the period of optical fields is on the order of a femtosecond, the current switching and its control by an optical field may pave a way to petahertz optoelectronic devices. Lately, a reversible semimetallization in fused silica on a femtosecond time scale by using a few-cycle strong field (~1 V/Å) is manifested. The strong Wannier-Stark localization and Zener-type tunneling were expected to drivemore » this ultrafast semimetallization. Wider spread of this technology demands better understanding of whether the strong field behavior is universally similar for different dielectrics. Here we employ a carrier-envelope-phase stabilized, few-cycle strong optical field to drive the semimetallization in sapphire, calcium fluoride and quartz and to compare this phenomenon and show its remarkable similarity between them. The similarity in response of these materials, despite the distinguishable differences in their physical properties, suggests the universality of the physical picture explained by the localization of Wannier-Stark states. Lastly, our results may blaze a trail to PHz-rate optoelectronics.« less

  19. Semimetallization of dielectrics in strong optical fields

    SciTech Connect

    Kwon, Ojoon; Apalkov, Vadym; Kim, Bum -Kyu; Kim, Ju -Jin; Stockman, Mark I.; Kim, D.

    2016-02-18

    At the heart of ever growing demands for faster signal processing is ultrafast charge transport and control by electromagnetic fields in semiconductors. Intense optical fields have opened fascinating avenues for new phenomena and applications in solids. Because the period of optical fields is on the order of a femtosecond, the current switching and its control by an optical field may pave a way to petahertz optoelectronic devices. Lately, a reversible semimetallization in fused silica on a femtosecond time scale by using a few-cycle strong field (~1 V/Å) is manifested. The strong Wannier-Stark localization and Zener-type tunneling were expected to drive this ultrafast semimetallization. Wider spread of this technology demands better understanding of whether the strong field behavior is universally similar for different dielectrics. Here we employ a carrier-envelope-phase stabilized, few-cycle strong optical field to drive the semimetallization in sapphire, calcium fluoride and quartz and to compare this phenomenon and show its remarkable similarity between them. The similarity in response of these materials, despite the distinguishable differences in their physical properties, suggests the universality of the physical picture explained by the localization of Wannier-Stark states. Lastly, our results may blaze a trail to PHz-rate optoelectronics.

  20. Strongly coupled semidirect mediation of supersymmetry breaking

    SciTech Connect

    Ibe, M.; Izawa, K.-I.; Nakai, Y.

    2009-08-01

    Strongly coupled semidirect gauge mediation models of supersymmetry breaking through massive mediators with standard-model charges are investigated by means of composite degrees of freedom. Sizable mediation is realized to generate the standard-model gaugino masses for a small mediator mass without breaking the standard-model symmetries.

  1. Entangled states with strong positive partial transpose

    SciTech Connect

    Ha, Kil-Chan

    2010-06-15

    Chruscinski, Jurkowski, and Kossakowski [Phys. Rev. A 77, 022113 (2008)] studied quantum states with strong positive partial transpose (SPPT) and conjectured that all SPPT states are separable. We construct a two-parameter class of 3 x 3 entangled SPPT states, so the conjecture does not hold true for general SPPT states.

  2. Strong motion duration and earthquake magnitude relationships

    SciTech Connect

    Salmon, M.W.; Short, S.A.; Kennedy, R.P.

    1992-06-01

    Earthquake duration is the total time of ground shaking from the arrival of seismic waves until the return to ambient conditions. Much of this time is at relatively low shaking levels which have little effect on seismic structural response and on earthquake damage potential. As a result, a parameter termed ``strong motion duration`` has been defined by a number of investigators to be used for the purpose of evaluating seismic response and assessing the potential for structural damage due to earthquakes. This report presents methods for determining strong motion duration and a time history envelope function appropriate for various evaluation purposes, for earthquake magnitude and distance, and for site soil properties. There are numerous definitions of strong motion duration. For most of these definitions, empirical studies have been completed which relate duration to earthquake magnitude and distance and to site soil properties. Each of these definitions recognizes that only the portion of an earthquake record which has sufficiently high acceleration amplitude, energy content, or some other parameters significantly affects seismic response. Studies have been performed which indicate that the portion of an earthquake record in which the power (average rate of energy input) is maximum correlates most closely with potential damage to stiff nuclear power plant structures. Hence, this report will concentrate on energy based strong motion duration definitions.

  3. Strong Student Governments...and Their Advisement.

    ERIC Educational Resources Information Center

    Boatman, Sara

    1988-01-01

    The ideal student government and the ideal student government adviser were discussed by advisers who met at the NACA National Student Government Workshop. Key issues in a strong student government are described including information, access, mutual respect, and institutional impact. (MLW)

  4. CLASSSTRONG: Classical simulations of strong field processes

    NASA Astrophysics Data System (ADS)

    Ciappina, M. F.; Pérez-Hernández, J. A.; Lewenstein, M.

    2014-01-01

    A set of Mathematica functions is presented to model classically two of the most important processes in strong field physics, namely high-order harmonic generation (HHG) and above-threshold ionization (ATI). Our approach is based on the numerical solution of the Newton-Lorentz equation of an electron moving on an electric field and takes advantage of the symbolic languages features and graphical power of Mathematica. Like in the Strong Field Approximation (SFA), the effects of atomic potential on the motion of electron in the laser field are neglected. The SFA was proven to be an essential tool in strong field physics in the sense that it is able to predict with great precision the harmonic (in the HHG) and energy (in the ATI) limits. We have extended substantially the conventional classical simulations, where the electric field is only dependent on time, including spatial nonhomogeneous fields and spatial and temporal synthesized fields. Spatial nonhomogeneous fields appear when metal nanosystems interact with strong and short laser pulses and temporal synthesized fields are routinely generated in attosecond laboratories around the world. Temporal and spatial synthesized fields have received special attention nowadays because they would allow to exceed considerably the conventional harmonic and electron energy frontiers. Classical simulations are an invaluable tool to explore exhaustively the parameters domain at a cheap computational cost, before massive quantum mechanical calculations, absolutely indispensable for the detailed analysis, are performed.

  5. Patterns of strong coupling for LHC searches

    NASA Astrophysics Data System (ADS)

    Liu, Da; Pomarol, Alex; Rattazzi, Riccardo; Riva, Francesco

    2016-11-01

    Even though the Standard Model (SM) is weakly coupled at the Fermi scale, a new strong dynamics involving its degrees of freedom may conceivably lurk at slightly higher energies, in the multi TeV range. Approximate symmetries provide a structurally robust context where, within the low energy description, the dimensionless SM couplings are weak, while the new strong dynamics manifests itself exclusively through higher-derivative interactions. We present an exhaustive classification of such scenarios in the form of effective field theories, paying special attention to new classes of models where the strong dynamics involves, along with the Higgs boson, the SM gauge bosons and/or the fermions. The IR softness of the new dynamics suppresses its effects at LEP energies, but deviations are in principle detectable at the LHC, even at energies below the threshold for production of new states. We believe our construction provides the so far unique structurally robust context where to motivate several LHC searches in Higgs physics, diboson production, or W W scattering. Perhaps surprisingly, the interplay between weak coupling, strong coupling and derivatives, which is controlled by symmetries, can override the naive expansion in operator dimension, providing instances where dimension-8 dominates dimension-6, well within the domain of validity of the low energy effective theory. This result reveals the limitations of an analysis that is both ambitiously general and restricted to dimension-6 operators.

  6. Markovian evolution of strongly coupled harmonic oscillators

    NASA Astrophysics Data System (ADS)

    Joshi, Chaitanya; Öhberg, Patrik; Cresser, James D.; Andersson, Erika

    2014-12-01

    We investigate how to model Markovian evolution of coupled harmonic oscillators, each of them interacting with a local environment. When the coupling between the oscillators is weak, dissipation may be modeled using local Lindblad terms for each of the oscillators in the master equation, as is commonly done. When the coupling between oscillators is strong, this model may become invalid. We derive a master equation for two coupled harmonic oscillators that are subject to individual heat baths modeled by a collection of harmonic oscillators and show that this master equation in general contains nonlocal Lindblad terms. We compare the resulting time evolution with that obtained for dissipation through local Lindblad terms for each individual oscillator and show that the evolution is different in the two cases. In particular, the two descriptions give different predictions for the steady state and for the entanglement between strongly coupled oscillators. This shows that when describing strongly coupled harmonic oscillators, one must take great care in how dissipation is modeled and that a description using local Lindblad terms may fail. This may be particularly relevant when attempting to generate entangled states of strongly coupled quantum systems.

  7. MRS photodiode in strong magnetic field

    SciTech Connect

    Beznosko, D.; Blazey, G.; Dyshkant, A.; Francis, K.; Kubik, D.; Rykalin, V.; Tartaglia, M.A.; Zutshi, v.; /Northern Illinois U.

    2004-12-01

    The experimental results on the performance of the MRS (Metal/Resistor/Semiconductor) photodiode in the strong magnetic field of 4.4T, and the possible impact of the quench of the magnet at 4.5T on sensor's operation are reported.

  8. Strong fibers and films of microbial polyesters.

    PubMed

    Iwata, Tadahisa

    2005-08-12

    Poly[(R)-3-hydroxybutyrate] (P(3HB)) and its copolymers are accumulated by a wide variety of microorganisms as intracellular carbon and energy material, and are extensively studied as biodegradable and biocompatible thermoplastics. However, these microbial polyesters have not been recognized as practical because of their stiffness and brittleness. Recently, by new drawing techniques, we succeeded in obtaining strong fibers and films from microbial polyesters, produced by both wild-type and recombinant bacteria. The improvement in mechanical properties of the fibers and films is due not only to the orientation of molecular chains, but also to the generation of a zigzag conformation and network structure, formed by fibrillar and lamellar crystals. The structure of strong fibers with a tensile strength over 1.0 GPa was analyzed by micro-beam X-ray diffraction with synchrotron radiation. The strong fibers and films were completely degraded in natural, river freshwater or by extracellular polyhydroxybutyrate depolymerases. In this feature article, the processing, mechanical properties, highly ordered structure and biodegradability of strong fibers and films produced from microbial polyesters are presented.

  9. Strong Female Characters in Recent Children's Literature.

    ERIC Educational Resources Information Center

    Heine, Pat; Inkster, Christine; Kazemek, Frank; Williams, Sandra; Raschke, Sylvia; Stevens, Della

    1999-01-01

    Shares the authors' criteria for evaluating female characters as positive role models in children's literature. Explores the criteria by examining "The Ballad of Lucy Wipple" (Karen Cushman). Discusses other recently published picture books and novels which feature strong females in history, in contemporary times, and in fantasy. (SR)

  10. Charm production in a strong magnetic field

    SciTech Connect

    Machado, C. S.; Navarra, F. S.; Noronha, J.; Oliveira, E. G. de; Strickland, M.

