Science.gov

Sample records for protein surfaces reveals

  1. Revealing Surface Waters on an Antifreeze Protein by Fusion Protein Crystallography Combined with Molecular Dynamic Simulations.

    PubMed

    Sun, Tianjun; Gauthier, Sherry Y; Campbell, Robert L; Davies, Peter L

    2015-10-01

    Antifreeze proteins (AFPs) adsorb to ice through an extensive, flat, relatively hydrophobic surface. It has been suggested that this ice-binding site (IBS) organizes surface waters into an ice-like clathrate arrangement that matches and fuses to the quasi-liquid layer on the ice surface. On cooling, these waters join the ice lattice and freeze the AFP to its ligand. Evidence for the generality of this binding mechanism is limited because AFPs tend to crystallize with their IBS as a preferred protein-protein contact surface, which displaces some bound waters. Type III AFP is a 7 kDa globular protein with an IBS made up two adjacent surfaces. In the crystal structure of the most active isoform (QAE1), the part of the IBS that docks to the primary prism plane of ice is partially exposed to solvent and has clathrate waters present that match this plane of ice. The adjacent IBS, which matches the pyramidal plane of ice, is involved in protein-protein crystal contacts with few surface waters. Here we have changed the protein-protein contacts in the ice-binding region by crystallizing a fusion of QAE1 to maltose-binding protein. In this 1.9 Å structure, the IBS that fits the pyramidal plane of ice is exposed to solvent. By combining crystallography data with MD simulations, the surface waters on both sides of the IBS were revealed and match well with the target ice planes. The waters on the pyramidal plane IBS were loosely constrained, which might explain why other isoforms of type III AFP that lack the prism plane IBS are less active than QAE1. The AFP fusion crystallization method can potentially be used to force the exposure to solvent of the IBS on other AFPs to reveal the locations of key surface waters.

  2. Local Geometry and Evolutionary Conservation of Protein Surfaces Reveal the Multiple Recognition Patches in Protein-Protein Interactions.

    PubMed

    Laine, Elodie; Carbone, Alessandra

    2015-12-01

    Protein-protein interactions (PPIs) are essential to all biological processes and they represent increasingly important therapeutic targets. Here, we present a new method for accurately predicting protein-protein interfaces, understanding their properties, origins and binding to multiple partners. Contrary to machine learning approaches, our method combines in a rational and very straightforward way three sequence- and structure-based descriptors of protein residues: evolutionary conservation, physico-chemical properties and local geometry. The implemented strategy yields very precise predictions for a wide range of protein-protein interfaces and discriminates them from small-molecule binding sites. Beyond its predictive power, the approach permits to dissect interaction surfaces and unravel their complexity. We show how the analysis of the predicted patches can foster new strategies for PPIs modulation and interaction surface redesign. The approach is implemented in JET2, an automated tool based on the Joint Evolutionary Trees (JET) method for sequence-based protein interface prediction. JET2 is freely available at www.lcqb.upmc.fr/JET2.

  3. Local Geometry and Evolutionary Conservation of Protein Surfaces Reveal the Multiple Recognition Patches in Protein-Protein Interactions

    PubMed Central

    Laine, Elodie; Carbone, Alessandra

    2015-01-01

    Protein-protein interactions (PPIs) are essential to all biological processes and they represent increasingly important therapeutic targets. Here, we present a new method for accurately predicting protein-protein interfaces, understanding their properties, origins and binding to multiple partners. Contrary to machine learning approaches, our method combines in a rational and very straightforward way three sequence- and structure-based descriptors of protein residues: evolutionary conservation, physico-chemical properties and local geometry. The implemented strategy yields very precise predictions for a wide range of protein-protein interfaces and discriminates them from small-molecule binding sites. Beyond its predictive power, the approach permits to dissect interaction surfaces and unravel their complexity. We show how the analysis of the predicted patches can foster new strategies for PPIs modulation and interaction surface redesign. The approach is implemented in JET2, an automated tool based on the Joint Evolutionary Trees (JET) method for sequence-based protein interface prediction. JET2 is freely available at www.lcqb.upmc.fr/JET2. PMID:26690684

  4. Structure Function Studies of Vaccinia Virus Host Range Protein K1 Reveal a Novel Functional Surface for Ankyrin Repeat Proteins

    SciTech Connect

    Li, Yongchao; Meng, Xiangzhi; Xiang, Yan; Deng, Junpeng

    2010-06-15

    Poxvirus host tropism at the cellular level is regulated by virus-encoded host range proteins acting downstream of virus entry. The functioning mechanisms of most host range proteins are unclear, but many contain multiple ankyrin (ANK) repeats, a motif that is known for ligand interaction through a concave surface. We report here the crystal structure of one of the ANK repeat-containing host range proteins, the vaccinia virus K1 protein. The structure, at a resolution of 2.3 {angstrom}, showed that K1 consists entirely of ANK repeats, including seven complete ones and two incomplete ones, one each at the N and C terminus. Interestingly, Phe82 and Ser83, which were previously shown to be critical for K1's function, are solvent exposed and located on a convex surface, opposite the consensus ANK interaction surface. The importance of this convex surface was further supported by our additional mutagenesis studies. We found that K1's host range function was negatively affected by substitution of either Asn51 or Cys47 and completely abolished by substitution of both residues. Cys47 and Asn51 are also exposed on the convex surface, spatially adjacent to Phe82 and Ser83. Altogether, our data showed that K1 residues on a continuous convex ANK repeat surface are critical for the host range function, suggesting that K1 functions through ligand interaction and does so with a novel ANK interaction surface.

  5. PSC: protein surface classification.

    PubMed

    Tseng, Yan Yuan; Li, Wen-Hsiung

    2012-07-01

    We recently proposed to classify proteins by their functional surfaces. Using the structural attributes of functional surfaces, we inferred the pairwise relationships of proteins and constructed an expandable database of protein surface classification (PSC). As the functional surface(s) of a protein is the local region where the protein performs its function, our classification may reflect the functional relationships among proteins. Currently, PSC contains a library of 1974 surface types that include 25,857 functional surfaces identified from 24,170 bound structures. The search tool in PSC empowers users to explore related surfaces that share similar local structures and core functions. Each functional surface is characterized by structural attributes, which are geometric, physicochemical or evolutionary features. The attributes have been normalized as descriptors and integrated to produce a profile for each functional surface in PSC. In addition, binding ligands are recorded for comparisons among homologs. PSC allows users to exploit related binding surfaces to reveal the changes in functionally important residues on homologs that have led to functional divergence during evolution. The substitutions at the key residues of a spatial pattern may determine the functional evolution of a protein. In PSC (http://pocket.uchicago.edu/psc/), a pool of changes in residues on similar functional surfaces is provided.

  6. The Identification and Functional Characterization of WxL Proteins from Enterococcus faecium Reveal Surface Proteins Involved in Extracellular Matrix Interactions

    PubMed Central

    Galloway-Peña, Jessica R.; Liang, Xiaowen; Singh, Kavindra V.; Yadav, Puja; Chang, Chungyu; La Rosa, Sabina Leanti; Shelburne, Samuel; Ton-That, Hung; Höök, Magnus

    2014-01-01

    The WxL domain recently has been identified as a novel cell wall binding domain found in numerous predicted proteins within multiple Gram-positive bacterial species. However, little is known about the function of proteins containing this novel domain. Here, we identify and characterize 6 Enterococcus faecium proteins containing the WxL domain which, by reverse transcription-PCR (RT-PCR) and genomic analyses, are located in three similarly organized operons, deemed WxL loci A, B, and C. Western blotting, electron microscopy, and enzyme-linked immunosorbent assays (ELISAs) determined that genes of WxL loci A and C encode antigenic, cell surface proteins exposed at higher levels in clinical isolates than in commensal isolates. Secondary structural analyses of locus A recombinant WxL domain-containing proteins found they are rich in β-sheet structure and disordered segments. Using Biacore analyses, we discovered that recombinant WxL proteins from locus A bind human extracellular matrix proteins, specifically type I collagen and fibronectin. Proteins encoded by locus A also were found to bind to each other, suggesting a novel cell surface complex. Furthermore, bile salt survival assays and animal models using a mutant from which all three WxL loci were deleted revealed the involvement of WxL operons in bile salt stress and endocarditis pathogenesis. In summary, these studies extend our understanding of proteins containing the WxL domain and their potential impact on colonization and virulence in E. faecium and possibly other Gram-positive bacterial species. PMID:25512313

  7. The Plasmodium vivax Merozoite Surface Protein 3β Sequence Reveals Contrasting Parasite Populations in Southern and Northwestern Thailand

    PubMed Central

    Kuamsab, Napaporn; Sattabongkot, Jetsumon; Sirichaisinthop, Jeeraphat; Jongwutiwes, Somchai; Cui, Liwang

    2014-01-01

    Background Malaria control efforts have a significant impact on the epidemiology and parasite population dynamics. In countries aiming for malaria elimination, malaria transmission may be restricted to limited transmission hot spots, where parasite populations may be isolated from each other and experience different selection forces. Here we aim to examine the Plasmodium vivax population divergence in geographically isolated transmission zones in Thailand. Methodology We employed the P. vivax merozoite surface protein 3β (PvMSP3β) as a molecular marker for characterizing P. vivax populations based on the extensive diversity of this gene in Southeast Asian parasite populations. To examine two parasite populations with different transmission levels in Thailand, we obtained 45 P. vivax isolates from Tak Province, northwestern Thailand, where the annual parasite incidence (API) was more than 2%, and 28 isolates from Yala and Narathiwat Provinces, southern Thailand, where the API was less than 0.02%. We sequenced the PvMSP3β gene and examined its genetic diversity and molecular evolution between the parasite populations. Principal Findings Of 58 isolates containing single PvMSP3β alleles, 31 sequence types were identified. The overall haplotype diversity was 0.77±0.06 and nucleotide diversity 0.0877±0.0054. The northwestern vivax malaria population exhibited extensive haplotype diversity (HD) of PvMSP3β (HD = 1.0). In contrast, the southern parasite population displayed a single PvMSP3β allele (HD = 0), suggesting a clonal population expansion. This result revealed that the extent of allelic diversity in P. vivax populations in Thailand varies among endemic areas. Conclusion Malaria parasite populations in a given region may vary significantly in genetic diversity, which may be the result of control and influenced by the magnitude of malaria transmission intensity. This is an issue that should be taken into account for the implementation of P. vivax

  8. Genomic and Surface Proteomic Analysis of the Canine Pathogen Staphylococcus pseudintermedius Reveals Proteins That Mediate Adherence to the Extracellular Matrix ▿

    PubMed Central

    Bannoehr, Jeanette; Ben Zakour, Nouri L.; Reglinski, Mark; Inglis, Neil F.; Prabhakaran, Sabitha; Fossum, Even; Smith, David G.; Wilson, Gillian J.; Cartwright, Robyn A.; Haas, Juergen; Hook, Magnus; van den Broek, Adri H. M.; Thoday, Keith L.; Fitzgerald, J. Ross

    2011-01-01

    Cell wall-associated (CWA) proteins made by Gram-positive pathogens play a fundamental role in pathogenesis. Staphylococcus pseudintermedius is a major animal pathogen responsible for the canine skin disease bacterial pyoderma. Here, we describe the bioinformatic analysis of the family of 18 predicted CWA proteins encoded in the genome of S. pseudintermedius strain ED99 and determine their distribution among a phylogenetically diverse panel of S. pseudintermedius clinical isolates and closely related species of the Staphylococcus intermedius group. In parallel, we employed a proteomic approach to identify proteins presented on the surface of strain ED99 in vitro, revealing a total of 60 surface-localized proteins in one or more phases of growth, including 6 of the 18 genome-predicted CWA proteins. Based on these analyses, we selected two CWA proteins (SpsD and SpsL) encoded by all strains examined and investigated their capacity to mediate adherence to extracellular matrix proteins. We discovered that SpsD and SpsL mediated binding of a heterologous host, Lactococcus lactis, to fibrinogen and fibronectin and that SpsD mediated binding to cytokeratin 10, a major constituent of mammalian skin. Of note, the interaction with fibrinogen was host-species dependent, suggestive of a role for SpsD and SpsL in the host tropism of S. pseudintermedius. Finally, we identified IgG specific for SpsD and SpsL in sera from dogs with bacterial pyoderma, implying that both proteins are expressed during infection. The combined genomic and proteomic approach employed in the current study has revealed novel host-pathogen interactions which represent candidate therapeutic targets for the control of bacterial pyoderma. PMID:21576333

  9. Live-cell FRET imaging reveals clustering of the prion protein at the cell surface induced by infectious prions.

    PubMed

    Tavares, Evandro; Macedo, Joana A; Paulo, Pedro M R; Tavares, Catarina; Lopes, Carlos; Melo, Eduardo P

    2014-07-01

    Prion diseases are associated to the conversion of the prion protein into a misfolded pathological isoform. The mechanism of propagation of protein misfolding by protein templating remains largely unknown. Neuroblastoma cells were transfected with constructs of the prion protein fused to both CFP-GPI-anchored and to YFP-GPI-anchored and directed to its cell membrane location. Live-cell FRET imaging between the prion protein fused to CFP or YFP was measured giving consistent values of 10±2%. This result was confirmed by fluorescence lifetime imaging microscopy and indicates intermolecular interactions between neighbor prion proteins. In particular, considering that a maximum FRET efficiency of 17±2% was determined from a positive control consisting of a fusion CFP-YFP-GPI-anchored. A stable cell clone expressing the two fusions containing the prion protein was also selected to minimize cell-to-cell variability. In both, stable and transiently transfected cells, the FRET efficiency consistently increased in the presence of infectious prions - from 4±1% to 7±1% in the stable clone and from 10±2% to 16±1% in transiently transfected cells. These results clearly reflect an increased clustering of the prion protein on the membrane in the presence of infectious prions, which was not observed in negative control using constructs without the prion protein and upon addition of non-infected brain. Our data corroborates the recent view that the primary site for prion conversion is the cell membrane. Since our fluorescent cell clone is not susceptible to propagate infectivity, we hypothesize that the initial event of prion infectivity might be the clustering of the GPI-anchored prion protein.

  10. Negative staining and immunoelectron microscopy of adhesion-deficient mutants of Streptococcus salivarius reveal that the adhesive protein antigens are separate classes of cell surface fibril.

    PubMed Central

    Weerkamp, A H; Handley, P S; Baars, A; Slot, J W

    1986-01-01

    The subcellular distribution of the cell wall-associated protein antigens of Streptococcus salivarius HB, which are involved in specific adhesive properties of the cells, was studied. Mutants which had lost the adhesive properties and lacked the antigens at the cell surface were compared with the parent strain. Immunoelectron microscopy of cryosections of cells labeled with affinity-purified, specific antisera and colloidal gold-protein A complexes was used to locate the antigens. Antigen C (AgC), a glycoprotein involved in attachment to host surfaces, was mainly located in the fibrillar layer outside the cell wall. A smaller amount of label was also found throughout the cytoplasmic area in the form of small clusters of gold particles, which suggests a macromolecular association. Mutant HB-7, which lacks the wall-associated AgC, accumulated AgC reactivity intracellularly. Intracellular AgC was often found associated with isolated areas of increased electron density, but sometimes seemed to fill the entire interior of the cell. Antigen B (AgB), a protein responsible for interbacterial coaggregation, was also located in the fibrillar layer, although its distribution differed from that of the wall-associated AgC since AgB was found predominantly in the peripheral areas. A very small amount of label was also found in the cytoplasmic area as discrete gold particles. Mutant HB-V5, which lacks wall-associated AgB, was not labeled in the fibrillar coat, but showed the same weak intracellular label as the parent strain. Immunolabeling with serum against AgD, another wall-associated protein but of unknown function, demonstrated its presence in the fibrillar layer of strain HB. Negatively stained preparations of whole cells of wild-type S. salivarius and mutants that had lost wall-associated AgB or AgC revealed that two classes of short fibrils are carried on the cell surface at the same time. AgB and AgC are probably located on separate classes of short, protease

  11. Surface Relaxation in Protein Crystals

    NASA Technical Reports Server (NTRS)

    Boutet, S.; Robinson, I. K.; Hu, Z. W.; Thomas, B. R.; Chernov, A. A.

    2002-01-01

    Surface X-ray diffraction measurements were performed on (111) growth faces of crystals of the Cellular iron-storage protein horse spleen ferritin. Crystal Trunkation Rods (CTR) were measured. A fit of the measured profile of the CTR revealed a surface roughness of 48 +/- 4.5 A and a top layer spacing contraction of 3.9 +/- 1.5%. In addition to the peak from the CTR, the rocking curves of the crystals displayed unexpected extra peaks. Multiple-scattering is demonstrated to account for them. Future applications of the method could allow the exploration of hydration effects on the growth of protein crystals.

  12. Protein adsorption onto ceramic surfaces.

    PubMed

    Takami, Y; Yamane, S; Makinouchi, K; Otsuka, G; Glueck, J; Benkowski, R; Nosé, Y

    1998-04-01

    Ceramics seldom have been used as blood-contacting materials. However, alumina ceramic (Al2O3) and polyethylene are incorporated into the pivot bearings of the Gyro centrifugal blood pump. This material combination was chosen based on the high durability of the materials. Due to the stagnant flow that often occurs in a continuous flow condition inside a centrifugal pump, pivot bearing system is extremely critical. To evaluate the thombogenicity of pivot bearings in the Gyro pump, this study sought to investigate protein adsorption, particularly albumin, IgG, fibrinogen, and fibronectin onto ceramic surfaces. Al2O3 and silicon carbide ceramic (SiC) were compared with polyethylene (PE) and polyvinylchloride (PVC). Bicinchoninic acid (BCA) protein assay revealed that the amount of adsorbed proteins onto Al2O3 and SiC was significantly less than that on PVC. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) indicated that numerous proteins adsorbed onto PVC compared to PE, Al2O3, and SiC. Identification of adsorbed proteins by Western immunoblotting revealed that the adsorption of albumin was similar on all four materials tested. Western immunoblotting also indicated lesser amounts of IgG, fibrinogen, and fibronectin on Al2O3 and SiC than on PE and PVC. In conclusion, ceramics (Al2O3 and SiC) are expected to be thromboresistant from the viewpoint of protein adsorption. PMID:9511095

  13. Structure of the TbBILBO1 Protein N-terminal Domain from Trypanosoma brucei Reveals an Essential Requirement for a Conserved Surface Patch*

    PubMed Central

    Vidilaseris, Keni; Morriswood, Brooke; Kontaxis, Georg; Dong, Gang

    2014-01-01

    TbBILBO1 is the only known component of the flagellar pocket collar, a cytoskeletal barrier element found in trypanosomes. The N-terminal domain (NTD) of TbBILBO1 was found to be dispensable for targeting of the protein in vivo. However, overexpression of constructs lacking the NTD caused complete growth inhibition, implying an essential requirement for this domain. A high resolution structure of the NTD of TbBILBO1 showed that it forms a ubiquitin-like fold with a conserved surface patch. Mutagenesis of this patch recapitulated the phenotypic effects of deleting the entire domain and was found to cause cell death. The surface patch on the NTD of TbBILBO1 is therefore a potential drug target. PMID:24362019

  14. cDNA cloning of a mouse mammary epithelial cell surface protein reveals the existence of epidermal growth factor-like domains linked to factor VIII-like sequences

    SciTech Connect

    Stubbs, J.D.; Bui, A. San Francisco State Univ., CA ); Lekutis, C.; Singer, K.L.; Srinivasan, U.; Parry, G. ); Yuzuki, D. )

    1990-11-01

    A 2.1-kilobase cDNA coding for a surface protein of mammary epithelial cells has been isolated from a mouse mammary gland {lambda}gt11 cDNA library. Sequence analysis of this cDNA reveals an open reading frame of 1,389 base pairs that defines a protein with a molecular mass of 51.5 dKa. Structural analysis of the predicted sequence identifies two putative functional domains of the protein: (i) an N-terminal cysteine-rich region that is similar to epidermal growth factor-like domains of Drosophila Notch-1 protein and (ii) a large segment of the sequence that exhibited 54.5% identify with C-terminal domains of human coagulation factors VIII and V. These similarities in structure are used to predict the possible functions of the protein and its means of interaction with the cell surface. mRNA expression was detectable in mammary tissue from nonpregnant animals but was maximal in the lactating gland. In cultured cells, mRNA levels also correlated with the degree of cellular differentiation.

  15. Protein Vivisection Reveals Elusive Intermediates in Folding

    SciTech Connect

    Zheng, Zhongzhou; Sosnick, Tobin R.

    2010-05-25

    Although most folding intermediates escape detection, their characterization is crucial to the elucidation of folding mechanisms. Here, we outline a powerful strategy to populate partially unfolded intermediates: A buried aliphatic residue is substituted with a charged residue (e.g., Leu {yields} Glu{sup -}) to destabilize and unfold a specific region of the protein. We applied this strategy to ubiquitin, reversibly trapping a folding intermediate in which the {beta}5-strand is unfolded. The intermediate refolds to a native-like structure upon charge neutralization under mildly acidic conditions. Characterization of the trapped intermediate using NMR and hydrogen exchange methods identifies a second folding intermediate and reveals the order and free energies of the two major folding events on the native side of the rate-limiting step. This general strategy may be combined with other methods and have broad applications in the study of protein folding and other reactions that require trapping of high-energy states.

  16. Protein vivisection reveals elusive intermediates in folding.

    PubMed

    Zheng, Zhongzhou; Sosnick, Tobin R

    2010-04-01

    Although most folding intermediates escape detection, their characterization is crucial to the elucidation of folding mechanisms. Here, we outline a powerful strategy to populate partially unfolded intermediates: A buried aliphatic residue is substituted with a charged residue (e.g., Leu-->Glu(-)) to destabilize and unfold a specific region of the protein. We applied this strategy to ubiquitin, reversibly trapping a folding intermediate in which the beta5-strand is unfolded. The intermediate refolds to a native-like structure upon charge neutralization under mildly acidic conditions. Characterization of the trapped intermediate using NMR and hydrogen exchange methods identifies a second folding intermediate and reveals the order and free energies of the two major folding events on the native side of the rate-limiting step. This general strategy may be combined with other methods and have broad applications in the study of protein folding and other reactions that require trapping of high-energy states.

  17. Structure determination of archaea-specific ribosomal protein L46a reveals a novel protein fold

    SciTech Connect

    Feng, Yingang; Song, Xiaxia; Lin, Jinzhong; Xuan, Jinsong; Cui, Qiu; Wang, Jinfeng

    2014-07-18

    Highlights: • The archaea-specific ribosomal protein L46a has no homology to known proteins. • Three dimensional structure and backbone dynamics of L46a were determined by NMR. • The structure of L46a represents a novel protein fold. • A potential rRNA-binding surface on L46a was identified. • The potential position of L46a on the ribosome was proposed. - Abstract: Three archaea-specific ribosomal proteins recently identified show no sequence homology with other known proteins. Here we determined the structure of L46a, the most conserved one among the three proteins, from Sulfolobus solfataricus P2 using NMR spectroscopy. The structure presents a twisted β-sheet formed by the N-terminal part and two helices at the C-terminus. The L46a structure has a positively charged surface which is conserved in the L46a protein family and is the potential rRNA-binding site. Searching homologous structures in Protein Data Bank revealed that the structure of L46a represents a novel protein fold. The backbone dynamics identified by NMR relaxation experiments reveal significant flexibility at the rRNA binding surface. The potential position of L46a on the ribosome was proposed by fitting the structure into a previous electron microscopy map of the ribosomal 50S subunit, which indicated that L46a contacts to domain I of 23S rRNA near a multifunctional ribosomal protein L7ae.

  18. Proteomic analysis of cell lines expressing small hepatitis B surface antigen revealed decreased glucose-regulated protein 78 kDa expression in association with higher susceptibility to apoptosis.

    PubMed

    Zhao, Chao; Zhang, Wei; Tian, Xiaochen; Fang, Caiyun; Lu, Haojie; Yuan, Zhenghong; Yang, Pengyuan; Wen, Yumei

    2010-01-01

    Accumulating evidence suggests a key role of hepatocyte apoptosis in the pathogenesis of viral hepatitis B. It was found in this study that stable expression of small hepatitis B surface antigen (SHBs) in HepG2 and Huh7 cells increased susceptibility to apoptosis. Proteomic analysis of SHBs expressing HepG2 cells revealed 43 down-regulated and 38 up-regulated proteins. Some have been implicated in apoptosis, including glucose-regulated protein 78 kDa (GRP78), heterogeneous nuclear ribonucleoprotein H3 (hnRNP H), Rho GDP dissociation inhibitor (GDI), cystatin B, far upstream element-binding protein (FUSEbp), and TNF receptor-associated protein 1 (TRAP1). Differential expression of GRP78 and several other proteins was confirmed by Western blot analysis. Replenishing GRP78 improved cellular resistance to apoptosis, whereas reduction of GRP78 by siRNA increased susceptibility even in the absence of SHBs. Taken together, these results suggest that HBsAg plays a pro-apoptotic role through down-regulation of GRP78.

  19. Genetic structure of Plasmodium vivax using the merozoite surface protein 1 icb5-6 fragment reveals new hybrid haplotypes in southern Mexico

    PubMed Central

    2014-01-01

    Background Plasmodium vivax is a protozoan parasite with an extensive worldwide distribution, being highly prevalent in Asia as well as in Mesoamerica and South America. In southern Mexico, P. vivax transmission has been endemic and recent studies suggest that these parasites have unique biological and genetic features. The msp1 gene has shown high rate of nucleotide substitutions, deletions, insertions, and its mosaic structure reveals frequent events of recombination, maybe between highly divergent parasite isolates. Methods The nucleotide sequence variation in the polymorphic icb5-6 fragment of the msp1 gene of Mexican and worldwide isolates was analysed. To understand how genotype diversity arises, disperses and persists in Mexico, the genetic structure and genealogical relationships of local isolates were examined. To identify new sequence hybrids and their evolutionary relationships with other P. vivax isolates circulating worldwide two haplotype networks were constructed questioning that two portions of the icb5-6 have different evolutionary history. Results Twelve new msp1 icb5-6 haplotypes of P. vivax from Mexico were identified. These nucleotide sequences show mosaic structure comprising three partially conserved and two variable subfragments and resulted into five different sequence types. The variable subfragment sV1 has undergone recombination events and resulted in hybrid sequences and the haplotype network allocated the Mexican haplotypes to three lineages, corresponding to the Sal I and Belem types, and other more divergent group. In contrast, the network from icb5-6 fragment but not sV1 revealed that the Mexican haplotypes belong to two separate lineages, none of which are closely related to Sal I or Belem sequences. Conclusions These results suggest that the new hybrid haplotypes from southern Mexico were the result of at least three different recombination events. These rearrangements likely resulted from the recombination between haplotypes of

  20. Protein Structures Revealed at Record Pace

    SciTech Connect

    Hura, Greg

    2009-01-01

    The structure of a protein in days -- not months or years -- ushers in a new era in genomics research. Berkeley Lab scientists have developed a high-throughput protein pipeline that could expedite the development of biofuels and elucidate how proteins carry out lifes vital functions.

  1. Protein Structures Revealed at Record Pace

    SciTech Connect

    Greg Hura

    2009-07-09

    The structure of a protein in days -- not months or years -- ushers in a new era in genomics research. Berkeley Lab scientists have developed a high-throughput protein pipeline that could expedite the development of biofuels and elucidate how proteins carry out lifes vital functions.

  2. Protein Structures Revealed at Record Pace

    ScienceCinema

    Hura, Greg

    2013-05-29

    The structure of a protein in days -- not months or years -- ushers in a new era in genomics research. Berkeley Lab scientists have developed a high-throughput protein pipeline that could expedite the development of biofuels and elucidate how proteins carry out lifes vital functions.

  3. Protein Structures Revealed at Record Pace

    ScienceCinema

    Greg Hura

    2016-07-12

    The structure of a protein in days -- not months or years -- ushers in a new era in genomics research. Berkeley Lab scientists have developed a high-throughput protein pipeline that could expedite the development of biofuels and elucidate how proteins carry out lifes vital functions.

  4. Protein-Polymer Functionalized Nanopatterned Surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Haoyu; Akcora, Pinar

    2015-03-01

    Understanding and controlling the protein interactions with surfaces for biosensors and biomedical implants is a fundamental problem for biocompatible nanomaterial design. Proteins attached in ordered nanopores can exhibit superior biological activities compared to smooth microstructured surfaces. We developed heterogeneous and nanopatterned surfaces decorated with polymer brushes and proteins to control protein fates through elasticity. The heterogeneity of surfaces is controlled with well-defined chemistry, pattern size and geometry, stiffness of polymers and protein types. We will present our recent nanoindentation results on nanopatterned and biofunctionalized flat surfaces and discuss the pattern size effect on protein activity, hence conformation.

  5. Optical tweezers reveal how proteins alter replication

    NASA Astrophysics Data System (ADS)

    Chaurasiya, Kathy

    Single molecule force spectroscopy is a powerful method that explores the DNA interaction properties of proteins involved in a wide range of fundamental biological processes such as DNA replication, transcription, and repair. We use optical tweezers to capture and stretch a single DNA molecule in the presence of proteins that bind DNA and alter its mechanical properties. We quantitatively characterize the DNA binding mechanisms of proteins in order to provide a detailed understanding of their function. In this work, we focus on proteins involved in replication of Escherichia coli (E. coli ), endogenous eukaryotic retrotransposons Ty3 and LINE-1, and human immunodeficiency virus (HIV). DNA polymerases replicate the entire genome of the cell, and bind both double-stranded DNA (dsDNA) and single-stranded DNA (ssDNA) during DNA replication. The replicative DNA polymerase in the widely-studied model system E. coli is the DNA polymerase III subunit alpha (DNA pol III alpha). We use optical tweezers to determine that UmuD, a protein that regulates bacterial mutagenesis through its interactions with DNA polymerases, specifically disrupts alpha binding to ssDNA. This suggests that UmuD removes alpha from its ssDNA template to allow DNA repair proteins access to the damaged DNA, and to facilitate exchange of the replicative polymerase for an error-prone translesion synthesis (TLS) polymerase that inserts nucleotides opposite the lesions, so that bacterial DNA replication may proceed. This work demonstrates a biophysical mechanism by which E. coli cells tolerate DNA damage. Retroviruses and retrotransposons reproduce by copying their RNA genome into the nuclear DNA of their eukaryotic hosts. Retroelements encode proteins called nucleic acid chaperones, which rearrange nucleic acid secondary structure and are therefore required for successful replication. The chaperone activity of these proteins requires strong binding affinity for both single- and double-stranded nucleic

  6. Dawn at Ceres reveals an ammoniated surface

    NASA Astrophysics Data System (ADS)

    Pieters, Carle M.; De Sanctis, Maria Cristina; Ammannito, Eleonora; Raponi, Andrea; Combe, Jean-Philippe; McCord, Thomas B.; McSween, Harry; McFadden, Lucy A.; Marchi, Simone; Capaccioni, Fabrizio; Capria, Maria Teresa; Carrozzo, Giacomo; Ciarniello, Mauro; Longobardo, Andrea; Fonte, Sergio; Formisano, Michelangelo; Frigeri, Alessandro; Giardino, Marco; Magni, Gianfranco; Palomba, Enersto; Tosi, Federico; Turrini, Diego; Zambon, Francesca; Jaumann, Ralf; Feldman, William; Prettyman, Thomas; Toplis, Michael; Raymond, Carol A.; Russell, Christopher T.

    2015-11-01

    The Visible and Infrared Mapping Spectrometer (VIR) on board the Dawn spacecraft has observed Ceres’ surface and acquired spectra (0.5 to 5 µm) since January 2015. Here we report the average Ceres spectrum, including the important spectral range (2.6-2.9 µm) previously precluded from (telescopic) measurements due to telluric atmospheric absorptions. The VIR data confirm that the surface is very dark with an average albedo of 0.090 ±0.006 at 0.55 µm, consistent with Hubble Space Telescope data (Li et al., Icarus, 2006) and contains no prominent absorption features in the visible and near-Infrared at wavelengths less than 2.5 µm. Ceres’ average spectrum, however, is characterized by a prominent diagnostic absorption band at 2.7 µm along with weaker absorption bands observed between 3.05-3.1, 3.3-3.4 and 3.9-4 µm. We modeled the new VIR spectra of Ceres with various ices, meteorites, silicates, carbonates, and hydrates using Hapke theory. Results of the spectral modeling indicate that extensive water ice is not present in spectra representing the typical surface acquired to date at relatively low spatial resolution (<11 km/pixel). The best fit is obtained with a mixture of ammoniated phyllosilicates mixed with other clays, Mg-carbonates, serpentine, and a strongly absorbing material, such as magnetite (De Sanctis et al., Nature, 2015, in review). The presence of ammonia-bearing materials in the crust across much of the surface has implications for the origin of Ceres and its internal structure and evolution. At the time of this presentation the Dawn spacecraft will have also completed its high altitude mapping orbit to look for anticipated small-scale mineralogy variations across this remarkable dwarf planet.Acknowledgements: VIR is funded by the Italian Space Agency-ASI and was developed under the leadership of INAF, Rome-Italy. The instrument was built by Selex-Galileo, Florence-Italy. The analyses are supported by ASI, NASA, and the German Space Agency

  7. Protein Adsorption on Surfaces with Grafted Polymers

    PubMed Central

    Szleifer, I.

    1997-01-01

    A general theoretical framework for studying the adsorption of protein molecules on surfaces with grafted polymers is presented. The approach is a generalization of the single-chain mean-field theory, in which the grafted polymer-protein-solvent layer is assumed to be inhomogeneous in the direction perpendicular to the grafting surface. The theory enables the calculation of the adsorption isotherms of the protein as a function of the surface coverage of grafted polymers, concentration of protein in bulk, and type of solvent molecules. The potentials of mean force of the protein with the surface are calculated as a function of polymer surface coverage and amount of protein adsorbed. The theory is applied to model lysozyme on surfaces with grafted polyethylene oxide. The protein is modeled as spherical in solution, and it is assumed that the protein-polymer, protein-solvent, and polymer-solvent attractive interactions are all equal. Therefore, the interactions determining the structure of the layer (beyond the bare polymer-surface and protein-surface interactions) are purely repulsive. The bare surface-protein interaction is taken from atomistic calculations by Lee and Park. For surfaces that do not have preferential attractions with the grafted polymer segments, the adsorption isotherms of lysozyme are independent of the polymer length for chains with more than 50 ethylene oxide units. However, the potentials of mean force show strong variations with grafted polymer molecular weight. The competition between different conformations of the adsorbed protein is studied in detail. The adsorption isotherms change qualitatively for surfaces with attractive interactions with ethylene oxide monomers. The protein adsorption is a function of chain length—the longer the polymer the more effective it is in preventing protein adsorption. The structure of the layer and its deformation upon protein adsorption are very important in determining the adsorption isotherms and the

  8. Synthetic protein interactions reveal a functional map of the cell

    PubMed Central

    Berry, Lisa K; Ólafsson, Guðjón; Ledesma-Fernández, Elena; Thorpe, Peter H

    2016-01-01

    To understand the function of eukaryotic cells, it is critical to understand the role of protein-protein interactions and protein localization. Currently, we do not know the importance of global protein localization nor do we understand to what extent the cell is permissive for new protein associations – a key requirement for the evolution of new protein functions. To answer this question, we fused every protein in the yeast Saccharomyces cerevisiae with a partner from each of the major cellular compartments and quantitatively assessed the effects upon growth. This analysis reveals that cells have a remarkable and unanticipated tolerance for forced protein associations, even if these associations lead to a proportion of the protein moving compartments within the cell. Furthermore, the interactions that do perturb growth provide a functional map of spatial protein regulation, identifying key regulatory complexes for the normal homeostasis of eukaryotic cells. DOI: http://dx.doi.org/10.7554/eLife.13053.001 PMID:27098839

  9. Protein painting reveals solvent-excluded drug targets hidden within native protein–protein interfaces

    PubMed Central

    Luchini, Alessandra; Espina, Virginia; Liotta, Lance A.

    2014-01-01

    Identifying the contact regions between a protein and its binding partners is essential for creating therapies that block the interaction. Unfortunately, such contact regions are extremely difficult to characterize because they are hidden inside the binding interface. Here we introduce protein painting as a new tool that employs small molecules as molecular paints to tightly coat the surface of protein–protein complexes. The molecular paints, which block trypsin cleavage sites, are excluded from the binding interface. Following mass spectrometry, only peptides hidden in the interface emerge as positive hits, revealing the functional contact regions that are drug targets. We use protein painting to discover contact regions between the three-way interaction of IL1β ligand, the receptor IL1RI and the accessory protein IL1RAcP. We then use this information to create peptides and monoclonal antibodies that block the interaction and abolish IL1β cell signalling. The technology is broadly applicable to discover protein interaction drug targets. PMID:25048602

  10. Characterizing the statistical properties of protein surfaces

    NASA Astrophysics Data System (ADS)

    Bak, Ji Hyun; Bitbol, Anne-Florence; Bialek, William

    Proteins and their interactions form the body of the signaling transduction pathway in many living systems. In order to ensure the accuracy as well as the specificity of signaling, it is crucial that proteins recognize their correct interaction partners. How difficult, then, is it for a protein to discriminate its correct interaction partner(s) from the possibly large set of other proteins it may encounter in the cell? An important ingredient of recognition is shape complementarity. The ensemble of protein shapes should be constrained by the need for maintaining functional interactions while avoiding spurious ones. To address this aspect of protein recognition, we consider the ensemble of proteins in terms of the shapes of their surfaces. We take into account the high-resolution structures of E.coli non-DNA-binding cytoplasmic proteins, retrieved from the Protein Data Bank. We aim to characterize the statistical properties of the protein surfaces at two levels: First, we study the intrinsic dimensionality at the level of the ensemble of the surface objects. Second, at the level of the individual surfaces, we determine the scale of shape variation. We further discuss how the dimensionality of the shape space is linked to the statistical properties of individual protein surfaces. Jhb and WB acknowledge support from National Science Foundation Grants PHY-1305525 and PHY-1521553. AFB acknowledges support from the Human Frontier Science Program.

  11. How membrane surface affects protein structure.

    PubMed

    Bychkova, V E; Basova, L V; Balobanov, V A

    2014-12-01

    The immediate environment of the negatively charged membrane surface is characterized by decreased dielectric constant and pH value. These conditions can be modeled by water-alcohol mixtures at moderately low pH. Several globular proteins were investigated under these conditions, and their conformational behavior in the presence of phospholipid membranes was determined, as well as under conditions modeling the immediate environment of the membrane surface. These proteins underwent conformational transitions from the native to a molten globule-like state. Increased flexibility of the protein structure facilitated protein functioning. Our experimental data allow understanding forces that affect the structure of a protein functioning near the membrane surface (in other words, in the membrane field). Similar conformational states are widely reported in the literature. This indicates that the negatively charged membrane surface can serve as a moderately denaturing agent in the cell. We conclude that the effect of the membrane field on the protein structure must be taken into account.

  12. Protein Surface Characterization Using an Invariant Descriptor

    PubMed Central

    Abu Deeb, Zainab; Adjeroh, Donald A.; Jiang, Bing-Hua

    2011-01-01

    Aim. To develop a new invariant descriptor for the characterization of protein surfaces, suitable for various analysis tasks, such as protein functional classification, and search and retrieval of protein surfaces over a large database. Methods. We start with a local descriptor of selected circular patches on the protein surface. The descriptor records the distance distribution between the central residue and the residues within the patch, keeping track of the number of particular pairwise residue cooccurrences in the patch. A global descriptor for the entire protein surface is then constructed by combining information from the local descriptors. Our method is novel in its focus on residue-specific distance distributions, and the use of residue-distance co-occurrences as the basis for the proposed protein surface descriptors. Results. Results are presented for protein classification and for retrieval for three protein families. For the three families, we obtained an area under the curve for precision and recall ranging from 0.6494 (without residue co-occurrences) to 0.6683 (with residue co-occurrences). Large-scale screening using two other protein families placed related family members at the top of the rank, with a number of uncharacterized proteins also retrieved. Comparative results with other proposed methods are included. PMID:22144981

  13. Network based approaches reveal clustering in protein point patterns

    NASA Astrophysics Data System (ADS)

    Parker, Joshua; Barr, Valarie; Aldridge, Joshua; Samelson, Lawrence E.; Losert, Wolfgang

    2014-03-01

    Recent advances in super-resolution imaging have allowed for the sub-diffraction measurement of the spatial location of proteins on the surfaces of T-cells. The challenge is to connect these complex point patterns to the internal processes and interactions, both protein-protein and protein-membrane. We begin analyzing these patterns by forming a geometric network amongst the proteins and looking at network measures, such the degree distribution. This allows us to compare experimentally observed patterns to models. Specifically, we find that the experimental patterns differ from heterogeneous Poisson processes, highlighting an internal clustering structure. Further work will be to compare our results to simulated protein-protein interactions to determine clustering mechanisms.

  14. Network Clustering Revealed the Systemic Alterations of Mitochondrial Protein Expression

    PubMed Central

    Koo, Hyun-Jung; Park, Wook-Ha; Yang, Jae-Seong; Yu, Myeong-Hee; Kim, Sanguk; Pak, Youngmi Kim

    2011-01-01

    The mitochondrial protein repertoire varies depending on the cellular state. Protein component modifications caused by mitochondrial DNA (mtDNA) depletion are related to a wide range of human diseases; however, little is known about how nuclear-encoded mitochondrial proteins (mt proteome) changes under such dysfunctional states. In this study, we investigated the systemic alterations of mtDNA-depleted (ρ0) mitochondria by using network analysis of gene expression data. By modularizing the quantified proteomics data into protein functional networks, systemic properties of mitochondrial dysfunction were analyzed. We discovered that up-regulated and down-regulated proteins were organized into two predominant subnetworks that exhibited distinct biological processes. The down-regulated network modules are involved in typical mitochondrial functions, while up-regulated proteins are responsible for mtDNA repair and regulation of mt protein expression and transport. Furthermore, comparisons of proteome and transcriptome data revealed that ρ0 cells attempted to compensate for mtDNA depletion by modulating the coordinated expression/transport of mt proteins. Our results demonstrate that mt protein composition changed to remodel the functional organization of mitochondrial protein networks in response to dysfunctional cellular states. Human mt protein functional networks provide a framework for understanding how cells respond to mitochondrial dysfunctions. PMID:21738461

  15. Non-interacting surface solvation and dynamics in protein-protein interactions.

    PubMed

    Visscher, Koen M; Kastritis, Panagiotis L; Bonvin, Alexandre M J J

    2015-03-01

    Protein-protein interactions control a plethora of cellular processes, including cell proliferation, differentiation, apoptosis, and signal transduction. Understanding how and why proteins interact will inevitably lead to novel structure-based drug design methods, as well as design of de novo binders with preferred interaction properties. At a structural and molecular level, interface and rim regions are not enough to fully account for the energetics of protein-protein binding, even for simple lock-and-key rigid binders. As we have recently shown, properties of the global surface might also play a role in protein-protein interactions. Here, we report on molecular dynamics simulations performed to understand solvent effects on protein-protein surfaces. We compare properties of the interface, rim, and non-interacting surface regions for five different complexes and their free components. Interface and rim residues become, as expected, less mobile upon complexation. However, non-interacting surface appears more flexible in the complex. Fluctuations of polar residues are always lower compared with charged ones, independent of the protein state. Further, stable water molecules are often observed around polar residues, in contrast to charged ones. Our analysis reveals that (a) upon complexation, the non-interacting surface can have a direct entropic compensation for the lower interface and rim entropy and (b) the mobility of the first hydration layer, which is linked to the stability of the protein-protein complex, is influenced by the local chemical properties of the surface. These findings corroborate previous hypotheses on the role of the hydration layer in shielding protein-protein complexes from unintended protein-protein interactions. PMID:25524313

  16. cDNA cloning reveals the molecular structure of a sperm surface protein, PH-20, involved in sperm-egg adhesion and the wide distribution of its gene among mammals

    PubMed Central

    1990-01-01

    Sperm binding to the egg zona pellucida in mammals is a cell-cell adhesion process that is generally species specific. The guinea pig sperm protein PH-20 has a required function in sperm adhesion to the zona pellucida of guinea pig eggs. PH-20 is located on both the sperm plasma membrane and acrosomal membrane. We report here the isolation and sequence of a full-length cDNA for PH-20 (available from EMBL/GenBank/DDBJ under accession number X56332). The derived amino acid sequence shows a mature protein of 468 amino acids containing six N-linked glycosylation sites and twelve cysteines, eight of which are tightly clustered near the COOH terminus. The sequence indicates PH-20 is a novel protein with no relationship to the mouse sperm adhesion protein galactosyl transferase and no significant homology with other known proteins. The two PH-20 populations, plasma membrane and acrosomal membrane, could arise because one form of PH-20 is encoded and differentially targeted at different spermatogenic stages. Alternatively, two different forms of PH-20 could be encoded. Our evidence thus far reveals only one sequence coding for PH-20: Southern blots of guinea pig genomic DNA indicated there is a single PH-20 gene, Northern blots showed a single size PH-20 message (approximately 2.2 kb), and no sequence variants were found among the sequenced cDNA clones. Cross-species Southern blots reveal the presence of a homologue of the PH-20 gene in mouse, rat, hamster, rabbit, bovine, monkey, and human genomic DNA, showing the PH-20 gene is conserved among mammals. Since genes for zona glycoproteins are also conserved among mammals, the general features of sperm and zona proteins involved in mammalian sperm-egg adhesion may have been evolutionarily maintained. Species specificity may result from limited changes in these molecules, either in their binding domains or in other regions that affect the ability of the binding domains to interact. PMID:2269661

  17. Neurocognitive derivation of protein surface property from protein aggregate parameters

    PubMed Central

    Mishra, Hrishikesh; Lahiri, Tapobrata

    2011-01-01

    Current work targeted to predicate parametric relationship between aggregate and individual property of a protein. In this approach, we considered individual property of a protein as its Surface Roughness Index (SRI) which was shown to have potential to classify SCOP protein families. The bulk property was however considered as Intensity Level based Multi-fractal Dimension (ILMFD) of ordinary microscopic images of heat denatured protein aggregates which was known to have potential to serve as protein marker. The protocol used multiple ILMFD inputs obtained for a protein to produce a set of mapped outputs as possible SRI candidates. The outputs were further clustered and largest cluster centre after normalization was found to be a close approximation of expected SRI that was calculated from known PDB structure. The outcome showed that faster derivation of individual protein’s surface property might be possible using its bulk form, heat denatured aggregates. PMID:21572883

  18. Protein Folding and Misfolding on Surfaces

    PubMed Central

    Stefani, Massimo

    2008-01-01

    Protein folding, misfolding and aggregation, as well as the way misfolded and aggregated proteins affects cell viability are emerging as key themes in molecular and structural biology and in molecular medicine. Recent advances in the knowledge of the biophysical basis of protein folding have led to propose the energy landscape theory which provides a consistent framework to better understand how a protein folds rapidly and efficiently to the compact, biologically active structure. The increased knowledge on protein folding has highlighted its strict relation to protein misfolding and aggregation, either process being in close competition with the other, both relying on the same physicochemical basis. The theory has also provided information to better understand the structural and environmental factors affecting protein folding resulting in protein misfolding and aggregation into ordered or disordered polymeric assemblies. Among these, particular importance is given to the effects of surfaces. The latter, in some cases make possible rapid and efficient protein folding but most often recruit proteins/peptides increasing their local concentration thus favouring misfolding and accelerating the rate of nucleation. It is also emerging that surfaces can modify the path of protein misfolding and aggregation generating oligomers and polymers structurally different from those arising in the bulk solution and endowed with different physical properties and cytotoxicities. PMID:19330090

  19. Surface protein composition of Aeromonas hydrophila strains virulent for fish: identification of a surface array protein

    SciTech Connect

    Dooley, J.S.G.; Trust, T.J.

    1988-02-01

    The surface protein composition of members of a serogroup of Aeromonas hydrophila was examined. Immunoblotting with antiserum raised against formalinized whole cells of A. hydrophila TF7 showed a 52K S-layer protein to be the major surface protein antigen, and impermeant Sulfo-NHS-Biotin cell surface labeling showed that the 52K S-layer protein was the only protein accessible to the Sulfo-NHS-Biotin label and effectively masked underlying outer membrane (OM) proteins. In its native surface conformation the 52K S-layer protein was only weakly reactive with a lactoperoxidase /sup 125/I surface iodination procedure. A UV-induced rough lipopolysaccharide (LPS) mutant of TF7 was found to produce an intact S layer, but a deep rough LPS mutant was unable to maintain an array on the cell surface and excreted the S-layer protein into the growth medium, indicating that a minimum LPS oligosaccharide size required for A. hydrophila S-layer anchoring. The native S layer was permeable to /sup 125/I in the lactoperoxidase radiolabeling procedure, and two major OM proteins of molecular weights 30,000 and 48,000 were iodinated. The 48K species was a peptidoglycan-associated, transmembrane protein which exhibited heat-modifiable SDS solubilization behavior characteristic of a porin protein. A 50K major peptidoglycan-associated OM protein which was not radiolabeled exhibited similar SDS heat modification characteristics and possibly represents a second porin protein.

  20. Circulating protein synthesis rates reveal skeletal muscle proteome dynamics

    PubMed Central

    Shankaran, Mahalakshmi; King, Chelsea L.; Angel, Thomas E.; Holmes, William E.; Li, Kelvin W.; Colangelo, Marc; Price, John C.; Turner, Scott M.; Bell, Christopher; Hamilton, Karyn L.; Miller, Benjamin F.; Hellerstein, Marc K.

    2015-01-01

    Here, we have described and validated a strategy for monitoring skeletal muscle protein synthesis rates in rodents and humans over days or weeks from blood samples. We based this approach on label incorporation into proteins that are synthesized specifically in skeletal muscle and escape into the circulation. Heavy water labeling combined with sensitive tandem mass spectrometric analysis allowed integrated synthesis rates of proteins in muscle tissue across the proteome to be measured over several weeks. Fractional synthesis rate (FSR) of plasma creatine kinase M-type (CK-M) and carbonic anhydrase 3 (CA-3) in the blood, more than 90% of which is derived from skeletal muscle, correlated closely with FSR of CK-M, CA-3, and other proteins of various ontologies in skeletal muscle tissue in both rodents and humans. Protein synthesis rates across the muscle proteome generally changed in a coordinate manner in response to a sprint interval exercise training regimen in humans and to denervation or clenbuterol treatment in rodents. FSR of plasma CK-M and CA-3 revealed changes and interindividual differences in muscle tissue proteome dynamics. In human subjects, sprint interval training primarily stimulated synthesis of structural and glycolytic proteins. Together, our results indicate that this approach provides a virtual biopsy, sensitively revealing individualized changes in proteome-wide synthesis rates in skeletal muscle without a muscle biopsy. Accordingly, this approach has potential applications for the diagnosis, management, and treatment of muscle disorders. PMID:26657858

  1. Effect of the interplay between protein and surface on the properties of adsorbed protein layers.

    PubMed

    Ouberai, Myriam M; Xu, Kairuo; Welland, Mark E

    2014-08-01

    Although protein adsorption to surface is a common phenomenon, investigation of the process is challenging due to the complexity of the interplay between external factors, protein and surface properties. Therefore experimental approaches have to measure the properties of adsorbed protein layers with high accuracy in order to achieve a comprehensive description of the process. To this end, we used a combination of two biosensing techniques, dual polarization interferometry and quartz crystal microbalance with dissipation. From this, we are able to extract surface coverage values, layer structural parameters, water content and viscoelastic properties to examine the properties of protein layers formed at the liquid/solid interface. Layer parameters were examined upon adsorption of proteins of varying size and structural properties, on surfaces with opposite polarity. We show that "soft" proteins such as unfolded α-synuclein and high molecular weight albumin are highly influenced by the surface polarity, as they form a highly diffuse and hydrated layer on the hydrophilic silica surface as opposed to the denser, less hydrated layer formed on a hydrophobic methylated surface. These layer properties are a result of different orientations and packing of the proteins. By contrast, lysozyme is barely influenced by the surface polarity due to its intrinsic structural stability. Interestingly, we show that for a similar molecular weight, the unfolded α-synuclein forms a layer with the highest percentage of solvation not related to surface coverage but resulting from the highest water content trapped within the protein. Together, these data reveal a trend in layer properties highlighting the importance of the interplay between protein and surface for the design of biomaterials. PMID:24780165

  2. Cellular localization and trafficking of vascular adhesion protein-1 as revealed by an N-terminal GFP fusion protein.

    PubMed

    Weston, Chris J; Shepherd, Emma L; Adams, David H

    2013-06-01

    Recent studies of vascular adhesion protein-1 (VAP-1) have greatly advanced our understanding of the important role this protein plays in the establishment and progression of inflammatory disease. To facilitate more detailed studies on the function of VAP-1, we developed a GFP-fusion protein that enabled us to monitor the trafficking of the protein in three selected cell types: hepatic sinusoidal endothelial cells, liver myofibroblasts and an hepatic stellate cell line (LX-2). The fusion protein was detected as punctate cytoplasmic GFP staining, but was present only at low levels at the cell surface in all cell types studied. The subcellular distribution of the protein was not altered in a catalytically inactive mutant form of the protein (Tyr471Phe) or in the presence of exogenous VAP-1 substrate (methylamine) or inhibitor (semicarbazide). The GFP-VAP-1 protein was localized to the Golgi apparatus (GM-130), endoplasmic reticulum (GRP94) and early endosomes (EEA-1). Additional staining for VAP-1 revealed that the overexpressed protein was also present in vesicles that were negative for GFP fluorescent signal and did not express EEA-1. We propose that these vesicles are responsible for recycling the fusion protein and that the fluorescence of the GFP moiety is quenched at the low pH within these vesicles. This feature of the protein makes it well suited for live cell imaging studies where we wish to track protein that is being actively trafficked within the cell in preference to that which is being recycled.

  3. Proteomics Reveals Novel Drosophila Seminal Fluid Proteins Transferred at Mating

    PubMed Central

    Findlay, Geoffrey D; Yi, Xianhua; MacCoss, Michael J; Swanson, Willie J

    2008-01-01

    Across diverse taxa, seminal fluid proteins (Sfps) transferred at mating affect the reproductive success of both sexes. Such reproductive proteins often evolve under positive selection between species; because of this rapid divergence, Sfps are hypothesized to play a role in speciation by contributing to reproductive isolation between populations. In Drosophila, individual Sfps have been characterized and are known to alter male sperm competitive ability and female post-mating behavior, but a proteomic-scale view of the transferred Sfps has been missing. Here we describe a novel proteomic method that uses whole-organism isotopic labeling to detect transferred Sfps in mated female D. melanogaster. We identified 63 proteins, which were previously unknown to function in reproduction, and confirmed the transfer of dozens of predicted Sfps. Relative quantification of protein abundance revealed that several of these novel Sfps are abundant in seminal fluid. Positive selection and tandem gene duplication are the prevailing forces of Sfp evolution, and comparative proteomics with additional species revealed lineage-specific changes in seminal fluid content. We also report a proteomic-based gene discovery method that uncovered 19 previously unannotated genes in D. melanogaster. Our results demonstrate an experimental method to identify transferred proteins in any system that is amenable to isotopic labeling, and they underscore the power of combining proteomic and evolutionary analyses to shed light on the complex process of Drosophila reproduction. PMID:18666829

  4. A Mass Spectrometric-Derived Cell Surface Protein Atlas

    PubMed Central

    Bausch-Fluck, Damaris; Hofmann, Andreas; Bock, Thomas; Frei, Andreas P.; Cerciello, Ferdinando; Jacobs, Andrea; Moest, Hansjoerg; Omasits, Ulrich; Gundry, Rebekah L.; Yoon, Charles; Schiess, Ralph; Schmidt, Alexander; Mirkowska, Paulina; Härtlová, Anetta; Van Eyk, Jennifer E.; Bourquin, Jean-Pierre; Aebersold, Ruedi; Boheler, Kenneth R.; Zandstra, Peter; Wollscheid, Bernd

    2015-01-01

    Cell surface proteins are major targets of biomedical research due to their utility as cellular markers and their extracellular accessibility for pharmacological intervention. However, information about the cell surface protein repertoire (the surfaceome) of individual cells is only sparsely available. Here, we applied the Cell Surface Capture (CSC) technology to 41 human and 31 mouse cell types to generate a mass-spectrometry derived Cell Surface Protein Atlas (CSPA) providing cellular surfaceome snapshots at high resolution. The CSPA is presented in form of an easy-to-navigate interactive database, a downloadable data matrix and with tools for targeted surfaceome rediscovery (http://wlab.ethz.ch/cspa). The cellular surfaceome snapshots of different cell types, including cancer cells, resulted in a combined dataset of 1492 human and 1296 mouse cell surface glycoproteins, providing experimental evidence for their cell surface expression on different cell types, including 136 G-protein coupled receptors and 75 membrane receptor tyrosine-protein kinases. Integrated analysis of the CSPA reveals that the concerted biological function of individual cell types is mainly guided by quantitative rather than qualitative surfaceome differences. The CSPA will be useful for the evaluation of drug targets, for the improved classification of cell types and for a better understanding of the surfaceome and its concerted biological functions in complex signaling microenvironments. PMID:25894527

  5. A mass spectrometric-derived cell surface protein atlas.

    PubMed

    Bausch-Fluck, Damaris; Hofmann, Andreas; Bock, Thomas; Frei, Andreas P; Cerciello, Ferdinando; Jacobs, Andrea; Moest, Hansjoerg; Omasits, Ulrich; Gundry, Rebekah L; Yoon, Charles; Schiess, Ralph; Schmidt, Alexander; Mirkowska, Paulina; Härtlová, Anetta; Van Eyk, Jennifer E; Bourquin, Jean-Pierre; Aebersold, Ruedi; Boheler, Kenneth R; Zandstra, Peter; Wollscheid, Bernd

    2015-01-01

    Cell surface proteins are major targets of biomedical research due to their utility as cellular markers and their extracellular accessibility for pharmacological intervention. However, information about the cell surface protein repertoire (the surfaceome) of individual cells is only sparsely available. Here, we applied the Cell Surface Capture (CSC) technology to 41 human and 31 mouse cell types to generate a mass-spectrometry derived Cell Surface Protein Atlas (CSPA) providing cellular surfaceome snapshots at high resolution. The CSPA is presented in form of an easy-to-navigate interactive database, a downloadable data matrix and with tools for targeted surfaceome rediscovery (http://wlab.ethz.ch/cspa). The cellular surfaceome snapshots of different cell types, including cancer cells, resulted in a combined dataset of 1492 human and 1296 mouse cell surface glycoproteins, providing experimental evidence for their cell surface expression on different cell types, including 136 G-protein coupled receptors and 75 membrane receptor tyrosine-protein kinases. Integrated analysis of the CSPA reveals that the concerted biological function of individual cell types is mainly guided by quantitative rather than qualitative surfaceome differences. The CSPA will be useful for the evaluation of drug targets, for the improved classification of cell types and for a better understanding of the surfaceome and its concerted biological functions in complex signaling microenvironments. PMID:25894527

  6. Proteins on ribosome surface: Measurements of protein exposure by hot tritium bombardment technique

    PubMed Central

    Agafonov, Dmitry E.; Kolb, Vyacheslav A.; Spirin, Alexander S.

    1997-01-01

    The hot tritium bombardment technique [Goldanskii, V. I., Kashirin, I. A., Shishkov, A. V., Baratova, L. A. & Grebenshchikov, N. I. (1988) J. Mol. Biol. 201, 567–574] has been applied to measure the exposure of proteins on the ribosomal surface. The technique is based on replacement of hydrogen by high energy tritium atoms in thin surface layer of macromolecules. Quantitation of tritium radioactivity of each protein has revealed that proteins S1, S4, S5, S7, S18, S20, and S21 of the small subunit, and proteins L7/L12, L9, L10, L11, L16, L17, L24, and L27 of the large subunit are well exposed on the surface of the Escherichia coli 70 S ribosome. Proteins S8, S10, S12, S16, S17, L14, L20, L29, L30, L31, L32, L33, and L34 have virtually no groups exposed on the ribosomal surface. The remaining proteins are found to be exposed to lesser degree than the well exposed ones. No additional ribosomal proteins was exposed upon dissociation of ribosomes into subunits, thus indicating the absence of proteins on intersubunit contacting surfaces. PMID:9371771

  7. Protein sequences bound to mineral surfaces persist into deep time

    PubMed Central

    Demarchi, Beatrice; Hall, Shaun; Roncal-Herrero, Teresa; Freeman, Colin L; Woolley, Jos; Crisp, Molly K; Wilson, Julie; Fotakis, Anna; Fischer, Roman; Kessler, Benedikt M; Rakownikow Jersie-Christensen, Rosa; Olsen, Jesper V; Haile, James; Thomas, Jessica; Marean, Curtis W; Parkington, John; Presslee, Samantha; Lee-Thorp, Julia; Ditchfield, Peter; Hamilton, Jacqueline F; Ward, Martyn W; Wang, Chunting Michelle; Shaw, Marvin D; Harrison, Terry; Domínguez-Rodrigo, Manuel; MacPhee, Ross DE; Kwekason, Amandus; Ecker, Michaela; Kolska Horwitz, Liora; Chazan, Michael; Kröger, Roland; Thomas-Oates, Jane; Harding, John H; Cappellini, Enrico; Penkman, Kirsty; Collins, Matthew J

    2016-01-01

    Proteins persist longer in the fossil record than DNA, but the longevity, survival mechanisms and substrates remain contested. Here, we demonstrate the role of mineral binding in preserving the protein sequence in ostrich (Struthionidae) eggshell, including from the palaeontological sites of Laetoli (3.8 Ma) and Olduvai Gorge (1.3 Ma) in Tanzania. By tracking protein diagenesis back in time we find consistent patterns of preservation, demonstrating authenticity of the surviving sequences. Molecular dynamics simulations of struthiocalcin-1 and -2, the dominant proteins within the eggshell, reveal that distinct domains bind to the mineral surface. It is the domain with the strongest calculated binding energy to the calcite surface that is selectively preserved. Thermal age calculations demonstrate that the Laetoli and Olduvai peptides are 50 times older than any previously authenticated sequence (equivalent to ~16 Ma at a constant 10°C). DOI: http://dx.doi.org/10.7554/eLife.17092.001 PMID:27668515

  8. Super-resolution Microscopy Reveals Compartmentalization of Peroxisomal Membrane Proteins*

    PubMed Central

    Galiani, Silvia; Waithe, Dominic; Reglinski, Katharina; Cruz-Zaragoza, Luis Daniel; Garcia, Esther; Clausen, Mathias P.; Schliebs, Wolfgang; Erdmann, Ralf; Eggeling, Christian

    2016-01-01

    Membrane-associated events during peroxisomal protein import processes play an essential role in peroxisome functionality. Many details of these processes are not known due to missing spatial resolution of technologies capable of investigating peroxisomes directly in the cell. Here, we present the use of super-resolution optical stimulated emission depletion microscopy to investigate with sub-60-nm resolution the heterogeneous spatial organization of the peroxisomal proteins PEX5, PEX14, and PEX11 around actively importing peroxisomes, showing distinct differences between these peroxins. Moreover, imported protein sterol carrier protein 2 (SCP2) occupies only a subregion of larger peroxisomes, highlighting the heterogeneous distribution of proteins even within the peroxisome. Finally, our data reveal subpopulations of peroxisomes showing only weak colocalization between PEX14 and PEX5 or PEX11 but at the same time a clear compartmentalized organization. This compartmentalization, which was less evident in cases of strong colocalization, indicates dynamic protein reorganization linked to changes occurring in the peroxisomes. Through the use of multicolor stimulated emission depletion microscopy, we have been able to characterize peroxisomes and their constituents to a yet unseen level of detail while maintaining a highly statistical approach, paving the way for equally complex biological studies in the future. PMID:27311714

  9. Silk protein aggregation kinetics revealed by Rheo-IR.

    PubMed

    Boulet-Audet, Maxime; Terry, Ann E; Vollrath, Fritz; Holland, Chris

    2014-02-01

    The remarkable mechanical properties of silk fibres stem from a multi-scale hierarchical structure created when an aqueous protein "melt" is converted to an insoluble solid via flow. To directly relate a silk protein's structure and function in response to flow, we present the first application of a Rheo-IR platform, which couples cone and plate rheology with attenuated total reflectance infrared spectroscopy. This technique provides a new window into silk processing by linking shear thinning to an increase in molecular alignment, with shear thickening affecting changes in the silk protein's secondary structure. Additionally, compared to other static characterization methods for silk, Rheo-IR proved particularly useful at revealing the intrinsic difference between natural (native) and reconstituted silk feedstocks. Hence Rheo-IR offers important novel insights into natural silk processing. This has intrinsic academic merit, but it might also be useful when designing reconstituted silk analogues alongside other polymeric systems, whether natural or synthetic.

  10. Membrane protein properties revealed through data-rich electrostatics calculations

    PubMed Central

    Guerriero, Christopher J.; Brodsky, Jeffrey L.; Grabe, Michael

    2015-01-01

    SUMMARY The electrostatic properties of membrane proteins often reveal many of their key biophysical characteristics, such as ion channel selectivity and the stability of charged membrane-spanning segments. The Poisson-Boltzmann (PB) equation is the gold standard for calculating protein electrostatics, and the software APBSmem enables the solution of the PB equation in the presence of a membrane. Here, we describe significant advances to APBSmem including: full automation of system setup, per-residue energy decomposition, incorporation of PDB2PQR, calculation of membrane induced pKa shifts, calculation of non-polar energies, and command-line scripting for large scale calculations. We highlight these new features with calculations carried out on a number of membrane proteins, including the recently solved structure of the ion channel TRPV1 and a large survey of 1,614 membrane proteins of known structure. This survey provides a comprehensive list of residues with large electrostatic penalties for being embedded in the membrane potentially revealing interesting functional information. PMID:26118532

  11. Rhabdovirus matrix protein structures reveal a novel mode of self-association.

    PubMed

    Graham, Stephen C; Assenberg, René; Delmas, Olivier; Verma, Anil; Gholami, Alireza; Talbi, Chiraz; Owens, Raymond J; Stuart, David I; Grimes, Jonathan M; Bourhy, Hervé

    2008-12-01

    The matrix (M) proteins of rhabdoviruses are multifunctional proteins essential for virus maturation and budding that also regulate the expression of viral and host proteins. We have solved the structures of M from the vesicular stomatitis virus serotype New Jersey (genus: Vesiculovirus) and from Lagos bat virus (genus: Lyssavirus), revealing that both share a common fold despite sharing no identifiable sequence homology. Strikingly, in both structures a stretch of residues from the otherwise-disordered N terminus of a crystallographically adjacent molecule is observed binding to a hydrophobic cavity on the surface of the protein, thereby forming non-covalent linear polymers of M in the crystals. While the overall topology of the interaction is conserved between the two structures, the molecular details of the interactions are completely different. The observed interactions provide a compelling model for the flexible self-assembly of the matrix protein during virion morphogenesis and may also modulate interactions with host proteins.

  12. Protein adsorption kinetics in different surface potentials

    NASA Astrophysics Data System (ADS)

    Quinn, A.; Mantz, H.; Jacobs, K.; Bellion, M.; Santen, L.

    2008-03-01

    We have studied the adsorption kinetics of the protein amylase at solid/liquid interfaces. Offering substrates with tailored properties, we are able to separate the impact of short- and long-range interactions. By means of a colloidal Monte Carlo approach including conformational changes of the adsorbed proteins induced by density fluctuations, we develop a scenario that is consistent with the experimentally observed three-step kinetics on specific substrates. Our observations show that not only the surface chemistry determines the properties of an adsorbed protein layer but also the van der Waals contributions of a composite substrate may lead to non-negligible effects.

  13. Quantification of Plasmodium falciparum malaria from complex infections in the Peruvian Amazon using quantitative PCR of the merozoite surface protein 1, block 2 (PfMSP1-B2): in vitro dynamics reveal density-dependent interactions

    PubMed Central

    Zervos, Thomas M.; Hernandez, Jean N.; Sutton, Patrick L.; Branch, Oralee H.

    2013-01-01

    SUMMARY The majority of Plasmodium falciparum field isolates are defined as complex infections because they contain multiple genetically distinct clones. Studying interactions between clones in complex infections in vivo and in vitro could elucidate important phenomena in malaria infection, transmission and treatment. Using quantitative PCR (qPCR) of the P. falciparum merozoite surface protein 1, block 2 (PfMSP1-B2), we provide a sensitive and efficient genotyping method. This is important for epidemiological studies because it makes it possible to study genotype-specific growth dynamics. We compared 3 PfMSP1-B2 genotyping methods by analysing 79 field isolates from the Peruvian Amazon. In vivo observations from other studies using these techniques led to the hypothesis that clones within complex infections interact. By co-culturing clones with different PfMSP1-B2 genotypes, and measuring parasitaemia using qPCR, we found that suppression of clonal expansion was a factor of the collective density of all clones present in a culture. PfMSP1-B2 qPCR enabled us to find in vitro evidence for parasite-parasite interactions and could facilitate future investigations of growth trends in naturally occurring complex infections. PMID:22339946

  14. Quantification of Plasmodium falciparum malaria from complex infections in the Peruvian Amazon using quantitative PCR of the merozoite surface protein 1, block 2 (PfMSP1-B2): in vitro dynamics reveal density-dependent interactions.

    PubMed

    Zervos, Thomas M; Hernandez, Jean N; Sutton, Patrick L; Branch, Oralee H

    2012-05-01

    The majority of Plasmodium falciparum field isolates are defined as complex infections because they contain multiple genetically distinct clones. Studying interactions between clones in complex infections in vivo and in vitro could elucidate important phenomena in malaria infection, transmission and treatment. Using quantitative PCR (qPCR) of the P. falciparum merozoite surface protein 1, block 2 (PfMSP1-B2), we provide a sensitive and efficient genotyping method. This is important for epidemiological studies because it makes it possible to study genotype-specific growth dynamics. We compared 3 PfMSP1-B2 genotyping methods by analysing 79 field isolates from the Peruvian Amazon. In vivo observations from other studies using these techniques led to the hypothesis that clones within complex infections interact. By co-culturing clones with different PfMSP1-B2 genotypes, and measuring parasitaemia using qPCR, we found that suppression of clonal expansion was a factor of the collective density of all clones present in a culture. PfMSP1-B2 qPCR enabled us to find in vitro evidence for parasite-parasite interactions and could facilitate future investigations of growth trends in naturally occurring complex infections.

  15. Surface energetics and protein-protein interactions: analysis and mechanistic implications

    PubMed Central

    Peri, Claudio; Morra, Giulia; Colombo, Giorgio

    2016-01-01

    Understanding protein-protein interactions (PPI) at the molecular level is a fundamental task in the design of new drugs, the prediction of protein function and the clarification of the mechanisms of (dis)regulation of biochemical pathways. In this study, we use a novel computational approach to investigate the energetics of aminoacid networks located on the surface of proteins, isolated and in complex with their respective partners. Interestingly, the analysis of individual proteins identifies patches of surface residues that, when mapped on the structure of their respective complexes, reveal regions of residue-pair couplings that extend across the binding interfaces, forming continuous motifs. An enhanced effect is visible across the proteins of the dataset forming larger quaternary assemblies. The method indicates the presence of energetic signatures in the isolated proteins that are retained in the bound form, which we hypothesize to determine binding orientation upon complex formation. We propose our method, BLUEPRINT, as a complement to different approaches ranging from the ab-initio characterization of PPIs, to protein-protein docking algorithms, for the physico-chemical and functional investigation of protein-protein interactions. PMID:27050828

  16. Profiling of urinary proteins in Karan Fries cows reveals more than 1550 proteins.

    PubMed

    Bathla, Shveta; Rawat, Preeti; Baithalu, Rubina; Yadav, Munna Lal; Naru, Jasmine; Tiwari, Anurag; Kumar, Sudarshan; Balhara, Ashok K; Singh, Surender; Chaudhary, Suman; Kumar, Rajesh; Lotfan, Masoud; Behare, Pradip; Phulia, Sushil K; Mohanty, Tushar K; Kaushik, Jai K; Nallapeta, Shivramaiah; Singh, Inderjeet; Ambatipudi, Srinivas K; Mohanty, Ashok K

    2015-09-01

    Urine is a non-invasive source of biological fluid, which reflects the physiological status of the mammals. We have profiled the cow urinary proteome and analyzed its functional significance. The urine collected from three healthy cows was concentrated by diafiltration (DF) followed by protein extraction using three methods, namely methanol, acetone, and ammonium sulphate (AS) precipitation and Proteo Spin urine concentration kit (PS). The quality of the protein was assessed by two-dimensional gel electrophoresis (2DE). In-gel digestion method revealed more proteins (1191) in comparison to in-solution digestion method (541). Collectively, 938, 606 and 444 proteins were identified in LC-MS/MS after in-gel and in-solution tryptic digestion of proteins prepared by AS, PS and DF methods, respectively resulting in identification of a total of 1564 proteins. Gene ontology (GO) using Panther7.0 grouped the majority of the proteins into cytoplasmic (location), catalytic activity (function), and metabolism (biological processes), while Cytoscape grouped proteins into complement and coagulation cascades; protease inhibitor activity and wound healing. Functional significance of few selected proteins seems to play important role in their physiology. Comparative analysis with human urine revealed 315 overlapping proteins. This study reports for the first time evidence of more than 1550 proteins in urine of healthy cow donors. This article is part of a Special Issue entitled: Proteomics in India.

  17. Function of the hydration layer around an antifreeze protein revealed by atomistic molecular dynamics simulations

    SciTech Connect

    Nutt, David; Smith, Jeremy C

    2008-10-01

    Atomistic molecular dynamics simulations are used to investigate the mechanism by which the antifreeze protein from the spruce budworm, Choristoneura fumiferana, binds to ice. Comparison of structural and dynamic properties of the water around the three faces of the triangular prism-shaped protein in aqueous solution reveals that at low temperature the water structure is ordered and the dynamics slowed down around the ice-binding face of the protein, with a disordering effect observed around the other two faces. These results suggest a dual role for the solvation water around the protein. The preconfigured solvation shell around the ice-binding face is involved in the initial recognition and binding of the antifreeze protein to ice by lowering the barrier for binding and consolidation of the protein:ice interaction surface. Thus, the antifreeze protein can bind to the molecularly rough ice surface by becoming actively involved in the formation of its own binding site. Also, the disruption of water structure around the rest of the protein helps prevent the adsorbed protein becoming covered by further ice growth.

  18. Coordinated Evolution of Influenza A Surface Proteins

    PubMed Central

    Plotkin, Joshua B.; Bazykin, Georgii A.

    2015-01-01

    The surface proteins hemagglutinin (HA) and neuraminidase (NA) of human influenza A virus evolve under selection pressures to escape adaptive immune responses and antiviral drug treatments. In addition to these external selection pressures, some mutations in HA are known to affect the adaptive landscape of NA, and vice versa, because these two proteins are physiologically interlinked. However, the extent to which evolution of one protein affects the evolution of the other one is unknown. Here we develop a novel phylogenetic method for detecting the signatures of such genetic interactions between mutations in different genes – that is, inter-gene epistasis. Using this method, we show that influenza surface proteins evolve in a coordinated way, with mutations in HA affecting subsequent spread of mutations in NA and vice versa, at many sites. Of particular interest is our finding that the oseltamivir-resistance mutations in NA in subtype H1N1 were likely facilitated by prior mutations in HA. Our results illustrate that the adaptive landscape of a viral protein is remarkably sensitive to its genomic context and, more generally, that the evolution of any single protein must be understood within the context of the entire evolving genome. PMID:26247472

  19. Homologous Expression of the Caldicellulosiruptor bescii CelA Reveals that the Extracellular Protein Is Glycosylated

    PubMed Central

    Bomble, Yannick J.; Vander Wall, Todd A.; Groom, Joseph; Himmel, Michael E.; Westpheling, Janet

    2015-01-01

    Members of the bacterial genus Caldicellulosiruptor are the most thermophilic cellulolytic microbes described with ability to digest lignocellulosic biomass without conventional pretreatment. The cellulolytic ability of different species varies dramatically and correlates with the presence of the multimodular cellulase CelA, which contains both a glycoside hydrolase family 9 endoglucanase and a glycoside hydrolase family 48 exoglucanase known to be synergistic in their activity, connected by three cellulose-binding domains via linker peptides. This architecture exploits the cellulose surface ablation driven by its general cellulase processivity as well as excavates cavities into the surface of the substrate, revealing a novel paradigm for cellulase activity. We recently reported that a deletion of celA in C. bescii had a significant effect on its ability to utilize complex biomass. To analyze the structure and function of CelA and its role in biomass deconstruction, we constructed a new expression vector for C. bescii and were able, for the first time, to express significant quantities of full-length protein in vivo in the native host. The protein, which contains a Histidine tag, was active and excreted from the cell. Expression of CelA protein with and without its signal sequence allowed comparison of protein retained intracellularly to protein transported extracellularly. Analysis of protein in culture supernatants revealed that the extracellular CelA protein is glycosylated whereas the intracellular CelA is not, suggesting that either protein transport is required for this post-translational modification or that glycosylation is required for protein export. The mechanism and role of protein glycosylation in bacteria is poorly understood and the ability to express CelA in vivo in C. bescii will allow the study of the mechanism of protein glycosylation in this thermophile. It will also allow the study of glycosylation of CelA itself and its role in the structure

  20. Homologous expression of the Caldicellulosiruptor bescii CelA reveals that the extracellular protein is glycosylated

    DOE PAGES

    Chung, Daehwan; Young, Jenna; Bomble, Yannick J.; Vander Wall, Todd A.; Groom, Joseph; Himmel, Michael E.; Westpheling, Janet

    2015-03-23

    Members of the bacterial genus Caldicellulosiruptor are the most thermophilic cellulolytic microbes described with ability to digest lignocellulosic biomass without conventional pretreatment. The cellulolytic ability of different species varies dramatically and correlates with the presence of the multimodular cellulase CelA, which contains both a glycoside hydrolase family 9 endoglucanase and a glycoside hydrolase family 48 exoglucanase known to be synergistic in their activity, connected by three cellulose-binding domains via linker peptides. This architecture exploits the cellulose surface ablation driven by its general cellulase processivity as well as excavates cavities into the surface of the substrate, revealing a novel paradigm formore » cellulase activity. We recently reported that a deletion of celA in C. bescii had a significant effect on its ability to utilize complex biomass. To analyze the structure and function of CelA and its role in biomass deconstruction, we constructed a new expression vector for C. bescii and were able, for the first time, to express significant quantities of full-length protein in vivo in the native host. The protein, which contains a Histidine tag, was active and excreted from the cell. Expression of CelA protein with and without its signal sequence allowed comparison of protein retained intracellularly to protein transported extracellularly. Analysis of protein in culture supernatants revealed that the extracellular CelA protein is glycosylated whereas the intracellular CelA is not, suggesting that either protein transport is required for this post-translational modification or that glycosylation is required for protein export. The mechanism and role of protein glycosylation in bacteria is poorly understood and the ability to express CelA in vivo in C. bescii will allow the study of the mechanism of protein glycosylation in this thermophile. Finally, it will also allow the study of glycosylation of CelA itself and its role

  1. Structure of mega-hemocyanin reveals protein origami in snails.

    PubMed

    Gatsogiannis, Christos; Hofnagel, Oliver; Markl, Jürgen; Raunser, Stefan

    2015-01-01

    Mega-hemocyanin is a 13.5 MDa oxygen transporter found in the hemolymph of some snails. Similar to typical gastropod hemocyanins, it is composed of 400 kDa building blocks but has additional 550 kDa subunits. Together, they form a large, completely filled cylinder. The structural basis for this highly complex protein packing is not known so far. Here, we report the electron cryomicroscopy (cryo-EM) structure of mega-hemocyanin complexes from two different snail species. The structures reveal that mega-hemocyanin is composed of flexible building blocks that differ in their conformation, but not in their primary structure. Like a protein origami, these flexible blocks are optimally packed, implementing different local symmetries and pseudosymmetries. A comparison between the two structures suggests a surprisingly simple evolutionary mechanism leading to these large oxygen transporters. PMID:25482543

  2. Quantitative protein localization signatures reveal an association between spatial and functional divergences of proteins.

    PubMed

    Loo, Lit-Hsin; Laksameethanasan, Danai; Tung, Yi-Ling

    2014-03-01

    Protein subcellular localization is a major determinant of protein function. However, this important protein feature is often described in terms of discrete and qualitative categories of subcellular compartments, and therefore it has limited applications in quantitative protein function analyses. Here, we present Protein Localization Analysis and Search Tools (PLAST), an automated analysis framework for constructing and comparing quantitative signatures of protein subcellular localization patterns based on microscopy images. PLAST produces human-interpretable protein localization maps that quantitatively describe the similarities in the localization patterns of proteins and major subcellular compartments, without requiring manual assignment or supervised learning of these compartments. Using the budding yeast Saccharomyces cerevisiae as a model system, we show that PLAST is more accurate than existing, qualitative protein localization annotations in identifying known co-localized proteins. Furthermore, we demonstrate that PLAST can reveal protein localization-function relationships that are not obvious from these annotations. First, we identified proteins that have similar localization patterns and participate in closely-related biological processes, but do not necessarily form stable complexes with each other or localize at the same organelles. Second, we found an association between spatial and functional divergences of proteins during evolution. Surprisingly, as proteins with common ancestors evolve, they tend to develop more diverged subcellular localization patterns, but still occupy similar numbers of compartments. This suggests that divergence of protein localization might be more frequently due to the development of more specific localization patterns over ancestral compartments than the occupation of new compartments. PLAST enables systematic and quantitative analyses of protein localization-function relationships, and will be useful to elucidate protein

  3. Structure and sequence analyses of Bacteroides proteins BVU_4064 and BF1687 reveal presence of two novel predominantly-beta domains, predicted to be involved in lipid and cell surface interactions

    DOE PAGES

    Natarajan, Padmaja; Punta, Marco; Kumar, Abhinav; Yeh, Andrew P; Godzik, Adam; Aravind, L.

    2015-01-16

    N-terminal domains of BVU_4064 and BF1687 proteins from Bacteroides vulgatus and Bacteroides fragilis respectively are members of the Pfam family PF12985 (DUF3869). Proteins containing a domain from this family can be found in most Bacteroides species and, in large numbers, in all human gut microbiome samples. Both BVU_4064 and BF1687 proteins have a consensus lipobox motif implying they are anchored to the membrane, but their functions are otherwise unknown. The C-terminal half of BVU_4064 is assigned to protein family PF12986 (DUF3870); the equivalent part of BF1687 was unclassified.

  4. Electronic structure of bacterial surface protein layers

    SciTech Connect

    Maslyuk, Volodymyr V.; Mertig, Ingrid; Bredow, Thomas; Mertig, Michael; Vyalikh, Denis V.; Molodtsov, Serguei L.

    2008-01-15

    We report an approach for the calculation of the electronic density of states of the dried two-dimensional crystalline surface protein layer (S layer) of the bacterium Bacillus sphaericus NCTC 9602. The proposed model is based on the consideration of individual amino acids in the corresponding conformation of the peptide chain which additively contribute to the electronic structure of the entire protein complex. The derived results agree well with the experimental data obtained by means of photoemission (PE), resonant PE, and near-edge x-ray absorption spectroscopy.

  5. Predicting the protein-protein interactions using primary structures with predicted protein surface

    PubMed Central

    2010-01-01

    Background Many biological functions involve various protein-protein interactions (PPIs). Elucidating such interactions is crucial for understanding general principles of cellular systems. Previous studies have shown the potential of predicting PPIs based on only sequence information. Compared to approaches that require other auxiliary information, these sequence-based approaches can be applied to a broader range of applications. Results This study presents a novel sequence-based method based on the assumption that protein-protein interactions are more related to amino acids at the surface than those at the core. The present method considers surface information and maintains the advantage of relying on only sequence data by including an accessible surface area (ASA) predictor recently proposed by the authors. This study also reports the experiments conducted to evaluate a) the performance of PPI prediction achieved by including the predicted surface and b) the quality of the predicted surface in comparison with the surface obtained from structures. The experimental results show that surface information helps to predict interacting protein pairs. Furthermore, the prediction performance achieved by using the surface estimated with the ASA predictor is close to that using the surface obtained from protein structures. Conclusion This work presents a sequence-based method that takes into account surface information for predicting PPIs. The proposed procedure of surface identification improves the prediction performance with an F-measure of 5.1%. The extracted surfaces are also valuable in other biomedical applications that require similar information. PMID:20122202

  6. Organising Atoms, Clusters and Proteins on Surfaces

    NASA Astrophysics Data System (ADS)

    Palmer, Richard E.

    2008-10-01

    This talk will discuss new developments in the creation of nanoscale surface features and their applications in biomedicine. Electron-surface interactions and plasma methods play a crucial role in both the production and analysis of these ``atomic architectures.'' At the extreme limit, electron injection from the tip of a scanning tunnelling microscope (STM) enables bond-selective manipulation of individual polyatomic molecules [1]. On a more practical level, the controlled deposition of size-selected clusters [2], generated by magnetron sputtering and gas condensation followed by mass selection, represents a surprisingly efficient route to the fabrication of surface features of size 1-10 nm, the size scale of biological molecules such as proteins. STM and AFM measurements show the clusters can act as binding sites for individual protein molecules. For example, the pinning of size-selected AuN clusters (N = 1--2000) to the (hydrophobic) graphite surface presents bindings site for sulphur atoms and thus for the cysteine residues in protein molecules. Systematic studies of different proteins [3] provide ``ground rules'' for residue-specific protein immobilisation by clusters and have led to the development of a novel biochip for protein screening by a spin-off company. The 3D atomic structure of the clusters is highly relevant to such applications. We show that measurement of the scattered electron beam intensity - specifically, the high angle annular dark field (HAADF) signal - in the scanning transmission electron microscope (STEM) allows us (a) to count the number of atoms in a cluster on the surface and (b) to determine a 3D atom-density map of the cluster when an aberration-corrected STEM is used [4]. 1. P.A. Sloan and R.E. Palmer, Nature 434 367 (2005). 2. S. Pratontep, P. Preece, C. Xirouchaki, R.E. Palmer, C.F. Sanz-Navarro, S.D. Kenny and R. Smith, Phys. Rev. Lett. 90 055503 (2003). 3. R.E. Palmer, S. Pratontep and H.-G. Boyen, Nature Materials 2 443 (2003

  7. Revealing different aggregation pathways of amyloidogenic proteins by ultrasound velocimetry.

    PubMed

    Smirnovas, Vytautas; Winter, Roland

    2008-04-15

    In this work, we performed a detailed thermodynamic study, including ultrasound velocimetry, densimetry, calorimetry, and FTIR spectroscopy, of an aggregation-prone protein (insulin) under different salt-screening conditions to gain a deeper insight into the scenario of physicochemical events during its temperature-induced unfolding and aggregation reactions. Differences in aggregation and fibrillization pathways are reflected in changes of the partial molar volume, the coefficients of thermal expansion and compressibility, and the infrared spectral properties of the protein. Combining all experimental data allows setting up a scheme for the temperature-dependent insulin aggregation reaction in the presence and absence of NaCl. As revealed by complementary atomic force microscopy studies, under charge-screening conditions, a process involving structural reorganization, ripening, and formation of more compact nuclei from amorphous oligomers is involved in the formation of mature fibrillar morphologies. In this work, our focus was to put forward a comprehensive discussion of the use of ultrasound velocimetry in disentangling different aggregation pathways. In fact, ultrasound velocimetry proved to be very sensitive to changes in aggregation pathway, highlighting the importance of density and compressibility changes in the different aggregation and fibrillization reactions of the protein.

  8. Characterization of the Eimeria maxima sporozoite surface protein IMP1.

    PubMed

    Jenkins, M C; Fetterer, R; Miska, K; Tuo, W; Kwok, O; Dubey, J P

    2015-07-30

    The purpose of this study was to characterize Eimeria maxima immune-mapped protein 1 (IMP1) that is hypothesized to play a role in eliciting protective immunity against E. maxima infection in chickens. RT-PCR analysis of RNA from unsporulated and sporulating E. maxima oocysts revealed highest transcription levels at 6-12h of sporulation with a considerable downregulation thereafter. Alignment of IMP1 coding sequence from Houghton, Weybridge, and APU-1 strains of E. maxima revealed single nucleotide polymorphisms that in some instances led to amino acid changes in the encoded protein sequence. The E. maxima (APU-1) IMP1 cDNA sequence was cloned and expressed in 2 different polyHis Escherichia coli expression vectors. Regardless of expression vector, recombinant E. maxima IMP1 (rEmaxIMP1) was fairly unstable in non-denaturing buffer, which is consistent with stability analysis of the primary amino acid sequence. Antisera specific for rEmaxIMP1 identified a single 72 kDa protein or a 61 kDa protein by non-reducing or reducing SDS-PAGE/immunoblotting. Immunofluorescence staining with anti-rEmaxIMP1, revealed intense surface staining of E. maxima sporozoites, with negligible staining of merozoite stages. Immuno-histochemical staining of E. maxima-infected chicken intestinal tissue revealed staining of E. maxima developmental stages in the lamnia propia and crypts at both 24 and 48 h post-infection, and negligible staining thereafter. The expression of IMP1 during early stages of in vivo development and its location on the sporozoite surface may explain in part the immunoprotective effect of this protein against E. maxima infection. PMID:26012860

  9. Characterization of the Eimeria maxima sporozoite surface protein IMP1.

    PubMed

    Jenkins, M C; Fetterer, R; Miska, K; Tuo, W; Kwok, O; Dubey, J P

    2015-07-30

    The purpose of this study was to characterize Eimeria maxima immune-mapped protein 1 (IMP1) that is hypothesized to play a role in eliciting protective immunity against E. maxima infection in chickens. RT-PCR analysis of RNA from unsporulated and sporulating E. maxima oocysts revealed highest transcription levels at 6-12h of sporulation with a considerable downregulation thereafter. Alignment of IMP1 coding sequence from Houghton, Weybridge, and APU-1 strains of E. maxima revealed single nucleotide polymorphisms that in some instances led to amino acid changes in the encoded protein sequence. The E. maxima (APU-1) IMP1 cDNA sequence was cloned and expressed in 2 different polyHis Escherichia coli expression vectors. Regardless of expression vector, recombinant E. maxima IMP1 (rEmaxIMP1) was fairly unstable in non-denaturing buffer, which is consistent with stability analysis of the primary amino acid sequence. Antisera specific for rEmaxIMP1 identified a single 72 kDa protein or a 61 kDa protein by non-reducing or reducing SDS-PAGE/immunoblotting. Immunofluorescence staining with anti-rEmaxIMP1, revealed intense surface staining of E. maxima sporozoites, with negligible staining of merozoite stages. Immuno-histochemical staining of E. maxima-infected chicken intestinal tissue revealed staining of E. maxima developmental stages in the lamnia propia and crypts at both 24 and 48 h post-infection, and negligible staining thereafter. The expression of IMP1 during early stages of in vivo development and its location on the sporozoite surface may explain in part the immunoprotective effect of this protein against E. maxima infection.

  10. Cell surface receptors for CCN proteins.

    PubMed

    Lau, Lester F

    2016-06-01

    The CCN family (CYR61; CTGF; NOV; CCN1-6; WISP1-3) of matricellular proteins in mammals is comprised of six homologous members that play important roles in development, inflammation, tissue repair, and a broad range of pathological processes including fibrosis and cancer. Despite considerable effort to search for a high affinity CCN-specific receptor akin to growth factor receptors, no such receptor has been found. Rather, CCNs bind several groups of multi-ligand receptors as characteristic of other matricellular proteins. The most extensively documented among CCN-binding receptors are integrins, including αvβ3, αvβ5, α5β1, α6β1, αIIbβ3, αMβ2, and αDβ2, which mediate diverse CCN functions in various cell types. CCNs also bind cell surface heparan sulfate proteoglycans (HSPGs), low density liproprotein receptor-related proteins (LRPs), and the cation-independent mannose-6-phosphate (M6P) receptor, which are endocytic receptors that may also serve as co-receptors in cooperation with other cell surface receptors. CCNs have also been reported to bind FGFR-2, Notch, RANK, and TrkA, potentially altering the affinities of these receptors for their ligands. The ability of CCNs to bind a multitude of receptors in various cell types may account for the remarkable versatility of their functions, and underscore the diverse signaling pathways that mediate their activities.

  11. RNase-mediated protein footprint sequencing reveals protein-binding sites throughout the human transcriptome.

    PubMed

    Silverman, Ian M; Li, Fan; Alexander, Anissa; Goff, Loyal; Trapnell, Cole; Rinn, John L; Gregory, Brian D

    2014-01-07

    Although numerous approaches have been developed to map RNA-binding sites of individual RNA-binding proteins (RBPs), few methods exist that allow assessment of global RBP-RNA interactions. Here, we describe PIP-seq, a universal, high-throughput, ribonuclease-mediated protein footprint sequencing approach that reveals RNA-protein interaction sites throughout a transcriptome of interest. We apply PIP-seq to the HeLa transcriptome and compare binding sites found using different cross-linkers and ribonucleases. From this analysis, we identify numerous putative RBP-binding motifs, reveal novel insights into co-binding by RBPs, and uncover a significant enrichment for disease-associated polymorphisms within RBP interaction sites.

  12. Protein Flexibility in Docking and Surface Mapping

    PubMed Central

    Lexa, Katrina W.; Carlson, Heather A.

    2012-01-01

    Structure-based drug design has become an essential tool for rapid lead discovery and optimization. As available structural information has increased, researchers have become increasingly aware of the importance of protein flexibility for accurate description of the native state. Typical protein–ligand docking efforts still rely on a single rigid receptor, which is an incomplete representation of potential binding conformations of the protein. These rigid docking efforts typically show the best performance rates between 50 and 75%, while fully flexible docking methods can enhance pose prediction up to 80–95%. This review examines the current toolbox for flexible protein–ligand docking and receptor surface mapping. Present limitations and possibilities for future development are discussed. PMID:22569329

  13. Identification and characterization of the surface proteins of Clostridium difficile

    SciTech Connect

    Dailey, D.C.

    1988-01-01

    Several clostridial proteins were detected on the clostridial cell surface by sensitive radioiodination techniques. Two major proteins and six minor proteins comprised the radioiodinated proteins on the clostridial cell surface. Cellular fractionation of surface radiolabeled C. difficile determined that the radioiodinated proteins were found in the cell wall fraction of C. difficile and surprisingly were also present in the clostridial membrane. Furthermore, an interesting phenomenon of disulfide-crosslinking of the cell surface proteins of C. difficile was observed. Disulfide-linked protein complexes were found in both the membrane and cell wall fractions. In addition, the cell surface proteins of C. difficile were found to be released into the culture medium. In attempts to further characterize the clostridial proteins recombinant DNA techniques were employed. In addition, the role of the clostridial cell surface proteins in the interactions of C. difficile with human PMNs was also investigated.

  14. Structure of Est3 reveals a bimodal surface with differential roles in telomere replication

    PubMed Central

    Rao, Timsi; Lubin, Johnathan W.; Armstrong, Geoffrey S.; Tucey, Timothy M.; Lundblad, Victoria; Wuttke, Deborah S.

    2014-01-01

    Telomerase is essential for continuous cellular proliferation. Substantial insights have come from studies of budding yeast telomerase, which consists of a catalytic core in association with two regulatory proteins, ever shorter telomeres 1 and 3 (Est1 and Est3). We report here a high-resolution structure of the Est3 telomerase subunit determined using a recently developed strategy that combines minimal NMR experimental data with Rosetta de novo structure prediction algorithms. Est3 adopts an overall protein fold which is structurally similar to that adopted by the shelterin component TPP1. However, the characteristics of the surface of the experimentally determined Est3 structure are substantially different from those predicted by prior homology-based models of Est3. Structure-guided mutagenesis of the complete surface of the Est3 protein reveals two adjacent patches on a noncanonical face of the protein that differentially mediate telomere function. Mapping these two patches on the Est3 structure defines a set of shared features between Est3 and HsTPP1, suggesting an analogous multifunctional surface on TPP1. PMID:24344315

  15. Structure of Est3 reveals a bimodal surface with differential roles in telomere replication.

    PubMed

    Rao, Timsi; Lubin, Johnathan W; Armstrong, Geoffrey S; Tucey, Timothy M; Lundblad, Victoria; Wuttke, Deborah S

    2014-01-01

    Telomerase is essential for continuous cellular proliferation. Substantial insights have come from studies of budding yeast telomerase, which consists of a catalytic core in association with two regulatory proteins, ever shorter telomeres 1 and 3 (Est1 and Est3). We report here a high-resolution structure of the Est3 telomerase subunit determined using a recently developed strategy that combines minimal NMR experimental data with Rosetta de novo structure prediction algorithms. Est3 adopts an overall protein fold which is structurally similar to that adopted by the shelterin component TPP1. However, the characteristics of the surface of the experimentally determined Est3 structure are substantially different from those predicted by prior homology-based models of Est3. Structure-guided mutagenesis of the complete surface of the Est3 protein reveals two adjacent patches on a noncanonical face of the protein that differentially mediate telomere function. Mapping these two patches on the Est3 structure defines a set of shared features between Est3 and HsTPP1, suggesting an analogous multifunctional surface on TPP1.

  16. Protein surface patterning using nanoscale PEG hydrogels.

    PubMed

    Hong, Ye; Krsko, Peter; Libera, Matthew

    2004-12-01

    We have used focused electron-beam cross-linking to create nanosized hydrogels and thus present a new method with which to bring the attractive biocompatibility associated with macroscopic hydrogels into the submicron length-scale regime. Using amine-terminated poly(ethylene glycol) thin films on silicon substrates, we generate nanohydrogels with lateral dimensions of order 200 nm which can swell by a factor of at least five, depending on the radiative dose. With the focused electron beam, high-density arrays of such nanohydrogels can be flexibly patterned onto silicon surfaces. Significantly, the amine groups remain functional after e-beam exposure, and we show that they can be used to covalently bind proteins and other molecules. We use bovine serum albumin to amplify the number of amine groups, and we further demonstrate that different proteins can be covalently bound to different hydrogel pads on the same substrate to create multifunctional surfaces useful in emerging bio/proteomic and sensor technologies.

  17. The Electrophoretic Mobility of Proteins near Surfaces

    NASA Astrophysics Data System (ADS)

    Ramasamy, Perumal; Singh, Avtar; Rafailovich, Miriam; Sokolov, Jonathan

    2004-03-01

    We have attempted to apply the methods developed for surface DNA electrophoresis (1) for proteomics. Droplets of FITC stained Abumin, Poly- L-Lysine, or Casein purchased from Sigma were deposited on glass cover slips. The droplets were then place in contact with a TBE buffer solution contained in a cell molded from PDMS. Pt electrodes were inserted into the cell and a voltage was a applied. The motion of the protein was then imaged with a Leica Confocal microscope as a function of buffer concentration, distance from the surface, and applied voltage. The mobilities were then compared with those of uncharged one micron florescent Polystyrene beads. References: 1)Henzel WJ, Watanabe C, Stults JT., !0 Protein Identification: The Origins of Peptide Mass Fingerprinting. !1 J. American Society for Mass Spectrometry. 14 (September 2003): 931-942 2)Mathesius U, Imin N, Natera SH, Rolfe BG., !0 Proteomics as a functional genomics tool. !1 Methods of Molecular Biology 236: 395-414. *Work supported in part by the NSF-MRSEC program

  18. Hepatocellular carcinoma and hepatitis B surface protein

    PubMed Central

    Li, Yong-Wei; Yang, Feng-Cai; Lu, Hui-Qiong; Zhang, Jiong-Shan

    2016-01-01

    The tumorigenesis of hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC) has been widely studied. HBV envelope proteins are important for the structure and life cycle of HBV, and these proteins are useful for judging the natural disease course and guiding treatment. Truncated and mutated preS/S are produced by integrated viral sequences that are defective for replication. The preS/S mutants are considered “precursor lesions” of HCC. Different preS/S mutants induce various mechanisms of tumorigenesis, such as transactivation of transcription factors and an immune inflammatory response, thereby contributing to HCC. The preS2 mutants and type II “Ground Glass” hepatocytes represent novel biomarkers of HBV-associated HCC. The preS mutants may induce the unfolded protein response and endoplasmic reticulum stress-dependent and stress-independent pathways. Treatments to inhibit hepatitis B surface antigen (HBsAg) and damage secondary to HBsAg or the preS/S mutants include antivirals and antioxidants, such as silymarin, resveratrol, and glycyrrhizin acid. Methods for the prevention and treatment of HCC should be comprehensive. PMID:26877602

  19. Sperm Lysozyme-Like Protein 1 (SLLP1), an intra-acrosomal oolemmal-binding sperm protein, reveals filamentous organization in protein crystal form

    PubMed Central

    Zheng, Heping; Mandal, Arabinda; Shumilin, Igor A.; Chordia, Mahendra D.; Panneerdoss, Subbarayalu; Herr, John C.; Minor, Wladek

    2016-01-01

    Sperm Lysozyme-Like Protein 1 (SLLP1) is one of the lysozyme-like proteins predominantly expressed in mammalian testes that lacks bacteriolytic activity, localizes in the sperm acrosome, and exhibits high affinity for an oolemmal receptor, SAS1B. The crystal structure of mouse SLLP1 (mSLLP1) was determined at 2.15Å resolution. mSLLP1 monomer adopts a structural fold similar to that of chicken/mouse lysozymes retaining all four canonical disulfide bonds. mSLLP1 is distinct from c-lysozyme by substituting two essential catalytic residues (E35T/D52N), exhibiting different surface charge distribution, and by forming helical filaments approximately 75Å in diameter with a 25Å central pore comprised of six monomers per helix turn repeating every 33Å. Cross-species alignment of all reported SLLP1 sequences revealed a set of invariant surface regions comprising a characteristic fingerprint uniquely identifying SLLP1 from other c-lysozyme family members. The fingerprint surface regions reside around the lips of the putative glycan binding groove including three polar residues (Y33/E46/H113). A flexible salt bridge (E46-R61) was observed covering the glycan binding groove. The conservation of these regions may be linked to their involvement in oolemmal protein binding. Interaction between SLLP1 monomer and its oolemmal receptor SAS1B was modeled using protein-protein docking algorithms, utilizing the SLLP1 fingerprint regions along with the SAS1B conserved surface regions. This computational model revealed complementarity between the conserved SLLP1/SAS1B interacting surfaces supporting the experimentally-observed SLLP1/SAS1B interaction involved in fertilization. PMID:26198801

  20. Applications of Yeast Surface Display for Protein Engineering.

    PubMed

    Cherf, Gerald M; Cochran, Jennifer R

    2015-01-01

    The method of displaying recombinant proteins on the surface of Saccharomyces cerevisiae via genetic fusion to an abundant cell wall protein, a technology known as yeast surface display, or simply, yeast display, has become a valuable protein engineering tool for a broad spectrum of biotechnology and biomedical applications. This review focuses on the use of yeast display for engineering protein affinity, stability, and enzymatic activity. Strategies and examples for each protein engineering goal are discussed. Additional applications of yeast display are also briefly presented, including protein epitope mapping, identification of protein-protein interactions, and uses of displayed proteins in industry and medicine. PMID:26060074

  1. Applications of yeast surface display for protein engineering

    PubMed Central

    Cherf, Gerald M.; Cochran, Jennifer R.

    2015-01-01

    The method of displaying recombinant proteins on the surface of Saccharomyces cerevisiae via genetic fusion to an abundant cell wall protein, a technology known as yeast surface display, or simply, yeast display, has become a valuable protein engineering tool for a broad spectrum of biotechnology and biomedical applications. This review focuses on the use of yeast display for engineering protein affinity, stability, and enzymatic activity. Strategies and examples for each protein engineering goal are discussed. Additional applications of yeast display are also briefly presented, including protein epitope mapping, identification of protein-protein interactions, and uses of displayed proteins in industry and medicine. PMID:26060074

  2. A Library of Plasmodium vivax Recombinant Merozoite Proteins Reveals New Vaccine Candidates and Protein-Protein Interactions

    PubMed Central

    Hostetler, Jessica B.; Sharma, Sumana; Bartholdson, S. Josefin; Wright, Gavin J.; Fairhurst, Rick M.; Rayner, Julian C.

    2015-01-01

    Background A vaccine targeting Plasmodium vivax will be an essential component of any comprehensive malaria elimination program, but major gaps in our understanding of P. vivax biology, including the protein-protein interactions that mediate merozoite invasion of reticulocytes, hinder the search for candidate antigens. Only one ligand-receptor interaction has been identified, that between P. vivax Duffy Binding Protein (PvDBP) and the erythrocyte Duffy Antigen Receptor for Chemokines (DARC), and strain-specific immune responses to PvDBP make it a complex vaccine target. To broaden the repertoire of potential P. vivax merozoite-stage vaccine targets, we exploited a recent breakthrough in expressing full-length ectodomains of Plasmodium proteins in a functionally-active form in mammalian cells and initiated a large-scale study of P. vivax merozoite proteins that are potentially involved in reticulocyte binding and invasion. Methodology/Principal Findings We selected 39 P. vivax proteins that are predicted to localize to the merozoite surface or invasive secretory organelles, some of which show homology to P. falciparum vaccine candidates. Of these, we were able to express 37 full-length protein ectodomains in a mammalian expression system, which has been previously used to express P. falciparum invasion ligands such as PfRH5. To establish whether the expressed proteins were correctly folded, we assessed whether they were recognized by antibodies from Cambodian patients with acute vivax malaria. IgG from these samples showed at least a two-fold change in reactivity over naïve controls in 27 of 34 antigens tested, and the majority showed heat-labile IgG immunoreactivity, suggesting the presence of conformation-sensitive epitopes and native tertiary protein structures. Using a method specifically designed to detect low-affinity, extracellular protein-protein interactions, we confirmed a predicted interaction between P. vivax 6-cysteine proteins P12 and P41, further

  3. Stabilization of protein crystals by electrostatic interactions as revealed by a numerical approach.

    PubMed

    Takahashi, T; Endo, S; Nagayama, K

    1993-11-20

    We developed a novel algorithm to solve numerically the Poisson-Boltzmann equations under a periodic boundary condition. By employing this algorithm to calculate the electrostatic potentials in two different types of protein crystals, a bovine pancreatic trypsin inhibitor (BPTI) orthorhombic crystal and a pig-insulin cubic crystal, the energy contributions of the electrostatic interactions to the crystals' stability were evaluated. At a high ionic strength, the condensed state of proteins in the crystal was stabilized electrostatically compared with that isolated in dilute solution because the attractive electrostatic interactions between neighboring protein molecules overcame the repulsive forces that originated from the same net charges of the equivalent protein molecules. On the other hand, at a low ionic strength the electrostatic interactions destabilized the crystalline state of both proteins, although a different dependence on the ionic strength was found between them. Here, the insulin crystal was more stable than the BPTI one because of the higher charge density in the BPTI crystal. In all of the solvent ionic strengths investigated, the attractive electrostatic interactions between charge pairs separated by less than 5 A on the respective protein molecules prominently stabilize the protein crystals. Therefore, two protein molecules in the crystals are oriented to compensate each other for their opposite charges on the surfaces. We also found a specific role for bound phosphate ions in the stabilization of the BPTI crystal, based on comparison of the electrostatic energies of the two crystals with and without the ions. By determining the contribution of each atomic charge in the crystals to the electrostatic energy, it was revealed that several electrostatic pairs specifically contributed to the crystal's stability. On the basis of our numerical calculation results, we propose a new method to design protein molecules that adopt stable crystals by replacing

  4. Are protein-protein interfaces special regions on a protein's surface?

    NASA Astrophysics Data System (ADS)

    Tonddast-Navaei, Sam; Skolnick, Jeffrey

    2015-12-01

    Protein-protein interactions (PPIs) are involved in many cellular processes. Experimentally obtained protein quaternary structures provide the location of protein-protein interfaces, the surface region of a given protein that interacts with another. These regions are termed half-interfaces (HIs). Canonical HIs cover roughly one third of a protein's surface and were found to have more hydrophobic residues than the non-interface surface region. In addition, the classical view of protein HIs was that there are a few (if not one) HIs per protein that are structurally and chemically unique. However, on average, a given protein interacts with at least a dozen others. This raises the question of whether they use the same or other HIs. By copying HIs from monomers with the same folds in solved quaternary structures, we introduce the concept of geometric HIs (HIs whose geometry has a significant match to other known interfaces) and show that on average they cover three quarters of a protein's surface. We then demonstrate that in some cases, these geometric HI could result in real physical interactions (which may or may not be biologically relevant). The composition of the new HIs is on average more charged compared to most known ones, suggesting that the current protein interface database is biased towards more hydrophobic, possibly more obligate, complexes. Finally, our results provide evidence for interface fuzziness and PPI promiscuity. Thus, the classical view of unique, well defined HIs needs to be revisited as HIs are another example of coarse-graining that is used by nature.

  5. Atomic force microscopy reveals the mechanical design of a modular protein

    NASA Astrophysics Data System (ADS)

    Li, Hongbin; Oberhauser, Andres F.; Fowler, Susan B.; Clarke, Jane; Fernandez, Julio M.

    2000-06-01

    Tandem modular proteins underlie the elasticity of natural adhesives, cell adhesion proteins, and muscle proteins. The fundamental unit of elastic proteins is their individually folded modules. Here, we use protein engineering to construct multimodular proteins composed of Ig modules of different mechanical strength. We examine the mechanical properties of the resulting tandem modular proteins by using single protein atomic force microscopy. We show that by combining modules of known mechanical strength, we can generate proteins with novel elastic properties. Our experiments reveal the simple mechanical design of modular proteins and open the way for the engineering of elastic proteins with defined mechanical properties, which can be used in tissue and fiber engineering.

  6. Conformational dynamics of nonsynonymous variants at protein interfaces reveals disease association.

    PubMed

    Butler, Brandon M; Gerek, Z Nevin; Kumar, Sudhir; Ozkan, S Banu

    2015-03-01

    Recent studies have shown that the protein interface sites between individual monomeric units in biological assemblies are enriched in disease-associated non-synonymous single nucleotide variants (nsSNVs). To elucidate the mechanistic underpinning of this observation, we investigated the conformational dynamic properties of protein interface sites through a site-specific structural dynamic flexibility metric (dfi) for 333 multimeric protein assemblies. dfi measures the dynamic resilience of a single residue to perturbations that occurred in the rest of the protein structure and identifies sites contributing the most to functionally critical dynamics. Analysis of dfi profiles of over a thousand positions harboring variation revealed that amino acid residues at interfaces have lower average dfi (31%) than those present at non-interfaces (50%), which means that protein interfaces have less dynamic flexibility. Interestingly, interface sites with disease-associated nsSNVs have significantly lower average dfi (23%) as compared to those of neutral nsSNVs (42%), which directly relates structural dynamics to functional importance. We found that less conserved interface positions show much lower dfi for disease nsSNVs as compared to neutral nsSNVs. In this case, dfi is better as compared to the accessible surface area metric, which is based on the static protein structure. Overall, our proteome-wide conformational dynamic analysis indicates that certain interface sites play a critical role in functionally related dynamics (i.e., those with low dfi values), therefore mutations at those sites are more likely to be associated with disease.

  7. Revealing the role of oxidation state in interaction between nitro/amino-derived particulate matter and blood proteins

    PubMed Central

    Liu, Zhen; Li, Ping; Bian, Weiwei; Yu, Jingkai; Zhan, Jinhua

    2016-01-01

    Surface oxidation states of ultrafine particulate matter can influence the proinflammatory responses and reactive oxygen species levels in tissue. Surface active species of vehicle-emission soot can serve as electron transfer-mediators in mitochondrion. Revealing the role of surface oxidation state in particles-proteins interaction will promote the understanding on metabolism and toxicity. Here, the surface oxidation state was modeled by nitro/amino ligands on nanoparticles, the interaction with blood proteins were evaluated by capillary electrophoresis quantitatively. The nitro shown larger affinity than amino. On the other hand, the affinity to hemoglobin is 103 times larger than that to BSA. Further, molecular docking indicated the difference of binding intensity were mainly determined by hydrophobic forces and hydrogen bonds. These will deepen the quantitative understanding of protein-nanoparticles interaction from the perspective of surface chemical state. PMID:27181651

  8. Revealing the role of oxidation state in interaction between nitro/amino-derived particulate matter and blood proteins

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Li, Ping; Bian, Weiwei; Yu, Jingkai; Zhan, Jinhua

    2016-05-01

    Surface oxidation states of ultrafine particulate matter can influence the proinflammatory responses and reactive oxygen species levels in tissue. Surface active species of vehicle-emission soot can serve as electron transfer-mediators in mitochondrion. Revealing the role of surface oxidation state in particles-proteins interaction will promote the understanding on metabolism and toxicity. Here, the surface oxidation state was modeled by nitro/amino ligands on nanoparticles, the interaction with blood proteins were evaluated by capillary electrophoresis quantitatively. The nitro shown larger affinity than amino. On the other hand, the affinity to hemoglobin is 103 times larger than that to BSA. Further, molecular docking indicated the difference of binding intensity were mainly determined by hydrophobic forces and hydrogen bonds. These will deepen the quantitative understanding of protein-nanoparticles interaction from the perspective of surface chemical state.

  9. Revealing the role of oxidation state in interaction between nitro/amino-derived particulate matter and blood proteins.

    PubMed

    Liu, Zhen; Li, Ping; Bian, Weiwei; Yu, Jingkai; Zhan, Jinhua

    2016-01-01

    Surface oxidation states of ultrafine particulate matter can influence the proinflammatory responses and reactive oxygen species levels in tissue. Surface active species of vehicle-emission soot can serve as electron transfer-mediators in mitochondrion. Revealing the role of surface oxidation state in particles-proteins interaction will promote the understanding on metabolism and toxicity. Here, the surface oxidation state was modeled by nitro/amino ligands on nanoparticles, the interaction with blood proteins were evaluated by capillary electrophoresis quantitatively. The nitro shown larger affinity than amino. On the other hand, the affinity to hemoglobin is 10(3) times larger than that to BSA. Further, molecular docking indicated the difference of binding intensity were mainly determined by hydrophobic forces and hydrogen bonds. These will deepen the quantitative understanding of protein-nanoparticles interaction from the perspective of surface chemical state. PMID:27181651

  10. Reveal protein dynamics by combining computer simulation and neutron scattering

    NASA Astrophysics Data System (ADS)

    Hong, Liang; Smith, Jeremy; CenterMolecular Biophysics Team

    2014-03-01

    Protein carries out most functions in living things on the earth through characteristic modulation of its three-dimensional structure over time. Understanding the microscopic nature of the protein internal motion and its connection to the function and structure of the biomolecule is a central topic in biophysics, and of great practical importance for drug design, study of diseases, and the development of renewable energy, etc. Under physiological conditions, protein exhibits a complex dynamics landscape, i.e., a variety of diffusive and conformational motions occur on similar time and length scales. This variety renders difficult the derivation of a simplified description of protein internal motions in terms of a small number of distinct, additive components. This difficulty is overcome by our work using a combined approach of Molecular Dynamics (MD) simulations and the Neutron Scattering experiments. Our approach enables distinct protein motions to be characterized separately, furnishing an in-depth understanding of the connection between protein structure, dynamics and function.

  11. Development, characterization, and optimization of protein level in date bars using response surface methodology.

    PubMed

    Nadeem, Muhammad; Salim-ur-Rehman; Muhammad Anjum, Faqir; Murtaza, Mian Anjum; Mueen-ud-Din, Ghulam

    2012-01-01

    This project was designed to produce a nourishing date bar with commercial value especially for school going children to meet their body development requirements. Protein level of date bars was optimized using response surface methodology (RSM). Economical and underutilized sources, that is, whey protein concentrate and vetch protein isolates, were explored for protein supplementation. Fourteen date bar treatments were produced using a central composite design (CCD) with 2 variables and 3 levels for each variable. Date bars were then analyzed for nutritional profile. Proximate composition revealed that addition of whey protein concentrate and vetch protein isolates improved the nutritional profile of date bars. Protein level, texture, and taste were considerably improved by incorporating 6.05% whey protein concentrate and 4.35% vetch protein isolates in date bar without affecting any sensory characteristics during storage. Response surface methodology was observed as an economical and effective tool to optimize the ingredient level and to discriminate the interactive effects of independent variables. PMID:22792044

  12. Structure-Based Analysis Reveals Cancer Missense Mutations Target Protein Interaction Interfaces

    PubMed Central

    Engin, H. Billur; Kreisberg, Jason F.; Carter, Hannah

    2016-01-01

    Recently it has been shown that cancer mutations selectively target protein-protein interactions. We hypothesized that mutations affecting distinct protein interactions involving established cancer genes could contribute to tumor heterogeneity, and that novel mechanistic insights might be gained into tumorigenesis by investigating protein interactions under positive selection in cancer. To identify protein interactions under positive selection in cancer, we mapped over 1.2 million nonsynonymous somatic cancer mutations onto 4,896 experimentally determined protein structures and analyzed their spatial distribution. In total, 20% of mutations on the surface of known cancer genes perturbed protein-protein interactions (PPIs), and this enrichment for PPI interfaces was observed for both tumor suppressors (Odds Ratio 1.28, P-value < 10−4) and oncogenes (Odds Ratio 1.17, P-value < 10−3). To study this further, we constructed a bipartite network representing structurally resolved PPIs from all available human complexes in the Protein Data Bank (2,864 proteins, 3,072 PPIs). Analysis of frequently mutated cancer genes within this network revealed that tumor-suppressors, but not oncogenes, are significantly enriched with functional mutations in homo-oligomerization regions (Odds Ratio 3.68, P-Value < 10−8). We present two important examples, TP53 and beta-2-microglobulin, for which the patterns of somatic mutations at interfaces provide insights into specifically perturbed biological circuits. In patients with TP53 mutations, patient survival correlated with the specific interactions that were perturbed. Moreover, we investigated mutations at the interface of protein-nucleotide interactions and observed an unexpected number of missense mutations but not silent mutations occurring within DNA and RNA binding sites. Finally, we provide a resource of 3,072 PPI interfaces ranked according to their mutation rates. Analysis of this list highlights 282 novel candidate cancer

  13. Principal Component Analysis reveals correlation of cavities evolution and functional motions in proteins.

    PubMed

    Desdouits, Nathan; Nilges, Michael; Blondel, Arnaud

    2015-02-01

    Protein conformation has been recognized as the key feature determining biological function, as it determines the position of the essential groups specifically interacting with substrates. Hence, the shape of the cavities or grooves at the protein surface appears to drive those functions. However, only a few studies describe the geometrical evolution of protein cavities during molecular dynamics simulations (MD), usually with a crude representation. To unveil the dynamics of cavity geometry evolution, we developed an approach combining cavity detection and Principal Component Analysis (PCA). This approach was applied to four systems subjected to MD (lysozyme, sperm whale myoglobin, Dengue envelope protein and EF-CaM complex). PCA on cavities allows us to perform efficient analysis and classification of the geometry diversity explored by a cavity. Additionally, it reveals correlations between the evolutions of the cavities and structures, and can even suggest how to modify the protein conformation to induce a given cavity geometry. It also helps to perform fast and consensual clustering of conformations according to cavity geometry. Finally, using this approach, we show that both carbon monoxide (CO) location and transfer among the different xenon sites of myoglobin are correlated with few cavity evolution modes of high amplitude. This correlation illustrates the link between ligand diffusion and the dynamic network of internal cavities.

  14. Principal Component Analysis reveals correlation of cavities evolution and functional motions in proteins.

    PubMed

    Desdouits, Nathan; Nilges, Michael; Blondel, Arnaud

    2015-02-01

    Protein conformation has been recognized as the key feature determining biological function, as it determines the position of the essential groups specifically interacting with substrates. Hence, the shape of the cavities or grooves at the protein surface appears to drive those functions. However, only a few studies describe the geometrical evolution of protein cavities during molecular dynamics simulations (MD), usually with a crude representation. To unveil the dynamics of cavity geometry evolution, we developed an approach combining cavity detection and Principal Component Analysis (PCA). This approach was applied to four systems subjected to MD (lysozyme, sperm whale myoglobin, Dengue envelope protein and EF-CaM complex). PCA on cavities allows us to perform efficient analysis and classification of the geometry diversity explored by a cavity. Additionally, it reveals correlations between the evolutions of the cavities and structures, and can even suggest how to modify the protein conformation to induce a given cavity geometry. It also helps to perform fast and consensual clustering of conformations according to cavity geometry. Finally, using this approach, we show that both carbon monoxide (CO) location and transfer among the different xenon sites of myoglobin are correlated with few cavity evolution modes of high amplitude. This correlation illustrates the link between ligand diffusion and the dynamic network of internal cavities. PMID:25424655

  15. Tryptophan fluorescence reveals induced folding of Vibrio harveyi acyl carrier protein upon interaction with partner enzymes.

    PubMed

    Gong, Huansheng; Murphy, Peter W; Langille, Gavin M; Minielly, Sarah J; Murphy, Anne; McMaster, Christopher R; Byers, David M

    2008-11-01

    We have introduced tryptophan as a local fluorescent probe to monitor the conformation of Vibrio harveyi acyl carrier protein (ACP), a small flexible protein that is unfolded at neutral pH but must undergo reversible conformational change during the synthesis and delivery of bacterial fatty acids. Consistent with known 3D structures of ACP, steady-state fluorescence and quenching experiments indicated that Trp at positions 46, 50, and 72 are buried in the hydrophobic core upon Mg(2+)-induced ACP folding, whereas residues 25 and 45 remain in a hydrophilic environment on the protein surface. Attachment of fatty acids to the phosphopantetheine prosthetic group progressively stabilized the folded conformation of all Trp-substituted ACPs, but longer chains (14:0) were less effective than medium chains (8:0) in shielding Trp from acrylamide quenching in the L46W protein. Interaction with ACP-dependent enzymes LpxA and holo-ACP synthase also caused folding of L46W; fluorescence quenching indicated proximity of Trp-45 in helix II of ACP in LpxA binding. Our results suggest that divalent cations and fatty acylation produce differing environments in the ACP core and also reveal enzyme partner-induced folding of ACP, a key feature of "natively unfolded" proteins.

  16. Principles of assembly reveal a periodic table of protein complexes.

    PubMed

    Ahnert, Sebastian E; Marsh, Joseph A; Hernández, Helena; Robinson, Carol V; Teichmann, Sarah A

    2015-12-11

    Structural insights into protein complexes have had a broad impact on our understanding of biological function and evolution. In this work, we sought a comprehensive understanding of the general principles underlying quaternary structure organization in protein complexes. We first examined the fundamental steps by which protein complexes can assemble, using experimental and structure-based characterization of assembly pathways. Most assembly transitions can be classified into three basic types, which can then be used to exhaustively enumerate a large set of possible quaternary structure topologies. These topologies, which include the vast majority of observed protein complex structures, enable a natural organization of protein complexes into a periodic table. On the basis of this table, we can accurately predict the expected frequencies of quaternary structure topologies, including those not yet observed. These results have important implications for quaternary structure prediction, modeling, and engineering. PMID:26659058

  17. Revealing Higher Order Protein Structure Using Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Chait, Brian T.; Cadene, Martine; Olinares, Paul Dominic; Rout, Michael P.; Shi, Yi

    2016-06-01

    The development of rapid, sensitive, and accurate mass spectrometric methods for measuring peptides, proteins, and even intact protein assemblies has made mass spectrometry (MS) an extraordinarily enabling tool for structural biology. Here, we provide a personal perspective of the increasingly useful role that mass spectrometric techniques are exerting during the elucidation of higher order protein structures. Areas covered in this brief perspective include MS as an enabling tool for the high resolution structural biologist, for compositional analysis of endogenous protein complexes, for stoichiometry determination, as well as for integrated approaches for the structural elucidation of protein complexes. We conclude with a vision for the future role of MS-based techniques in the development of a multi-scale molecular microscope.

  18. Principles of assembly reveal a periodic table of protein complexes.

    PubMed

    Ahnert, Sebastian E; Marsh, Joseph A; Hernández, Helena; Robinson, Carol V; Teichmann, Sarah A

    2015-12-11

    Structural insights into protein complexes have had a broad impact on our understanding of biological function and evolution. In this work, we sought a comprehensive understanding of the general principles underlying quaternary structure organization in protein complexes. We first examined the fundamental steps by which protein complexes can assemble, using experimental and structure-based characterization of assembly pathways. Most assembly transitions can be classified into three basic types, which can then be used to exhaustively enumerate a large set of possible quaternary structure topologies. These topologies, which include the vast majority of observed protein complex structures, enable a natural organization of protein complexes into a periodic table. On the basis of this table, we can accurately predict the expected frequencies of quaternary structure topologies, including those not yet observed. These results have important implications for quaternary structure prediction, modeling, and engineering.

  19. Network analysis reveals common host protein/s modulating pathogenesis of neurotropic viruses

    PubMed Central

    Ghosh, Sourish; Mukherjee, Sriparna; Sengupta, Nabonita; Roy, Arunava; Dey, Dhritiman; Chakraborty, Surajit; Chattopadhyay, Dhrubajyoti; Banerjee, Arpan; Basu, Anirban

    2016-01-01

    Network analysis through graph theory provides a quantitative approach to characterize specific proteins and their constituent assemblies that underlie host-pathogen interactions. In the present study, graph theory was used to analyze the interactome designed out of 50 differentially expressing proteins from proteomic analysis of Chandipura Virus (CHPV, Family: Rhabdoviridae) infected mouse brain tissue to identify the primary candidates for intervention. Using the measure of degree centrality, that quantifies the connectedness of a single protein within a milieu of several other interacting proteins, DJ-1 was selected for further molecular validation. To elucidate the generality of DJ-1’s role in propagating infection its role was also monitored in another RNA virus, Japanese Encephalitis Virus (JEV, Family: Flaviviridae) infection. Concurrently, DJ-1 got over-expressed in response to reactive oxygen species (ROS) generation following viral infection which in the early phase of infection migrated to mitochondria to remove dysfunctional mitochondria through the process of mitophagy. DJ-1 was also observed to modulate the viral replication and interferon responses along with low-density lipoprotein (LDL) receptor expression in neurons. Collectively these evidences reveal a comprehensive role for DJ-1 in neurotropic virus infection in the brain. PMID:27581498

  20. Network analysis reveals common host protein/s modulating pathogenesis of neurotropic viruses.

    PubMed

    Ghosh, Sourish; Mukherjee, Sriparna; Sengupta, Nabonita; Roy, Arunava; Dey, Dhritiman; Chakraborty, Surajit; Chattopadhyay, Dhrubajyoti; Banerjee, Arpan; Basu, Anirban

    2016-01-01

    Network analysis through graph theory provides a quantitative approach to characterize specific proteins and their constituent assemblies that underlie host-pathogen interactions. In the present study, graph theory was used to analyze the interactome designed out of 50 differentially expressing proteins from proteomic analysis of Chandipura Virus (CHPV, Family: Rhabdoviridae) infected mouse brain tissue to identify the primary candidates for intervention. Using the measure of degree centrality, that quantifies the connectedness of a single protein within a milieu of several other interacting proteins, DJ-1 was selected for further molecular validation. To elucidate the generality of DJ-1's role in propagating infection its role was also monitored in another RNA virus, Japanese Encephalitis Virus (JEV, Family: Flaviviridae) infection. Concurrently, DJ-1 got over-expressed in response to reactive oxygen species (ROS) generation following viral infection which in the early phase of infection migrated to mitochondria to remove dysfunctional mitochondria through the process of mitophagy. DJ-1 was also observed to modulate the viral replication and interferon responses along with low-density lipoprotein (LDL) receptor expression in neurons. Collectively these evidences reveal a comprehensive role for DJ-1 in neurotropic virus infection in the brain. PMID:27581498

  1. Flood damage claims reveal insights about surface runoff in Switzerland

    NASA Astrophysics Data System (ADS)

    Bernet, D. B.; Prasuhn, V.; Weingartner, R.

    2015-12-01

    A few case studies in Switzerland exemplify that not only overtopping water bodies frequently cause damages to buildings. Reportedly, a large share of the total loss due to flooding in Switzerland goes back to surface runoff that is formed and is propagating outside of regular watercourses. Nevertheless, little is known about when, where and why such surface runoff occurs. The described process encompasses surface runoff formation, followed by unchannelised overland flow until a water body is reached. It is understood as a type of flash flood, has short response times and occurs diffusely in the landscape. Thus, the process is difficult to observe and study directly. A promising source indicating surface runoff indirectly are houseowners' damage claims recorded by Swiss Public Insurance Companies for Buildings (PICB). In most of Switzerland, PICB hold a monopoly position and insure (almost) every building. Consequently, PICB generally register all damages to buildings caused by an insured natural hazard (including surface runoff) within the respective zones. We have gathered gapless flood related claim records of most of all Swiss PICB covering more than the last two decades on average. Based on a subset, we have developed a methodology to differentiate claims related to surface runoff from other causes. This allows us to assess the number of claims as well as total loss related to surface runoff and compare these to the numbers of overtopping watercourses. Furthermore, with the good data coverage, we are able to analyze surface runoff related claims in space and time, from which we can infer spatial and temporal characteristics of surface runoff. Although the delivered data of PICB are heterogeneous and, consequently, time-consuming to harmonize, our first results show that exploiting these damage claim records is feasible and worthwhile to learn more about surface runoff in Switzerland.

  2. Ultrafast Hydration Dynamics Probed by Tryptophan at Protein Surface and Protein-DNA Interface

    NASA Astrophysics Data System (ADS)

    Qin, Yangzhong

    tightly binds to the DNA with higher fidelity. The interfacial water is about 2 times slower than the surface water. Most importantly, the ultrafast component disappeared for the interfacial water indicating a strongly confined local environment. To further inspect the surface and interfacial water property, we carried out a 4 ns MD simulation, which reveals that all the interfacial water forms only one to two hydration layers from the protein and DNA surface, and no bulk type water was discovered. For both enzymes, the interfacial water is still fluctuating on picoseconds time scales to facilitate their dynamic function including substrate binding, protein sliding on DNA and dNTP sampling. Despite many hydration dynamics were studied at room temperature, some enzymes are optimally functioning at much higher temperature. Dpo4 was originally found on Sulfolobus solfataricus, which grows in volcanic hot springs with temperature around 75-90°C. This inspired us to study its hydration temperature dependence from 1°C to 60°C. Simple Arrhenius equation can fit all the data for each mutant and determine the activation enthalpies ranging from 5 kJ/mol to 15 kJ/mol. We also found a clear correlation between the solvation and tryptophan side chain motion, strongly supporting the coupled motion between water and protein and the famous slaving model.

  3. Ribosomal History Reveals Origins of Modern Protein Synthesis

    PubMed Central

    Harish, Ajith; Caetano-Anollés, Gustavo

    2012-01-01

    The origin and evolution of the ribosome is central to our understanding of the cellular world. Most hypotheses posit that the ribosome originated in the peptidyl transferase center of the large ribosomal subunit. However, these proposals do not link protein synthesis to RNA recognition and do not use a phylogenetic comparative framework to study ribosomal evolution. Here we infer evolution of the structural components of the ribosome. Phylogenetic methods widely used in morphometrics are applied directly to RNA structures of thousands of molecules and to a census of protein structures in hundreds of genomes. We find that components of the small subunit involved in ribosomal processivity evolved earlier than the catalytic peptidyl transferase center responsible for protein synthesis. Remarkably, subunit RNA and proteins coevolved, starting with interactions between the oldest proteins (S12 and S17) and the oldest substructure (the ribosomal ratchet) in the small subunit and ending with the rise of a modern multi-subunit ribosome. Ancestral ribonucleoprotein components show similarities to in vitro evolved RNA replicase ribozymes and protein structures in extant replication machinery. Our study therefore provides important clues about the chicken-or-egg dilemma associated with the central dogma of molecular biology by showing that ribosomal history is driven by the gradual structural accretion of protein and RNA structures. Most importantly, results suggest that functionally important and conserved regions of the ribosome were recruited and could be relics of an ancient ribonucleoprotein world. PMID:22427882

  4. Ribosomal history reveals origins of modern protein synthesis.

    PubMed

    Harish, Ajith; Caetano-Anollés, Gustavo

    2012-01-01

    The origin and evolution of the ribosome is central to our understanding of the cellular world. Most hypotheses posit that the ribosome originated in the peptidyl transferase center of the large ribosomal subunit. However, these proposals do not link protein synthesis to RNA recognition and do not use a phylogenetic comparative framework to study ribosomal evolution. Here we infer evolution of the structural components of the ribosome. Phylogenetic methods widely used in morphometrics are applied directly to RNA structures of thousands of molecules and to a census of protein structures in hundreds of genomes. We find that components of the small subunit involved in ribosomal processivity evolved earlier than the catalytic peptidyl transferase center responsible for protein synthesis. Remarkably, subunit RNA and proteins coevolved, starting with interactions between the oldest proteins (S12 and S17) and the oldest substructure (the ribosomal ratchet) in the small subunit and ending with the rise of a modern multi-subunit ribosome. Ancestral ribonucleoprotein components show similarities to in vitro evolved RNA replicase ribozymes and protein structures in extant replication machinery. Our study therefore provides important clues about the chicken-or-egg dilemma associated with the central dogma of molecular biology by showing that ribosomal history is driven by the gradual structural accretion of protein and RNA structures. Most importantly, results suggest that functionally important and conserved regions of the ribosome were recruited and could be relics of an ancient ribonucleoprotein world. PMID:22427882

  5. Site-directed spectroscopy of cardiac myosin-binding protein C reveals effects of phosphorylation on protein structural dynamics.

    PubMed

    Colson, Brett A; Thompson, Andrew R; Espinoza-Fonseca, L Michel; Thomas, David D

    2016-03-22

    We have used the site-directed spectroscopies of time-resolved fluorescence resonance energy transfer (TR-FRET) and double electron-electron resonance (DEER), combined with complementary molecular dynamics (MD) simulations, to resolve the structure and dynamics of cardiac myosin-binding protein C (cMyBP-C), focusing on the N-terminal region. The results have implications for the role of this protein in myocardial contraction, with particular relevance to β-adrenergic signaling, heart failure, and hypertrophic cardiomyopathy. N-terminal cMyBP-C domains C0-C2 (C0C2) contain binding regions for potential interactions with both thick and thin filaments. Phosphorylation by PKA in the MyBP-C motif regulates these binding interactions. Our spectroscopic assays detect distances between pairs of site-directed probes on cMyBP-C. We engineered intramolecular pairs of labeling sites within cMyBP-C to measure, with high resolution, the distance and disorder in the protein's flexible regions using TR-FRET and DEER. Phosphorylation reduced the level of molecular disorder and the distribution of C0C2 intramolecular distances became more compact, with probes flanking either the motif between C1 and C2 or the Pro/Ala-rich linker (PAL) between C0 and C1. Further insight was obtained from microsecond MD simulations, which revealed a large structural change in the disordered motif region in which phosphorylation unmasks the surface of a series of residues on a stable α-helix within the motif with high potential as a protein-protein interaction site. These experimental and computational findings elucidate structural transitions in the flexible and dynamic portions of cMyBP-C, providing previously unidentified molecular insight into the modulatory role of this protein in cardiac muscle contractility. PMID:26908877

  6. Near-membrane protein dynamics revealed by evanescent field microscopy

    NASA Astrophysics Data System (ADS)

    Bezzerides, Vassilios J.; Clapham, David E.

    2004-05-01

    Evanescent Field (EF) microscopy is used to investigate the spatial and temporal dynamics of proteins in living cells. A genetically engineered ion channel fused to a fluorescent tag is expressed in cells and imaged with an objective-based EF microscope. Images are obtained from a CCD and analyzed to determine fluorescence and velocity of individual protein containing vesicles. An inverse correlation between fluorescent intensity and average motility provides a method for determination of membrane localization. Stimulation and subsequent decrease in ion channel activity is correlated with loss of protein from membrane as shown by EF microscopy and patch-clamp electrophysiology.

  7. Advances in cell surface glycoengineering reveal biological function.

    PubMed

    Nischan, Nicole; Kohler, Jennifer J

    2016-08-01

    Cell surface glycans are critical mediators of cell-cell, cell-ligand, and cell-pathogen interactions. By controlling the set of glycans displayed on the surface of a cell, it is possible to gain insight into the biological functions of glycans. Moreover, control of glycan expression can be used to direct cellular behavior. While genetic approaches to manipulate glycosyltransferase gene expression are available, their utility in glycan engineering has limitations due to the combinatorial nature of glycan biosynthesis and the functional redundancy of glycosyltransferase genes. Biochemical and chemical strategies offer valuable complements to these genetic approaches, notably by enabling introduction of unnatural functionalities, such as fluorophores, into cell surface glycans. Here, we describe some of the most recent developments in glycoengineering of cell surfaces, with an emphasis on strategies that employ novel chemical reagents. We highlight key examples of how these advances in cell surface glycan engineering enable study of cell surface glycans and their function. Exciting new technologies include synthetic lipid-glycans, new chemical reporters for metabolic oligosaccharide engineering to allow tandem and in vivo labeling of glycans, improved chemical and enzymatic methods for glycoproteomics, and metabolic glycosyltransferase inhibitors. Many chemical and biochemical reagents for glycan engineering are commercially available, facilitating their adoption by the biological community.

  8. Spectroscopy reveals that ethyl esters interact with proteins in wine.

    PubMed

    Di Gaspero, Mattia; Ruzza, Paolo; Hussain, Rohanah; Vincenzi, Simone; Biondi, Barbara; Gazzola, Diana; Siligardi, Giuliano; Curioni, Andrea

    2017-02-15

    Impairment of wine aroma after vinification is frequently associated to bentonite treatments and this can be the result of protein removal, as recently demonstrated for ethyl esters. To evaluate the existence of an interaction between wine proteins and ethyl esters, the effects induced by these fermentative aroma compounds on the secondary structure and stability of VVTL1, a Thaumatin-like protein purified from wine, was analyzed by Synchrotron Radiation Circular Dichroism (SRCD) spectroscopy. The secondary structure of wine VVTL1 was not strongly affected by the presence of selected ethyl esters. In contrast, VVTL1 stability was slightly increased by the addition of ethyl-octanoate, -decanoate and -dodecanoate, but decreased by ethyl-hexanoate. This indicates the existence of an interaction between VVTL1 and at least some aroma compounds produced during fermentation. The data suggest that proteins removal from wine by bentonite can result in indirect removal of at least some aroma compounds associated with them. PMID:27664648

  9. Enhancement of nucleation of protein crystals on nano-wrinkled surfaces.

    PubMed

    Bommineni, Praveen K; Punnathanam, Sudeep N

    2016-01-01

    The synthesis of high quality protein crystals is essential for determining their structure. Hence the development of strategies to facilitate the nucleation of protein crystals is of prime importance. Recently, Ghatak and Ghatak [Langmuir 2013, 29, 4373] reported heterogeneous nucleation of protein crystals on nano-wrinkled surfaces. Through a series of experiments on different proteins, they were able to obtain high quality protein crystals even at low protein concentrations and sometimes without the addition of a precipitant. In this study, the mechanism of protein crystal nucleation on nano-wrinkled surfaces is studied through Monte Carlo simulations. The wrinkled surface is modeled by a sinusoidal surface. Free-energy barriers for heterogeneous crystal nucleation on flat and wrinkled surfaces are computed and compared. The study reveals that the enhancement of nucleation is closely related to the two step nucleation process seen during protein crystallization. There is an enhancement of protein concentration near the trough of the sinusoidal surface which aids in nucleation. However, the high curvature at the trough acts as a deterrent to crystal nucleus formation. Hence, significant lowering of the free-energy barrier is seen only if the increase in the protein concentration at the trough is very high.

  10. RPE cell surface proteins in normal and dystrophic rats

    SciTech Connect

    Clark, V.M.; Hall, M.O.

    1986-02-01

    Membrane-bound proteins in plasma membrane enriched fractions from cultured rat RPE were analyzed by two-dimensional gel electrophoresis. Membrane proteins were characterized on three increasingly specific levels. Total protein was visualized by silver staining. A maximum of 102 separate proteins were counted in silver-stained gels. Glycoproteins were labeled with 3H-glucosamine or 3H-fucose and detected by autoradiography. Thirty-eight fucose-labeled and 61-71 glucosamine-labeled proteins were identified. All of the fucose-labeled proteins were labeled with glucosamine-derived radioactivity. Proteins exposed at the cell surface were labeled by lactoperoxidase-catalyzed radioiodination prior to preparation of membranes for two-dimensional analysis. Forty separate 125I-labeled surface proteins were resolved by two-dimensional electrophoresis/autoradiography. Comparison with the glycoprotein map showed that a number of these surface labeled proteins were glycoproteins. Two-dimensional maps of total protein, fucose-labeled, and glucosamine-labeled glycoproteins, and 125I-labeled surface proteins of membranes from dystrophic (RCS rdy-p+) and normal (Long Evans or RCS rdy+p+) RPE were compared. No differences in the total protein or surface-labeled proteins were observed. However, the results suggest that a 183K glycoprotein is more heavily glycosylated with glucosamine and fucose in normal RPE membranes as compared to membranes from dystrophic RPE.

  11. Protein surface-distribution and protein-protein interactions in the binding of peripheral proteins to charged lipid membranes.

    PubMed Central

    Heimburg, T; Marsh, D

    1995-01-01

    The binding of native cytochrome c to negatively charged lipid dispersions of dioleoyl phosphatidylglycerol has been studied over a wide range of ionic strengths. Not only is the strength of protein binding found to decrease rapidly with increasing ionic strength, but also the binding curves reach an apparent saturation level that decreases rapidly with increasing ionic strength. Analysis of the binding isotherms with a general statistical thermodynamic model that takes into account not only the free energy of the electrostatic double layer, but also the free energy of the surface distribution of the protein, demonstrates that the apparent saturation effects could arise from a competition between the out-of-plane binding reaction and the lateral in-plane interactions between proteins at the surface. It is found that association with nonlocalized sites results in binding isotherms that display the apparent saturation effect to a much more pronounced extent than does the Langmuir adsorption isotherm for binding to localized sites. With the model for nonlocalized sites, the binding isotherms of native cytochrome c can be described adequately by taking into account only the entropy of the surface distribution of the protein, without appreciable enthalpic interactions between the bound proteins. The binding of cytochrome c to dioleoyl phosphatidylglycerol dispersions at a temperature at which the bound protein is denatured on the lipid surface, but is nondenatured when free in solution, has also been studied. The binding curves for the surface-denatured protein differ from those for the native protein in that the apparent saturation at high ionic strength is less pronounced. This indicates the tendency of the denatured protein to aggregate on the lipid surface, and can be described by the binding isotherms for nonlocalized sites only if attractive interactions between the surface-bound proteins are included in addition to the distributional entropic terms. Additionally

  12. Proteomics and glycoproteomics of pluripotent stem-cell surface proteins.

    PubMed

    Sun, Bingyun

    2015-03-01

    Pluripotent stem cells are a unique cell type with promising potential in regenerative and personalized medicine. Yet the difficulty to understand and coax their seemingly stochastic differentiation and spontaneous self-renewal have largely limited their clinical applications. A call has been made by numerous researchers for a better characterization of surface proteins on these cells, in search of biomarkers that can dictate developmental stages and lineage specifications, and can help formulate mechanistic insight of stem-cell fate choices. In the past two decades, proteomics has gained significant recognition in profiling surface proteins at high throughput. This review will summarize the impact of these studies on stem-cell biology, and discuss the used proteomic techniques. A systematic comparison of all the techniques and their results is also attempted here to help reveal pros, cons, and the complementarity of the existing methods. This awareness should assist in selecting suitable strategies for stem-cell related research, and shed light on technical improvements that can be explored in the future.

  13. Computational design of protein interactions: designing proteins that neutralize influenza by inhibiting its hemagglutinin surface protein

    NASA Astrophysics Data System (ADS)

    Fleishman, Sarel

    2012-02-01

    Molecular recognition underlies all life processes. Design of interactions not seen in nature is a test of our understanding of molecular recognition and could unlock the vast potential of subtle control over molecular interaction networks, allowing the design of novel diagnostics and therapeutics for basic and applied research. We developed the first general method for designing protein interactions. The method starts by computing a region of high affinity interactions between dismembered amino acid residues and the target surface and then identifying proteins that can harbor these residues. Designs are tested experimentally for binding the target surface and successful ones are affinity matured using yeast cell surface display. Applied to the conserved stem region of influenza hemagglutinin we designed two unrelated proteins that, following affinity maturation, bound hemagglutinin at subnanomolar dissociation constants. Co-crystal structures of hemagglutinin bound to the two designed binders were within 1Angstrom RMSd of their models, validating the accuracy of the design strategy. One of the designed proteins inhibits the conformational changes that underlie hemagglutinin's cell-invasion functions and blocks virus infectivity in cell culture, suggesting that such proteins may in future serve as diagnostics and antivirals against a wide range of pathogenic influenza strains. We have used this method to obtain experimentally validated binders of several other target proteins, demonstrating the generality of the approach. We discuss the combination of modeling and high-throughput characterization of design variants which has been key to the success of this approach, as well as how we have used the data obtained in this project to enhance our understanding of molecular recognition. References: Science 332:816 JMB, in press Protein Sci 20:753

  14. Surface modification of graphene nanopores for protein translocation

    PubMed Central

    Shan, Y. P.; Tiwari, P. B.; Krishnakumar, P.; Vlassiouk, I.; Li, W.Z.; Wang, X.W.; Darici, Y.; Lindsay, S.M.; Wang, H. D.; Smirnov, S.; He, J.

    2014-01-01

    Studies of DNA translocation through graphene nanopores have revealed their potential for DNA sequencing. Here we report a study of protein translocation through chemically modified graphene nanopores. A transmission electron microscope (TEM) was used to cut nanopores with diameters between 5-20 nm in multilayer graphene prepared by chemical vapor deposition (CVD). After oxygen plasma treatment, the dependence of the measured ionic current on salt concentration and pH was consistent with a small surface charge induced by the formation of carboxyl groups. While translocation of gold nanoparticles (10 nm) was readily detected through such treated pores of a larger diameter, translocation of protein ferritin was not observed either for oxygen plasma treated pores, or for pores modified with mercaptohexadecanoic acid. Ferritin translocation events were reliably observed after the pores were modified with the phospholipid-PEG (DPPE-PEG750) amphiphile. The ion current signature of translocation events was complex, suggesting that a series of interactions between the protein and pore occur during the process. PMID:24231385

  15. Surface passivation for single-molecule protein studies.

    PubMed

    Chandradoss, Stanley D; Haagsma, Anna C; Lee, Young Kwang; Hwang, Jae-Ho; Nam, Jwa-Min; Joo, Chirlmin

    2014-04-24

    Single-molecule fluorescence spectroscopy has proven to be instrumental in understanding a wide range of biological phenomena at the nanoscale. Important examples of what this technique can yield to biological sciences are the mechanistic insights on protein-protein and protein-nucleic acid interactions. When interactions of proteins are probed at the single-molecule level, the proteins or their substrates are often immobilized on a glass surface, which allows for a long-term observation. This immobilization scheme may introduce unwanted surface artifacts. Therefore, it is essential to passivate the glass surface to make it inert. Surface coating using polyethylene glycol (PEG) stands out for its high performance in preventing proteins from non-specifically interacting with a glass surface. However, the polymer coating procedure is difficult, due to the complication arising from a series of surface treatments and the stringent requirement that a surface needs to be free of any fluorescent molecules at the end of the procedure. Here, we provide a robust protocol with step-by-step instructions. It covers surface cleaning including piranha etching, surface functionalization with amine groups, and finally PEG coating. To obtain a high density of a PEG layer, we introduce a new strategy of treating the surface with PEG molecules over two rounds, which remarkably improves the quality of passivation. We provide representative results as well as practical advice for each critical step so that anyone can achieve the high quality surface passivation.

  16. Nuclear envelope-associated endosomes deliver surface proteins to the nucleus.

    PubMed

    Chaumet, Alexandre; Wright, Graham D; Seet, Sze Hwee; Tham, Keit Min; Gounko, Natalia V; Bard, Frederic

    2015-01-01

    Endocytosis directs molecular cargo along three main routes: recycling to the cell surface, transport to the Golgi apparatus or degradation in endolysosomes. Pseudomonas exotoxin A (PE) is a bacterial protein that typically traffics to the Golgi and then the endoplasmic reticulum before translocating to the cytosol. Here we show that a substantial fraction of internalized PE is also located in nuclear envelope-associated endosomes (NAE), which display limited mobility, exhibit a propensity to undergo fusion and readily discharge their contents into the nuclear envelope. Electron microscopy and protein trapping in the nucleus indicate that NAE mediate PE transfer into the nucleoplasm. RNAi screening further revealed that NAE-mediated transfer depends on the nuclear envelope proteins SUN1 and SUN2, as well as the Sec61 translocon complex. These data reveal a novel endosomal route from the cell surface to the nucleoplasm that facilitates the accumulation of extracellular and cell surface proteins in the nucleus. PMID:26356418

  17. Fully Quantified Spectral Imaging Reveals in Vivo Membrane Protein Interactions

    PubMed Central

    King, Christopher; Stoneman, Michael; Raicu, Valerica; Hristova, Kalina

    2016-01-01

    Here we introduce the Fully Quantified Spectral Imaging (FSI) method as a new tool to probe the stoichiometry and stability of protein complexes in biological membranes. The FSI method yields two dimensional membrane concentrations and FRET efficiencies in native plasma membranes. It can be used to characterize the association of membrane proteins: to differentiate between monomers, dimers, or oligomers, to produce binding (association) curves, and to measure the free energies of association in the membrane. We use the FSI method to study the lateral interactions of Vascular Endothelial Growth Factor Receptor 2 (VEGFR2), a member of the receptor tyrosine kinase (RTK) superfamily, in plasma membranes, in vivo. The knowledge gained through the use of the new method challenges the current understanding of VEGFR2 signaling. PMID:26787445

  18. In Silico Study of Variable Surface Proteins in Plasmodium Species: Perspectives in Drug Design.

    PubMed

    Yadav, Manoj Kumar; Swati, D

    2016-09-01

    The variable surface proteins expressed by P. falciparum and P. vivax are transported to the surface of infected erythrocyte and are exposed to the host immune system. The possibility of using variable surface proteins as a common drug target has been analyzed in both the Plasmodium species. Sequence analysis of variable surface proteins showed a low-level conservation within as well as between the species. Amino acid composition analysis revealed higher frequency of hydrophilic amino acids as compared with that of hydrophobic residues. In order to gain more insight into their diverse functional role, the three-dimensional structure was predicted using comparative modeling approach. These models were evaluated and validated by checking stereochemistry of underlying amino acids. Structural alignment of variable surface proteins by superimposing them shows less conservation. Due to differences at sequence as well as structural level, the variable surface proteins are expected to show difference in their degree of invasiveness. These differences were also cross-examined by evolutionary study, and the results obtained were in accordance with the aforesaid study. The existence of structural differences noticed in the present study showed that the variable surface proteins could not be used as a common drug target in both the malarial species. Therefore, species-specific strategy may be followed for drug targeting against variable surface proteins of P. falciparum and P. vivax.

  19. Coupled motion in proteins revealed by pressure perturbation

    PubMed Central

    Fu, Yinan; Kasinath, Vignesh; Moorman, Veronica R.; Nucci, Nathaniel V.; Hilser, Vincent J.; Wand, A. Joshua

    2012-01-01

    The cooperative nature of protein substructure and internal motion is a critical aspect of their functional competence about which little is known experimentally. NMR relaxation is used here to monitor the effects of high-pressure on fast internal motion in the protein ubiquitin. In contrast to the main chain, the motions of the methyl-bearing side chains have a large and variable pressure dependence. Within the core, this pressure sensitivity correlates with the magnitude of motion at ambient pressure. Spatial clustering of the dynamic response to applied hydrostatic pressure is also seen indicating localized cooperativity of motion on the sub-nanosecond time scale and suggesting regions of variable compressibility. These and other features indicate that the native ensemble contains a significant fraction of members with characteristics ascribed to the recently postulated “dry molten globule.” The accompanying variable side chain conformational entropy helps complete our view of the thermodynamic architecture underlying protein stability, folding and function. PMID:22452540

  20. The dark energy of proteins comes to light: conformational entropy and its role in protein function revealed by NMR relaxation.