    2014-11-11

    We discuss the effects of a strong magnetic field on B and D mesons, focusing on the changes of the energy levels and the masses of the bound states. Using the Color Evaporation Model we discuss the possible changes in the production of J/ψ and Υ. We briefly comment the recent experimental data.

  11. Three Strands Form Strong School Leadership

    ERIC Educational Resources Information Center

    Saphier, Jon; King, Matt; D'Auria, John

    2006-01-01

    In this article, the authors illustrate the three fundamental elements of school leadership: academic focus, shared beliefs and values, and productive professional relationships. These three elements purportedly produce strong organizational cultures, more teaching expertise, and better student achievement and more thoughtful and caring citizens.…

  12. Semimetallization of dielectrics in strong optical fields

    PubMed Central

    Kwon, Ojoon; Paasch-Colberg, Tim; Apalkov, Vadym; Kim, Bum-Kyu; Kim, Ju-Jin; Stockman, Mark I.; Kim, D.

    2016-01-01

    At the heart of ever growing demands for faster signal processing is ultrafast charge transport and control by electromagnetic fields in semiconductors. Intense optical fields have opened fascinating avenues for new phenomena and applications in solids. Because the period of optical fields is on the order of a femtosecond, the current switching and its control by an optical field may pave a way to petahertz optoelectronic devices. Lately, a reversible semimetallization in fused silica on a femtosecond time scale by using a few-cycle strong field (~1 V/Å) is manifested. The strong Wannier-Stark localization and Zener-type tunneling were expected to drive this ultrafast semimetallization. Wider spread of this technology demands better understanding of whether the strong field behavior is universally similar for different dielectrics. Here we employ a carrier-envelope-phase stabilized, few-cycle strong optical field to drive the semimetallization in sapphire, calcium fluoride and quartz and to compare this phenomenon and show its remarkable similarity between them. The similarity in response of these materials, despite the distinguishable differences in their physical properties, suggests the universality of the physical picture explained by the localization of Wannier-Stark states. Our results may blaze a trail to PHz-rate optoelectronics. PMID:26888147

  13. Robert Lowth and the Strong Verb System.

    ERIC Educational Resources Information Center

    van Ostade, Ingrid Tieken-Boon

    2002-01-01

    Traces the origin of the grammatical rule that strong verbs should distinguish between past tense and past participle forms. The rule, credited to Robert Lowth, did not in fact originate from Lowth nor did it reflect his usage as found in his private unpublished letters. (Author/VWL)

  14. Strong Purifying Selection in Transmission of Mammalian Mitochondrial DNA

    PubMed Central

    Stewart, James Bruce; Freyer, Christoph; Elson, Joanna L; Wredenberg, Anna; Cansu, Zekiye; Trifunovic, Aleksandra; Larsson, Nils-Göran

    2008-01-01

    There is an intense debate concerning whether selection or demographics has been most important in shaping the sequence variation observed in modern human mitochondrial DNA (mtDNA). Purifying selection is thought to be important in shaping mtDNA sequence evolution, but the strength of this selection has been debated, mainly due to the threshold effect of pathogenic mtDNA mutations and an observed excess of new mtDNA mutations in human population data. We experimentally addressed this issue by studying the maternal transmission of random mtDNA mutations in mtDNA mutator mice expressing a proofreading-deficient mitochondrial DNA polymerase. We report a rapid and strong elimination of nonsynonymous changes in protein-coding genes; the hallmark of purifying selection. There are striking similarities between the mutational patterns in our experimental mouse system and human mtDNA polymorphisms. These data show strong purifying selection against mutations within mtDNA protein-coding genes. To our knowledge, our study presents the first direct experimental observations of the fate of random mtDNA mutations in the mammalian germ line and demonstrates the importance of purifying selection in shaping mitochondrial sequence diversity. PMID:18232733

  15. Surface Mediated Protein Disaggregation

    NASA Astrophysics Data System (ADS)

    Radhakrishna, Mithun; Kumar, Sanat K.

    2014-03-01

    Preventing protein aggregation is of both biological and industrial importance. Biologically these aggregates are known to cause amyloid type diseases like Alzheimer's and Parkinson's disease. Protein aggregation leads to reduced activity of the enzymes in industrial applications. Inter-protein interactions between the hydrophobic residues of the protein are known to be the major driving force for protein aggregation. In the current paper we show how surface chemistry and curvature can be tuned to mitigate these inter-protein interactions. Our results calculated in the framework of the Hydrophobic-Polar (HP) lattice model show that, inter-protein interactions can be drastically reduced by increasing the surface hydrophobicity to a critical value corresponding to the adsorption transition of the protein. At this value of surface hydrophobicity, proteins lose inter-protein contacts to gain surface contacts and thus the surface helps in reducing the inter-protein interactions. Further, we show that the adsorption of the proteins inside hydrophobic pores of optimal sizes are most efficient both in reducing inter-protein contacts and simultaneously retaining most of the native-contacts due to strong protein-surface interactions coupled with stabilization due to the confinement. Department of Energy (Grant No DE-FG02-11ER46811).

  16. Strong correlations in bosons and fermions

    NASA Astrophysics Data System (ADS)

    Tilahun, Dagim

    If there is a general theme to this thesis, it is the effects of strong correlations in both bosons and fermions. The bosonic system considered here consists of ultracold alkali atoms trapped by interfering lasers, so called optical lattices. Strong interactions, realized by increasing the depth of the lattice potential, or through the phenomenon of Feshbach resonances induce strong correlations amongst the atoms, rendering attempts to describe the systems in terms of single particle type physics unsuccessful. Of course strong correlations are not the exclusive domain of bosons, and also are not caused only by strong interactions. Other factors such as reduced dimensionality, in one-dimensional electron gases, or strong magnetic fields, in two-dimensional electron gases are known to induce strong correlations. In this thesis, we explore the manifestations of strong correlations in ultracold atoms in optical lattices and interacting electron gases. Optical lattices provide a near-perfect realization of lattice models, such as the bosonic Hubbard model (BHM) that have been formulated to study solid state systems. This follows from the absence of defects or impurities that usually plague real solid state systems. Another novel feature of optical lattices is the unprecedented control experimenters have in tuning the different lattice parameters, such as the lattice spacing and the intensity of the lasers. This control enables one to study the model Hamiltonians over a wide range of variables, such as the interaction strength between the atoms, thereby opening the door towards the observation of diverse and interesting phenomena. The BHM, and also its variants, predict various quantum phases, such as the strongly correlated Mott insulator (MI) phase that appears as a function of the parameter t/U, the ratio of the nearest neighbor hopping amplitude to the on-site interaction, which one varies experimentally over a wide range of values simply by switching the intensity

  17. Strong gravitational lensing and dark energy complementarity

    SciTech Connect

    Linder, Eric V.

    2004-01-21

    In the search for the nature of dark energy most cosmological probes measure simple functions of the expansion rate. While powerful, these all involve roughly the same dependence on the dark energy equation of state parameters, with anticorrelation between its present value w{sub 0} and time variation w{sub a}. Quantities that have instead positive correlation and so a sensitivity direction largely orthogonal to, e.g., distance probes offer the hope of achieving tight constraints through complementarity. Such quantities are found in strong gravitational lensing observations of image separations and time delays. While degeneracy between cosmological parameters prevents full complementarity, strong lensing measurements to 1 percent accuracy can improve equation of state characterization by 15-50 percent. Next generation surveys should provide data on roughly 105 lens systems, though systematic errors will remain challenging.

  18. Strong correlation induced charge localization in antiferromagnets

    PubMed Central

    Zhu, Zheng; Jiang, Hong-Chen; Qi, Yang; Tian, Chushun; Weng, Zheng-Yu

    2013-01-01

    The fate of a hole injected in an antiferromagnet is an outstanding issue of strongly correlated physics. It provides important insights into doped Mott insulators closely related to high-temperature superconductivity. Here, we report a systematic numerical study of t-J ladder systems based on the density matrix renormalization group. It reveals a surprising result for the single hole's motion in an otherwise well-understood undoped system. Specifically, we find that the common belief of quasiparticle picture is invalidated by the self-localization of the doped hole. In contrast to Anderson localization caused by disorders, the charge localization discovered here is an entirely new phenomenon purely of strong correlation origin. It results from destructive quantum interference of novel signs picked up by the hole, and since the same effect is of a generic feature of doped Mott physics, our findings unveil a new paradigm which may go beyond the single hole doped system. PMID:24002668

  19. Photoneutrino energy losses in strong magnetic fields.

    NASA Technical Reports Server (NTRS)

    Canuto, V.; Fassio-Canuto, L.

    1973-01-01

    Previously computed rates of energy losses (Petrosian et al., 1967) ignored the presence of strong magnetic fields, hence the change brought in when such a field (about 10 to the 12th to 10 to the 13th power G) is included is studied. The results indicate that for T about 10 to the 8th power K and densities rho of about 10,000 g/cu cm, the presence of a strong H field decreases the energy losses by at the most a factor between 10 and 100 in the region up to rho = 1,000,000 g/cu cm. At higher densities the neutrino emissivities are almost identical.

  20. Strong ground motion prediction using virtual earthquakes.

    PubMed

    Denolle, M A; Dunham, E M; Prieto, G A; Beroza, G C

    2014-01-24

    Sedimentary basins increase the damaging effects of earthquakes by trapping and amplifying seismic waves. Simulations of seismic wave propagation in sedimentary basins capture this effect; however, there exists no method to validate these results for earthquakes that have not yet occurred. We present a new approach for ground motion prediction that uses the ambient seismic field. We apply our method to a suite of magnitude 7 scenario earthquakes on the southern San Andreas fault and compare our ground motion predictions with simulations. Both methods find strong amplification and coupling of source and structure effects, but they predict substantially different shaking patterns across the Los Angeles Basin. The virtual earthquake approach provides a new approach for predicting long-period strong ground motion.

  1. Strong regularizing effect of integrable systems

    SciTech Connect

    Zhou, Xin

    1997-11-01

    Many time evolution problems have the so-called strong regularization effect, that is, with any irregular initial data, as soon as becomes greater than 0, the solution becomes C{sup {infinity}} for both spacial and temporal variables. This paper studies 1 x 1 dimension integrable systems for such regularizing effect. In the work by Sachs, Kappler [S][K], (see also earlier works [KFJ] and [Ka]), strong regularizing effect is proved for KdV with rapidly decaying irregular initial data, using the inverse scattering method. There are two equivalent Gel`fand-Levitan-Marchenko (GLM) equations associated to an inverse scattering problem, one is normalized at x = {infinity} and another at x = {infinity}. The method of [S][K] relies on the fact that the KdV waves propagate only in one direction and therefore one of the two GLM equations remains normalized and can be differentiated infinitely many times. 15 refs.