    PubMed

    Wand, A Joshua

    2013-02-01

    Historically it has been virtually impossible to experimentally determine the contribution of residual protein entropy to fundamental protein activities such as the binding of ligands. Recent progress has illuminated the possibility of employing NMR relaxation methods to quantitatively determine the role of changes in conformational entropy in molecular recognition by proteins. The method rests on using fast internal protein dynamics as a proxy. Initial results reveal a large and variable role for conformational entropy in the binding of ligands by proteins. Such a role for conformational entropy in molecular recognition has significant implications for enzymology, signal transduction, allosteric regulation and the development of protein-directed pharmaceuticals. PMID:23246280

  1. Structural Determinants for Protein adsorption/non-adsorption to Silica Surface

    PubMed Central

    Mathé, Christelle; Devineau, Stéphanie; Aude, Jean-Christophe; Lagniel, Gilles; Chédin, Stéphane; Legros, Véronique; Mathon, Marie-Hélène; Renault, Jean-Philippe; Pin, Serge; Boulard, Yves; Labarre, Jean

    2013-01-01

    The understanding of the mechanisms involved in the interaction of proteins with inorganic surfaces is of major interest in both fundamental research and applications such as nanotechnology. However, despite intense research, the mechanisms and the structural determinants of protein/surface interactions are still unclear. We developed a strategy consisting in identifying, in a mixture of hundreds of soluble proteins, those proteins that are adsorbed on the surface and those that are not. If the two protein subsets are large enough, their statistical comparative analysis must reveal the physicochemical determinants relevant for adsorption versus non-adsorption. This methodology was tested with silica nanoparticles. We found that the adsorbed proteins contain a higher number of charged amino acids, particularly arginine, which is consistent with involvement of this basic amino acid in electrostatic interactions with silica. The analysis also identified a marked bias toward low aromatic amino acid content (phenylalanine, tryptophan, tyrosine and histidine) in adsorbed proteins. Structural analyses and molecular dynamics simulations of proteins from the two groups indicate that non-adsorbed proteins have twice as many π-π interactions and higher structural rigidity. The data are consistent with the notion that adsorption is correlated with the flexibility of the protein and with its ability to spread on the surface. Our findings led us to propose a refined model of protein adsorption. PMID:24282583

  2. High structural resolution hydroxyl radical protein footprinting reveals an extended Robo1-heparin binding interface.

    PubMed

    Li, Zixuan; Moniz, Heather; Wang, Shuo; Ramiah, Annapoorani; Zhang, Fuming; Moremen, Kelley W; Linhardt, Robert J; Sharp, Joshua S

    2015-04-24

    Interaction of transmembrane receptors of the Robo family and the secreted protein Slit provides important signals in the development of the central nervous system and regulation of axonal midline crossing. Heparan sulfate, a sulfated linear polysaccharide modified in a complex variety of ways, serves as an essential co-receptor in Slit-Robo signaling. Previous studies have shown that closely related heparin octasaccharides bind to Drosophila Robo directly, and surface plasmon resonance analysis revealed that Robo1 binds more tightly to full-length unfractionated heparin. For the first time, we utilized electron transfer dissociation-based high spatial resolution hydroxyl radical protein footprinting to identify two separate binding sites for heparin interaction with Robo1: one binding site at the previously identified site for heparin dp8 and a second binding site at the N terminus of Robo1 that is disordered in the x-ray crystal structure. Mutagenesis of the identified N-terminal binding site exhibited a decrease in binding affinity as measured by surface plasmon resonance and heparin affinity chromatography. Footprinting also indicated that heparin binding induces a minor change in the conformation and/or dynamics of the Ig2 domain, but no major conformational changes were detected. These results indicate a second low affinity binding site in the Robo-Slit complex as well as suggesting the role of the Ig2 domain of Robo1 in heparin-mediated signal transduction. This study also marks the first use of electron transfer dissociation-based high spatial resolution hydroxyl radical protein footprinting, which shows great utility for the characterization of protein-carbohydrate complexes. PMID:25752613

  3. High Structural Resolution Hydroxyl Radical Protein Footprinting Reveals an Extended Robo1-Heparin Binding Interface*

    PubMed Central

    Li, Zixuan; Moniz, Heather; Wang, Shuo; Ramiah, Annapoorani; Zhang, Fuming; Moremen, Kelley W.; Linhardt, Robert J.; Sharp, Joshua S.

    2015-01-01

    Interaction of transmembrane receptors of the Robo family and the secreted protein Slit provides important signals in the development of the central nervous system and regulation of axonal midline crossing. Heparan sulfate, a sulfated linear polysaccharide modified in a complex variety of ways, serves as an essential co-receptor in Slit-Robo signaling. Previous studies have shown that closely related heparin octasaccharides bind to Drosophila Robo directly, and surface plasmon resonance analysis revealed that Robo1 binds more tightly to full-length unfractionated heparin. For the first time, we utilized electron transfer dissociation-based high spatial resolution hydroxyl radical protein footprinting to identify two separate binding sites for heparin interaction with Robo1: one binding site at the previously identified site for heparin dp8 and a second binding site at the N terminus of Robo1 that is disordered in the x-ray crystal structure. Mutagenesis of the identified N-terminal binding site exhibited a decrease in binding affinity as measured by surface plasmon resonance and heparin affinity chromatography. Footprinting also indicated that heparin binding induces a minor change in the conformation and/or dynamics of the Ig2 domain, but no major conformational changes were detected. These results indicate a second low affinity binding site in the Robo-Slit complex as well as suggesting the role of the Ig2 domain of Robo1 in heparin-mediated signal transduction. This study also marks the first use of electron transfer dissociation-based high spatial resolution hydroxyl radical protein footprinting, which shows great utility for the characterization of protein-carbohydrate complexes. PMID:25752613

  4. High structural resolution hydroxyl radical protein footprinting reveals an extended Robo1-heparin binding interface.

    PubMed

    Li, Zixuan; Moniz, Heather; Wang, Shuo; Ramiah, Annapoorani; Zhang, Fuming; Moremen, Kelley W; Linhardt, Robert J; Sharp, Joshua S

    2015-04-24

    Interaction of transmembrane receptors of the Robo family and the secreted protein Slit provides important signals in the development of the central nervous system and regulation of axonal midline crossing. Heparan sulfate, a sulfated linear polysaccharide modified in a complex variety of ways, serves as an essential co-receptor in Slit-Robo signaling. Previous studies have shown that closely related heparin octasaccharides bind to Drosophila Robo directly, and surface plasmon resonance analysis revealed that Robo1 binds more tightly to full-length unfractionated heparin. For the first time, we utilized electron transfer dissociation-based high spatial resolution hydroxyl radical protein footprinting to identify two separate binding sites for heparin interaction with Robo1: one binding site at the previously identified site for heparin dp8 and a second binding site at the N terminus of Robo1 that is disordered in the x-ray crystal structure. Mutagenesis of the identified N-terminal binding site exhibited a decrease in binding affinity as measured by surface plasmon resonance and heparin affinity chromatography. Footprinting also indicated that heparin binding induces a minor change in the conformation and/or dynamics of the Ig2 domain, but no major conformational changes were detected. These results indicate a second low affinity binding site in the Robo-Slit complex as well as suggesting the role of the Ig2 domain of Robo1 in heparin-mediated signal transduction. This study also marks the first use of electron transfer dissociation-based high spatial resolution hydroxyl radical protein footprinting, which shows great utility for the characterization of protein-carbohydrate complexes.

  5. Effects of surface wettability and contact time on protein adhesion to biomaterial surfaces.

    PubMed

    Xu, Li-Chong; Siedlecki, Christopher A

    2007-08-01

    Atomic force microscopy (AFM) was used to directly measure the adhesion forces between three test proteins and low density polyethylene (LDPE) surfaces treated by glow discharge plasma to yield various levels of water wettability. The adhesion of proteins to the LDPE substrates showed a step dependence on the wettability of surfaces as measured by the water contact angle (theta). For LDPE surfaces with theta> approximately 60-65 degrees , stronger adhesion forces were observed for bovine serum albumin, fibrinogen and human FXII than for the surfaces with theta<60 degrees . Smaller adhesion forces were observed for FXII than for the other two proteins on all surfaces although trends were identical. Increasing the contact time from 0 to 50s for each protein-surface combination increased the adhesion force regardless of surface wettability. Time varying adhesion data was fit to an exponential model and free energies of protein unfolding were calculated. This data, viewed in light of previously published studies, suggests a 2-step model of protein denaturation, an early stage on the order of seconds to minutes where the outer surface of the protein interacts with the substrate and a second stage involving movement of hydrophobic amino acids from the protein core to the protein/surface interface. Impact statement: The work described in this manuscript shows a stark transition between protein adherent and protein non-adherent materials in the range of water contact angles 60-65 degrees , consistent with known changes in protein adsorption and activity. Time-dependent changes in adhesion force were used to calculate unfolding energies relating to protein-surface interactions. This analysis provides justification for a 2-step model of protein denaturation on surfaces. PMID:17466368

  6. Protein energy malnutrition revealing an esophageal foreign body.

    PubMed

    Kouassi, Yao Mathurin; Vroh, Bi Tah Sylvain; Buraima, Fataho; Toure, Abdoulaye; Tanon-Anoh, Marie-Josée

    2010-12-01

    It is not unusual for a foreign body to be swallowed and be lodged in the esophagus. It is however, very unusual for such a foreign body to remain lodged for a period of 8 months. This particular case, a 15-month-old male infant, is under focus because of the time length the foreign body remained in the esophagus without local complications, what is unusual is a protein energy malnutrition complication. The neck and chest X-ray permitted the foreign body identification. The management of esophageal foreign body requires a multidisciplinary approach among otorhinolaryngologist, radiologist and pediatrician.

  7. Surface association of Pht proteins of Streptococcus pneumoniae.

    PubMed

    Plumptre, Charles D; Ogunniyi, Abiodun D; Paton, James C

    2013-10-01

    Streptococcus pneumoniae is a major human pathogen responsible for massive global morbidity and mortality. The pneumococcus attaches a variety of proteins to its cell surface, many of which contribute to virulence; one such family are the polyhistidine triad (Pht) proteins PhtA, PhtB, PhtD, and PhtE. In this study, we have examined the mechanism of Pht surface attachment using PhtD as a model. Analysis of deletion and point mutants identified a three-amino-acid region of PhtD (Q27-H28-R29) that is critical for the process. The analogous region in PhtE was also necessary for its attachment to the cell surface. Furthermore, we show that a large proportion of the total amount of each Pht protein is released into bacterial culture supernatants. Other surface proteins were also released, albeit to lesser extents, and this was not due to pneumococcal autolysis. The extent of release of surface proteins was strain dependent and was not affected by the capsule. Lastly, we compared the fitness of wild-type and ΔphtABDE pneumococci in vivo in a mouse coinfection model. Release of Pht proteins by the wild type did not complement the mutant strain, consistent with surface-attached rather than soluble forms of the Pht proteins playing the major role in virulence. The significant degree of release of Pht proteins from intact bacteria may have implications for the use of these proteins in novel vaccines.

  8. Accuracy of functional surfaces on comparatively modeled protein structures

    PubMed Central

    Zhao, Jieling; Dundas, Joe; Kachalo, Sema; Ouyang, Zheng; Liang, Jie

    2012-01-01

    Identification and characterization of protein functional surfaces are important for predicting protein function, understanding enzyme mechanism, and docking small compounds to proteins. As the rapid speed of accumulation of protein sequence information far exceeds that of structures, constructing accurate models of protein functional surfaces and identify their key elements become increasingly important. A promising approach is to build comparative models from sequences using known structural templates such as those obtained from structural genome projects. Here we assess how well this approach works in modeling binding surfaces. By systematically building three-dimensional comparative models of proteins using Modeller, we determine how well functional surfaces can be accurately reproduced. We use an alpha shape based pocket algorithm to compute all pockets on the modeled structures, and conduct a large-scale computation of similarity measurements (pocket RMSD and fraction of functional atoms captured) for 26,590 modeled enzyme protein structures. Overall, we find that when the sequence fragment of the binding surfaces has more than 45% identity to that of the tempalte protein, the modeled surfaces have on average an RMSD of 0.5 Å, and contain 48% or more of the binding surface atoms, with nearly all of the important atoms in the signatures of binding pockets captured. PMID:21541664

  9. Site-directed spectroscopy of cardiac myosin-binding protein C reveals effects of phosphorylation on protein structural dynamics

    PubMed Central

    Colson, Brett A.; Thompson, Andrew R.; Espinoza-Fonseca, L. Michel; Thomas, David D.

    2016-01-01

    We have used the site-directed spectroscopies of time-resolved fluorescence resonance energy transfer (TR-FRET) and double electron–electron resonance (DEER), combined with complementary molecular dynamics (MD) simulations, to resolve the structure and dynamics of cardiac myosin-binding protein C (cMyBP-C), focusing on the N-terminal region. The results have implications for the role of this protein in myocardial contraction, with particular relevance to β-adrenergic signaling, heart failure, and hypertrophic cardiomyopathy. N-terminal cMyBP-C domains C0–C2 (C0C2) contain binding regions for potential interactions with both thick and thin filaments. Phosphorylation by PKA in the MyBP-C motif regulates these binding interactions. Our spectroscopic assays detect distances between pairs of site-directed probes on cMyBP-C. We engineered intramolecular pairs of labeling sites within cMyBP-C to measure, with high resolution, the distance and disorder in the protein’s flexible regions using TR-FRET and DEER. Phosphorylation reduced the level of molecular disorder and the distribution of C0C2 intramolecular distances became more compact, with probes flanking either the motif between C1 and C2 or the Pro/Ala-rich linker (PAL) between C0 and C1. Further insight was obtained from microsecond MD simulations, which revealed a large structural change in the disordered motif region in which phosphorylation unmasks the surface of a series of residues on a stable α-helix within the motif with high potential as a protein–protein interaction site. These experimental and computational findings elucidate structural transitions in the flexible and dynamic portions of cMyBP-C, providing previously unidentified molecular insight into the modulatory role of this protein in cardiac muscle contractility. PMID:26908877

  10. Homologous expression of the Caldicellulosiruptor bescii CelA reveals that the extracellular protein is glycosylated

    SciTech Connect

    Chung, Daehwan; Young, Jenna; Bomble, Yannick J.; Vander Wall, Todd A.; Groom, Joseph; Himmel, Michael E.; Westpheling, Janet

    2015-03-23

    Members of the bacterial genus Caldicellulosiruptor are the most thermophilic cellulolytic microbes described with ability to digest lignocellulosic biomass without conventional pretreatment. The cellulolytic ability of different species varies dramatically and correlates with the presence of the multimodular cellulase CelA, which contains both a glycoside hydrolase family 9 endoglucanase and a glycoside hydrolase family 48 exoglucanase known to be synergistic in their activity, connected by three cellulose-binding domains via linker peptides. This architecture exploits the cellulose surface ablation driven by its general cellulase processivity as well as excavates cavities into the surface of the substrate, revealing a novel paradigm for cellulase activity. We recently reported that a deletion of celA in C. bescii had a significant effect on its ability to utilize complex biomass. To analyze the structure and function of CelA and its role in biomass deconstruction, we constructed a new expression vector for C. bescii and were able, for the first time, to express significant quantities of full-length protein in vivo in the native host. The protein, which contains a Histidine tag, was active and excreted from the cell. Expression of CelA protein with and without its signal sequence allowed comparison of protein retained intracellularly to protein transported extracellularly. Analysis of protein in culture supernatants revealed that the extracellular CelA protein is glycosylated whereas the intracellular CelA is not, suggesting that either protein transport is required for this post-translational modification or that glycosylation is required for protein export. The mechanism and role of protein glycosylation in bacteria is poorly understood and the ability to express CelA in vivo in C. bescii will allow the study of the mechanism of protein glycosylation in this thermophile. Finally, it will also allow the study of glycosylation of CelA itself and its role in the

  11. Immobilization of Proteins on a Glass Surface at High Density

    SciTech Connect

    Thomas, Marlon; Vullev, Valentine I.; Wan Jiandi

    2009-07-06

    We describe a rational molecular-level design of biocompatible surface coatings and immobilization of biological species onto them to produce biofunctional interfaces. Our method adapted a strategy for coating glass and other silica-type substrates with bioinert layers of polyethylene glycol (PEG). The introduction of {alpha}, {omega}-bifunctional polymers into the coatings allowed for covalent attachment of proteins to the PEGylated surfaces. Spectroscopic studies indicate that the surface-bound proteins had their biological activity preserved.

  12. Conformal Nanopatterning of Extracellular Matrix Proteins onto Topographically Complex Surfaces

    PubMed Central

    Sun, Yan; Jallerat, Quentin; Szymanski, John M.

    2015-01-01

    We report a method for conformal nanopatterning of extracellular matrix proteins onto engineered surfaces independent of underlying microtopography. This enables fibronectin, laminin, and other proteins to be applied to biomaterial surfaces in complex geometries inaccessible using traditional soft lithography techniques. Engineering combinatorial surfaces that integrate topographical and biochemical micropatterns enhances control of the biotic-abiotic interface, used here to understand cardiomyocyte response to competing physical and chemical cues in the microenvironment. PMID:25506720

  13. Crystal structure of two CD46 domains reveals an extended measles virus-binding surface.

    PubMed Central

    Casasnovas, J M; Larvie, M; Stehle, T

    1999-01-01

    Measles virus is a paramyxovirus which, like other members of the family such as respiratory syncytial virus, is a major cause of morbidity and mortality worldwide. The cell surface receptor for measles virus in humans is CD46, a complement cofactor. We report here the crystal structure at 3.1 A resolution of the measles virus-binding fragment of CD46. The structure reveals the architecture and spatial arrangement of two glycosylated short consensus repeats with a pronounced interdomain bend and some flexibility at the domain interface. Amino acids involved in measles virus binding define a large, glycan-free surface that extends from the top of the first to the bottom of the second repeat. The extended virus-binding surface of CD46 differs strikingly from those reported for the human virus receptor proteins CD4 and intercellular cell adhesion molecule-1 (ICAM-1), suggesting that the CD46 structure utilizes a novel mode of virus recognition. A highly hydrophobic and protruding loop at the base of the first repeat bears a critical virus-binding residue, thereby defining an important recognition epitope. Molecules that mimic the conformation of this loop potentially could be effective anti-viral agents by preventing binding of measles virus to CD46. PMID:10357804

  14. Structure and dynamics of protein waters revealed by radiolysis and mass spectrometry

    PubMed Central

    Gupta, Sayan; D’Mello, Rhijuta; Chance, Mark R.

    2012-01-01

    Water is critical for the structure, stability, and functions of macromolecules. Diffraction and NMR studies have revealed structure and dynamics of bound waters at atomic resolution. However, localizing the sites and measuring the dynamics of bound waters, particularly on timescales relevant to catalysis and macromolecular assembly, is quite challenging. Here we demonstrate two techniques: first, temperature-dependent radiolytic hydroxyl radical labeling with a mass spectrometry (MS)-based readout to identify sites of bulk and bound water interactions with surface and internal residue side chains, and second, H218O radiolytic exchange coupled MS to measure the millisecond dynamics of bound water interactions with various internal residue side chains. Through an application of the methods to cytochrome c and ubiquitin, we identify sites of water binding and measure the millisecond dynamics of bound waters in protein crevices. As these MS-based techniques are very sensitive and not protein size limited, they promise to provide unique insights into protein–water interactions and water dynamics for both small and large proteins and their complexes. PMID:22927377

  15. Structure of the Yeast Polarity Protein Sro7 Reveals a SNARE Regulatory Mechanism

    SciTech Connect

    Hattendorf, D.A.; Andreeva, A.; Gangar, A.; Brennwald, P.J.; Weis, W.I.; /Stanford U., Med. School /North Carolina U.

    2007-07-09

    Polarized exocytosis requires coordination between the actin cytoskeleton and the exocytic machinery responsible for fusion of secretory vesicles at specific sites on the plasma membrane. Fusion requires formation of a complex between a vesicle-bound R-SNARE and plasma membrane Qa, Qb and Qc SNARE proteins. Proteins in the lethal giant larvae protein family, including lethal giant larvae and tomosyn in metazoans and Sro7 in yeast, interact with Q-SNAREs and are emerging as key regulators of polarized exocytosis. The crystal structure of Sro7 reveals two seven-bladed WD40 {beta}-propellers followed by a 60-residue-long 'tail', which is bound to the surface of the amino-terminal propeller. Deletion of the Sro7 tail enables binding to the Qbc SNARE region of Sec9 and this interaction inhibits SNARE complex assembly. The N-terminal domain of Sec9 provides a second, high-affinity Sro7 interaction that is unaffected by the tail. The results suggest that Sro7 acts as an allosteric regulator of exocytosis through interactions with factors that control the tail. Sequence alignments indicate that lethal giant larvae and tomosyn have a two-{beta}-propeller fold similar to that of Sro7, but only tomosyn appears to retain the regulatory tail.

  16. Interactions of proteins in gels, solutions and on surfaces

    NASA Astrophysics Data System (ADS)

    Ramasamy, Radha Perumal

    2006-12-01

    The study of protein interaction, identification and separation has applications in various fields relating to Biotechnology. In this research these aspects were investigated. The proteins albumin, casein, poly-L-lysine were studied. FITC and TRITC were used to fluorescently tag the proteins. Confocal microscopy was used to image the interaction of proteins. The migration of fluorescently tagged protein-salt aggregates on solid surfaces during electrophoresis was investigated using Confocal microscopy. The secondary structural modifications of proteins in solutions were investigated using FTIR micro spectroscopic imaging. The size of the colloids formed due to protein-protein interactions as a function of the protein concentrations were studied using DLS and their charges were found using zeta potential measurements. Based on DL.S and zeta potential measurements, a model is proposed for interactions of oppositely charged proteins. The nature of interaction was found using UV - Visual spectroscopy. It was found that oppositely charged proteins formed ionic bonds. It was also found that FITC molecule influenced the surface charge of albumin more than TRITC molecule. The effects of the influence of cell geometries upon Electro Osmotic Flow (EOF) were studied using neutrally charged fluorescent Polystyrene beads. Results showed that tagging proteins with fluorescent molecules influenced their mobility and interactions with other proteins. However no secondary structural modifications of the proteins were observed when oppositely charged proteins interacted. It was also observed that electrostatic interactions made oppositely charged proteins form large aggregates. The EOF was found to be dependent upon the ionic strength of the buffer, conductivity of the solid surfaces, distance from the surface and position of the electrodes in the electrophoretic cell.

  17. Unravelling nonspecific adsorption of complex protein mixture on surfaces with SPR and MS.

    PubMed

    Breault-Turcot, Julien; Chaurand, Pierre; Masson, Jean-Francois

    2014-10-01

    Characterization of protein adsorption to surfaces has implications from biosensing to protective biocoatings. While research studies have principally focused on determining the magnitude of protein adsorption to surfaces, the proteins involved in the process remains only broadly identified and has not been investigated on several surfaces. To further elucidate the nonspecific adsorption process of serum to surfaces, surface plasmon resonance (SPR) and matrix assisted laser desorption ionization mass spectrometry (MALDI-MS) were used in combination to obtain quantitative and qualitative information about the process of protein adsorption to surfaces. To validate the technique, crude serum was nonspecifically adsorbed on four self-assembled monolayer (SAM) on gold: 16-mercaptohexadecanoic acid (16-MHA), 11-mercaptoundecane(ethylene glycol)3-COOH (PEG), 3-MPA-LHDLHD-OH, and 3-MPA-HHHDD-OH. Direct MS analysis of the nonspecifically adsorbed proteins suggested the presence of a variety of protein (BSA, IgG, and apolipoprotein A-1). Performing a trypsin digestion of the nonspecifically adsorbed proteins confirmed the presence of BSA and apolipoprotein A-1 and further revealed the complexity of the process by detecting the presence of complement C3, SHC-transforming protein 1, and kininogen 2. The level of nonspecific adsorption on different surfaces measured by SPR sensing directly correlated with the intensity of the serum protein and indirectly with the tryptic peptides measured by MS. Detailed analysis of the BSA peptides digested on 16-MHA and for BSA digested in solution was used to investigate the orientation of BSA on this surface. The combination of SPR and MS allows the quantitative and qualitative understanding of protein adsorption processes to surfaces. PMID:25287274

  18. A script to highlight hydrophobicity and charge on protein surfaces

    PubMed Central

    Hagemans, Dominique; van Belzen, Ianthe A. E. M.; Morán Luengo, Tania; Rüdiger, Stefan G. D.

    2015-01-01

    The composition of protein surfaces determines both affinity and specificity of protein-protein interactions. Matching of hydrophobic contacts and charged groups on both sites of the interface are crucial to ensure specificity. Here, we propose a highlighting scheme, YRB, which highlights both hydrophobicity and charge in protein structures. YRB highlighting visualizes hydrophobicity by highlighting all carbon atoms that are not bound to nitrogen and oxygen atoms. The charged oxygens of glutamate and aspartate are highlighted red and the charged nitrogens of arginine and lysine are highlighted blue. For a set of representative examples, we demonstrate that YRB highlighting intuitively visualizes segments on protein surfaces that contribute to specificity in protein-protein interfaces, including Hsp90/co-chaperone complexes, the SNARE complex and a transmembrane domain. We provide YRB highlighting in form of a script that runs using the software PyMOL. PMID:26528483

  19. Prediction of Protein Structure Using Surface Accessibility Data

    PubMed Central

    Hartlmüller, Christoph; Göbl, Christoph

    2016-01-01

    Abstract An approach to the de novo structure prediction of proteins is described that relies on surface accessibility data from NMR paramagnetic relaxation enhancements by a soluble paramagnetic compound (sPRE). This method exploits the distance‐to‐surface information encoded in the sPRE data in the chemical shift‐based CS‐Rosetta de novo structure prediction framework to generate reliable structural models. For several proteins, it is demonstrated that surface accessibility data is an excellent measure of the correct protein fold in the early stages of the computational folding algorithm and significantly improves accuracy and convergence of the standard Rosetta structure prediction approach. PMID:27560616

  20. Prediction of Protein Structure Using Surface Accessibility Data.

    PubMed

    Hartlmüller, Christoph; Göbl, Christoph; Madl, Tobias

    2016-09-19

    An approach to the de novo structure prediction of proteins is described that relies on surface accessibility data from NMR paramagnetic relaxation enhancements by a soluble paramagnetic compound (sPRE). This method exploits the distance-to-surface information encoded in the sPRE data in the chemical shift-based CS-Rosetta de novo structure prediction framework to generate reliable structural models. For several proteins, it is demonstrated that surface accessibility data is an excellent measure of the correct protein fold in the early stages of the computational folding algorithm and significantly improves accuracy and convergence of the standard Rosetta structure prediction approach.

  1. Prediction of Protein Structure Using Surface Accessibility Data.

    PubMed

    Hartlmüller, Christoph; Göbl, Christoph; Madl, Tobias

    2016-09-19

    An approach to the de novo structure prediction of proteins is described that relies on surface accessibility data from NMR paramagnetic relaxation enhancements by a soluble paramagnetic compound (sPRE). This method exploits the distance-to-surface information encoded in the sPRE data in the chemical shift-based CS-Rosetta de novo structure prediction framework to generate reliable structural models. For several proteins, it is demonstrated that surface accessibility data is an excellent measure of the correct protein fold in the early stages of the computational folding algorithm and significantly improves accuracy and convergence of the standard Rosetta structure prediction approach. PMID:27560616

  2. Hydration dynamics near a model protein surface

    SciTech Connect

    Russo, Daniela; Hura, Greg; Head-Gordon, Teresa

    2003-09-01

    The evolution of water dynamics from dilute to very high concentration solutions of a prototypical hydrophobic amino acid with its polar backbone, N-acetyl-leucine-methylamide (NALMA), is studied by quasi-elastic neutron scattering and molecular dynamics simulation for both the completely deuterated and completely hydrogenated leucine monomer. We observe several unexpected features in the dynamics of these biological solutions under ambient conditions. The NALMA dynamics shows evidence of de Gennes narrowing, an indication of coherent long timescale structural relaxation dynamics. The translational water dynamics are analyzed in a first approximation with a jump diffusion model. At the highest solute concentrations, the hydration water dynamics is significantly suppressed and characterized by a long residential time and a slow diffusion coefficient. The analysis of the more dilute concentration solutions takes into account the results of the 2.0M solution as a model of the first hydration shell. Subtracting the first hydration layer based on the 2.0M spectra, the translational diffusion dynamics is still suppressed, although the rotational relaxation time and residential time are converged to bulk-water values. Molecular dynamics analysis shows spatially heterogeneous dynamics at high concentration that becomes homogeneous at more dilute concentrations. We discuss the hydration dynamics results of this model protein system in the context of glassy systems, protein function, and protein-protein interfaces.

  3. Revealing Two-State Protein-Protein Interaction of Calmodulin by Single-Molecule Spectroscopy

    SciTech Connect

    Liu, Ruchuan; Hu, Dehong; Tan, Xin; Lu, H PETER.

    2006-08-09

    We report a single-molecule fluorescence resonance energy transfer (FRET) and polarization study of conformational dynamics of calmodulin (CaM) interacting with a target peptide, C28W of 28 amino-acid oligomer. The C28W peptide represents the essential binding sequence domain of the Ca-ATPase protein interacting with CaM, which is important in cellular signaling for the regulation of energy in metabolism. However, the mechanism of the CaM-C28W recognition complex formation is still unclear. The amino-terminal (N-terminal) domain of the CaM was labeled with a fluorescein-based arsenical hairpin binder (F1AsH) that enables our unambiguously probing the CaM N-terminal target-binding domain motions at a millisecond timescale without convolution of the probe-dye random motions. By analyzing the distribution of FRET efficiency between F1AsH labeled CaM and Texas Red labeled C28W and the polarization fluctuation dynamics and distributions of the CaM N-terminal domain, we reveal slow (at sub-second time scale) binding-unbinding motions of the N-terminal domain of the CaM in CaM-C28W complexes, which is a strong evidence of a two-state binding interaction of CaM-mediated cell signaling.

  4. Revealing Two-State Protein-Protein Interactions of Calmodulin by Single-Molecule Spectroscopy

    SciTech Connect

    Liu, Ruchuan; Hu, Dehong; Tan, Xin; Lu, H. Peter

    2006-08-01

    We report a single-molecule fluorescence resonance energy transfer (FRET) and polarization study of conformational dynamics of calmodulin (CaM) interacting with a target peptide, C28W of a 28 amino acid oligomer. The C28W peptide represents the essential binding sequence domain of the Ca-ATPase protein interacting with CaM, which is important in cellular signaling for the regulation of energy in metabolism. However, the mechanism of the CaM/C28W recognition complex formation is still unclear. The amino-terminal (N-terminal) domain of the CaM was labeled with a fluorescein-based arsenical hairpin binder (FlAsH) that enables our unambiguous probing of the CaM N-terminal target-binding domain motions on a millisecond time scale without convolution of the probe-dye random motions. Finally, by analyzing the distribution of FRET efficiency between FlAsH labeled CaM and Texas Red labeled C28W and the polarization fluctuation dynamics and distributions of the CaM N-terminal domain, we reveal binding-unbinding motions of the N-terminal domain of the CaM in CaM/C28W complexes, which is strong evidence of a two-state binding interaction of CaM-mediated cell signaling.

  5. Probing the surface of a sweet protein: NMR study of MNEI with a paramagnetic probe

    PubMed Central

    Niccolai, Neri; Spadaccini, Roberta; Scarselli, Maria; Bernini, Andrea; Crescenzi, Orlando; Spiga, Ottavia; Ciutti, Arianna; Di Maro, Daniela; Bracci, Luisa; Dalvit, Claudio; Temussi, Piero A.

    2001-01-01

    The design of safe sweeteners is very important for people who are affected by diabetes, hyperlipemia, and caries and other diseases that are linked to the consumption of sugars. Sweet proteins, which are found in several tropical plants, are many times sweeter than sucrose on a molar basis. A good understanding of their structure–function relationship can complement traditional SAR studies on small molecular weight sweeteners and thus help in the design of safe sweeteners. However, there is virtually no sequence homology and very little structural similarity among known sweet proteins. Studies on mutants of monellin, the best characterized of sweet proteins, proved not decisive in the localization of the main interaction points of monellin with its receptor. Accordingly, we resorted to an unbiased approach to restrict the search of likely areas of interaction on the surface of a typical sweet protein. It has been recently shown that an accurate survey of the surface of proteins by appropriate paramagnetic probes may locate interaction points on protein surface. Here we report the survey of the surface of MNEI, a single chain monellin, by means of a paramagnetic probe, and a direct assessment of bound water based on an application of ePHOGSY, an NMR experiment that is ideally suited to detect interactions of small ligands to a protein. Detailed surface mapping reveals the presence, on the surface of MNEI, of interaction points that include residues previously predicted by ELISA tests and by mutagenesis. PMID:11468346

  6. A coarse grain model for protein-surface interactions

    NASA Astrophysics Data System (ADS)

    Wei, Shuai; Knotts, Thomas A.

    2013-09-01

    The interaction of proteins with surfaces is important in numerous applications in many fields—such as biotechnology, proteomics, sensors, and medicine—but fundamental understanding of how protein stability and structure are affected by surfaces remains incomplete. Over the last several years, molecular simulation using coarse grain models has yielded significant insights, but the formalisms used to represent the surface interactions have been rudimentary. We present a new model for protein surface interactions that incorporates the chemical specificity of both the surface and the residues comprising the protein in the context of a one-bead-per-residue, coarse grain approach that maintains computational efficiency. The model is parameterized against experimental adsorption energies for multiple model peptides on different types of surfaces. The validity of the model is established by its ability to quantitatively and qualitatively predict the free energy of adsorption and structural changes for multiple biologically-relevant proteins on different surfaces. The validation, done with proteins not used in parameterization, shows that the model produces remarkable agreement between simulation and experiment.

  7. Surface topography effects in protein adsorption on nanostructured carbon allotropes.

    PubMed

    Raffaini, Giuseppina; Ganazzoli, Fabio

    2013-04-16

    We report a molecular dynamics (MD) simulation study of protein adsorption on the surface of nanosized carbon allotropes, namely single-walled carbon nanotubes (SWNT) considering both the convex outer surface and the concave inner surface, together with a graphene sheet for comparison. These systems are chosen to investigate the effect of the surface curvature on protein adsorption at the same surface chemistry, given by sp(2) carbon atoms in all cases. The simulations show that proteins do favorably interact with these hydrophobic surfaces, as previously found on graphite which has the same chemical nature. However, the main finding of the present study is that the adsorption strength does depend on the surface topography: in particular, it is slightly weaker on the outer convex surfaces of SWNT and is conversely enhanced on the inner concave SWNT surface, being therefore intermediate for flat graphene. We additionally find that oligopeptides may enter the cavity of common SWNT, provided their size is small enough and the tube diameter is large enough for both entropic and energetic reasons. Therefore, we suggest that proteins can effectively be used to solubilize in water single-walled (and by analogy also multiwalled) carbon nanotubes through adsorption on the outer surface, as indeed experimentally found, and to functionalize them after insertion of oligopeptides within the cavity of nanotubes of appropriate size. PMID:23517008

  8. Arginine Inhibits Adsorption of Proteins on Polystyrene Surface

    PubMed Central

    Shikiya, Yui; Tomita, Shunsuke; Arakawa, Tsutomu; Shiraki, Kentaro

    2013-01-01

    Nonspecific adsorption of protein on solid surfaces causes a reduction of concentration as well as enzyme inactivation during purification and storage. However, there are no versatile inhibitors of the adsorption between proteins and solid surfaces at low concentrations. Therefore, we examined additives for the prevention of protein adsorption on polystyrene particles (PS particles) as a commonly-used material for vessels such as disposable test tubes and microtubes. A protein solution was mixed with PS particles, and then adsorption of protein was monitored by the concentration and activity of protein in the supernatant after centrifugation. Five different proteins bound to PS particles through electrostatic, hydrophobic, and aromatic interactions, causing a decrease in protein concentration and loss of enzyme activity in the supernatant. Among the additives, including arginine hydrochloride (Arg), lysine hydrochloride, guanidine hydrochloride, NaCl, glycine, and glucose, Arg was most effective in preventing the binding of proteins to PS particles as well as activity loss. Moreover, even after the mixing of protein and PS particles, the addition of Arg caused desorption of the bound protein from PS particles. This study demonstrated a new function of Arg, which expands the potential for application of Arg to proteins. PMID:23967100

  9. Cell-surface Attachment of Bacterial Multienzyme Complexes Involves Highly Dynamic Protein-Protein Anchors*

    PubMed Central

    Cameron, Kate; Najmudin, Shabir; Alves, Victor D.; Bayer, Edward A.; Smith, Steven P.; Bule, Pedro; Waller, Helen; Ferreira, Luís M. A.; Gilbert, Harry J.; Fontes, Carlos M. G. A.

    2015-01-01

    Protein-protein interactions play a pivotal role in the assembly of the cellulosome, one of nature's most intricate nanomachines dedicated to the depolymerization of complex carbohydrates. The integration of cellulosomal components usually occurs through the binding of type I dockerin modules located at the C terminus of the enzymes to cohesin modules located in the primary scaffoldin subunit. Cellulosomes are typically recruited to the cell surface via type II cohesin-dockerin interactions established between primary and cell-surface anchoring scaffoldin subunits. In contrast with type II interactions, type I dockerins usually display a dual binding mode that may allow increased conformational flexibility during cellulosome assembly. Acetivibrio cellulolyticus produces a highly complex cellulosome comprising an unusual adaptor scaffoldin, ScaB, which mediates the interaction between the primary scaffoldin, ScaA, through type II cohesin-dockerin interactions and the anchoring scaffoldin, ScaC, via type I cohesin-dockerin interactions. Here, we report the crystal structure of the type I ScaB dockerin in complex with a type I ScaC cohesin in two distinct orientations. The data show that the ScaB dockerin displays structural symmetry, reflected by the presence of two essentially identical binding surfaces. The complex interface is more extensive than those observed in other type I complexes, which results in an ultra-high affinity interaction (Ka ∼1012 m). A subset of ScaB dockerin residues was also identified as modulating the specificity of type I cohesin-dockerin interactions in A. cellulolyticus. This report reveals that recruitment of cellulosomes onto the cell surface may involve dockerins presenting a dual binding mode to incorporate additional flexibility into the quaternary structure of highly populated multienzyme complexes. PMID:25855788

  10. Enhanced Electrostatic Discrimination of Proteins on Nanoparticle-Coated Surfaces

    PubMed Central

    Xu, Yisheng; Engel, Yoni; Yan, Yunfeng; Chen, Kaimin; Moyano, Daniel F.

    2013-01-01

    Two β-lactoglobulin (BLG) isoforms, BLGA and BLGB, were used a test bed for the differentiation of proteins using electrostatics. In these studies, the BLGA and BLGB binding to a highly charged, cationic gold nanoparticle (GNP) modified surface was investigated by atomic force microscopy (AFM) and surface plasmon resonance (SPR) spectroscopy The binding affinity, and more importantly, the selectivity of this surface towards these two almost identical protein isoforms were both significantly increased on the cationic GNP surface array relative to the values measured with the same free cationic GNP in solution. While protein recognition is traditionally achieved almost exclusively via orientation dependent short-range interactions such as hydrogen bonds and hydrophobic interactions, our results show the potential of protein recognition platforms based on enhanced electrostatic interactions. PMID:24273645

  11. Grafting zwitterionic polymer onto cryogel surface enhances protein retention in steric exclusion chromatography on cryogel monolith.

    PubMed

    Tao, Shi-Peng; Zheng, Jie; Sun, Yan

    2015-04-10

    Cryogel monoliths with interconnected macropores (10-100μm) and hydrophilic surfaces can be employed as chromatography media for protein retention in steric exclusion chromatography (SXC). SXC is based on the principle that the exclusion of polyethylene glycol (PEG) on both a hydrophilic chromatography surface and a protein favors their association, leading to the protein retention on the chromatography surface. Elution of the retained protein can be achieved by reducing PEG concentration. In this work, the surface of polyacrylamide-based cryogel monolith was modified by grafting zwitterionic poly(carboxybetaine methacrylate) (pCBMA), leading the increase in the surface hydrophilicity. Observation by scanning electron microscopy revealed the presence of the grafted pCBMA chain clusters on the cryogel surface, but pCBMA grafting did not result in the changes of the physical properties of the monolith column, and the columns maintained good recyclability in SXC. The effect of the surface grafting on the SXC behavior of γ-globulin was investigated in a wide flow rate range (0.6-12cm/min). It was found that the dynamic retention capacity increased 1.4-1.8 times by the zwitterionic polymer grafting in the flow rate range of 1.5-12cm/min. The mechanism of enhanced protein retention on the zwitterionic polymer-grafted surface was proposed. The research proved that zwitterionic polymer modification was promising for the development of new materials for SXC applications.

  12. Grafting zwitterionic polymer onto cryogel surface enhances protein retention in steric exclusion chromatography on cryogel monolith.

    PubMed

    Tao, Shi-Peng; Zheng, Jie; Sun, Yan

    2015-04-10

    Cryogel monoliths with interconnected macropores (10-100μm) and hydrophilic surfaces can be employed as chromatography media for protein retention in steric exclusion chromatography (SXC). SXC is based on the principle that the exclusion of polyethylene glycol (PEG) on both a hydrophilic chromatography surface and a protein favors their association, leading to the protein retention on the chromatography surface. Elution of the retained protein can be achieved by reducing PEG concentration. In this work, the surface of polyacrylamide-based cryogel monolith was modified by grafting zwitterionic poly(carboxybetaine methacrylate) (pCBMA), leading the increase in the surface hydrophilicity. Observation by scanning electron microscopy revealed the presence of the grafted pCBMA chain clusters on the cryogel surface, but pCBMA grafting did not result in the changes of the physical properties of the monolith column, and the columns maintained good recyclability in SXC. The effect of the surface grafting on the SXC behavior of γ-globulin was investigated in a wide flow rate range (0.6-12cm/min). It was found that the dynamic retention capacity increased 1.4-1.8 times by the zwitterionic polymer grafting in the flow rate range of 1.5-12cm/min. The mechanism of enhanced protein retention on the zwitterionic polymer-grafted surface was proposed. The research proved that zwitterionic polymer modification was promising for the development of new materials for SXC applications. PMID:25757821

  13. Effect of phosphorus levels on the protein profiles of secreted protein and root surface protein of rice.

    PubMed

    Shinano, Takuro; Yoshimura, Tomoko; Watanabe, Toshihiro; Unno, Yusuke; Osaki, Mitsuru; Nanjo, Yohei; Komatsu, Setsuko

    2013-11-01

    Plant roots are complicated organs that absorb water and nutrients from the soil. Roots also play an essential role in protecting plants from attack by soil pathogens and develop a beneficial role with some soil microorganisms. Plant-derived rhizosphere proteins (e.g., root secretory proteins and root surface binding proteins) are considered to play important roles in developing mutual relationships in the rhizosphere. In the rhizosphere, where plant roots meet the surrounding environment, it has been suggested that root secretory protein and root surface binding protein are important factors. Furthermore, it is not known how the physiological status of the plant affects the profile of these proteins. In this study, rice plants were grown aseptically, with or without phosphorus nutrition, and proteins were obtained from root bathing solution (designated as root secretory proteins) and obtained using 0.2 M CaCl2 solution (designated as root surface binding proteins). The total number of identified proteins in the root bathing solution was 458, and the number of root surface binding proteins was 256. More than half of the proteins were observed in both fractions. Most of the proteins were categorized as either having signal peptides or no membrane transport helix sites. The functional categorization suggested that most of the proteins seemed to have secretory pathways and were involved in defense/disease-related functions. These characteristics seem to be unique to rhizosphere proteins, and the latter might be part of the plants strategy to defeat pathogens in the soil. The low phosphorus treatment significantly increased the number of pathogenesis-related proteins in the root secretory proteins, whereas the change was small in the case of the root surface binding proteins. The results suggested that the roots are actively and selectively secreting protein into the rhizosphere. PMID:24083427

  14. Crystal Structure of West Nile Virus Envelope Glycoprotein Reveals Viral Surface Epitopes

    SciTech Connect

    Kanai,R.; Kar, K.; Anthony, K.; Gould, L.; Ledizet, M.; Fikrig, E.; Marasco, W.; Koski, R.; Modis, Y.

    2006-01-01

    West Nile virus, a member of the Flavivirus genus, causes fever that can progress to life-threatening encephalitis. The major envelope glycoprotein, E, of these viruses mediates viral attachment and entry by membrane fusion. We have determined the crystal structure of a soluble fragment of West Nile virus E. The structure adopts the same overall fold as that of the E proteins from dengue and tick-borne encephalitis viruses. The conformation of domain II is different from that in other prefusion E structures, however, and resembles the conformation of domain II in postfusion E structures. The epitopes of neutralizing West Nile virus-specific antibodies map to a region of domain III that is exposed on the viral surface and has been implicated in receptor binding. In contrast, we show that certain recombinant therapeutic antibodies, which cross-neutralize West Nile and dengue viruses, bind a peptide from domain I that is exposed only during the membrane fusion transition. By revealing the details of the molecular landscape of the West Nile virus surface, our structure will assist the design of antiviral vaccines and therapeutics.

  15. Crystal structure of west nile virus envelope glycoprotein reveals viral surface epitopes.

    PubMed

    Kanai, Ryuta; Kar, Kalipada; Anthony, Karen; Gould, L Hannah; Ledizet, Michel; Fikrig, Erol; Marasco, Wayne A; Koski, Raymond A; Modis, Yorgo

    2006-11-01

    West Nile virus, a member of the Flavivirus genus, causes fever that can progress to life-threatening encephalitis. The major envelope glycoprotein, E, of these viruses mediates viral attachment and entry by membrane fusion. We have determined the crystal structure of a soluble fragment of West Nile virus E. The structure adopts the same overall fold as that of the E proteins from dengue and tick-borne encephalitis viruses. The conformation of domain II is different from that in other prefusion E structures, however, and resembles the conformation of domain II in postfusion E structures. The epitopes of neutralizing West Nile virus-specific antibodies map to a region of domain III that is exposed on the viral surface and has been implicated in receptor binding. In contrast, we show that certain recombinant therapeutic antibodies, which cross-neutralize West Nile and dengue viruses, bind a peptide from domain I that is exposed only during the membrane fusion transition. By revealing the details of the molecular landscape of the West Nile virus surface, our structure will assist the design of antiviral vaccines and therapeutics.

  16. Network Analysis of Circular Permutations in Multidomain Proteins Reveals Functional Linkages for Uncharacterized Proteins

    PubMed Central

    Adjeroh, Donald; Jiang, Yue; Jiang, Bing-Hua; Lin, Jie

    2014-01-01

    Various studies have implicated different multidomain proteins in cancer. However, there has been little or no detailed study on the role of circular multidomain proteins in the general problem of cancer or on specific cancer types. This work represents an initial attempt at investigating the potential for predicting linkages between known cancer-associated proteins with uncharacterized or hypothetical multidomain proteins, based primarily on circular permutation (CP) relationships. First, we propose an efficient algorithm for rapid identification of both exact and approximate CPs in multidomain proteins. Using the circular relations identified, we construct networks between multidomain proteins, based on which we perform functional annotation of multidomain proteins. We then extend the method to construct subnetworks for selected cancer subtypes, and performed prediction of potential link-ages between uncharacterized multidomain proteins and the selected cancer types. We include practical results showing the performance of the proposed methods. PMID:25741177

  17. Identification of Surface Proteins from Lactobacillus casei BL23 Able to Bind Fibronectin and Collagen.

    PubMed

    Muñoz-Provencio, Diego; Pérez-Martínez, Gaspar; Monedero, Vicente

    2011-03-01

    Strains of lactobacilli show the capacity to attach to extracellular matrix proteins. Cell-wall fractions of Lactobacillus casei BL23 enriched in fibronectin, and collagen-binding proteins were isolated. Mass spectrometry analysis of their protein content revealed the presence of stress-related proteins (GroEL, ClpL), translational elongation factors (EF-Tu, EF-G), oligopeptide solute-binding proteins, and the glycolytic enzymes enolase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The latter two enzymes were expressed in Escherichia coli and purified as glutathione-S-transferase (GST) fusion proteins, and their in vitro binding activity to fibronectin and collagen was confirmed. These results reinforce the idea that lactobacilli display on their surfaces a variety of moonlighting proteins that can be important in their adaptation to survive at intestinal mucosal sites and in the interaction with host cells.

  18. Identification of Surface Proteins from Lactobacillus casei BL23 Able to Bind Fibronectin and Collagen.

    PubMed

    Muñoz-Provencio, Diego; Pérez-Martínez, Gaspar; Monedero, Vicente

    2011-03-01

    Strains of lactobacilli show the capacity to attach to extracellular matrix proteins. Cell-wall fractions of Lactobacillus casei BL23 enriched in fibronectin, and collagen-binding proteins were isolated. Mass spectrometry analysis of their protein content revealed the presence of stress-related proteins (GroEL, ClpL), translational elongation factors (EF-Tu, EF-G), oligopeptide solute-binding proteins, and the glycolytic enzymes enolase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The latter two enzymes were expressed in Escherichia coli and purified as glutathione-S-transferase (GST) fusion proteins, and their in vitro binding activity to fibronectin and collagen was confirmed. These results reinforce the idea that lactobacilli display on their surfaces a variety of moonlighting proteins that can be important in their adaptation to survive at intestinal mucosal sites and in the interaction with host cells. PMID:26781495

  19. Electro-induced protein deposition on low-fouling surfaces

    NASA Astrophysics Data System (ADS)

    Cole, M. A.; Voelcker, N. H.; Thissen, H.

    2007-12-01

    Control over protein adsorption is a key issue for numerous biomedical applications ranging from diagnostic microarrays to tissue-engineered medical devices. Here, we describe a method for creating surfaces that prevent non-specific protein adsorption, which upon application of an external trigger can be transformed into surfaces showing high protein adsorption on demand. Silicon wafers were used as substrate materials upon which thin functional coatings were constructed by the deposition of an allylamine plasma polymer followed by high-density grafting of poly(ethylene oxide) aldehyde, resulting in a low-fouling surface. When the underlying highly doped silicon substrate was used as an electrode, the resulting electrostatic attraction between the electrode and charged proteins in solution induced protein deposition at the low-fouling interface. X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) were used to characterize the surface modifications. Controlled protein adsorption experiments were carried out using horseradish peroxidase. The amount of protein deposited at the surface was then investigated by means of a colorimetric assay. It is expected that the concept described here will find use in a variety of biotechnological and biomedical applications, particularly in the area of biochips.

  20. Selective and programmed cleavage of GPI-anchored proteins from the surface membrane by phospholipase C.

    PubMed

    Müller, Alexandra; Klöppel, Christine; Smith-Valentine, Megan; Van Houten, Judith; Simon, Martin

    2012-01-01

    Many surface proteins of eukaryotic cells are tethered to the membrane by a GPI-anchor which is enzymatically cleavable. Here, we investigate cleavage and release of different GPI-proteins by phospholipase C from the outer membrane of the ciliate Paramecium tetraurelia. Our data indicate that different GPI-proteins are not equally cleaved as proteins of the surface antigen family are preferentially released in vitro compared to several smaller GPI-proteins. Likewise, the analysis of culture medium indicates exclusive in vivo release of surface antigens by two phospholipase C isoforms (PLC2 and PLC6). This suggests that phospholipase C shows affinity for select groups of GPI-anchored proteins. Our data also reveal an up-regulation of PLC isoforms in GPI-anchored protein cleavage during antigenic switching. As a consequence, silencing of these PLCs leads to a drastic decrease of antigen concentration in the medium. These results suggest a higher order of GPI-regulation by phospholipase C as cleavage occurs programmed and specific for single GPI-proteins instead of an unspecific shedding of the entire surface membrane GPI-content.

  1. Conserved S-Layer-Associated Proteins Revealed by Exoproteomic Survey of S-Layer-Forming Lactobacilli

    PubMed Central

    Johnson, Brant R.; Hymes, Jeffrey; Sanozky-Dawes, Rosemary; Henriksen, Emily DeCrescenzo

    2015-01-01

    The Lactobacillus acidophilus homology group comprises Gram-positive species that include L. acidophilus, L. helveticus, L. crispatus, L. amylovorus, L. gallinarum, L. delbrueckii subsp. bulgaricus, L. gasseri, and L. johnsonii. While these bacteria are closely related, they have varied ecological lifestyles as dairy and food fermenters, allochthonous probiotics, or autochthonous commensals of the host gastrointestinal tract. Bacterial cell surface components play a critical role in the molecular dialogue between bacteria and interaction signaling with the intestinal mucosa. Notably, the L. acidophilus complex is distinguished in two clades by the presence or absence of S-layers, which are semiporous crystalline arrays of self-assembling proteinaceous subunits found as the outermost layer of the bacterial cell wall. In this study, S-layer-associated proteins (SLAPs) in the exoproteomes of various S-layer-forming Lactobacillus species were proteomically identified, genomically compared, and transcriptionally analyzed. Four gene regions encoding six putative SLAPs were conserved in the S-layer-forming Lactobacillus species but not identified in the extracts of the closely related progenitor, L. delbrueckii subsp. bulgaricus, which does not produce an S-layer. Therefore, the presence or absence of an S-layer has a clear impact on the exoproteomic composition of Lactobacillus species. This proteomic complexity and differences in the cell surface properties between S-layer- and non-S-layer-forming lactobacilli reveal the potential for SLAPs to mediate intimate probiotic interactions and signaling with the host intestinal mucosa. PMID:26475115

  2. Conserved S-Layer-Associated Proteins Revealed by Exoproteomic Survey of S-Layer-Forming Lactobacilli.

    PubMed

    Johnson, Brant R; Hymes, Jeffrey; Sanozky-Dawes, Rosemary; Henriksen, Emily DeCrescenzo; Barrangou, Rodolphe; Klaenhammer, Todd R

    2015-10-16

    The Lactobacillus acidophilus homology group comprises Gram-positive species that include L. acidophilus, L. helveticus, L. crispatus, L. amylovorus, L. gallinarum, L. delbrueckii subsp. bulgaricus, L. gasseri, and L. johnsonii. While these bacteria are closely related, they have varied ecological lifestyles as dairy and food fermenters, allochthonous probiotics, or autochthonous commensals of the host gastrointestinal tract. Bacterial cell surface components play a critical role in the molecular dialogue between bacteria and interaction signaling with the intestinal mucosa. Notably, the L. acidophilus complex is distinguished in two clades by the presence or absence of S-layers, which are semiporous crystalline arrays of self-assembling proteinaceous subunits found as the outermost layer of the bacterial cell wall. In this study, S-layer-associated proteins (SLAPs) in the exoproteomes of various S-layer-forming Lactobacillus species were proteomically identified, genomically compared, and transcriptionally analyzed. Four gene regions encoding six putative SLAPs were conserved in the S-layer-forming Lactobacillus species but not identified in the extracts of the closely related progenitor, L. delbrueckii subsp. bulgaricus, which does not produce an S-layer. Therefore, the presence or absence of an S-layer has a clear impact on the exoproteomic composition of Lactobacillus species. This proteomic complexity and differences in the cell surface properties between S-layer- and non-S-layer-forming lactobacilli reveal the potential for SLAPs to mediate intimate probiotic interactions and signaling with the host intestinal mucosa.

  3. Proteomics Analysis Reveals Distinct Corona Composition on Magnetic Nanoparticles with Different Surface Coatings: Implications for Interactions with Primary Human Macrophages.

    PubMed

    Vogt, Carmen; Pernemalm, Maria; Kohonen, Pekka; Laurent, Sophie; Hultenby, Kjell; Vahter, Marie; Lehtiö, Janne; Toprak, Muhammet S; Fadeel, Bengt

    2015-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) have emerged as promising contrast agents for magnetic resonance imaging. The influence of different surface coatings on the biocompatibility of SPIONs has been addressed, but the potential impact of the so-called corona of adsorbed proteins on the surface of SPIONs on their biological behavior is less well studied. Here, we determined the composition of the plasma protein corona on silica-coated versus dextran-coated SPIONs using mass spectrometry-based proteomics approaches. Notably, gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed distinct protein corona compositions for the two different SPIONs. Relaxivity of silica-coated SPIONs was modulated by the presence of a protein corona. Moreover, the viability of primary human monocyte-derived macrophages was influenced by the protein corona on silica-coated, but not dextran-coated SPIONs, and the protein corona promoted cellular uptake of silica-coated SPIONs, but did not affect internalization of dextran-coated SPIONs.

  4. Proteomics Analysis Reveals Distinct Corona Composition on Magnetic Nanoparticles with Different Surface Coatings: Implications for Interactions with Primary Human Macrophages.

    PubMed

    Vogt, Carmen; Pernemalm, Maria; Kohonen, Pekka; Laurent, Sophie; Hultenby, Kjell; Vahter, Marie; Lehtiö, Janne; Toprak, Muhammet S; Fadeel, Bengt

    2015-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) have emerged as promising contrast agents for magnetic resonance imaging. The influence of different surface coatings on the biocompatibility of SPIONs has been addressed, but the potential impact of the so-called corona of adsorbed proteins on the surface of SPIONs on their biological behavior is less well studied. Here, we determined the composition of the plasma protein corona on silica-coated versus dextran-coated SPIONs using mass spectrometry-based proteomics approaches. Notably, gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed distinct protein corona compositions for the two different SPIONs. Relaxivity of silica-coated SPIONs was modulated by the presence of a protein corona. Moreover, the viability of primary human monocyte-derived macrophages was influenced by the protein corona on silica-coated, but not dextran-coated SPIONs, and the protein corona promoted cellular uptake of silica-coated SPIONs, but did not affect internalization of dextran-coated SPIONs. PMID:26444829

  5. Proteomics Analysis Reveals Distinct Corona Composition on Magnetic Nanoparticles with Different Surface Coatings: Implications for Interactions with Primary Human Macrophages

    PubMed Central

    Vogt, Carmen; Pernemalm, Maria; Kohonen, Pekka; Laurent, Sophie; Hultenby, Kjell; Vahter, Marie; Lehtiö, Janne; Toprak, Muhammet S.; Fadeel, Bengt

    2015-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) have emerged as promising contrast agents for magnetic resonance imaging. The influence of different surface coatings on the biocompatibility of SPIONs has been addressed, but the potential impact of the so-called corona of adsorbed proteins on the surface of SPIONs on their biological behavior is less well studied. Here, we determined the composition of the plasma protein corona on silica-coated versus dextran-coated SPIONs using mass spectrometry-based proteomics approaches. Notably, gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed distinct protein corona compositions for the two different SPIONs. Relaxivity of silica-coated SPIONs was modulated by the presence of a protein corona. Moreover, the viability of primary human monocyte-derived macrophages was influenced by the protein corona on silica-coated, but not dextran-coated SPIONs, and the protein corona promoted cellular uptake of silica-coated SPIONs, but did not affect internalization of dextran-coated SPIONs. PMID:26444829

  6. Mechanism of Bacterial Cell-Surface Attachment Revealed by the Structure of Cellulosomal Type II Cohesin-dockerin Complex

    SciTech Connect

    Adams,J.; Pal, G.; Jia, Z.; Smith, S.

    2006-01-01

    Bacterial cell-surface attachment of macromolecular complexes maintains the microorganism in close proximity to extracellular substrates and allows for optimal uptake of hydrolytic byproducts. The cellulosome is a large multienzyme complex used by many anaerobic bacteria for the efficient degradation of plant cell-wall polysaccharides. The mechanism of cellulosome retention to the bacterial cell surface involves a calcium-mediated protein-protein interaction between the dockerin (Doc) module from the cellulosomal scaffold and a cohesin (Coh) module of cell-surface proteins located within the proteoglycan layer. Here, we report the structure of an ultra-high-affinity (K{sub a} = 1.44 x 10{sup 10} M{sup 1-}) complex between type II Doc, together with its neighboring X module from the cellulosome scaffold of Clostridium thermocellum, and a type II Coh module associated with the bacterial cell surface. Identification of X module-Doc and X module-Coh contacts reveal roles for the X module in Doc stability and enhanced Coh recognition. This extremely tight interaction involves one face of the Coh and both helices of the Doc and comprises significant hydrophobic character and a complementary extensive hydrogen-bond network. This structure represents a unique mechanism for cell-surface attachment in anaerobic bacteria and provides a rationale for discriminating between type I and type II Coh modules.

  7. Nanoscale periodic modulations on sodium chloride surface revealed by tuning fork atomic force microscopy.

    PubMed

    Clark, Kendal W; Qin, Shengyong; Zhang, X-G; Li, An-Ping

    2012-05-11

    The sodium chloride surface is one of the most common platforms for the study of catalysts, thin film growth, and atmospheric aerosols. Here we report a nanoscale periodic modulation pattern on the surface of a cleaved NaCl single crystal, revealed by non-contact atomic force microscopy with a tuning fork sensor. The surface pattern shows two orthogonal domains, extending over the entire cleavage surface. The spatial modulations exhibit a characteristic period of 5.4 nm, along <110> crystallographic directions of the NaCl. The modulations are robust in vacuum, not affected by the tip-induced electric field or gentle annealing (<300 °C); however, they are eliminated after exposure to water and an atomically flat surface can be recovered by subsequent thermal annealing after water exposure. A strong electrostatic charging is revealed on the cleavage surface which may facilitate the formation of the observed metastable surface reconstruction.

  8. Nanoscale periodic modulations on sodium chloride surface revealed by tuning fork atomic force microscopy.

    PubMed

    Clark, Kendal W; Qin, Shengyong; Zhang, X-G; Li, An-Ping

    2012-05-11

    The sodium chloride surface is one of the most common platforms for the study of catalysts, thin film growth, and atmospheric aerosols. Here we report a nanoscale periodic modulation pattern on the surface of a cleaved NaCl single crystal, revealed by non-contact atomic force microscopy with a tuning fork sensor. The surface pattern shows two orthogonal domains, extending over the entire cleavage surface. The spatial modulations exhibit a characteristic period of 5.4 nm, along <110> crystallographic directions of the NaCl. The modulations are robust in vacuum, not affected by the tip-induced electric field or gentle annealing (<300 °C); however, they are eliminated after exposure to water and an atomically flat surface can be recovered by subsequent thermal annealing after water exposure. A strong electrostatic charging is revealed on the cleavage surface which may facilitate the formation of the observed metastable surface reconstruction. PMID:22513484

  9. Global absolute quantification reveals tight regulation of protein expression in single Xenopus eggs

    PubMed Central

    Smits, Arne H.; Lindeboom, Rik G.H.; Perino, Matteo; van Heeringen, Simon J.; Veenstra, Gert Jan C.; Vermeulen, Michiel

    2014-01-01

    While recent developments in genomic sequencing technology have enabled comprehensive transcriptome analyses of single cells, single cell proteomics has thus far been restricted to targeted studies. Here, we perform global absolute protein quantification of fertilized Xenopus laevis eggs using mass spectrometry-based proteomics, quantifying over 5800 proteins in the largest single cell proteome characterized to date. Absolute protein amounts in single eggs are highly consistent, thus indicating a tight regulation of global protein abundance. Protein copy numbers in single eggs range from tens of thousands to ten trillion copies per cell. Comparison between the single-cell proteome and transcriptome reveal poor expression correlation. Finally, we identify 439 proteins that significantly change in abundance during early embryogenesis. Downregulated proteins include ribosomal proteins and upregulated proteins include basal transcription factors, among others. Many of these proteins do not show regulation at the transcript level. Altogether, our data reveal that the transcriptome is a poor indicator of the proteome and that protein levels are tightly controlled in X. laevis eggs. PMID:25056316

  10. Protein-Induced Surface Structuring in Myelin Membrane Monolayers

    PubMed Central

    Rosetti, Carla M.; Maggio, Bruno

    2007-01-01

    Monolayers prepared from myelin conserve all the compositional complexity of the natural membrane when spread at the air-water interface. They show a complex pressure-dependent surface pattern that, on compression, changes from the coexistence of two liquid phases to a viscous fractal phase embedded in a liquid phase. We dissected the role of major myelin protein components, myelin basic protein (MBP), and Folch-Lees proteolipid protein (PLP) as crucial factors determining the structural dynamics of the interface. By analyzing mixtures of a single protein with the myelin lipids we found that MBP and PLP have different surface pressure-dependent behaviors. MBP stabilizes the segregation of two liquid phases at low pressures and becomes excluded from the film under compression, remaining adjacent to the interface. PLP, on the contrary, organizes a fractal-like pattern at all surface pressures when included in a monolayer of the protein-free myelin lipids but it remains mixed in the MBP-induced liquid phase. The resultant surface topography and dynamics is regulated by combined near to equilibrium and out-of-equilibrium effects. PLP appears to act as a surface skeleton for the whole components whereas MBP couples the structuring to surface pressure-dependent extrusion and adsorption processes. PMID:17905850

  11. Enhanced bone morphogenetic protein-2 performance on hydroxyapatite ceramic surfaces.

    PubMed

    Schuessele, A; Mayr, H; Tessmar, J; Goepferich, A

    2009-09-15

    The immobilization of biomolecules on biomaterial surfaces allows for the control of their localization and retention. In numerous studies, proteins have been simply adsorbed to enhance the biological performance of various materials in vivo. We investigated the potential of surface modification techniques on hydroxyapatite (HA) ceramic discs in an in vitro approach. A novel method for protein immobilization was evaluated using the aminobisphosphonates pamidronate and alendronate, which are strong Ca chelating agents, and was compared with the established silanization technique. Lysozyme and bone morphogenetic protein-2 (BMP-2) were used to assess the suitability of the two surface modification methods with regard to the enzymatic activity of lysozyme and to the capacity of BMP-2 to stimulate the osteoblastic differentiation of C2C12 mouse myoblasts. After immobilization, a 2.5-fold increase in enzymatic activity of lysozyme was observed compared with the control. The alkaline phosphatase activity per cell stimulated by immobilized BMP-2 was 2.5-fold higher [9 x 10(-6) I.U.] than the growth factor on unmodified surfaces [2-4 x 10(-6) I.U.]. With regard to the increase in protein activity, both procedures lead to equivalent results. Thus, the bisphosphonate-based surface modification represents a safe and easy alternative for the attachment of proteins to HA surfaces. PMID:18655137

  12. Comparative exoprotein profiling of different Staphylococcus epidermidis strains reveals potential link between nonclassical protein export and virulence.

    PubMed

    Siljamäki, Pia; Varmanen, Pekka; Kankainen, Matti; Sukura, Antti; Savijoki, Kirsi; Nyman, Tuula A

    2014-07-01

    Staphylococcus epidermidis (SE) includes commensal and pathogenic strains capable of infecting humans and animals. This study reports global exoproteome profiling of bovine mastitis strain PM221 and two human strains, commensal-type ATCC12228 and sepsis-associated RP62A. We identified 451, 395, and 518 proteins from culture supernatants of PM221, ATCC12228, and RP62A, respectively. Comparison of the identified exoproteomes revealed several strain-specific differences related to secreted antigens and adhesins, higher virulence capability for RP62A, and similarities between the PM221 and RP62A exoproteomes. The majority of the identified proteins (∼80%) were predicted to be cytoplasmic, including proteins known to be associated in membrane vesicles (MVs) in Staphylococcus aureus and immunogenic/adhesive moonlighting proteins. Enrichment of MV fractions from culture supernatants and analysis of their protein composition indicated that this nonclassical protein secretion pathway was being exploited under the conditions used and that there are strain-specific differences in nonclassical protein export. In addition, several predicted cell-surface proteins were identified in the culture media. In summary, the present study is the first in-depth exoproteome analysis of SE highlighting strain-specific factors able to contribute to virulence and adaptation.

  13. Protein function annotation by local binding site surface similarity.

    PubMed

    Spitzer, Russell; Cleves, Ann E; Varela, Rocco; Jain, Ajay N

    2014-04-01

    Hundreds of protein crystal structures exist for proteins whose function cannot be confidently determined from sequence similarity. Surflex-PSIM, a previously reported surface-based protein similarity algorithm, provides an alternative method for hypothesizing function for such proteins. The method now supports fully automatic binding site detection and is fast enough to screen comprehensive databases of protein binding sites. The binding site detection methodology was validated on apo/holo cognate protein pairs, correctly identifying 91% of ligand binding sites in holo structures and 88% in apo structures where corresponding sites existed. For correctly detected apo binding sites, the cognate holo site was the most similar binding site 87% of the time. PSIM was used to screen a set of proteins that had poorly characterized functions at the time of crystallization, but were later biochemically annotated. Using a fully automated protocol, this set of 8 proteins was screened against ∼60,000 ligand binding sites from the PDB. PSIM correctly identified functional matches that predated query protein biochemical annotation for five out of the eight query proteins. A panel of 12 currently unannotated proteins was also screened, resulting in a large number of statistically significant binding site matches, some of which suggest likely functions for the poorly characterized proteins.

  14. Formation of Ordered Arrays of Proteins on Surfaces

    NASA Technical Reports Server (NTRS)

    Lenhoff, A. M.

    1996-01-01

    Van der Waals (dispersion) forces contribute to interactions of proteins with other molecules or with surfaces, but because of the structural complexity of protein molecules, the magnitude of these effects is usually estimated based on idealized models of the molecular geometry, e.g., spheres or spheroids. The calculations reported here seek to account for both the geometric irregularity of protein molecules and the material properties of the interacting media. While the latter are found to fall in the generally accepted range, the molecular shape is shown to cause the magnitudes of the interactions to differ significantly from those calculated using idealized models, with important consequences. First, the roughness of the molecular surface leads to much lower average interaction energies for both protein-protein and protein-surface cases relative to calculations in which the protein molecule is approximated as a sphere. These results indicate that a form of steric stabilization may be an important effect in protein solutions. Underlying this behavior is appreciable orientational dependence, one reflection of which is that molecules of complementary shape are found to exhibit very strong attractive dispersion interactions. Although this has been widely discussed previously in the context of molecular recognition processes, the broader implications of these phenomena may also be important at larger molecular separations, e.g., in the dynamics of aggregation, precipitation and crystal growth.

  15. Bap: a family of surface proteins involved in biofilm formation.

    PubMed

    Lasa, Iñigo; Penadés, José R

    2006-03-01

    A group of surface proteins sharing several structural and functional features is emerging as an important element in the biofilm formation process of diverse bacterial species. The first member of this group of proteins was identified in a Staphylococcus aureus mastitis isolate and was named Bap (biofilm-associated protein). As common structural features, Bap-related proteins: (i) are present on the bacterial surface; (ii) show a high molecular weight; (iii) contain a core domain of tandem repeats; (iv) confer upon bacteria the capacity to form a biofilm; (v) play a relevant role in bacterial infectious processes; and (vi) can occasionally be contained in mobile elements. This review summarizes recent studies that have identified and assigned roles to Bap-related proteins in biofilm biology and virulence.

  16. Surface protein expression in group B streptococcal invasive isolates.

    PubMed

    Ferrieri, P; Flores, A E

    1997-01-01

    Results from characterization of 211 GBS isolates from early-onset disease indicated that serotypes Ia, III and V accounted for almost 80% of the isolates, and that alpha was the protein most often expressed. Each of the common polysaccharide types had a characteristic predominant protein expression pattern: alpha for Ia, R4 for type III and R1+R4 for type V isolates. Expression of alpha protein was always mutually exclusive of R proteins. The presence of more than one species of R by a given isolate was confirmed by IEP. In addition, PAGE/WB studies verified the multiple MW forms of R1, and the variation from strain to strain in the highest form of R4 that we had previously reported. Our data not only showed the great complexity of the GBS cell surface but also demonstrated the advantage of using both type polysaccharides and surface-localized proteins as markers for characterization of GBS strains.

  17. Analysis of protein transport in the Brassica oleracea vasculature reveals protein-specific destinations.

    PubMed

    Niu, Chenxing; Anstead, James; Verchot, Jeanmarie

    2012-03-01

    We investigated the vascular transport properties of exogenously applied proteins to Brassica oleracea plants and compared their delivery to various aerial parts of the plant with carboxy fluorescein (CF) dye. We identified unique properties for each protein. Alexafluor-tagged bovine serum albumin (Alexa-BSA) and Alexafluor-tagged Histone H1 (Alexa-Histone) moved slower than CF dye throughout the plant. Interestingly, Alexa-Histone was retained in the phloem and phloem parenchyma while Alexa-BSA moved into the apoplast. One possibility is that Alexa-Histone sufficiently resembles plant endogenous proteins and is retained in the vascular stream, while Alexa-BSA is exported from the cell as a foreign protein. Both proteins diffuse from the leaf veins into the leaf lamina. Alexa-BSA accumulated in the leaf epidermis while Alexa-Histone accumulated mainly in the mesophyll layers. Fluorescein-tagged hepatitis C virus core protein (fluorescein-HCV) was also delivered to B. oleracea plants and is larger than Alexa-BSA. This protein moves more rapidly than BSA through the plant and was restricted to the leaf veins. Fluorescein-HCV failed to unload to the leaf lamina. These combined data suggest that there is not a single default pathway for the vascular transfer of exogenous proteins in B. oleracea plants. Specific protein properties appear to determine their destination and transport properties within the phloem. PMID:22476467

  18. Surface plasmon resonance imaging for parallelized detection of protein biomarkers

    NASA Astrophysics Data System (ADS)

    Piliarik, Marek; Párová, Lucie; Vaisocherová, Hana; Homola, Jiří

    2009-05-01

    We report a novel high-throughput surface plasmon resonance (SPR) biosensor for rapid and parallelized detection of protein biomarkers. The biosensor is based on a high-performance SPR imaging sensor with polarization contrast and internal referencing which yields a considerably higher sensitivity and resolution than conventional SPR imaging systems (refractive index resolution 2 × 10-7 RIU). We combined the SPR imaging biosensor with microspotting to create an array of antibodies. DNA-directed protein immobilization was utilized for the spatially resolved attachment of antibodies. Using Human Chorionic Gonadotropin (hCG) as model protein biomarker, we demonstrated the potential for simultaneous detection of proteins in up to 100 channels.

  19. Protein Engineering and Selection Using Yeast Surface Display.

    PubMed

    Angelini, Alessandro; Chen, Tiffany F; de Picciotto, Seymour; Yang, Nicole J; Tzeng, Alice; Santos, Michael S; Van Deventer, James A; Traxlmayr, Michael W; Wittrup, K Dane

    2015-01-01

    Yeast surface display is a powerful technology for engineering a broad range of protein scaffolds. This protocol describes the process for de novo isolation of protein binders from large combinatorial libraries displayed on yeast by using magnetic bead separation followed by flow cytometry-based selection. The biophysical properties of isolated single clones are subsequently characterized, and desired properties are further enhanced through successive rounds of mutagenesis and flow cytometry selections, resulting in protein binders with increased stability, affinity, and specificity for target proteins of interest. PMID:26060067

  20. Arabidopsis G-protein interactome reveals connections to cell wall carbohydrates and morphogenesis.

    PubMed

    Klopffleisch, Karsten; Phan, Nguyen; Augustin, Kelsey; Bayne, Robert S; Booker, Katherine S; Botella, Jose R; Carpita, Nicholas C; Carr, Tyrell; Chen, Jin-Gui; Cooke, Thomas Ryan; Frick-Cheng, Arwen; Friedman, Erin J; Fulk, Brandon; Hahn, Michael G; Jiang, Kun; Jorda, Lucia; Kruppe, Lydia; Liu, Chenggang; Lorek, Justine; McCann, Maureen C; Molina, Antonio; Moriyama, Etsuko N; Mukhtar, M Shahid; Mudgil, Yashwanti; Pattathil, Sivakumar; Schwarz, John; Seta, Steven; Tan, Matthew; Temp, Ulrike; Trusov, Yuri; Urano, Daisuke; Welter, Bastian; Yang, Jing; Panstruga, Ralph; Uhrig, Joachim F; Jones, Alan M

    2011-09-27

    The heterotrimeric G-protein complex is minimally composed of Gα, Gβ, and Gγ subunits. In the classic scenario, the G-protein complex is the nexus in signaling from the plasma membrane, where the heterotrimeric G-protein associates with heptahelical G-protein-coupled receptors (GPCRs), to cytoplasmic target proteins called effectors. Although a number of effectors are known in metazoans and fungi, none of these are predicted to exist in their canonical forms in plants. To identify ab initio plant G-protein effectors and scaffold proteins, we screened a set of proteins from the G-protein complex using two-hybrid complementation in yeast. After deep and exhaustive interrogation, we detected 544 interactions between 434 proteins, of which 68 highly interconnected proteins form the core G-protein interactome. Within this core, over half of the interactions comprising two-thirds of the nodes were retested and validated as genuine in planta. Co-expression analysis in combination with phenotyping of loss-of-function mutations in a set of core interactome genes revealed a novel role for G-proteins in regulating cell wall modification.

  1. Arabidopsis G-protein interactome reveals connections to cell wall carbohydrates and morphogenesis

    PubMed Central

    Klopffleisch, Karsten; Phan, Nguyen; Augustin, Kelsey; Bayne, Robert S; Booker, Katherine S; Botella, Jose R; Carpita, Nicholas C; Carr, Tyrell; Chen, Jin-Gui; Cooke, Thomas Ryan; Frick-Cheng, Arwen; Friedman, Erin J; Fulk, Brandon; Hahn, Michael G; Jiang, Kun; Jorda, Lucia; Kruppe, Lydia; Liu, Chenggang; Lorek, Justine; McCann, Maureen C; Molina, Antonio; Moriyama, Etsuko N; Mukhtar, M Shahid; Mudgil, Yashwanti; Pattathil, Sivakumar; Schwarz, John; Seta, Steven; Tan, Matthew; Temp, Ulrike; Trusov, Yuri; Urano, Daisuke; Welter, Bastian; Yang, Jing; Panstruga, Ralph; Uhrig, Joachim F; Jones, Alan M

    2011-01-01

    The heterotrimeric G-protein complex is minimally composed of Gα, Gβ, and Gγ subunits. In the classic scenario, the G-protein complex is the nexus in signaling from the plasma membrane, where the heterotrimeric G-protein associates with heptahelical G-protein-coupled receptors (GPCRs), to cytoplasmic target proteins called effectors. Although a number of effectors are known in metazoans and fungi, none of these are predicted to exist in their canonical forms in plants. To identify ab initio plant G-protein effectors and scaffold proteins, we screened a set of proteins from the G-protein complex using two-hybrid complementation in yeast. After deep and exhaustive interrogation, we detected 544 interactions between 434 proteins, of which 68 highly interconnected proteins form the core G-protein interactome. Within this core, over half of the interactions comprising two-thirds of the nodes were retested and validated as genuine in planta. Co-expression analysis in combination with phenotyping of loss-of-function mutations in a set of core interactome genes revealed a novel role for G-proteins in regulating cell wall modification. PMID:21952135

  2. Arabidopsis G-protein interactome reveals connections to cell wall carbohydrates and morphogenesis

    SciTech Connect

    Klopffleisch, Karsten; Phan, Nguyen; Chen, Jay; Panstruga, Ralph; Uhrig, Joachim; Jones, Alan M

    2011-01-01

    The heterotrimeric G-protein complex is minimally composed of G{alpha}, G{beta}, and G{gamma} subunits. In the classic scenario, the G-protein complex is the nexus in signaling from the plasma membrane, where the heterotrimeric G-protein associates with heptahelical G-protein-coupled receptors (GPCRs), to cytoplasmic target proteins called effectors. Although a number of effectors are known in metazoans and fungi, none of these are predicted to exist in their canonical forms in plants. To identify ab initio plant G-protein effectors and scaffold proteins, we screened a set of proteins from the G-protein complex using two-hybrid complementation in yeast. After deep and exhaustive interrogation, we detected 544 interactions between 434 proteins, of which 68 highly interconnected proteins form the core G-protein interactome. Within this core, over half of the interactions comprising two-thirds of the nodes were retested and validated as genuine in planta. Co-expression analysis in combination with phenotyping of loss-of-function mutations in a set of core interactome genes revealed a novel role for G-proteins in regulating cell wall modification.

  3. Surface (S)-layer proteins of Deinococcus radiodurans and their utility as vehicles for surface localization of functional proteins.

    PubMed

    Misra, Chitra Seetharam; Basu, Bhakti; Apte, Shree Kumar

    2015-12-01

    The radiation resistant bacterium, Deinococcus radiodurans contains two major surface (S)-layer proteins, Hpi and SlpA. The Hpi protein was shown to (a) undergo specific in vivo cleavage, and (b) closely associate with the SlpA protein. Using a non-specific acid phosphatase from Salmonella enterica serovar Typhi, PhoN as a reporter, the Surface Layer Homology (SLH) domain of SlpA was shown to bind deinococcal peptidoglycan-containing cell wall sacculi. The association of SlpA with Hpi on one side and peptidoglycan on the other, localizes this protein in the 'interstitial' layer of the deinoccocal cell wall. Gene chimeras of hpi-phoN and slh-phoN were constructed to test efficacy of S-layer proteins, as vehicles for cell surface localization in D. radiodurans. The Hpi-PhoN protein localized exclusively in the membrane fraction, and displayed cell-based phosphatase activity in vivo. The SLH-PhoN, which localized to both cytosolic and membrane fractions, displayed in vitro activity but no cell-based in vivo activity. Hpi, therefore, emerged as an efficient surface localizing protein and can be exploited for suitable applications of this superbug.

  4. Intrinsic Surface-Drying Properties of Bio-adhesive Proteins

    PubMed Central

    Akdogan, Yasar; Wei, Wei; Huang, Kuo-Ying; Kageyama, Yoshiyuki; Danner, Eric W.; Miller, Dusty R.; Martinez Rodriguez, Nadine R.; Herbert Waite, J.

    2014-01-01

    Sessile marine mussels must “dry” underwater surfaces before adhering to them. Synthetic adhesives have yet to overcome this fundamental challenge. Previous studies of bio-inspired adhesion have largely been performed under applied compressive forces but these are poor predictors of an adhesive’s ability to spontaneously penetrate surface hydration layers. In a force-free approach to measuring molecular-level interaction via the surface water diffusivity, different mussel foot proteins were found to have differential abilities to evict hydration layers from the surfaces—a necessary step for adsorption and adhesion. It was anticipated that Dopa would mediate dehydration given its efficacy forbio-inspired wet adhesion. Instead, hydrophobic side-chains are found to be a critical component in bringing about protein-surface intimacy. This is the first direct measurement of interfacial water dynamics during force-free adsorptive interactions at solid surfaces, and offers guidance for engineering wet adhesives and coatings. PMID:25168789

  5. Evaluation of the Effectiveness of Surfactants and Denaturants to Elute and Denature Adsorbed Protein on Different Surface Chemistries.

    PubMed

    Thyparambil, Aby A; Wei, Yang; Latour, Robert A

    2015-11-01

    The elution and/or denaturation of proteins from material surfaces by chemical excipients such as surfactants and denaturants is important for numerous applications including medical implant reprocessing, bioanalyses, and biodefense. The objective of this study was to develop and apply methods to quantitatively assess how surface chemistry and adsorption conditions influence the effectiveness of three commonly used surfactants (sodium dodecyl sulfate, n-octyl-β-d-glucoside, and 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate) and two denaturants (guanidium hydrochloride and urea) to elute protein (hen egg white lysozyme and bovine pancreatic ribonuclease A) from three different surface chemistries (silica glass, poly(methyl methacrylate), and high-density polyethylene). The structure and bioactivity of residual protein on the surface following elution were characterized using circular dichroism spectropolarimetry and enzyme assays to assess the extent of protein denaturation. Our results indicate that the denaturants were generally more effective than the surfactants in removing the adsorbed proteins from each type of surface. Also, the denaturing capacity of these excipients on the residual proteins on the surfaces was distinctly different from their influence on the proteins in solution and was unique for each of the adsorption conditions. Taken altogether, these results reveal that the effectiveness of surfactants and denaturants to elute and denature adsorbed protein is significantly influenced by surface chemistry and the conditions from which the protein was adsorbed. These results provide a basis for the selection, design, and further development of chemical agents for protein elution and surface decontamination.

  6. Evaluation of the Effectiveness of Surfactants and Denaturants to Elute and Denature Adsorbed Protein on Different Surface Chemistries.

    PubMed

    Thyparambil, Aby A; Wei, Yang; Latour, Robert A

    2015-11-01

    The elution and/or denaturation of proteins from material surfaces by chemical excipients such as surfactants and denaturants is important for numerous applications including medical implant reprocessing, bioanalyses, and biodefense. The objective of this study was to develop and apply methods to quantitatively assess how surface chemistry and adsorption conditions influence the effectiveness of three commonly used surfactants (sodium dodecyl sulfate, n-octyl-β-d-glucoside, and 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate) and two denaturants (guanidium hydrochloride and urea) to elute protein (hen egg white lysozyme and bovine pancreatic ribonuclease A) from three different surface chemistries (silica glass, poly(methyl methacrylate), and high-density polyethylene). The structure and bioactivity of residual protein on the surface following elution were characterized using circular dichroism spectropolarimetry and enzyme assays to assess the extent of protein denaturation. Our results indicate that the denaturants were generally more effective than the surfactants in removing the adsorbed proteins from each type of surface. Also, the denaturing capacity of these excipients on the residual proteins on the surfaces was distinctly different from their influence on the proteins in solution and was unique for each of the adsorption conditions. Taken altogether, these results reveal that the effectiveness of surfactants and denaturants to elute and denature adsorbed protein is significantly influenced by surface chemistry and the conditions from which the protein was adsorbed. These results provide a basis for the selection, design, and further development of chemical agents for protein elution and surface decontamination. PMID:26449787

  7. Surface plasmon resonance imaging reveals multiple binding modes of Agrobacterium transformation mediator VirE2 to ssDNA.

    PubMed

    Kim, Sanghyun; Zbaida, David; Elbaum, Michael; Leh, Hervé; Nogues, Claude; Buckle, Malcolm

    2015-07-27

    VirE2 is the major secreted protein of Agrobacterium tumefaciens in its genetic transformation of plant hosts. It is co-expressed with a small acidic chaperone VirE1, which prevents VirE2 oligomerization. After secretion into the host cell, VirE2 serves functions similar to a viral capsid in protecting the single-stranded transferred DNA en route to the nucleus. Binding of VirE2 to ssDNA is strongly cooperative and depends moreover on protein-protein interactions. In order to isolate the protein-DNA interactions, imaging surface plasmon resonance (SPRi) studies were conducted using surface-immobilized DNA substrates of length comparable to the protein-binding footprint. Binding curves revealed an important influence of substrate rigidity with a notable preference for poly-T sequences and absence of binding to both poly-A and double-stranded DNA fragments. Dissociation at high salt concentration confirmed the electrostatic nature of the interaction. VirE1-VirE2 heterodimers also bound to ssDNA, though by a different mechanism that was insensitive to high salt. Neither VirE2 nor VirE1-VirE2 followed the Langmuir isotherm expected for reversible monomeric binding. The differences reflect the cooperative self-interactions of VirE2 that are suppressed by VirE1. PMID:26044711

  8. NMR Characterizations of the Ice Binding Surface of an Antifreeze Protein

    PubMed Central

    Li, Congmin; Jia, Zongchao; Xia, Bin; Jin, Changwen

    2010-01-01

    Antifreeze protein (AFP) has a unique function of reducing solution freezing temperature to protect organisms from ice damage. However, its functional mechanism is not well understood. An intriguing question concerning AFP function is how the high selectivity for ice ligand is achieved in the presence of free water of much higher concentration which likely imposes a large kinetic barrier for protein-ice recognition. In this study, we explore this question by investigating the property of the ice binding surface of an antifreeze protein using NMR spectroscopy. An investigation of the temperature gradient of amide proton chemical shift and its correlation with chemical shift deviation from random coil was performed for CfAFP-501, a hyperactive insect AFP. A good correlation between the two parameters was observed for one of the two Thr rows on the ice binding surface. A significant temperature-dependent protein-solvent interaction is found to be the most probable origin for this correlation, which is consistent with a scenario of hydrophobic hydration on the ice binding surface. In accordance with this finding, rotational correlation time analyses combined with relaxation dispersion measurements reveals a weak dimer formation through ice binding surface at room temperature and a population shift of dimer to monomer at low temperature, suggesting hydrophobic effect involved in dimer formation and hence hydrophobic hydration on the ice binding surface of the protein. Our finding of hydrophobic hydration on the ice binding surface provides a test for existing simulation studies. The occurrence of hydrophobic hydration on the ice binding surface is likely unnecessary for enhancing protein-ice binding affinity which is achieved by a tight H-bonding network. Subsequently, we speculate that the hydrophobic hydration occurring on the ice binding surface plays a role in facilitating protein-ice recognition by lowering the kinetic barrier as suggested by some simulation

  9. Structural constraints for the binding of short peptides to claudin-4 revealed by surface plasmon resonance.

    PubMed

    Ling, Jun; Liao, Hailing; Clark, Robin; Wong, Mandy Sze Man; Lo, David D

    2008-11-01

    Claudin family transmembrane proteins play an important role in tight junction structure and function in epithelial cells. Among the 24 isoforms identified in mice and humans, claudin-4 and -3 serve as the receptor for Clostridium perfringens enterotoxin (Cpe). The second extracellular loop (Ecl2) of claudin-4 is responsible for the binding to the C-terminal 30 amino acids of Cpe (Cpe30). To define the structural constraints for the claudin-4/Cpe30 interaction, a surface plasmon resonance (SPR) method was developed. GST fusions with claudin-4 revealed that Ecl2 with the downstream transmembrane domain of claudin-4 reconstituted the basic structural requirement for optimal binding activity to Cpe30, with affinity in the nanomolar range. Two 12-mer peptides selected by phage display against claudin-4-transfected CHO cells and a 12-mer Cpe mutant peptide also showed significant affinity for claudin-4 with this SPR assay, suggesting that a short peptide can establish stable contact with Ecl2 with nanomolar affinity. Alignment of these short peptides unveiled a common Ecl2 binding motif: . Whereas the short peptides bound native claudin-4 on transfected CHO cells in pull-down assays, only the larger Cpe30 peptide affected trans-epithelial electrical resistance (TER) in peptide-treated Caco-2BBe monolayers. Importantly, Cpe30 retained its binding to claudin-4 when fused to the C terminus of influenza hemagglutinin, demonstrating that its binding activity can be maintained in a different biochemical context. These studies may help in the design of assays for membrane receptor interactions with soluble ligands, and in applying new targeting ligands to delivering attached "cargo" proteins. PMID:18782762

  10. Analysis of the cell surface expression of cytokine receptors using the surface protein biotinylation method.

    PubMed

    Pavel, Mahmud Arif; Lam, Clarissa; Kashyap, Parul; Salehi-Najafabadi, Zahra; Singh, Gurpreet; Yu, Yong

    2014-01-01

    Cytokines are pleiotropic, low-molecular-weight proteins that regulate the immune responses to infection and inflammation. They stimulate the immune responses by binding to cytokine receptors on the cell plasma membrane. Thus, knowledge of the expression level of particular cytokine receptors on cell surface is crucial for understanding the cytokine function and regulation. One of the techniques to explore the membrane embedded cytokine receptors is cell surface biotinylation. Biotinylated surface proteins can be rapidly purified through the strong interaction between biotin and streptavidin. Here, we describe the procedure for surface biotinylation and purification of biotinylated cytokine receptors for further downstream analysis. PMID:24908305

  11. Analysis of the cell surface expression of cytokine receptors using the surface protein biotinylation method.

    PubMed

    Pavel, Mahmud Arif; Lam, Clarissa; Kashyap, Parul; Salehi-Najafabadi, Zahra; Singh, Gurpreet; Yu, Yong

    2014-01-01

    Cytokines are pleiotropic, low-molecular-weight proteins that regulate the immune responses to infection and inflammation. They stimulate the immune responses by binding to cytokine receptors on the cell plasma membrane. Thus, knowledge of the expression level of particular cytokine receptors on cell surface is crucial for understanding the cytokine function and regulation. One of the techniques to explore the membrane embedded cytokine receptors is cell surface biotinylation. Biotinylated surface proteins can be rapidly purified through the strong interaction between biotin and streptavidin. Here, we describe the procedure for surface biotinylation and purification of biotinylated cytokine receptors for further downstream analysis.

  12. Spontaneous Mutation Reveals Influence of Exopolysaccharide on Lactobacillus johnsonii Surface Characteristics

    PubMed Central

    Horn, Nikki; Wegmann, Udo; Dertli, Enes; Mulholland, Francis; Collins, Samuel R. A.; Waldron, Keith W.; Bongaerts, Roy J.; Mayer, Melinda J.; Narbad, Arjan

    2013-01-01

    As a competitive exclusion agent, Lactobacillus johnsonii FI9785 has been shown to prevent the colonization of selected pathogenic bacteria from the chicken gastrointestinal tract. During growth of the bacterium a rare but consistent emergence of an altered phenotype was noted, generating smooth colonies in contrast to the wild type rough form. A smooth colony variant was isolated and two-dimensional gel analysis of both strains revealed a protein spot with different migration properties in the two phenotypes. The spot in both gels was identified as a putative tyrosine kinase (EpsC), associated with a predicted exopolysaccharide gene cluster. Sequencing of the epsC gene from the smooth mutant revealed a single substitution (G to A) in the coding strand, resulting in the amino acid change D88N in the corresponding gene product. A native plasmid of L. johnsonii was engineered to produce a novel vector for constitutive expression and this was used to demonstrate that expression of the wild type epsC gene in the smooth mutant produced a reversion to the rough colony phenotype. Both the mutant and epsC complemented strains had increased levels of exopolysaccharides compared to the wild type strain, indicating that the rough phenotype is not solely associated with the quantity of exopolysaccharide. Another gene in the cluster, epsE, that encoded a putative undecaprenyl-phosphate galactosephosphotransferase, was deleted in order to investigate its role in exopolysaccharide biosynthesis. The ΔepsE strain exhibited a large increase in cell aggregation and a reduction in exopolysaccharide content, while plasmid complementation of epsE restored the wild type phenotype. Flow cytometry showed that the wild type and derivative strains exhibited clear differences in their adhesive ability to HT29 monolayers in tissue culture, demonstrating an impact of EPS on surface properties and bacteria-host interactions. PMID:23544114

  13. A global optimization algorithm for protein surface alignment

    PubMed Central

    2010-01-01

    Background A relevant problem in drug design is the comparison and recognition of protein binding sites. Binding sites recognition is generally based on geometry often combined with physico-chemical properties of the site since the conformation, size and chemical composition of the protein surface are all relevant for the interaction with a specific ligand. Several matching strategies have been designed for the recognition of protein-ligand binding sites and of protein-protein interfaces but the problem cannot be considered solved. Results In this paper we propose a new method for local structural alignment of protein surfaces based on continuous global optimization techniques. Given the three-dimensional structures of two proteins, the method finds the isometric transformation (rotation plus translation) that best superimposes active regions of two structures. We draw our inspiration from the well-known Iterative Closest Point (ICP) method for three-dimensional (3D) shapes registration. Our main contribution is in the adoption of a controlled random search as a more efficient global optimization approach along with a new dissimilarity measure. The reported computational experience and comparison show viability of the proposed approach. Conclusions Our method performs well to detect similarity in binding sites when this in fact exists. In the future we plan to do a more comprehensive evaluation of the method by considering large datasets of non-redundant proteins and applying a clustering technique to the results of all comparisons to classify binding sites. PMID:20920230

  14. Conformational selection in a protein-protein interaction revealed by dynamic pathway analysis

    SciTech Connect

    Chakrabarti, Kalyan S.; Agafonov, Roman V.; Pontiggia, Francesco; Otten, Renee; Higgins, Matthew K.; Schertler, Gebhard F. X.; Oprian, Daniel D.; Kern, Dorothee

    2015-12-24

    Molecular recognition plays a central role in biology, and protein dynamics has been acknowledged to be important in this process. However, it is highly debated whether conformational changes happen before ligand binding to produce a binding-competent state (conformational selection) or are caused in response to ligand binding (induced fit). Proposals for both mechanisms in protein/protein recognition have been primarily based on structural arguments. However, the distinction between them is a question of the probabilities of going via these two opposing pathways. Here we present a direct demonstration of exclusive conformational selection in protein/protein recognition by measuring the flux for rhodopsin kinase binding to its regulator recoverin, an important molecular recognition in the vision system. Using NMR spectroscopy, stopped-flow kinetics and isothermal titration calorimetry we show that recoverin populates a minor conformation in solution that exposes a hydrophobic binding pocket responsible for binding rhodopsin kinase. Lastly, protein dynamics in free recoverin limits the overall rate of binding.

  15. Conformational selection in a protein-protein interaction revealed by dynamic pathway analysis

    DOE PAGES

    Chakrabarti, Kalyan S.; Agafonov, Roman V.; Pontiggia, Francesco; Otten, Renee; Higgins, Matthew K.; Schertler, Gebhard F. X.; Oprian, Daniel D.; Kern, Dorothee

    2015-12-24

    Molecular recognition plays a central role in biology, and protein dynamics has been acknowledged to be important in this process. However, it is highly debated whether conformational changes happen before ligand binding to produce a binding-competent state (conformational selection) or are caused in response to ligand binding (induced fit). Proposals for both mechanisms in protein/protein recognition have been primarily based on structural arguments. However, the distinction between them is a question of the probabilities of going via these two opposing pathways. Here we present a direct demonstration of exclusive conformational selection in protein/protein recognition by measuring the flux for rhodopsinmore » kinase binding to its regulator recoverin, an important molecular recognition in the vision system. Using NMR spectroscopy, stopped-flow kinetics and isothermal titration calorimetry we show that recoverin populates a minor conformation in solution that exposes a hydrophobic binding pocket responsible for binding rhodopsin kinase. Lastly, protein dynamics in free recoverin limits the overall rate of binding.« less

  16. Conformational Selection in a Protein-Protein Interaction revealed by Dynamic Pathway Analysis

    PubMed Central

    Chakrabarti, Kalyan S.; Agafonov, Roman V.; Pontiggia, Francesco; Otten, Renee; Higgins, Matthew K.; Schertler, Gebhard F. X.; Oprian, Daniel D.; Kern, Dorothee

    2015-01-01

    SUMMARY Molecular recognition plays a central role in biology, and protein dynamics has been acknowledged to be important in this process. However, it is highly debated whether conformational changes happen before ligand binding to produce a binding-competent state (conformational selection) or are caused in response to ligand binding (induced fit). Proposals for both mechanisms in protein/protein recognition have been primarily based on structural arguments. However, the distinction between them is a question of the probabilities of going via these two opposing pathways. Here we present a direct demonstration of exclusive conformational selection in protein/protein recognition by measuring the flux for rhodopsin kinase binding to its regulator recoverin, an important molecular recognition in the vision system. Using NMR spectroscopy, stopped-flow kinetics and isothermal titration calorimetry we show that recoverin populates a minor conformation in solution that exposes a hydrophobic binding pocket responsible for binding rhodopsin kinase. Protein dynamics in free recoverin limits the overall rate of binding. PMID:26725117

  17. Humidified microcontact printing of proteins: universal patterning of proteins on both low and high energy surfaces.

    PubMed

    Ricoult, Sébastien G; Nezhad, Amir Sanati; Knapp-Mohammady, Michaela; Kennedy, Timothy E; Juncker, David

    2014-10-14

    Microcontact printing (μCP) of proteins is widely used for biosensors and cell biology but is constrained to printing proteins adsorbed to a low free energy, hydrophobic surface to a high free energy, hydrophilic surface. This strongly limits μCP as harsh chemical treatments are required to form a high energy surface. Here, we introduce humidified μCP (HμCP) of proteins which enables universal printing of protein on any smooth surface. We found that by flowing water in proximity to proteins adsorbed on a hydrophilized stamp, the water vapor diffusing through the stamp enables the printing of proteins on both low and high energy surfaces. Indeed, when proteins are printed using stamps with increasing spacing between water-filled microchannels, only proteins adjacent to the channels are transferred. The vapor transport through the stamp was modeled, and by comparing the humidity profiles with the protein patterns, 88% relative humidity in the stamp was identified as the threshold for HμCP. The molecular forces occurring between PDMS, peptides, and glass during printing were modeled ab initio to confirm the critical role water plays in the transfer. Using HμCP, we introduce straightforward protocols to pattern multiple proteins side-by-side down to nanometer resolution without the need for expensive mask aligners, but instead exploiting self-alignment effects derived from the stamp geometry. Finally, we introduce vascularized HμCP stamps with embedded microchannels that allow printing proteins as arbitrary, large areas patterns with nanometer resolution. This work introduces the general concept of water-assisted μCP and opens new possibilities for "solvent-assisted" printing of proteins and of other nanoparticles. PMID:25222734

  18. Humidified microcontact printing of proteins: universal patterning of proteins on both low and high energy surfaces.

    PubMed

    Ricoult, Sébastien G; Nezhad, Amir Sanati; Knapp-Mohammady, Michaela; Kennedy, Timothy E; Juncker, David

    2014-10-14

    Microcontact printing (μCP) of proteins is widely used for biosensors and cell biology but is constrained to printing proteins adsorbed to a low free energy, hydrophobic surface to a high free energy, hydrophilic surface. This strongly limits μCP as harsh chemical treatments are required to form a high energy surface. Here, we introduce humidified μCP (HμCP) of proteins which enables universal printing of protein on any smooth surface. We found that by flowing water in proximity to proteins adsorbed on a hydrophilized stamp, the water vapor diffusing through the stamp enables the printing of proteins on both low and high energy surfaces. Indeed, when proteins are printed using stamps with increasing spacing between water-filled microchannels, only proteins adjacent to the channels are transferred. The vapor transport through the stamp was modeled, and by comparing the humidity profiles with the protein patterns, 88% relative humidity in the stamp was identified as the threshold for HμCP. The molecular forces occurring between PDMS, peptides, and glass during printing were modeled ab initio to confirm the critical role water plays in the transfer. Using HμCP, we introduce straightforward protocols to pattern multiple proteins side-by-side down to nanometer resolution without the need for expensive mask aligners, but instead exploiting self-alignment effects derived from the stamp geometry. Finally, we introduce vascularized HμCP stamps with embedded microchannels that allow printing proteins as arbitrary, large areas patterns with nanometer resolution. This work introduces the general concept of water-assisted μCP and opens new possibilities for "solvent-assisted" printing of proteins and of other nanoparticles.

  19. Interaction of Serum Proteins with Surface of Hemodialysis Fiber Membranes

    NASA Astrophysics Data System (ADS)

    Afrin, Rehana; Shirako, Yuji; Kishimoto, Kikuo; Ikai, Atsushi

    2012-08-01

    The poly(vinyl pyrrolidone)-covered hydrophilic surface of hollow-fiber membranes (fiber membrane, hereafter) for hemodialysis was mechanically probed using modified tips on an atomic force microscope (AFM) with covalent crosslinkers and several types of serum protein. The retraction part of many of the force extension (F-E) curves obtained with AFM tips coated with serum albumin had a long and smooth extension up to 200-300 nm indicating forced elongation of poly(vinyl pyrrolidone) chains. When fibrinogen-coated tips were used, long extension F-E curves up to 500 nm with multiple peaks were obtained in addition to smooth curves most likely reflecting the unfolding of fibrinogen molecules. The results indicated that individual polymer chains had a significant affinity toward serum proteins. The adhesion frequency of tips coated with serum proteins was lower on the poly(vinyl pyrrolidone) surface than on the uncoated hydrophobic polysulfone surface.

  20. The Streptococcus pneumoniae Beta-Galactosidase Is a Surface Protein

    PubMed Central

    Zähner, Dorothea; Hakenbeck, Regine

    2000-01-01

    The β-galactosidase gene of Streptococcus pneumoniae, bgaA, encodes a putative 2,235-amino-acid protein with the two amino acid motifs characteristic of the glycosyl hydrolase family of proteins. In addition, an N-terminal signal sequence and a C-terminal LPXTG motif typical of surface-associated proteins of gram-positive bacteria are present. Trypsin treatment of cells resulted in solubilization of the enzyme, documenting that it is associated with the cell envelope. In order to obtain defined mutants suitable for lacZ reporter experiments, the bgaA gene was disrupted, resulting in a complete absence of endogenous β-galactosidase activity. The results are consistent with β-galactosidase being a surface protein that seems not to be involved in lactose metabolism but that may play a role during pathogenesis. PMID:11004197

  1. Comparison of surface and hydrogel-based protein microchips.

    PubMed

    Zubtsov, D A; Savvateeva, E N; Rubina, A Yu; Pan'kov, S V; Konovalova, E V; Moiseeva, O V; Chechetkin, V R; Zasedatelev, A S

    2007-09-15

    Protein microchips are designed for high-throughput evaluation of the concentrations and activities of various proteins. The rapid advance in microchip technology and a wide variety of existing techniques pose the problem of unified approach to the assessment and comparison of different platforms. Here we compare the characteristics of protein microchips developed for quantitative immunoassay with those of antibodies immobilized on glass surfaces and in hemispherical gel pads. Spotting concentrations of antibodies used for manufacturing of microchips of both types and concentrations of antigen in analyte solution were identical. We compared the efficiency of antibody immobilization, the intensity of fluorescence signals for both direct and sandwich-type immunoassays, and the reaction-diffusion kinetics of the formation of antibody-antigen complexes for surface and gel-based microchips. Our results demonstrate higher capacity and sensitivity for the hydrogel-based protein microchips, while fluorescence saturation kinetics for the two types of microarrays was comparable.

  2. The role of flexibility and molecular shape in the crystallization of proteins by surface mutagenesis.

    PubMed

    Devedjiev, Yancho D

    2015-02-01

    Proteins are dynamic systems and interact with their environment. The analysis of crystal contacts in the most accurately determined protein structures (d < 1.5 Å) reveals that in contrast to current views, static disorder and high side-chain entropy are common in the crystal contact area. These observations challenge the validity of the theory that presumes that the occurrence of well ordered patches of side chains at the surface is an essential prerequisite for a successful crystallization event. The present paper provides evidence in support of the approach for understanding protein crystallization as a process dependent on multiple factors, each with its relative contribution, rather than a phenomenon driven by a few dominant physicochemical characteristics. The role of the molecular shape as a factor in the crystallization of proteins by surface mutagenesis is discussed.

  3. Surface imprinting of proteins: from mechanism to application

    NASA Astrophysics Data System (ADS)

    Wang, Yantian; Mueller, Steffen; Sokolov, Jonathan; Levon, Kalle; Rigas, Basil; Rafailovich, Miriam

    2009-03-01

    Protein adsorption properties on different surfaces have been of great interest due to their importance in biomedical applications. In this study, adsorption of proteins on gold, thiol self-assembled monolayer (SAM), and molecularly imprinted thiol SAM was studied. Alkaline phosphatase (AP), an enzyme that can catalyze p-nitrophenyl phosphate and produce a yellow end product which has light absorbance at 405nm, was co-adsorbed with 11-mercapto-1-undecanol to fabricate the imprinted surface. Different washing methods were used to remove AP and create re-adsorption sites. The adsorption amount of AP before and after washing was measured by spectrophotometer after enzyme reaction. Re-adsorption of AP onto the three surfaces was compared and showed that the imprinted surface re-bound the protein molecules at the template site. Potentiometric response of the three substrates to AP was measured at different pH, the charge effect on the potential response was studied. The selective binding of the template proteins made it a useful technique as a protein sensor.

  4. Self-assembling triblock proteins for biofunctional surface modification

    NASA Astrophysics Data System (ADS)

    Fischer, Stephen E.

    Despite the tremendous promise of cell/tissue engineering, significant challenges remain in engineering functional scaffolds to precisely regulate the complex processes of tissue growth and development. As the point of contact between the cells and the scaffold, the scaffold surface plays a major role in mediating cellular behaviors. In this dissertation, the development and utility of self-assembling, artificial protein hydrogels as biofunctional surface modifiers is described. The design of these recombinant proteins is based on a telechelic triblock motif, in which a disordered polyelectrolyte central domain containing embedded bioactive ligands is flanked by two leucine zipper domains. Under moderate conditions of temperature and pH, the leucine zipper end domains form amphiphilic alpha-helices that reversibly associate into homo-trimeric aggregates, driving hydrogel formation. Moreover, the amphiphilic nature of these helical domains enables surface adsorption to a variety of scaffold materials to form biofunctional protein coatings. The nature and stability of these coatings in various solution conditions, and their interaction with mammalian cells is the primary focus of this dissertation. In particular, triblock protein coatings functionalized with cell recognition sequences are shown to produce well-defined surfaces with precise control over ligand density. The impact of this is demonstrated in multiple cell types through ligand density-dependent cell-substrate interactions. To improve the stability of these physically self-assembled coatings, two covalent crosslinking strategies are described---one in which a zero-length chemical crosslinker (EDC) is utilized and a second in which disulfide bonds are engineered into the recombinant proteins. These targeted crosslinking approaches are shown to increase the stability of surface adsorbed protein layers with minimal effect on the presentation of many bioactive ligands. Finally, to demonstrate the versatility

  5. Protein signatures using electrostatic molecular surfaces in harmonic space.

    PubMed

    Carvalho, C Sofia; Vlachakis, Dimitrios; Tsiliki, Georgia; Megalooikonomou, Vasileios; Kossida, Sophia

    2013-01-01

    We developed a novel method based on the Fourier analysis of protein molecular surfaces to speed up the analysis of the vast structural data generated in the post-genomic era. This method computes the power spectrum of surfaces of the molecular electrostatic potential, whose three-dimensional coordinates have been either experimentally or theoretically determined. Thus we achieve a reduction of the initial three-dimensional information on the molecular surface to the one-dimensional information on pairs of points at a fixed scale apart. Consequently, the similarity search in our method is computationally less demanding and significantly faster than shape comparison methods. As proof of principle, we applied our method to a training set of viral proteins that are involved in major diseases such as Hepatitis C, Dengue fever, Yellow fever, Bovine viral diarrhea and West Nile fever. The training set contains proteins of four different protein families, as well as a mammalian representative enzyme. We found that the power spectrum successfully assigns a unique signature to each protein included in our training set, thus providing a direct probe of functional similarity among proteins. The results agree with established biological data from conventional structural biochemistry analyses.

  6. Structure of the Rift Valley fever virus nucleocapsid protein reveals another architecture for RNA encapsidation

    SciTech Connect

    Raymond, Donald D.; Piper, Mary E.; Gerrard, Sonja R.; Smith, Janet L.

    2010-07-13

    Rift Valley fever virus (RVFV) is a negative-sense RNA virus (genus Phlebovirus, family Bunyaviridae) that infects livestock and humans and is endemic to sub-Saharan Africa. Like all negative-sense viruses, the segmented RNA genome of RVFV is encapsidated by a nucleocapsid protein (N). The 1.93-{angstrom} crystal structure of RVFV N and electron micrographs of ribonucleoprotein (RNP) reveal an encapsidated genome of substantially different organization than in other negative-sense RNA virus families. The RNP polymer, viewed in electron micrographs of both virus RNP and RNP reconstituted from purified N with a defined RNA, has an extended structure without helical symmetry. N-RNA species of {approx}100-kDa apparent molecular weight and heterogeneous composition were obtained by exhaustive ribonuclease treatment of virus RNP, by recombinant expression of N, and by reconstitution from purified N and an RNA oligomer. RNA-free N, obtained by denaturation and refolding, has a novel all-helical fold that is compact and well ordered at both the N and C termini. Unlike N of other negative-sense RNA viruses, RVFV N has no positively charged surface cleft for RNA binding and no protruding termini or loops to stabilize a defined N-RNA oligomer or RNP helix. A potential protein interaction site was identified in a conserved hydrophobic pocket. The nonhelical appearance of phlebovirus RNP, the heterogeneous {approx}100-kDa N-RNA multimer, and the N fold differ substantially from the RNP and N of other negative-sense RNA virus families and provide valuable insights into the structure of the encapsidated phlebovirus genome.

  7. Molecular basis for polyol-induced protein stability revealed by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Liu, Fu-Feng; Ji, Luo; Zhang, Lin; Dong, Xiao-Yan; Sun, Yan

    2010-06-01

    Molecular dynamics simulations of chymotrypsin inhibitor 2 in different polyols (glycerol, xylitol, sorbitol, trehalose, and sucrose) at 363 K were performed to probe the molecular basis of the stabilizing effect, and the data in water, ethanol, and glycol were compared. It is found that protein protection by polyols is positively correlated with both the molecular volume and the fractional polar surface area, and the former contributes more significantly to the protein's stability. Polyol molecules have only a few direct hydrogen bonds with the protein, and the number of hydrogen bonds between a polyol and the protein is similar for different polyols. Thus, it is concluded that the direct interactions contribute little to the stabilizing effect. It is clarified that the preferential exclusion of the polyols is the origin of their protective effects, and it increases with increasing polyol size. Namely, there is preferential hydration on the protein surface (2 Å), and polyol molecules cluster around the protein at a distance of about 4 Å. The preferential exclusion of polyols leads to indirect interactions that prevent the protein from thermal unfolding. The water structure becomes more ordered with increasing the polyol size. So, the entropy of water in the first hydration shell decreases, and a larger extent of decrease is observed with increasing polyol size, leading to larger transfer free energy. The findings suggest that polyols protect the protein from thermal unfolding via indirect interactions. The work has thus elucidated the molecular mechanism of structural stability of the protein in polyol solutions.

  8. Structure of the Streptococcus pneumoniae Surface Protein and Adhesin PfbA

    PubMed Central

    Suits, Michael D.; Boraston, Alisdair B.

    2013-01-01

    PfbA (plasmin- and fibronectin-binding protein A) is an extracellular Streptococcus pneumoniae cell-wall attached surface protein that binds to fibronectin, plasmin, and plasminogen. Here we present a structural analysis of the surface exposed domains of PfbA using a combined approach of X-ray crystallography and small-angle X-ray scattering (SAXS). The crystal structure of the PfbA core domain, here called PfbAβ, determined to 2.28 Å resolution revealed an elongated 12-stranded parallel β-helix fold, which structure-based comparisons reveal is most similar to proteins with carbohydrate modifying activity. A notable feature of the PfbAβ is an extensive cleft on one face of the protein with electrochemical and spatial features that are analogous to structurally similar carbohydrate-active enzymes utilizing this feature for substrate accommodation. Though this cleft displays a combination of basic amino acid residues and solvent exposed aromatic amino acids that are distinct features for recognition of carbohydrates, no obvious arrangement of amino acid side chains that would constitute catalytic machinery is evident. The pseudo-atomic SAXS model of a larger fragment of PfbA suggests that it has a relatively well-ordered structure with the N-terminal and core domains of PfbA adopting an extend organization and reveals a novel structural class of surface exposed pneumococcal matrix molecule adhesins. PMID:23894284

  9. Putative protein partners for the human CPI-17 protein revealed by bacterial two-hybrid screening.

    PubMed

    Kim, Kyung-mi; Adyshev, Djanybek M; Kása, Anita; Zemskov, Evgeny A; Kolosova, Irina A; Csortos, Csilla; Verin, Alexander D

    2013-07-01

    We have previously demonstrated that PKC-potentiated inhibitory protein of protein phosphatase-1 (CPI-17) is expressed in lung endothelium. CPI-17, a specific inhibitor of myosin light chain phosphatase (MLCP), is involved in the endothelial cytoskeletal and barrier regulation. In this paper, we report the identification of fourteen putative CPI-17 interacting proteins in the lung using BacterioMatch Two-Hybrid System. Five of them: plectin 1 isoform 1, alpha II spectrin, OK/SW-CL.16, gelsolin isoform a, and junction plakoglobin are involved in actin cytoskeleton organization and cell adhesion, suggesting possible significance of these binding partners in CPI-17-mediated cytoskeletal reorganization of endothelial cells. Furthermore, we confirmed the specific interaction between plakoglobin and CPI-17, which is affected by the phosphorylation status of CPI-17 in human lung microvascular endothelial cells. PMID:23583905

  10. Proteomic Analysis of Pathogenic Fungi Reveals Highly Expressed Conserved Cell Wall Proteins

    PubMed Central

    Champer, Jackson; Ito, James I.; Clemons, Karl V.; Stevens, David A.; Kalkum, Markus

    2016-01-01

    We are presenting a quantitative proteomics tally of the most commonly expressed conserved fungal proteins of the cytosol, the cell wall, and the secretome. It was our goal to identify fungi-typical proteins that do not share significant homology with human proteins. Such fungal proteins are of interest to the development of vaccines or drug targets. Protein samples were derived from 13 fungal species, cultured in rich or in minimal media; these included clinical isolates of Aspergillus, Candida, Mucor, Cryptococcus, and Coccidioides species. Proteomes were analyzed by quantitative MSE (Mass Spectrometry—Elevated Collision Energy). Several thousand proteins were identified and quantified in total across all fractions and culture conditions. The 42 most abundant proteins identified in fungal cell walls or supernatants shared no to very little homology with human proteins. In contrast, all but five of the 50 most abundant cytosolic proteins had human homologs with sequence identity averaging 59%. Proteomic comparisons of the secreted or surface localized fungal proteins highlighted conserved homologs of the Aspergillus fumigatus proteins 1,3-β-glucanosyltransferases (Bgt1, Gel1-4), Crf1, Ecm33, EglC, and others. The fact that Crf1 and Gel1 were previously shown to be promising vaccine candidates, underlines the value of the proteomics data presented here. PMID:26878023

  11. Why do proteins aggregate? "Intrinsically insoluble proteins" and "dark mediators" revealed by studies on "insoluble proteins" solubilized in pure water.

    PubMed

    Song, Jianxing

    2013-01-01

    In 2008, I reviewed and proposed a model for our discovery in 2005 that unrefoldable and insoluble proteins could in fact be solubilized in unsalted water. Since then, this discovery has offered us and other groups a powerful tool to characterize insoluble proteins, and we have further addressed several fundamental and disease-relevant issues associated with this discovery. Here I review these results, which are conceptualized into several novel scenarios. 1) Unlike 'misfolded proteins', which still retain the capacity to fold into well-defined structures but are misled to 'off-pathway' aggregation, unrefoldable and insoluble proteins completely lack this ability and will unavoidably aggregate in vivo with ~150 mM ions, thus designated as 'intrinsically insoluble proteins (IIPs)' here. IIPs may largely account for the 'wastefully synthesized' DRiPs identified in human cells. 2) The fact that IIPs including membrane proteins are all soluble in unsalted water, but get aggregated upon being exposed to ions, logically suggests that ions existing in the background play a central role in mediating protein aggregation, thus acting as 'dark mediators'. Our study with 14 salts confirms that IIPs lack the capacity to fold into any well-defined structures. We uncover that salts modulate protein dynamics and anions bind proteins with high selectivity and affinity, which is surprisingly masked by pre-existing ions. Accordingly, I modified my previous model. 3) Insoluble proteins interact with lipids to different degrees. Remarkably, an ALS-causing P56S mutation transforms the β-sandwich MSP domain into a helical integral membrane protein. Consequently, the number of membrane-interacting proteins might be much larger than currently recognized. To attack biological membranes may represent a common mechanism by which aggregated proteins initiate human diseases. 4) Our discovery also implies a solution to the 'chicken-and-egg paradox' for the origin of primitive membranes embedded

  12. Conformal nanopatterning of extracellular matrix proteins onto topographically complex surfaces.

    PubMed

    Sun, Yan; Jallerat, Quentin; Szymanski, John M; Feinberg, Adam W

    2015-02-01

    Our Patterning on Topography (PoT) printing technique enables fibronectin, laminin and other proteins to be applied to biomaterial surfaces in complex geometries that are inaccessible using traditional soft lithography techniques. Engineering combinatorial surfaces that integrate topographical and biochemical micropatterns enhances control of the biotic-abiotic interface. Here, we used this method to understand cardiomyocyte response to competing physical and chemical cues in the microenvironment.

  13. On the surface interactions of proteins with lignin.

    PubMed

    Salas, Carlos; Rojas, Orlando J; Lucia, Lucian A; Hubbe, Martin A; Genzer, Jan

    2013-01-01

    Lignins are used often in formulations involving proteins but little is known about the surface interactions between these important biomacromolecules. In this work, we investigate the interactions at the solid-liquid interface of lignin with the two main proteins in soy, glycinin (11S) and β-conglycinin (7S). The extent of adsorption of 11S and 7S onto lignin films and the degree of hydration of the interfacial layers is quantified via Quartz crystal microgravimetry (QCM) and surface plasmon resonance (SPR). Solution ionic strength and protein denaturation (2-mercaptoethanol and urea) critically affect the adsorption process as protein molecules undergo conformational changes and their hydrophobic or hydrophilic amino acid residues interact with the surrounding medium. In general, the adsorption of the undenatured proteins onto lignin is more extensive compared to that of the denatured biomolecules and a large amount of water is coupled to the adsorbed molecules. The reduction in water contact angle after protein adsorption (by ~40° and 35° for undenatured 11S and 7S, respectively) is explained by strong nonspecific interactions between soy proteins and lignin. PMID:23234476

  14. Surface charge effects in protein adsorption on nanodiamonds

    NASA Astrophysics Data System (ADS)

    Aramesh, M.; Shimoni, O.; Ostrikov, K.; Prawer, S.; Cervenka, J.

    2015-03-01

    Understanding the interaction of proteins with charged diamond nanoparticles is of fundamental importance for diverse biomedical applications. Here we present a thorough study of protein binding, adsorption kinetics and structure on strongly positively (hydrogen-terminated) and negatively (oxygen-terminated) charged nanodiamond particles using a quartz crystal microbalance by dissipation and infrared spectroscopy. By using two model proteins (bovine serum albumin and lysozyme) of different properties (charge, molecular weight and rigidity), the main driving mechanism responsible for the protein binding to the charged nanoparticles was identified. Electrostatic interactions were found to dominate the protein adsorption dynamics, attachment and conformation. We developed a simple electrostatic model that can qualitatively explain the observed adsorption behaviour based on charge-induced pH modifications near the charged nanoparticle surfaces. Under neutral conditions, the local pH around the positively and negatively charged nanodiamonds becomes very high (11-12) and low (1-3) respectively, which has a profound impact on the protein charge, hydration and affinity to the nanodiamonds. Small proteins (lysozyme) were found to form multilayers with significant conformational changes to screen the surface charge, while larger proteins (albumin) formed monolayers with minor conformational changes. The findings of this study provide a step forward toward understanding and eventually predicting nanoparticle interactions with biofluids.Understanding the interaction of proteins with charged diamond nanoparticles is of fundamental importance for diverse biomedical applications. Here we present a thorough study of protein binding, adsorption kinetics and structure on strongly positively (hydrogen-terminated) and negatively (oxygen-terminated) charged nanodiamond particles using a quartz crystal microbalance by dissipation and infrared spectroscopy. By using two model proteins

  15. Proteomic Profiling of Cereal Aphid Saliva Reveals Both Ubiquitous and Adaptive Secreted Proteins

    PubMed Central

    Wilkinson, Tom L.

    2013-01-01

    The secreted salivary proteins from two cereal aphid species, Sitobion avenae and Metopolophium dirhodum, were collected from artificial diets and analysed by tandem mass spectrometry. Protein identification was performed by searching MS data against the official protein set from the current pea aphid (Acyrthosiphon pisum) genome assembly and revealed 12 and 7 proteins in the saliva of S. avenae and M. dirhodum, respectively. When combined with a comparable dataset from A. pisum, only three individual proteins were common to all the aphid species; two paralogues of the GMC oxidoreductase family (glucose dehydrogenase; GLD) and ACYPI009881, an aphid specific protein previously identified as a putative component of the salivary sheath. Antibodies were designed from translated protein sequences obtained from partial cDNA sequences for ACYPI009881 and both saliva associated GLDs. The antibodies detected all parent proteins in secreted saliva from the three aphid species, but could only detect ACYPI009881, and not saliva associated GLDs, in protein extractions from the salivary glands. This result was confirmed by immunohistochemistry using whole and sectioned salivary glands, and in addition, localised ACYPI009881 to specific cell types within the principal salivary gland. The implications of these findings for the origin of salivary components and the putative role of the proteins identified are discussed in the context of our limited understanding of the functional relationship between aphid saliva and the plants they feed on. The mass spectrometry data have been deposited to the ProteomeXchange and can be accessed under the identifier PXD000113. PMID:23460852

  16. The effect of nanoscale surface curvature on the oligomerization of surface-bound proteins

    PubMed Central

    Kurylowicz, M.; Paulin, H.; Mogyoros, J.; Giuliani, M.; Dutcher, J. R.

    2014-01-01

    The influence of surface topography on protein conformation and association is used routinely in biological cells to orchestrate and coordinate biomolecular events. In the laboratory, controlling the surface curvature at the nanoscale offers new possibilities for manipulating protein–protein interactions and protein function at surfaces. We have studied the effect of surface curvature on the association of two proteins, α-lactalbumin (α-LA) and β-lactoglobulin (β-LG), which perform their function at the oil–water interface in milk emulsions. To control the surface curvature at the nanoscale, we have used a combination of polystyrene (PS) nanoparticles (NPs) and ultrathin PS films to fabricate chemically pure, hydrophobic surfaces that are highly curved and are stable in aqueous buffer. We have used single-molecule force spectroscopy to measure the contour lengths Lc for α-LA and β-LG adsorbed on highly curved PS surfaces (NP diameters of 27 and 50 nm, capped with a 10 nm thick PS film), and we have compared these values in situ with those measured for the same proteins adsorbed onto flat PS surfaces in the same samples. The Lc distributions for β-LG adsorbed onto a flat PS surface contain monomer and dimer peaks at 60 and 120 nm, respectively, while α-LA contains a large monomer peak near 50 nm and a dimer peak at 100 nm, with a tail extending out to 200 nm, corresponding to higher order oligomers, e.g. trimers and tetramers. When β-LG or α-LA is adsorbed onto the most highly curved surfaces, both monomer peaks are shifted to much smaller values of Lc. Furthermore, for β-LG, the dimer peak is strongly suppressed on the highly curved surface, whereas for α-LA the trimer and tetramer tail is suppressed with no significant change in the dimer peak. For both proteins, the number of higher order oligomers is significantly reduced as the curvature of the underlying surface is increased. These results suggest that the surface curvature provides a new

  17. Dynamic Proteomic Characteristics and Network Integration Revealing Key Proteins for Two Kernel Tissue Developments in Popcorn

    PubMed Central

    Du, Chunguang; Xiong, Wenwei; Chen, Xinjian; Deng, Fei; Ma, Zhiyan; Qiao, Dahe; Hu, Chunhui; Ren, Yangliu; Li, Yuling

    2015-01-01

    The formation and development of maize kernel is a complex dynamic physiological and biochemical process that involves the temporal and spatial expression of many proteins and the regulation of metabolic pathways. In this study, the protein profiles of the endosperm and pericarp at three important developmental stages were analyzed by isobaric tags for relative and absolute quantification (iTRAQ) labeling coupled with LC-MS/MS in popcorn inbred N04. Comparative quantitative proteomic analyses among developmental stages and between tissues were performed, and the protein networks were integrated. A total of 6,876 proteins were identified, of which 1,396 were nonredundant. Specific proteins and different expression patterns were observed across developmental stages and tissues. The functional annotation of the identified proteins revealed the importance of metabolic and cellular processes, and binding and catalytic activities for the development of the tissues. The whole, endosperm-specific and pericarp-specific protein networks integrated 125, 9 and 77 proteins, respectively, which were involved in 54 KEGG pathways and reflected their complex metabolic interactions. Confirmation for the iTRAQ endosperm proteins by two-dimensional gel electrophoresis showed that 44.44% proteins were commonly found. However, the concordance between mRNA level and the protein abundance varied across different proteins, stages, tissues and inbred lines, according to the gene cloning and expression analyses of four relevant proteins with important functions and different expression levels. But the result by western blot showed their same expression tendency for the four proteins as by iTRAQ. These results could provide new insights into the developmental mechanisms of endosperm and pericarp, and grain formation in maize. PMID:26587848

  18. Quantification of the transferability of a designed protein specificity switch reveals extensive epistasis in molecular recognition.

    PubMed

    Melero, Cristina; Ollikainen, Noah; Harwood, Ian; Karpiak, Joel; Kortemme, Tanja

    2014-10-28

    Reengineering protein-protein recognition is an important route to dissecting and controlling complex interaction networks. Experimental approaches have used the strategy of "second-site suppressors," where a functional interaction is inferred between two proteins if a mutation in one protein can be compensated by a mutation in the second. Mimicking this strategy, computational design has been applied successfully to change protein recognition specificity by predicting such sets of compensatory mutations in protein-protein interfaces. To extend this approach, it would be advantageous to be able to "transplant" existing engineered and experimentally validated specificity changes to other homologous protein-protein complexes. Here, we test this strategy by designing a pair of mutations that modulates peptide recognition specificity in the Syntrophin PDZ domain, confirming the designed interaction biochemically and structurally, and then transplanting the mutations into the context of five related PDZ domain-peptide complexes. We find a wide range of energetic effects of identical mutations in structurally similar positions, revealing a dramatic context dependence (epistasis) of designed mutations in homologous protein-protein interactions. To better understand the structural basis of this context dependence, we apply a structure-based computational model that recapitulates these energetic effects and we use this model to make and validate forward predictions. Although the context dependence of these mutations is captured by computational predictions, our results both highlight the considerable difficulties in designing protein-protein interactions and provide challenging benchmark cases for the development of improved protein modeling and design methods that accurately account for the context.

  19. Rigid Residue Scan Simulations Systematically Reveal Residue Entropic Roles in Protein Allostery

    PubMed Central

    Liu, Jin

    2016-01-01

    Intra-protein information is transmitted over distances via allosteric processes. This ubiquitous protein process allows for protein function changes due to ligand binding events. Understanding protein allostery is essential to understanding protein functions. In this study, allostery in the second PDZ domain (PDZ2) in the human PTP1E protein is examined as model system to advance a recently developed rigid residue scan method combining with configurational entropy calculation and principal component analysis. The contributions from individual residues to whole-protein dynamics and allostery were systematically assessed via rigid body simulations of both unbound and ligand-bound states of the protein. The entropic contributions of individual residues to whole-protein dynamics were evaluated based on covariance-based correlation analysis of all simulations. The changes of overall protein entropy when individual residues being held rigid support that the rigidity/flexibility equilibrium in protein structure is governed by the La Châtelier’s principle of chemical equilibrium. Key residues of PDZ2 allostery were identified with good agreement with NMR studies of the same protein bound to the same peptide. On the other hand, the change of entropic contribution from each residue upon perturbation revealed intrinsic differences among all the residues. The quasi-harmonic and principal component analyses of simulations without rigid residue perturbation showed a coherent allosteric mode from unbound and bound states, respectively. The projection of simulations with rigid residue perturbation onto coherent allosteric modes demonstrated the intrinsic shifting of ensemble distributions supporting the population-shift theory of protein allostery. Overall, the study presented here provides a robust and systematic approach to estimate the contribution of individual residue internal motion to overall protein dynamics and allostery. PMID:27115535

  20. Dynamic Proteomic Characteristics and Network Integration Revealing Key Proteins for Two Kernel Tissue Developments in Popcorn.

    PubMed

    Dong, Yongbin; Wang, Qilei; Zhang, Long; Du, Chunguang; Xiong, Wenwei; Chen, Xinjian; Deng, Fei; Ma, Zhiyan; Qiao, Dahe; Hu, Chunhui; Ren, Yangliu; Li, Yuling

    2015-01-01

    The formation and development of maize kernel is a complex dynamic physiological and biochemical process that involves the temporal and spatial expression of many proteins and the regulation of metabolic pathways. In this study, the protein profiles of the endosperm and pericarp at three important developmental stages were analyzed by isobaric tags for relative and absolute quantification (iTRAQ) labeling coupled with LC-MS/MS in popcorn inbred N04. Comparative quantitative proteomic analyses among developmental stages and between tissues were performed, and the protein networks were integrated. A total of 6,876 proteins were identified, of which 1,396 were nonredundant. Specific proteins and different expression patterns were observed across developmental stages and tissues. The functional annotation of the identified proteins revealed the importance of metabolic and cellular processes, and binding and catalytic activities for the development of the tissues. The whole, endosperm-specific and pericarp-specific protein networks integrated 125, 9 and 77 proteins, respectively, which were involved in 54 KEGG pathways and reflected their complex metabolic interactions. Confirmation for the iTRAQ endosperm proteins by two-dimensional gel electrophoresis showed that 44.44% proteins were commonly found. However, the concordance between mRNA level and the protein abundance varied across different proteins, stages, tissues and inbred lines, according to the gene cloning and expression analyses of four relevant proteins with important functions and different expression levels. But the result by western blot showed their same expression tendency for the four proteins as by iTRAQ. These results could provide new insights into the developmental mechanisms of endosperm and pericarp, and grain formation in maize. PMID:26587848

  1. Quantification of the transferability of a designed protein specificity switch reveals extensive epistasis in molecular recognition.

    PubMed

    Melero, Cristina; Ollikainen, Noah; Harwood, Ian; Karpiak, Joel; Kortemme, Tanja

    2014-10-28

    Reengineering protein-protein recognition is an important route to dissecting and controlling complex interaction networks. Experimental approaches have used the strategy of "second-site suppressors," where a functional interaction is inferred between two proteins if a mutation in one protein can be compensated by a mutation in the second. Mimicking this strategy, computational design has been applied successfully to change protein recognition specificity by predicting such sets of compensatory mutations in protein-protein interfaces. To extend this approach, it would be advantageous to be able to "transplant" existing engineered and experimentally validated specificity changes to other homologous protein-protein complexes. Here, we test this strategy by designing a pair of mutations that modulates peptide recognition specificity in the Syntrophin PDZ domain, confirming the designed interaction biochemically and structurally, and then transplanting the mutations into the context of five related PDZ domain-peptide complexes. We find a wide range of energetic effects of identical mutations in structurally similar positions, revealing a dramatic context dependence (epistasis) of designed mutations in homologous protein-protein interactions. To better understand the structural basis of this context dependence, we apply a structure-based computational model that recapitulates these energetic effects and we use this model to make and validate forward predictions. Although the context dependence of these mutations is captured by computational predictions, our results both highlight the considerable difficulties in designing protein-protein interactions and provide challenging benchmark cases for the development of improved protein modeling and design methods that accurately account for the context. PMID:25313039

  2. Rigid Residue Scan Simulations Systematically Reveal Residue Entropic Roles in Protein Allostery.

    PubMed

    Kalescky, Robert; Zhou, Hongyu; Liu, Jin; Tao, Peng

    2016-04-01

    Intra-protein information is transmitted over distances via allosteric processes. This ubiquitous protein process allows for protein function changes due to ligand binding events. Understanding protein allostery is essential to understanding protein functions. In this study, allostery in the second PDZ domain (PDZ2) in the human PTP1E protein is examined as model system to advance a recently developed rigid residue scan method combining with configurational entropy calculation and principal component analysis. The contributions from individual residues to whole-protein dynamics and allostery were systematically assessed via rigid body simulations of both unbound and ligand-bound states of the protein. The entropic contributions of individual residues to whole-protein dynamics were evaluated based on covariance-based correlation analysis of all simulations. The changes of overall protein entropy when individual residues being held rigid support that the rigidity/flexibility equilibrium in protein structure is governed by the La Châtelier's principle of chemical equilibrium. Key residues of PDZ2 allostery were identified with good agreement with NMR studies of the same protein bound to the same peptide. On the other hand, the change of entropic contribution from each residue upon perturbation revealed intrinsic differences among all the residues. The quasi-harmonic and principal component analyses of simulations without rigid residue perturbation showed a coherent allosteric mode from unbound and bound states, respectively. The projection of simulations with rigid residue perturbation onto coherent allosteric modes demonstrated the intrinsic shifting of ensemble distributions supporting the population-shift theory of protein allostery. Overall, the study presented here provides a robust and systematic approach to estimate the contribution of individual residue internal motion to overall protein dynamics and allostery. PMID:27115535

  3. Chemical Functionalization of Germanium with Dextran Brushes for Immobilization of Proteins Revealed by Attenuated Total Reflection Fourier Transform Infrared Difference Spectroscopy.

    PubMed

    Schartner, Jonas; Hoeck, Nina; Güldenhaupt, Jörn; Mavarani, Laven; Nabers, Andreas; Gerwert, Klaus; Kötting, Carsten

    2015-07-21

    Protein immobilization studied by attenuated total reflection Fourier transform infrared (ATR-FT-IR) difference spectroscopy is an emerging field enabling the study of proteins at atomic detail. Gold or glass surfaces are frequently used for protein immobilization. Here, we present an alternative method for protein immobilization on germanium. Because of its high refractive index and broad spectral window germanium is the best material for ATR-FT-IR spectroscopy of thin layers. So far, this technique was mainly used for protein monolayers, which lead to a limited signal-to-noise ratio. Further, undesired protein-protein interactions can occur in a dense layer. Here, the germanium surface was functionalized with thiols and stepwise a dextran brush was generated. Each step was monitored by ATR-FT-IR spectroscopy. We compared a 70 kDa dextran with a 500 kDa dextran regarding the binding properties. All surfaces were characterized by atomic force microscopy, revealing thicknesses between 40 and 110 nm. To analyze the capability of our system we utilized N-Ras on mono-NTA (nitrilotriacetic acid) functionalized dextran, and the amount of immobilized Ras corresponded to several monolayers. The protein stability and loading capacity was further improved by means of tris-NTA for immobilization. Small-molecule-induced changes were revealed with an over 3 times higher signal-to-noise ratio compared to monolayers. This improvement may allow the observation of very small and so far hidden changes in proteins upon stimulus. Furthermore, we immobilized green fluorescent protein (GFP) and mCherry simultaneously enabling an analysis of the surface by fluorescence microscopy. The absence of a Förster resonance energy transfer (FRET) signal demonstrated a large protein-protein distance, indicating an even distribution of the protein within the dextran.

  4. Surface-based morphometry reveals distinct cortical thickness and surface area profiles in Williams syndrome.

    PubMed

    Green, Tamar; Fierro, Kyle C; Raman, Mira M; Saggar, Manish; Sheau, Kristen E; Reiss, Allan L

    2016-04-01

    Morphometric investigations of brain volumes in Williams syndrome (WS) consistently show significant reductions in gray matter volume compared to controls. Cortical thickness (CT) and surface area (SA) are two constituent parts of cortical gray matter volume that are considered genetically distinguishable features of brain morphology. Yet, little is known about the independent contribution of cortical CT and SA to these volumetric differences in WS. Thus, our objectives were: (i) to evaluate whether the microdeletion in chromosome 7 associated with WS has a distinct effect on CT and SA, and (ii) to evaluate age-related variations in CT and SA within WS. We compared CT and SA values in 44 individuals with WS to 49 age- and sex-matched typically developing controls. Between-group differences in CT and SA were evaluated across two age groups: young (age range 6.6-18.9 years), and adults (age range 20.2-51.5 years). Overall, we found contrasting effects of WS on cortical thickness (increases) and surface area (decreases). With respect to brain topography, the between-group pattern of CT differences showed a scattered pattern while the between-group surface area pattern was widely distributed throughout the brain. In the adult subgroup, we observed a cluster of increases in cortical thickness in WS across the brain that was not observed in the young subgroup. Our findings suggest that extensive early reductions in surface area are the driving force for the overall reduction in brain volume in WS. The age-related cortical thickness findings might reflect delayed or even arrested development of specific brain regions in WS.

  5. Revealing the Restructured Surface of Li[Mn2]O4

    DOE PAGES

    Amos, Charles D.; Roldan, Manuel A.; Varela, Maria; Goodenough, John B.; Ferreira, Paulo J.

    2016-03-29

    The spinel Revealing the Restructured Surface of Li[Mn2]O4 is a candidate cathode for a Li-ion battery, but its capacity fades over a charge/discharge cycle of Li1–x[Mn2]O4 (0 < x < 1) that is associated with a loss of Mn to the organic-liquid electrolyte. It is known that the disproportionation reaction 2Mn3+ = Mn2+ + Mn4+ occurs at the surface of a Mn spinel, and it is important to understand the atomic structure and composition of the surface of Revealing the Restructured Surface of Li[Mn2]O4 in order to understand how Mn loss occurs. We report a study of the surface reconstructionmore » of Revealing the Restructured Surface of Li[Mn2]O4 by aberration-corrected scanning transmission electron microscopy. The atomic structure coupled with Mn-valence and the distribution of the atomic ratio of oxygen obtained by electron energy loss spectroscopy reveals a thin, stable surface layer of Mn3O4, a subsurface region of Li1+x[Mn2]O4 with retention of bulk Li[Mn2]O4. We conclude that this observation is compatible with the disproportionation reaction coupled with oxygen deficiency and a displacement of surface Li+ from the Mn3O4 surface phase. These results provide a critical step toward understanding how Mn is lost from Li[Mn2]O4, once inside a battery.« less

  6. Protein-Protein Docking and Analysis Reveal That Two Homologous Bacterial Adenylyl Cyclase Toxins Interact with Calmodulin Differently*S⃞

    PubMed Central

    Guo, Qing; Jureller, Justin E.; Warren, Julia T.; Solomaha, Elena; Florián, Jan; Tang, Wei-Jen

    2008-01-01

    Calmodulin (CaM), a eukaryotic calcium sensor that regulates diverse biological activities, consists of N- and C-terminal globular domains (N-CaM and C-CaM, respectively). CaM serves as the activator of CyaA, a 188-kDa adenylyl cyclase toxin secreted by Bordetella pertussis, which is the etiologic agent for whooping cough. Upon insertion of the N-terminal adenylyl cyclase domain (ACD) of CyaA to its targeted eukaryotic cells, CaM binds to this domain tightly (∼200 pm affinity). This interaction activates the adenylyl cyclase activity of CyaA, leading to a rise in intracellular cAMP levels to disrupt normal cellular signaling. We recently solved the structure of CyaA-ACD in complex with C-CaM to elucidate the mechanism of catalytic activation. However, the structure of the interface between N-CaM and CyaA, the formation of which contributes a 400-fold increase of binding affinity between CyaA and CaM, remains elusive. Here, we used site-directed mutations and molecular dynamic simulations to generate several working models of CaM-bound CyaA-ACD. The validity of these models was evaluated by disulfide bond cross-linking, point mutations, and fluorescence resonance energy transfer experiments. Our study reveals that a β-hairpin region (amino acids 259–273) of CyaA-ACD likely makes contacts with the second calcium binding motif of the extended CaM. This mode of interaction differs from the interaction of N-CaM with anthrax edema factor, which binds N-CaM via its helical domain. Thus, two structurally conserved, bacterial adenylyl cyclase toxins have evolved to utilize distinct binding surfaces and modes of activation in their interaction with CaM, a highly conserved eukaryotic signaling protein. PMID:18583346

  7. Coevolved Mutations Reveal Distinct Architectures for Two Core Proteins in the Bacterial Flagellar Motor

    PubMed Central

    Pandini, Alessandro; Kleinjung, Jens; Rasool, Shafqat; Khan, Shahid

    2015-01-01

    Switching of bacterial flagellar rotation is caused by large domain movements of the FliG protein triggered by binding of the signal protein CheY to FliM. FliG and FliM form adjacent multi-subunit arrays within the basal body C-ring. The movements alter the interaction of the FliG C-terminal (FliGC) “torque” helix with the stator complexes. Atomic models based on the Salmonella entrovar C-ring electron microscopy reconstruction have implications for switching, but lack consensus on the relative locations of the FliG armadillo (ARM) domains (amino-terminal (FliGN), middle (FliGM) and FliGC) as well as changes during chemotaxis. The generality of the Salmonella model is challenged by the variation in motor morphology and response between species. We studied coevolved residue mutations to determine the unifying elements of switch architecture. Residue interactions, measured by their coevolution, were formalized as a network, guided by structural data. Our measurements reveal a common design with dedicated switch and motor modules. The FliM middle domain (FliMM) has extensive connectivity most simply explained by conserved intra and inter-subunit contacts. In contrast, FliG has patchy, complex architecture. Conserved structural motifs form interacting nodes in the coevolution network that wire FliMM to the FliGC C-terminal, four-helix motor module (C3-6). FliG C3-6 coevolution is organized around the torque helix, differently from other ARM domains. The nodes form separated, surface-proximal patches that are targeted by deleterious mutations as in other allosteric systems. The dominant node is formed by the EHPQ motif at the FliMMFliGM contact interface and adjacent helix residues at a central location within FliGM. The node interacts with nodes in the N-terminal FliGc α-helix triad (ARM-C) and FliGN. ARM-C, separated from C3-6 by the MFVF motif, has poor intra-network connectivity consistent with its variable orientation revealed by structural data. ARM-C could

  8. Coevolved Mutations Reveal Distinct Architectures for Two Core Proteins in the Bacterial Flagellar Motor.

    PubMed

    Pandini, Alessandro; Kleinjung, Jens; Rasool, Shafqat; Khan, Shahid

    2015-01-01

    Switching of bacterial flagellar rotation is caused by large domain movements of the FliG protein triggered by binding of the signal protein CheY to FliM. FliG and FliM form adjacent multi-subunit arrays within the basal body C-ring. The movements alter the interaction of the FliG C-terminal (FliGC) "torque" helix with the stator complexes. Atomic models based on the Salmonella entrovar C-ring electron microscopy reconstruction have implications for switching, but lack consensus on the relative locations of the FliG armadillo (ARM) domains (amino-terminal (FliGN), middle (FliGM) and FliGC) as well as changes during chemotaxis. The generality of the Salmonella model is challenged by the variation in motor morphology and response between species. We studied coevolved residue mutations to determine the unifying elements of switch architecture. Residue interactions, measured by their coevolution, were formalized as a network, guided by structural data. Our measurements reveal a common design with dedicated switch and motor modules. The FliM middle domain (FliMM) has extensive connectivity most simply explained by conserved intra and inter-subunit contacts. In contrast, FliG has patchy, complex architecture. Conserved structural motifs form interacting nodes in the coevolution network that wire FliMM to the FliGC C-terminal, four-helix motor module (C3-6). FliG C3-6 coevolution is organized around the torque helix, differently from other ARM domains. The nodes form separated, surface-proximal patches that are targeted by deleterious mutations as in other allosteric systems. The dominant node is formed by the EHPQ motif at the FliMMFliGM contact interface and adjacent helix residues at a central location within FliGM. The node interacts with nodes in the N-terminal FliGc α-helix triad (ARM-C) and FliGN. ARM-C, separated from C3-6 by the MFVF motif, has poor intra-network connectivity consistent with its variable orientation revealed by structural data. ARM-C could be

  9. Structure-function insights of membrane and soluble proteins revealed by electron crystallography.

    PubMed

    Dreaden, Tina M; Devarajan, Bharanidharan; Barry, Bridgette A; Schmidt-Krey, Ingeborg

    2013-01-01

    Electron crystallography is emerging as an important method in solving protein structures. While it has found extensive applications in the understanding of membrane protein structure and function at a wide range of resolutions, from revealing oligomeric arrangements to atomic models, electron crystallography has also provided invaluable information on the soluble α/β-tubulin which could not be obtained by any other method to date. Examples of critical insights from selected structures of membrane proteins as well as α/β-tubulin are described here, demonstrating the vast potential of electron crystallography that is first beginning to unfold.

  10. Cell surface growth in Escherichia coli: distribution of matrix protein.

    PubMed Central

    Begg, K J

    1978-01-01

    Autoradiography of cell envelope "ghosts" from Escherichia coli was used to demonstrate that newly synthesized molecules of "matrix" protein are inserted at random locations over the entire surface of the outer membrane and that, once inserted, these molecules are not thereafter conserved in any fixed spatial location. Images PMID:355219

  11. Differential surface deposition of complement proteins on logarithmic and stationary phase Leishmania chagasi promastigotes.

    PubMed

    Ramer-Tait, Amanda E; Lei, Soi Meng; Bellaire, Bryan H; Beetham, Jeffrey K

    2012-12-01

    Previous works demonstrated that various species of Leishmania promastigotes exhibit differential sensitivity to complement-mediated lysis (CML) during development. Upon exposure to normal human serum (NHS), cultures of Leishmania chagasi promastigotes recently isolated from infected hamsters (fewer than 5 in vitro passages) are CML-sensitive when in the logarithmic growth phase but become CML-resistant upon transition to the stationary culture phase. Visualization by light and electron microscopy revealed dramatic morphological differences between promastigotes from the 2 culture phases following exposure to NHS. Flow cytometric analysis demonstrated that surface deposition of the complement components C3, C5, and C9 correlated inversely with promastigote CML-resistance. The highest levels of complement protein surface accumulation were observed for logarithmic phase promastigotes, while stationary phase promastigotes adsorbed the least amount of complement proteins. Additionally, fluorescence microscopy revealed that C3 and C5 localized in a fairly uniform pattern to the plasma membrane of promastigotes from logarithmic phase cultures, while the staining of promastigotes from stationary phase cultures was indistinguishable from background. By Western blot analysis, high levels of the complement proteins C3, C5, and C9 were detected in the total lysates of NHS-exposed logarithmic phase L. chagasi promastigotes, relative to NHS-exposed stationary phase promastigotes; this finding indicates that the low levels of C3 and C5 seen on the surface of stationary phase promastigotes were not due to protein uptake/internalization. Together, these data demonstrate the differential deposition of complement proteins on the surfaces of logarithmic and stationary phase L. chagasi promastigotes. The data support a model wherein stationary phase L. chagasi promastigotes resist CML by limiting the deposition of C3 and its derivatives, which, in turn, limit surface levels of

  12. Immunogenic membrane-associated proteins of Mycobacterium tuberculosis revealed by proteomics.

    PubMed

    Sinha, Sudhir; Kosalai, K; Arora, Shalini; Namane, Abdelkader; Sharma, Pawan; Gaikwad, Anil N; Brodin, Priscille; Cole, Stewart T

    2005-07-01

    Membrane-associated proteins of Mycobacterium tuberculosis offer a challenge, as well as an opportunity, in the quest for better therapeutic and prophylactic interventions against tuberculosis. The authors have previously reported that extraction with the detergent Triton X-114 (TX-114) is a useful step in proteomic analysis of mycobacterial cell membranes, and detergent-soluble membrane proteins of mycobacteria are potent stimulators of human T cells. In this study 1-D and 2-D gel electrophoresis-based protocols were used for the analysis of proteins in the TX-114 extract of M. tuberculosis membranes. Peptide mass mapping (using MALDI-TOF-MS, matrix assisted laser desorption/ionization time of flight mass spectrometry) of 116 samples led to the identification of 105 proteins, 9 of which were new to the M. tuberculosis proteome. Functional orthologues of 73 of these proteins were also present in Mycobacterium leprae, suggesting their relative importance. Bioinformatics predicted that as many as 73% of the proteins had a hydrophobic disposition. 1-D gel electrophoresis revealed more hydrophobic/transmembrane and basic proteins than 2-D gel electrophoresis. Identified proteins fell into the following major categories: protein synthesis, cell wall biogenesis/architecture and conserved hypotheticals/unknowns. To identify immunodominant proteins of the detergent phase (DP), 14 low-molecular-mass fractions prepared by continuous-elution gel electrophoresis were subjected to T cell activation assays using blood samples from BCG-vaccinated healthy donors from a tuberculosis endemic area. Analysis of the responses (cell proliferation and IFN-gamma production) showed that the immunodominance of certain DP fractions was most probably due to ribosomal proteins, which is consistent with both their specificity for mycobacteria and their abundance. Other membrane-associated proteins, including transmembrane proteins/lipoproteins and ESAT-6, did not appear to contribute

  13. RNA-protein distance patterns in ribosomes reveal the mechanism of translational attenuation.

    PubMed

    Yu, DongMei; Zhang, Chao; Qin, PeiWu; Cornish, Peter V; Xu, Dong

    2014-11-01

    Elucidating protein translational regulation is crucial for understanding cellular function and drug development. A key molecule in protein translation is ribosome, which is a super-molecular complex extensively studied for more than a half century. The structure and dynamics of ribosome complexes were resolved recently thanks to the development of X-ray crystallography, Cryo-EM, and single molecule biophysics. Current studies of the ribosome have shown multiple functional states, each with a unique conformation. In this study, we analyzed the RNA-protein distances of ribosome (2.5 MDa) complexes and compared these changes among different ribosome complexes. We found that the RNA-protein distance is significantly correlated with the ribosomal functional state. Thus, the analysis of RNA-protein binding distances at important functional sites can distinguish ribosomal functional states and help understand ribosome functions. In particular, the mechanism of translational attenuation by nascent peptides and antibiotics was revealed by the conformational changes of local functional sites.

  14. Genomewide Analysis Reveals Novel Pathways Affecting Endoplasmic Reticulum Homeostasis, Protein Modification and Quality Control

    PubMed Central

    Čopič, Alenka; Dorrington, Mariana; Pagant, Silvere; Barry, Justine; Lee, Marcus C. S.; Singh, Indira; Hartman, John L.; Miller, Elizabeth A.