  2. Deterministic strong-field quantum control

    NASA Astrophysics Data System (ADS)

    Cavaletto, Stefano M.; Harman, Zoltán; Pfeifer, Thomas; Keitel, Christoph H.

    2017-04-01

    Strong-field quantum-state control is investigated, taking advantage of the full—amplitude and phase—characterization of the interaction between matter and intense ultrashort pulses via transient-absorption spectroscopy. As an example, we apply the method to a nondegenerate V -type three-level system modeling atomic Rb, and use a sequence of intense delayed pulses, whose parameters are tailored to steer the system into a desired quantum state. We show how to experimentally enable this optimization by retrieving all quantum features of the light-matter interaction from observable spectra. This provides a full characterization of the action of strong fields on the atomic system, including the dependence upon possibly unknown pulse properties and atomic structures. Precision and robustness of the scheme are tested, in the presence of surrounding atomic levels influencing the system's dynamics.

  3. Strongly correlated quantum walks in optical lattices.

    PubMed

    Preiss, Philipp M; Ma, Ruichao; Tai, M Eric; Lukin, Alexander; Rispoli, Matthew; Zupancic, Philip; Lahini, Yoav; Islam, Rajibul; Greiner, Markus

    2015-03-13

    Full control over the dynamics of interacting, indistinguishable quantum particles is an important prerequisite for the experimental study of strongly correlated quantum matter and the implementation of high-fidelity quantum information processing. We demonstrate such control over the quantum walk-the quantum mechanical analog of the classical random walk-in the regime where dynamics are dominated by interparticle interactions. Using interacting bosonic atoms in an optical lattice, we directly observed fundamental effects such as the emergence of correlations in two-particle quantum walks, as well as strongly correlated Bloch oscillations in tilted optical lattices. Our approach can be scaled to larger systems, greatly extending the class of problems accessible via quantum walks. Copyright © 2015, American Association for the Advancement of Science.

  4. Firefly flashing under strong static magnetic field.

    PubMed

    Barua, Anurup Gohain; Iwasaka, Masakazu; Miyashita, Yuito; Kurita, Satoru; Owada, Norio

    2012-02-01

    Firefly flashing has been the subject of numerous scientific investigations. Here we present in vivo flashes from male specimens of three species of fireflies-two Japanese species Luciola cruciata, Luciola lateralis and one Indian species Luciola praeusta-positioned under a superconducting magnet. When the OFF state of the firefly becomes long after flashing in an immobile state under the strong static magnetic field of strength 10 Tesla for a long time, which varies widely from species to species as well as from specimen to specimen, the effect of the field becomes noticeable. The flashes in general are more rapid, and occasionally overlap to produce broad compound flashes. We present the broadest flashes recorded to date, and propose that the strong static magnetic field affects the neural activities of fireflies, especially those in the spent up or 'exhausted' condition.

  5. Model reduction of strong-weak neurons.

    PubMed

    Du, Bosen; Sorensen, Danny; Cox, Steven J

    2014-01-01

    We consider neurons with large dendritic trees that are weakly excitable in the sense that back propagating action potentials are severly attenuated as they travel from the small, strongly excitable, spike initiation zone. In previous work we have shown that the computational size of weakly excitable cell models may be reduced by two or more orders of magnitude, and that the size of strongly excitable models may be reduced by at least one order of magnitude, without sacrificing the spatio-temporal nature of its inputs (in the sense we reproduce the cell's precise mapping of inputs to outputs). We combine the best of these two strategies via a predictor-corrector decomposition scheme and achieve a drastically reduced highly accurate model of a caricature of the neuron responsible for collision detection in the locust.

  6. Model reduction of strong-weak neurons

    PubMed Central

    Du, Bosen; Sorensen, Danny; Cox, Steven J.

    2014-01-01

    We consider neurons with large dendritic trees that are weakly excitable in the sense that back propagating action potentials are severly attenuated as they travel from the small, strongly excitable, spike initiation zone. In previous work we have shown that the computational size of weakly excitable cell models may be reduced by two or more orders of magnitude, and that the size of strongly excitable models may be reduced by at least one order of magnitude, without sacrificing the spatio–temporal nature of its inputs (in the sense we reproduce the cell's precise mapping of inputs to outputs). We combine the best of these two strategies via a predictor-corrector decomposition scheme and achieve a drastically reduced highly accurate model of a caricature of the neuron responsible for collision detection in the locust. PMID:25566048

  7. New strong interactions above the electroweak scale

    SciTech Connect

    White, A.R.

    1994-08-09

    Theoretical arguments for a new higher-color quark sector, based on Pomeron physics in QCD, are briefly described. The electroweak symmetry-breaking, Strong CP conservation, and electroweak scale CP violation, that is naturally produced by this sector is also outlined. A further consequence is that above the electroweak scale there will be a radical change in the strong interaction. Electroweak states, in particular multiple W`s and Z`s, and new, semi-stable, very massive, baryons, will be commonly produced. The possible correlation of expected phenomena with a wide range of observed Cosmic Ray effects at and above the primary spectrum knee is described. Related phenomena that might be seen in the highest energy hard scattering events at the Fermilab Tevatron, some of which could be confused with top production, are also briefly discussed.

  8. Solvable model of a strongly driven micromaser

    SciTech Connect

    Lougovski, P.; Walther, H.; Casagrande, F.; Lulli, A.; Englert, B.-G.; Solano, E.

    2004-02-01

    We study the dynamics of a micromaser where the pumping atoms are strongly driven by a resonant classical field during their transit through the cavity mode. We derive a master equation for this strongly driven micromaser, involving the contributions of the unitary atom-field interactions and the dissipative effects of a thermal bath. We find analytical solutions for the temporal evolution and the steady state of this system by means of phase-space techniques, providing an unusual solvable model of an open quantum system, including pumping and decoherence. We derive closed expressions for all relevant expectation values, describing the statistics of the cavity field and the detected atomic levels. The transient regime shows the buildup of mixtures of mesoscopic fields evolving towards a super-Poissonian steady-state field that, nevertheless, yields atomic correlations that exhibit stronger nonclassical features than the conventional micromaser.

  9. Cosmogenic photons strongly constrain UHECR source models

    NASA Astrophysics Data System (ADS)

    van Vliet, Arjen

    2017-03-01

    With the newest version of our Monte Carlo code for ultra-high-energy cosmic ray (UHECR) propagation, CRPropa 3, the flux of neutrinos and photons due to interactions of UHECRs with extragalactic background light can be predicted. Together with the recently updated data for the isotropic diffuse gamma-ray background (IGRB) by Fermi LAT, it is now possible to severely constrain UHECR source models. The evolution of the UHECR sources especially plays an important role in the determination of the expected secondary photon spectrum. Pure proton UHECR models are already strongly constrained, primarily by the highest energy bins of Fermi LAT's IGRB, as long as their number density is not strongly peaked at recent times.

  10. Strong sum distance in fuzzy graphs.

    PubMed

    Tom, Mini; Sunitha, Muraleedharan Shetty

    2015-01-01

    In this paper the idea of strong sum distance which is a metric, in a fuzzy graph is introduced. Based on this metric the concepts of eccentricity, radius, diameter, center and self centered fuzzy graphs are studied. Some properties of eccentric nodes, peripheral nodes and central nodes are obtained. A characterisation of self centered complete fuzzy graph is obtained and conditions under which a fuzzy cycle is self centered are established. We have proved that based on this metric, an eccentric node of a fuzzy tree G is a fuzzy end node of G and a node is an eccentric node of a fuzzy tree if and only if it is a peripheral node of G and the center of a fuzzy tree consists of either one or two neighboring nodes. The concepts of boundary nodes and interior nodes in a fuzzy graph based on strong sum distance are introduced. Some properties of boundary nodes, interior nodes and complete nodes are studied.

  11. Strong side of weak topological insulators

    NASA Astrophysics Data System (ADS)

    Ringel, Zohar; Kraus, Yaacov E.; Stern, Ady

    2012-07-01

    Three-dimensional topological insulators are classified into “strong” (STI) and “weak” (WTI) according to the nature of their surface states. While the surface states of the STI are topologically protected from localization, this does not hold for the WTI. In this work, we show that the surface states of the WTI are actually protected from any random perturbation that does not break time-reversal symmetry, and does not close the bulk energy gap. Consequently, the conductivity of metallic surfaces in the clean system remains finite even in the presence of strong disorder of this type. In the weak disorder limit, the surfaces are found to be perfect metals, and strong surface disorder only acts to push the metallic surfaces inwards. We find that the WTI differs from the STI primarily in its anisotropy, and that the anisotropy is not a sign of its weakness but rather of its richness.

  12. Photoneutrino energy losses in strong magnetic fields.

    NASA Technical Reports Server (NTRS)

    Canuto, V.; Fassio-Canuto, L.

    1973-01-01

    Previously computed rates of energy losses (Petrosian et al., 1967) ignored the presence of strong magnetic fields, hence the change brought in when such a field (about 10 to the 12th to 10 to the 13th power G) is included is studied. The results indicate that for T about 10 to the 8th power K and densities rho of about 10,000 g/cu cm, the presence of a strong H field decreases the energy losses by at the most a factor between 10 and 100 in the region up to rho = 1,000,000 g/cu cm. At higher densities the neutrino emissivities are almost identical.

  13. Molecular systems in a strong magnetic field

    NASA Astrophysics Data System (ADS)

    Turbiner, Alexander V.

    2007-04-01

    Brief overview of one-two electron molecular systems made out of protons and/or α-particles in a strong magnetic field B≤4.414×1013 G is presented. A particular emphasis is given to the one-electron exotic ions H 3 ++ (pppe), He 2 3+ (α α e) and to two-electron ionsH 3 + (pppee), He 2 ++ (α α ee). Quantitative studies in a strong magnetic field are very complicated technically. Novel approach to the few-electron Coulomb systems in magnetic field, which provides accurate results, based on variational calculus with physically relevant trial functions is briefly described.

  14. Peltier effect in strongly driven quantum wires

    NASA Astrophysics Data System (ADS)

    Mierzejewski, M.; Crivelli, D.; Prelovšek, P.

    2014-08-01

    We study a microscopic model of a thermocouple device with two connected correlated quantum wires driven by a constant electric field. In such a closed system we follow the time and position dependence of the entropy density using the concept of the reduced density matrix. At weak driving, the initial changes of the entropy at the junctions can be described by the linear Peltier response. At longer times the quasiequilibrium situation is reached with well defined local temperatures which increase due to an overall Joule heating. On the other hand, a strong electric field induces a nontrivial nonlinear thermoelectric response, e.g., the Bloch oscillations of the energy current. Moreover, we show for the doped Mott insulators that strong driving can reverse the Peltier effect.