    2009-01-01

    To gain new mechanistic insight into ER homeostasis and the biogenesis of secretory proteins, we screened a genomewide collection of yeast mutants for defective intracellular retention of the ER chaperone, Kar2p. We identified 87 Kar2p-secreting strains, including a number of known components in secretory protein modification and sorting. Further characterization of the 73 nonessential Kar2p retention mutants revealed roles for a number of novel gene products in protein glycosylation, GPI-anchor attachment, ER quality control, and retrieval of escaped ER residents. A subset of these mutants, required for ER retrieval, included the GET complex and two novel proteins that likely function similarly in membrane insertion of tail-anchored proteins. Finally, the variant histone, Htz1p, and its acetylation state seem to play an important role in maintaining ER retrieval pathways, suggesting a surprising link between chromatin remodeling and ER homeostasis. PMID:19433630

  15. Comparative Proteome Analysis Reveals Four Novel Polyhydroxybutyrate (PHB) Granule-Associated Proteins in Ralstonia eutropha H16

    PubMed Central

    Sznajder, Anna; Pfeiffer, Daniel

    2014-01-01

    Identification of proteins that were present in a polyhydroxybutyrate (PHB) granule fraction isolated from Ralstonia eutropha but absent in the soluble, membrane, and membrane-associated fractions revealed the presence of only 12 polypeptides with PHB-specific locations plus 4 previously known PHB-associated proteins with multiple locations. None of the previously postulated PHB depolymerase isoenzymes (PhaZa2 to PhaZa5, PhaZd1, and PhaZd2) and none of the two known 3-hydroxybutyrate oligomer hydrolases (PhaZb and PhaZc) were significantly present in isolated PHB granules. Four polypeptides were found that had not yet been identified in PHB granules. Three of the novel proteins are putative α/β-hydrolases, and two of those (A0671 and B1632) have a PHB synthase/depolymerase signature. The third novel protein (A0225) is a patatin-like phospholipase, a type of enzyme that has not been described for PHB granules of any PHB-accumulating species. No function has been ascribed to the fourth protein (A2001), but its encoding gene forms an operon with phaB2 (acetoacetyl-coenzyme A [CoA] reductase) and phaC2 (PHB synthase), and this is in line with a putative function in PHB metabolism. The localization of the four new proteins at the PHB granule surface was confirmed in vivo by fluorescence microscopy of constructed fusion proteins with enhanced yellow fluorescent protein (eYFP). Deletion of A0671 and B1632 had a minor but detectable effect on the PHB mobilization ability in the stationary growth phase of nutrient broth (NB)-gluconate cells, confirming the functional involvement of both proteins in PHB metabolism. PMID:25548058

  16. Protein crystallization on liquid surfaces: Forced versus natural crystallization

    NASA Astrophysics Data System (ADS)

    Hirsa, A.

    2005-11-01

    Two-dimensional crystallization of proteins has recently been reported where streptavidin protein dissolved in the bulk liquid anchors to binding sites on a biotinylated lipid monolayer initially spread on the liquid surface. Thermodynamic aspects investigated include the effects of subphase buffer and pH, dilution of bulk protein and monolayer. Here, we investigate three possible avenues where flow can influence protein crystallization: i) change the initial state of monolayer, ii) advect dissolved protein to the interface, iii) apply direct hydrodynamic force on the crystals at the interface. The flow system consists of a stationary open cylinder driven by constant rotation of the floor, in the axisymmetric flow regime with inertia. Direct imaging of the interface illuminated by forward scattering of a laser was utilized to avoid labeling proteins for conventional fluorescence microscopy. These images provide greater detail than Brewster angle microscopy. Scientific motivation is to use flow to probe protein structure, and the application is to make designer protein thin-films, e.g. for biosensors.

  17. Quasi-elastic neutron scattering reveals ligand-induced protein dynamics of a G-protein-coupled receptor

    DOE PAGES

    Shrestha, Utsab R.; Perera, Suchithranga M. D. C.; Bhowmik, Debsindhu; Chawla, Udeep; Mamontov, Eugene; Brown, Michael F.; Chu, Xiang -Qiang

    2016-09-15

    Light activation of the visual G-protein-coupled receptor (GPCR) rhodopsin leads to significant structural fluctuations of the protein embedded within the membrane yielding the activation of cognate G-protein (transducin), which initiates biological signaling. Here, we report a quasi-elastic neutron scattering study of the activation of rhodopsin as a GPCR prototype. Our results reveal a broadly distributed relaxation of hydrogen atom dynamics of rhodopsin on a picosecond–nanosecond time scale, crucial for protein function, as only observed for globular proteins previously. Interestingly, the results suggest significant differences in the intrinsic protein dynamics of the dark-state rhodopsin versus the ligand-free apoprotein, opsin. These differencesmore » can be attributed to the influence of the covalently bound retinal ligand. Moreover, an idea of the generic free-energy landscape is used to explain the GPCR dynamics of ligand-binding and ligand-free protein conformations, which can be further applied to other GPCR systems.« less

  18. The Protein Architecture of Human Secretory Vesicles Reveals Differential Regulation of Signaling Molecule Secretion by Protein Kinases

    PubMed Central

    Taupenot, Laurent; Ziegler, Michael; O'Connor, Daniel T.; Ma, Qi; Smoot, Michael; Ideker, Trey; Hook, Vivian

    2012-01-01

    Secretory vesicles are required for release of chemical messengers to mediate intercellular signaling among human biological systems. It is necessary to define the organization of the protein architecture of the ‘human’ dense core secretory vesicles (DCSV) to understand mechanisms for secretion of signaling molecules essential for cellular regulatory processes. This study, therefore, conducted extensive quantitative proteomics and systems biology analyses of human DCSV purified from human pheochromocytoma. Over 600 human DCSV proteins were identified with quantitative evaluation of over 300 proteins, revealing that most proteins participate in producing peptide hormones and neurotransmitters, enzymes, and the secretory machinery. Systems biology analyses provided a model of interacting DCSV proteins, generating hypotheses for differential intracellular protein kinases A and C signaling pathways. Activation of cellular PKA and PKC pathways resulted in differential secretion of neuropeptides, catecholamines, and β-amyloid of Alzheimer's disease for mediating cell-cell communication. This is the first study to define a model of the protein architecture of human DCSV for human disease and health. PMID:22916103

  19. Factor H-related proteins determine complement-activating surfaces.

    PubMed

    Józsi, Mihály; Tortajada, Agustin; Uzonyi, Barbara; Goicoechea de Jorge, Elena; Rodríguez de Córdoba, Santiago

    2015-06-01

    Complement factor H-related proteins (FHRs) are strongly associated with different diseases involving complement dysregulation, which suggests a major role for these proteins regulating complement activation. Because FHRs are evolutionarily and structurally related to complement inhibitor factor H (FH), the initial assumption was that the FHRs are also negative complement regulators. Whereas weak complement inhibiting activities were originally reported for these molecules, recent developments indicate that FHRs may enhance complement activation, with important implications for the role of these proteins in health and disease. We review these findings here, and propose that FHRs represent a complex set of surface recognition molecules that, by competing with FH, provide improved discrimination of self and non-self surfaces and play a central role in determining appropriate activation of the complement pathway.

  20. Surface-protein interactions on different stainless steel grades: effects of protein adsorption, surface changes and metal release.

    PubMed

    Hedberg, Y; Wang, X; Hedberg, J; Lundin, M; Blomberg, E; Wallinder, I Odnevall

    2013-04-01

    Implantation using stainless steels (SS) is an example where an understanding of protein-induced metal release from SS is important when assessing potential toxicological risks. Here, the protein-induced metal release was investigated for austenitic (AISI 304, 310, and 316L), ferritic (AISI 430), and duplex (AISI 2205) grades in a phosphate buffered saline (PBS, pH 7.4) solution containing either bovine serum albumin (BSA) or lysozyme (LSZ). The results show that both BSA and LSZ induce a significant enrichment of chromium in the surface oxide of all stainless steel grades. Both proteins induced an enhanced extent of released iron, chromium, nickel and manganese, very significant in the case of BSA (up to 40-fold increase), whereas both proteins reduced the corrosion resistance of SS, with the reverse situation for iron metal (reduced corrosion rates and reduced metal release in the presence of proteins). A full monolayer coverage is necessary to induce the effects observed.

  1. Analysis of protein phosphorylation in nerve terminal reveals extensive changes in active zone proteins upon exocytosis

    PubMed Central

    Kohansal-Nodehi, Mahdokht; Chua, John JE; Urlaub, Henning; Jahn, Reinhard; Czernik, Dominika

    2016-01-01

    Neurotransmitter release is mediated by the fast, calcium-triggered fusion of synaptic vesicles with the presynaptic plasma membrane, followed by endocytosis and recycling of the membrane of synaptic vesicles. While many of the proteins governing these processes are known, their regulation is only beginning to be understood. Here we have applied quantitative phosphoproteomics to identify changes in phosphorylation status of presynaptic proteins in resting and stimulated nerve terminals isolated from the brains of Wistar rats. Using rigorous quantification, we identified 252 phosphosites that are either up- or downregulated upon triggering calcium-dependent exocytosis. Particularly pronounced were regulated changes of phosphosites within protein constituents of the presynaptic active zone, including bassoon, piccolo, and RIM1. Additionally, we have mapped kinases and phosphatases that are activated upon stimulation. Overall, our study provides a snapshot of phosphorylation changes associated with presynaptic activity and provides a foundation for further functional analysis of key phosphosites involved in presynaptic plasticity. DOI: http://dx.doi.org/10.7554/eLife.14530.001 PMID:27115346

  2. Surface plasmon resonance applied to G protein-coupled receptors

    PubMed Central

    Locatelli-Hoops, Silvia; Yeliseev, Alexei A.; Gawrisch, Klaus; Gorshkova, Inna

    2013-01-01

    G protein-coupled receptors (GPCR) are integral membrane proteins that transmit signals from external stimuli to the cell interior via activation of GTP-binding proteins (G proteins) thereby mediating key sensorial, hormonal, metabolic, immunological, and neurotransmission processes. Elucidating their structure and mechanism of interaction with extracellular and intracellular binding partners is of fundamental importance and highly relevant to rational design of new effective drugs. Surface plasmon resonance (SPR) has become a method of choice for studying biomolecular interactions at interfaces because measurements take place in real-time and do not require labeling of any of the interactants. However, due to the particular challenges imposed by the high hydrophobicity of membrane proteins and the great diversity of receptor-stimulating ligands, the application of this technique to characterize interactions of GPCR is still in the developmental phase. Here we give an overview of the principle of SPR and analyze current approaches for the preparation of the sensor chip surface, capture and stabilization of GPCR, and experimental design to characterize their interaction with ligands, G proteins and specific antibodies. PMID:24466506

  3. A novel surface modification approach for protein and cell microarrays

    NASA Astrophysics Data System (ADS)

    Kurkuri, Mahaveer D.; Driever, Chantelle; Thissen, Helmut W.; Voelcker, Nicholas H.

    2007-01-01

    Tissue engineering and stem cell technologies have led to a rapidly increasing interest in the control of the behavior of mammalian cells growing on tissue culture substrates. Multifunctional polymer coatings can assist research in this area in many ways, for example, by providing low non-specific protein adsorption properties and reactive functional groups at the surface. The latter can be used for immobilization of specific biological factors that influence cell behavior. In this study, glass slides were coated with copolymers of glycidyl methacrylate (GMA) and poly(ethylene glycol) methacrylate (PEGMA). The coatings were prepared by three different methods based on dip and spin coating as well as polymer grafting procedures. Coatings were characterized by X-ray photoelectron spectroscopy, surface sensitive infrared spectroscopy, ellipsometry and contact angle measurements. A fluorescently labelled protein was deposited onto reactive coatings using a contact microarrayer. Printing of a model protein (fluorescein labeled bovine serum albumin) was performed at different protein concentrations, pH, temperature, humidity and using different micropins. The arraying of proteins was studied with a microarray scanner. Arrays printed at a protein concentration above 50 μg/mL prepared in pH 5 phosphate buffer at 10°C and 65% relative humidity gave the most favourable results in terms of the homogeneity of the printed spots and the fluorescence intensity.

  4. An intuitive approach to measuring protein surface curvature.

    PubMed

    Coleman, Ryan G; Burr, Michael A; Souvaine, Diane L; Cheng, Alan C

    2005-12-01

    A natural way to measure protein surface curvature is to generate the least squares fitted (LSF) sphere to a surface patch and use the radius as the curvature measure. While the concept is simple, the sphere-fitting problem is not trivial and known means of protein surface curvature measurement use alternative schemes that are arguably less straightforward to interpret. We have developed an approach to solve the LSF sphere problem by turning the sphere-fitting problem into a solvable plane-fitting problem using a transformation known as geometric inversion. The approach works on any arbitrary surface patch, and returns a radius of curvature that has direct physical interpretation. Additionally, it is flexible in its ability to find the curvature of an arbitrary surface patch, and the "resolution" can be adjusted to highlight atomic features or larger features such as peptide binding sites. We include examples of applying the method to visualization of peptide recognition pockets and protein conformational change, as well as a comparison with a commonly used solid-angle curvature method showing that the LSF method produces more pronounced curvature results.

  5. Silica surface characterization as a function of formation and surface treatment using traditional methods and proteins as surface probes

    NASA Astrophysics Data System (ADS)

    Korwin-Edson, Michelle Lynn

    Previous works have shown that cells proliferate differently depending on the chemistry of the glass on which they are growing. Since proteins form the bonds between cells and glass, the hypothesis of this study is that proteins can distinguish between surface chemical variations of glass. This theory was examined through the use of various silica forms, a few select proteins, four surface treatment procedures, and a variety of characterization techniques. The silica forms include amorphous slides, cane, fiber, microspheres, fumed silica and quartz crystal terminals. The proteins selected were human serum albumin, mouse Immunoglobulin G, streptavidin, antimouse IgG, and biotin. The surface treatments utilized to bring about chemical variation on the silica surface were HF acid etching, ethanol cleaning, water plasma treatments, and 1000°C heat treatments. The characterization techniques encompassed both traditional material techniques and biological methods. The techniques studied were atomic force microscopy (AFM), chemical force microscopy (CFM), glancing incidence X-ray analysis (GIXA), fluorescence spectrometry, polyacrylamide gel electrophoresis (SDS-PAGE), and bicinchoninic acid (BCA) assay. It was the main goal of this project to determine the feasibility of these techniques in utilizing proteins as glass surface probes. Proteins were adsorbed to all of the various forms and the binding ability was studied by either stripping off the protein and quantifying them, or by deductive reasoning through the use of "depleted" protein solutions. Fluorimetry and BCA assay both utilized the depleted solutions, but the high error associated with this protocol was prohibitive. SDS-PAGE with streptavidin was very difficult due to staining problems, however the IgG proteins were able to be quantified with some success. GIXA showed that the protein layer thickness is monolayer in nature, which agrees well with the AFM fluid tapping data on protein height, but in addition

  6. A 75 kd merozoite surface protein of Plasmodium falciparum which is related to the 70 kd heat-shock proteins.

    PubMed Central

    Ardeshir, F; Flint, J E; Richman, S J; Reese, R T

    1987-01-01

    Proteins on the merozoite surface of the human malarial parasite Plasmodium falciparum are targets of the host's immune response. The merozoite surface location of p75, a 75 kd P. falciparum protein, was established by immunoelectron microscopy using antisera raised to the expressed product of a cDNA clone. Immunoprecipitation from protein extracts biosynthetically labeled during different periods of the asexual cycle showed that p75 is made continuously, although ring-stage parasites appear to synthesize larger quantities. p75 is conserved and invariant in size in eight isolates of P. falciparum. The 880 bp cDNA sequence encoding part of p75 reveals one open reading frame containing a repetitive sequence unit of four amino acids. The predicted reading frame is correct since antisera to a synthetic peptide corresponding to the repetitive region recognize p75 in immunoblots. The sequence of p75 is homologous with the sequences of proteins from the ubiquitous, highly conserved family of 70 kd heat-shock proteins, suggesting an important physiological function for p75. The cDNA fragment encoding part of p75 hybridizes with multiple genomic fragments, whose sizes are identical in DNA from nine P. falciparum strains, suggesting that the gene for p75 is well conserved and may be part of a gene family. Images Fig. 1. Fig. 2. Fig. 4. Fig. 5. Fig. 6. PMID:3556166

  7. Protein adsorption to organosiloxane surfaces studied by acoustic wave sensor.

    PubMed

    Cavic, B A; Thompson, M

    1998-10-01

    Surfaces of the two organosiloxanes, polymercaptopropylmethylsiloxane and octaphenylcyclotetrasiloxane, were prepared on the gold electrodes of thickness-shear mode acoustic wave sensors. Compounds containing the siloxane bond are important in the fabrication of medical implants. The flow-through adsorption of the proteins: human serum albumin, alpha-chymotripsinogen A, cytochrome c, fibrinogen, hemoglobin, immunoglobulin G and apo-transferrin to the two siloxane surfaces and a gold electrode were detected by acoustic network analysis. With the exception of minor wash-off by buffer flow, the adsorption of all proteins to the three surfaces is irreversible. Differences observed for the magnitudes of adsorption for the various cases are ascribed to the role played by molecular interactions at the liquid/solid interface. The results confirm that changes in series resonant frequencies caused by macromolecular adsorption differ significantly from the widely accepted "mass based" model usually employed to characterize the response of this type of acoustic wave device.

  8. Architectural repertoire of ligand-binding pockets on protein surfaces.

    PubMed

    Weisel, Martin; Kriegl, Jan M; Schneider, Gisbert

    2010-03-01

    Knowledge of the three-dimensional structure of ligand binding sites in proteins provides valuable information for computer-assisted drug design. We present a method for the automated extraction and classification of ligand binding site topologies, in which protein surface cavities are represented as branched frameworks. The procedure employs a growing neural gas approach for pocket topology assignment and pocket framework generation. We assessed the structural diversity of 623 known ligand binding site topologies based on framework cluster analysis. At a resolution of 5 A only 23 structurally distinct topology groups were formed; this suggests an overall limited structural diversity of ligand-accommodating protein cavities. Higher resolution allowed for identification of protein-family specific pocket features. Pocket frameworks highlight potentially preferred modes of ligand-receptor interactions and will help facilitate the identification of druggable subpockets suitable for ligand affinity and selectivity optimization. PMID:20069621

  9. Revealing the potential pathogenesis of glioma by utilizing a glioma associated protein-protein interaction network.

    PubMed

    Pan, Weiran; Li, Gang; Yang, Xiaoxiao; Miao, Jinming

    2015-04-01

    This study aims to explore the potential mechanism of glioma through bioinformatic approaches. The gene expression profile (GSE4290) of glioma tumor and non-tumor samples was downloaded from Gene Expression Omnibus database. A total of 180 samples were available, including 23 non-tumor and 157 tumor samples. Then the raw data were preprocessed using robust multiarray analysis, and 8,890 differentially expressed genes (DEGs) were identified by using t-test (false discovery rate < 0.0005). Furthermore, 16 known glioma related genes were abstracted from Genetic Association Database. After mapping 8,890 DEGs and 16 known glioma related genes to Human Protein Reference Database, a glioma associated protein-protein interaction network (GAPN) was constructed. In addition, 51 sub-networks in GAPN were screened out through Molecular Complex Detection (score ≥ 1), and sub-network 1 was found to have the closest interaction (score = 3). What' more, for the top 10 sub-networks, Gene Ontology (GO) enrichment analysis (p value < 0.05) was performed, and DEGs involved in sub-network 1 and 2, such as BRMS1L and CCNA1, were predicted to regulate cell growth, cell cycle, and DNA replication via interacting with known glioma related genes. Finally, the overlaps of DEGs and human essential, housekeeping, tissue-specific genes were calculated (p value = 1.0, 1.0, and 0.00014, respectively) and visualized by Venn Diagram package in R. About 61% of human tissue-specific genes were DEGs as well. This research shed new light on the pathogenesis of glioma based on DEGs and GAPN, and our findings might provide potential targets for clinical glioma treatment.

  10. Protein-nanoparticle interactions: the effects of surface compositional and structural heterogeneity are scale dependent

    NASA Astrophysics Data System (ADS)

    Huang, Rixiang; Carney, Randy P.; Stellacci, Francesco; Lau, Boris L. T.

    2013-07-01

    Nanoparticles (NPs) in the biological environment are exposed to a large variety and concentration of proteins. Proteins are known to adsorb in a `corona' like structure on the surface of NPs. In this study, we focus on the effects of surface compositional and structural heterogeneity on protein adsorption by examining the interaction of self-assembled monolayer coated gold NPs (AuNPs) with two types of proteins: ubiquitin and fibrinogen. This work was designed to systematically investigate the role of surface heterogeneity in nanoparticle-protein interaction. We have chosen the particles as well as the proteins to provide different types (in distribution and length-scale) of heterogeneity. The goal was to unveil the role of heterogeneity and of its length-scale in the particle-protein interaction. Dynamic light scattering and circular dichroism spectroscopy were used to reveal different interactions at pH above and below the isoelectric points of the proteins, which is related to the charge heterogeneity on the protein surface. At pH 7.4, there was only a monolayer of proteins adsorbed onto the NPs and the secondary structure of proteins remained intact. At pH 4.0, large aggregates of nanoparticle-protein complexes were formed and the secondary structures of the proteins were significantly disrupted. In terms of interaction thermodynamics, results from isothermal titration calorimetry showed that ubiquitin adsorbed differently onto (1) AuNPs with charged and nonpolar terminals organized into nano-scale structure (66-34 OT), (2) AuNPs with randomly distributed terminals (66-34 brOT), and (3) AuNPs with homogeneously charged terminals (MUS). This difference in adsorption behavior was not observed when AuNPs interacted with fibrinogen. The results suggested that the interaction between the proteins and AuNPs was influenced by the surface heterogeneity on the AuNPs, and this influence depends on the scale of surface heterogeneity and the size of the proteins

  11. Restricted mobility of side chains on concave surfaces of solenoid proteins may impart heightened potential for intermolecular interactions.

    PubMed

    Ramya, L; Gautham, N; Chaloin, Laurent; Kajava, Andrey V

    2015-09-01

    Significant progress has been made in the determination of the protein structures with their number today passing over a hundred thousand structures. The next challenge is the understanding and prediction of protein-protein and protein-ligand interactions. In this work we address this problem by analyzing curved solenoid proteins. Many of these proteins are considered as "hub molecules" for their high potential to interact with many different molecules and to be a scaffold for multisubunit protein machineries. Our analysis of these structures through molecular dynamics simulations reveals that the mobility of the side-chains on the concave surfaces of the solenoids is lower than on the convex ones. This result provides an explanation to the observed preferential binding of the ligands, including small and flexible ligands, to the concave surface of the curved solenoid proteins. The relationship between the landscapes and dynamic properties of the protein surfaces can be further generalized to the other types of protein structures and eventually used in the computer algorithms, allowing prediction of protein-ligand interactions by analysis of protein surfaces.

  12. The leucine rich amelogenin protein (LRAP) adsorbs as monomers or dimers onto surfaces

    SciTech Connect

    Tarasevich, Barbara J.; Lea, Alan S.; Shaw, Wendy J.

    2010-03-15

    Amelogenin and amelogenin splice variants are believed to be involved in controlling the formation of the highly anisotropic and ordered hydroxyapatite crystallites that form enamel. The adsorption behavior of amelogenin proteins onto substrates is very important because protein-surface interactions are critical to it’s function. We have studied the adsorption of LRAP, a splice variant of amelogenin which may also contribute to enamel function, onto model self-assembled monolayers on gold containing of COOH, CH3, and NH2 end groups. Dynamic light scattering (DLS) experiments indicated that LRAP in phosphate buffered saline (PBS) and solutions at saturation with calcium phosphate contained aggregates of nanospheres. Null ellipsometry and atomic force microscopy (AFM) were used to study protein adsorption amounts and structures. Relatively high amounts of adsorption occurred onto the CH3 and NH2 surfaces from both calcium phosphate and PBS solutions. Adsorption was also promoted onto COOH surfaces when calcium was present in the solutions suggesting an interaction that involves calcium bridging with the negatively charged C-terminus. The ellipsometry and AFM studies suggested that the protein adsorbed onto all surfaces as LRAP monomers. We propose that the monomers adsorb onto the surfaces by disassembling or “shedding” from the nanospheres that are present in solution. This work reveals the importance of small subnanosphere-sized structures of LRAP at interfaces, structures that may be important in the biomineralization of tooth enamel.

  13. Organic bioelectronics probing conformational changes in surface confined proteins.

    PubMed

    Macchia, Eleonora; Alberga, Domenico; Manoli, Kyriaki; Mangiatordi, Giuseppe F; Magliulo, Maria; Palazzo, Gerardo; Giordano, Francesco; Lattanzi, Gianluca; Torsi, Luisa

    2016-01-01

    The study of proteins confined on a surface has attracted a great deal of attention due to its relevance in the development of bio-systems for laboratory and clinical settings. In this respect, organic bio-electronic platforms can be used as tools to achieve a deeper understanding of the processes involving protein interfaces. In this work, biotin-binding proteins have been integrated in two different organic thin-film transistor (TFT) configurations to separately address the changes occurring in the protein-ligand complex morphology and dipole moment. This has been achieved by decoupling the output current change upon binding, taken as the transducing signal, into its component figures of merit. In particular, the threshold voltage is related to the protein dipole moment, while the field-effect mobility is associated with conformational changes occurring in the proteins of the layer when ligand binding occurs. Molecular Dynamics simulations on the whole avidin tetramer in presence and absence of ligands were carried out, to evaluate how the tight interactions with the ligand affect the protein dipole moment and the conformation of the loops surrounding the binding pocket. These simulations allow assembling a rather complete picture of the studied interaction processes and support the interpretation of the experimental results. PMID:27312768

  14. Protein surface matching by combining local and global geometric information.

    PubMed

    Ellingson, Leif; Zhang, Jinfeng

    2012-01-01

    Comparison of the binding sites of proteins is an effective means for predicting protein functions based on their structure information. Despite the importance of this problem and much research in the past, it is still very challenging to predict the binding ligands from the atomic structures of protein binding sites. Here, we designed a new algorithm, TIPSA (Triangulation-based Iterative-closest-point for Protein Surface Alignment), based on the iterative closest point (ICP) algorithm. TIPSA aims to find the maximum number of atoms that can be superposed between two protein binding sites, where any pair of superposed atoms has a distance smaller than a given threshold. The search starts from similar tetrahedra between two binding sites obtained from 3D Delaunay triangulation and uses the Hungarian algorithm to find additional matched atoms. We found that, due to the plasticity of protein binding sites, matching the rigid body of point clouds of protein binding sites is not adequate for satisfactory binding ligand prediction. We further incorporated global geometric information, the radius of gyration of binding site atoms, and used nearest neighbor classification for binding site prediction. Tested on benchmark data, our method achieved a performance comparable to the best methods in the literature, while simultaneously providing the common atom set and atom correspondences.

  15. Organic bioelectronics probing conformational changes in surface confined proteins

    NASA Astrophysics Data System (ADS)

    Macchia, Eleonora; Alberga, Domenico; Manoli, Kyriaki; Mangiatordi, Giuseppe F.; Magliulo, Maria; Palazzo, Gerardo; Giordano, Francesco; Lattanzi, Gianluca; Torsi, Luisa

    2016-06-01

    The study of proteins confined on a surface has attracted a great deal of attention due to its relevance in the development of bio-systems for laboratory and clinical settings. In this respect, organic bio-electronic platforms can be used as tools to achieve a deeper understanding of the processes involving protein interfaces. In this work, biotin-binding proteins have been integrated in two different organic thin-film transistor (TFT) configurations to separately address the changes occurring in the protein-ligand complex morphology and dipole moment. This has been achieved by decoupling the output current change upon binding, taken as the transducing signal, into its component figures of merit. In particular, the threshold voltage is related to the protein dipole moment, while the field-effect mobility is associated with conformational changes occurring in the proteins of the layer when ligand binding occurs. Molecular Dynamics simulations on the whole avidin tetramer in presence and absence of ligands were carried out, to evaluate how the tight interactions with the ligand affect the protein dipole moment and the conformation of the loops surrounding the binding pocket. These simulations allow assembling a rather complete picture of the studied interaction processes and support the interpretation of the experimental results.

  16. Organic bioelectronics probing conformational changes in surface confined proteins

    PubMed Central

    Macchia, Eleonora; Alberga, Domenico; Manoli, Kyriaki; Mangiatordi, Giuseppe F.; Magliulo, Maria; Palazzo, Gerardo; Giordano, Francesco; Lattanzi, Gianluca; Torsi, Luisa

    2016-01-01

    The study of proteins confined on a surface has attracted a great deal of attention due to its relevance in the development of bio-systems for laboratory and clinical settings. In this respect, organic bio-electronic platforms can be used as tools to achieve a deeper understanding of the processes involving protein interfaces. In this work, biotin-binding proteins have been integrated in two different organic thin-film transistor (TFT) configurations to separately address the changes occurring in the protein-ligand complex morphology and dipole moment. This has been achieved by decoupling the output current change upon binding, taken as the transducing signal, into its component figures of merit. In particular, the threshold voltage is related to the protein dipole moment, while the field-effect mobility is associated with conformational changes occurring in the proteins of the layer when ligand binding occurs. Molecular Dynamics simulations on the whole avidin tetramer in presence and absence of ligands were carried out, to evaluate how the tight interactions with the ligand affect the protein dipole moment and the conformation of the loops surrounding the binding pocket. These simulations allow assembling a rather complete picture of the studied interaction processes and support the interpretation of the experimental results. PMID:27312768

  17. Antigenic characterization of dimorphic surface protein in Mycobacterium tuberculosis.

    PubMed

    Matsuba, Takashi; Siddiqi, Umme Ruman; Hattori, Toshio; Nakajima, Chie; Fujii, Jun; Suzuki, Yasuhiko

    2016-05-01

    The Mycobacterium tuberculosis Rv0679c protein is a surface protein that contributes to host cell invasion. We previously showed that a single nucleotide transition of the Rv0679c gene leads to a single amino acid substitution from asparagine to lysine at codon 142 in the Beijing genotype family. In this study, we examined the immunological effect of this substitution. Several recombinant proteins were expressed in Escherichia coli and Mycobacterium smegmatis and characterized with antisera and two monoclonal antibodies named 5D4-C2 and 8G10-H2. A significant reduction of antibody binding was detected by enzyme-linked immunosorbent assay (ELISA) and western blot analysis in the Lys142-type protein. This reduction of 8G10-H2 binding was more significant, with the disappearance of a signal in the proteins expressed by recombinant mycobacteria in western blot analysis. In addition, epitope mapping analysis of the recombinant proteins showed a linear epitope by 5D4-C2 and a discontinuous epitope by 8G10-H2. The antibody recognizing the conformational epitope detected only mycobacterial Asn142-type recombinant protein. Our results suggest that a single amino acid substitution of Rv0679c has potency for antigenic change in Beijing genotype strains. PMID:27190237

  18. The Regulatory Protein RosR Affects Rhizobium leguminosarum bv. trifolii Protein Profiles, Cell Surface Properties, and Symbiosis with Clover

    PubMed Central

    Rachwał, Kamila; Boguszewska, Aleksandra; Kopcińska, Joanna; Karaś, Magdalena; Tchórzewski, Marek; Janczarek, Monika

    2016-01-01

    Rhizobium leguminosarum bv. trifolii is capable of establishing a symbiotic relationship with plants from the genus Trifolium. Previously, a regulatory protein encoded by rosR was identified and characterized in this bacterium. RosR possesses a Cys2-His2-type zinc finger motif and belongs to Ros/MucR family of rhizobial transcriptional regulators. Transcriptome profiling of the rosR mutant revealed a role of this protein in several cellular processes, including the synthesis of cell-surface components and polysaccharides, motility, and bacterial metabolism. Here, we show that a mutation in rosR resulted in considerable changes in R. leguminosarum bv. trifolii protein profiles. Extracellular, membrane, and periplasmic protein profiles of R. leguminosarum bv. trifolii wild type and the rosR mutant were examined, and proteins with substantially different abundances between these strains were identified. Compared with the wild type, extracellular fraction of the rosR mutant contained greater amounts of several proteins, including Ca2+-binding cadherin-like proteins, a RTX-like protein, autoaggregation protein RapA1, and flagellins FlaA and FlaB. In contrast, several proteins involved in the uptake of various substrates were less abundant in the mutant strain (DppA, BraC, and SfuA). In addition, differences were observed in membrane proteins of the mutant and wild-type strains, which mainly concerned various transport system components. Using atomic force microscopy (AFM) imaging, we characterized the topography and surface properties of the rosR mutant and wild-type cells. We found that the mutation in rosR gene also affected surface properties of R. leguminosarum bv. trifolii. The mutant cells were significantly more hydrophobic than the wild-type cells, and their outer membrane was three times more permeable to the hydrophobic dye N-phenyl-1-naphthylamine. The mutation of rosR also caused defects in bacterial symbiotic interaction with clover plants. Compared with

  19. The Regulatory Protein RosR Affects Rhizobium leguminosarum bv. trifolii Protein Profiles, Cell Surface Properties, and Symbiosis with Clover.

    PubMed

    Rachwał, Kamila; Boguszewska, Aleksandra; Kopcińska, Joanna; Karaś, Magdalena; Tchórzewski, Marek; Janczarek, Monika

    2016-01-01

    Rhizobium leguminosarum bv. trifolii is capable of establishing a symbiotic relationship with plants from the genus Trifolium. Previously, a regulatory protein encoded by rosR was identified and characterized in this bacterium. RosR possesses a Cys2-His2-type zinc finger motif and belongs to Ros/MucR family of rhizobial transcriptional regulators. Transcriptome profiling of the rosR mutant revealed a role of this protein in several cellular processes, including the synthesis of cell-surface components and polysaccharides, motility, and bacterial metabolism. Here, we show that a mutation in rosR resulted in considerable changes in R. leguminosarum bv. trifolii protein profiles. Extracellular, membrane, and periplasmic protein profiles of R. leguminosarum bv. trifolii wild type and the rosR mutant were examined, and proteins with substantially different abundances between these strains were identified. Compared with the wild type, extracellular fraction of the rosR mutant contained greater amounts of several proteins, including Ca(2+)-binding cadherin-like proteins, a RTX-like protein, autoaggregation protein RapA1, and flagellins FlaA and FlaB. In contrast, several proteins involved in the uptake of various substrates were less abundant in the mutant strain (DppA, BraC, and SfuA). In addition, differences were observed in membrane proteins of the mutant and wild-type strains, which mainly concerned various transport system components. Using atomic force microscopy (AFM) imaging, we characterized the topography and surface properties of the rosR mutant and wild-type cells. We found that the mutation in rosR gene also affected surface properties of R. leguminosarum bv. trifolii. The mutant cells were significantly more hydrophobic than the wild-type cells, and their outer membrane was three times more permeable to the hydrophobic dye N-phenyl-1-naphthylamine. The mutation of rosR also caused defects in bacterial symbiotic interaction with clover plants. Compared with

  20. The Regulatory Protein RosR Affects Rhizobium leguminosarum bv. trifolii Protein Profiles, Cell Surface Properties, and Symbiosis with Clover

    PubMed Central

    Rachwał, Kamila; Boguszewska, Aleksandra; Kopcińska, Joanna; Karaś, Magdalena; Tchórzewski, Marek; Janczarek, Monika

    2016-01-01

    Rhizobium leguminosarum bv. trifolii is capable of establishing a symbiotic relationship with plants from the genus Trifolium. Previously, a regulatory protein encoded by rosR was identified and characterized in this bacterium. RosR possesses a Cys2-His2-type zinc finger motif and belongs to Ros/MucR family of rhizobial transcriptional regulators. Transcriptome profiling of the rosR mutant revealed a role of this protein in several cellular processes, including the synthesis of cell-surface components and polysaccharides, motility, and bacterial metabolism. Here, we show that a mutation in rosR resulted in considerable changes in R. leguminosarum bv. trifolii protein profiles. Extracellular, membrane, and periplasmic protein profiles of R. leguminosarum bv. trifolii wild type and the rosR mutant were examined, and proteins with substantially different abundances between these strains were identified. Compared with the wild type, extracellular fraction of the rosR mutant contained greater amounts of several proteins, including Ca2+-binding cadherin-like proteins, a RTX-like protein, autoaggregation protein RapA1, and flagellins FlaA and FlaB. In contrast, several proteins involved in the uptake of various substrates were less abundant in the mutant strain (DppA, BraC, and SfuA). In addition, differences were observed in membrane proteins of the mutant and wild-type strains, which mainly concerned various transport system components. Using atomic force microscopy (AFM) imaging, we characterized the topography and surface properties of the rosR mutant and wild-type cells. We found that the mutation in rosR gene also affected surface properties of R. leguminosarum bv. trifolii. The mutant cells were significantly more hydrophobic than the wild-type cells, and their outer membrane was three times more permeable to the hydrophobic dye N-phenyl-1-naphthylamine. The mutation of rosR also caused defects in bacterial symbiotic interaction with clover plants. Compared with

  1. Proteomic profiling of maize opaque endosperm mutants reveals selective accumulation of lysine-enriched proteins

    PubMed Central

    Morton, Kyla J.; Jia, Shangang; Zhang, Chi; Holding, David R.

    2016-01-01

    Reduced prolamin (zein) accumulation and defective endoplasmic reticulum (ER) body formation occurs in maize opaque endosperm mutants opaque2 (o2), floury2 (fl2), defective endosperm*B30 (DeB30), and Mucronate (Mc), whereas other opaque mutants such as opaque1 (o1) and floury1 (fl1) are normal in these regards. This suggests that other factors contribute to kernel texture. A liquid chromatography approach coupled with tandem mass spectrometry (LC-MS/MS) proteomics was used to compare non-zein proteins of nearly isogenic opaque endosperm mutants. In total, 2762 proteins were identified that were enriched for biological processes such as protein transport and folding, amino acid biosynthesis, and proteolysis. Principal component analysis and pathway enrichment suggested that the mutants partitioned into three groups: (i) Mc, DeB30, fl2 and o2; (ii) o1; and (iii) fl1. Indicator species analysis revealed mutant-specific proteins, and highlighted ER secretory pathway components that were enriched in selected groups of mutants. The most significantly changed proteins were related to stress or defense and zein partitioning into the soluble fraction for Mc, DeB30, o1, and fl1 specifically. In silico dissection of the most significantly changed proteins revealed novel qualitative changes in lysine abundance contributing to the overall lysine increase and the nutritional rebalancing of the o2 and fl2 endosperm. PMID:26712829

  2. Crystal structures of flax rust avirulence proteins AvrL567-A and -D reveal details of the structural basis for flax disease resistance specificity.

    PubMed

    Wang, Ching-I A; Guncar, Gregor; Forwood, Jade K; Teh, Trazel; Catanzariti, Ann-Maree; Lawrence, Gregory J; Loughlin, Fionna E; Mackay, Joel P; Schirra, Horst Joachim; Anderson, Peter A; Ellis, Jeffrey G; Dodds, Peter N; Kobe, Bostjan

    2007-09-01

    The gene-for-gene mechanism of plant disease resistance involves direct or indirect recognition of pathogen avirulence (Avr) proteins by plant resistance (R) proteins. Flax rust (Melampsora lini) AvrL567 avirulence proteins and the corresponding flax (Linum usitatissimum) L5, L6, and L7 resistance proteins interact directly. We determined the three-dimensional structures of two members of the AvrL567 family, AvrL567-A and AvrL567-D, at 1.4- and 2.3-A resolution, respectively. The structures of both proteins are very similar and reveal a beta-sandwich fold with no close known structural homologs. The polymorphic residues in the AvrL567 family map to the surface of the protein, and polymorphisms in residues associated with recognition differences for the R proteins lead to significant changes in surface chemical properties. Analysis of single amino acid substitutions in AvrL567 proteins confirm the role of individual residues in conferring differences in recognition and suggest that the specificity results from the cumulative effects of multiple amino acid contacts. The structures also provide insights into possible pathogen-associated functions of AvrL567 proteins, with nucleic acid binding activity demonstrated in vitro. Our studies provide some of the first structural information on avirulence proteins that bind directly to the corresponding resistance proteins, allowing an examination of the molecular basis of the interaction with the resistance proteins as a step toward designing new resistance specificities.

  3. Revealing Atomic-Level Mechanisms of Protein Allostery with Molecular Dynamics Simulations.

    PubMed

    Hertig, Samuel; Latorraca, Naomi R; Dror, Ron O

    2016-06-01

    Molecular dynamics (MD) simulations have become a powerful and popular method for the study of protein allostery, the widespread phenomenon in which a stimulus at one site on a protein influences the properties of another site on the protein. By capturing the motions of a protein's constituent atoms, simulations can enable the discovery of allosteric binding sites and the determination of the mechanistic basis for allostery. These results can provide a foundation for applications including rational drug design and protein engineering. Here, we provide an introduction to the investigation of protein allostery using molecular dynamics simulation. We emphasize the importance of designing simulations that include appropriate perturbations to the molecular system, such as the addition or removal of ligands or the application of mechanical force. We also demonstrate how the bidirectional nature of allostery-the fact that the two sites involved influence one another in a symmetrical manner-can facilitate such investigations. Through a series of case studies, we illustrate how these concepts have been used to reveal the structural basis for allostery in several proteins and protein complexes of biological and pharmaceutical interest. PMID:27285999

  4. Essential Strategies for Revealing Nanoscale Protein Dynamics by Neutron Spin Echo Spectroscopy.

    PubMed

    Callaway, David J E; Bu, Zimei

    2016-01-01

    Determining the internal motions of a protein on nanosecond-to-microsecond timescales and on nanometer length scales is challenging by experimental biophysical techniques. Neutron spin echo spectroscopy (NSE) offers a unique opportunity to determine such nanoscale protein domain motions. However, the major hurdle in applying NSE to determine nanoscale protein motion is that the time and length scales of internal protein motions tend to be comparable to that of the global motions of a protein. The signals detected by NSE tend to be dominated by rigid-body translational and rotational diffusion. Using theoretical analyses, our laboratory showed that selective deuteration of a protein domain or a subunit can enhance the capability of NSE to reveal the internal motions in a protein complex. Here, we discuss the essential theoretical analysis and experimental methodology in detail. Protein nanomachines are far more complex than any molecular motors that have been artificially constructed, and their skillful utilization likely represents the future of medicine. With selective deuteration, NSE will allow us to see these nanomachines in motion.

  5. Multimodular biosensors reveal a novel platform for activation of G proteins by growth factor receptors

    PubMed Central

    Midde, Krishna K.; Aznar, Nicolas; Laederich, Melanie B.; Ma, Gary S.; Kunkel, Maya T.; Newton, Alexandra C.; Ghosh, Pradipta

    2015-01-01

    Environmental cues are transmitted to the interior of the cell via a complex network of signaling hubs. Receptor tyrosine kinases (RTKs) and trimeric G proteins are two such major signaling hubs in eukaryotes. Conventionally, canonical signal transduction via trimeric G proteins is thought to be triggered exclusively by G protein-coupled receptors. Here we used molecular engineering to develop modular fluorescent biosensors that exploit the remarkable specificity of bimolecular recognition, i.e., of both G proteins and RTKs, and reveal the workings of a novel platform for activation of G proteins by RTKs in single living cells. Comprised of the unique modular makeup of guanidine exchange factor Gα-interacting vesicle-associated protein (GIV)/girdin, a guanidine exchange factor that links G proteins to a variety of RTKs, these biosensors provide direct evidence that RTK–GIV–Gαi ternary complexes are formed in living cells and that Gαi is transactivated within minutes after growth factor stimulation at the plasma membrane. Thus, GIV-derived biosensors provide a versatile strategy for visualizing, monitoring, and manipulating the dynamic association of Gαi with RTKs for noncanonical transactivation of G proteins in cells and illuminate a fundamental signaling event regulated by GIV during diverse cellular processes and pathophysiologic states. PMID:25713130

  6. Multimodular biosensors reveal a novel platform for activation of G proteins by growth factor receptors.

    PubMed

    Midde, Krishna K; Aznar, Nicolas; Laederich, Melanie B; Ma, Gary S; Kunkel, Maya T; Newton, Alexandra C; Ghosh, Pradipta

    2015-03-01

    Environmental cues are transmitted to the interior of the cell via a complex network of signaling hubs. Receptor tyrosine kinases (RTKs) and trimeric G proteins are two such major signaling hubs in eukaryotes. Conventionally, canonical signal transduction via trimeric G proteins is thought to be triggered exclusively by G protein-coupled receptors. Here we used molecular engineering to develop modular fluorescent biosensors that exploit the remarkable specificity of bimolecular recognition, i.e., of both G proteins and RTKs, and reveal the workings of a novel platform for activation of G proteins by RTKs in single living cells. Comprised of the unique modular makeup of guanidine exchange factor Gα-interacting vesicle-associated protein (GIV)/girdin, a guanidine exchange factor that links G proteins to a variety of RTKs, these biosensors provide direct evidence that RTK-GIV-Gαi ternary complexes are formed in living cells and that Gαi is transactivated within minutes after growth factor stimulation at the plasma membrane. Thus, GIV-derived biosensors provide a versatile strategy for visualizing, monitoring, and manipulating the dynamic association of Gαi with RTKs for noncanonical transactivation of G proteins in cells and illuminate a fundamental signaling event regulated by GIV during diverse cellular processes and pathophysiologic states.

  7. Quantitative proteomics reveals the effect of protein glycosylation in soybean root under flooding stress

    PubMed Central

    Mustafa, Ghazala; Komatsu, Setsuko

    2014-01-01

    Flooding stress has a negative impact on soybean cultivation because it severely impairs growth and development. To understand the flooding responsive mechanism in early stage soybeans, a glycoproteomic technique was used. Two-day-old soybeans were treated with flooding for 2 days and roots were collected. Globally, the accumulation level of glycoproteins, as revealed by cross-reaction with concanavalin A decreased by 2 days of flooding stress. Glycoproteins were enriched from total protein extracts using concanavalin A lectin resin and analyzed using a gel-free proteomic technique. One-hundred eleven and 69 glycoproteins were identified without and with 2 days of flooding stress, respectively. Functional categorization of these identified glycoproteins indicated that the accumulation level of proteins related to protein degradation, cell wall, and glycolysis increased, while stress-related proteins decreased under flooding stress. Also the accumulation level of glycoproteins localized in the secretory pathway decreased under flooding stress. Out of 23 common glycoproteins between control and flooding conditions, peroxidases and glycosyl hydrolases were decreased by 2 days of flooding stress. mRNA expression levels of proteins in the endoplasmic reticulum and N-glycosylation related proteins were downregulated by flooding stress. These results suggest that flooding might negatively affect the process of N-glycosylation of proteins related to stress and protein degradation; however glycoproteins involved in glycolysis are activated. PMID:25477889

  8. A deformable nanoplasmonic membrane reveals universal correlations between plasmon resonance and surface enhanced Raman scattering.

    PubMed

    Kang, Minhee; Kim, Jae-Jun; Oh, Young-Jae; Park, Sang-Gil; Jeong, Ki-Hun

    2014-07-01

    A quantitative correlation between plasmon resonance and surface enhanced Raman scattering (SERS) signals is revealed by using a novel active plasmonic method, that is, a deformable nanoplasmonic membrane. A single SERS peak has the maximum gain at the corresponding plasmon resonance wavelength, which has the maximum extinction product of an excitation and the corresponding Raman scattering wavelengths.

  9. Cdon, a cell surface protein, mediates oligodendrocyte differentiation and myelination.

    PubMed

    Wang, Li-Chun; Almazan, Guillermina

    2016-06-01

    During central nervous system development, oligodendrocyte progenitors (OLPs) establish multiple branched processes and axonal contacts to initiate myelination. A complete understanding of the molecular signals implicated in cell surface interaction to initiate myelination/remyelination is currently lacking. The objective of our study was to assess whether Cdon, a cell surface protein that was shown to participate in muscle and neuron cell development, is involved in oligodendrocyte (OLG) differentiation and myelination. Here, we demonstrate that endogenous Cdon protein is expressed in OLPs, increasing in the early differentiation stages and decreasing in mature OLGs. Immunocytochemistry of endogenous Cdon showed localization on both OLG cell membranes and cellular processes exhibiting puncta- or varicosity-like structures. Cdon knockdown with siRNA decreased protein levels by 62% as well as two myelin-specific proteins, MBP and MAG. Conversely, overexpression of full-length rat Cdon increased myelin proteins in OLGs. The complexity of OLGs branching and contact point numbers with axons were also increased in Cdon overexpressing cells growing alone or in coculture with dorsal root ganglion neurons (DRGNs). Furthermore, myelination of DRGNs was decreased when OLPs were transfected with Cdon siRNA. Altogether, our results suggest that Cdon participates in OLG differentiation and myelination, most likely in the initial stages of development.

  10. Protein immobilization and detection on laser processed polystyrene surfaces

    SciTech Connect

    Sarantopoulou, Evangelia; Kollia, Zoe; Palles, Dimitrios; Spyropoulos-Antonakakis, Nikolaos; Cefalas, Alkiviadis-Constantinos; Petrou, Panagiota S.; Kakabakos, Sotirios

    2011-09-15

    The bovine serum albumin (BSA)-polystyrene (PS) interface layer is laser photo activated at 157 nm for site selective multiple target-protein immobilization. The 5-15 nm photon induced interface layer has different chemical, wetting, and stiffness properties than the PS photon processed surface. The irradiated areas exhibit target-protein binding, followed by localized probe-target protein detection. The photon induced chemical modification of the BSA-PS interface layer is identified by: (1) Morphological, imaging, and analysis of surface parameters with atomic force microscopy, (2) spectroscopic shift (4 cm{sup -1}), of the amide I group and formation of new C=N, NH{sub 2}, C-O, C=O, and O-C=O groups following irradiation, identified with attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, and (3) the different hydrophilic/hydrophobic and force-distance response of the bare PS and BSA-PS surfaces. Near field edge diffraction (Fresnel) fluorescence imaging specifies the threshold photon energy and the fluence required to optically detect the protein binding on the photon induced BSA-PS interface layer. By approximating the Fresnel integrals with analytical functions, the threshold photon energy and the fluence are expressed as the sum of zero, first, and second order harmonic terms of two characteristic diffracted modes and they are specified to be 8.73x10{sup -9} Jand623 J m{sup -2}, respectively. Furthermore, a bioarray of three probe-target proteins is fabricated with 1.5 {mu}m spatial resolution using a 157 nm laser microstepper. The methodology eliminates the use of intermediate polymer layers between the blocking BSA protein and the PS substrate in bioarray fabrication.

  11. Structure of a PE–PPE–EspG complex from Mycobacterium tuberculosis reveals molecular specificity of ESX protein secretion

    PubMed Central

    Ekiert, Damian C.; Cox, Jeffery S.

    2014-01-01

    Nearly 10% of the coding capacity of the Mycobacterium tuberculosis genome is devoted to two highly expanded and enigmatic protein families called PE and PPE, some of which are important virulence/immunogenicity factors and are secreted during infection via a unique alternative secretory system termed “type VII.” How PE-PPE proteins function during infection and how they are translocated to the bacterial surface through the five distinct type VII secretion systems [ESAT-6 secretion system (ESX)] of M. tuberculosis is poorly understood. Here, we report the crystal structure of a PE-PPE heterodimer bound to ESX secretion-associated protein G (EspG), which adopts a novel fold. This PE-PPE-EspG complex, along with structures of two additional EspGs, suggests that EspG acts as an adaptor that recognizes specific PE–PPE protein complexes via extensive interactions with PPE domains, and delivers them to ESX machinery for secretion. Surprisingly, secretion of most PE-PPE proteins in M. tuberculosis is likely mediated by EspG from the ESX-5 system, underscoring the importance of ESX-5 in mycobacterial pathogenesis. Moreover, our results indicate that PE-PPE domains function as cis-acting targeting sequences that are read out by EspGs, revealing the molecular specificity for secretion through distinct ESX pathways. PMID:25275011

  12. Vacuum ultraviolet treatment of polyethylene to change surface properties and characteristics of protein adsorption.

    PubMed

    Vasilets, Viktor N; Kuznetsov, Artem V; Sevastianov, Viktor I

    2004-06-01

    The effects of vacuum ultraviolet (VUV) treatment on surface chemical composition morphology and albumin adsorption for low-density polyethylene (LDPE) and high-density polyethylene (HDPE) were investigated. The attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectra and contact angle measurements indicated the formation of oxygen-containing polar groups and double bonds under VUV photooxidation in the presence of air or under VUV irradiation in vacuum. Scanning electron microscopy revealed the development of regular structure with the period about 1 microm on the surface of LDPE and HDPE during VUV photooxidation. The correlation between amount of tightly adsorbed albumin and surface concentration of carboxyl groups generated by VUV irradiation was found. The aging effect for protein adsorption during long storage of VUV irradiated samples in air or phosphate-buffered saline (PBS) was studied. The obtained results prove the VUV irradiation provides a high potential to regulate protein adsorption on polymers for biomedical applications.

  13. Structural analysis of the surface-layer protein of spirillum serpens by high-resolution electron microscopy

    SciTech Connect

    Wu, W.H.; Glaeser, R.M.

    1983-01-01

    In order to understand the detailed association of the macro-molecules of the structure of the protein, a high resolution structural analysis was performed. Large, single layered arrays of the surface layer protein have been obtained for this purpose by means of extensive heating in high CaCl/sub 2/. The computer processed image reveals a pore of about 10 Angstrom diameter at the 6-fold symmetry center; the handedness of the images is quite evident. The individual molecular envelope of the protein monomers are apparent and details of the protein-protein contact at the three-fold lattice positions emerge.

  14. Bacterial populations on brewery filling hall surfaces as revealed by next-generation sequencing.

    PubMed

    Priha, Outi; Raulio, Mari; Maukonen, Johanna; Vehviläinen, Anna-Kaisa; Storgårds, Erna

    2016-01-01

    Due to the presence of moisture and nutrients, brewery filling line surfaces are susceptible to unwanted microbial attachment. Knowledge of the attaching microbes will aid in designing hygienic control of the process. In this study the bacterial diversity present on brewery filling line surfaces was revealed by next generation sequencing. The two filling lines studied maintained their characteristic bacterial community throughout three sampling times (13-163 days). On the glass bottle line, γ-proteobacteria dominated (35-82% of all OTUs), whereas on the canning line α-, β- and γ-proteobacteria and actinobacteria were most common. The most frequently detected genera were Acinetobacter, Propinobacterium and Pseudomonas. The halophilic genus Halomonas was commonly detected, which might be due to its tolerance to alkaline foam cleaners. This study has revealed a detailed overall picture of the bacterial groups present on filling line surfaces. Further effort should be given to determine the efficacy of washing procedures on different bacterial groups. PMID:27064426

  15. Microfluidic experiments reveal that antifreeze proteins bound to ice crystals suffice to prevent their growth

    PubMed Central

    Celik, Yeliz; Drori, Ran; Pertaya-Braun, Natalya; Altan, Aysun; Barton, Tyler; Bar-Dolev, Maya; Groisman, Alex; Davies, Peter L.; Braslavsky, Ido

    2013-01-01

    Antifreeze proteins (AFPs) are a subset of ice-binding proteins that control ice crystal growth. They have potential for the cryopreservation of cells, tissues, and organs, as well as for production and storage of food and protection of crops from frost. However, the detailed mechanism of action of AFPs is still unclear. Specifically, there is controversy regarding reversibility of binding of AFPs to crystal surfaces. The experimentally observed dependence of activity of AFPs on their concentration in solution appears to indicate that the binding is reversible. Here, by a series of experiments in temperature-controlled microfluidic devices, where the medium surrounding ice crystals can be exchanged, we show that the binding of hyperactive Tenebrio molitor AFP to ice crystals is practically irreversible and that surface-bound AFPs are sufficient to inhibit ice crystal growth even in solutions depleted of AFPs. These findings rule out theories of AFP activity relying on the presence of unbound protein molecules. PMID:23300286

  16. Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human- mucus binding protein

    PubMed Central

    Kankainen, Matti; Paulin, Lars; Tynkkynen, Soile; von Ossowski, Ingemar; Reunanen, Justus; Partanen, Pasi; Satokari, Reetta; Vesterlund, Satu; Hendrickx, Antoni P. A.; Lebeer, Sarah; De Keersmaecker, Sigrid C. J.; Vanderleyden, Jos; Hämäläinen, Tuula; Laukkanen, Suvi; Salovuori, Noora; Ritari, Jarmo; Alatalo, Edward; Korpela, Riitta; Mattila-Sandholm, Tiina; Lassig, Anna; Hatakka, Katja; Kinnunen, Katri T.; Karjalainen, Heli; Saxelin, Maija; Laakso, Kati; Surakka, Anu; Palva, Airi; Salusjärvi, Tuomas; Auvinen, Petri; de Vos, Willem M.

    2009-01-01

    To unravel the biological function of the widely used probiotic bacterium Lactobacillus rhamnosus GG, we compared its 3.0-Mbp genome sequence with the similarly sized genome of L. rhamnosus LC705, an adjunct starter culture exhibiting reduced binding to mucus. Both genomes demonstrated high sequence identity and synteny. However, for both strains, genomic islands, 5 in GG and 4 in LC705, punctuated the colinearity. A significant number of strain-specific genes were predicted in these islands (80 in GG and 72 in LC705). The GG-specific islands included genes coding for bacteriophage components, sugar metabolism and transport, and exopolysaccharide biosynthesis. One island only found in L. rhamnosus GG contained genes for 3 secreted LPXTG-like pilins (spaCBA) and a pilin-dedicated sortase. Using anti-SpaC antibodies, the physical presence of cell wall-bound pili was confirmed by immunoblotting. Immunogold electron microscopy showed that the SpaC pilin is located at the pilus tip but also sporadically throughout the structure. Moreover, the adherence of strain GG to human intestinal mucus was blocked by SpaC antiserum and abolished in a mutant carrying an inactivated spaC gene. Similarly, binding to mucus was demonstrated for the purified SpaC protein. We conclude that the presence of SpaC is essential for the mucus interaction of L. rhamnosus GG and likely explains its ability to persist in the human intestinal tract longer than LC705 during an intervention trial. The presence of mucus-binding pili on the surface of a nonpathogenic Gram-positive bacterial strain reveals a previously undescribed mechanism for the interaction of selected probiotic lactobacilli with host tissues. PMID:19805152

  17. Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human- mucus binding protein.

    PubMed

    Kankainen, Matti; Paulin, Lars; Tynkkynen, Soile; von Ossowski, Ingemar; Reunanen, Justus; Partanen, Pasi; Satokari, Reetta; Vesterlund, Satu; Hendrickx, Antoni P A; Lebeer, Sarah; De Keersmaecker, Sigrid C J; Vanderleyden, Jos; Hämäläinen, Tuula; Laukkanen, Suvi; Salovuori, Noora; Ritari, Jarmo; Alatalo, Edward; Korpela, Riitta; Mattila-Sandholm, Tiina; Lassig, Anna; Hatakka, Katja; Kinnunen, Katri T; Karjalainen, Heli; Saxelin, Maija; Laakso, Kati; Surakka, Anu; Palva, Airi; Salusjärvi, Tuomas; Auvinen, Petri; de Vos, Willem M

    2009-10-01

    To unravel the biological function of the widely used probiotic bacterium Lactobacillus rhamnosus GG, we compared its 3.0-Mbp genome sequence with the similarly sized genome of L. rhamnosus LC705, an adjunct starter culture exhibiting reduced binding to mucus. Both genomes demonstrated high sequence identity and synteny. However, for both strains, genomic islands, 5 in GG and 4 in LC705, punctuated the colinearity. A significant number of strain-specific genes were predicted in these islands (80 in GG and 72 in LC705). The GG-specific islands included genes coding for bacteriophage components, sugar metabolism and transport, and exopolysaccharide biosynthesis. One island only found in L. rhamnosus GG contained genes for 3 secreted LPXTG-like pilins (spaCBA) and a pilin-dedicated sortase. Using anti-SpaC antibodies, the physical presence of cell wall-bound pili was confirmed by immunoblotting. Immunogold electron microscopy showed that the SpaC pilin is located at the pilus tip but also sporadically throughout the structure. Moreover, the adherence of strain GG to human intestinal mucus was blocked by SpaC antiserum and abolished in a mutant carrying an inactivated spaC gene. Similarly, binding to mucus was demonstrated for the purified SpaC protein. We conclude that the presence of SpaC is essential for the mucus interaction of L. rhamnosus GG and likely explains its ability to persist in the human intestinal tract longer than LC705 during an intervention trial. The presence of mucus-binding pili on the surface of a nonpathogenic Gram-positive bacterial strain reveals a previously undescribed mechanism for the interaction of selected probiotic lactobacilli with host tissues.

  18. Controlled surface chemistry of diamond/β-SiC composite films for preferential protein adsorption.

    PubMed

    Wang, Tao; Handschuh-Wang, Stephan; Yang, Yang; Zhuang, Hao; Schlemper, Christoph; Wesner, Daniel; Schönherr, Holger; Zhang, Wenjun; Jiang, Xin

    2014-02-01

    Diamond and SiC both process extraordinary biocompatible, electronic, and chemical properties. A combination of diamond and SiC may lead to highly stable materials, e.g., for implants or biosensors with excellent sensing properties. Here we report on the controllable surface chemistry of diamond/β-SiC composite films and its effect on protein adsorption. For systematic and high-throughput investigations, novel diamond/β-SiC composite films with gradient composition have been synthesized using the hot filament chemical vapor deposition (HFCVD) technique. As revealed by scanning electron microscopy (SEM), the diamond/β-SiC ratio of the composite films shows a continuous change from pure diamond to β-SiC over a length of ∼ 10 mm on the surface. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) was employed to unveil the surface termination of chemically oxidized and hydrogen treated surfaces. The surface chemistry of the composite films was found to depend on diamond/β-SiC ratio and the surface treatment. As observed by confocal fluorescence microscopy, albumin and fibrinogen were preferentially adsorbed from buffer: after surface oxidation, the proteins preferred to adsorb on diamond rather than on β-SiC, resulting in an increasing amount of proteins adsorbed to the gradient surfaces with increasing diamond/β-SiC ratio. By contrast, for hydrogen-treated surfaces, the proteins preferentially adsorbed on β-SiC, leading to a decreasing amount of albumin adsorbed on the gradient surfaces with increasing diamond/β-SiC ratio. The mechanism of preferential protein adsorption is discussed by considering the hydrogen bonding of the water self-association network to OH-terminated surfaces and the change of the polar surface energy component, which was determined according to the van Oss method. These results suggest that the diamond/β-SiC gradient film can be a promising material for biomedical applications which

  19. Surface plasmon resonance imaging reveals multiple binding modes of Agrobacterium transformation mediator VirE2 to ssDNA

    PubMed Central

    Kim, Sanghyun; Zbaida, David; Elbaum, Michael; Leh, Hervé; Nogues, Claude; Buckle, Malcolm

    2015-01-01

    VirE2 is the major secreted protein of Agrobacterium tumefaciens in its genetic transformation of plant hosts. It is co-expressed with a small acidic chaperone VirE1, which prevents VirE2 oligomerization. After secretion into the host cell, VirE2 serves functions similar to a viral capsid in protecting the single-stranded transferred DNA en route to the nucleus. Binding of VirE2 to ssDNA is strongly cooperative and depends moreover on protein–protein interactions. In order to isolate the protein–DNA interactions, imaging surface plasmon resonance (SPRi) studies were conducted using surface-immobilized DNA substrates of length comparable to the protein-binding footprint. Binding curves revealed an important influence of substrate rigidity with a notable preference for poly-T sequences and absence of binding to both poly-A and double-stranded DNA fragments. Dissociation at high salt concentration confirmed the electrostatic nature of the interaction. VirE1–VirE2 heterodimers also bound to ssDNA, though by a different mechanism that was insensitive to high salt. Neither VirE2 nor VirE1–VirE2 followed the Langmuir isotherm expected for reversible monomeric binding. The differences reflect the cooperative self-interactions of VirE2 that are suppressed by VirE1. PMID:26044711

  20. Surface forces in model oil-in-water emulsions stabilized by proteins.

    PubMed

    Dimitrova, Tatiana D; Leal-Calderon, Fernando; Gurkov, Theodor D; Campbell, Bruce

    2004-05-20

    We have employed two complementary techniques, namely, the magnetic chaining technique (MCT) and a variant of the Mysels cell to obtain data concerning the repulsive interaction profiles between protein layers formed at liquid-liquid interfaces. For BSA-stabilized systems, a long-ranged repulsion is operative. It is not of an electrostatic origin, but originates most probably from the formation of multiple protein layers at the interface. The interactions between beta-casein layers formed at the water/oil interface are governed by electrostatic repulsion. Due to the relatively large final thickness of approximately 20 nm, the van der Waals contribution to the total disjoining pressure is inferior. The oscillatory component is also negligible for the studied protein concentration of 0.1 wt.%. For both proteins, the extracted information describes the situation where the protein-covered surfaces are approached/manipulated in a quasi-static manner. We observe a very good agreement between the data obtained from MCT and Mysels cell. The comparison of our results with literature data from surface force apparatus (SFA) experiments reveals a substantial difference in the force laws existing between protein-stabilized liquid droplets and mica surfaces covered by proteins. We explain this discrepancy in terms of the different protein absorption on solid and liquid interfaces. We also measured the threshold force necessary to induce irreversible flocculation in beta-casein and beta-lactoglobulin (BLG) stabilized emulsions. Under similar conditions, the threshold flocculation force is higher for beta-casein than for BLG stabilized droplets. The flocs formed from BLG covered droplets are tight and remain without visible change for at least 48 h. We speculate that the flocculation is due to formation of protein aggregates between the approaching droplets. PMID:15072930

  1. Identification of Novel Surface-Exposed Proteins of Rickettsia rickettsii by Affinity Purification and Proteomics

    PubMed Central

    Gong, Wenping; Xiong, Xiaolu; Qi, Yong; Jiao, Jun; Duan, Changsong; Wen, Bohai

    2014-01-01

    Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever, is the most pathogenic member among Rickettsia spp. Surface-exposed proteins (SEPs) of R. rickettsii may play important roles in its pathogenesis or immunity. In this study, R. rickettsii organisms were surface-labeled with sulfo-NHS-SS-biotin and the labeled proteins were affinity-purified with streptavidin. The isolated proteins were separated by two-dimensional electrophoresis, and 10 proteins were identified among 23 protein spots by electrospray ionization tandem mass spectrometry. Five (OmpA, OmpB, GroEL, GroES, and a DNA-binding protein) of the 10 proteins were previously characterized as surface proteins of R. rickettsii. Another 5 proteins (Adr1, Adr2, OmpW, Porin_4, and TolC) were first recognized as SEPs of R. rickettsii herein. The genes encoding the 5 novel SEPs were expressed in Escherichia coli cells, resulting in 5 recombinant SEPs (rSEPs), which were used to immunize mice. After challenge with viable R. rickettsii cells, the rickettsial load in the spleen, liver, or lung of mice immunized with rAdr2 and in the lungs of mice immunized with other rSEPs excluding rTolC was significantly lower than in mice that were mock-immunized with PBS. The in vitro neutralization test revealed that sera from mice immunized with rAdr1, rAdr2, or rOmpW reduced R. rickettsii adherence to and invasion of vascular endothelial cells. The immuno-electron microscopic assay clearly showed that the novel SEPs were located in the outer and/or inner membrane of R. rickettsii. Altogether, the 5 novel SEPs identified herein might be involved in the interaction of R. rickettsii with vascular endothelial cells, and all of them except TolC were protective antigens. PMID:24950252

  2. Revealing Atomic-Level Mechanisms of Protein Allostery with Molecular Dynamics Simulations

    PubMed Central

    Hertig, Samuel

    2016-01-01

    Molecular dynamics (MD) simulations have become a powerful and popular method for the study of protein allostery, the widespread phenomenon in which a stimulus at one site on a protein influences the properties of another site on the protein. By capturing the motions of a protein’s constituent atoms, simulations can enable the discovery of allosteric binding sites and the determination of the mechanistic basis for allostery. These results can provide a foundation for applications including rational drug design and protein engineering. Here, we provide an introduction to the investigation of protein allostery using molecular dynamics simulation. We emphasize the importance of designing simulations that include appropriate perturbations to the molecular system, such as the addition or removal of ligands or the application of mechanical force. We also demonstrate how the bidirectional nature of allostery—the fact that the two sites involved influence one another in a symmetrical manner—can facilitate such investigations. Through a series of case studies, we illustrate how these concepts have been used to reveal the structural basis for allostery in several proteins and protein complexes of biological and pharmaceutical interest. PMID:27285999

  3. Oligosaccharide Binding Proteins from Bifidobacterium longum subsp. infantis Reveal a Preference for Host Glycans

    PubMed Central

    Garrido, Daniel; Kim, Jae Han; German, J. Bruce; Raybould, Helen E.; Mills, David A.

    2011-01-01

    Bifidobacterium longum subsp. infantis (B. infantis) is a common member of the infant intestinal microbiota, and it has been characterized by its foraging capacity for human milk oligosaccharides (HMO). Its genome sequence revealed an overabundance of the Family 1 of solute binding proteins (F1SBPs), part of ABC transporters and associated with the import of oligosaccharides. In this study we have used the Mammalian Glycan Array to determine the specific affinities of these proteins. This was correlated with binding protein expression induced by different prebiotics including HMO. Half of the F1SBPs in B. infantis were determined to bind mammalian oligosaccharides. Their affinities included different blood group structures and mucin oligosaccharides. Related to HMO, other proteins were specific for oligomers of lacto-N-biose (LNB) and polylactosamines with different degrees of fucosylation. Growth on HMO induced the expression of specific binding proteins that import HMO isomers, but also bind blood group and mucin oligosaccharides, suggesting coregulated transport mechanisms. The prebiotic inulin induced other family 1 binding proteins with affinity for intestinal glycans. Most of the host glycan F1SBPs in B. infantis do not have homologs in other bifidobacteria. Finally, some of these proteins were found to be adherent to intestinal epithelial cells in vitro. In conclusion, this study represents further evidence for the particular adaptations of B. infantis to the infant gut environment, and helps to understand the molecular mechanisms involved in this process. PMID:21423604

  4. Proteomic analysis of a segregant population reveals candidate proteins linked to mealiness in peach.

    PubMed

    Almeida, Andréa Miyasaka; Urra, Claudio; Moraga, Carol; Jego, Marcela; Flores, Alejandra; Meisel, Lee; González, Mauricio; Infante, Rodrigo; Defilippi, Bruno G; Campos-Vargas, Reinaldo; Orellana, Ariel

    2016-01-10

    Peaches are stored at low temperatures to delay ripening and increase postharvest life. However some varieties are susceptible to chilling injury,which leads to fruit mealiness, browning and flesh bleeding. In order to identify potentialmarkers associated with chilling injury,we performed proteomic analyses on a segregating population with contrasting susceptibility to chilling-induced mealiness. Chilling-induced mealiness was assessed by measuring juiciness in fruits that have been stored in cold and then allowed to ripen. Fruitmesocarp and leaf proteome from contrasting segregants were analyzed using 2-DE gels. Comparison of protein abundance between segregants revealed 133 spots from fruit mesocarp and 36 from leaf. Thirty four fruit mesocarp proteins were identified from these spots. Most of these proteins were related to ethylene synthesis, ABA response and stress response. Leaf protein analyses identified 22 proteins, most of which related to energy metabolism. Some of the genes that code for these proteins have been previously correlated with chilling injury through transcript analyses and co-segregation with mealiness QTLs. The results from this study, further deciphers the molecular mechanisms associated with chilling response in peach fruit, and identifies candidate proteins linked to mealiness in peach which may be used as putative markers for this trait. PMID:26459401

  5. A Human Pluripotent Stem Cell Surface N-Glycoproteome Resource Reveals Markers, Extracellular Epitopes, and Drug Targets

    PubMed Central

    Boheler, Kenneth R.; Bhattacharya, Subarna; Kropp, Erin M.; Chuppa, Sandra; Riordon, Daniel R.; Bausch-Fluck, Damaris; Burridge, Paul W.; Wu, Joseph C.; Wersto, Robert P.; Chan, Godfrey Chi Fung; Rao, Sridhar; Wollscheid, Bernd; Gundry, Rebekah L.

    2014-01-01

    Summary Detailed knowledge of cell-surface proteins for isolating well-defined populations of human pluripotent stem cells (hPSCs) would significantly enhance their characterization and translational potential. Through a chemoproteomic approach, we developed a cell-surface proteome inventory containing 496 N-linked glycoproteins on human embryonic (hESCs) and induced PSCs (hiPSCs). Against a backdrop of human fibroblasts and 50 other cell types, >100 surface proteins of interest for hPSCs were revealed. The >30 positive and negative markers verified here by orthogonal approaches provide experimental justification for the rational selection of pluripotency and lineage markers, epitopes for cell isolation, and reagents for the characterization of putative hiPSC lines. Comparative differences between the chemoproteomic-defined surfaceome and the transcriptome-predicted surfaceome directly led to the discovery that STF-31, a reported GLUT-1 inhibitor, is toxic to hPSCs and efficient for selective elimination of hPSCs from mixed cultures. PMID:25068131

  6. Systematic protein interactome analysis of glycosaminoglycans revealed YcbS as a novel bacterial virulence factor.

    PubMed

    Hsiao, Felix Shih-Hsiang; Sutandy, Fx Reymond; Syu, Guan-Da; Chen, Yi-Wen; Lin, Jun-Mu; Chen, Chien-Sheng

    2016-01-01

    Microbial pathogens have evolved several strategies for interacting with host cell components, such as glycosaminoglycans (GAGs). Some microbial proteins involved in host-GAG binding have been described; however, a systematic study on microbial proteome-mammalian GAG interactions has not been conducted. Here, we used Escherichia coli proteome chips to probe four typical mammalian GAGs, heparin, heparan sulphate (HS), chondroitin sulphate B (CSB), and chondroitin sulphate C (CSC), and identified 185 heparin-, 62 HS-, 98 CSB-, and 101 CSC-interacting proteins. Bioinformatics analyses revealed the unique functions of heparin- and HS-specific interacting proteins in glycine, serine, and threonine metabolism. Among all the GAG-interacting proteins, three were outer membrane proteins (MbhA, YcbS, and YmgH). Invasion assays confirmed that mutant E. coli lacking ycbS could not invade the epithelial cells. Introducing plasmid carrying ycbS complemented the invading defects at ycbS lacking E. coli mutant, that can be further improved by overexpressing ycbS. Preblocking epithelial cells with YcbS reduced the percentage of E. coli invasions. Moreover, we observed that whole components of the ycb operon were crucial for invasion. The displacement assay revealed that YcbS binds to the laminin-binding site of heparin and might affect the host extracellular matrix structure by displacing heparin from laminin. PMID:27323865

  7. Systematic protein interactome analysis of glycosaminoglycans revealed YcbS as a novel bacterial virulence factor

    PubMed Central

    Hsiao, Felix Shih-Hsiang; Sutandy, FX Reymond; Syu, Guan-Da; Chen, Yi-Wen; Lin, Jun-Mu; Chen, Chien-Sheng

    2016-01-01

    Microbial pathogens have evolved several strategies for interacting with host cell components, such as glycosaminoglycans (GAGs). Some microbial proteins involved in host–GAG binding have been described; however, a systematic study on microbial proteome–mammalian GAG interactions has not been conducted. Here, we used Escherichia coli proteome chips to probe four typical mammalian GAGs, heparin, heparan sulphate (HS), chondroitin sulphate B (CSB), and chondroitin sulphate C (CSC), and identified 185 heparin-, 62 HS-, 98 CSB-, and 101 CSC-interacting proteins. Bioinformatics analyses revealed the unique functions of heparin- and HS-specific interacting proteins in glycine, serine, and threonine metabolism. Among all the GAG-interacting proteins, three were outer membrane proteins (MbhA, YcbS, and YmgH). Invasion assays confirmed that mutant E. coli lacking ycbS could not invade the epithelial cells. Introducing plasmid carrying ycbS complemented the invading defects at ycbS lacking E. coli mutant, that can be further improved by overexpressing ycbS. Preblocking epithelial cells with YcbS reduced the percentage of E. coli invasions. Moreover, we observed that whole components of the ycb operon were crucial for invasion. The displacement assay revealed that YcbS binds to the laminin-binding site of heparin and might affect the host extracellular matrix structure by displacing heparin from laminin. PMID:27323865

  8. Zika virus NS1 structure reveals diversity of electrostatic surfaces among flaviviruses.

    PubMed

    Song, Hao; Qi, Jianxun; Haywood, Joel; Shi, Yi; Gao, George F

    2016-05-01

    The association of Zika virus (ZIKV) infections with microcephaly has resulted in an ongoing public-health emergency. Here we report the crystal structure of a C-terminal fragment of ZIKV nonstructural protein 1 (NS1), a major host-interaction molecule that functions in flaviviral replication, pathogenesis and immune evasion. Comparison with West Nile and dengue virus NS1 structures reveals conserved features but diverse electrostatic characteristics at host-interaction interfaces, thus possibly implying different modes of flavivirus pathogenesis.

  9. Protein adsorption at calcium oxalate monohydrate crystal surfaces.

    NASA Astrophysics Data System (ADS)

    Wesson, J.; Sheng, X.; Rimer, J.; Jung, T.; Ward, M.

    2008-03-01

    Calcium oxalate monohydrate (COM) crystals are the dominant inorganic phase in most kidney stones, and kidney stones form as aggregates of COM crystals and organic material, principally proteins, but little is known about the molecular level events at COM surfaces that regulate COM aggregation. We have examined the influence of polyelectrolytes on the force of adhesion between chemically modified atomic force microscopy (AFM) tips and selected COM crystal faces in saturated solution. In general, we found that polyanions bind to COM surfaces and block adhesion of a carboxylate functionalized AFM tip, while polycations had no measureable effect on adhesion force under the same conditions. We did observe a unique absence of interaction between poly(glutamic acid) and the COM (100) face compared to other synthetic polyanions, and some native urinary protein structures also exhibited unique face selective interactions, suggesting that simple electrostatic models will not completely explain the data.

  10. Sputter deposited bioceramic coatings: surface characterisation and initial protein adsorption studies using surface-MALDI-MS.

    PubMed

    Boyd, A R; Burke, G A; Duffy, H; Holmberg, M; O' Kane, C; Meenan, B J; Kingshott, P

    2011-01-01

    Protein adsorption onto calcium phosphate (Ca-P) bioceramics utilised in hard tissue implant applications has been highlighted as one of the key events that influences the subsequent biological response, in vivo. This work reports on the use of surface-matrix assisted laser desorption ionisation mass spectrometry (Surface-MALDI-MS) as a technique for the direct detection of foetal bovine serum (FBS) proteins adsorbed to hybrid calcium phosphate/titanium dioxide surfaces produced by a novel radio frequency (RF) magnetron sputtering method incorporating in situ annealing between 500°C and 700°C during deposition. XRD and XPS analysis indicated that the coatings produced at 700°C were hybrid in nature, with the presence of Ca-P and titanium dioxide clearly observed in the outer surface layer. In addition to this, the Ca/P ratio was seen to increase with increasing annealing temperature, with values of between 2.0 and 2.26 obtained for the 700°C samples. After exposure to FBS solution, surface-MALDI-MS indicated that there were significant differences in the protein patterns as shown by unique peaks detected at masses below 23.1 kDa for the different surfaces. These adsorbates were assigned to a combination of growth factors and lipoproteins present in serum. From the data obtained here it is evident that surface-MALDI-MS has significant utility as a tool for studying the dynamic nature of protein adsorption onto the surfaces of bioceramic coatings, which most likely plays a significant role in subsequent bioactivity of the materials.

  11. Coarse grained simulation reveals antifreeze properties of hyperactive antifreeze protein from Antarctic bacterium Colwellia sp.

    NASA Astrophysics Data System (ADS)

    Nguyen, Hung; Van, Thanh Dac; Le, Ly

    2015-10-01

    The novel hyperactive antifreeze protein (AFP) of Antarctic sea ice bacterium Colwellia sp. provides a target for studying the protection of psychrophilic microgoranisms against freezing environment. Interestingly, the Colwellia sp. hyperactive antifreeze protein (ColAFP) was crystallized without the structural dynamic characteristics. Here, the result indicated, through coarse grained simulation of ColAFP under various subfreezing temperature, that ColAFP remains active at temperature of equal and greater than 275 K (∼2 °C). Extensive simulation analyses also revealed the adaptive mechanism of ColAFP in subfreezing environment. Our result provides a structural dynamic understanding of the ColAFP.

  12. Protein sequences from mastodon and Tyrannosaurus rex revealed by mass spectrometry.

    PubMed

    Asara, John M; Schweitzer, Mary H; Freimark, Lisa M; Phillips, Matthew; Cantley, Lewis C

    2007-04-13

    Fossilized bones from extinct taxa harbor the potential for obtaining protein or DNA sequences that could reveal evolutionary links to extant species. We used mass spectrometry to obtain protein sequences from bones of a 160,000- to 600,000-year-old extinct mastodon (Mammut americanum) and a 68-million-year-old dinosaur (Tyrannosaurus rex). The presence of T. rex sequences indicates that their peptide bonds were remarkably stable. Mass spectrometry can thus be used to determine unique sequences from ancient organisms from peptide fragmentation patterns, a valuable tool to study the evolution and adaptation of ancient taxa from which genomic sequences are unlikely to be obtained.

  13. Distinct role of hydration water in protein misfolding and aggregation revealed by fluctuating thermodynamics analysis.

    PubMed

    Chong, Song-Ho; Ham, Sihyun

    2015-04-21

    decrease in solvation free energy, harnessing the monomer solvation free energy earned during the misfolding. The second step, where a compact dimer structure is formed, is driven by direct protein-protein interactions, but again it is accompanied by an increase in solvation free energy. The increased solvation free energy of the dimer will function as the driving force to recruit another Aβ protein in the approach stage of subsequent oligomerizations. The fluctuating thermodynamics analysis of the misfolding and dimerization of the Aβ protein indicates that the interaction of the protein with surrounding water plays a critical role in protein aggregation. Such a water-centric perspective is further corroborated by demonstrating that, for a large number of Aβ mutants and mutants of other protein systems, the change in the experimental aggregation propensity upon mutation has a significant correlation with the protein solvation free energy change. We also find striking discrimination between the positively and negatively charged residues on the protein surface by surrounding water molecules, which is shown to play a crucial role in determining the protein aggregation propensity. We argue that the protein total charge dictates such striking behavior of the surrounding water molecules. Our results provide new insights for understanding and predicting the protein aggregation propensity, thereby offering novel design principles for producing aggregation-resistant proteins for biotherapeutics.

  14. Bap, a Staphylococcus aureus Surface Protein Involved in Biofilm Formation

    PubMed Central

    Cucarella, Carme; Solano, Cristina; Valle, Jaione; Amorena, Beatriz; Lasa, Íñigo; Penadés, José R.

    2001-01-01

    Identification of new genes involved in biofilm formation is needed to understand the molecular basis of strain variation and the pathogenic mechanisms implicated in chronic staphylococcal infections. A biofilm-producing Staphylococcus aureus isolate was used to generate biofilm-negative transposon (Tn917) insertion mutants. Two mutants were found with a significant decrease in attachment to inert surfaces (early adherence), intercellular adhesion, and biofilm formation. The transposon was inserted at the same locus in both mutants. This locus (bap [for biofilm associated protein]) encodes a novel cell wall associated protein of 2,276 amino acids (Bap), which shows global organizational similarities to surface proteins of gram-negative (Pseudomonas aeruginosa and Salmonella enterica serovar Typhi) and gram-positive (Enteroccocus faecalis) microorganisms. Bap's core region represents 52% of the protein and consists of 13 successive nearly identical repeats, each containing 86 amino acids. bap was present in a small fraction of bovine mastitis isolates (5% of the 350 S. aureus isolates tested), but it was absent from the 75 clinical human S. aureus isolates analyzed. All staphylococcal isolates harboring bap were highly adherent and strong biofilm producers. In a mouse infection model bap was involved in pathogenesis, causing a persistent infection. PMID:11292810

  15. The crystal structure of human protein α1M reveals a chromophore-binding site and two putative protein–protein interfaces

    SciTech Connect

    Zhang, Yangli; Gao, Zengqiang; Guo, Zhen; Zhang, Hongpeng; Zhang, Zhenzhen; Luo, Miao; Hou, Haifeng; Huang, Ailong; Dong, Yuhui; Wang, Deqiang

    2013-09-27

    Highlights: •We determined the first structure of human α1M with heavy electron density of the chromophore. •We proposed a new structural model of the chromophore. •We first revealed that the two conserved surface regions of α1M are proposed as putative protein–protein interface sites. -- Abstract: Lipocalin α1-microglobulin (α1M) is a conserved glycoprotein present in plasma and in the interstitial fluids of all tissues. α1M is linked to a heterogeneous yellow–brown chromophore of unknown structure, and interacts with several target proteins, including α1-inhibitor-3, fibronectin, prothrombin and albumin. To date, there is little knowledge about the interaction sites between α1M and its partners. Here, we report the crystal structure of the human α1M. Due to the crystallization occurring in a low ionic strength solution, the unidentified chromophore with heavy electron density is observed at a hydrophobic inner tube of α1M. In addition, two conserved surface regions of α1M are proposed as putative protein–protein interface sites. Further study is needed to unravel the detailed information about the interaction between α1M and its partners.

  16. Properties of X-ray resonant scattering in the Bragg case revealed on the Riemann surface.

    PubMed

    Saka, Takashi

    2016-07-01

    Continuing the work described in the previous paper [Saka (2016). Acta Cryst. A72, 338-348], the dynamical theory for perfect crystals in the Bragg case is reformulated using the Riemann surface. In particular, diffraction under resonant scattering conditions is investigated. The characteristic features of the dispersion surface and the rocking curve are analytically revealed using four parameters, which are the real and imaginary parts of two quantities specifying the degree of departure from the exact Bragg conditions and the reflection strength. Characteristic properties that have been deduced through numerical analysis are derived analytically using these four parameters. Visualization of the geometric relationships between the four parameters on the Riemann surface is useful for understanding many properties such as symmetry and sharpness of the rocking curve under special conditions. Therefore, employing the Riemann surface is instructive for numerical analysis and useful for understanding dynamical diffraction in the Bragg case. PMID:27357849

  17. Volumetric Interpretation of Protein Adsorption: Interfacial Packing of Protein Adsorbed to Hydrophobic Surfaces from Surface-Saturating Solution Concentrations

    PubMed Central

    Kao, Ping; Parhi, Purnendu; Krishnan, Anandi; Noh, Hyeran; Haider, Waseem; Tadigadapa, Srinivas; Allara, David L.; Vogler, Erwin A.

    2010-01-01

    The maximum capacity of a hydrophobic adsorbent is interpreted in terms of square or hexagonal (cubic and face-centered-cubic, FCC) interfacial packing models of adsorbed blood proteins in a way that accommodates experimental measurements by the solution-depletion method and quartz-crystal-microbalance (QCM) for the human proteins serum albumin (HSA, 66 kDa), immunoglobulin G (IgG, 160 kDa), fibrinogen (Fib, 341 kDa), and immunoglobulin M (IgM, 1000 kDa). A simple analysis shows that adsorbent capacity is capped by a fixed mass/volume (e.g. mg/mL) surface-region (interphase) concentration and not molar concentration. Nearly analytical agreement between the packing models and experiment suggests that, at surface saturation, above-mentioned proteins assemble within the interphase in a manner that approximates a well-ordered array. HSA saturates a hydrophobic adsorbent with the equivalent of a single square-or-hexagonally-packed layer of hydrated molecules whereas the larger proteins occupy two-or-more layers, depending on the specific protein under consideration and analytical method used to measure adsorbate mass (solution depletion or QCM). Square-or-hexagonal (cubic and FCC) packing models cannot be clearly distinguished by comparison to experimental data. QCM measurement of adsorbent capacity is shown to be significantly different than that measured by solution depletion for similar hydrophobic adsorbents. The underlying reason is traced to the fact that QCM measures contribution of both core protein, water of hydration, and interphase water whereas solution depletion measures only the contribution of core protein. It is further shown that thickness of the interphase directly measured by QCM systematically exceeds that inferred from solution-depletion measurements, presumably because the static model used to interpret solution depletion does not accurately capture the complexities of the viscoelastic interfacial environment probed by QCM. PMID:21035180

  18. Quantification of the transferability of a designed protein specificity switch reveals extensive epistasis in molecular recognition

    DOE PAGES

    Melero, Cristina; Ollikainen, Noah; Harwood, Ian; Karpiak, Joel; Kortemme, Tanja

    2014-10-13

    Re-engineering protein–protein recognition is an important route to dissecting and controlling complex interaction networks. Experimental approaches have used the strategy of “second-site suppressors,” where a functional interaction is inferred between two proteins if a mutation in one protein can be compensated by a mutation in the second. Mimicking this strategy, computational design has been applied successfully to change protein recognition specificity by predicting such sets of compensatory mutations in protein–protein interfaces. To extend this approach, it would be advantageous to be able to “transplant” existing engineered and experimentally validated specificity changes to other homologous protein–protein complexes. Here, we test thismore » strategy by designing a pair of mutations that modulates peptide recognition specificity in the Syntrophin PDZ domain, confirming the designed interaction biochemically and structurally, and then transplanting the mutations into the context of five related PDZ domain–peptide complexes. We find a wide range of energetic effects of identical mutations in structurally similar positions, revealing a dramatic context dependence (epistasis) of designed mutations in homologous protein–protein interactions. To better understand the structural basis of this context dependence, we apply a structure-based computational model that recapitulates these energetic effects and we use this model to make and validate forward predictions. The context dependence of these mutations is captured by computational predictions, our results both highlight the considerable difficulties in designing protein–protein interactions and provide challenging benchmark cases for the development of improved protein modeling and design methods that accurately account for the context.« less

  19. Quantification of the transferability of a designed protein specificity switch reveals extensive epistasis in molecular recognition

    SciTech Connect

    Melero, Cristina; Ollikainen, Noah; Harwood, Ian; Karpiak, Joel; Kortemme, Tanja

    2014-10-13

    Re-engineering protein–protein recognition is an important route to dissecting and controlling complex interaction networks. Experimental approaches have used the strategy of “second-site suppressors,” where a functional interaction is inferred between two proteins if a mutation in one protein can be compensated by a mutation in the second. Mimicking this strategy, computational design has been applied successfully to change protein recognition specificity by predicting such sets of compensatory mutations in protein–protein interfaces. To extend this approach, it would be advantageous to be able to “transplant” existing engineered and experimentally validated specificity changes to other homologous protein–protein complexes. Here, we test this strategy by designing a pair of mutations that modulates peptide recognition specificity in the Syntrophin PDZ domain, confirming the designed interaction biochemically and structurally, and then transplanting the mutations into the context of five related PDZ domain–peptide complexes. We find a wide range of energetic effects of identical mutations in structurally similar positions, revealing a dramatic context dependence (epistasis) of designed mutations in homologous protein–protein interactions. To better understand the structural basis of this context dependence, we apply a structure-based computational model that recapitulates these energetic effects and we use this model to make and validate forward predictions. The context dependence of these mutations is captured by computational predictions, our results both highlight the considerable difficulties in designing protein–protein interactions and provide challenging benchmark cases for the development of improved protein modeling and design methods that accurately account for the context.

  20. Dynamic Coupling among Protein Binding, Sliding, and DNA Bending Revealed by Molecular Dynamics.

    PubMed

    Tan, Cheng; Terakawa, Tsuyoshi; Takada, Shoji

    2016-07-13

    Protein binding to DNA changes the DNA's structure, and altered DNA structure can, in turn, modulate the dynamics of protein binding. This mutual dependency is poorly understood. Here we investigated dynamic couplings among protein binding to DNA, protein sliding on DNA, and DNA bending by applying a coarse-grained simulation method to the bacterial architectural protein HU and 14 other DNA-binding proteins. First, we verified our method by showing that the simulated HU exhibits a weak preference for A/T-rich regions of DNA and a much higher affinity for gapped and nicked DNA, consistent with biochemical experiments. The high affinity was attributed to a local DNA bend, but not the specific chemical moiety of the gap/nick. The long-time dynamic analysis revealed that HU sliding is associated with the movement of the local DNA bending site. Deciphering single sliding steps, we found the coupling between HU sliding and DNA bending is akin to neither induced-fit nor population-shift; instead they moved concomitantly. This is reminiscent of a cation transfer on DNA and can be viewed as a protein version of polaron-like sliding. Interestingly, on shorter time scales, HU paused when the DNA was highly bent at the bound position and escaped from pauses once the DNA spontaneously returned to a less bent structure. The HU sliding is largely regulated by DNA bending dynamics. With 14 other proteins, we explored the generality and versatility of the dynamic coupling and found that 6 of the 15 assayed proteins exhibit the polaron-like sliding. PMID:27309278

  1. Kinetic and Conformational Insights of Protein Adsorption onto Montmorillonite Revealed Using in Situ ATR-FTIR/2D-COS.

    PubMed

    Schmidt, Michael P; Martínez, Carmen Enid

    2016-08-01

    Protein adsorption onto clay minerals is a process with wide-ranging impacts on the environmental cycling of nutrients and contaminants. This process is influenced by kinetic and conformational factors that are often challenging to probe in situ. This study represents an in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopic investigation of the adsorption of a model protein (bovine serum albumin (BSA)) onto a clay mineral (montmorillonite) at four concentrations (1.50, 3.75, 7.50, and 15.0 μM) under environmentally relevant conditions. At all concentrations probed, FTIR spectra show that BSA readily adsorbs onto montmorillonite. Adsorption kinetics follow an Elovich model, suggesting that primary limitations on adsorption rates are surface-related heterogeneous energetic restrictions associated with protein rearrangement and lateral protein-protein interaction. BSA adsorption onto montmorillonite fits the Langmuir model, yielding K = 5.97 × 10(5) M(-1). Deconvolution and curve fitting of the amide I band at the end of the adsorption process (∼120 min) shows a large extent of BSA unfolding upon adsorption at 1.50 μM, with extended chains and turns increasing at the expense of α-helices. At higher concentrations/surface coverages, BSA unfolding is less pronounced and a more compact structure is assumed. Two-dimensional correlation spectroscopic (2D-COS) analysis reveals three different pathways corresponding to adsorbed conformations. At 1.50 μM, adsorption increases extended chains, followed by a loss in α-helices and a subsequent increase in turns. At 3.75 μM, extended chains decrease and then aggregated strands increase and side chains decrease, followed by a decrease in turns. With 7.50 and 15.0 μM BSA, the loss of side-chain vibrations is followed by an increase in aggregated strands and a subsequent decrease in turns and extended chains. Overall, the BSA concentration and resultant surface coverage have a profound

  2. An update on cell surface proteins containing extensin-motifs.

    PubMed

    Borassi, Cecilia; Sede, Ana R; Mecchia, Martin A; Salgado Salter, Juan D; Marzol, Eliana; Muschietti, Jorge P; Estevez, Jose M

    2016-01-01

    In recent years it has become clear that there are several molecular links that interconnect the plant cell surface continuum, which is highly important in many biological processes such as plant growth, development, and interaction with the environment. The plant cell surface continuum can be defined as the space that contains and interlinks the cell wall, plasma membrane and cytoskeleton compartments. In this review, we provide an updated view of cell surface proteins that include modular domains with an extensin (EXT)-motif followed by a cytoplasmic kinase-like domain, known as PERKs (for proline-rich extensin-like receptor kinases); with an EXT-motif and an actin binding domain, known as formins; and with extracellular hybrid-EXTs. We focus our attention on the EXT-motifs with the short sequence Ser-Pro(3-5), which is found in several different protein contexts within the same extracellular space, highlighting a putative conserved structural and functional role. A closer understanding of the dynamic regulation of plant cell surface continuum and its relationship with the downstream signalling cascade is a crucial forthcoming challenge.

  3. Revealing Surface States in In-Doped SnTe Nanoplates with Low Bulk Mobility.

    PubMed

    Shen, Jie; Xie, Yujun; Cha, Judy J

    2015-06-10

    Indium (In) doping in topological crystalline insulator SnTe induces superconductivity, making In-doped SnTe a candidate for a topological superconductor. SnTe nanostructures offer well-defined nanoscale morphology and high surface-to-volume ratios to enhance surface effects. Here, we study In-doped SnTe nanoplates, In(x)Sn(1-x)Te, with x ranging from 0 to 0.1 and show they superconduct. More importantly, we show that In doping reduces the bulk mobility of In(x)Sn(1-x)Te such that the surface states are revealed in magnetotransport despite the high bulk carrier density. This is manifested by two-dimensional linear magnetoresistance in high magnetic fields, which is independent of temperature up to 10 K. Aging experiments show that the linear magnetoresistance is sensitive to ambient conditions, further confirming its surface origin. We also show that the weak antilocalization observed in In(x)Sn(1-x)Te nanoplates is a bulk effect. Thus, we show that nanostructures and reducing the bulk mobility are effective strategies to reveal the surface states and test for topological superconductors.

  4. HDL surface lipids mediate CETP binding as revealed by electron microscopy and molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Charles, River; Tong, Huimin; Zhang, Lei; Patel, Mili; Wang, Francis; Rames, Matthew J.; Ren, Amy; Rye, Kerry-Anne; Qiu, Xiayang; Johns, Douglas G.; Charles, M. Arthur; Ren, Gang

    2015-03-01

    Cholesteryl ester transfer protein (CETP) mediates the transfer of cholesterol esters (CE) from atheroprotective high-density lipoproteins (HDL) to atherogenic low-density lipoproteins (LDL). CETP inhibition has been regarded as a promising strategy for increasing HDL levels and subsequently reducing the risk of cardiovascular diseases (CVD). Although the crystal structure of CETP is known, little is known regarding how CETP binds to HDL. Here, we investigated how various HDL-like particles interact with CETP by electron microscopy and molecular dynamics simulations. Results showed that CETP binds to HDL via hydrophobic interactions rather than protein-protein interactions. The HDL surface lipid curvature generates a hydrophobic environment, leading to CETP hydrophobic distal end interaction. This interaction is independent of other HDL components, such as apolipoproteins, cholesteryl esters and triglycerides. Thus, disrupting these hydrophobic interactions could be a new therapeutic strategy for attenuating the interaction of CETP with HDL.

  5. HDL surface lipids mediate CETP binding as revealed by electron microscopy and molecular dynamics simulation

    SciTech Connect

    Zhang, Meng; Charles, River; Tong, Huimin; Zhang, Lei; Patel, Mili; Wang, Francis; Rames, Matthew J.; Ren, Amy; Rye, Kerry-Anne; Qiu, Xiayang; Johns, Douglas G.; Charles, M. Arthur; Ren, Gang

    2015-03-04

    Cholesteryl ester transfer protein (CETP) mediates the transfer of cholesterol esters (CE) from atheroprotective high-density lipoproteins (HDL) to atherogenic low-density lipoproteins (LDL). CETP inhibition has been regarded as a promising strategy for increasing HDL levels and subsequently reducing the risk of cardiovascular diseases (CVD). Although the crystal structure of CETP is known, little is known regarding how CETP binds to HDL. Here, we investigated how various HDL-like particles interact with CETP by electron microscopy and molecular dynamics simulations. Results showed that CETP binds to HDL via hydrophobic interactions rather than protein-protein interactions. The HDL surface lipid curvature generates a hydrophobic environment, leading to CETP hydrophobic distal end interaction. This interaction is independent of other HDL components, such as apolipoproteins, cholesteryl esters and triglycerides. Thus, disrupting these hydrophobic interactions could be a new therapeutic strategy for attenuating the interaction of CETP with HDL.

  6. HDL surface lipids mediate CETP binding as revealed by electron microscopy and molecular dynamics simulation

    DOE PAGES

    Zhang, Meng; Charles, River; Tong, Huimin; Zhang, Lei; Patel, Mili; Wang, Francis; Rames, Matthew J.; Ren, Amy; Rye, Kerry-Anne; Qiu, Xiayang; et al

    2015-03-04

    Cholesteryl ester transfer protein (CETP) mediates the transfer of cholesterol esters (CE) from atheroprotective high-density lipoproteins (HDL) to atherogenic low-density lipoproteins (LDL). CETP inhibition has been regarded as a promising strategy for increasing HDL levels and subsequently reducing the risk of cardiovascular diseases (CVD). Although the crystal structure of CETP is known, little is known regarding how CETP binds to HDL. Here, we investigated how various HDL-like particles interact with CETP by electron microscopy and molecular dynamics simulations. Results showed that CETP binds to HDL via hydrophobic interactions rather than protein-protein interactions. The HDL surface lipid curvature generates a hydrophobicmore » environment, leading to CETP hydrophobic distal end interaction. This interaction is independent of other HDL components, such as apolipoproteins, cholesteryl esters and triglycerides. Thus, disrupting these hydrophobic interactions could be a new therapeutic strategy for attenuating the interaction of CETP with HDL.« less

  7. Defining and characterizing protein surface using alpha shapes.

    PubMed

    Albou, Laurent-Philippe; Schwarz, Benjamin; Poch, Olivier; Wurtz, Jean Marie; Moras, Dino

    2009-07-01

    The alpha shape of a molecule is a geometrical representation that provides a unique surface decomposition and a means to filter atomic contacts. We used it to revisit and unify the definition and computation of surface residues, contiguous patches, and curvature. These descriptors are evaluated and compared with former approaches on 85 proteins for which both bound and unbound forms are available. Based on the local density of interactions, the detection of surface residues shows a sensibility of 98%, whereas preserving a well-formed protein core. A novel conception of surface patch is defined by traveling along the surface from a central residue or atom. By construction, all surface patches are contiguous and, therefore, allows to cope with common problems of wrong and nonselection of neighbors. In the case of protein-binding site prediction, this new definition has improved the signal-to-noise ratio by 2.6 times compared with a widely used approach. With most common approaches, the computation of surface curvature can be locally biased by the presence of subsurface cavities and local variations of atomic densities. A novel notion of surface curvature is specifically developed to avoid such bias and is parametrizable to emphasize either local or global features. It defines a molecular landscape composed on average of 38% knobs and 62% clefts where interacting residues (IR) are 30% more frequent in knobs. A statistical analysis shows that residues in knobs are more charged, less hydrophobic and less aromatic than residues in clefts. IR in knobs are, however, much more hydrophobic and aromatic and less charged than noninteracting residues (non-IR) in knobs. Furthermore, IR are shown to be more accessible than non-IR both in clefts and knobs. The use of the alpha shape as a unifying framework allows for formal definitions, and fast and robust computations desirable in large-scale projects. This swiftness is not achieved to the detriment of quality, as proven by

  8. Quantitative proteomics reveals novel insights into isoniazid susceptibility in mycobacteria mediated by a universal stress protein.

    PubMed

    Hu, Xinling; Li, Xiaojing; Huang, Lige; Chan, John; Chen, Yuling; Deng, Haiteng; Mi, Kaixia

    2015-03-01

    Tuberculosis (TB) is caused by the ancient pathogen, Mycobacterium tuberculosis, and is one of the most serious infectious diseases in the world. Isoniazid (INH) is an important first-line drug for the treatment of active and latent TB. INH resistance is an increasing problem in the treatment of TB. Phenotypic resistance to INH, however, is poorly understood. In this study, we constructed a strain of Mycobacterium bovis BCG that overexpresses the latency-related universal stress protein (USP), BCG_2013, and designated this strain BCG-2013. BCG_2013 overexpression increased susceptibility to INH compared with that of the wild-type strain, BCG-pMV261. Quantitative proteomic analysis revealed that BCG_2013 overexpression resulted in the upregulation of 50 proteins and the downregulation of 26 proteins among the 1500 proteins identified. Upregulation of catalase-peroxidase KatG expression in BCG-2013 was observed and confirmed by qPCR, whereas expression of other INH resistance-related proteins did not change. In addition, differential expression of the mycobacterial persistence regulator MprA and its regulatory proteins was observed. BCG_2013 and katG mRNA levels increased in a Wayne dormancy model, whereas MprA mRNA levels decreased. Taken together, our results suggest that the increase in KatG levels induced by increased BCG_2013 levels underlies the phenotypic susceptibility of mycobacteria to INH.

  9. Protein profiles of CCL5, HPGDS, and NPSR1 in plasma reveal association with childhood asthma.

    PubMed

    Hamsten, C; Häggmark, A; Grundström, J; Mikus, M; Lindskog, C; Konradsen, J R; Eklund, A; Pershagen, G; Wickman, M; Grunewald, J; Melén, E; Hedlin, G; Nilsson, P; van Hage, M

    2016-09-01

    Asthma is a common chronic childhood disease with many different phenotypes that need to be identified. We analyzed a broad range of plasma proteins in children with well-characterized asthma phenotypes to identify potential markers of childhood asthma. Using an affinity proteomics approach, plasma levels of 362 proteins covered by antibodies from the Human Protein Atlas were investigated in a total of 154 children with persistent or intermittent asthma and controls. After screening, chemokine ligand 5 (CCL5) hematopoietic prostaglandin D synthase (HPGDS) and neuropeptide S receptor 1 (NPSR1) were selected for further investigation. Significantly lower levels of both CCL5 and HPGDS were found in children with persistent asthma, while NPSR1 was found at higher levels in children with mild intermittent asthma compared to healthy controls. In addition, the protein levels were investigated in another respiratory disease, sarcoidosis, showing significantly higher NPSR1 levels in sera from sarcoidosis patients compared to healthy controls. Immunohistochemical staining of healthy tissues revealed high cytoplasmic expression of HPGDS in mast cells, present in stroma of both airway epithelia, lung as well as in other organs. High expression of NPSR1 was observed in neuroendocrine tissues, while no expression was observed in airway epithelia or lung. In conclusion, we have utilized a broad-scaled affinity proteomics approach to identify three proteins with altered plasma levels in asthmatic children, representing one of the first evaluations of HPGDS and NPSR1 protein levels in plasma. PMID:27145233

  10. Nanometer polymer surface features: the influence on surface energy, protein adsorption and endothelial cell adhesion

    NASA Astrophysics Data System (ADS)

    Carpenter, Joseph; Khang, Dongwoo; Webster, Thomas J.

    2008-12-01

    Current small diameter (<5 mm) synthetic vascular graft materials exhibit poor long-term patency due to thrombosis and intimal hyperplasia. Tissue engineered solutions have yielded functional vascular tissue, but some require an eight-week in vitro culture period prior to implantation—too long for immediate clinical bedside applications. Previous in vitro studies have shown that nanostructured poly(lactic-co-glycolic acid) (PLGA) surfaces elevated endothelial cell adhesion, proliferation, and extracellular matrix synthesis when compared to nanosmooth surfaces. Nonetheless, these studies failed to address the importance of lateral and vertical surface feature dimensionality coupled with surface free energy; nor did such studies elicit an optimum specific surface feature size for promoting endothelial cell adhesion. In this study, a series of highly ordered nanometer to submicron structured PLGA surfaces of identical chemistry were created using a technique employing polystyrene nanobeads and poly(dimethylsiloxane) (PDMS) molds. Results demonstrated increased endothelial cell adhesion on PLGA surfaces with vertical surface features of size less than 18.87 nm but greater than 0 nm due to increased surface energy and subsequently protein (fibronectin and collagen type IV) adsorption. Furthermore, this study provided evidence that the vertical dimension of nanometer surface features, rather than the lateral dimension, is largely responsible for these increases. In this manner, this study provides key design parameters that may promote vascular graft efficacy.

  11. The Structure of the Poxvirus A33 Protein Reveals a Dimer of Unique C-Type Lectin-Like Domains

    SciTech Connect

    Su, Hua-Poo; Singh, Kavita; Gittis, Apostolos G.; Garboczi, David N.

    2010-11-03

    The current vaccine against smallpox is an infectious form of vaccinia virus that has significant side effects. Alternative vaccine approaches using recombinant viral proteins are being developed. A target of subunit vaccine strategies is the poxvirus protein A33, a conserved protein in the Chordopoxvirinae subfamily of Poxviridae that is expressed on the outer viral envelope. Here we have determined the structure of the A33 ectodomain of vaccinia virus. The structure revealed C-type lectin-like domains (CTLDs) that occur as dimers in A33 crystals with five different crystal lattices. Comparison of the A33 dimer models shows that the A33 monomers have a degree of flexibility in position within the dimer. Structural comparisons show that the A33 monomer is a close match to the Link module class of CTLDs but that the A33 dimer is most similar to the natural killer (NK)-cell receptor class of CTLDs. Structural data on Link modules and NK-cell receptor-ligand complexes suggest a surface of A33 that could interact with viral or host ligands. The dimer interface is well conserved in all known A33 sequences, indicating an important role for the A33 dimer. The structure indicates how previously described A33 mutations disrupt protein folding and locates the positions of N-linked glycosylations and the epitope of a protective antibody.

  12. Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group.

    PubMed

    Nunoura, Takuro; Takaki, Yoshihiro; Kakuta, Jungo; Nishi, Shinro; Sugahara, Junichi; Kazama, Hiromi; Chee, Gab-Joo; Hattori, Masahira; Kanai, Akio; Atomi, Haruyuki; Takai, Ken; Takami, Hideto

    2011-04-01

    The domain Archaea has historically been divided into two phyla, the Crenarchaeota and Euryarchaeota. Although regarded as members of the Crenarchaeota based on small subunit rRNA phylogeny, environmental genomics and efforts for cultivation have recently revealed two novel phyla/divisions in the Archaea; the 'Thaumarchaeota' and 'Korarchaeota'. Here, we show the genome sequence of Candidatus 'Caldiarchaeum subterraneum' that represents an uncultivated crenarchaeotic group. A composite genome was reconstructed from a metagenomic library previously prepared from a microbial mat at a geothermal water stream of a sub-surface gold mine. The genome was found to be clearly distinct from those of the known phyla/divisions, Crenarchaeota (hyperthermophiles), Euryarchaeota, Thaumarchaeota and Korarchaeota. The unique traits suggest that this crenarchaeotic group can be considered as a novel archaeal phylum/division. Moreover, C. subterraneum harbors an ubiquitin-like protein modifier system consisting of Ub, E1, E2 and small Zn RING finger family protein with structural motifs specific to eukaryotic system proteins, a system clearly distinct from the prokaryote-type system recently identified in Haloferax and Mycobacterium. The presence of such a eukaryote-type system is unprecedented in prokaryotes, and indicates that a prototype of the eukaryotic protein modifier system is present in the Archaea. PMID:21169198

  13. Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group

    PubMed Central

    Nunoura, Takuro; Takaki, Yoshihiro; Kakuta, Jungo; Nishi, Shinro; Sugahara, Junichi; Kazama, Hiromi; Chee, Gab-Joo; Hattori, Masahira; Kanai, Akio; Atomi, Haruyuki; Takai, Ken; Takami, Hideto

    2011-01-01

    The domain Archaea has historically been divided into two phyla, the Crenarchaeota and Euryarchaeota. Although regarded as members of the Crenarchaeota based on small subunit rRNA phylogeny, environmental genomics and efforts for cultivation have recently revealed two novel phyla/divisions in the Archaea; the ‘Thaumarchaeota’ and ‘Korarchaeota’. Here, we show the genome sequence of Candidatus ‘Caldiarchaeum subterraneum’ that represents an uncultivated crenarchaeotic group. A composite genome was reconstructed from a metagenomic library previously prepared from a microbial mat at a geothermal water stream of a sub-surface gold mine. The genome was found to be clearly distinct from those of the known phyla/divisions, Crenarchaeota (hyperthermophiles), Euryarchaeota, Thaumarchaeota and Korarchaeota. The unique traits suggest that this crenarchaeotic group can be considered as a novel archaeal phylum/division. Moreover, C. subterraneum harbors an ubiquitin-like protein modifier system consisting of Ub, E1, E2 and small Zn RING finger family protein with structural motifs specific to eukaryotic system proteins, a system clearly distinct from the prokaryote-type system recently identified in Haloferax and Mycobacterium. The presence of such a eukaryote-type system is unprecedented in prokaryotes, and indicates that a prototype of the eukaryotic protein modifier system is present in the Archaea. PMID:21169198

  14. A Novel MHC-I Surface Targeted for Binding by the MCMV m06 Immunoevasin Revealed by Solution NMR.

    PubMed

    Sgourakis, Nikolaos G; May, Nathan A; Boyd, Lisa F; Ying, Jinfa; Bax, Ad; Margulies, David H

    2015-11-27

    As part of its strategy to evade detection by the host immune system, murine cytomegalovirus (MCMV) encodes three proteins that modulate cell surface expression of major histocompatibility complex class I (MHC-I) molecules: the MHC-I homolog m152/gp40 as well as the m02-m16 family members m04/gp34 and m06/gp48. Previous studies of the m04 protein revealed a divergent Ig-like fold that is unique to immunoevasins of the m02-m16 family. Here, we engineer and characterize recombinant m06 and investigate its interactions with full-length and truncated forms of the MHC-I molecule H2-L(d) by several techniques. Furthermore, we employ solution NMR to map the interaction footprint of the m06 protein on MHC-I, taking advantage of a truncated H2-L(d), "mini-H2-L(d)," consisting of only the α1α2 platform domain. Mini-H2-L(d) refolded in vitro with a high affinity peptide yields a molecule that shows outstanding NMR spectral features, permitting complete backbone assignments. These NMR-based studies reveal that m06 binds tightly to a discrete site located under the peptide-binding platform that partially overlaps with the β2-microglobulin interface on the MHC-I heavy chain, consistent with in vitro binding experiments showing significantly reduced complex formation between m06 and β2-microglobulin-associated MHC-I. Moreover, we carry out NMR relaxation experiments to characterize the picosecond-nanosecond dynamics of the free mini-H2-L(d) MHC-I molecule, revealing that the site of interaction is highly ordered. This study provides insight into the mechanism of the interaction of m06 with MHC-I, suggesting a structural manipulation of the target MHC-I molecule at an early stage of the peptide-loading pathway. PMID:26463211

  15. Systematic identification of arsenic-binding proteins reveals that hexokinase-2 is inhibited by arsenic.

    PubMed

    Zhang, Hai-Nan; Yang, Lina; Ling, Jian-Ya; Czajkowsky, Daniel M; Wang, Jing-Fang; Zhang, Xiao-Wei; Zhou, Yi-Ming; Ge, Feng; Yang, Ming-Kun; Xiong, Qian; Guo, Shu-Juan; Le, Huang-Ying; Wu, Song-Fang; Yan, Wei; Liu, Bingya; Zhu, Heng; Chen, Zhu; Tao, Sheng-Ce

    2015-12-01

    Arsenic is highly effective for treating acute promyelocytic leukemia (APL) and has shown significant promise against many other tumors. However, although its mechanistic effects in APL are established, its broader anticancer mode of action is not understood. In this study, using a human proteome microarray, we identified 360 proteins that specifically bind arsenic. Among the most highly enriched proteins in this set are those in the glycolysis pathway, including the rate-limiting enzyme in glycolysis, hexokinase-1. Detailed biochemical and metabolomics analyses of the highly homologous hexokinase-2 (HK2), which is overexpressed in many cancers, revealed significant inhibition by arsenic. Furthermore, overexpression of HK2 rescued cells from arsenic-induced apoptosis. Our results thus strongly implicate glycolysis, and HK2 in particular, as a key target of arsenic. Moreover, the arsenic-binding proteins identified in this work are expected to serve as a valuable resource for the development of synergistic antitumor therapeutic strategies.

  16. Mass Spectrometry and Next-Generation Sequencing Reveal an Abundant and Rapidly Evolving Abalone Sperm Protein

    PubMed Central

    Palmer, Melody R.; McDowall, Margo H.; Stewart, Lia; Ouaddi, Aleena; MacCoss, Michael J.; Swanson, Willie J.

    2014-01-01

    SUMMARY Abalone, a broadcast spawning marine mollusk, is an important model for molecular interactions and positive selection in fertilization, but the focus has previously been on only two sperm proteins, lysin and sp18.We used genomic and proteomic techniques to bring new insights to this model by characterizing the testis transcriptome and sperm proteome of the Red abalone Haliotis rufescens. One pair of homologous, testis-specific proteins contains a secretion signal and is small, abundant, and associated with the acrosome. Comparative analysis revealed that homologs are extremely divergent between species, and show strong evidence for positive selection. The acrosomal localization and rapid evolution of these proteins indicates that they play an important role in fertilization, and could be involved in the species-specificity of sperm-egg interactions in abalone. Our genomic and proteomic characterization of abalone fertilization resulted in the identification of interesting, novel peptides that have eluded detection in this important model system for 20 years. PMID:23585193

  17. Systematic identification of arsenic-binding proteins reveals that hexokinase-2 is inhibited by arsenic

    PubMed Central

    Zhang, Hai-nan; Yang, Lina; Ling, Jian-ya; Czajkowsky, Daniel M.; Wang, Jing-Fang; Zhang, Xiao-Wei; Zhou, Yi-Ming; Ge, Feng; Yang, Ming-kun; Xiong, Qian; Guo, Shu-Juan; Le, Huang-Ying; Wu, Song-Fang; Yan, Wei; Liu, Bingya; Zhu, Heng; Chen, Zhu; Tao, Sheng-ce

    2015-01-01

    Arsenic is highly effective for treating acute promyelocytic leukemia (APL) and has shown significant promise against many other tumors. However, although its mechanistic effects in APL are established, its broader anticancer mode of action is not understood. In this study, using a human proteome microarray, we identified 360 proteins that specifically bind arsenic. Among the most highly enriched proteins in this set are those in the glycolysis pathway, including the rate-limiting enzyme in glycolysis, hexokinase-1. Detailed biochemical and metabolomics analyses of the highly homologous hexokinase-2 (HK2), which is overexpressed in many cancers, revealed significant inhibition by arsenic. Furthermore, overexpression of HK2 rescued cells from arsenic-induced apoptosis. Our results thus strongly implicate glycolysis, and HK2 in particular, as a key target of arsenic. Moreover, the arsenic-binding proteins identified in this work are expected to serve as a valuable resource for the development of synergistic antitumor therapeutic strategies. PMID:26598702

  18. Proteomic amino-termini profiling reveals targeting information for protein import into complex plastids.

    PubMed

    Huesgen, Pitter F; Alami, Meriem; Lange, Philipp F; Foster, Leonard J; Schröder, Wolfgang P; Overall, Christopher M; Green, Beverley R

    2013-01-01

    In organisms with complex plastids acquired by secondary endosymbiosis from a photosynthetic eukaryote, the majority of plastid proteins are nuclear-encoded, translated on cytoplasmic ribosomes, and guided across four membranes by a bipartite targeting sequence. In-depth understanding of this vital import process has been impeded by a lack of information about the transit peptide part of this sequence, which mediates transport across the inner three membranes. We determined the mature N-termini of hundreds of proteins from the model diatom Thalassiosira pseudonana, revealing extensive N-terminal modification by acetylation and proteolytic processing in both cytosol and plastid. We identified 63 mature N-termini of nucleus-encoded plastid proteins, deduced their complete transit peptide sequences, determined a consensus motif for their cleavage by the stromal processing peptidase, and found evidence for subsequent processing by a plastid methionine aminopeptidase. The cleavage motif differs from that of higher plants, but is shared with other eukaryotes with complex plastids.

  19. Fluorescence Anisotropy Reveals Order and Disorder of Protein Domains in the Nuclear Pore Complex

    PubMed Central

    Mattheyses, Alexa L.; Kampmann, Martin; Atkinson, Claire E.; Simon, Sanford M.

    2010-01-01

    We present a new approach for studying individual protein domains within the nuclear pore complex (NPC) using fluorescence polarization microscopy. The NPC is a large macromolecular complex, the size and complexity of which presents experimental challenges. Using fluorescence anisotropy and exploiting the symmetry of the NPC and its organization in the nuclear envelope, we have resolved order and disorder of individual protein domains. Fluorescently tagging specific domains of individual nucleoporins revealed both rigid and flexible domains: the tips of the FG domains are disordered, whereas the NPC-anchored domains are ordered. Our technique allows the collection of structural information in vivo, providing the ability to probe the organization of protein domains within the NPC. This has particular relevance for the FG domain nucleoporins, which are crucial for nucleocytoplasmic transport. PMID:20858414

  20. Cryovolcanic Features on Titan's Surface as Revealed by the Cassini RADAR

    NASA Technical Reports Server (NTRS)

    Lopes, R. M.; Elachi, C.; Stofan, E.; Paganelli, F.; Wood, C.; Kirk, R.; Lorenz, R.; Fortes, A. D.; Lunine, J.

    2005-01-01

    The Cassini Titan Radar Mapper obtained Synthetic Aperture radar images of about 1.1% of Titan's surface during the spacecraft s first targeted fly-by on October 26, 2004 (referred to as the Ta fly-by). These images revealed that Titan is very complex geologically. Features identified include a possible volcanic dome or shield, craters that appear to be of volcanic origin, and extensive flows. We will discuss these features and others that will likely be revealed during Cassini s T3 Titan fly-by of February 15, 2005, during which a swath covering comparable amount of the surface will be obtained. Additional information is included in the original extended abstract.

  1. Precise control of surface electrostatic forces on polymer brush layers with opposite charges for resistance to protein adsorption.

    PubMed

    Sakata, Sho; Inoue, Yuuki; Ishihara, Kazuhiko

    2016-10-01

    Various molecular interaction forces are generated during protein adsorption process on material surfaces. Thus, it is necessary to control them to suppress protein adsorption and the subsequent cell and tissue responses. A series of binary copolymer brush layers were prepared via surface-initiated atom transfer radical polymerization, by mixing the cationic monomer unit and anionic monomer unit randomly in various ratios. Surface characterization revealed that the constructed copolymer brush layers exhibited an uniform super-hydrophilic nature and different surface potentials. The strength of the electrostatic interaction forces operating on these mixed-charge copolymer brush surfaces was evaluated quantitatively using force-versus-distance (f-d) curve measurements by atomic force microscopy (AFM) and probes modified by negatively charged carboxyl groups or positively charged amino groups. The electrostatic interaction forces were determined based on the charge ratios of the copolymer brush layers. Notably, the surface containing equivalent cationic/anionic monomer units hardly interacted with both the charged groups. Furthermore, the protein adsorption force and the protein adsorption mass on these surfaces were examined by AFM f-d curve measurement and surface plasmon resonance measurement, respectively. To clarify the influence of the electrostatic interaction on the protein adsorption behavior on the surface, three kinds of proteins having negative, positive, and relatively neutral net charges under physiological conditions were used in this study. We quantitatively demonstrated that the amount of adsorbed proteins on the surfaces would have a strong correlation with the strength of surface-protein interaction forces, and that the strength of surface-protein interaction forces would be determined from the combination between the properties of the electrostatic interaction forces on the surfaces and the charge properties of the proteins. Especially, the

  2. Structures of replication initiation proteins from staphylococcal antibiotic resistance plasmids reveal protein asymmetry and flexibility are necessary for replication

    PubMed Central

    Carr, Stephen B.; Phillips, Simon E.V.; Thomas, Christopher D.

    2016-01-01

    Antibiotic resistance in pathogenic bacteria is a continual threat to human health, often residing in extrachromosomal plasmid DNA. Plasmids of the pT181 family are widespread and confer various antibiotic resistances to Staphylococcus aureus. They replicate via a rolling circle mechanism that requires a multi-functional, plasmid-encoded replication protein to initiate replication, recruit a helicase to the site of initiation and terminate replication after DNA synthesis is complete. We present the first atomic resolution structures of three such replication proteins that reveal distinct, functionally relevant conformations. The proteins possess a unique active site and have been shown to contain a catalytically essential metal ion that is bound in a manner distinct from that of any other rolling circle replication proteins. These structures are the first examples of the Rep_trans Pfam family providing insights into the replication of numerous antibiotic resistance plasmids from Gram-positive bacteria, Gram-negative phage and the mobilisation of DNA by conjugative transposons. PMID:26792891

  3. Phaseolin expression in tobacco chloroplast reveals an autoregulatory mechanism in heterologous protein translation.

    PubMed

    De Marchis, Francesca; Bellucci, Michele; Pompa, Andrea

    2016-02-01

    Plastid DNA engineering is a well-established research area of plant biotechnology, and plastid transgenes often give high expression levels. However, it is still almost impossible to predict the accumulation rate of heterologous protein in transplastomic plants, and there are many cases of unsuccessful transgene expression. Chloroplasts regulate their proteome at the post-transcriptional level, mainly through translation control. One of the mechanisms to modulate the translation has been described in plant chloroplasts for the chloroplast-encoded subunits of multiprotein complexes, and the autoregulation of the translation initiation of these subunits depends on the availability of their assembly partners [control by epistasy of synthesis (CES)]. In Chlamydomonas reinhardtii, autoregulation of endogenous proteins recruited in the assembly of functional complexes has also been reported. In this study, we revealed a self-regulation mechanism triggered by the accumulation of a soluble recombinant protein, phaseolin, in the stroma of chloroplast-transformed tobacco plants. Immunoblotting experiments showed that phaseolin could avoid this self-regulation mechanism when targeted to the thylakoids in transplastomic plants. To inhibit the thylakoid-targeted phaseolin translation as well, this protein was expressed in the presence of a nuclear version of the phaseolin gene with a transit peptide. Pulse-chase and polysome analysis revealed that phaseolin mRNA translation on plastid ribosomes was repressed due to the accumulation in the stroma of the same soluble polypeptide imported from the cytosol. We suggest that translation autoregulation in chloroplast is not limited to heteromeric protein subunits but also involves at least some of the foreign soluble recombinant proteins, leading to the inhibition of plastome-encoded transgene expression in chloroplast. PMID:26031839

  4. Alluvial Fans on Titan Reveal Atmosphere and Surface Interactions and Material Transport

    NASA Astrophysics Data System (ADS)

    Radebaugh, J.; Ventra, D.; Lorenz, R. D.; Farr, T. G.; Kirk, R. L.; Hayes, A.; Malaska, M. J.; Birch, S.; Liu, Z. Y. C.; Lunine, J. I.; Barnes, J. W.; Le Gall, A. A.; Lopes, R. M. C.; Stofan, E. R.; Wall, S. D.; Paillou, P.

    2015-12-01

    Alluvial fans, important depositional systems that record how sediment is stored and moved on planetary surfaces, are found on the surface of Titan, a body of significantly different materials and process rates than Earth. As seen by Cassini's Synthetic Aperture Radar (SAR) images at 350 m resolution, fans on Titan are found globally and are variable in size, shape and relationship to adjacent landforms. Their morphologies and SAR characteristics, which reveal roughness, textural patterns and other material properties, show similarities with fans in Death Valley seen by SAR and indicate there are regions of high relative relief locally, in the Ganesa, Xanadu and equatorial mountain belt regions. The Leilah Fluctus fans near Ganesa are ~30 km x 15 km, similar to the largest Death Valley fans, and revealing mountainous topography adjacent to plains. Others have gentle slopes over hundreds of kilometers, as in the high southern latitude lakes regions or the Mezzoramia southern midlatitudes, where a fan system is 200 km x 150 km, similar to the Qarn Alam fan emerging into the Rub al Khali in Oman. Additionally, there is evidence for a range of particle sizes, from relatively coarse (~2 cm or more) to fine, revealing long-term duration and variability in erosion by methane rainfall and transport. Some features have morphologies consistent with proximality to high-relief source areas and highly ephemeral runoff, while others appear to draw larger catchment areas and are perhaps characterized by more prolonged episodes of flow. The presence of many fans indicates the longevity of rainfall and erosion in Titan's surface processes and reveals that sediment transport and the precipitation that drives it are strongly episodic. Alluvial fans join rivers, lakes, eroded mountains, sand dunes and dissolution features in the list of surface morphologies derived from atmospheric and fluvial processes similar to those on Earth, strengthening comparisons between the two planetary

  5. Compensatory evolution reveals functional interactions between ribosomal proteins S12, L14 and L19.

    PubMed

    Maisnier-Patin, Sophie; Paulander, Wilhelm; Pennhag, Alexandra; Andersson, Dan I

    2007-02-01

    Certain mutations in S12, a ribosomal protein involved in translation elongation rate and translation accuracy, confer resistance to the aminoglycoside streptomycin. Previously we showed in Salmonella typhimurium that the fitness cost, i.e. reduced growth rate, due to the amino acid substitution K42N in S12 could be compensated by at least 35 different mutations located in the ribosomal proteins S4, S5 and L19. Here, we have characterized in vivo the fitness, translation speed and translation accuracy of four different L19 mutants. When separated from the resistance mutation located in S12, the three different compensatory amino acid substitutions in L19 at position 40 (Q40H, Q40L and Q40R) caused a decrease in fitness while the G104A change had no effect on bacterial growth. The rate of protein synthesis was unaffected or increased by the mutations at position 40 and the level of read-through of a UGA nonsense codon was increased in vivo, indicating a loss of translational accuracy. The mutations in L19 increased sensitivity to aminoglycosides active at the A-site, further indicating a perturbation of the decoding step. These phenotypes are similar to those of the classical S4 and S5 ram (ribosomal ambiguity) mutants. By evolving low-fitness L19 mutants by serial passage, we showed that the fitness cost conferred by the L19 mutations could be compensated by additional mutations in the ribosomal protein L19 itself, in S12 and in L14, a protein located close to L19. Our results reveal a novel functional role for the 50 S ribosomal protein L19 during protein synthesis, supporting published structural data suggesting that the interaction of L14 and L19 with 16 S rRNA could influence function of the 30 S subunit. Moreover, our study demonstrates how compensatory fitness-evolution can be used to discover new molecular functions of ribosomal proteins.

  6. Effects of surface compositional and structural heterogeneity on nanoparticle-protein interactions: different protein configurations.

    PubMed

    Huang, Rixiang; Carney, Randy P; Ikuma, Kaoru; Stellacci, Francesco; Lau, Boris L T

    2014-06-24

    As nanoparticles (NPs) enter into biological systems, they are immediately exposed to a variety and concentration of proteins. The physicochemical interactions between proteins and NPs are influenced by the surface properties of the NPs. To identify the effects of NP surface heterogeneity, the interactions between bovine serum albumin (BSA) and gold NPs (AuNPs) with similar chemical composition but different surface structures were investigated. Different interaction modes and BSA conformations were studied by dynamic light scattering, circular dichroism spectroscopy, fluorescence quenching and isothermal titration calorimetry (ITC). Depending on the surface structure of AuNPs, BSA seems to adopt either a "side-on" or an "end-on" conformation on AuNPs. ITC demonstrated that the adsorption of BSA onto AuNPs with randomly distributed polar and nonpolar groups was primarily driven by electrostatic interaction, and all BSA were adsorbed in the same process. The adsorption of BSA onto AuNPs covered with alternating domains of polar and nonpolar groups was a combination of different interactions. Overall, the results of this study point to the potential for utilizing nanoscale manipulation of NP surfaces to control the resulting NP-protein interactions. PMID:24882660

  7. High confidence proteomic analysis of yeast LDs identifies additional droplet proteins and reveals connections to dolichol synthesis and sterol acetylation[S

    PubMed Central

    Currie, Erin; Guo, Xiuling; Christiano, Romain; Chitraju, Chandramohan; Kory, Nora; Harrison, Kenneth; Haas, Joel; Walther, Tobias C.; Farese, Robert V.

    2014-01-01

    Accurate protein inventories are essential for understanding an organelle’s functions. The lipid droplet (LD) is a ubiquitous intracellular organelle with major functions in lipid storage and metabolism. LDs differ from other organelles because they are bounded by a surface monolayer, presenting unique features for protein targeting to LDs. Many proteins of varied functions have been found in purified LD fractions by proteomics. While these studies have become increasingly sensitive, it is often unclear which of the identified proteins are specific to LDs. Here we used protein correlation profiling to identify 35 proteins that specifically enrich with LD fractions of Saccharomyces cerevisiae. Of these candidates, 30 fluorophore-tagged proteins localize to LDs by microscopy, including six proteins, several with human orthologs linked to diseases, which we newly identify as LD proteins (Cab5, Rer2, Say1, Tsc10, YKL047W, and YPR147C). Two of these proteins, Say1, a sterol deacetylase, and Rer2, a cis-isoprenyl transferase, are enzymes involved in sterol and polyprenol metabolism, respectively, and we show their activities are present in LD fractions. Our results provide a highly specific list of yeast LD proteins and reveal that the vast majority of these proteins are involved in lipid metabolism. PMID:24868093

  8. SAXS/SANS on Supercharged Proteins Reveals Residue-Specific Modifications of the Hydration Shell.

    PubMed

    Kim, Henry S; Martel, Anne; Girard, Eric; Moulin, Martine; Härtlein, Michael; Madern, Dominique; Blackledge, Martin; Franzetti, Bruno; Gabel, Frank

    2016-05-24

    Water molecules in the immediate vicinity of biomacromolecules, including proteins, constitute a hydration layer characterized by physicochemical properties different from those of bulk water and play a vital role in the activity and stability of these structures, as well as in intermolecular interactions. Previous studies using solution scattering, crystallography, and molecular dynamics simulations have provided valuable information about the properties of these hydration shells, including modifications in density and ionic concentration. Small-angle scattering of x-rays (SAXS) and neutrons (SANS) are particularly useful and complementary techniques to study biomacromolecular hydration shells due to their sensitivity to electronic and nuclear scattering-length density fluctuations, respectively. Although several sophisticated SAXS/SANS programs have been developed recently, the impact of physicochemical surface properties on the hydration layer remains controversial, and systematic experimental data from individual biomacromolecular systems are scarce. Here, we address the impact of physicochemical surface properties on the hydration shell by a systematic SAXS/SANS study using three mutants of a single protein, green fluorescent protein (GFP), with highly variable net charge (+36, -6, and -29). The combined analysis of our data shows that the hydration shell is locally denser in the vicinity of acidic surface residues, whereas basic and hydrophilic/hydrophobic residues only mildly modify its density. Moreover, the data demonstrate that the density modifications result from the combined effect of residue-specific recruitment of ions from the bulk in combination with water structural rearrangements in their vicinity. Finally, we find that the specific surface-charge distributions of the different GFP mutants modulate the conformational space of flexible parts of the protein. PMID:27224484

  9. Exoproteome analysis reveals higher abundance of proteins linked to alkaline stress in persistent Listeria monocytogenes strains.

    PubMed

    Rychli, Kathrin; Grunert, Tom; Ciolacu, Luminita; Zaiser, Andreas; Razzazi-Fazeli, Ebrahim; Schmitz-Esser, Stephan; Ehling-Schulz, Monika; Wagner, Martin

    2016-02-01

    surface virulence associated protein SvpA. Furthermore proteins involved in cell wall modification, such as the lipoteichonic acid primase LtaP and the N-acetylmuramoyl-l-alanine amidase (Lmo2591) are more abundant in EGDe than in the persistent strains and could indirectly contribute to virulence. In conclusion this study provides information about a set of proteins that could potentially support survival of L. monocytogenes in abiotic niches in food processing environments. Based on these data, a more detailed analysis of the role of the identified proteins under stresses mimicking conditions in food producing environment is essential for further elucidate the mechanism of the phenomenon of persistence of L. monocytogenes.

  10. Attachment of pathogenic prion protein to model oxide surfaces.

    PubMed

    Jacobson, Kurt H; Kuech, Thomas R; Pedersen, Joel A

    2013-07-01

    Prions are the infectious agents in the class of fatal neurodegenerative diseases known as transmissible spongiform encephalopathies, which affect humans, deer, sheep, and cattle. Prion diseases of deer and sheep can be transmitted via environmental routes, and soil is has been implicated in the transmission of these diseases. Interaction with soil particles is expected to govern the transport, bioavailability and persistence of prions in soil environments. A mechanistic understanding of prion interaction with soil components is critical for understanding the behavior of these proteins in the environment. Here, we report results of a study to investigate the interactions of prions with model oxide surfaces (Al2O3, SiO2) using quartz crystal microbalance with dissipation monitoring and optical waveguide light mode spectroscopy. The efficiency of prion attachment to Al2O3 and SiO2 depended strongly on pH and ionic strength in a manner consistent with electrostatic forces dominating interaction with these oxides. The presence of the N-terminal portion of the protein appeared to promote attachment to Al2O3 under globally electrostatically repulsive conditions. We evaluated the utility of recombinant prion protein as a surrogate for prions in attachment experiments and found that its behavior differed markedly from that of the infectious agent. Our findings suggest that prions would tend to associate with positively charged mineral surfaces in soils (e.g., iron and aluminum oxides).

  11. Using extremely halophilic bacteria to understand the role of surface charge and surface hydration in protein evolution, folding, and function

    NASA Astrophysics Data System (ADS)

    Hoff, Wouter; Deole, Ratnakar; Osu Collaboration

    2013-03-01

    Halophilic Archaea accumulate molar concentrations of KCl in their cytoplasm as an osmoprotectant, and have evolved highly acidic proteomes that only function at high salinity. We examine osmoprotection in the photosynthetic Proteobacteria Halorhodospira halophila. We find that H. halophila has an acidic proteome and accumulates molar concentrations of KCl when grown in high salt media. Upon growth of H. halophila in low salt media, its cytoplasmic K + content matches that of Escherichia coli, revealing an acidic proteome that can function in the absence of high cytoplasmic salt concentrations. These findings necessitate a reassessment of two central aspects of theories for understanding extreme halophiles. We conclude that proteome acidity is not driven by stabilizing interactions between K + ions and acidic side chains, but by the need for maintaining sufficient solvation and hydration of the protein surface at high salinity through strongly hydrated carboxylates. We propose that obligate protein halophilicity is a non-adaptive property resulting from genetic drift in which constructive neutral evolution progressively incorporates weakly stabilizing K + binding sites on an increasingly acidic protein surface.

  12. Revealing the Reconstructed Surface of Li[Mn2]O4.

    PubMed

    Amos, Charles D; Roldan, Manuel A; Varela, Maria; Goodenough, John B; Ferreira, Paulo J

    2016-05-11

    The spinel Li[Mn2]O4 is a candidate cathode for a Li-ion battery, but its capacity fades over a charge/discharge cycle of Li1-x[Mn2]O4 (0 < x < 1) that is associated with a loss of Mn to the organic-liquid electrolyte. It is known that the disproportionation reaction 2Mn(3+) = Mn(2+) + Mn(4+) occurs at the surface of a Mn spinel, and it is important to understand the atomic structure and composition of the surface of Li[Mn2]O4 in order to understand how Mn loss occurs. We report a study of the surface reconstruction of Li[Mn2]O4 by aberration-corrected scanning transmission electron microscopy. The atomic structure coupled with Mn-valence and the distribution of the atomic ratio of oxygen obtained by electron energy loss spectroscopy reveals a thin, stable surface layer of Mn3O4, a subsurface region of Li1+x[Mn2]O4 with retention of bulk Li[Mn2]O4. This observation is compatible with the disproportionation reaction coupled with oxygen deficiency and a displacement of surface Li(+) from the Mn3O4 surface phase. These results provide a critical step toward understanding how Mn is lost from Li[Mn2]O4, once inside a battery. PMID:27022834

  13. Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs.

    PubMed

    Edmondson, J L; Stott, I; Davies, Z G; Gaston, K J; Leake, J R

    2016-01-01

    Urban areas are major contributors to air pollution and climate change, causing impacts on human health that are amplified by the microclimatological effects of buildings and grey infrastructure through the urban heat island (UHI) effect. Urban greenspaces may be important in reducing surface temperature extremes, but their effects have not been investigated at a city-wide scale. Across a mid-sized UK city we buried temperature loggers at the surface of greenspace soils at 100 sites, stratified by proximity to city centre, vegetation cover and land-use. Mean daily soil surface temperature over 11 months increased by 0.6 °C over the 5 km from the city outskirts to the centre. Trees and shrubs in non-domestic greenspace reduced mean maximum daily soil surface temperatures in the summer by 5.7 °C compared to herbaceous vegetation, but tended to maintain slightly higher temperatures in winter. Trees in domestic gardens, which tend to be smaller, were less effective at reducing summer soil surface temperatures. Our findings reveal that the UHI effects soil temperatures at a city-wide scale, and that in their moderating urban soil surface temperature extremes, trees and shrubs may help to reduce the adverse impacts of urbanization on microclimate, soil processes and human health. PMID:27641002

  14. Bacterial community analysis of beef cattle feedlots reveals that pen surface is distinct from feces.

    PubMed

    Durso, Lisa M; Harhay, Gregory P; Smith, Timothy P L; Bono, James L; DeSantis, Todd Z; Clawson, Michael L

    2011-05-01

    The surface of beef cattle feedlot pens is commonly conceptualized as being packed uncomposted manure. Despite the important role that the feedlot pen may play in the transmission of veterinary and zoonotic pathogens, the bacterial ecology of feedlot surface material is not well understood. Our present study characterized the bacterial communities of the beef cattle feedlot pen surface material using 3647 full-length 16S rDNA sequences, and we compared the community composition of feedlot pens to the fecal source material. The feedlot surface composite was represented by members of the phylum Actinobacteria (42%), followed by Firmicutes (24%), Bacteroidetes (24%), and Proteobacteria (9%). The feedlot pen surface material bacterial communities were clearly distinct from those of the feces from animals in the same pen. Comparisons with previously published results of feces from the animals in the same pen reveal that, of 139 genera identified, only 25 were present in both habitats. These results indicate that, microbiologically, the feedlot pen surface material is separate and distinct from the fecal source material, suggesting that bacteria that originate in cattle feces face different selection pressures and survival challenges during their tenure in the feedlot pen, as compared to their residence in the gastrointestinal tract.

  15. Desorption electrospray ionization mass spectrometry reveals surface-mediated antifungal chemical defense of a tropical seaweed

    PubMed Central

    Lane, Amy L.; Nyadong, Leonard; Galhena, Asiri S.; Shearer, Tonya L.; Stout, E. Paige; Parry, R. Mitchell; Kwasnik, Mark; Wang, May D.; Hay, Mark E.; Fernandez, Facundo M.; Kubanek, Julia

    2009-01-01

    Organism surfaces represent signaling sites for attraction of allies and defense against enemies. However, our understanding of these signals has been impeded by methodological limitations that have precluded direct fine-scale evaluation of compounds on native surfaces. Here, we asked whether natural products from the red macroalga Callophycus serratus act in surface-mediated defense against pathogenic microbes. Bromophycolides and callophycoic acids from algal extracts inhibited growth of Lindra thalassiae, a marine fungal pathogen, and represent the largest group of algal antifungal chemical defenses reported to date. Desorption electrospray ionization mass spectrometry (DESI-MS) imaging revealed that surface-associated bromophycolides were found exclusively in association with distinct surface patches at concentrations sufficient for fungal inhibition; DESI-MS also indicated the presence of bromophycolides within internal algal tissue. This is among the first examples of natural product imaging on biological surfaces, suggesting the importance of secondary metabolites in localized ecological interactions, and illustrating the potential of DESI-MS in understanding chemically-mediated biological processes. PMID:19366672

  16. Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs

    PubMed Central

    Edmondson, J. L.; Stott, I.; Davies, Z. G.; Gaston, K. J.; Leake, J. R.

    2016-01-01

    Urban areas are major contributors to air pollution and climate change, causing impacts on human health that are amplified by the microclimatological effects of buildings and grey infrastructure through the urban heat island (UHI) effect. Urban greenspaces may be important in reducing surface temperature extremes, but their effects have not been investigated at a city-wide scale. Across a mid-sized UK city we buried temperature loggers at the surface of greenspace soils at 100 sites, stratified by proximity to city centre, vegetation cover and land-use. Mean daily soil surface temperature over 11 months increased by 0.6 °C over the 5 km from the city outskirts to the centre. Trees and shrubs in non-domestic greenspace reduced mean maximum daily soil surface temperatures in the summer by 5.7 °C compared to herbaceous vegetation, but tended to maintain slightly higher temperatures in winter. Trees in domestic gardens, which tend to be smaller, were less effective at reducing summer soil surface temperatures. Our findings reveal that the UHI effects soil temperatures at a city-wide scale, and that in their moderating urban soil surface temperature extremes, trees and shrubs may help to reduce the adverse impacts of urbanization on microclimate, soil processes and human health. PMID:27641002

  17. Cell-Surface Protein Profiling Identifies Distinctive Markers of Progenitor Cells in Human Skeletal Muscle.

    PubMed

    Uezumi, Akiyoshi; Nakatani, Masashi; Ikemoto-Uezumi, Madoka; Yamamoto, Naoki; Morita, Mitsuhiro; Yamaguchi, Asami; Yamada, Harumoto; Kasai, Takehiro; Masuda, Satoru; Narita, Asako; Miyagoe-Suzuki, Yuko; Takeda, Shin'ichi; Fukada, So-Ichiro; Nishino, Ichizo; Tsuchida, Kunihiro

    2016-08-01

    Skeletal muscle contains two distinct stem/progenitor populations. One is the satellite cell, which acts as a muscle stem cell, and the other is the mesenchymal progenitor, which contributes to muscle pathogeneses such as fat infiltration and fibrosis. Detailed and accurate characterization of these progenitors in humans remains elusive. Here, we performed comprehensive cell-surface protein profiling of the two progenitor populations residing in human skeletal muscle and identified three previously unrecognized markers: CD82 and CD318 for satellite cells and CD201 for mesenchymal progenitors. These markers distinguish myogenic and mesenchymal progenitors, and enable efficient isolation of the two types of progenitors. Functional study revealed that CD82 ensures expansion and preservation of myogenic progenitors by suppressing excessive differentiation, and CD201 signaling favors adipogenesis of mesenchymal progenitors. Thus, cell-surface proteins identified here are not only useful markers but also functionally important molecules, and provide valuable insight into human muscle biology and diseases. PMID:27509136

  18. Transport effects on the kinetics of protein-surface binding.

    PubMed Central

    Balgi, G; Leckband, D E; Nitsche, J M

    1995-01-01

    A detailed model is presented for protein binding to active surfaces, with application to the binding of avidin molecules to a biotin-functionalized fiber optic sensor in experiments reported by S. Zhao and W. M. Reichert (American Chemical Society Symposium Series 493, 1992). Kinetic data for binding in solution are used to assign an intrinsic catalytic rate coefficient k to the biotin-avidin pair, deconvoluted from transport and electrostatic factors via application of coagulation theory. This intrinsic chemical constant is built into a reaction-diffusion analysis of surface binding where activity is restricted to localized sites (representing immobilized biotin molecules). The analysis leads to an effective catalytic rate coefficient keff characterizing the active surface. Thereafter, solution of the transport problem describing absorption of avidin molecules by the macroscopic sensor surface leads to predictions of the avidin flux, which are found to be in good agreement with the experimental data. The analysis suggests the following conclusions. 1) Translational diffusion limitations are negligible for avidin-biotin binding in solution owing to the small (kinetically limiting) value k = 0.00045 m/s. 2) The sparse distribution of biotin molecules and the presence of a repulsive hydration force produce an effective surface-average catalytic rate coefficient keff of order 10(-7) m/s, much smaller than k. 3) Avidin binding to the fiber optic sensor occurs in an intermediate regime where the rate is influenced by both kinetics and diffusion. Images FIGURE 1 FIGURE 3 PMID:7647232

  19. Iron-Regulated Surface Determinant (Isd) Proteins of Staphylococcus lugdunensis

    PubMed Central

    Zapotoczna, Marta; Heilbronner, Simon; Speziale, Pietro

    2012-01-01

    Staphylococcus lugdunensis is the only coagulase-negative Staphylococcus species with a locus encoding iron-regulated surface determinant (Isd) proteins. In Staphylococcus aureus, the Isd proteins capture heme from hemoglobin and transfer it across the wall to a membrane-bound transporter, which delivers it into the cytoplasm, where heme oxygenases release iron. The Isd proteins of S. lugdunensis are expressed under iron-restricted conditions. We propose that S. lugdunensis IsdB and IsdC proteins perform the same functions as those of S. aureus. S. lugdunensis IsdB is the only hemoglobin receptor within the isd locus. It specifically binds human hemoglobin with a dissociation constant (Kd) of 23 nM and transfers heme on IsdC. IsdB expression promotes bacterial growth in an iron-limited medium containing human hemoglobin but not mouse hemoglobin. This correlates with weak binding of IsdB to mouse hemoglobin in vitro. Unlike IsdB and IsdC, the proteins IsdJ and IsdK are not sorted to the cell wall in S. lugdunensis. In contrast, IsdJ expressed in S. aureus and Lactococcus lactis is anchored to peptidoglycan, suggesting that S. lugdunensis sortases may differ in signal recognition or could be defective. IsdJ and IsdK are present in the culture supernatant, suggesting that they could acquire heme from the external milieu. The IsdA protein of S. aureus protects bacteria from bactericidal lipids due to its hydrophilic C-terminal domain. IsdJ has a similar region and protected S. aureus and L. lactis as efficiently as IsdA but, possibly due to its location, was less effective in its natural host. PMID:23002220

  20. Comparative analysis reveals conserved protein phosphorylation networks implicated in multiple diseases.

    PubMed

    Tan, Chris Soon Heng; Bodenmiller, Bernd; Pasculescu, Adrian; Jovanovic, Marko; Hengartner, Michael O; Jørgensen, Claus; Bader, Gary D; Aebersold, Ruedi; Pawson, Tony; Linding, Rune

    2009-01-01

    Protein kinases enable cellular information processing. Although numerous human phosphorylation sites and their dynamics have been characterized, the evolutionary history and physiological importance of many signaling events remain unknown. Using target phosphoproteomes determined with a similar experimental and computational pipeline, we investigated the conservation of human phosphorylation events in distantly related model organisms (fly, worm, and yeast). With a sequence-alignment approach, we identified 479 phosphorylation events in 344 human proteins that appear to be positionally conserved over approximately 600 million years of evolution and hence are likely to be involved in fundamental cellular processes. This sequence-alignment analysis suggested that many phosphorylation sites evolve rapidly and therefore do not display strong evolutionary conservation in terms of sequence position in distantly related organisms. Thus, we devised a network-alignment approach to reconstruct conserved kinase-substrate networks, which identified 778 phosphorylation events in 698 human proteins. Both methods identified proteins tightly regulated by phosphorylation as well as signal integration hubs, and both types of phosphoproteins were enriched in proteins encoded by disease-associated genes. We analyzed the cellular functions and structural relationships for these conserved signaling events, noting the incomplete nature of current phosphoproteomes. Assessing phosphorylation conservation at both site and network levels proved useful for exploring both fast-evolving and ancient signaling events. We reveal that multiple complex diseases seem to converge within the conserved networks, suggesting that disease development might rely on common molecular networks.

  1. Tissue-Based Proteogenomics Reveals that Human Testis Endows Plentiful Missing Proteins.

    PubMed

    Zhang, Yao; Li, Qidan; Wu, Feilin; Zhou, Ruo; Qi, Yingzi; Su, Na; Chen, Lingsheng; Xu, Shaohang; Jiang, Tao; Zhang, Chengpu; Cheng, Gang; Chen, Xinguo; Kong, Degang; Wang, Yujia; Zhang, Tao; Zi, Jin; Wei, Wei; Gao, Yuan; Zhen, Bei; Xiong, Zhi; Wu, Songfeng; Yang, Pengyuan; Wang, Quanhui; Wen, Bo; He, Fuchu; Xu, Ping; Liu, Siqi

    2015-09-01

    Investigations of missing proteins (MPs) are being endorsed by many bioanalytical strategies. We proposed that proteogenomics of testis tissue was a feasible approach to identify more MPs because testis tissues have higher gene expression levels. Here we combined proteomics and transcriptomics to survey gene expression in human testis tissues from three post-mortem individuals. Proteins were extracted and separated with glycine- and tricine-SDS-PAGE. A total of 9597 protein groups were identified; of these, 166 protein groups were listed as MPs, including 138 groups (83.1%) with transcriptional evidence. A total of 2948 proteins are designated as MPs, and 5.6% of these were identified in this study. The high incidence of MPs in testis tissue indicates that this is a rich resource for MPs. Functional category analysis revealed that the biological processes that testis MPs are mainly involved in are sexual reproduction and spermatogenesis. Some of the MPs are potentially involved in tumorgenesis in other tissues. Therefore, this proteogenomics analysis of individual testis tissues provides convincing evidence of the discovery of MPs. All mass spectrometry data from this study have been deposited in the ProteomeXchange (data set identifier PXD002179).

  2. Crystal structure of human tyrosylprotein sulfotransferase-2 reveals the mechanism of protein tyrosine sulfation reaction

    PubMed Central

    Teramoto, Takamasa; Fujikawa, Yukari; Kawaguchi, Yoshirou; Kurogi, Katsuhisa; Soejima, Masayuki; Adachi, Rumi; Nakanishi, Yuichi; Mishiro-Sato, Emi; Liu, Ming-Cheh; Sakakibara, Yoichi; Suiko, Masahito; Kimura, Makoto; Kakuta, Yoshimitsu

    2013-01-01

    Post-translational protein modification by tyrosine-sulfation plays an important role in extracellular protein-protein interactions. The protein tyrosine sulfation reaction is catalyzed by the Golgi-enzyme called the tyrosylprotein sulfotransferase (TPST). To date, no crystal structure is available for TPST. Detailed mechanism of protein tyrosine sulfation reaction has thus remained unclear. Here we present the first crystal structure of the human TPST isoform 2 (TPST2) complexed with a substrate peptide (C4P5Y3) derived from complement C4 and 3’-phosphoadenosine-5’-phosphate (PAP) at 1.9Å resolution. Structural and complementary mutational analyses revealed the molecular basis for catalysis being an SN2-like in-line displacement mechanism. TPST2 appeared to recognize the C4 peptide in a deep cleft by using a short parallel β-sheet type interaction, and the bound C4P5Y3 forms an L-shaped structure. Surprisingly, the mode of substrate peptide recognition observed in the TPST2 structure resembles that observed for the receptor type tyrosine kinases. PMID:23481380

  3. Dynamic Network-Based Relevance Score Reveals Essential Proteins and Functional Modules in Directed Differentiation

    PubMed Central

    Wu, Chia-Chou; Lin, Che

    2015-01-01

    The induction of stem cells toward a desired differentiation direction is required for the advancement of stem cell-based therapies. Despite successful demonstrations of the control of differentiation direction, the effective use of stem cell-based therapies suffers from a lack of systematic knowledge regarding the mechanisms underlying directed differentiation. Using dynamic modeling and the temporal microarray data of three differentiation stages, three dynamic protein-protein interaction networks were constructed. The interaction difference networks derived from the constructed networks systematically delineated the evolution of interaction variations and the underlying mechanisms. A proposed relevance score identified the essential components in the directed differentiation. Inspection of well-known proteins and functional modules in the directed differentiation showed the plausibility of the proposed relevance score, with the higher scores of several proteins and function modules indicating their essential roles in the directed differentiation. During the differentiation process, the proteins and functional modules with higher relevance scores also became more specific to the neuronal identity. Ultimately, the essential components revealed by the relevance scores may play a role in controlling the direction of differentiation. In addition, these components may serve as a starting point for understanding the systematic mechanisms of directed differentiation and for increasing the efficiency of stem cell-based therapies. PMID:25977693

  4. Effects of pressure on the dynamics of a hyperthermophilic protein revealed by quasielastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Shrestha, U. R.; Bhowmik, D.; Copley, J. R. D.; Tyagi, M.; Leao, J. B.; Chu, X.-Q.