  15. Quantum strongly secure ramp secret sharing

    NASA Astrophysics Data System (ADS)

    Zhang, Paul; Matsumoto, Ryutaroh

    2015-02-01

    Quantum secret sharing is a scheme for encoding a quantum state (the secret) into multiple shares and distributing them among several participants. If a sufficient number of shares are put together, then the secret can be fully reconstructed. If an insufficient number of shares are put together however, no information about the secret can be revealed. In quantum ramp secret sharing, partial information about the secret is allowed to leak to a set of participants, called an unqualified set, that cannot fully reconstruct the secret. By allowing this, the size of a share can be drastically reduced. This paper introduces a quantum analog of classical strong security in ramp secret sharing schemes. While the ramp secret sharing scheme still leaks partial information about the secret to unqualified sets of participants, the strong security condition ensures that qudits with critical information can no longer be leaked.

  16. Decay of Resonaces in Strong Magnetic Field

    NASA Astrophysics Data System (ADS)

    Filip, Peter

    2015-08-01

    We suggest that decay properties (branching ratios) of hadronic resonances may become modified in strong external magnetic field. The behavior of K±*, K0* vector mesons as well as Λ* (1520) and Ξ0* baryonic states is considered in static fields 1013-1015 T. In particular, n = 0 Landau level energy increase of charged particles in the external magnetic field, and the interaction of hadron magnetic moments with the field is taken into account. We suggest that enhanced yield of dileptons and photons from ρ0(770) mesons may occur if strong decay channel ρ0 → π+π- is significantly suppressed. CP - violating π+π- decays of pseudoscalar ηc and η(547) mesons in the magnetic field are discussed, and superpositions of quarkonium states ηc,b and χc,b(nP) with Ψ(nS), ϒ(nS) mesons in the external field are considered.

  17. Quantum states with strong positive partial transpose

    SciTech Connect

    Chruscinski, Dariusz; Jurkowski, Jacek; Kossakowski, Andrzej

    2008-02-15

    We construct a large class of bipartite M x N quantum states which defines a proper subset of states with positive partial transposes (PPTs). Any state from this class has PPT but the positivity of its partial transposition is recognized with respect to canonical factorization of the original density operator. We propose to call elements from this class states with strong positive partial transposes (SPPTs). We conjecture that all SPPT states are separable.

  18. Strong coupling QED with two fermionic flavors

    SciTech Connect

    Wang, K.C.

    1990-11-01

    We report the recent results of our simulation of strong coupling QED, with non-compact action, on lattices 10{sup 4} and 16{sup 4}. Since we are dealing with two staggered fermionic flavors, we use hybrid algorithm to do the simulation. In addition to the measurement of the chiral order parameter {l angle}{bar {psi}}{psi}{r angle}, we also measure magnetic monopole susceptibility, {chi}, throughout the region of chiral transition. 6 refs., 6 figs.

  19. Strong transverse fields in delta-spots

    NASA Technical Reports Server (NTRS)

    Zirin, Harold; Wang, Haimin

    1993-01-01

    Spectroscopic measurements of the strength and direction of transverse magnetic fields in six delta-spots are presented. The field direction is determined by the relative strength of the pi- and sigma-components at different polarizer orientations, and is, with one exception, parallel to the neutral line and as strong as the umbral field. Field strengths determined by line splitting are as high as 3980 G.

  20. Kinetic Characterization of Strongly Coupled Systems

    SciTech Connect

    Knapek, C. A.; Ivlev, A. V.; Klumov, B. A.; Morfill, G. E.; Samsonov, D.

    2007-01-05

    We propose a simple method to determine the local coupling strength {gamma} experimentally, by linking the individual particle dynamics with the local density and crystal structure of a 2D plasma crystal. By measuring particle trajectories with high spatial and temporal resolution we obtain the first maps of {gamma} and temperature at individual particle resolution. We employ numerical simulations to test this new method, and discuss the implications to characterize strongly coupled systems.

  1. Strongly Interacting Fermi Gases in Two Dimensions

    DTIC Science & Technology

    2012-07-17

    strong dipolar interactions. Figure 6 Radiofrequency association of ultracold Feshbach molecules of NaK . Starting with a mixture of sodium atoms in...12. H2.00004 : Ultracold Feshbach Moleules of NaK . Presented by: C.-H. Wu...magnetic fields. In the singlet rovibrational ground state, the NaK molecule is known to have a large permanent electric dipole moment of 2.72(6) D [27,28

  2. Manifold reconnection and diffusion in strong chaos

    NASA Astrophysics Data System (ADS)

    Prado, S. D.; Corso, G.

    2000-08-01

    We analyse diffusion across a reconnecting zone in a regime of strong chaos. Numerical estimates from the angular correlation functions averaged over a suitable set of phase-space initial conditions are compared to a local diffusion coefficient obtained using Fick’s law. It emerges that the diffusion coefficient is enhanced from small to larger values as successive reconnection-like processes or more usual bifurcations take place. This feature is illustrated using a quadratic nontwist map.

  3. NON-PARAMETRIC ESTIMATION UNDER STRONG DEPENDENCE

    PubMed Central

    Zhao, Zhibiao; Zhang, Yiyun; Li, Runze

    2014-01-01

    We study non-parametric regression function estimation for models with strong dependence. Compared with short-range dependent models, long-range dependent models often result in slower convergence rates. We propose a simple differencing-sequence based non-parametric estimator that achieves the same convergence rate as if the data were independent. Simulation studies show that the proposed method has good finite sample performance. PMID:25018572

  4. Strong transverse fields in delta-spots

    NASA Technical Reports Server (NTRS)

    Zirin, Harold; Wang, Haimin

    1993-01-01

    Spectroscopic measurements of the strength and direction of transverse magnetic fields in six delta-spots are presented. The field direction is determined by the relative strength of the pi- and sigma-components at different polarizer orientations, and is, with one exception, parallel to the neutral line and as strong as the umbral field. Field strengths determined by line splitting are as high as 3980 G.

  5. Concepts in strong Langmuir turbulence theory

    SciTech Connect

    DuBois, D.F.; Rose, H.A.

    1990-01-01

    Some of the basic concepts of strong Langmuir turbulence (SLT) theory are reviewed. In SLT system, a major fraction of the turbulent energy is carried by local, time-dependent, nonlinear excitations called cavitons. Modulational instability, localization of Langmuir fields by density fluctuations, caviton nucleation, collapse, and burnout and caviton correlations are reviewed. Recent experimental evidence will be presented for SLT phenomena in the interaction of powerful HF waves with the ionosphere and in laser-plasma interaction experiments. 38 refs., 11 figs.

  6. NON-PARAMETRIC ESTIMATION UNDER STRONG DEPENDENCE.

    PubMed

    Zhao, Zhibiao; Zhang, Yiyun; Li, Runze

    2014-01-01

    We study non-parametric regression function estimation for models with strong dependence. Compared with short-range dependent models, long-range dependent models often result in slower convergence rates. We propose a simple differencing-sequence based non-parametric estimator that achieves the same convergence rate as if the data were independent. Simulation studies show that the proposed method has good finite sample performance.

  7. Bose polarons in the strongly interacting regime

    NASA Astrophysics Data System (ADS)

    Kedar, Dhruv; Hu, Ming-Guang; van de Graaff, Michael; Corson, John; Cornell, Eric; Jin, Deborah

    2016-05-01

    Impurities immersed in and interacting with a Bose-Einstein condensate (BEC) are predicted to form quasiparticle excitations called Bose polarons. I will present experimental evidence of Bose polarons in cold atoms obtained using radio-frequency spectroscopy to measure the excitation spectrum of fermionic K-40 impurities interacting with a BEC of Rb-87 atoms. We use an interspecies Feshbach resonance to tune the interactions between the impurities and the bosons, and we take data in the strongly interacting regime.

  8. Relativistically modulational instability by strong Langmuir waves

    SciTech Connect

    Liu, X. L.; Liu, S. Q.; Li, X. Q.

    2012-09-15

    Based on the set of nonlinear coupling equations, which has considered the relativistic effects of electrons, modulational instability by strong Langmuir waves has been investigated in this paper. Both the characteristic scale and maximum growth rate of the Langmuir field will enhance with the increase in the electron relativistic effect. The numerical results indicate that longitudinal perturbations induce greater instability than transverse perturbations do, which will lead to collapse and formation of the pancake-like structure.

  9. Spin equilibrium in strongly magnetized accreting stars

    NASA Astrophysics Data System (ADS)

    D'Angelo, C. R.

    2017-09-01

    Strongly magnetized accreting stars are often hypothesized to be in 'spin equilibrium' with their surrounding accretion flows, which requires that the accretion rate changes more slowly than it takes the star to reach spin equilibrium. This is not true for most magnetically accreting stars, which have strongly variable accretion outbursts on time-scales much shorter than the time it would take to reach spin equilibrium. This paper examines how accretion outbursts affect the time a star takes to reach spin equilibrium and its final equilibrium spin period. I consider several different models for angular momentum loss - either carried away in an outflow, lost to a stellar wind, or transferred back to the accretion disc (the 'trapped disc'). For transient sources, the outflow scenario leads to significantly longer times to reach spin equilibrium (∼10 ×), and shorter equilibrium spin periods than would be expected from spin equilibrium arguments, while the 'trapped disc' does not. The results suggest that disc trapping plays a significant role in the spin evolution of strongly magnetic stars, with some caveats for young stellar objects.

  10. Strong CP, Flavor, and Twisted Split Fermions

    SciTech Connect

    Harnik, Roni; Perez, Gilad; Schwartz, Matthew D.; Shirman, Yuri

    2004-11-10

    We present a natural solution to the strong CP problem in the context of split fermions. By assuming CP is spontaneously broken in the bulk, a weak CKM phase is created in the standard model due to a twisting in flavor space of the bulk fermion wavefunctions. But the strong CP phase remains zero, being essentially protected by parity in the bulk and CP on the branes. As always in models of spontaneous CP breaking, radiative corrections to theta bar from the standard model are tiny, but even higher dimension operators are not that dangerous. The twisting phenomenon was recently shown to be generic, and not to interfere with the way that split fermions naturally weaves small numbers into the standard model. It follows that out approach to strong CP is compatible with flavor, and we sketch a comprehensive model. We also look at deconstructed version of this setup which provides a viable 4D model of spontaneous CP breaking which is not in the Nelson-Barr class.

  11. Inflationary magnetogenesis without the strong coupling problem

    SciTech Connect

    Ferreira, Ricardo J.Z.; Jain, Rajeev Kumar; Sloth, Martin S. E-mail: jain@cp3.dias.sdu.dk

    2013-10-01

    The simplest gauge invariant models of inflationary magnetogenesis are known to suffer from the problems of either large backreaction or strong coupling, which make it difficult to self-consistently achieve cosmic magnetic fields from inflation with a field strength larger than 10{sup −32}G today on the Mpc scale. Such a strength is insufficient to act as seed for the galactic dynamo effect, which requires a magnetic field larger than 10{sup −20}G. In this paper we analyze simple extensions of the minimal model, which avoid both the strong coupling and back reaction problems, in order to generate sufficiently large magnetic fields on the Mpc scale today. First we study the possibility that the coupling function which breaks the conformal invariance of electromagnetism is non-monotonic with sharp features. Subsequently, we consider the effect of lowering the energy scale of inflation jointly with a scenario of prolonged reheating where the universe is dominated by a stiff fluid for a short period after inflation. In the latter case, a systematic study shows upper bounds for the magnetic field strength today on the Mpc scale of 10{sup −13}G for low scale inflation and 10{sup −25}G for high scale inflation, thus improving on the previous result by 7-19 orders of magnitude. These results are consistent with the strong coupling and backreaction constraints.

  12. Cosmological test using strong gravitational lensing systems

    NASA Astrophysics Data System (ADS)

    Yuan, C. C.; Wang, F. Y.

    2015-09-01

    As one of the probes of universe, strong gravitational lensing systems allow us to compare different cosmological models and constrain vital cosmological parameters. This purpose can be reached from the dynamic and geometry properties of strong gravitational lensing systems, for instance, time-delay Δτ of images, the velocity dispersion σ of the lensing galaxies and the combination of these two effects, Δτ/σ2. In this paper, in order to carry out one-on-one comparisons between ΛCDM universe and Rh = ct universe, we use a sample containing 36 strong lensing systems with the measurement of velocity dispersion from the Sloan Lens Advanced Camera for Surveys (SLACS) and Lens Structure and Dynamic survey (LSD) survey. Concerning the time-delay effect, 12 two-image lensing systems with Δτ are also used. In addition, Monte Carlo simulations are used to compare the efficiency of the three methods as mentioned above. From simulations, we estimate the number of lenses required to rule out one model at the 99.7 per cent confidence level. Comparing with constraints from Δτ and the velocity dispersion σ, we find that using Δτ/σ2 can improve the discrimination between cosmological models. Despite the independence tests of these methods reveal a correlation between Δτ/σ2 and σ, Δτ/σ2 could be considered as an improved method of σ if more data samples are available.

  13. Cosmology with Strong-lensing Systems

    NASA Astrophysics Data System (ADS)

    Cao, Shuo; Biesiada, Marek; Gavazzi, Raphaël; Piórkowska, Aleksandra; Zhu, Zong-Hong

    2015-06-01

    In this paper, we assemble a catalog of 118 strong gravitational lensing systems from the Sloan Lens ACS Survey, BOSS emission-line lens survey, Lens Structure and Dynamics, and Strong Lensing Legacy Survey and use them to constrain the cosmic equation of state. In particular, we consider two cases of dark energy phenomenology: the XCDM model, where dark energy is modeled by a fluid with constant w equation-of-state parameter, and in the Chevalier-Polarski-Linder (CPL) parameterization, where w is allowed to evolve with redshift, w(z)={{w}0}+{{w}1}\\frac{z}{1 + z} . We assume spherically symmetric mass distribution in lensing galaxies, but we relax the rigid assumption of the SIS model in favor of a more general power-law index γ, also allowing it to evolve with redshifts γ (z). Our results for the XCDM cosmology show agreement with values (concerning both w and γ parameters) obtained by other authors. We go further and constrain the CPL parameters jointly with γ (z). The resulting confidence regions for the parameters are much better than those obtained with a similar method in the past. They are also showing a trend of being complementary to the Type Ia supernova data. Our analysis demonstrates that strong gravitational lensing systems can be used to probe cosmological parameters like the cosmic equation of state for dark energy. Moreover, they have a potential to judge whether the cosmic equation of state evolved with time or not.

  14. Diphotons, new vacuum angles, and strong CP

    DOE PAGES

    Draper, Patrick; McKeen, David

    2016-04-20

    The Standard Model contains a well-understood, natural, spin-0 diphoton resonance: the π0. Numerous studies have pointed out that the hint of a new diphoton resonance at 750 GeV could be a pion analog, identified with the pseudo-Nambu-Goldstone boson of a chiral symmetry spontaneously broken by new strong dynamics at the TeV scale. These “hypercolor” models are generically expected to violate parity through a topological angle θ~. We discuss the physics of θ~ and its impact on the phenomenology of the new sector. We also describe some of the theoretical implications of a nonzero θ~. In particular, θ~ can generate anmore » O(1) threshold correction to the QCD vacuum angle θ near the TeV scale, sharply constraining ultraviolet solutions to the strong CP problem. Furthermore, finding that θ~ is small may be interpreted as evidence in favor of UV solutions to strong CP, particularly those based on spontaneously broken P or CP symmetries.« less

  15. A photometric survey of strong gravitational lenses

    NASA Astrophysics Data System (ADS)

    Hesterly, Katie

    Strong gravitational lenses of active galactic nuclei are useful tools for studying many astrophysical issues including the rate of expansion of the universe and the equation of state of dark energy. These issues are highly dependent on the mass distribution near or in the line-of-sight of the lens. Because gravitational lenses often lie in poorly-studied complex environments, models for the mass distribution have been poorly constructed. Over the past decade, our team has been involved in a large study to fully characterize the environments of and line-of-sight structures toward a number of strong gravitational lenses. One vexing problem has been that nearby structures are important contributors to lensing potentials, but our photometry of these is incomplete due to saturation of galaxy cores on the deep images from the project. The purpose of this thesis is to complete a photometric survey of 28 lenses found by CASTLEs that will be combined with a previous study done by Williams et al. (2006). The previous study's data and my data are combined to form a large catalog of strong gravitational lenses that will be used for further studies.

  16. A Strong Merger Shock in Abell 665

    NASA Technical Reports Server (NTRS)

    Dasadia, S.; Sun, M.; Sarazin, C.; Morandi, A.; Markevitch, M.; Wik, D.; Feretti, L.; Giovannini, G.; Govoni, F.

    2016-01-01

    Deep (103 ks) Chandra observations of Abell 665 have revealed rich structures in this merging galaxy cluster, including a strong shock and two cold fronts. The newly discovered shock has a Mach number of M =?3.0 +/- 0.6, propagating in front of a cold disrupted cloud. This makes Abell 665 the second cluster, after the Bullet cluster, where a strong merger shock of M is approximately 3 has been detected. The shock velocity from jump conditions is consistent with (2.7 +/- 0.7) × 10(exp 3) km s(exp -1). The new data also reveal a prominent southern cold front with potentially heated gas ahead of it. Abell 665 also hosts a giant radio halo. There is a hint of diffuse radio emission extending to the shock at the north, which needs to be examined with better radio data. This new strong shock provides a great opportunity to study the reacceleration model with the X-ray and radio data combined.

  17. Diphotons, new vacuum angles, and strong CP

    SciTech Connect

    Draper, Patrick; McKeen, David

    2016-04-20

    The Standard Model contains a well-understood, natural, spin-0 diphoton resonance: the π0. Numerous studies have pointed out that the hint of a new diphoton resonance at 750 GeV could be a pion analog, identified with the pseudo-Nambu-Goldstone boson of a chiral symmetry spontaneously broken by new strong dynamics at the TeV scale. These “hypercolor” models are generically expected to violate parity through a topological angle θ~. We discuss the physics of θ~ and its impact on the phenomenology of the new sector. We also describe some of the theoretical implications of a nonzero θ~. In particular, θ~ can generate an O(1) threshold correction to the QCD vacuum angle θ near the TeV scale, sharply constraining ultraviolet solutions to the strong CP problem. Furthermore, finding that θ~ is small may be interpreted as evidence in favor of UV solutions to strong CP, particularly those based on spontaneously broken P or CP symmetries.

  18. Quantum processes in strong magnetic fields

    NASA Technical Reports Server (NTRS)

    Canuto, V.

    1975-01-01

    Quantum-mechanical processes that occur in a piece of matter embedded in a magnetic field with a strength of the order of 10 to the 13th power G are described which either are entirely due to the presence of the field or become modified because of it. The conversion of rotational energy into electromagnetic energy in pulsars is analyzed as a mechanism for producing such a field, and it is shown that a strong magnetic field is not sufficient for quantum effects to play a significant role; in addition, the density must be adjusted to be as low as possible. The pressure and energy density of a free electron gas in a uniform magnetic field are evaluated, neutron beta-decay in the presence of a strong field is examined, and the effect of such a field on neutrino reactions is discussed. The thermal history of a neutron star is studied, and it is concluded that a strong magnetic field helps to increase the cooling rate of the star by producing new channels through which neutrinos can carry away energy.

  19. Quantum processes in strong magnetic fields

    NASA Technical Reports Server (NTRS)

    Canuto, V.

    1975-01-01

    Quantum-mechanical processes that occur in a piece of matter embedded in a magnetic field with a strength of the order of 10 to the 13th power G are described which either are entirely due to the presence of the field or become modified because of it. The conversion of rotational energy into electromagnetic energy in pulsars is analyzed as a mechanism for producing such a field, and it is shown that a strong magnetic field is not sufficient for quantum effects to play a significant role; in addition, the density must be adjusted to be as low as possible. The pressure and energy density of a free electron gas in a uniform magnetic field are evaluated, neutron beta-decay in the presence of a strong field is examined, and the effect of such a field on neutrino reactions is discussed. The thermal history of a neutron star is studied, and it is concluded that a strong magnetic field helps to increase the cooling rate of the star by producing new channels through which neutrinos can carry away energy.

  20. Systematic errors in strong lens modeling

    NASA Astrophysics Data System (ADS)

    Johnson, Traci Lin; Sharon, Keren; Bayliss, Matthew B.

    2015-08-01

    The lensing community has made great strides in quantifying the statistical errors associated with strong lens modeling. However, we are just now beginning to understand the systematic errors. Quantifying these errors is pertinent to Frontier Fields science, as number counts and luminosity functions are highly sensitive to the value of the magnifications of background sources across the entire field of view. We are aware that models can be very different when modelers change their assumptions about the parameterization of the lensing potential (i.e., parametric vs. non-parametric models). However, models built while utilizing a single methodology can lead to inconsistent outcomes for different quantities, distributions, and qualities of redshift information regarding the multiple images used as constraints in the lens model. We investigate how varying the number of multiple image constraints and available redshift information of those constraints (ex., spectroscopic vs. photometric vs. no redshift) can influence the outputs of our parametric strong lens models, specifically, the mass distribution and magnifications of background sources. We make use of the simulated clusters by M. Meneghetti et al. and the first two Frontier Fields clusters, which have a high number of multiply imaged galaxies with spectroscopically-measured redshifts (or input redshifts, in the case of simulated clusters). This work will not only inform upon Frontier Field science, but also for work on the growing collection of strong lensing galaxy clusters, most of which are less massive and are capable of lensing a handful of galaxies, and are more prone to these systematic errors.