    Inorganic pyrophosphatase (IPPase) from Thermococcus thioreducens is a large oligomeric protein derived from hyperthermophilic microorganism that is found near hydrothermal vents deep under the sea, where the pressure is nearly 100 MPa. Here we study the effects of pressure on the conformational flexibility and relaxation dynamics of IPPase over a wide temperature range using quasielastic neutron scattering (QENS) technique. Two spectrometers were used to investigate the β-relaxation dynamics of proteins in time ranges from 2 to 25 ps, and from 100 ps to 2 ns. Our results reveal that, under the pressure of 100 MPa, IPPase displays much faster relaxation dynamics than a mesophilic model protein, hen egg white lysozyme (HEWL), opposite to what we observed previously under the ambient pressure. These contradictory observations imply that high pressure affects the dynamical properties of proteins by distorting their energy landscapes. Accordingly, we derived a general schematic denaturation phase diagram that can be used as a general picture to understand the effects of pressure on protein dynamics and activities Wayne State Univ Startup Fund.

  5. Novel proteomic tools reveal essential roles of SRP and importance of proper membrane protein biogenesis.

    PubMed

    Zhang, Dawei; Sweredoski, Michael J; Graham, Robert L J; Hess, Sonja; Shan, Shu-ou

    2012-02-01

    The signal recognition particle (SRP), which mediates cotranslational protein targeting to cellular membranes, is universally conserved and essential for bacterial and mammalian cells. However, the current understanding of the role of SRP in cell physiology and pathology is still poor, and the reasons behind its essential role in cell survival remain unclear. Here, we systematically analyzed the consequences of SRP loss in E. coli using time-resolved quantitative proteomic analyses. A series of snapshots of the steady-state and newly synthesized proteome unveiled three stages of cellular responses to SRP depletion, and demonstrated essential roles of SRP in metabolism, membrane potential, and protein and energy homeostasis in both the membrane and cytoplasm. We also identified a group of periplasmic proteins, including key molecular chaperones, whose localization was impaired by the loss of SRP; this and additional results showed that SRP is crucial for protein homeostasis in the bacterial envelope. These results reveal the extensive roles that SRP plays in bacterial physiology, emphasize the importance of proper membrane protein biogenesis, and demonstrate the ability of time-resolved quantitative proteomic analysis to provide new biological insights.

  6. Global Profiling of Protein Lysine Malonylation in Escherichia coli Reveals Its Role in Energy Metabolism.

    PubMed

    Qian, Lili; Nie, Litong; Chen, Ming; Liu, Ping; Zhu, Jun; Zhai, Linhui; Tao, Sheng-Ce; Cheng, Zhongyi; Zhao, Yingming; Tan, Minjia

    2016-06-01

    Protein lysine malonylation is a recently identified post-translational modification (PTM), which is evolutionarily conserved from bacteria to mammals. Although analysis of lysine malonylome in mammalians suggested that this modification was related to energy metabolism, the substrates and biological roles of malonylation in prokaryotes are still poorly understood. In this study, we performed qualitative and quantitative analyses to globally identify lysine malonylation substrates in Escherichia coli. We identified 1745 malonylation sites in 594 proteins in E. coli, representing the first and largest malonylome data set in prokaryotes up to date. Bioinformatic analyses showed that lysine malonylation was significantly enriched in protein translation, energy metabolism pathways and fatty acid biosynthesis, implying the potential roles of protein malonylation in bacterial physiology. Quantitative proteomics by fatty acid synthase inhibition in both auxotrophic and prototrophic E. coli strains revealed that lysine malonylation is closely associated with E. coli fatty acid metabolism. Protein structural analysis and mutagenesis experiment suggested malonylation could impact enzymatic activity of citrate synthase, a key enzyme in citric acid (TCA) cycle. Further comparative analysis among lysine malonylome, succinylome and acetylome data showed that these three modifications could participate in some similar enriched metabolism pathways, but they could also possibly play distinct roles such as in fatty acid synthesis. These data expanded our knowledge of lysine malonylation in prokaryotes, providing a resource for functional study of lysine malonylation in bacteria. PMID:27183143

  7. Single molecule surface enhanced resonance Raman scattering (SERRS) of the enhanced green fluorescent protein (EGFP)

    NASA Astrophysics Data System (ADS)

    Hofkens, Johan; De Schryver, Frans C.; Cotlet, Mircea; Habuchi, Satoshi

    2004-06-01

    One of the most intriguing findings in single molecule spectroscopy (SMS) is the observation of Raman spectra of individual molecules, despite the small cross section of the transitions involved. The observation of the spectra can be explained by the surface enhanced Raman scattering (SERRS) effect. At the single-molecule level, the SERRS-spectra recorded as a function of time reveal inhomogeneous behaviour such as on/off blinking, spectral diffusion, intensity fluctuations of vibrational line, and even splitting of some lines within the spectrum of one molecule. Single-molecule SERRS (SM-SERRS) spectroscopy opens up exciting opportunities in the field of biophysics and biomedical spectroscopy. The first example of single protein SERRS was performed on hemoglobin. However, the possibility of extracting the heme group by silver sols can not be excluded. Here we report on SM-SERRS spectra of enhanced green fluorescent protein (EGFP) in which the chromophore is kept in the protein. The time series of SM-SERRS spectra suggest the conversion of the EGFP chromophore between the deprotonated and the protonated form. Autocorrelation analysis of SM-SERRS trajectory reveals the presence of fast dynamics taking place in the protein. Our findings show the potential of the technique to study structural dynamics of protein molecules.

  8. GGA3 Interacts with a G Protein-Coupled Receptor and Modulates Its Cell Surface Export

    PubMed Central

    Zhang, Maoxiang; Davis, Jason E.; Li, Chunman; Gao, Jie; Huang, Wei; Lambert, Nevin A.; Terry, Alvin V.

    2016-01-01

    Molecular mechanisms governing the anterograde trafficking of nascent G protein-coupled receptors (GPCRs) are poorly understood. Here, we have studied the regulation of cell surface transport of α2-adrenergic receptors (α2-ARs) by GGA3 (Golgi-localized, γ-adaptin ear domain homology, ADP ribosylation factor-binding protein 3), a multidomain clathrin adaptor protein that sorts cargo proteins at the trans-Golgi network (TGN) to the endosome/lysosome pathway. By using an inducible system, we demonstrated that GGA3 knockdown significantly inhibited the cell surface expression of newly synthesized α2B-AR without altering overall receptor synthesis and internalization. The receptors were arrested in the TGN. Furthermore, GGA3 knockdown attenuated α2B-AR-mediated signaling, including extracellular signal-regulated kinase 1/2 (ERK1/2) activation and cyclic AMP (cAMP) inhibition. More interestingly, GGA3 physically interacted with α2B-AR, and the interaction sites were identified as the triple Arg motif in the third intracellular loop of the receptor and the acidic motif EDWE in the VHS domain of GGA3. In contrast, α2A-AR did not interact with GGA3 and its cell surface export and signaling were not affected by GGA3 knockdown. These data reveal a novel function of GGA3 in export trafficking of a GPCR that is mediated via a specific interaction with the receptor. PMID:26811329

  9. Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor

    SciTech Connect

    Bokoch, Michael P.; Zou, Yaozhong; Rasmussen, Søren G.F.; Liu, Corey W.; Nygaard, Rie; Rosenbaum, Daniel M.; Fung, Juan José; Choi, Hee-Jung; Thian, Foon Sun; Kobilka, Tong Sun; Puglisi, Joseph D.; Weis, William I.; Pardo, Leonardo; Prosser, R. Scott; Mueller, Luciano; Kobilka, Brian K.

    2010-01-14

    G-protein-coupled receptors (GPCRs) are seven-transmembrane proteins that mediate most cellular responses to hormones and neurotransmitters. They are the largest group of therapeutic targets for a broad spectrum of diseases. Recent crystal structures of GPCRs have revealed structural conservation extending from the orthosteric ligand-binding site in the transmembrane core to the cytoplasmic G-protein-coupling domains. In contrast, the extracellular surface (ECS) of GPCRs is remarkably diverse and is therefore an ideal target for the discovery of subtype-selective drugs. However, little is known about the functional role of the ECS in receptor activation, or about conformational coupling of this surface to the native ligand-binding pocket. Here we use NMR spectroscopy to investigate ligand-specific conformational changes around a central structural feature in the ECS of the {beta}{sub 2} adrenergic receptor: a salt bridge linking extracellular loops 2 and 3. Small-molecule drugs that bind within the transmembrane core and exhibit different efficacies towards G-protein activation (agonist, neutral antagonist and inverse agonist) also stabilize distinct conformations of the ECS. We thereby demonstrate conformational coupling between the ECS and the orthosteric binding site, showing that drugs targeting this diverse surface could function as allosteric modulators with high subtype selectivity. Moreover, these studies provide a new insight into the dynamic behaviour of GPCRs not addressable by static, inactive-state crystal structures.

  10. Protein Composition of Infectious Spores Reveals Novel Sexual Development and Germination Factors in Cryptococcus.

    PubMed

    Huang, Mingwei; Hebert, Alexander S; Coon, Joshua J; Hull, Christina M

    2015-08-01

    Spores are an essential cell type required for long-term survival across diverse organisms in the tree of life and are a hallmark of fungal reproduction, persistence, and dispersal. Among human fungal pathogens, spores are presumed infectious particles, but relatively little is known about this robust cell type. Here we used the meningitis-causing fungus Cryptococcus neoformans to determine the roles of spore-resident proteins in spore biology. Using highly sensitive nanoscale liquid chromatography/mass spectrometry, we compared the proteomes of spores and vegetative cells (yeast) and identified eighteen proteins specifically enriched in spores. The genes encoding these proteins were deleted, and the resulting strains were evaluated for discernable phenotypes. We hypothesized that spore-enriched proteins would be preferentially involved in spore-specific processes such as dormancy, stress resistance, and germination. Surprisingly, however, the majority of the mutants harbored defects in sexual development, the process by which spores are formed. One mutant in the cohort was defective in the spore-specific process of germination, showing a delay specifically in the initiation of vegetative growth. Thus, by using this in-depth proteomics approach as a screening tool for cell type-specific proteins and combining it with molecular genetics, we successfully identified the first germination factor in C. neoformans. We also identified numerous proteins with previously unknown functions in both sexual development and spore composition. Our findings provide the first insights into the basic protein components of infectious spores and reveal unexpected molecular connections between infectious particle production and spore composition in a pathogenic eukaryote.

  11. Protein Composition of Infectious Spores Reveals Novel Sexual Development and Germination Factors in Cryptococcus

    PubMed Central

    Huang, Mingwei; Hebert, Alexander S.; Coon, Joshua J.; Hull, Christina M.

    2015-01-01

    Spores are an essential cell type required for long-term survival across diverse organisms in the tree of life and are a hallmark of fungal reproduction, persistence, and dispersal. Among human fungal pathogens, spores are presumed infectious particles, but relatively little is known about this robust cell type. Here we used the meningitis-causing fungus Cryptococcus neoformans to determine the roles of spore-resident proteins in spore biology. Using highly sensitive nanoscale liquid chromatography/mass spectrometry, we compared the proteomes of spores and vegetative cells (yeast) and identified eighteen proteins specifically enriched in spores. The genes encoding these proteins were deleted, and the resulting strains were evaluated for discernable phenotypes. We hypothesized that spore-enriched proteins would be preferentially involved in spore-specific processes such as dormancy, stress resistance, and germination. Surprisingly, however, the majority of the mutants harbored defects in sexual development, the process by which spores are formed. One mutant in the cohort was defective in the spore-specific process of germination, showing a delay specifically in the initiation of vegetative growth. Thus, by using this in-depth proteomics approach as a screening tool for cell type-specific proteins and combining it with molecular genetics, we successfully identified the first germination factor in C. neoformans. We also identified numerous proteins with previously unknown functions in both sexual development and spore composition. Our findings provide the first insights into the basic protein components of infectious spores and reveal unexpected molecular connections between infectious particle production and spore composition in a pathogenic eukaryote. PMID:26313153

  12. Organic solvents identify specific ligand binding sites on protein surfaces.

    PubMed

    Liepinsh, E; Otting, G

    1997-03-01

    Enzymes frequently recognize substrates and pharmaceutical drugs through specific binding interactions in deep pockets on the protein surface. We show how the specificity-determining substrate binding site of hen egg-white lysozyme (HEWL) can be readily identified in aqueous solution by nuclear magnetic resonance spectroscopy using small organic solvent molecules as detection probes. Exchange of magnetization between the 1H nuclei of the protein and the ligands through dipole-dipole interactions is observed which allows the modeling of their position and orientation at the binding site. Combined with site-specific binding constants measured by titration experiments with different organic solvents, the method can provide important information for rational drug design. In addition, the lifetime of nonspecific interactions of HEWL with organic solvents is shown to be in the sub-nanosecond time range. PMID:9062927

  13. Revealing the binding mode between respiratory syncytial virus fusion protein and benzimidazole-based inhibitors.

    PubMed

    Ji, Dingjue; Ye, Wei; Chen, HaiFeng

    2015-07-01

    Human respiratory syncytial virus (HRSV) is a major respiratory pathogen in newborn infants and young children and can also be a threat to some elderly and high-risk adults with chronic pulmonary disease and the severely immunocompromised. The RSV fusion (RSVF) protein has been an attractive target for vaccine and drug development. Experimental results indicate a series of benzimidazole-based inhibitors which target RSVF protein to inhibit the viral entry of RSV. To reveal the binding mode between these inhibitors and RSVF protein, molecular docking and molecular dynamics simulations were used to investigate the interactions between the inhibitors and the core domain of RSVF protein. MD results suggest that the active molecules have stronger π-π stacking, cation-π, and other interactions than less active inhibitors. The binding free energy between the active inhibitor and RSVF protein is also found to be significantly lower than that of the less active one using MM/GBSA. Then, Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA) methods were used to construct three dimensional quantitative structure-activity (3D-QSAR) models. The cross-validated q(2) values are found to be 0.821 and 0.795 for CoMFA and CoMSIA, respectively. And the non-cross-validated r(2) values are 0.973 and 0.961. Ninety-two test set compounds validated these models. The results suggest that these models are robust with good prediction abilities. Furthermore, these models reveal possible methods to improve the bioactivity of inhibitors. PMID:25872614

  14. Surface-Enhanced Raman Scattering Nanoparticles as Optical Labels for Imaging Cell Surface Proteins

    NASA Astrophysics Data System (ADS)

    MacLaughlin, Christina M.

    Assaying the expression of cell surface proteins has widespread application for characterizing cell type, developmental stage, and monitoring disease transformation. Immunophenotyping is conducted by treating cells with labelled targeting moieties that have high affinity for relevant surface protein(s). The sensitivity and specificity of immunophenotyping is defined by the choice of contrast agent and therefore, the number of resolvable signals that can be used to simultaneously label cells. Narrow band width surface-enhanced Raman scattering (SERS) nanoparticles are proposed as optical labels for multiplexed immunophenotying. Two types of surface coatings were investigated to passivate the gold nanoparticles, incorporate SERS functionality, and to facilitate attachment of targeting antibodies. Thiolated poly(ethylene glycol) forms dative bonds with the gold surface and is compatible with multiple physisorbed Raman-active reporter molecules. Ternary lipid bilayers are used to encapsulate the gold nanoparticles particles, and incorporate three different classes of Raman reporters. TEM, UV-Visible absorbance spectroscopy, DLS, and electrophoretic light scattering were used characterize the particle coating. Colourimetric protein assay, and secondary antibody labelling were used to quantify the antibody conjugation. Three different in vitromodels were used to investigate the binding efficacy and specificity of SERS labels for their biomarker targets. Primary human CLL cells, LY10 B lymphoma, and A549 adenocarcinoma lines were targeted. Dark field imaging was used to visualize the colocalization of SERS labels with cells, and evidence of receptor clustering was obtained based on colour shifts of the particles' Rayleigh scattering. Widefield, and spatially-resolved Raman spectra were used to detect labels singly, and in combination from labelled cells. Fluorescence flow cytometry was used to test the particles' binding specificity, and SERS from labelled cells was also

  15. Enzyme directed formation of un-natural side-chains for covalent surface attachment of proteins.

    PubMed

    Cho, Hwayoung; Jaworski, Justyn

    2014-10-01

    The covalent immobilization of proteins onto surfaces is an essential aspect of several fields of research, including proteomics, sensing, heterogeneous biocatalysis, and more broadly biotechnology. Site-specific, covalent attachment of proteins has been achieved in recent years by the use of expanded genetic codes to produce proteins with controlled placement of un-natural amino acids bearing bio-orthogonal functional groups. Unfortunately, the complexity of developing such systems is impractical for most laboratories; hence, a less complicated approach to generating un-natural amino acid side-chains has been employed. Utilizing a straightforward reaction with formylglycine generating enzyme, we use the site-specific modification of engineered proteins to yield un-natural amino acid side-chains for protein immobilization. Using this approach, we demonstrate the controlled immobilization of various enzymes onto a variety of amine coated surfaces. Our results reveal reusability of the immobilized enzymes via this strategy, and furthermore, we find the activity of the immobilized enzymes to remain even after a month of use indicating significant stability of the linkage.

  16. Chemistry-specific surface adsorption of the barnacle settlement-inducing protein complex

    PubMed Central

    Petrone, Luigi; Aldred, Nick; Emami, Kaveh; Enander, Karin; Ederth, Thomas; Clare, Anthony S.

    2015-01-01

    Gregarious settlement in barnacle larvae (cyprids) is induced by a contact pheromone, the settlement-inducing protein complex (SIPC). The SIPC has been identified both in the cuticle of adult barnacles and in the temporary adhesive secretion (footprint) of cyprids. Besides acting as a settlement inducer, the presence of the SIPC in footprints points to its additional involvement in the adhesion process. SIPC adsorption behaviour was therefore investigated on a series of self-assembled monolayers (SAMs) by surface plasmon resonance at the pH of seawater (8.3). Fibrinogen and α2-macroglobulin (A2M) (blood complement protease inhibitors with which the SIPC shares 29% sequence homology) were used in the adsorption experiments as positive and negative standards, respectively. The mass uptake of the SIPC was comparable to that of fibrinogen, with adsorption observed even on the protein-resistant oligo(ethylene glycol) surface. Notably, on the positively charged SAM the SIPC showed a kinetic overshoot, indicating a metastable configuration causing the amount of adsorbed protein to temporarily exceed its equilibrium value. A2M adsorption was low or negligible on all SAMs tested, except for the positively charged surface, indicating that A2M adsorption is mainly driven by electrostatics. Evaluation of SIPC non-specific adsorption kinetics revealed that it adsorbed irreversibly and non-cooperatively on all surfaces tested. PMID:25657832

  17. Chemistry-specific surface adsorption of the barnacle settlement-inducing protein complex.

    PubMed

    Petrone, Luigi; Aldred, Nick; Emami, Kaveh; Enander, Karin; Ederth, Thomas; Clare, Anthony S

    2015-02-01

    Gregarious settlement in barnacle larvae (cyprids) is induced by a contact pheromone, the settlement-inducing protein complex (SIPC). The SIPC has been identified both in the cuticle of adult barnacles and in the temporary adhesive secretion (footprint) of cyprids. Besides acting as a settlement inducer, the presence of the SIPC in footprints points to its additional involvement in the adhesion process. SIPC adsorption behaviour was therefore investigated on a series of self-assembled monolayers (SAMs) by surface plasmon resonance at the pH of seawater (8.3). Fibrinogen and α2-macroglobulin (A2M) (blood complement protease inhibitors with which the SIPC shares 29% sequence homology) were used in the adsorption experiments as positive and negative standards, respectively. The mass uptake of the SIPC was comparable to that of fibrinogen, with adsorption observed even on the protein-resistant oligo(ethylene glycol) surface. Notably, on the positively charged SAM the SIPC showed a kinetic overshoot, indicating a metastable configuration causing the amount of adsorbed protein to temporarily exceed its equilibrium value. A2M adsorption was low or negligible on all SAMs tested, except for the positively charged surface, indicating that A2M adsorption is mainly driven by electrostatics. Evaluation of SIPC non-specific adsorption kinetics revealed that it adsorbed irreversibly and non-cooperatively on all surfaces tested. PMID:25657832

  18. The Volumetric Diversity of Misfolded Prion Protein Oligomers Revealed by Pressure Dissociation*

    PubMed Central

    Torrent, Joan; Lange, Reinhard; Rezaei, Human

    2015-01-01

    Protein oligomerization has been associated with a wide range of diseases. High pressure approaches offer a powerful tool for deciphering the underlying molecular mechanisms by revealing volume changes associated with the misfolding and assembly reactions. We applied high pressure to induce conformational changes in three distinct β-sheet-rich oligomers of the prion protein PrP, a protein characterized by a variety of infectious quaternary structures that can propagate stably and faithfully and cause diseases with specific phenotypic traits. We show that pressure induces dissociation of the oligomers and leads to a lower volume monomeric PrP state that refolds into the native conformation after pressure release. By measuring the different pressure and temperature sensitivity of the tested PrP oligomers, we demonstrate significantly different void volumes in their quaternary structure. In addition, by focusing on the kinetic and energetic behavior of the pressure-induced dissociation of one specific PrP oligomer, we reveal a large negative activation volume and an increase in both apparent activation enthalpy and entropy. This suggests a transition state ensemble that is less structured and significantly more hydrated than the oligomeric state. Finally, we found that site-specific fluorescent labeling allows monitoring of the transient population of a kinetic intermediate in the dissociation reaction. Our results indicate that defects in atomic packing may deserve consideration as a new factor that influences differences between PrP assemblies and that could be relevant also for explaining the origin of prion strains. PMID:26126829

  19. Mutational scanning reveals the determinants of protein insertion and association energetics in the plasma membrane

    PubMed Central

    Elazar, Assaf; Weinstein, Jonathan; Biran, Ido; Fridman, Yearit; Bibi, Eitan; Fleishman, Sarel Jacob

    2016-01-01

    Insertion of helix-forming segments into the membrane and their association determines the structure, function, and expression levels of all plasma membrane proteins. However, systematic and reliable quantification of membrane-protein energetics has been challenging. We developed a deep mutational scanning method to monitor the effects of hundreds of point mutations on helix insertion and self-association within the bacterial inner membrane. The assay quantifies insertion energetics for all natural amino acids at 27 positions across the membrane, revealing that the hydrophobicity of biological membranes is significantly higher than appreciated. We further quantitate the contributions to membrane-protein insertion from positively charged residues at the cytoplasm-membrane interface and reveal large and unanticipated differences among these residues. Finally, we derive comprehensive mutational landscapes in the membrane domains of Glycophorin A and the ErbB2 oncogene, and find that insertion and self-association are strongly coupled in receptor homodimers. DOI: http://dx.doi.org/10.7554/eLife.12125.001 PMID:26824389

  20. Conservation of protein abundance patterns reveals the regulatory architecture of the EGFR-MAPK pathway

    PubMed Central

    Shi, Tujin; Niepel, Mario; McDermott, Jason E.; Gao, Yuqian; Nicora, Carrie D.; Chrisler, William B.; Markillie, Lye M.; Petyuk, Vladislav A.; Smith, Richard D.; Rodland, Karin D.; Sorger, Peter K.; Qian, Wei-Jun; Wiley, H. Steven

    2016-01-01

    Various genetic mutations associated with cancer are known to alter cell signaling, but it is not clear whether they dysregulate signaling pathways by altering the abundance of pathway proteins. Using a combination of RNA sequencing and ultrasensitive targeted proteomics, we defined the primary components—16 core proteins and 10 feedback regulators—of the epidermal growth factor receptor (EGFR)–mitogen-activated protein kinase (MAPK) pathway in normal human mammary epithelial cells and then quantified their absolute abundance across a panel of normal and breast cancer cell lines as well as fibroblasts. We found that core pathway proteins were present at very similar concentrations across all cell types, with a variance similar to that of proteins previously shown to display conserved abundances across species. In contrast, EGFR and transcriptionally controlled feedback regulators were present at highly variable concentrations. The absolute abundance of most core proteins was between 50,000 and 70,000 copies per cell, but the adaptors SOS1, SOS2, and GAB1 were found at far lower amounts (2000 to 5000 copies per cell). MAPK signaling showed saturation in all cells between 3000 and 10,000 occupied EGFRs, consistent with the idea that adaptors limit signaling. Our results suggest that the relative stoichiometry of core MAPK pathway proteins is very similar across different cell types, with cell-specific differences mostly restricted to variable amounts of feedback regulators and receptors. The low abundance of adaptors relative to EGFR could be responsible for previous observations that only a fraction of total cell surface EGFR is capable of rapid endocytosis, high-affinity binding, and mitogenic signaling. PMID:27405981

  1. Conservation of protein abundance patterns reveals the regulatory architecture of the EGFR-MAPK pathway.

    PubMed

    Shi, Tujin; Niepel, Mario; McDermott, Jason E; Gao, Yuqian; Nicora, Carrie D; Chrisler, William B; Markillie, Lye M; Petyuk, Vladislav A; Smith, Richard D; Rodland, Karin D; Sorger, Peter K; Qian, Wei-Jun; Wiley, H Steven

    2016-01-01

    Various genetic mutations associated with cancer are known to alter cell signaling, but it is not clear whether they dysregulate signaling pathways by altering the abundance of pathway proteins. Using a combination of RNA sequencing and ultrasensitive targeted proteomics, we defined the primary components-16 core proteins and 10 feedback regulators-of the epidermal growth factor receptor (EGFR)-mitogen-activated protein kinase (MAPK) pathway in normal human mammary epithelial cells and then quantified their absolute abundance across a panel of normal and breast cancer cell lines as well as fibroblasts. We found that core pathway proteins were present at very similar concentrations across all cell types, with a variance similar to that of proteins previously shown to display conserved abundances across species. In contrast, EGFR and transcriptionally controlled feedback regulators were present at highly variable concentrations. The absolute abundance of most core proteins was between 50,000 and 70,000 copies per cell, but the adaptors SOS1, SOS2, and GAB1 were found at far lower amounts (2000 to 5000 copies per cell). MAPK signaling showed saturation in all cells between 3000 and 10,000 occupied EGFRs, consistent with the idea that adaptors limit signaling. Our results suggest that the relative stoichiometry of core MAPK pathway proteins is very similar across different cell types, with cell-specific differences mostly restricted to variable amounts of feedback regulators and receptors. The low abundance of adaptors relative to EGFR could be responsible for previous observations that only a fraction of total cell surface EGFR is capable of rapid endocytosis, high-affinity binding, and mitogenic signaling. PMID:27405981

  2. The structure of the BfrB-Bfd complex reveals protein-protein interactions enabling iron release from bacterioferritin

    PubMed Central

    Yao, Huili; Wang, Yan; Lovell, Scott; Kumar, Ritesh; Ruvinsky, Anatoly M.; Battaile, Kevin P.; Vakser, Ilya A.; Rivera, Mario

    2012-01-01

    Ferritin-like molecules are unique to cellular iron homeostasis because they can store iron at concentrations much higher than those dictated by the solubility of Fe3+. Very little is known about the protein interactions that deliver iron for storage, or promote the mobilization of stored iron from ferritin-like molecules. Here, we report the X-ray crystal structure of Pseudomonas aeruginosa bacterioferritin (Pa-BfrB) in complex with bacterioferritin-associated ferredoxin (Pa-Bfd) at 2.0 Å resolution. As the first example of a ferritin-like molecule in complex with a cognate partner, the structure provides unprecedented insight into the complementary interface that enables the [2Fe-2S] cluster of Pa-Bfd to promote heme-mediated electron transfer through the BfrB protein dielectric (~18 Å), a process that is necessary to reduce the core ferric mineral and facilitate mobilization of Fe2+. The Pa-BfrB-Bfd complex also revealed the first structure of a Bfd, thus providing a first view to what appears to be a versatile metal binding domain ubiquitous to the large Fer2_BFD family of proteins and enzymes with diverse functions. Residues at the Pa-BfrB-Bfd interface are highly conserved in Bfr and Bfd sequences from a number of pathogenic bacteria, suggesting that the specific recognition between Pa-BfrB and Pa-Bfd is of widespread significance to the understanding of bacterial iron homeostasis. PMID:22812654

  3. The Structure of the BfrB-Bfd Complex Reveals Protein-Protein Interactions Enabling Iron Release from Bacterioferritin

    SciTech Connect

    Yao, Huili; Wang, Yan; Lovell, Scott; Kumar, Ritesh; Ruvinsky, Anatoly M; Battaile, Kevin P; Vakser, Ilya A; Rivera, Mario

    2012-09-11

    Ferritin-like molecules are unique to cellular iron homeostasis because they can store iron at concentrations much higher than those dictated by the solubility of Fe3+. Very little is known about the protein interactions that deliver iron for storage or promote the mobilization of stored iron from ferritin-like molecules. Here, we report the X-ray crystal structure of Pseudomonas aeruginosa bacterioferritin (Pa-BfrB) in complex with bacterioferritin-associated ferredoxin (Pa-Bfd) at 2.0 Å resolution. As the first example of a ferritin-like molecule in complex with a cognate partner, the structure provides unprecedented insight into the complementary interface that enables the [2Fe-2S] cluster of Pa-Bfd to promote heme-mediated electron transfer through the BfrB protein dielectric (~18 Å), a process that is necessary to reduce the core ferric mineral and facilitate mobilization of Fe2+. The Pa-BfrB-Bfd complex also revealed the first structure of a Bfd, thus providing a first view to what appears to be a versatile metal binding domain ubiquitous to the large Fer2_BFD family of proteins and enzymes with diverse functions. Residues at the Pa-BfrB-Bfd interface are highly conserved in Bfr and Bfd sequences from a number of pathogenic bacteria, suggesting that the specific recognition between Pa-BfrB and Pa-Bfd is of widespread significance to the understanding of bacterial iron homeostasis.

  4. Development of a protein microarray using sequence-specific DNA binding domain on DNA chip surface

    SciTech Connect

    Choi, Yoo Seong; Pack, Seung Pil; Yoo, Young Je . E-mail: yjyoo@snu.ac.kr

    2005-04-22

    A protein microarray based on DNA microarray platform was developed to identify protein-protein interactions in vitro. The conventional DNA chip surface by 156-bp PCR product was prepared for a substrate of protein microarray. High-affinity sequence-specific DNA binding domain, GAL4 DNA binding domain, was introduced to the protein microarray as fusion partner of a target model protein, enhanced green fluorescent protein. The target protein was oriented immobilized directly on the DNA chip surface. Finally, monoclonal antibody of the target protein was used to identify the immobilized protein on the surface. This study shows that the conventional DNA chip can be used to make a protein microarray directly, and this novel protein microarray can be applicable as a tool for identifying protein-protein interactions.

  5. The crystal structure of Escherichia coli heat shock protein YedU reveals three potential catalytic active sites

    PubMed Central

    Zhao, Yonghong; Liu, Deqian; Kaluarachchi, Warna D.; Bellamy, Henry D.; White, Mark A.; Fox, Robert O.

    2003-01-01

    The mRNA of Escherichia coli yedU gene is induced 31-fold upon heat shock. The 31-kD YedU protein, also calls Hsp31, is highly conserved in several human pathogens and has chaperone activity. We solved the crystal structure of YedU at 2.2 Å resolution. YedU monomer has an α/β/α sandwich domain and a small α/β domain. YedU is a dimer in solution, and its crystal structure indicates that a significant amount of surface area is buried upon dimerization. There is an extended hydrophobic patch that crosses the dimer interface on the surface of the protein. This hydrophobic patch is likely the substrate-binding site responsible for the chaperone activity. The structure also reveals a potential protease-like catalytic triad composed of Cys184, His185, and Asp213, although no enzymatic activity could be identified. YedU coordinates a metal ion using His85, His122, and Glu90. This 2-His-1-carboxylate motif is present in carboxypeptidase A (a zinc enzyme), and a number of dioxygenases and hydroxylases that utilize iron as a cofactor, suggesting another potential function for YedU. PMID:14500888

  6. Cell-surface prion protein interacts with glycosaminoglycans.

    PubMed Central

    Pan, Tao; Wong, Boon-Seng; Liu, Tong; Li, Ruliang; Petersen, Robert B; Sy, Man-Sun

    2002-01-01

    We used ELISA and flow cytometry to study the binding of prion protein PrP to glycosaminoglycans (GAGs). We found that recombinant human PrP (rPrP) binds GAGs including chondroitin sulphate A, chondroitin sulphate B, hyaluronic acid, and heparin. rPrP binding to GAGs occurs via the N-terminus, a region known to bind divalent cations. Additionally, rPrP binding to GAGs is enhanced in the presence of Cu2+ and Zn2+, but not Ca2+ and Mn2+. rPrP binds heparin strongest, and the binding is inhibited by certain heparin analogues, including heparin disaccharide and sulphate-containing monosaccharides, but not by acetylated heparin. Full-length normal cellular prion protein (PrPC), but not N-terminally truncated PrPC species, from human brain bind GAGs in a similar Cu2+/Zn2+-enhanced fashion. We found that GAGs specifically bind to a synthetic peptide corresponding to amino acid residues 23-35 in the N-terminus of rPrP. We further demonstrated that while both wild-type PrPC and an octapeptide-repeat-deleted mutant PrP produced by transfected cells bound heparin at the cell surface, the PrP N-terminal deletion mutant and non-transfectant control failed to bind heparin. Binding of heparin to wild-type PrPC on the cell surface results in a reduction of the level of cell-surface PrPC. These results provide strong evidence that PrPC is a surface receptor for GAGs. PMID:12186633

  7. The 32-kilodalton envelope protein of vaccinia virus synthesized in Escherichia coli binds with specificity to cell surfaces.

    PubMed Central

    Lai, C F; Gong, S C; Esteban, M

    1991-01-01

    The nature of interaction between vaccinia virus and the surface of host cells as the first step in virus infection is undefined. A 32-kDa virus envelope protein has been identified as a cell surface binding protein (J.-S. Maa, J. F. Rodriguez, and M. Esteban, J. Biol. Chem. 265:1569-1577, 1990). To carry out studies on the structure-function relationship of this protein, the 32-kDa protein was obtained from Escherichia coli cells harboring the expression plasmid pT7Ek32. The recombinant polypeptide was found to have structural properties similar to those of the native virus envelope protein. Binding studies of 125I-labeled 32-kDa protein to cultured cells of various origins revealed that the E. coli-produced 32-kDa protein exhibited selectivity, specificity, and saturability. Scatchard analysis indicated about 4.5 x 10(4) sites per cell with a high affinity (Kd = 1.8 x 10(-9) M), suggesting interaction of the 32-kDa protein with a specific receptor. The availability of large quantities of the 32-kDa virus protein in bacteria will permit further structural and functional studies of this virus envelope protein and facilitate identification of the specific cell surface receptor. Images PMID:1985213

  8. Antigenicity and immunogenicity of Plasmodium vivax merozoite surface protein-3.

    PubMed

    Bitencourt, Amanda R; Vicentin, Elaine C; Jimenez, Maria C; Ricci, Ricardo; Leite, Juliana A; Costa, Fabio T; Ferreira, Luis C; Russell, Bruce; Nosten, François; Rénia, Laurent; Galinski, Mary R; Barnwell, John W; Rodrigues, Mauricio M; Soares, Irene S

    2013-01-01

    A recent clinical trial in African children demonstrated the potential utility of merozoite surface protein (MSP)-3 as a vaccine against Plasmodium falciparum malaria. The present study evaluated the use of Plasmodium vivax MSP-3 (PvMSP-3) as a target antigen in vaccine formulations against malaria caused by P. vivax. Recombinant proteins representing MSP-3α and MSP-3β of P. vivax were expressed as soluble histidine-tagged bacterial fusions. Antigenicity during natural infection was evaluated by detecting specific antibodies using sera from individuals living in endemic areas of Brazil. A large proportion of infected individuals presented IgG antibodies to PvMSP-3α (68.2%) and at least 1 recombinant protein representing PvMSP-3β (79.1%). In spite of the large responder frequency, reactivity to both antigens was significantly lower than was observed for the immunodominant epitope present on the 19-kDa C-terminal region of PvMSP-1. Immunogenicity of the recombinant proteins was studied in mice in the absence or presence of different adjuvant formulations. PvMSP-3β, but not PvMSP-3α, induced a TLR4-independent humoral immune response in the absence of any adjuvant formulation. The immunogenicity of the recombinant antigens were also tested in formulations containing different adjuvants (Alum, Salmonella enterica flagellin, CpG, Quil A,TiterMax® and incomplete Freunds adjuvant) and combinations of two adjuvants (Alum plus flagellin, and CpG plus flagellin). Recombinant PvMSP-3α and PvMSP-3β elicited higher antibody titers capable of recognizing P. vivax-infected erythrocytes harvested from malaria patients. Our results confirm that P. vivax MSP-3 antigens are immunogenic during natural infection, and the corresponding recombinant proteins may be useful in elucidating their vaccine potential. PMID:23457498

  9. Antigenicity and Immunogenicity of Plasmodium vivax Merozoite Surface Protein-3

    PubMed Central

    Bitencourt, Amanda R.; Vicentin, Elaine C.; Jimenez, Maria C.; Ricci, Ricardo; Leite, Juliana A.; Costa, Fabio T.; Ferreira, Luis C.; Russell, Bruce; Nosten, François; Rénia, Laurent; Galinski, Mary R.; Barnwell, John W.; Rodrigues, Mauricio M.; Soares, Irene S.

    2013-01-01

    A recent clinical trial in African children demonstrated the potential utility of merozoite surface protein (MSP)-3 as a vaccine against Plasmodium falciparum malaria. The present study evaluated the use of Plasmodium vivax MSP-3 (PvMSP-3) as a target antigen in vaccine formulations against malaria caused by P. vivax. Recombinant proteins representing MSP-3α and MSP-3β of P. vivax were expressed as soluble histidine-tagged bacterial fusions. Antigenicity during natural infection was evaluated by detecting specific antibodies using sera from individuals living in endemic areas of Brazil. A large proportion of infected individuals presented IgG antibodies to PvMSP-3α (68.2%) and at least 1 recombinant protein representing PvMSP-3β (79.1%). In spite of the large responder frequency, reactivity to both antigens was significantly lower than was observed for the immunodominant epitope present on the 19-kDa C-terminal region of PvMSP-1. Immunogenicity of the recombinant proteins was studied in mice in the absence or presence of different adjuvant formulations. PvMSP-3β, but not PvMSP-3α, induced a TLR4-independent humoral immune response in the absence of any adjuvant formulation. The immunogenicity of the recombinant antigens were also tested in formulations containing different adjuvants (Alum, Salmonella enterica flagellin, CpG, Quil A,TiterMax® and incomplete Freunds adjuvant) and combinations of two adjuvants (Alum plus flagellin, and CpG plus flagellin). Recombinant PvMSP-3α and PvMSP-3β elicited higher antibody titers capable of recognizing P. vivax-infected erythrocytes harvested from malaria patients. Our results confirm that P. vivax MSP-3 antigens are immunogenic during natural infection, and the corresponding recombinant proteins may be useful in elucidating their vaccine potential. PMID:23457498

  10. Dengue virus capsid protein binding to hepatic lipid droplets (LD) is potassium ion dependent and is mediated by LD surface proteins.

    PubMed

    Carvalho, Filomena A; Carneiro, Fabiana A; Martins, Ivo C; Assunção-Miranda, Iranaia; Faustino, André F; Pereira, Renata M; Bozza, Patricia T; Castanho, Miguel A R B; Mohana-Borges, Ronaldo; Da Poian, Andrea T; Santos, Nuno C

    2012-02-01

    Dengue virus (DENV) affects millions of people, causing more than 20,000 deaths annually. No effective treatment for the disease caused by DENV infection is currently available, partially due to the lack of knowledge on the basic aspects of the viral life cycle, including the molecular basis of the interaction between viral components and cellular compartments. Here, we characterized the properties of the interaction between the DENV capsid (C) protein and hepatic lipid droplets (LDs), which was recently shown to be essential for the virus replication cycle. Zeta potential analysis revealed a negative surface charge of LDs, with an average surface charge of -19 mV. The titration of LDs with C protein led to an increase of the surface charge, which reached a plateau at +13.7 mV, suggesting that the viral protein-LD interaction exposes the protein cationic surface to the aqueous environment. Atomic force microscopy (AFM)-based force spectroscopy measurements were performed by using C protein-functionalized AFM tips. The C protein-LD interaction was found to be strong, with a single (un)binding force of 33.6 pN. This binding was dependent on high intracellular concentrations of potassium ions but not sodium. The inhibition of Na(+)/K(+)-ATPase in DENV-infected cells resulted in the dissociation of C protein from LDs and a 50-fold inhibition of infectious virus production but not of RNA replication, indicating a biological relevance for the potassium-dependent interaction. Limited proteolysis of the LD surface impaired the C protein-LD interaction, and force measurements in the presence of specific antibodies indicated that perilipin 3 (TIP47) is the major DENV C protein ligand on the surface of LDs.

  11. Dengue Virus Capsid Protein Binding to Hepatic Lipid Droplets (LD) Is Potassium Ion Dependent and Is Mediated by LD Surface Proteins

    PubMed Central

    Carvalho, Filomena A.; Carneiro, Fabiana A.; Martins, Ivo C.; Assunção-Miranda, Iranaia; Faustino, André F.; Pereira, Renata M.; Bozza, Patricia T.; Castanho, Miguel A. R. B.; Mohana-Borges, Ronaldo; Da Poian, Andrea T.

    2012-01-01

    Dengue virus (DENV) affects millions of people, causing more than 20,000 deaths annually. No effective treatment for the disease caused by DENV infection is currently available, partially due to the lack of knowledge on the basic aspects of the viral life cycle, including the molecular basis of the interaction between viral components and cellular compartments. Here, we characterized the properties of the interaction between the DENV capsid (C) protein and hepatic lipid droplets (LDs), which was recently shown to be essential for the virus replication cycle. Zeta potential analysis revealed a negative surface charge of LDs, with an average surface charge of −19 mV. The titration of LDs with C protein led to an increase of the surface charge, which reached a plateau at +13.7 mV, suggesting that the viral protein-LD interaction exposes the protein cationic surface to the aqueous environment. Atomic force microscopy (AFM)-based force spectroscopy measurements were performed by using C protein-functionalized AFM tips. The C protein-LD interaction was found to be strong, with a single (un)binding force of 33.6 pN. This binding was dependent on high intracellular concentrations of potassium ions but not sodium. The inhibition of Na+/K+-ATPase in DENV-infected cells resulted in the dissociation of C protein from LDs and a 50-fold inhibition of infectious virus production but not of RNA replication, indicating a biological relevance for the potassium-dependent interaction. Limited proteolysis of the LD surface impaired the C protein-LD interaction, and force measurements in the presence of specific antibodies indicated that perilipin 3 (TIP47) is the major DENV C protein ligand on the surface of LDs. PMID:22130547

  12. Surface analysis reveals biogenic oxidation of sub-bituminous coal by Pseudomonas fluorescens.

    PubMed

    Hazrin-Chong, Nur Hazlin; Marjo, Christopher E; Das, Theerthankar; Rich, Anne M; Manefield, Mike

    2014-01-01

    Direct analysis of the colonised surface on coal using attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) revealed the nature of bacteria-mediated oxidation at the coal surface. Unique oxidation peaks generated by the presence of Pseudomonas fluorescens on coal was shown through ATR-FTIR measurements, and ATR-FTIR imaging illustrated that this peak was only observed within the region of coal colonised by bacteria. Contact angle measurements and surface free energy of adhesion calculations showed that the adhesion between P. fluorescens and coal was thermodynamically favourable, and scanning electron microscopy (SEM) exhibited individual cell or monolayer cluster attachment on coal. Furthermore, Gaussian peak fitting of peroxidase-treated coal ATR-FTIR spectra revealed that peroxidase or related enzymes produced by P. fluorescens may be responsible for coal oxidation. This study demonstrated the usefulness and practicality of ATR-FTIR for analysing coal oxidation by P. fluorescens and may well be applied to other microbe-driven modifications of coal for its rapidity and reliability.

  13. Translational analysis of mouse and human placental protein and mRNA reveals distinct molecular pathologies in human preeclampsia.

    PubMed

    Cox, Brian; Sharma, Parveen; Evangelou, Andreas I; Whiteley, Kathie; Ignatchenko, Vladimir; Ignatchenko, Alex; Baczyk, Dora; Czikk, Marie; Kingdom, John; Rossant, Janet; Gramolini, Anthony O; Adamson, S Lee; Kislinger, Thomas

    2011-12-01

    Preeclampsia (PE) adversely impacts ~5% of pregnancies. Despite extensive research, no consistent biomarkers or cures have emerged, suggesting that different molecular mechanisms may cause clinically similar disease. To address this, we undertook a proteomics study with three main goals: (1) to identify a panel of cell surface markers that distinguish the trophoblast and endothelial cells of the placenta in the mouse; (2) to translate this marker set to human via the Human Protein Atlas database; and (3) to utilize the validated human trophoblast markers to identify subgroups of human preeclampsia. To achieve these goals, plasma membrane proteins at the blood tissue interfaces were extracted from placentas using intravascular silica-bead perfusion, and then identified using shotgun proteomics. We identified 1181 plasma membrane proteins, of which 171 were enriched at the maternal blood-trophoblast interface and 192 at the fetal endothelial interface with a 70% conservation of expression in humans. Three distinct molecular subgroups of human preeclampsia were identified in existing human microarray data by using expression patterns of trophoblast-enriched proteins. Analysis of all misexpressed genes revealed divergent dysfunctions including angiogenesis (subgroup 1), MAPK signaling (subgroup 2), and hormone biosynthesis and metabolism (subgroup 3). Subgroup 2 lacked expected changes in known preeclampsia markers (sFLT1, sENG) and uniquely overexpressed GNA12. In an independent set of 40 banked placental specimens, GNA12 was overexpressed during preeclampsia when co-incident with chronic hypertension. In the current study we used a novel translational analysis to integrate mouse and human trophoblast protein expression with human microarray data. This strategy identified distinct molecular pathologies in human preeclampsia. We conclude that clinically similar preeclampsia patients exhibit divergent placental gene expression profiles thus implicating divergent

  14. The Lipid-Droplet Proteome Reveals that Droplets Are a Protein-Storage Depot

    SciTech Connect

    Cermelli, Silvia; Guo, Yi; Gross, Steven P.; Welte, Michael

    2006-09-19

    Lipid droplets are ubiquitous organelles that are among the basic building blocks of eukaryotic cells. Despite central roles for cholesterol homeostasis and lipid metabolism, their function and protein composition are poorly understood. Results: We purified lipid droplets from Drosophila embryos and analyzed the associated proteins by capillary LC-MS-MS. Important functional groups include enzymes involved in lipid metabolism, signaling molecules, and proteins related to membrane trafficking. Unexpectedly, histones H2A, H2Av, and H2B were present. Using biochemistry, genetics, real-time imaging, and cell biology, we confirm that roughly 50% of certain embryonic histones are physically attached to lipid droplets, a localization conserved in other fly species. Histone association with droplets starts during oogenesis and is prominent in early embryos, but it is undetectable in later stages or in cultured cells. Histones on droplets are not irreversibly trapped; quantitation of droplet histone levels and transplantation experiments suggest that histones are transferred from droplets to nuclei as development proceeds. When this maternal store of histones is unavailable because lipid droplets are mislocalized, zygotic histone production starts prematurely. Conclusions: Because we uncover a striking proteomic similarity of Drosophila droplets to mammalian lipid droplets, Drosophila likely provides a good model for understanding droplet function in general. Our analysis also reveals a new function for these organelles; the massive nature of histone association with droplets and its developmental time-course suggest that droplets sequester maternally provided proteins until they are needed. We propose that lipid droplets can serve as transient storage depots for proteins that lack appropriate binding partners in the cell. Such sequestration may provide a general cellular strategy for handling excess proteins.

  15. Glycan structure of Gc Protein-derived Macrophage Activating Factor as revealed by mass spectrometry.

    PubMed

    Borges, Chad R; Rehder, Douglas S

    2016-09-15

    Disagreement exists regarding the O-glycan structure attached to human vitamin D binding protein (DBP). Previously reported evidence indicated that the O-glycan of the Gc1S allele product is the linear core 1 NeuNAc-Gal-GalNAc-Thr trisaccharide. Here, glycan structural evidence is provided from glycan linkage analysis and over 30 serial glycosidase-digestion experiments which were followed by analysis of the intact protein by electrospray ionization mass spectrometry (ESI-MS). Results demonstrate that the O-glycan from the Gc1F protein is the same linear trisaccharide found on the Gc1S protein and that the hexose residue is galactose. In addition, the putative anti-cancer derivative of DBP known as Gc Protein-derived Macrophage Activating Factor (GcMAF, which is formed by the combined action of β-galactosidase and neuraminidase upon DBP) was analyzed intact by ESI-MS, revealing that the activating E. coli β-galactosidase cleaves nothing from the protein-leaving the glycan structure of active GcMAF as a Gal-GalNAc-Thr disaccharide, regardless of the order in which β-galactosidase and neuraminidase are applied. Moreover, glycosidase digestion results show that α-N-Acetylgalactosamindase (nagalase) lacks endoglycosidic function and only cleaves the DBP O-glycan once it has been trimmed down to a GalNAc-Thr monosaccharide-precluding the possibility of this enzyme removing the O-glycan trisaccharide from cancer-patient DBP in vivo.

  16. Evolutionarily Conserved Pattern of Interactions in a Protein Revealed by Local Thermal Expansion Properties.

    PubMed

    Dellarole, Mariano; Caro, Jose A; Roche, Julien; Fossat, Martin; Barthe, Philippe; García-Moreno E, Bertrand; Royer, Catherine A; Roumestand, Christian

    2015-07-29

    The way in which the network of intramolecular interactions determines the cooperative folding and conformational dynamics of a protein remains poorly understood. High-pressure NMR spectroscopy is uniquely suited to examine this problem because it combines the site-specific resolution of the NMR experiments with the local character of pressure perturbations. Here we report on the temperature dependence of the site-specific volumetric properties of various forms of staphylococcal nuclease (SNase), including three variants with engineered internal cavities, as measured with high-pressure NMR spectroscopy. The strong temperature dependence of pressure-induced unfolding arises from poorly understood differences in thermal expansion between the folded and unfolded states. A significant inverse correlation was observed between the global thermal expansion of the folded proteins and the number of strong intramolecular hydrogen bonds, as determined by the temperature coefficient of the backbone amide chemical shifts. Comparison of the identity of these strong H-bonds with the co-evolution of pairs of residues in the SNase protein family suggests that the architecture of the interactions detected in the NMR experiments could be linked to a functional aspect of the protein. Moreover, the temperature dependence of the residue-specific volume changes of unfolding yielded residue-specific differences in expansivity and revealed how mutations impact intramolecular interaction patterns. These results show that intramolecular interactions in the folded states of proteins impose constraints against thermal expansion and that, hence, knowledge of site-specific thermal expansivity offers insight into the patterns of strong intramolecular interactions and other local determinants of protein stability, cooperativity, and potentially also of function.

  17. Glycan structure of Gc Protein-derived Macrophage Activating Factor as revealed by mass spectrometry.

    PubMed

    Borges, Chad R; Rehder, Douglas S

    2016-09-15

    Disagreement exists regarding the O-glycan structure attached to human vitamin D binding protein (DBP). Previously reported evidence indicated that the O-glycan of the Gc1S allele product is the linear core 1 NeuNAc-Gal-GalNAc-Thr trisaccharide. Here, glycan structural evidence is provided from glycan linkage analysis and over 30 serial glycosidase-digestion experiments which were followed by analysis of the intact protein by electrospray ionization mass spectrometry (ESI-MS). Results demonstrate that the O-glycan from the Gc1F protein is the same linear trisaccharide found on the Gc1S protein and that the hexose residue is galactose. In addition, the putative anti-cancer derivative of DBP known as Gc Protein-derived Macrophage Activating Factor (GcMAF, which is formed by the combined action of β-galactosidase and neuraminidase upon DBP) was analyzed intact by ESI-MS, revealing that the activating E. coli β-galactosidase cleaves nothing from the protein-leaving the glycan structure of active GcMAF as a Gal-GalNAc-Thr disaccharide, regardless of the order in which β-galactosidase and neuraminidase are applied. Moreover, glycosidase digestion results show that α-N-Acetylgalactosamindase (nagalase) lacks endoglycosidic function and only cleaves the DBP O-glycan once it has been trimmed down to a GalNAc-Thr monosaccharide-precluding the possibility of this enzyme removing the O-glycan trisaccharide from cancer-patient DBP in vivo. PMID:27503803

  18. Nullspace Sampling with Holonomic Constraints Reveals Molecular Mechanisms of Protein Gαs

    PubMed Central

    Pachov, Dimitar V.; van den Bedem, Henry

    2015-01-01

    Proteins perform their function or interact with partners by exchanging between conformational substates on a wide range of spatiotemporal scales. Structurally characterizing these exchanges is challenging, both experimentally and computationally. Large, diffusional motions are often on timescales that are difficult to access with molecular dynamics simulations, especially for large proteins and their complexes. The low frequency modes of normal mode analysis (NMA) report on molecular fluctuations associated with biological activity. However, NMA is limited to a second order expansion about a minimum of the potential energy function, which limits opportunities to observe diffusional motions. By contrast, kino-geometric conformational sampling (KGS) permits large perturbations while maintaining the exact geometry of explicit conformational constraints, such as hydrogen bonds. Here, we extend KGS and show that a conformational ensemble of the α subunit Gαs of heterotrimeric stimulatory protein Gs exhibits structural features implicated in its activation pathway. Activation of protein Gs by G protein-coupled receptors (GPCRs) is associated with GDP release and large conformational changes of its α-helical domain. Our method reveals a coupled α-helical domain opening motion while, simultaneously, Gαs helix α5 samples an activated conformation. These motions are moderated in the activated state. The motion centers on a dynamic hub near the nucleotide-binding site of Gαs, and radiates to helix α4. We find that comparative NMA-based ensembles underestimate the amplitudes of the motion. Additionally, the ensembles fall short in predicting the accepted direction of the full activation pathway. Taken together, our findings suggest that nullspace sampling with explicit, holonomic constraints yields ensembles that illuminate molecular mechanisms involved in GDP release and protein Gs activation, and further establish conformational coupling between key structural

  19. Atmospheric Drivers of Greenland Surface Melt Revealed by Self Organizing Maps

    NASA Astrophysics Data System (ADS)

    Mioduszewski, J.; Rennermalm, A. K.; Hammann, A. C.; Tedesco, M.; Noble, E. U.; Stroeve, J. C.; Mote, T. L.

    2015-12-01

    Recent acceleration in summer surface melt on the Greenland ice sheet (GrIS) has occurred concurrently with a rapidly warming Arctic and has been connected to persistent, anomalous circulation patterns over Greenland. To identify patterns that favor enhanced GrIS surface melt and their decadal changes, we first develop a summer Arctic synoptic climatology by employing a nonlinear classification technique known as the self organizing map (SOM). This is applied to daily JJA sea level pressure (SLP) and 500 hPa geopotential height fields obtained from the Modern Era Retrospective Analysis for Research and Applications (MERRA) reanalysis product from 1979 to 2014. Model output from Modèle Atmosphérique Régional (MAR) is used to relate meteorological conditions and subsequent Greenland surface melt anomalies to particular circulation regimes. Results demonstrate that circulation patterns featuring positive SLP anomalies from Greenland to the Beaufort Sea support the largest positive surface melt anomalies, particularly over western Greenland. These patterns facilitate strong meridional transport of heat and moisture, contrasted by a dominant zonal flow across the North Atlantic during periods of low surface melt. Additionally, composites of energy balance components reveal that melt events are favored under clear conditions generating positive shortwave radiation anomalies rather than increased downwelling longwave radiation occurring with increased cloud cover. Sea surface temperature anomalies suggest that there may be a linkage between surface melt and recent sea ice loss around Greenland, though a causal relationship is not established. We assess decadal shifts in the SOM nodes, finding an increased frequency of upper level patterns favoring higher 500 hPa geopotential heights primarily over Greenland. The observed increases in GrIS melt through the time period coincides with this shift in SOM node frequency.

  20. Hyper sensitive protein detection by Tandem-HTRF reveals Cyclin D1 dynamics in adult mouse

    PubMed Central

    Zampieri, Alexandre; Champagne, Julien; Auzemery, Baptiste; Fuentes, Ivanna; Maurel, Benjamin; Bienvenu, Frédéric

    2015-01-01

    We present here a novel method for the semi-quantitative detection of low abundance proteins in solution that is both fast and simple. It is based on Homogenous Time Resolved Förster Resonance Energy Transfer (HTRF), between a lanthanide labeled donor antibody and a d2 or XL665 labeled acceptor antibody that are both raised against different epitopes of the same target. This novel approach we termed “Tandem-HTRF”, can specifically reveal rare polypeptides from only a few microliters of cellular lysate within one hour in a 384-well plate format. Using this sensitive approach, we observed surprisingly that the core cell cycle regulator Cyclin D1 is sustained in fully developed adult organs and harbors an unexpected expression pattern affected by environmental challenge. Thus our method, Tandem-HTRF offers a promising way to investigate subtle variations in the dynamics of sparse proteins from limited biological material. PMID:26503526

  1. The crystal structure of choline kinase reveals a eukaryotic protein kinase fold

    SciTech Connect

    Peisach, D.; Gee, P.; Kent, K.; Xu, Z.

    2010-03-08

    Choline kinase catalyzes the ATP-dependent phosphorylation of choline, the first committed step in the CDP-choline pathway for the biosynthesis of phosphatidylcholine. The 2.0 {angstrom} crystal structure of a choline kinase from C. elegans (CKA-2) reveals that the enzyme is a homodimeric protein with each monomer organized into a two-domain fold. The structure is remarkably similar to those of protein kinases and aminoglycoside phosphotransferases, despite no significant similarity in amino acid sequence. Comparisons to the structures of other kinases suggest that ATP binds to CKA-2 in a pocket formed by highly conserved and catalytically important residues. In addition, a choline binding site is proposed to be near the ATP binding pocket and formed by several structurally flexible loops.

  2. Structure of the Yeast DEAD Box Protein Mss116p Reveals Two Wedges that Crimp RNA

    SciTech Connect

    Del Campo, Mark; Lambowitz, Alan M.

    2010-01-12

    The yeast DEAD box protein Mss116p is a general RNA chaperone that functions in mitochondrial group I and II intron splicing, translational activation, and RNA end processing. Here we determined high-resolution X-ray crystal structures of Mss116p complexed with an RNA oligonucleotide and ATP analogs AMP-PNP, ADP-BeF{sub 3}, or ADP-AlF{sub 4}{sup -}. The structures show the entire helicase core acting together with a functionally important C-terminal extension. In all structures, the helicase core is in a closed conformation with a wedge {alpha} helix bending RNA 3' of the central bound nucleotides, as in previous DEAD box protein structures. Notably, Mss116p's C-terminal extension also bends RNA 5' of the central nucleotides, resulting in RNA crimping. Despite reported functional differences, we observe few structural changes in ternary complexes with different ATP analogs. The structures constrain models of DEAD box protein function and reveal a strand separation mechanism in which a protein uses two wedges to act as a molecular crimper.

  3. Glycoproteomic analysis of seven major allergenic proteins reveals novel post-translational modifications.

    PubMed

    Halim, Adnan; Carlsson, Michael C; Madsen, Caroline Benedicte; Brand, Stephanie; Møller, Svenning Rune; Olsen, Carl Erik; Vakhrushev, Sergey Y; Brimnes, Jens; Wurtzen, Peter Adler; Ipsen, Henrik; Petersen, Bent L; Wandall, Hans H

    2015-01-01

    Allergenic proteins such as grass pollen and house dust mite (HDM) proteins are known to trigger hypersensitivity reactions of the immune system, leading to what is commonly known as allergy. Key allergenic proteins including sequence variants have been identified but characterization of their post-translational modifications (PTMs) is still limited. Here, we present a detailed PTM(1) characterization of a series of the main and clinically relevant allergens used in allergy tests and vaccines. We employ Orbitrap-based mass spectrometry with complementary fragmentation techniques (HCD/ETD) for site-specific PTM characterization by bottom-up analysis. In addition, top-down mass spectrometry is utilized for targeted analysis of individual proteins, revealing hitherto unknown PTMs of HDM allergens. We demonstrate the presence of lysine-linked polyhexose glycans and asparagine-linked N-acetylhexosamine glycans on HDM allergens. Moreover, we identified more complex glycan structures than previously reported on the major grass pollen group 1 and 5 allergens, implicating important roles for carbohydrates in allergen recognition and response by the immune system. The new findings are important for understanding basic disease-causing mechanisms at the cellular level, which ultimately may pave the way for instigating novel approaches for targeted desensitization strategies and improved allergy vaccines.

  4. Glycoproteomic Analysis of Seven Major Allergenic Proteins Reveals Novel Post-translational Modifications*

    PubMed Central

    Halim, Adnan; Carlsson, Michael C.; Madsen, Caroline Benedicte; Brand, Stephanie; Møller, Svenning Rune; Olsen, Carl Erik; Vakhrushev, Sergey Y.; Brimnes, Jens; Wurtzen, Peter Adler; Ipsen, Henrik; Petersen, Bent L.; Wandall, Hans H.

    2015-01-01

    Allergenic proteins such as grass pollen and house dust mite (HDM) proteins are known to trigger hypersensitivity reactions of the immune system, leading to what is commonly known as allergy. Key allergenic proteins including sequence variants have been identified but characterization of their post-translational modifications (PTMs) is still limited. Here, we present a detailed PTM1 characterization of a series of the main and clinically relevant allergens used in allergy tests and vaccines. We employ Orbitrap-based mass spectrometry with complementary fragmentation techniques (HCD/ETD) for site-specific PTM characterization by bottom-up analysis. In addition, top-down mass spectrometry is utilized for targeted analysis of individual proteins, revealing hitherto unknown PTMs of HDM allergens. We demonstrate the presence of lysine-linked polyhexose glycans and asparagine-linked N-acetylhexosamine glycans on HDM allergens. Moreover, we identified more complex glycan structures than previously reported on the major grass pollen group 1 and 5 allergens, implicating important roles for carbohydrates in allergen recognition and response by the immune system. The new findings are important for understanding basic disease-causing mechanisms at the cellular level, which ultimately may pave the way for instigating novel approaches for targeted desensitization strategies and improved allergy vaccines. PMID:25389185

  5. Proteomic Investigation of Aphid Honeydew Reveals an Unexpected Diversity of Proteins

    PubMed Central

    Haubruge, Eric; Hance, Thierry; Thonart, Philippe; De Pauw, Edwin; Francis, Frédéric

    2013-01-01

    Aphids feed on the phloem sap of plants, and are the most common honeydew-producing insects. While aphid honeydew is primarily considered to comprise sugars and amino acids, its protein diversity has yet to be documented. Here, we report on the investigation of the honeydew proteome from the pea aphid Acyrthosiphon pisum. Using a two-Dimensional Differential in-Gel Electrophoresis (2D-Dige) approach, more than 140 spots were isolated, demonstrating that aphid honeydew also represents a diverse source of proteins. About 66% of the isolated spots were identified through mass spectrometry analysis, revealing that the protein diversity of aphid honeydew originates from several organisms (i.e. the host aphid and its microbiota, including endosymbiotic bacteria and gut flora). Interestingly, our experiments also allowed to identify some proteins like chaperonin, GroEL and Dnak chaperones, elongation factor Tu (EF-Tu), and flagellin that might act as mediators in the plant-aphid interaction. In addition to providing the first aphid honeydew proteome analysis, we propose to reconsider the importance of this substance, mainly acknowledged to be a waste product, from the aphid ecology perspective. PMID:24086359

  6. The evolutionary analysis reveals domain fusion of proteins with Frizzled-like CRD domain.

    PubMed

    Yan, Jun; Jia, Haibo; Ma, Zhaowu; Ye, Huashan; Zhou, Mi; Su, Li; Liu, Jianfeng; Guo, An-Yuan

    2014-01-01

    Frizzleds (FZDs) are transmembrane receptors in the Wnt signaling pathway and they play pivotal roles in developments. The Frizzled-like extracellular Cysteine-rich domain (Fz-CRD) has been identified in FZDs and other proteins. The origin and evolution of these proteins with Fz-CRD is the main interest of this study. We found that the Fz-CRD exists in FZD, SFRP, RTK, MFRP, CPZ, CORIN, COL18A1 and other proteins. Our systematic analysis revealed that the Fz-CRD domain might have originated in protists and then fused with the Frizzled-like seven-transmembrane domain (7TM) to form the FZD receptors, which duplicated and diversified into about 11 members in Vertebrates. The SFRPs and RTKs with the Fz-CRD were found in sponge and expanded in Vertebrates. Other proteins with Fz-CRD may have emerged during Vertebrate evolution through domain fusion. Moreover, we found a glycosylation site and several conserved motifs in FZDs, which may be related to Wnt interaction. Based on these results, we proposed a model showing that the domain fusion and expansion of Fz-CRD genes occurred in Metazoa and Vertebrates. Our study may help to pave the way for further research on the conservation and diversification of Wnt signaling functions during evolution.

  7. Proteomic analysis of mice fed methionine and choline deficient diet reveals marker proteins associated with steatohepatitis.

    PubMed

    Lee, Su Jin; Kang, Jeong Han; Iqbal, Waqas; Kwon, Oh-Shin

    2015-01-01

    The mechanisms underlying the progression of simple steatosis to steatohepatitis are yet to be elucidated. To identify the proteins involved in the development of liver tissue inflammation, we performed comparative proteomic analysis of non-alcoholic steatohepatitis (NASH). Mice fed a methionine and choline deficient diet (MCD) developed hepatic steatosis characterized by increased free fatty acid (FFA) and triglyceride levels as well as alpha-SMA. Two-dimensional proteomic analysis revealed that the change from the normal diet to the MCD diet affected the expressions of 50 proteins. The most-pronounced changes were observed in the expression of proteins involved in Met metabolism and oxidative stress, most of which were significantly downregulated in NASH model animals. Peroxiredoxin (Prx) is the most interesting among the modulated proteins identified in this study. In particular, cross-regulated Prx1 and Prx6 are likely to participate in cellular defense against the development of hepatitis. Thus, these Prx isoforms may be a useful new marker for early stage steatohepatitis. Moreover, curcumin treatment results in alleviation of the severity of hepatic inflammation in steatohepatitis. Notably, curcumin administration in MCD-fed mice dramatically reduced CYP2E1 as well as Prx1 expression, while upregulating Prx6 expression. These findings suggest that curcumin may have a protective role against MCD fed-induced oxidative stress.

  8. Surface display of heterologous proteins in Bacillus thuringiensis using a peptidoglycan hydrolase anchor

    PubMed Central

    Shao, Xiaohu; Jiang, Mengtian; Yu, Ziniu; Cai, Hao; Li, Lin

    2009-01-01

    Background Previous studies have revealed that the lysin motif (LysM) domains of bacterial cell wall-degrading enzymes are able to bind to peptidoglycan moieties of the cell wall. This suggests an approach for a cell surface display system in Gram-positive bacteria using a LysM-containing protein as the anchoring motif. In this study, we developed a new surface display system in B. thuringiensis using a LysM-containing peptidoglycan hydrolase, endo-β-N-acetylglucosaminidase (Mbg), as the anchor protein. Results Homology searching in the B. thuringiensis YBT-1520 genome revealed a putative peptidoglycan hydrolase gene. The encoded protein, Mbg, exhibited substantial cell-wall binding capacity. The deduced amino acid sequence of Mbg was structurally distinguished as an N-terminal domain with two tandemly aligned LysMs and a C-terminal catalytic domain. A GFP-fusion protein was expressed and used to verify the surface localization by Western blot, flow cytometry, protease accessibility, SDS sensitivity, immunofluorescence, and electron microscopy assays. Low-level constitutive expression of Mbg was elevated by introducing a sporulation-independent promoter of cry3Aa. Truncated Mbg domains with separate N-terminus (Mbgn), C-terminus (Mbgc), LysM1, or LysM2 were further compared for their cell-wall displaying efficiencies. The Mbgn moiety contributed to cell-wall anchoring, while LysM1 was the active domain. Two tandemly repeated Mbgns exhibited the highest display activity, while the activity of three repeated Mbgns was decreased. A heterologous bacterial multicopper oxidase (WlacD) was successfully displayed onto the surface of B. thuringiensis target cells using the optimum (Mbgn)2 anchor, without radically altering its catalytic activity. Conclusion Mbg can be a functional anchor protein to target different heterologous proteins onto the surface of B. thuringiensis cells. Since the LysM domain appears to be universal in Gram-positive bacteria, the strategy

  9. Protein attachment onto silica surfaces--a survey of molecular fundamentals, resulting effects and novel preventive strategies in CE.

    PubMed

    Stutz, Hanno

    2009-06-01

    This review addresses the fundamentals governing the adsorption of individual protein molecules onto the surface of fused-silica capillaries, the protein aggregation to adsorbate clusters and their final accretion to monolayers with subsequent stratification to protein multilayers. The attention in CE protein separation has primarily been focused on (i) tuning the BGE including the buffer type, ionic strength, pH and additives, (ii) tailored post-rinse procedures to detach adhered protein residues and (iii) the optimization of capillary wall shielding in order to reduce protein attachment. Improvements in protein separation as well as related adverse effects are mainly discussed on the basis of parameters known to become deteriorated in case of protein adhesion, e.g. repeatability of the EOF and of migration times, peak width, theoretical plate numbers, resolution and asymmetry factor. However, knowledge of the molecular principles controlling protein adsorption onto silica surfaces is indispensable for separation optimization. Furthermore, it facilitates troubleshooting and the interpretation of undesired concomitant phenomena. This review comprehensively discusses protein adsorption models derived from surface chemistry primarily in terms of their relevance for CE, clearly showing that the adsorption process in its complexity is only partially revealed by models, which address single or binary protein solutions. In a further section theoretical concepts and surface models are related to surface phenomena encountered in CE. The final part of the review surveys recent concepts for prevention of protein adhesion, thereby addressing capillary treatment, favorable buffer types, dynamic and adhesive semi-permanent coating strategies covering the literature from 2000-2008.

  10. Quantitative H2S-mediated protein sulfhydration reveals metabolic reprogramming during the integrated stress response.

    PubMed

    Gao, Xing-Huang; Krokowski, Dawid; Guan, Bo-Jhih; Bederman, Ilya; Majumder, Mithu; Parisien, Marc; Diatchenko, Luda; Kabil, Omer; Willard, Belinda; Banerjee, Ruma; Wang, Benlian; Bebek, Gurkan; Evans, Charles R; Fox, Paul L; Gerson, Stanton L; Hoppel, Charles L; Liu, Ming; Arvan, Peter; Hatzoglou, Maria

    2015-01-01

    The sulfhydration of cysteine residues in proteins is an important mechanism involved in diverse biological processes. We have developed a proteomics approach to quantitatively profile the changes of sulfhydrated cysteines in biological systems. Bioinformatics analysis revealed that sulfhydrated cysteines are part of a wide range of biological functions. In pancreatic β cells exposed to endoplasmic reticulum (ER) stress, elevated H2S promotes the sulfhydration of enzymes in energy metabolism and stimulates glycolytic flux. We propose that transcriptional and translational reprogramming by the integrated stress response (ISR) in pancreatic β cells is coupled to metabolic alternations triggered by sulfhydration of key enzymes in intermediary metabolism. PMID:26595448

  11. Revealing the fate of cell surface human P-glycoprotein (ABCB1): The lysosomal degradation pathway.

    PubMed

    Katayama, Kazuhiro; Kapoor, Khyati; Ohnuma, Shinobu; Patel, Atish; Swaim, William; Ambudkar, Indu S; Ambudkar, Suresh V

    2015-10-01

    P-glycoprotein (P-gp) transports a variety of chemically dissimilar amphipathic compounds including anticancer drugs. Although mechanisms of P-gp drug transport are widely studied, the pathways involving its internalization are poorly understood. The present study is aimed at elucidating the pathways involved in degradation of cell surface P-gp. The fate of P-gp at the cell surface was determined by biotinylating cell surface proteins followed by flow cytometry and Western blotting. Our data shows that the half-life of endogenously expressed P-gp is 26.7±1.1 h in human colorectal cancer HCT-15 cells. Treatment of cells with Bafilomycin A1 (BafA1) a vacuolar H+ ATPase inhibitor increased the half-life of P-gp at the cell surface to 36.1±0.5 h. Interestingly, treatment with the proteasomal inhibitors MG132, MG115 or lactacystin alone did not alter the half-life of the protein. When cells were treated with both lysosomal and proteasomal inhibitors (BafA1 and MG132), the half-life was further prolonged to 39-50 h. Functional assays done with rhodamine 123 or calcein-AM, fluorescent substrates of P-gp, indicated that the transport function of P-gp was not affected by either biotinylation or treatment with BafA1 or proteasomal inhibitors. Immunofluorescence studies done with the antibody against lysosomal marker LAMP1 and the P-gp-specific antibody UIC2 in permeabilized cells indicated that intracellular P-gp is primarily localized in the lysosomal compartment. Our results suggest that the lysosomal degradation system could be targeted to increase the sensitivity of P-gp- expressing cancer cells towards chemotherapeutic drugs.

  12. A simple atomic-level hydrophobicity scale reveals protein interfacial structure.

    PubMed

    Kapcha, Lauren H; Rossky, Peter J

    2014-01-23

    Many amino acid residue hydrophobicity scales have been created in an effort to better understand and rapidly characterize water-protein interactions based only on protein structure and sequence. There is surprisingly low consistency in the ranking of residue hydrophobicity between scales, and their ability to provide insightful characterization varies substantially across subject proteins. All current scales characterize hydrophobicity based on entire amino acid residue units. We introduce a simple binary but atomic-level hydrophobicity scale that allows for the classification of polar and non-polar moieties within single residues, including backbone atoms. This simple scale is first shown to capture the anticipated hydrophobic character for those whole residues that align in classification among most scales. Examination of a set of protein binding interfaces establishes good agreement between residue-based and atomic-level descriptions of hydrophobicity for five residues, while the remaining residues produce discrepancies. We then show that the atomistic scale properly classifies the hydrophobicity of functionally important regions where residue-based scales fail. To illustrate the utility of the new approach, we show that the atomic-level scale rationalizes the hydration of two hydrophobic pockets and the presence of a void in a third pocket within a single protein and that it appropriately classifies all of the functionally important hydrophilic sites within two otherwise hydrophobic pores. We suggest that an atomic level of detail is, in general, necessary for the reliable depiction of hydrophobicity for all protein surfaces. The present formulation can be implemented simply in a manner no more complex than current residue-based approaches.