  1. Quantum Symmetries and Strong Haagerup Inequalities

    NASA Astrophysics Data System (ADS)

    Brannan, Michael

    2012-04-01

    In this paper, we consider families of operators {\\{x_r\\}_{r in Λ}} in a tracial C*-probability space {({mathcal{A}}, \\varphi)} , whose joint *-distribution is invariant under free complexification and the action of the hyperoctahedral quantum groups {\\{H_n^+\\}_{n in mathbb {N}}} . We prove a strong form of Haagerup's inequality for the non-self-adjoint operator algebra {{mathcal{B}}} generated by {\\{x_r\\}_{r in Λ}} , which generalizes the strong Haagerup inequalities for *-free R-diagonal families obtained by Kemp-Speicher (J Funct Anal 251:141-173, 2007). As an application of our result, we show that {{mathcal{B}}} always has the metric approximation property (MAP). We also apply our techniques to study the reduced C*-algebra of the free unitary quantum group {U_n^+} . We show that the non-self-adjoint subalgebra {{mathcal{B}}_n} generated by the matrix elements of the fundamental corepresentation of {U_n^+} has the MAP. Additionally, we prove a strong Haagerup inequality for {{mathcal{B}}_n} , which improves on the estimates given by Vergnioux's property RD (Vergnioux in J Oper Theory 57:303-324, 2007).

  2. A Strong Merger Shock in Abell 665

    NASA Technical Reports Server (NTRS)

    Dasadia, S.; Sun, M.; Sarazin, C.; Morandi, A.; Markevitch, M.; Wik, D.; Feretti, L.; Giovannini, G.; Govoni, F.

    2016-01-01

    Deep (103 ks) Chandra observations of Abell 665 have revealed rich structures in this merging galaxy cluster, including a strong shock and two cold fronts. The newly discovered shock has a Mach number of M =?3.0 +/- 0.6, propagating in front of a cold disrupted cloud. This makes Abell 665 the second cluster, after the Bullet cluster, where a strong merger shock of M is approximately 3 has been detected. The shock velocity from jump conditions is consistent with (2.7 +/- 0.7) × 10(exp 3) km s(exp -1). The new data also reveal a prominent southern cold front with potentially heated gas ahead of it. Abell 665 also hosts a giant radio halo. There is a hint of diffuse radio emission extending to the shock at the north, which needs to be examined with better radio data. This new strong shock provides a great opportunity to study the reacceleration model with the X-ray and radio data combined.

  3. Thermonuclear fusion in a strong laser field

    NASA Astrophysics Data System (ADS)

    Krainov, V. P.

    2014-08-01

    Thermonuclear fusion induced by the irradiation of solid deuterated cluster targets and foils with fields of strong femtosecond and picosecond laser pulses is discussed. The thermonuclear-fusion process D( d, n)3He in a collision of two deuterons at an energy of 50 to 100 keV in a deuterium cluster target irradiated with a strong laser pulse is discussed. A theory of thermonuclear fusion proceeding upon the irradiation of clusters formed by deuterium iodide (DI) molecules with the field of a superintense femtosecond laser pulse is developed. This theory is based on an above-barrier process in which the sequential multiple inner ionization of atomic ions within a cluster is accompanied by field-induced outer ionization. The yield of neutrons from thermonuclear fusion in a deuteron-deuteron collision after the completion of a laser pulse is calculated. The yield of neutrons is determined for the thermonuclear-fusion reaction proceeding in the interaction of an intense picosecond laser pulse with thin TiD2 foils. A multiple ionization of titanium atoms at the front edge of the laser pulse is considered. The heating of free electron occurs in induced inverse bremsstrahlung in the process of electron scattering on multiply charged titanium ions. The yield of alpha particles in the thermonuclear-fusion reaction involving protons and 11B nuclei that is induced in microdrops by a strong laser field is determined. Experimental data on laser-induced thermonuclear fusion are discussed.

  4. Using Strong Magnetic Fields to Control Solutal Convection

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Leslie, F. W.

    2003-01-01

    An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular crystals for diffraction analyses has been the central focus for biochemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of the container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and sedimentation, as is achieved in microgravity , we have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, formation of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. We postulate that limited convection in a magnetic field will provide the environment for the growth of high quality crystals. The approach exploits the variation of fluid magnetic susceptibility with concentration for this purpose and the convective damping is realized by appropriately positioning the crystal growth cell so that the magnetic susceptibility

  5. Using Strong Magnetic Fields to Control Solutal Convection

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Leslie, F. W.

    2003-01-01

    An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular crystals for diffraction analyses has been the central focus for biochemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of the container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and sedimentation, as is achieved in microgravity , we have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, formation of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. We postulate that limited convection in a magnetic field will provide the environment for the growth of high quality crystals. The approach exploits the variation of fluid magnetic susceptibility with concentration for this purpose and the convective damping is realized by appropriately positioning the crystal growth cell so that the magnetic susceptibility

  6. Prevention of strong earthquakes: Goal or utopia?

    NASA Astrophysics Data System (ADS)

    Mukhamediev, Sh. A.

    2010-11-01

    In the present paper, we consider ideas suggesting various kinds of industrial impact on the close-to-failure block of the Earth’s crust in order to break a pending strong earthquake (PSE) into a number of smaller quakes or aseismic slips. Among the published proposals on the prevention of a forthcoming strong earthquake, methods based on water injection and vibro influence merit greater attention as they are based on field observations and the results of laboratory tests. In spite of this, the cited proofs are, for various reasons, insufficient to acknowledge the proposed techniques as highly substantiated; in addition, the physical essence of these methods has still not been fully understood. First, the key concept of the methods, namely, the release of the accumulated stresses (or excessive elastic energy) in the source region of a forthcoming strong earthquake, is open to objection. If we treat an earthquake as a phenomenon of a loss in stability, then, the heterogeneities of the physicomechanical properties and stresses along the existing fault or its future trajectory, rather than the absolute values of stresses, play the most important role. In the present paper, this statement is illustrated by the classical examples of stable and unstable fractures and by the examples of the calculated stress fields, which were realized in the source regions of the tsunamigenic earthquakes of December 26, 2004 near the Sumatra Island and of September 29, 2009 near the Samoa Island. Here, just before the earthquakes, there were no excessive stresses in the source regions. Quite the opposite, the maximum shear stresses τmax were close to their minimum value, compared to τmax in the adjacent territory. In the present paper, we provide quantitative examples that falsify the theory of the prevention of PSE in its current form. It is shown that the measures for the prevention of PSE, even when successful for an already existing fault, can trigger or accelerate a catastrophic

  7. The INGV Real Time Strong Motion Database

    NASA Astrophysics Data System (ADS)

    Massa, Marco; D'Alema, Ezio; Mascandola, Claudia; Lovati, Sara; Scafidi, Davide; Gomez, Antonio; Carannante, Simona; Franceschina, Gianlorenzo; Mirenna, Santi; Augliera, Paolo

    2017-04-01

    The INGV real time strong motion data sharing is assured by the INGV Strong Motion Database. ISMD (http://ismd.mi.ingv.it) was designed in the last months of 2011 in cooperation among different INGV departments, with the aim to organize the distribution of the INGV strong-motion data using standard procedures for data acquisition and processing. The first version of the web portal was published soon after the occurrence of the 2012 Emilia (Northern Italy), Mw 6.1, seismic sequence. At that time ISMD was the first European real time web portal devoted to the engineering seismology community. After four years of successfully operation, the thousands of accelerometric waveforms collected in the archive need necessary a technological improvement of the system in order to better organize the new data archiving and to make more efficient the answer to the user requests. ISMD 2.0 was based on PostgreSQL (www.postgresql.org), an open source object- relational database. The main purpose of the web portal is to distribute few minutes after the origin time the accelerometric waveforms and related metadata of the Italian earthquakes with ML≥3.0. Data are provided both in raw SAC (counts) and automatically corrected ASCII (gal) formats. The web portal also provide, for each event, a detailed description of the ground motion parameters (i.e. Peak Ground Acceleration, Velocity and Displacement, Arias and Housner Intensities) data converted in velocity and displacement, response spectra up to 10.0 s and general maps concerning the recent and the historical seismicity of the area together with information about its seismic hazard. The focal parameters of the events are provided by the INGV National Earthquake Center (CNT, http://cnt.rm.ingv.it). Moreover, the database provides a detailed site characterization section for each strong motion station, based on geological, geomorphological and geophysical information. At present (i.e. January 2017), ISMD includes 987 (121

  8. Pigment-protein complexes

    SciTech Connect

    Siegelman, H W

    1980-01-01

    The photosynthetically-active pigment protein complexes of procaryotes and eucaryotes include chlorophyll proteins, carotenochlorophyll proteins, and biliproteins. They are either integral components or attached to photosynthetic membranes. Detergents are frequently required to solubilize the pigment-protein complexes. The membrane localization and detergent solubilization strongly suggest that the pigment-protein complexes are bound to the membranes by hydrophobic interactions. Hydrophobic interactions of proteins are characterized by an increase in entropy. Their bonding energy is directly related to temperature and ionic strength. Hydrophobic-interaction chromatography, a relatively new separation procedure, can furnish an important method for the purification of pigment-protein complexes. Phycobilisome purification and properties provide an example of the need to maintain hydrophobic interactions to preserve structure and function.

  9. Engaging Military Fathers in a Reflective Parenting Program: Lessons from Strong Families Strong Forces

    ERIC Educational Resources Information Center

    DeVoe, Ellen R.; Paris, Ruth

    2015-01-01

    Through Strong Families Strong Forces, a reflective parenting program for military families with young children, we were privileged to work with contemporary military fathers who served in the post-9/11 conflicts in Afghanistan and Iraq. Due to this work, the authors gained valuable insight into the complexity of fathering during wartime, the…

  10. Engaging Military Fathers in a Reflective Parenting Program: Lessons from Strong Families Strong Forces

    ERIC Educational Resources Information Center

    DeVoe, Ellen R.; Paris, Ruth

    2015-01-01

    Through Strong Families Strong Forces, a reflective parenting program for military families with young children, we were privileged to work with contemporary military fathers who served in the post-9/11 conflicts in Afghanistan and Iraq. Due to this work, the authors gained valuable insight into the complexity of fathering during wartime, the…

  11. Is strong reciprocity really strong in the lab, let alone in the real world?

    PubMed

    Güney, Şule; Newell, Ben R

    2012-02-01

    We argue that standard experiments supporting the existence of "strong reciprocity" do not represent many cooperative situations outside the laboratory. More representative experiments that incorporate "earned" rather than "windfall" wealth also do not provide evidence for the impact of strong reciprocity on cooperation in contemporary real-life situations or in evolutionary history, supporting the main conclusions of the target article.

  12. Gutzwiller approximation in strongly correlated electron systems

    NASA Astrophysics Data System (ADS)

    Li, Chunhua

    Gutzwiller wave function is an important theoretical technique for treating local electron-electron correlations nonperturbatively in condensed matter and materials physics. It is concerned with calculating variationally the ground state wave function by projecting out multi-occupation configurations that are energetically costly. The projection can be carried out analytically in the Gutzwiller approximation that offers an approximate way of calculating expectation values in the Gutzwiller projected wave function. This approach has proven to be very successful in strongly correlated systems such as the high temperature cuprate superconductors, the sodium cobaltates, and the heavy fermion compounds. In recent years, it has become increasingly evident that strongly correlated systems have a strong propensity towards forming inhomogeneous electronic states with spatially periodic superstrutural modulations. A good example is the commonly observed stripes and checkerboard states in high- Tc superconductors under a variety of conditions where superconductivity is weakened. There exists currently a real challenge and demand for new theoretical ideas and approaches that treats strongly correlated inhomogeneous electronic states, which is the subject matter of this thesis. This thesis contains four parts. In the first part of the thesis, the Gutzwiller approach is formulated in the grand canonical ensemble where, for the first time, a spatially (and spin) unrestricted Gutzwiller approximation (SUGA) is developed for studying inhomogeneous (both ordered and disordered) quantum electronic states in strongly correlated electron systems. The second part of the thesis applies the SUGA to the t-J model for doped Mott insulators which led to the discovery of checkerboard-like inhomogeneous electronic states competing with d-wave superconductivity, consistent with experimental observations made on several families of high-Tc superconductors. In the third part of the thesis, new

  13. Single Site Strong-Motion Attenuation Relationship

    NASA Astrophysics Data System (ADS)

    Sung, C.; Lee, C.

    2009-12-01

    The standard deviation of the logarithmic residuals in ground-motion prediction may directly influence the result of probabilistic seismic hazard analysis, especially in low probability. Therefore, “how to reduce the σ?” becomes an important issue in recent years. In most modern empirical ground motion studies, the total variability was separated into inter-event and intra-event components to distinction between epistemic uncertainty and aleatory uncertainty. Another approach is gaining control over the value of σ is to investigate in more detail the behavior of the individual components of variability with a single event or a single station (e.g., Niazi and Bozorgnia 1991; Ordaz and Reyes 1999; Jain et al. 2000; Atkinson 2006; Morikawa et al (2008)). In this study, we use the large data set available from the Taiwan Strong Motion Instrumentation Program (TSMIP) and select stations which recorded more than 700 strong-motion records (six stations). The ground motion attenuation is modified based on Campbell form which includes source term, distance term and site term Vs30. It is worth noting that a single site strong motion attenuation model does not include the site term, because the site is fixed at a station. Finally, we use hemisphere projection to show the path effect of residual in this study and compare the standard deviation for a single station (σi) and total stations (σT). We find that the single-station standard deviation is 20% smaller than the total standard deviation in this study and the result is better than Atkinson (2006). In the future work, a single source-region where occurred more than 5 earthquakes which triggered more than 50 stations will be selected for single source-region attenuation study.

  14. Strong electron correlation and nonlinear optics

    NASA Astrophysics Data System (ADS)

    Ghosh, Haranath

    2012-07-01

    Based on experimental and theoretical research during the last decade, giant optical nonlinearities found in Mott-Hubbard insulators like Sr2CuO3,Ca2CuO3, Nickel halides ([Ni(chxn)2X]X2 where X = Br, Cl and `chxn' refers to cyclohexanediamine) are presented. These materials are reported to be potential materials for all optical switching devices. The occurrence of nearly degenerate lowest one- and two-photon states, strong Coulomb correlation and strong dipole coupling between the one- and two-photon states are believed to be the reason for such colossal optical nonlinearities in these systems. In some of these materials (at least), the two photon state is below the one-photon state. This leads to the possibility that such material can be excited to the lowest optical state by shinning laser of suitable wavelength, the populations thus generated decays to the two-photon state at ultrafast short time. Thus nonlinear measurements can be made from an excited state (we call as excited state nonlinear optical properties). One dimensional strongly correlated materials are predicted to have several orders-of-magnitude larger excited state optical non-linearities in comparison to that from the ground state, in the wavelength region suitable for terahertz communications. A large number of measurable nonlinear optical properties like Two Photon absorption, Photo induced absorption, Third Harmonic generation, Stimulated Raman Scattering are obtained theoretically and compared with available experimental observations. Then a large number excited state nonlinear optical properties are predicted which are experimentally measurable. We emphasize that the mechanism of nonlinear optics in one dimensional Mott-Hubbard insulators is different from that of the π-conjugated polymers — in the former spin excitation play an important role. We argue from detailed understanding of nonlinear optics of π-conjugated systems that some features in the Third Harmonic Generation

  15. Hypervelocity Plasmas with Strong MHD (Magnetohydrodynamic) Interactions.

    DTIC Science & Technology

    1984-12-01

    ARD-Ai5S 867 HYPERVELOCITY PLASMAS WITH STRONG NHD j/j (MAGNETOHYDRODYNANIC) INTERRCTIONS(U) STD RESEARCH CORP ARCADIA CA S T DEMETRIADES FT AL DEC...MIRCP RSLTO-TS HR NAINLBUEUO SADRS-16- -ArO’ mi -T7- (7 % STD RESEARCH CORPORATION POST OFFICE OX ’C’ ARC ADIA, CALIFORNIA 91006 LTf.LEPHONE! (213...Covered: 1 June 1983 -31 May 1984 December 1984 STD Research Corporation P.O. Box "’C" Arcadia, California 91006 Appi-u ’, 2 I~t or1 ’Pub I rege

  16. Non-weak/strong solutions in gasdynamics

    NASA Astrophysics Data System (ADS)

    van Dyne, David George

    1999-10-01

    Convergence of weak solutions of three conservation law gasdynamics equations to strong solutions cannot be proven. We compute non-weak/strong solutions directly utilizing gasdynamics equations without constructing weak forms. Dimensionless forms of Navier-Stokes equations are derived in matrix form directly from conservation laws for one-dimensional transient compressible flow using primitive variables ρ, u, p, and ρ, u, T. Analytical solutions of these parabolic equations must possess C2 continuity in space and C 1 continuity in time. For high-speed compressible flows analytical solutions of the GDE can be assumed to be of class C 11 in space and time since C1 continuity in space is justifiable. We construct p-version space-time least squares finite element formulations (STLSFEF) of the GDE in original parabolic form (i.e. no auxiliary variables or weak forms) in Eulerian and Lagrangian frames of reference using C11 type p-version hierarchical interpolations. Time-marching procedure is used to compute time evolution solutions for subsequent space-time strips. Numerical solution of Navier-Stokes equations for high- speed gasdynamics for isentropic and non-isentropic shocks without assumptions or approximations is demonstrated. Time accurate numerical studies show resolution of the shock structure (i.e. shock speed, shock width and shock relations) in excellent agreement with the analytical solutions. The role and influence of artificial viscosity and thermal conductivity on shock structure is demonstrated. Riemann shock tubes with pressure ratios of 20:1; 100:1 and 40:1:10 are used as model problems for formulations in Eulerian frame. Compression of air in a cylinder by a moving piston at velocities of Mach 1/1.4,2/ 1.4 ,5/1.4 and 10/1.4 is considered as a model problem for Lagrangian frame formulations. True time evolutions are reported until steady shock conditions are

  17. Strong Large Deviation and Local Limit Theorems

    DTIC Science & Technology

    1989-08-01

    Strong Large Deviation and Local Limit Theorenisi by (D -N araitia Rao Chaganty and Jayaraii Setrhurainari ____Old DoiinUnitnerity and Florida State...deviations, Local Limit Theorems. El L ,CT OCQT23 1989 u2 ’JB 169 Abstract M os t la𔃼Cd~viaio re11 t ; asym~1O 5 Iptotic expressions to log P( In > ! y...ji(S) < xandl let b",-*x Define q,,(y,; b, S) = V(b,,/p(S)) P(?),(!I, - Y) E S)]. as the pseudo-density futnction of I- . By a local limit theorem

  18. Strong Interaction Studies with PANDA at FAIR

    NASA Astrophysics Data System (ADS)

    Schönning, Karin

    2016-10-01

    The Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany, provides unique possibilities for a new generation of nuclear-, hadron- and atomic physics experiments. The future PANDA experiment at FAIR will offer a broad physics programme with emphasis on different aspects of hadron physics. Understanding the strong interaction in the perturbative regime remains one of the greatest challenges in contemporary physics and hadrons provide several important keys. In these proceedings, PANDA will be presented along with some high-lights of the planned physics programme.

  19. Understanding strongly coupling magnetism from holographic duality

    NASA Astrophysics Data System (ADS)

    Cai, Rong-Gen; Yang, Run-Qiu

    2016-07-01

    The unusual magnetic materials are significant in both science and technology. However, because of the strongly correlated effects, it is difficult to understand their novel properties from theoretical aspects. Holographic duality offers a new approach to understanding such systems from gravity side. This paper will give a brief review of our recent works on the applications of holographic duality in understanding unusual magnetic materials. Some quantitative comparision between holographic results and experimental data will be shown and some predictions from holographic duality models will be discussed.

  20. Strong correlations in actinide redox reactions

    NASA Astrophysics Data System (ADS)

    Horowitz, S. E.; Marston, J. B.

    2011-02-01

    Reduction-oxidation (redox) reactions of the redox couples An(VI)/An(V), An(V)/An(IV), and An(IV)/An(III), where An is an element in the family of early actinides (U, Np, and Pu), as well as Am(VI)/Am(V) and Am(V)/Am(III), are modeled by combining density functional theory with a generalized Anderson impurity model that accounts for the strong correlations between the 5f electrons. Diagonalization of the Anderson impurity model yields improved estimates for the redox potentials and the propensity of the actinide complexes to disproportionate.

  1. Axionlike particle assisted strongly interacting massive particle

    NASA Astrophysics Data System (ADS)

    Kamada, Ayuki; Kim, Hyungjin; Sekiguchi, Toyokazu

    2017-07-01

    We propose a new realization of strongly interacting massive particles (SIMPs) as self-interacting dark matter, where SIMPs couple to the standard model (SM) sector through an axionlike particle. Our model overcomes major obstacles accompanying the original SIMP model, such as a missing mechanism of kinetically equilibrating SIMPs with the SM plasma as well as marginal perturbativity of the chiral Lagrangian density. Remarkably, the parameter region realizing σself/mDM≃0.1 - 1 cm2/g is within the reach of future beam dump experiments such as the Search for Hidden Particles experiment.