  13. Predictive response surface model for heat-induced rheological changes and aggregation of whey protein concentrate.

    PubMed

    Alvarez, Pedro A; Emond, Charles; Gomaa, Ahmed; Remondetto, Gabriel E; Subirade, Muriel

    2015-02-01

    Whey proteins are now far more than a by-product of cheese processing. In the last 2 decades, food manufacturers have developed them as ingredients, with the dairy industry remaining as a major user. For many applications, whey proteins are modified (denatured) to alter their structure and functional properties. The objective of this research was to study the influence of 85 to 100 °C, with protein concentration of 8% to 12%, and treatment times of 5 to 30 min, while measuring rheological properties (storage modulus, loss modulus, and complex viscosity) and aggregation (intermolecular beta-sheet formation) in dispersions of whey protein concentrate (WPC). A Box-Behnken Response Surface Methodology modeled the heat denaturation of liquid sweet WPC at 3 variables and 3 levels. The model revealed a very significant fit for viscoelastic properties, and a lesser fit for protein aggregation, at temperatures not previously studied. An exponential increase of rheological parameters was governed by protein concentration and temperature, while a modest linear relationship of aggregation was governed by temperature. Models such as these can serve as valuable guides to the ingredient and dairy industries to develop target products, as whey is a major ingredient in many functional foods.

  14. Zinc-dependent mechanical properties of Staphylococcus aureus biofilm-forming surface protein SasG

    PubMed Central

    Formosa-Dague, Cécile; Speziale, Pietro; Foster, Timothy J.; Geoghegan, Joan A.; Dufrêne, Yves F.

    2016-01-01

    Staphylococcus aureus surface protein SasG promotes cell–cell adhesion during the accumulation phase of biofilm formation, but the molecular basis of this interaction remains poorly understood. Here, we unravel the mechanical properties of SasG on the surface of living bacteria, that is, in its native cellular environment. Nanoscale multiparametric imaging of living bacteria reveals that Zn2+ strongly increases cell wall rigidity and activates the adhesive function of SasG. Single-cell force measurements show that SasG mediates cell–cell adhesion via specific Zn2+-dependent homophilic bonds between β-sheet–rich G5–E domains on neighboring cells. The force required to unfold individual domains is remarkably strong, up to ∼500 pN, thus explaining how SasG can withstand physiological shear forces. We also observe that SasG forms homophilic bonds with the structurally related accumulation-associated protein of Staphylococcus epidermidis, suggesting the possibility of multispecies biofilms during host colonization and infection. Collectively, our findings support a model in which zinc plays a dual role in activating cell–cell adhesion: adsorption of zinc ions to the bacterial cell surface increases cell wall cohesion and favors the projection of elongated SasG proteins away from the cell surface, thereby enabling zinc-dependent homophilic bonds between opposing cells. This work demonstrates an unexpected relationship between mechanics and adhesion in a staphylococcal surface protein, which may represent a general mechanism among bacterial pathogens for activating cell association. PMID:26715750

  15. Encephalitis and antibodies to synaptic and neuronal cell surface proteins

    PubMed Central

    Lancaster, Eric; Martinez-Hernandez, Eugenia

    2011-01-01

    The identification of encephalitis associated with antibodies against cell surface and synaptic proteins, although recent, has already had a substantial impact in clinical neurology and neuroscience. The target antigens are receptors and proteins that have critical roles in synaptic transmission and plasticity, including the NMDA receptor, the AMPA receptor, the GABAB receptor, and the glycine receptor. Other autoantigens, such as leucine-rich glioma-inactivated 1 and contactin-associated protein-like 2, form part of trans-synaptic complexes and neuronal cell adhesion molecules involved in fine-tuning synaptic transmission and nerve excitability. Syndromes resulting from these immune responses resemble those of pharmacologic or genetic models in which the antigens are disrupted. For some immune responses, there is evidence that the antibodies alter the structure and function of the antigen, suggesting a direct pathogenic effect. These disorders are important because they can affect children and young adults, are severe and protracted, occur with or without tumor association, and respond to treatment but may relapse. This review provides an update on these syndromes and autoantigens with special emphasis on clinical diagnosis and treatment. PMID:21747075

  16. G-Protein Coupled Receptors: Surface Display and Biosensor Technology

    NASA Astrophysics Data System (ADS)

    McMurchie, Edward; Leifert, Wayne

    Signal transduction by G-protein coupled receptors (GPCRs) underpins a multitude of physiological processes. Ligand recognition by the receptor leads to the activation of a generic molecular switch involving heterotrimeric G-proteins and guanine nucleotides. With growing interest and commercial investment in GPCRs in areas such as drug targets, orphan receptors, high-throughput screening of drugs and biosensors, greater attention will focus on assay development to allow for miniaturization, ultrahigh-throughput and, eventually, microarray/biochip assay formats that will require nanotechnology-based approaches. Stable, robust, cell-free signaling assemblies comprising receptor and appropriate molecular switching components will form the basis of future GPCR/G-protein platforms, which should be able to be adapted to such applications as microarrays and biosensors. This chapter focuses on cell-free GPCR assay nanotechnologies and describes some molecular biological approaches for the construction of more sophisticated, surface-immobilized, homogeneous, functional GPCR sensors. The latter points should greatly extend the range of applications to which technologies based on GPCRs could be applied.

  17. Molecular characterization of Mycoplasma arthritidis variable surface protein MAA2.

    PubMed

    Washburn, L R; Weaver, K E; Weaver, E J; Donelan, W; Al-Sheboul, S

    1998-06-01

    Earlier studies implied a role for Mycoplasma arthritidis surface protein MAA2 in cytadherence and virulence and showed that it exhibited both size and phase variability. Here we report the further analysis of MAA2 and the cloning and sequencing of the maa2 gene from two M. arthritidis strains, 158p10p9 and H606, expressing two size variants of MAA2. Triton X-114 partitioning and metabolic labeling with [3H]palmitic acid suggested lipid modification of MAA2. Surface exposure of the C terminus was indicated by cleavage of monoclonal antibody-specific epitopes from intact cells by carboxypeptidase Y. The maa2 genes from both strains were highly conserved, consisting largely of six (for 158p10p9) or five (for H606) nearly identical, 264-bp tandem direct repeats. The deduced amino acid sequence predicted a largely hydrophilic, highly basic protein with a 29-amino-acid lipoprotein signal peptide. The maa2 gene was expressed in Escherichia coli from the lacZ promoter of vector pGEM-T. The recombinant product was approximately 3 kDa larger than the native protein, suggesting that the signal peptide was not processed in E. coli. The maa2 gene and upstream DNA sequences were cloned from M. arthritidis clonal variants differing in MAA2 expression state. Expression state correlated with the length of a poly(T) tract just upstream of a putative -10 box. Full-sized recombinant MAA2 was expressed in E. coli from genes derived from both ON and OFF expression variants, indicating that control of expression did not include alterations within the coding region.

  18. Mars surface diversity as revealed by the OMEGA/Mars Express observations.

    PubMed

    Bibring, Jean-Pierre; Langevin, Yves; Gendrin, Aline; Gondet, Brigitte; Poulet, François; Berthé, Michel; Soufflot, Alain; Arvidson, Ray; Mangold, Nicolas; Mustard, John; Drossart, P

    2005-03-11

    The Observatoire pour la Minéralogie, l'Eau, les Glaces, et l'Activité (OMEGA) investigation, on board the European Space Agency Mars Express mission, is mapping the surface composition of Mars at a 0.3- to 5-kilometer resolution by means of visible-near-infrared hyperspectral reflectance imagery. The data acquired during the first 9 months of the mission already reveal a diverse and complex surface mineralogy, offering key insights into the evolution of Mars. OMEGA has identified and mapped mafic iron-bearing silicates of both the northern and southern crust, localized concentrations of hydrated phyllosilicates and sulfates but no carbonates, and ices and frosts with a water-ice composition of the north polar perennial cap, as for the south cap, covered by a thin carbon dioxide-ice veneer.

  19. Modulation of Protein Fouling and Interfacial Properties at Carbon Surfaces via Immobilization of Glycans Using Aryldiazonium Chemistry

    NASA Astrophysics Data System (ADS)

    Zen, Federico; Angione, M. Daniela; Behan, James A.; Cullen, Ronan J.; Duff, Thomas; Vasconcelos, Joana M.; Scanlan, Eoin M.; Colavita, Paula E.

    2016-04-01

    Carbon materials and nanomaterials are of great interest for biological applications such as implantable devices and nanoparticle vectors, however, to realize their potential it is critical to control formation and composition of the protein corona in biological media. In this work, protein adsorption studies were carried out at carbon surfaces functionalized with aryldiazonium layers bearing mono- and di-saccharide glycosides. Surface IR reflectance absorption spectroscopy and quartz crystal microbalance were used to study adsorption of albumin, lysozyme and fibrinogen. Protein adsorption was found to decrease by 30–90% with respect to bare carbon surfaces; notably, enhanced rejection was observed in the case of the tested di-saccharide vs. simple mono-saccharides for near-physiological protein concentration values. ζ-potential measurements revealed that aryldiazonium chemistry results in the immobilization of phenylglycosides without a change in surface charge density, which is known to be important for protein adsorption. Multisolvent contact angle measurements were used to calculate surface free energy and acid-base polar components of bare and modified surfaces based on the van Oss-Chaudhury-Good model: results indicate that protein resistance in these phenylglycoside layers correlates positively with wetting behavior and Lewis basicity.

  20. Modulation of Protein Fouling and Interfacial Properties at Carbon Surfaces via Immobilization of Glycans Using Aryldiazonium Chemistry

    NASA Astrophysics Data System (ADS)

    Zen, Federico; Angione, M. Daniela; Behan, James A.; Cullen, Ronan J.; Duff, Thomas; Vasconcelos, Joana M.; Scanlan, Eoin M.; Colavita, Paula E.

    2016-04-01

    Carbon materials and nanomaterials are of great interest for biological applications such as implantable devices and nanoparticle vectors, however, to realize their potential it is critical to control formation and composition of the protein corona in biological media. In this work, protein adsorption studies were carried out at carbon surfaces functionalized with aryldiazonium layers bearing mono- and di-saccharide glycosides. Surface IR reflectance absorption spectroscopy and quartz crystal microbalance were used to study adsorption of albumin, lysozyme and fibrinogen. Protein adsorption was found to decrease by 30-90% with respect to bare carbon surfaces; notably, enhanced rejection was observed in the case of the tested di-saccharide vs. simple mono-saccharides for near-physiological protein concentration values. ζ-potential measurements revealed that aryldiazonium chemistry results in the immobilization of phenylglycosides without a change in surface charge density, which is known to be important for protein adsorption. Multisolvent contact angle measurements were used to calculate surface free energy and acid-base polar components of bare and modified surfaces based on the van Oss-Chaudhury-Good model: results indicate that protein resistance in these phenylglycoside layers correlates positively with wetting behavior and Lewis basicity.

  1. Modulation of Protein Fouling and Interfacial Properties at Carbon Surfaces via Immobilization of Glycans Using Aryldiazonium Chemistry

    PubMed Central

    Zen, Federico; Angione, M. Daniela; Behan, James A.; Cullen, Ronan J.; Duff, Thomas; Vasconcelos, Joana M.; Scanlan, Eoin M.; Colavita, Paula E.

    2016-01-01

    Carbon materials and nanomaterials are of great interest for biological applications such as implantable devices and nanoparticle vectors, however, to realize their potential it is critical to control formation and composition of the protein corona in biological media. In this work, protein adsorption studies were carried out at carbon surfaces functionalized with aryldiazonium layers bearing mono- and di-saccharide glycosides. Surface IR reflectance absorption spectroscopy and quartz crystal microbalance were used to study adsorption of albumin, lysozyme and fibrinogen. Protein adsorption was found to decrease by 30–90% with respect to bare carbon surfaces; notably, enhanced rejection was observed in the case of the tested di-saccharide vs. simple mono-saccharides for near-physiological protein concentration values. ζ-potential measurements revealed that aryldiazonium chemistry results in the immobilization of phenylglycosides without a change in surface charge density, which is known to be important for protein adsorption. Multisolvent contact angle measurements were used to calculate surface free energy and acid-base polar components of bare and modified surfaces based on the van Oss-Chaudhury-Good model: results indicate that protein resistance in these phenylglycoside layers correlates positively with wetting behavior and Lewis basicity. PMID:27108562

  2. Neorickettsia risticii surface-exposed proteins: proteomics identification, recognition by naturally-infected horses, and strain variations

    PubMed Central

    2011-01-01

    Neorickettsia risticii is the Gram-negative, obligate, and intracellular bacterial pathogen responsible for Potomac horse fever (PHF): an important acute systemic disease of horses. N. risticii surface proteins, critical for immune recognition, have not been thoroughly characterized. In this paper, we identified the 51-kDa antigen (P51) as a major surface-exposed outer membrane protein of older and contemporary strains of N. risticii through mass spectrometry of streptavidin-purified biotinylated surface-labeled proteins. Western blot analysis of sera from naturally-infected horses demonstrated universal and strong recognition of recombinant P51 over other Neorickettsia recombinant proteins. Comparisons of amino acid sequences for predicted secondary structures of P51, as well as Neorickettsia surface proteins 2 (Nsp2) and 3 (Nsp3) among N. risticii strains from horses with PHF during a 26-year period throughout the United States revealed that the majority of variations among strains were concentrated in regions predicted to be external loops of their β-barrel structures. Large insertions or deletions occurred within a tandem-repeat region in Ssa3. These data demonstrate patterns of geographical association for P51 and temporal associations for Nsp2, Nsp3, and Ssa3, indicating evolutionary trends for these Neorickettsia surface antigen genes. This study showed N. risticii surface protein population dynamics, providing groundwork for designing immunodiagnostic targets for PHF. PMID:21635728

  3. A plasmon-driven selective surface catalytic reaction revealed by surface-enhanced Raman scattering in an electrochemical environment.

    PubMed

    Cui, Lin; Wang, Peijie; Fang, Yurui; Li, Yuanzuo; Sun, Mengtao

    2015-07-06

    Plasmonic catalytic reactions of molecules with single amine or nitro groups have been investigated in recent years. However, plasmonic catalysis of molecules with multiple amine and/or nitro groups is still unknown. In this paper, plasmon-driven catalytic reactions of 4,4'-dinitroazobenzene (DNAB), 4,4'-diaminoazobenzene (DAAB) and 4-nitro-4'-aminoazobenzene (NAAB) are investigated using electrochemical surface-enhanced Raman scattering (SERS) spectroscopy. The results reveal that a plasmon-driven reduction reaction occurred for DNAB and NAAB in which the NO2 group was reduced to NH2, while the plasmon-driven oxidation reaction of NH2 did not occur. This result demonstrates that plasmon-driven reduction reactions are much easier than plasmon-driven oxidization reactions in electrochemical environments. The molecular resonance may also play an important role in plasmon-driven catalytic reactions. These findings provide us with a deeper understanding of plasmon-driven catalytic reactions.

  4. Bivalent inhibitors for disrupting protein surface-substrate interactions and for dual inhibition of protein prenyltransferases.

    PubMed

    Machida, Shinnosuke; Kato, Nobuo; Harada, Kazuo; Ohkanda, Junko

    2011-02-01

    Low-molecular-weight compounds that disrupt protein−protein interactions (PPIs) have tremendous potential applications as clinical agents and as chemical probes for investigating intracellular PPI networks. However, disrupting PPIs is extremely difficult due to the large, flat interfaces of many proteins, which often lack structurally defined cavities to which drug-like molecules could bind in a thermodynamically favorable manner. Here, we describe a series of bivalent compounds that anchor to the enzyme active site to deliver a minimally sized surface-binding module to the targeted surface involved in transient PPI with a substrate. These compounds are capable of significantly inhibiting enzymatic reactions involving protein surface−substrate interaction in the single-digit nanomole range. Inhibitors of farnesyltransferase (FTase), which possesses a negatively charged local area on its α-subunit, were designed by attaching a module derived from a branched monoamine-containing gallate to a conventional active-site-directed CVIM tetrapeptide using an alkyl spacer. A significant improvement in inhibitory activity (>200-fold) against farnesylation of the K-Ras4B peptide was observed when the gallate module was attached to the CVIM tetrapeptide. Furthermore, the bivalent compounds had submicromolar inhibitory activity against geranylgeranylation of the K-Ras4B peptide catalyzed by GGTase I, which has an α-subunit identical to that of FTase. The anchoring strategy we describe would be useful for designing a new class of PPI inhibitors as well as dual enzyme inhibitors targeting common surface structures.

  5. Nanoscale electrochemical patterning reveals the active sites for catechol oxidation at graphite surfaces.

    PubMed

    Patel, Anisha N; McKelvey, Kim; Unwin, Patrick R

    2012-12-19

    Graphite-based electrodes (graphite, graphene, and nanotubes) are used widely in electrochemistry, and there is a long-standing view that graphite step edges are needed to catalyze many reactions, with the basal surface considered to be inert. In the present work, this model was tested directly for the first time using scanning electrochemical cell microscopy reactive patterning and shown to be incorrect. For the electro-oxidation of dopamine as a model process, the reaction rate was measured at high spatial resolution across a surface of highly oriented pyrolytic graphite. Oxidation products left behind in a pattern defined by the scanned electrochemical cell served as surface-site markers, allowing the electrochemical activity to be correlated directly with the graphite structure on the nanoscale. This process produced tens of thousands of electrochemical measurements at different locations across the basal surface, unambiguously revealing it to be highly electrochemically active, with step edges providing no enhanced activity. This new model of graphite electrodes has significant implications for the design of carbon-based biosensors, and the results are additionally important for understanding electrochemical processes on related sp(2)-hybridized materials such as pristine graphene and nanotubes.

  6. Compositional variability across Mercury's surface revealed by MESSENGER measurements of variations in thermal neutron count rates

    NASA Astrophysics Data System (ADS)

    Peplowski, P. N.; Lawrence, D. J.; Goldsten, J. O.; Nittler, L. R.; Solomon, S. C.

    2013-12-01

    Measurements by MESSENGER's Gamma-Ray and Neutron Spectrometer (GRNS) have revealed variations in the flux of thermal neutrons across Mercury's northern hemisphere. These variations are interpreted to originate from spatial variations in surface elemental composition. In particular, the measurements are sensitive to the near-surface abundances of elements that absorb thermal neutrons, including major rock-forming elements such as Fe and Ti, minor elements such as Mn and Cl, and rare-earth elements such as Gd and Sm. We have constructed a map of thermal neutron variability across the surface and compared it with known variations in elemental composition and with the distribution of geologic units. Development of the map included the derivation of the macroscopic thermal neutron absorption cross section across the surface, a quantity whose value and variability provides useful constraints on the formation and geochemical evolution of Mercury's crust. Finally, by combining the thermal neutron measurements with previously reported elemental measurements from the GRNS and MESSENGER's X-Ray Spectrometer, we have derived constraints on the abundances of neutron-absorbing elements, including previously unreported limits for some minor and rare-earth elements.

  7. MitoTimer probe reveals the impact of autophagy, fusion, and motility on subcellular distribution of young and old mitochondrial protein and on relative mitochondrial protein age.

    PubMed

    Ferree, Andrew W; Trudeau, Kyle; Zik, Eden; Benador, Ilan Y; Twig, Gilad; Gottlieb, Roberta A; Shirihai, Orian S

    2013-11-01

    To study mitochondrial protein age dynamics, we targeted a time-sensitive fluorescent protein, MitoTimer, to the mitochondrial matrix. Mitochondrial age was revealed by the integrated portions of young (green) and old (red) MitoTimer protein. Mitochondrial protein age was dependent on turnover rates as pulsed synthesis, decreased import, or autophagic inhibition all increased the proportion of aged MitoTimer protein. Mitochondrial fusion promotes the distribution of young mitochondrial protein across the mitochondrial network as cells lacking essential fusion genes Mfn1 and Mfn2 displayed increased heterogeneity in mitochondrial protein age. Experiments in hippocampal neurons illustrate that the distribution of older and younger mitochondrial protein within the cell is determined by subcellular spatial organization and compartmentalization of mitochondria into neurites and soma. This effect was altered by overexpression of mitochondrial transport protein, RHOT1/MIRO1. Collectively our data show that distribution of young and old protein in the mitochondrial network is dependent on turnover, fusion, and transport.

  8. Structures of Cryptococcus neoformans Protein Farnesyltransferase Reveal Strategies for Developing Inhibitors That Target Fungal Pathogens

    SciTech Connect

    Hast, Michael A.; Nichols, Connie B.; Armstrong, Stephanie M.; Kelly, Shannon M.; Hellinga, Homme W.; Alspaugh, J. Andrew; Beese, Lorena S.

    2012-09-17

    Cryptococcus neoformans is a fungal pathogen that causes life-threatening infections in immunocompromised individuals, including AIDS patients and transplant recipients. Few antifungals can treat C. neoformans infections, and drug resistance is increasing. Protein farnesyltransferase (FTase) catalyzes post-translational lipidation of key signal transduction proteins and is essential in C. neoformans. We present a multidisciplinary study validating C. neoformans FTase (CnFTase) as a drug target, showing that several anticancer FTase inhibitors with disparate scaffolds can inhibit C. neoformans and suggesting structure-based strategies for further optimization of these leads. Structural studies are an essential element for species-specific inhibitor development strategies by revealing similarities and differences between pathogen and host orthologs that can be exploited. We, therefore, present eight crystal structures of CnFTase that define the enzymatic reaction cycle, basis of ligand selection, and structurally divergent regions of the active site. Crystal structures of clinically important anticancer FTase inhibitors in complex with CnFTase reveal opportunities for optimization of selectivity for the fungal enzyme by modifying functional groups that interact with structurally diverse regions. A substrate-induced conformational change in CnFTase is observed as part of the reaction cycle, a feature that is mechanistically distinct from human FTase. Our combined structural and functional studies provide a framework for developing FTase inhibitors to treat invasive fungal infections.

  9. Polymer adhesion at surfaces: biological adhesive proteins and their synthetic mimics

    NASA Astrophysics Data System (ADS)

    Messersmith, Phillip

    2008-03-01

    Mussels are famous for their ability to permanently adhere to a wide variety of wet surfaces, such as rocks, metal and polymer ship hulls, and wood structures. They accomplish this through specialized proteins collectively referred to as mussel adhesive proteins (MAPs). The biophysical aspects of MAP adhesion is being revealed through the use of single molecule force measurements. The results provide insight into the adhesive roles of key amino acids found in these proteins, including the magnitude of adhesive forces, cooperative effects, and their self-healing properties. This molecular-level information is being incorporated into designs of biomimetic polymer coatings for a variety of applications. Our biomimetic approach to polymer design will be illustrated by a few examples where adhesive constituents found in MAPs are exploited to make wet-adhesive polymer coatings. In addition, small molecule analogs of MAPs can be used to apply thin functional films onto virtually any material surface using a facile approach. These coatings have a variety of potential uses in microelectronics, water treatment, prevention of environmental biofouling, and for control of biointerfacial phenomena at the surfaces of medical/diagnostic devices.

  10. Surface-layer protein from Caulobacter crescentus: expression, purification and X-ray crystallographic analysis.

    PubMed

    Jones, Michael D; Chan, Anson C K; Nomellini, John F; Murphy, Michael E P; Smit, John

    2016-09-01

    Protein surface layers are self-assembling, paracrystalline lattices on the surface of many prokaryotes. Surface-layer proteins have not benefited from widespread structural analysis owing to their resistance to crystallization. Here, the successful expression of a truncated version of RsaA, the surface-layer protein from Caulobacter crescentus, from a Caulobacter protein-expression system is reported. The purification, crystallization and initial X-ray diffraction analysis of the truncated RsaA, the largest surface-layer protein studied to date and the first from a Gram-negative bacterium, are also reported. PMID:27599857

  11. Thermal green protein, an extremely stable, nonaggregating fluorescent protein created by structure-guided surface engineering

    SciTech Connect

    Close, Devin W.; Paul, Craig Don; Langan, Patricia S.; Wilce, Matthew C. J.; Traore, Daouda A. K.; Halfmann, Randal; Rocha, Reginaldo C.; Waldo, Geoffery S.; Payne, Riley J.; Rucker, Joseph B.; Prescott, Mark; Bradbury, Andrew R. M.

    2015-05-08

    In this paper, we describe the engineering and X-ray crystal structure of Thermal Green Protein (TGP), an extremely stable, highly soluble, non-aggregating green fluorescent protein. TGP is a soluble variant of the fluorescent protein eCGP123, which despite being highly stable, has proven to be aggregation-prone. The X-ray crystal structure of eCGP123, also determined within the context of this paper, was used to carry out rational surface engineering to improve its solubility, leading to TGP. The approach involved simultaneously eliminating crystal lattice contacts while increasing the overall negative charge of the protein. Despite intentional disruption of lattice contacts and introduction of high entropy glutamate side chains, TGP crystallized readily in a number of different conditions and the X-ray crystal structure of TGP was determined to 1.9 Å resolution. The structural reasons for the enhanced stability of TGP and eCGP123 are discussed. We demonstrate the utility of using TGP as a fusion partner in various assays and significantly, in amyloid assays in which the standard fluorescent protein, EGFP, is undesirable because of aberrant oligomerization.

  12. Thermal green protein, an extremely stable, nonaggregating fluorescent protein created by structure-guided surface engineering

    DOE PAGES

    Close, Devin W.; Paul, Craig Don; Langan, Patricia S.; Wilce, Matthew C. J.; Traore, Daouda A. K.; Halfmann, Randal; Rocha, Reginaldo C.; Waldo, Geoffery S.; Payne, Riley J.; Rucker, Joseph B.; et al

    2015-05-08

    In this paper, we describe the engineering and X-ray crystal structure of Thermal Green Protein (TGP), an extremely stable, highly soluble, non-aggregating green fluorescent protein. TGP is a soluble variant of the fluorescent protein eCGP123, which despite being highly stable, has proven to be aggregation-prone. The X-ray crystal structure of eCGP123, also determined within the context of this paper, was used to carry out rational surface engineering to improve its solubility, leading to TGP. The approach involved simultaneously eliminating crystal lattice contacts while increasing the overall negative charge of the protein. Despite intentional disruption of lattice contacts and introduction ofmore » high entropy glutamate side chains, TGP crystallized readily in a number of different conditions and the X-ray crystal structure of TGP was determined to 1.9 Å resolution. The structural reasons for the enhanced stability of TGP and eCGP123 are discussed. We demonstrate the utility of using TGP as a fusion partner in various assays and significantly, in amyloid assays in which the standard fluorescent protein, EGFP, is undesirable because of aberrant oligomerization.« less

  13. Thermal green protein, an extremely stable, nonaggregating fluorescent protein created by structure-guided surface engineering.

    PubMed

    Close, Devin W; Paul, Craig Don; Langan, Patricia S; Wilce, Matthew C J; Traore, Daouda A K; Halfmann, Randal; Rocha, Reginaldo C; Waldo, Geoffery S; Payne, Riley J; Rucker, Joseph B; Prescott, Mark; Bradbury, Andrew R M

    2015-07-01

    In this article, we describe the engineering and X-ray crystal structure of Thermal Green Protein (TGP), an extremely stable, highly soluble, non-aggregating green fluorescent protein. TGP is a soluble variant of the fluorescent protein eCGP123, which despite being highly stable, has proven to be aggregation-prone. The X-ray crystal structure of eCGP123, also determined within the context of this paper, was used to carry out rational surface engineering to improve its solubility, leading to TGP. The approach involved simultaneously eliminating crystal lattice contacts while increasing the overall negative charge of the protein. Despite intentional disruption of lattice contacts and introduction of high entropy glutamate side chains, TGP crystallized readily in a number of different conditions and the X-ray crystal structure of TGP was determined to 1.9 Å resolution. The structural reasons for the enhanced stability of TGP and eCGP123 are discussed. We demonstrate the utility of using TGP as a fusion partner in various assays and significantly, in amyloid assays in which the standard fluorescent protein, EGFP, is undesirable because of aberrant oligomerization.

  14. Model systems of protein-misfolding diseases reveal chaperone modifiers of proteotoxicity.

    PubMed

    Brehme, Marc; Voisine, Cindy

    2016-08-01

    Chaperones and co-chaperones enable protein folding and degradation, safeguarding the proteome against proteotoxic stress. Chaperones display dynamic responses to exogenous and endogenous stressors and thus constitute a key component of the proteostasis network (PN), an intricately regulated network of quality control and repair pathways that cooperate to maintain cellular proteostasis. It has been hypothesized that aging leads to chronic stress on the proteome and that this could underlie many age-associated diseases such as neurodegeneration. Understanding the dynamics of chaperone function during aging and disease-related proteotoxic stress could reveal specific chaperone systems that fail to respond to protein misfolding. Through the use of suppressor and enhancer screens, key chaperones crucial for proteostasis maintenance have been identified in model organisms that express misfolded disease-related proteins. This review provides a literature-based analysis of these genetic studies and highlights prominent chaperone modifiers of proteotoxicity, which include the HSP70-HSP40 machine and small HSPs. Taken together, these studies in model systems can inform strategies for therapeutic regulation of chaperone functionality, to manage aging-related proteotoxic stress and to delay the onset of neurodegenerative diseases. PMID:27491084

  15. Quantum dot single molecule tracking reveals a wide range of diffusive motions of membrane transport proteins

    NASA Astrophysics Data System (ADS)

    Crane, Jonathan M.; Haggie, Peter M.; Verkman, A. S.

    2009-02-01

    Single particle tracking (SPT) provides information about the microscopic motions of individual particles in live cells. We applied SPT to study the diffusion of membrane transport proteins in cell plasma membranes in which individual proteins are labeled with quantum dots at engineered extracellular epitopes. Software was created to deduce particle diffusive modes from quantum dot trajectories. SPT of aquaporin (AQP) water channels and cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels revealed several types of diffusion. AQP1 was freely mobile in cell membranes, showing rapid, Brownian-type diffusion. The full-length (M1) isoform of AQP4 also diffused rapidly, though the diffusion of a shorter (M23) isoform of AQP4 was highly restricted due to its supermolecular assembly in raft-like orthogonal arrays. CFTR mobility was also highly restricted, in a spring-like potential, due to its tethering to the actin cytoskeleton through PDZ-domain C-terminus interactions. The biological significance of regulated diffusion of membrane transport proteins is a subject of active investigation.

  16. Analysis of microdissected neurons by 18O mass spectrometry reveals altered protein expression in Alzheimer's disease

    PubMed Central

    Hashimoto, Masakazu; Bogdanovic, Nenad; Nakagawa, Hiroyuki; Volkmann, Inga; Aoki, Mikio; Winblad, Bengt; Sakai, Jun; Tjernberg, Lars O

    2012-01-01

    Abstract It is evident that the symptoms of Alzheimer's disease (AD) are derived from severe neuronal damage, and especially pyramidal neurons in the hippocampus are affected pathologically. Here, we analysed the proteome of hippocampal neurons, isolated from post-mortem brains by laser capture microdissection. By using 18O labelling and mass spectrometry, the relative expression levels of 150 proteins in AD and controls were estimated. Many of the identified proteins are involved in transcription and nucleotide binding, glycolysis, heat-shock response, microtubule stabilization, axonal transport or inflammation. The proteins showing the most altered expression in AD were selected for immunohistochemical analysis. These analyses confirmed the altered expression levels, and showed in many AD cases a pathological pattern. For comparison, we also analysed hippocampal sections by Western blot. The expression levels found by this method showed poor correlation with the neuron-specific analysis. Hence, we conclude that cell-specific proteome analysis reveals differences in the proteome that cannot be detected by bulk analysis. PMID:21883897

  17. Single-Molecule Imaging Reveals the Activation Dynamics of Intracellular Protein Smad3 on Cell Membrane

    NASA Astrophysics Data System (ADS)

    Li, Nan; Yang, Yong; He, Kangmin; Zhang, Fayun; Zhao, Libo; Zhou, Wei; Yuan, Jinghe; Liang, Wei; Fang, Xiaohong

    2016-09-01

    Smad3 is an intracellular protein that plays a key role in propagating transforming growth factor β (TGF-β) signals from cell membrane to nucleus. However whether the transient process of Smad3 activation occurs on cell membrane and how it is regulated remains elusive. Using advanced live-cell single-molecule fluorescence microscopy to image and track fluorescent protein-labeled Smad3, we observed and quantified, for the first time, the dynamics of individual Smad3 molecules docking to and activation on the cell membrane. It was found that Smad3 docked to cell membrane in both unstimulated and stimulated cells, but with different diffusion rates and dissociation kinetics. The change in its membrane docking dynamics can be used to study the activation of Smad3. Our results reveal that Smad3 binds with type I TGF-β receptor (TRI) even in unstimulated cells. Its activation is regulated by TRI phosphorylation but independent of receptor endocytosis. This study offers new information on TGF-β/Smad signaling, as well as a new approach to investigate the activation of intracellular signaling proteins for a better understanding of their functions in signal transduction.

  18. Model systems of protein-misfolding diseases reveal chaperone modifiers of proteotoxicity

    PubMed Central

    2016-01-01

    ABSTRACT Chaperones and co-chaperones enable protein folding and degradation, safeguarding the proteome against proteotoxic stress. Chaperones display dynamic responses to exogenous and endogenous stressors and thus constitute a key component of the proteostasis network (PN), an intricately regulated network of quality control and repair pathways that cooperate to maintain cellular proteostasis. It has been hypothesized that aging leads to chronic stress on the proteome and that this could underlie many age-associated diseases such as neurodegeneration. Understanding the dynamics of chaperone function during aging and disease-related proteotoxic stress could reveal specific chaperone systems that fail to respond to protein misfolding. Through the use of suppressor and enhancer screens, key chaperones crucial for proteostasis maintenance have been identified in model organisms that express misfolded disease-related proteins. This review provides a literature-based analysis of these genetic studies and highlights prominent chaperone modifiers of proteotoxicity, which include the HSP70-HSP40 machine and small HSPs. Taken together, these studies in model systems can inform strategies for therapeutic regulation of chaperone functionality, to manage aging-related proteotoxic stress and to delay the onset of neurodegenerative diseases. PMID:27491084

  19. Glycoproteomic Study Reveals Altered Plasma Proteins Associated with HIV Elite Suppressors

    PubMed Central

    Yang, Weiming; Laeyendecker, Oliver; Wendel, Sarah K.; Zhang, Bai; Sun, Shisheng; Zhou, Jian-Ying; Ao, Minghui; Moore, Richard D.; Jackson, J. Brooks; Zhang, Hui

    2014-01-01

    HIV elite suppressors (ES) or controllers are individuals achieving control of viremia by their natural immunological mechanisms without highly active antiretroviral therapy (HAART). Study of the mechanisms responsible for the immunological suppression of viremia in ES may lead to the detection of individuals with ES and the effective control of HIV infection. We hypothesize that plasma glycoproteins play essential roles in the immune system of ES since plasma proteins are critical and highly relevant in anti-viral immunity and most plasma proteins are glycoproteins. To examine glycoproteins associated with ES, plasma samples from ES individuals (n=20), and from individuals on HAART (n=20), with AIDS (n=20), and no HIV infection (n=10) were analyzed by quantitative glycoproteomics. We found that a number of glycoproteins changed between ES versus HAART, AIDS and HIV- individuals. In sharp contrast, the level of plasma glycoproteins in the HAART cohort showed fewer changes compared with AIDS and HIV- individuals. These results showed that although both ES and HAART effectively suppress viremia, ES appeared to profoundly affect immunologically relevant glycoproteins in plasma as consequence of or support for anti-viral immunity. Bioinformatic analysis revealed that altered proteins in ES plasma were mainly associated with inflammation. This analysis suggests that overlapping, while distinguishable, glycoprotein profiles for inflammation and immune activation appeared to be present between ES and non-ES (HAART+AIDS) cohorts, indicating different triggers for inflammation and immune activation between natural and treatment-related viral suppression. PMID:25285165

  20. Single-Molecule FRET Reveals Hidden Complexity in a Protein Energy Landscape

    PubMed Central

    Tsytlonok, Maksym; Ibrahim, Shehu M.; Rowling, Pamela J.E.; Xu, Wenshu; Ruedas-Rama, Maria J.; Orte, Angel; Klenerman, David; Itzhaki, Laura S.

    2015-01-01

    Summary Here, using single-molecule FRET, we reveal previously hidden conformations of the ankyrin-repeat domain of AnkyrinR, a giant adaptor molecule that anchors integral membrane proteins to the spectrin-actin cytoskeleton through simultaneous binding of multiple partner proteins. We show that the ankyrin repeats switch between high-FRET and low-FRET states, controlled by an unstructured “safety pin” or “staple” from the adjacent domain of AnkyrinR. Opening of the safety pin leads to unravelling of the ankyrin repeat stack, a process that will dramatically affect the relative orientations of AnkyrinR binding partners and, hence, the anchoring of the spectrin-actin cytoskeleton to the membrane. Ankyrin repeats are one of the most ubiquitous molecular recognition platforms in nature, and it is therefore important to understand how their structures are adapted for function. Our results point to a striking mechanism by which the order-disorder transition and, thereby, the activity of repeat proteins can be regulated. PMID:25565106

  1. Single-Molecule Imaging Reveals the Activation Dynamics of Intracellular Protein Smad3 on Cell Membrane.

    PubMed

    Li, Nan; Yang, Yong; He, Kangmin; Zhang, Fayun; Zhao, Libo; Zhou, Wei; Yuan, Jinghe; Liang, Wei; Fang, Xiaohong

    2016-01-01

    Smad3 is an intracellular protein that plays a key role in propagating transforming growth factor β (TGF-β) signals from cell membrane to nucleus. However whether the transient process of Smad3 activation occurs on cell membrane and how it is regulated remains elusive. Using advanced live-cell single-molecule fluorescence microscopy to image and track fluorescent protein-labeled Smad3, we observed and quantified, for the first time, the dynamics of individual Smad3 molecules docking to and activation on the cell membrane. It was found that Smad3 docked to cell membrane in both unstimulated and stimulated cells, but with different diffusion rates and dissociation kinetics. The change in its membrane docking dynamics can be used to study the activation of Smad3. Our results reveal that Smad3 binds with type I TGF-β receptor (TRI) even in unstimulated cells. Its activation is regulated by TRI phosphorylation but independent of receptor endocytosis. This study offers new information on TGF-β/Smad signaling, as well as a new approach to investigate the activation of intracellular signaling proteins for a better understanding of their functions in signal transduction. PMID:27641076

  2. Single-Molecule Imaging Reveals the Activation Dynamics of Intracellular Protein Smad3 on Cell Membrane

    PubMed Central

    Li, Nan; Yang, Yong; He, Kangmin; Zhang, Fayun; Zhao, Libo; Zhou, Wei; Yuan, Jinghe; Liang, Wei; Fang, Xiaohong

    2016-01-01

    Smad3 is an intracellular protein that plays a key role in propagating transforming growth factor β (TGF-β) signals from cell membrane to nucleus. However whether the transient process of Smad3 activation occurs on cell membrane and how it is regulated remains elusive. Using advanced live-cell single-molecule fluorescence microscopy to image and track fluorescent protein-labeled Smad3, we observed and quantified, for the first time, the dynamics of individual Smad3 molecules docking to and activation on the cell membrane. It was found that Smad3 docked to cell membrane in both unstimulated and stimulated cells, but with different diffusion rates and dissociation kinetics. The change in its membrane docking dynamics can be used to study the activation of Smad3. Our results reveal that Smad3 binds with type I TGF-β receptor (TRI) even in unstimulated cells. Its activation is regulated by TRI phosphorylation but independent of receptor endocytosis. This study offers new information on TGF-β/Smad signaling, as well as a new approach to investigate the activation of intracellular signaling proteins for a better understanding of their functions in signal transduction. PMID:27641076

  3. QUANTUM DOT SINGLE MOLECULE TRACKING REVEALS A WIDE RANGE OF DIFFUSIVE MOTIONS OF MEMBRANE TRANSPORT PROTEINS.

    PubMed

    Crane, Jonathan M; Haggie, Peter M; Verkman, A S

    2009-03-01

    Single particle tracking (SPT) provides information about the microscopic motions of individual particles in live cells. We applied SPT to study the diffusion of membrane transport proteins in cell plasma membranes in which individual proteins are labeled with quantum dots at engineered extracellular epitopes. Software was created to deduce particle diffusive modes from quantum dot trajectories. SPT of aquaporin (AQP) water channels and cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels revealed several types of diffusion. AQP1 was freely mobile in cell membranes, showing rapid, Brownian-type diffusion. The full-length (M1) isoform of AQP4 also diffused rapidly, though the diffusion of a shorter (M23) isoform of AQP4 was highly restricted due to its supermolecular assembly in raft-like orthogonal arrays. CFTR mobility was also highly restricted, in a spring-like potential, due to its tethering to the actin cytoskeleton through PDZ-domain C-terminus interactions. The biological significance of regulated diffusion of membrane transport proteins is a subject of active investigation.

  4. Neutrophil bactericidal activity against Staphylococcus aureus adherent on biological surfaces. Surface-bound extracellular matrix proteins activate intracellular killing by oxygen-dependent and -independent mechanisms.

    PubMed Central

    Hermann, M; Jaconi, M E; Dahlgren, C; Waldvogel, F A; Stendahl, O; Lew, D P

    1990-01-01

    The activation patterns of surface adherent neutrophils are modulated via interaction of extracellular matrix proteins with neutrophil integrins. To evaluate neutrophil bactericidal activity, Staphylococcus aureus adherent to biological surfaces were incubated with neutrophils and serum, and the survival of surface bacteria was determined. When compared to albumin-coated surfaces, the bactericidal activity of neutrophils adherent to purified human extracellular matrix was markedly enhanced (mean survival: 34.2% +/- 9.0% of albumin, P less than 0.0001) despite similar efficient ingestion of extracellular bacteria. Enhancement of killing was observed when surfaces were coated with purified constituents of extracellular matrix, i.e., fibronectin, fibrinogen, laminin, vitronectin, or type IV collagen. In addition to matrix proteins, the tetrapeptide RGDS (the sequence recognized by integrins) crosslinked to surface bound albumin was also active (survival: 74.5% +/- 5.5% of albumin, P less than 0.02), and fibronectin-increased killing was inhibited by soluble RGDS. Chemiluminescence measurements and experiments with CGD neutrophils revealed that both oxygen-dependent and -independent bactericidal mechanisms are involved. In conclusion, matrix proteins enhance intracellular bactericidal activity of adherent neutrophils, presumably by integrin recognition of RGDS-containing ligands. These results indicate a role for extracellular matrix proteins in the enhancement of the host defense against pyogenic infections. Images PMID:2394841

  5. Nanoporous Titanium Surfaces for Sustained Elution of Proteins and Antibiotics

    PubMed Central

    Cassani, Davide A. D.; Variola, Fabio

    2014-01-01

    Current medically relevant metals for prosthetic reconstructions enjoy a relatively good success rate, but their performance drops significantly in patients with compromised health status, and post-surgical infections still remain an important challenge. To address these problems, different nanotechnology-based strategies have been exploited to create implantable metals with an enhanced bioactivity and antibacterial capacities. Among these, oxidative nanopatterning has emerged as a very effective approach to engender nanoporous surfaces that stimulate and guide the activity of adhering cells. The resulting nanoporosity is also attractive because it offers nanoconfined volumes that can be exploited to load bioactive compounds and modulate their release over time. Such extended elution is needed since a single exposure to growth factors and/or antibiotics, for instance, may not be adequate to further sustain bone regeneration and/or to counteract bacterial colonization. In this article, we assessed the capacities of nanoporous titanium surfaces generated by oxidative nanopatterning to provide controlled and sustained elution of proteins and antibiotic molecules. To this end, we have selected bovine serum albumin (BSA) and vancomycin to reflect commonly used compounds, and investigated their adsorption and elution by Fourier-transform infrared (FT-IR) and ultraviolet–visible (UV-VIS) spectroscopy. Our results demonstrate that while the elution of albumin is not significantly affected by the nanoporosity, in the case of vancomycin, nanoporous surfaces provided an extended release. These findings were successively correlated to the establishment of interactions with the surface and physical-entrapment effects exerted by the nanopores, ultimately highlighting their synergistic contribution to the release profiles and thus their importance in the design of nanostructured eluting platforms for applications in medicine. PMID:24633020

  6. Integrative proteomic profiling of ovarian cancer cell lines reveals precursor cell associated proteins and functional status

    PubMed Central

    Coscia, F.; Watters, K. M.; Curtis, M.; Eckert, M. A.; Chiang, C. Y.; Tyanova, S.; Montag, A.; Lastra, R. R.; Lengyel, E.; Mann, M.

    2016-01-01

    A cell line representative of human high-grade serous ovarian cancer (HGSOC) should not only resemble its tumour of origin at the molecular level, but also demonstrate functional utility in pre-clinical investigations. Here, we report the integrated proteomic analysis of 26 ovarian cancer cell lines, HGSOC tumours, immortalized ovarian surface epithelial cells and fallopian tube epithelial cells via a single-run mass spectrometric workflow. The in-depth quantification of >10,000 proteins results in three distinct cell line categories: epithelial (group I), clear cell (group II) and mesenchymal (group III). We identify a 67-protein cell line signature, which separates our entire proteomic data set, as well as a confirmatory publicly available CPTAC/TCGA tumour proteome data set, into a predominantly epithelial and mesenchymal HGSOC tumour cluster. This proteomics-based epithelial/mesenchymal stratification of cell lines and human tumours indicates a possible origin of HGSOC either from the fallopian tube or from the ovarian surface epithelium. PMID:27561551

  7. The involvement of proline-rich protein Mus musculus predicted gene 4736 in ocular surface functions

    PubMed Central

    Qi, Xia; Ren, Sheng-Wei; Zhang, Feng; Wang, Yi-Qiang

    2016-01-01

    AIM To research the two homologous predicted proline-rich protein genes, Mus musculus predicted gene 4736 (MP4) and proline-rich protein BstNI subfamily 1 (Prb1) which were significantly upregulated in cultured corneal organs when encountering fungal pathogen preparations. This study was to confirm the expression and potential functions of these two genes in ocular surface. METHODS A Pseudomonas aeruginosa keratitis model was established in Balb/c mice. One day post infection, mRNA level of MP4 was measured using real-time polymerase chain reaction (PCR), and MP4 protein detected by immunohistochemistry (IHC) or Western blot using a customized polyclonal anti-MP4 antibody preparation. Lacrimal glands from normal mice were also subjected to IHC staining for MP4. An online bioinformatics program, BioGPS, was utilized to screen public data to determine other potential locations of MP4. RESULTS One day after keratitis induction, MP4 was upregulated in the corneas at both mRNA level as measured using real-time PCR and protein levels as measured using Western blot and IHC. BioGPS analysis of public data suggested that the MP4 gene was most abundantly expressed in the lacrimal glands, and IHC revealed that normal murine lacrimal glands were positive for MP4 staining. CONCLUSION MP4 and Prb1 are closely related with the physiology and pathological processes of the ocular surface. Considering the significance of ocular surface abnormalities like dry eye, we propose that MP4 and Prb1 contribute to homeostasis of ocular surface, and deserve more extensive functional and disease correlation studies. PMID:27588265

  8. Protein kinase R reveals an evolutionary model for defeating viral mimicry

    PubMed Central

    Elde, Nels C.; Child, Stephanie J.; Geballe, Adam P.; Malik, Harmit S.

    2008-01-01

    Distinguishing self from non-self is a fundamental biological challenge. Many pathogens exploit the challenge of self discrimination by employing mimicry to subvert key cellular processes including the cell cycle, apoptosis, and cytoskeletal dynamics1-5. Other mimics interfere with immunity6, 7. Poxviruses encode K3L, a mimic of eIF2α, which is the substrate of Protein Kinase R (PKR), an important component of innate immunity in vertebrates8, 9. The PKR-K3L interaction exemplifies the conundrum imposed by viral mimicry. To be effective, PKR must recognize a conserved substrate (eIF2α) while avoiding rapidly evolving substrate mimics like K3L. Using the PKR-K3L system and a combination of phylogenetic and functional analyses, we uncover evolutionary strategies by which host proteins can overcome mimicry. We find that PKR has evolved under dramatic episodes of positive selection in primates. The ability of PKR to evade viral mimics is partly due to positive selection at sites most intimately involved in eIF2α recognition. We also find that adaptive changes on multiple surfaces of PKR produce combinations of substitutions that increase the odds of defeating mimicry. Thus, while it can appear that pathogens gain insurmountable advantages by mimicking cellular components, host factors like PKR can compete in molecular ‘arms races’ with mimics because of remarkable evolutionary flexibility at protein interaction interfaces challenged by mimicry. PMID:19043403

  9. Detection of multiscale pockets on protein surfaces using mathematical morphology.

    PubMed

    Kawabata, Takeshi

    2010-04-01

    Detection of pockets on protein surfaces is an important step toward finding the binding sites of small molecules. In a previous study, we defined a pocket as a space into which a small spherical probe can enter, but a large probe cannot. The radius of the large probes corresponds to the shallowness of pockets. We showed that each type of binding molecule has a characteristic shallowness distribution. In this study, we introduced fundamental changes to our previous algorithm by using a 3D grid representation of proteins and probes, and the theory of mathematical morphology. We invented an efficient algorithm for calculating deep and shallow pockets (multiscale pockets) simultaneously, using several different sizes of spherical probes (multiscale probes). We implemented our algorithm as a new program, ghecom (grid-based HECOMi finder). The statistics of calculated pockets for the structural dataset showed that our program had a higher performance of detecting binding pockets, than four other popular pocket-finding programs proposed previously. The ghecom also calculates the shallowness of binding ligands, R(inaccess) (minimum radius of inaccessible spherical probes) that can be obtained from the multiscale molecular volume. We showed that each part of the binding molecule had a bias toward a specific range of shallowness. These findings will be useful for predicting the types of molecules that will be most likely to bind putative binding pockets, as well as the configurations of binding molecules. The program ghecom is available through the Web server (http://biunit.naist.jp/ghecom).

  10. Crystal structure analysis reveals Pseudomonas PilY1 as an essential calcium-dependent regulator of bacterial surface motility

    SciTech Connect

    Orans, Jillian; Johnson, Michael D.L.; Coggan, Kimberly A.; Sperlazza, Justin R.; Heiniger, Ryan W.; Wolfgang, Matthew C.; Redinbo, Matthew R.

    2010-09-21

    Several bacterial pathogens require the 'twitching' motility produced by filamentous type IV pili (T4P) to establish and maintain human infections. Two cytoplasmic ATPases function as an oscillatory motor that powers twitching motility via cycles of pilus extension and retraction. The regulation of this motor, however, has remained a mystery. We present the 2.1 {angstrom} resolution crystal structure of the Pseudomonas aeruginosa pilus-biogenesis factor PilY1, and identify a single site on this protein required for bacterial translocation. The structure reveals a modified {beta}-propeller fold and a distinct EF-hand-like calcium-binding site conserved in pathogens with retractile T4P. We show that preventing calcium binding by PilY1 using either an exogenous calcium chelator or mutation of a single residue disrupts Pseudomonas twitching motility by eliminating surface pili. In contrast, placing a lysine in this site to mimic the charge of a bound calcium interferes with motility in the opposite manner - by producing an abundance of nonfunctional surface pili. Our data indicate that calcium binding and release by the unique loop identified in the PilY1 crystal structure controls the opposing forces of pilus extension and retraction. Thus, PilY1 is an essential, calcium-dependent regulator of bacterial twitching motility.

  11. Variant-specific surface proteins of Giardia lamblia are zinc-binding proteins.

    PubMed Central

    Nash, T E; Mowatt, M R

    1993-01-01

    Giardia lamblia undergoes surface antigenic variation. The variant-specific surface proteins (VSPs) are a distinct family of cysteine-rich proteins. Characteristically, cysteine residues occur mostly as CXXC tetrapeptides. Four of the reported five VSPs contain a putative metal-binding domain that resembles other metal-binding motifs; the fifth is closely related but lacks an essential histidine. Three different native VSPs bound Zn2+. Co2+, Cu2+, and Cd2+ inhibited Zn2+ binding. Analysis of recombinant VSP fusion proteins showed that the putative binding motif bound Zn2+. Surprisingly, peptide fragments from other regions of the VSP contain numerous CXXCXnCXXC motifs that also bound Zn2+. Analysis of deduced amino acid sequences showed well-conserved CXXC spacing in three out of five VSPs, suggesting conservation of structure despite amino acid sequence divergence. The function of VSPs is unknown, but by binding Zn2+ or other metals in the intestine, VSPs may contribute to Zn2+ malnutrition or inhibition of metal-dependent intestinal enzymes, which would lead to malabsorption, a well-known consequence of giardiasis. Images Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:8516291

  12. A member of the CPW-WPC protein family is expressed in and localized to the surface of developing ookinetes

    PubMed Central

    2013-01-01

    Background Despite the development of malaria control programs, billions of people are still at risk for this infectious disease. Recently, the idea of the transmission-blocking vaccine, which works by interrupting the infection of mosquitoes by parasites, has gained attention as a promising strategy for malaria control and eradication. To date, a limited number of surface proteins have been identified in mosquito-stage parasites and investigated as potential targets for transmission-blocking vaccines. Therefore, for the development of effective transmission-blocking strategies in epidemic areas, it is necessary to identify novel zygote/ookinete surface proteins as candidate antigens. Methods Since the expression of many zygote/ookinete proteins is regulated post-transcriptionally, proteins that are regulated by well-known translational mediators were focused. Through in silico screening, CPW-WPC family proteins were selected as potential zygote/ookinete surface proteins. All experiments were performed in the rodent malaria parasite, Plasmodium yoelii XNL. mRNA and protein expression profiles were examined by RT-PCR and western blotting, respectively, over the course of the life cycle of the malaria parasite. Protein function was also investigated by the generation of gene-disrupted transgenic parasites. Results The CPW-WPC protein family, named after the unique WxC repeat domains, is highly conserved among Plasmodium species. It is revealed that CPW-WPC mRNA transcripts are transcribed in gametocytes, while CPW-WPC proteins are expressed in zygote/ookinete-stage parasites. Localization analysis reveals that one of the CPW-WPC family members, designated as PyCPW-WPC-1, is a novel zygote/ookinete stage-specific surface protein. Targeted disruption of the pycpw-wpc-1 gene caused no obvious defects during ookinete and oocyst formation, suggesting that PyCPW-WPC-1 is not essential for mosquito-stage parasite development. Conclusions It is demonstrated that PyCPW-WPC-1

  13. A Surface Biotinylation Strategy for Reproducible Plasma Membrane Protein Purification and Tracking of Genetic and Drug-Induced Alterations.

    PubMed

    Hörmann, Katrin; Stukalov, Alexey; Müller, André C; Heinz, Leonhard X; Superti-Furga, Giulio; Colinge, Jacques; Bennett, Keiryn L

    2016-02-01

    Plasma membrane (PM) proteins contribute to the identity of a cell, mediate contact and communication, and account for more than two-thirds of known drug targets.1-8 In the past years, several protocols for the proteomic profiling of PM proteins have been described. Nevertheless, comparative analyses have mainly focused on different variations of one approach.9-11 We compared sulfo-NHS-SS-biotinylation, aminooxy-biotinylation, and surface coating with silica beads to isolate PM proteins for subsequent analysis by one-dimensional gel-free liquid chromatography mass spectrometry. Absolute and relative numbers of PM proteins and reproducibility parameters on a qualitative and quantitative level were assessed. Sulfo-NHS-SS-biotinylation outperformed aminooxy-biotinylation and surface coating using silica beads for most of the monitored criteria. We further simplified this procedure by a competitive biotin elution strategy achieving an average PM annotated protein fraction of 54% (347 proteins). Computational analysis using additional databases and prediction tools revealed that in total over 90% of the purified proteins were associated with the PM, mostly as interactors. The modified sulfo-NHS-SS-biotinylation protocol was validated by tracking changes in the plasma membrane proteome composition induced by genetic alteration and drug treatment. Glycosylphosphatidylinositol (GPI)-anchored proteins were depleted in PM purifications from cells deficient in the GPI transamidase component PIGS, and treatment of cells with tunicamycin significantly reduced the abundance of N-glycoproteins in surface purifications.

  14. Structural analysis and insertion study reveal the ideal sites for surface displaying foreign peptides on a betanodavirus-like particle.

    PubMed

    Xie, Junfeng; Li, Kunpeng; Gao, Yuanzhu; Huang, Runqing; Lai, Yuxiong; Shi, Yan; Yang, Shaowei; Zhu, Guohua; Zhang, Qinfen; He, Jianguo

    2016-01-01

    Betanodavirus infection causes fatal disease of viral nervous necrosis in many cultured marine and freshwater fish worldwide and the virus-like particles (VLP) are effective vaccines against betanodavirus. But vaccine and viral vector designs of betanodavirus VLP based on their structures remain lacking. Here, the three-dimensional structure of orange-spotted grouper nervous necrosis virus (OGNNV) VLP (RBS) at 3.9 Å reveals the organization of capsid proteins (CP). Based on the structural results, seven putative important sites were selected to genetically insert a 6× histidine (His)-tag for VLP formation screen, resulting in four His-tagged VLP (HV) at positions N-terminus, Ala220, Pro292 and C-terminus. The His-tags of N-terminal HV (NHV) were concealed inside virions while those of 220HV and C-terminal HV (CHV) were displayed at the outer surface. NHV, 220HV and CHV maintained the same cell entry ability as RBS in the Asian sea bass (SB) cell line, indicating that their similar surface structures can be recognized by the cellular entry receptor(s). For application of vaccine design, chromatography-purified CHV could provoke NNV-specific antibody responses as strong as those of RBS in a sea bass immunization assay. Furthermore, in carrying capacity assays, N-terminus and Ala220 can only carry short peptides and C-terminus can even accommodate large protein such as GFP to generate fluorescent VLP (CGV). For application of a viral vector, CGV could be real-time visualized to enter SB cells in invasion study. All the results confirmed that the C-terminus of CP is a suitable site to accommodate foreign peptides for vaccine design and viral vector development. PMID:26754256

  15. Functional Mapping of Protein Kinase A Reveals Its Importance in Adult Schistosoma mansoni Motor Activity

    PubMed Central

    de Saram, Paulu S. R.; Ressurreição, Margarida; Davies, Angela J.; Rollinson, David; Emery, Aidan M.; Walker, Anthony J.

    2013-01-01

    Cyclic AMP (cAMP)-dependent protein kinase/protein kinase A (PKA) is the major transducer of cAMP signalling in eukaryotic cells. Here, using laser scanning confocal microscopy and ‘smart’ anti-phospho PKA antibodies that exclusively detect activated PKA, we provide a detailed in situ analysis of PKA signalling in intact adult Schistosoma mansoni, a causative agent of debilitating human intestinal schistosomiasis. In both adult male and female worms, activated PKA was consistently found associated with the tegument, oral and ventral suckers, oesophagus and somatic musculature. In addition, the seminal vesicle and gynaecophoric canal muscles of the male displayed activated PKA whereas in female worms activated PKA localized to the ootype wall, the ovary, and the uterus particularly around eggs during expulsion. Exposure of live worms to the PKA activator forskolin (50 µM) resulted in striking PKA activation in the central and peripheral nervous system including at nerve endings at/near the tegument surface. Such neuronal PKA activation was also observed without forskolin treatment, but only in a single batch of worms. In addition, PKA activation within the central and peripheral nervous systems visibly increased within 15 min of worm-pair separation when compared to that observed in closely coupled worm pairs. Finally, exposure of adult worms to forskolin induced hyperkinesias in a time and dose dependent manner with 100 µM forskolin significantly increasing the frequency of gross worm movements to 5.3 times that of control worms (P≤0.001). Collectively these data are consistent with PKA playing a central part in motor activity and neuronal communication, and possibly interplay between these two systems in S. mansoni. This study, the first to localize a protein kinase when exclusively in an activated state in adult S. mansoni, provides valuable insight into the intricacies of functional protein kinase signalling in the context of whole schistosome physiology

  16. Functional mapping of protein kinase A reveals its importance in adult Schistosoma mansoni motor activity.

    PubMed

    de Saram, Paulu S R; Ressurreição, Margarida; Davies, Angela J; Rollinson, David; Emery, Aidan M; Walker, Anthony J

    2013-01-01

    Cyclic AMP (cAMP)-dependent protein kinase/protein kinase A (PKA) is the major transducer of cAMP signalling in eukaryotic cells. Here, using laser scanning confocal microscopy and 'smart' anti-phospho PKA antibodies that exclusively detect activated PKA, we provide a detailed in situ analysis of PKA signalling in intact adult Schistosoma mansoni, a causative agent of debilitating human intestinal schistosomiasis. In both adult male and female worms, activated PKA was consistently found associated with the tegument, oral and ventral suckers, oesophagus and somatic musculature. In addition, the seminal vesicle and gynaecophoric canal muscles of the male displayed activated PKA whereas in female worms activated PKA localized to the ootype wall, the ovary, and the uterus particularly around eggs during expulsion. Exposure of live worms to the PKA activator forskolin (50 µM) resulted in striking PKA activation in the central and peripheral nervous system including at nerve endings at/near the tegument surface. Such neuronal PKA activation was also observed without forskolin treatment, but only in a single batch of worms. In addition, PKA activation within the central and peripheral nervous systems visibly increased within 15 min of worm-pair separation when compared to that observed in closely coupled worm pairs. Finally, exposure of adult worms to forskolin induced hyperkinesias in a time and dose dependent manner with 100 µM forskolin significantly increasing the frequency of gross worm movements to 5.3 times that of control worms (P≤0.001). Collectively these data are consistent with PKA playing a central part in motor activity and neuronal communication, and possibly interplay between these two systems in S. mansoni. This study, the first to localize a protein kinase when exclusively in an activated state in adult S. mansoni, provides valuable insight into the intricacies of functional protein kinase signalling in the context of whole schistosome physiology.

  17. Lacritin and other autophagy associated proteins in ocular surface health.

    PubMed

    Karnati, Roy; Talla, Venu; Peterson, Katherine; Laurie, Gordon W

    2016-03-01

    Advantage may be taken of macroautophagy ('autophagy') to promote ocular health. Autophagy continually captures aged or damaged cellular material for lysosomal degradation and recyling. When autophagic flux is chronically elevated, or alternatively deficient, health suffers. Chronic elevation of flux and stress are the consequence of inflammatory cytokines or of dry eye tears but not normal tears invitro. Exogenous tear protein lacritin transiently accelerates flux to restore homeostasis invitro and corneal health invivo, and yet the monomeric active form of lacritin appears to be selectively deficient in dry eye. Tissue transglutaminase-dependent cross-linking of monomer decreases monomer quantity and monomer affinity for coreceptor syndecan-1 thereby abrogating activity. Tissue transglutaminase is elevated in dry eye. Mutation of arylsulfatase A, arylsulfatase B, ceroid-lipofuscinosis neuronal 3, mucolipin, or Niemann-Pick disease type C1 respectively underlie several diseases of apparently insufficient autophagic flux that affect the eye, including: metachromatic leukodystrophy, mucopolysaccharidosis type VI, juvenile-onset Batten disease, mucolipidosis IV, and Niemann-Pick type C associated with myelin sheath destruction of corneal sensory and ciliary nerves and of the optic nerve; corneal clouding, ocular hypertension, glaucoma and optic nerve atrophy; accumulation of 'ceroid-lipofuscin' in surface conjunctival cells, and in ganglion and neuronal cells; decreased visual acuity and retinal dystrophy; and neurodegeneration. For some, enzyme or gene replacement, or substrate reduction, therapy is proving to be successful. Here we discuss examples of restoring ocular surface homeostasis through alteration of autophagy, with particular attention to lacritin.

  18. Lacritin and other autophagy associated proteins in ocular surface health.

    PubMed

    Karnati, Roy; Talla, Venu; Peterson, Katherine; Laurie, Gordon W

    2016-03-01

    Advantage may be taken of macroautophagy ('autophagy') to promote ocular health. Autophagy continually captures aged or damaged cellular material for lysosomal degradation and recyling. When autophagic flux is chronically elevated, or alternatively deficient, health suffers. Chronic elevation of flux and stress are the consequence of inflammatory cytokines or of dry eye tears but not normal tears invitro. Exogenous tear protein lacritin transiently accelerates flux to restore homeostasis invitro and corneal health invivo, and yet the monomeric active form of lacritin appears to be selectively deficient in dry eye. Tissue transglutaminase-dependent cross-linking of monomer decreases monomer quantity and monomer affinity for coreceptor syndecan-1 thereby abrogating activity. Tissue transglutaminase is elevated in dry eye. Mutation of arylsulfatase A, arylsulfatase B, ceroid-lipofuscinosis neuronal 3, mucolipin, or Niemann-Pick disease type C1 respectively underlie several diseases of apparently insufficient autophagic flux that affect the eye, including: metachromatic leukodystrophy, mucopolysaccharidosis type VI, juvenile-onset Batten disease, mucolipidosis IV, and Niemann-Pick type C associated with myelin sheath destruction of corneal sensory and ciliary nerves and of the optic nerve; corneal clouding, ocular hypertension, glaucoma and optic nerve atrophy; accumulation of 'ceroid-lipofuscin' in surface conjunctival cells, and in ganglion and neuronal cells; decreased visual acuity and retinal dystrophy; and neurodegeneration. For some, enzyme or gene replacement, or substrate reduction, therapy is proving to be successful. Here we discuss examples of restoring ocular surface homeostasis through alteration of autophagy, with particular attention to lacritin. PMID:26318608

  19. Bioorthogonal labeling cell-surface proteins expressed in pancreatic cancer cells to identify potential diagnostic/therapeutic biomarkers

    PubMed Central

    Haun, Randy S; Quick, Charles M; Siegel, Eric R; Raju, Ilangovan; Mackintosh, Samuel G; Tackett, Alan J

    2015-01-01

    To develop new diagnostic and therapeutic tools to specifically target pancreatic tumors, it is necessary to identify cell-surface proteins that may serve as potential tumor-specific targets. In this study we used an azido-labeled bioorthogonal chemical reporter to metabolically label N-linked glycoproteins on the surface of pancreatic cancer cell lines to identify potential targets that may be exploited for detection and/or treatment of pancreatic cancer. Labeled glycoproteins were tagged with biotin using click chemistry, purified by streptavidin-coupled magnetic beads, separated by gel electrophoresis, and identified by liquid chromatography-tandem mass spectrometry (MS). MS/MS analysis of peptides from 3 cell lines revealed 954 unique proteins enriched in the azido sugar samples relative to control sugar samples. A comparison of the proteins identified in each sample indicated 20% of these proteins were present in 2 cell lines (193 of 954) and 17 of the proteins were found in all 3 cell lines. Five of the 17 proteins identified in all 3 cell lines have not been previously reported to be expressed in pancreatic cancer; thus indicating that novel cell-surface proteins can be revealed through glycoprotein profiling. Western analysis of one of these glycoproteins, ecto-5′-nucleotidase (NT5E), revealed it is expressed in 8 out of 8 pancreatic cancer cell lines examined. Further, immunohistochemical analysis of human pancreatic tissues indicates NT5E is significantly overexpressed in pancreatic tumors compared to normal pancreas. Thus, we have demonstrated that metabolic labeling with bioorthogonal chemical reporters can be used to selectively enrich and identify novel cell-surface glycoproteins expressed in pancreatic ductal adenocarcinomas. PMID:26176765

  20. AMPAR interacting protein CPT1C enhances surface expression of GluA1-containing receptors

    PubMed Central

    Gratacòs-Batlle, Esther; Yefimenko, Natalia; Cascos-García, Helena; Soto, David

    2015-01-01

    AMPARs mediate the vast majority of fast excitatory synaptic transmission in the brain and their biophysical and trafficking properties depend on their subunit composition and on several posttranscriptional and posttranslational modifications. Additionally, in the brain AMPARs associate with auxiliary subunits, which modify the properties of the receptors. Despite the abundance of AMPAR partners, recent proteomic studies have revealed even more interacting proteins that could potentially be involved in AMPAR regulation. Amongst these, carnitine palmitoyltransferase 1C (CPT1C) has been demonstrated to form an integral part of native AMPAR complexes in brain tissue extracts. Thus, we aimed to investigate whether CPT1C might be able to modulate AMPAR function. Firstly, we confirmed that CPT1C is an interacting protein of AMPARs in heterologous expression systems. Secondly, CPT1C enhanced whole-cell currents of GluA1 homomeric and GluA1/GluA2 heteromeric receptors. However, CPT1C does not alter the biophysical properties of AMPARs and co-localization experiments revealed that AMPARs and CPT1C are not associated at the plasma membrane despite a strong level of co-localization at the intracellular level. We established that increased surface GluA1 receptor number was responsible for the enhanced AMPAR mediated currents in the presence of CPT1C. Additionally, we revealed that the palmitoylable residue C585 of GluA1 is important in the enhancement of AMPAR trafficking to the cell surface by CPT1C. Nevertheless, despite its potential as a depalmitoylating enzyme, CPT1C does not affect the palmitoylation state of GluA1. To sum up, this work suggests that CPT1C plays a role as a novel regulator of AMPAR surface expression in neurons. Fine modulation of AMPAR membrane trafficking is fundamental in normal synaptic activity and in plasticity processes and CPT1C is therefore a putative candidate to regulate neuronal AMPAR physiology. PMID:25698923

  1. Zernike phase contrast cryo-electron microscopy reveals 100 kDa component in a protein complex

    NASA Astrophysics Data System (ADS)

    Wu, Yi-Min; Wang, Chun-Hsiung; Chang, Jen-wei; Chen, Yi-yun; Miyazaki, Naoyuki; Murata, Kazuyoshi; Nagayama, Kuniaki; Chang, Wei-Hau

    2013-12-01

    Cryo-electron microscopy (cryo-EM) has become a powerful technique for obtaining near atomic structures for large protein assemblies or large virus particles, but the application to protein particles smaller than 200-300 kDa has been hampered by the feeble phase contrast obtained for such small samples and the limited number of electrons tolerated by them without incurring excessive radiation damage. By implementing a thin-film quarter-wave phase plate to a cryo-EM, Nagayama, one of the present authors, has recently restored the long-lost very low spatial frequencies, generating in-focus phase contrast superior to that of conventional defocusing phase contrast, and successfully applied the so-called Zernike phase-plate cryo-EM to target various biological samples in native state. Nevertheless, the sought-after goal of using enhanced phase contrast to reveal a native protein as small as 100 kDa waits to be realized. Here, we report a study in which 200 kV Zernike phase-plate cryo-EM with a plate cut-on periodicity of 36 nm was applied to visualize 100 kDa components of various protein complexes, including the small domains on the surface of an icosahedral particle of ˜38 nm derived from the dragon grouper nervous necrosis virus (DGNNV) and the labile sub-complex dissociated from yeast RNA polymerase III of 17 nm. In the former case, we observed a phase contrast reversal phenomenon at the centre of the icosahedral particle and traced its root cause to the near matching of the cut-on size and the particle size. In summary, our work has demonstrated that Zernike phase-plate implementation can indeed expand the size range of proteins that can be successfully investigated by cryo-EM, opening the door for countless proteins. Finally, we briefly discuss the possibility of using a transfer lens system to enlarge the cut-on periodicity without further miniaturizing the plate pinhole.

  2. Physical Features of Intracellular Proteins that Moonlight on the Cell Surface

    PubMed Central

    Amblee, Vaishak; Jeffery, Constance J.

    2015-01-01

    Moonlighting proteins comprise a subset of multifunctional proteins that perform two or more biochemical functions that are not due to gene fusions, multiple splice variants, proteolytic fragments, or promiscuous enzyme activities. The project described herein focuses on a sub-set of moonlighting proteins that have a canonical biochemical function inside the cell and perform a second biochemical function on the cell surface in at least one species. The goal of this project is to consider the biophysical features of these moonlighting proteins to determine whether they have shared characteristics or defining features that might suggest why these particular proteins were adopted for a second function on the cell surface, or if these proteins resemble typical intracellular proteins. The latter might suggest that many other normally intracellular proteins found on the cell surface might also be moonlighting in this fashion. We have identified 30 types of proteins that have different functions inside the cell and on the cell surface. Some of these proteins are found to moonlight on the surface of multiple species, sometimes with different extracellular functions in different species, so there are a total of 98 proteins in the study set. Although a variety of intracellular proteins (enzymes, chaperones, etc.) are observed to be re-used on the cell surface, for the most part, these proteins were found to have physical characteristics typical of intracellular proteins. Many other intracellular proteins have also been found on the surface of bacterial pathogens and other organisms in proteomics experiments. It is quite possible that many of those proteins also have a moonlighting function on the cell surface. The increasing number and variety of known moonlighting proteins suggest that there may be more moonlighting proteins than previously thought, and moonlighting might be a common feature of many more proteins. PMID:26110848

  3. Evolutionary biochemistry: revealing the historical and physical causes of protein properties

    PubMed Central

    Harms, Michael J.; Thornton, Joseph W.

    2014-01-01

    The repertoire of proteins and nucleic acids in the living world is determined by evolution; their properties are determined by the laws of physics and chemistry. Explanations of these two kinds of causality — the purviews of evolutionary biology and biochemistry, respectively — are typically pursued in isolation, but many fundamental questions fall squarely at the interface of fields. Here we articulate the paradigm of evolutionary biochemistry, which aims to dissect the physical mechanisms and evolutionary processes by which biological molecules diversified and to reveal how their physical architecture facilitates and constrains their evolution. We show how an integration of evolution with biochemistry moves us towards a more complete understanding of why biological molecules have the properties that they do. PMID:23864121

  4. Quantitative H2S-mediated protein sulfhydration reveals metabolic reprogramming during the integrated stress response

    PubMed Central

    Gao, Xing-Huang; Krokowski, Dawid; Guan, Bo-Jhih; Bederman, Ilya; Majumder, Mithu; Parisien, Marc; Diatchenko, Luda; Kabil, Omer; Willard, Belinda; Banerjee, Ruma; Wang, Benlian; Bebek, Gurkan; Evans, Charles R.; Fox, Paul L.; Gerson, Stanton L.; Hoppel, Charles L.; Liu, Ming; Arvan, Peter; Hatzoglou, Maria

    2015-01-01

    The sulfhydration of cysteine residues in proteins is an important mechanism involved in diverse biological processes. We have developed a proteomics approach to quantitatively profile the changes of sulfhydrated cysteines in biological systems. Bioinformatics analysis revealed that sulfhydrated cysteines are part of a wide range of biological functions. In pancreatic β cells exposed to endoplasmic reticulum (ER) stress, elevated H2S promotes the sulfhydration of enzymes in energy metabolism and stimulates glycolytic flux. We propose that transcriptional and translational reprogramming by the integrated stress response (ISR) in pancreatic β cells is coupled to metabolic alternations triggered by sulfhydration of key enzymes in intermediary metabolism. DOI: http://dx.doi.org/10.7554/eLife.10067.001 PMID:26595448

  5. Slam is an outer membrane protein that is required for the surface display of lipidated virulence factors in Neisseria.

    PubMed

    Hooda, Yogesh; Lai, Christine Chieh-Lin; Judd, Andrew; Buckwalter, Carolyn M; Shin, Hyejin Esther; Gray-Owen, Scott D; Moraes, Trevor F

    2016-01-01

    Lipoproteins decorate the surface of many Gram-negative bacterial pathogens, playing essential roles in immune evasion and nutrient acquisition. In Neisseria spp., the causative agents of gonorrhoea and meningococcal meningitis, surface lipoproteins (SLPs) are required for virulence and have been extensively studied as prime candidates for vaccine development. However, the machinery and mechanism that allow for the surface display of SLPs are not known. Here, we describe a transposon (Tn5)-based search for the proteins required to deliver SLPs to the surface of Neisseria meningitidis, revealing a family of proteins that we have named the surface lipoprotein assembly modulator (Slam). N. meningitidis contains two Slam proteins, each exhibiting distinct substrate preferences. The Slam proteins are sufficient to reconstitute SLP transport in laboratory strains of Escherichia coli, which are otherwise unable to efficiently display these lipoproteins on their cell surface. Immunoprecipitation and domain probing experiments suggest that the SLP, TbpB, interacts with Slam during the transit process; furthermore, the membrane domain of Slam is sufficient for selectivity and proper surface display of SLPs. Rather than being a Neisseria-specific factor, our bioinformatic analysis shows that Slam can be found throughout proteobacterial genomes, indicating a conserved but until now unrecognized virulence mechanism. PMID:27572441

  6. Mucosal Immunogenicity of Genetically Modified Lactobacillus acidophilus Expressing an HIV-1 Epitope within the Surface Layer Protein

    PubMed Central

    Kajikawa, Akinobu; Zhang, Lin; LaVoy, Alora; Bumgardner, Sara; Klaenhammer, Todd R.; Dean, Gregg A.

    2015-01-01

    Surface layer proteins of probiotic lactobacilli are theoretically efficient epitope-displaying scaffolds for oral vaccine delivery due to their high expression levels and surface localization. In this study, we constructed genetically modified Lactobacillus acidophilus strains expressing the membrane proximal external region (MPER) from human immunodeficiency virus type 1 (HIV-1) within the contex