  2. Obama Indicates Strong Support for Science

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2009-05-01

    In remarks delivered at the U.S. National Academy of Sciences (NAS) annual meeting on 27 April, U.S. President Barack Obama indicated his administration's strong support for science and for pursuing a clean energy economy. He also announced a goal that the United States “will devote more than 3% of our [gross domestic product] to research and development.” “This represents the largest commitment to scientific research and innovation in American history,” Obama said, noting that the American Recovery and Reinvestment Act already is providing the nation with its largest single boost to investment in basic research.

  3. Vacuum orientations in strong CP violation

    SciTech Connect

    Huang, Zheng; Viswanathan, K.S.; Wu, Dan-di

    1991-12-01

    We study the QCD vacuum orientation angles in correlation with the strong CP phases. A vacuum alignment equation of the dynamical chiral symmetry breaking is derived based on the anomalous Ward identity. It is emphasized that a chiral rotation of the quark field causes a change of the vacuum orientation and a change in the definition of the light pseudoscalar generators. As an illustration of the idea, {eta} {yields} 2{pi} decays are carefully studied in different chiral frames and shown to be independent of. chiral rotations.

  4. Why so strong for the lotus leaf?

    NASA Astrophysics Data System (ADS)

    Guo, Zhiguang; Liu, Weimin; Su, Bao-Lian

    2008-11-01

    The authors discussed the potential reasons why the lotus leaf is so strong by means of scanning electron microscopy (SEM). The results showed that the good mechanical properties of lotus leaf should be attributed to its architecture, such as paralleled microtubes structure, umbrellalike structure, and hierarchically layered hexagon structure. The important observation from this work is that the surface of the rear face of the lotus leaf seems to be constituted by the layers of hexagons whose hierarchical pilling up of size decreases as we go deeper from surface. This is a typical fractal-like phenomenon.

  5. SENTINEL-1 Image Matching Using Strong Scatters

    NASA Astrophysics Data System (ADS)

    Ghannadi, M. A.; Saadatseresht, M.; Motagh, M.

    2015-12-01

    The availability of new radar spaceborne sensors offers new interesting potentialities for the geomatics application: spatial and temporal change detection, generation of Digital Elevation Model(DEM) using radargrametry and interferometry. Since the start of the sentinel-1 mission to take images from different regions all over the world, the ability to use these images in variety domains has been treasured. This paper suggests a method for image matching using strong scatters. all the experiments are done on sentinel-1 stereo images from Jam, Bushehr, Iran.

  6. Bose Polarons in the Strongly Interacting Regime

    NASA Astrophysics Data System (ADS)

    Hu, Ming-Guang; Van de Graaff, Michael J.; Kedar, Dhruv; Corson, John P.; Cornell, Eric A.; Jin, Deborah S.

    2016-07-01

    When an impurity is immersed in a Bose-Einstein condensate, impurity-boson interactions are expected to dress the impurity into a quasiparticle, the Bose polaron. We superimpose an ultracold atomic gas of 87Rb with a much lower density gas of fermionic 40 impurities. Through the use of a Feshbach resonance and radio-frequency spectroscopy, we characterize the energy, spectral width, and lifetime of the resultant polaron on both the attractive and the repulsive branches in the strongly interacting regime. The width of the polaron in the attractive branch is narrow compared to its binding energy, even as the two-body scattering length diverges.

  7. Fundamental Structure of Matter and Strong Interaction

    SciTech Connect

    Jian-Ping Chen

    2011-11-01

    More than 99% of the visible matter in the universe are the protons and neutrons. Their internal structure is mostly governed by the strong interaction. Understanding their internal structure in terms of fundamental degrees-of-freedom is one of the most important subjects in modern physics. Worldwide efforts in the last few decades have lead to numerous surprises and discoveries, but major challenges still remain. An overview of the progress will be presented with a focus on the recent studies of the proton and neutron's electromagnetic and spin structure. Future perspectives will be discussed.

  8. Strong intrinsic mixing in vortex magnetic fields.

    PubMed

    Martin, James E; Shea-Rohwer, Lauren; Solis, Kyle J

    2009-07-01

    We report a method of magnetic mixing wherein a "vortex" magnetic field applied to a suspension of magnetic particles creates strong homogeneous mixing throughout the fluid volume. Experiments designed to elucidate the microscopic mechanism of mixing show that the torque is quadratic in the field, decreases with field frequency, and is optimized at a vortex field angle of approximately 55 degrees . Theory and simulations indicate that the field-induced formation of volatile particle chains is responsible for these phenomena. This technique has applications in microfluidic devices and is ideally suited to applications such as accelerating the binding of target biomolecules to biofunctionalized magnetic microbeads.

  9. Strong correlations in actinide redox reactions.

    PubMed

    Horowitz, S E; Marston, J B

    2011-02-14

    Reduction-oxidation (redox) reactions of the redox couples An(VI)/An(V), An(V)/An(IV), and An(IV)/An(III), where An is an element in the family of early actinides (U, Np, and Pu), as well as Am(VI)/Am(V) and Am(V)/Am(III), are modeled by combining density functional theory with a generalized Anderson impurity model that accounts for the strong correlations between the 5f electrons. Diagonalization of the Anderson impurity model yields improved estimates for the redox potentials and the propensity of the actinide complexes to disproportionate.

  10. Coping with strongly coupled string theory

    NASA Astrophysics Data System (ADS)

    Banks, Tom; Dine, Michael

    1994-12-01

    String theory, if it describes nature, is probably strongly coupled. As a result, one might despair of making any statements about the theory. In the framework of a set of clearly spelled out assumptions, we show that this is not necessarily the case. Certain discrete gauge symmetries, combined with supersymmetry, tightly constrain the form of the effective action. Among our assumptions are that the true ground state can be obtained from some perturbative ground state by varying the coupling, and that the actual numerical value of the low energy field-theoretic coupling g2/4π is small. It follows that the low energy theory is approximately supersymmetric; corrections to the superpotential and gauge coupling function are small, while corrections to the Kahler potential are large; the spectrum of light particles is the same at strong as at weak coupling. We survey the phenomenological consequences of this viewpoint. We also note that the string axion can serve as a QCD axion in this framework (modulo cosmological problems).

  11. Strong bending of the DNA double helix

    PubMed Central

    Vologodskii, Alexander; D. Frank-Kamenetskii, Maxim

    2013-01-01

    During the past decade, the issue of strong bending of the double helix has attracted a lot of attention. Here, we overview the major experimental and theoretical developments in the field sorting out reliably established facts from speculations and unsubstantiated claims. Theoretical analysis shows that sharp bends or kinks have to facilitate strong bending of the double helix. It remains to be determined what is the critical curvature of DNA that prompts the appearance of the kinks. Different experimental and computational approaches to the problem are analyzed. We conclude that there is no reliable evidence that any anomalous behavior of the double helix happens when DNA fragments in the range of 100 bp are circularized without torsional stress. The anomaly starts at the fragment length of about 70 bp when sharp bends or kinks emerge in essentially every molecule. Experimental data and theoretical analysis suggest that kinks may represent openings of isolated base pairs, which had been experimentally detected in linear DNA molecules. The calculation suggests that although the probability of these openings in unstressed DNA is close to 10−5, it increases sharply in small DNA circles reaching 1 open bp per circle of 70 bp. PMID:23677618

  12. Strong-coupling limit of Eliashberg theory

    SciTech Connect

    Combescot, R.

    1995-05-01

    We study the strong-coupling limit of the Eliashberg theory of superconductivity, where the coupling strength {lambda} goes to infinity and the critical temperature gets large compared to a typical phonon energy. This limit is of interest because it is both universal and simple, and we may hope to obtain from this study a deeper understanding of the conventional strong-coupling regime of superconductivity. Our work on this problem is both analytical and numerical. At {ital T}=0, we find that the excitation spectrum is discrete. We interpret physically the excited states as bound states due to a type of polaronic effect. We show that one can solve the Eliashberg equations essentially analytically by working fully on the real frequency axis. At finite temperature we find a thermal smearing of the {ital T}=0 structure. Since the critical temperature is small compared to the zero-temperature gap, thermal effects can be treated as a kind of perturbation over almost all the temperature range. In this spirit, we give a simple approximate solution which reproduces almost quantitatively the exact numerical results.

  13. Proton tautomerism for strong polarization switching

    PubMed Central

    Horiuchi, Sachio; Kobayashi, Kensuke; Kumai, Reiji; Ishibashi, Shoji

    2017-01-01

    Ferroelectrics based on proton tautomerism are promising in low-field and above-room-temperature operations. Here seven organic ferroelectric crystals are examined to search for efficient switching of strong spontaneous polarization on proton tautomerism. Solution-grown crystals exhibit strong pinning of ferroelectric domain walls, but excellent switching performance is awakened by depinning domain walls under thermal annealing and/or repetitive bipolar pulses with a high voltage. Compared with ferroelectric polymers such as polyvinylidefluoride, the optimized polarizations are comparable or stronger in magnitude whereas the coercive fields are two orders of magnitude weaker. The polarization of croconic acid, in particular, breaks its own record for organic systems in increasing from 21 to 30 μC cm−2 and now exceeds those of some commercial ferroelectric materials such as SrBi2Ta2O9 and BaTiO3. Optimization reduces the discrepancy of the spontaneous polarization with the results of the first-principles calculations to less than 15%. The cooperative roles of proton transfer and π-bond switching are discussed by employing the point-charge model and hydrogen-bond geometry. PMID:28205550

  14. Hofstadter's Butterfly in the strongly interacting regime

    NASA Astrophysics Data System (ADS)

    Dean, Cory

    2015-03-01

    In 1976, Douglas Hofstadter predicted that in the presence of both a strong magnetic field, and a spatially varying periodic potential, Bloch electrons confined to a 2D quantum well exhibit a self-similar fractal energy spectrum known as the ``Hofstadter's Butterfly.'' In subsequent years, experimental discovery of the quantum Hall effect gave birth to an expansive field of research into 2D electronic systems in the presence of a magnetic field, however, direct confirmation of the fractal spectrum remained elusive. Recently we demonstrated that graphene, in which Bloch electrons can be described by Dirac fermions, provides a new opportunity to investigate this nearly 40 year old problem. In this talk I will discuss the experimental realization of Hofstader's butterfly by exploiting nano-scale interfacial effects between graphene and hexagonal boron nitride substrates, together with application of extremely high magnetic fields. Utilizing newly developed techniques to fabricate ultra-clean graphene devices, I will additionally demonstrate the capability to probe for the first time the effect of strong electron interactions within the fractal Hofstadter spectrum.

  15. The evolution of strong reproductive isolation.

    PubMed

    Barton, Nicholas H; de Cara, Maria Angeles Rodriguez

    2009-05-01

    Felsenstein distinguished two ways by which selection can directly strengthen isolation. First, a modifier that strengthens prezygotic isolation can be favored everywhere. This fits with the traditional view of reinforcement as an adaptation to reduce deleterious hybridization by strengthening assortative mati